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Abstract
Awell-known theorem by Hartshorne and Hirschowitz (in: Aroca, Buchweitz, Giusti,
Merle (eds)Algebraic geometry. Lecture notes inmathematics, Springer, Berlin, 1982)
states that a generic union X ⊂ P

n , n ≥ 3, of lines has good postulation with respect
to the linear system |OPn (d)|. So a question that naturally arises in studying the
postulation of non-reduced positive dimensional schemes supported on linear spaces
is the question whether adding a m-multiple c-dimensional linear space mP

c to X can
still preserve it’s good postulation, which means in classical language that, whether
mP

c imposes independent conditions on the linear system |IX(d)|. Recently, the case
of c = 0, i.e., the case of lines and one m-multiple point, has been completely solved
by several authors (Carlini et al. in Ann Sc Norm Super Pisa Cl Sci (5) XV:69–84,
2016; Aladpoosh and Ballico in Rend Semin Mat Univ Politec Torino 72(3–4):127–
145, 2014; Ballico in Mediterr J Math 13(4):1449–1463, 2016) starting with Carlini–
Catalisano–Geramita, while the case of c > 0 was remained unsolved, and this is
what we wish to investigate in this paper. Precisely, we study the postulation of a
generic union of s lines and one m-multiple linear space mP

c in P
n , n ≥ c + 2. Our

main purpose is to provide a complete answer to the question in the case of lines
and one double line, which says that the double line imposes independent conditions
on |IX(d)| except for the only case {n = 4, s = 2, d = 2}. Moreover, we discuss
an approach to the general case of lines and one m-multiple c-dimensional linear
space, (m ≥ 2, c ≥ 1), particularly, we find several exceptional such schemes, and
we conjecture that these are the only exceptional ones in this family. Finally, we give
some partial results in support of our conjecture.
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1 Introduction

To understand the geometry of a closed subscheme X as an embedded scheme in P
n ,

one of the first points of interest is considering the postulation problem, i.e. determining
the number of conditions imposed by asking hypersurfaces of any degree to contain
X . In terms of sheaf cohomology, we would like to know the rank of the restriction
maps

ρ(d) : H0(Pn,OPn (d)) → H0(X ,OX (d)).

We say that X has maximal rank or good postulation or expected postulation if ρ(d)

has maximal rank, i.e. it is either injective or surjective, for each d ≥ 0. This amounts
to saying that one or other of the integers h0(IX (d)), h1(IX (d)) is zero, and this shows
that the property that X imposes independent conditions to degree d hypersurfaces
can be interpreted cohomologically.

On the other hand, this classical problem is equivalent to computing the Hilbert
function of X . Let H F(X , d) be the Hilbert function of X in degree d, namely,
H F(X , d) = h0(OPn (d)) − h0(IX (d)), i.e. the rank of ρ(d). In order to determine
the Hilbert function of X in some degree d, there is an expected value for it given
by a naive count of conditions. This value is determined by assuming that X imposes
independent conditions on the linear system |OPn (d)| of degree d hypersurfaces in
P

n , i.e.,

h0(IX (d)) = max
{

h0(OPn (d)) − h0(OX (d)), 0
}

,
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or equivalently

H F(X , d) = min{H P(X , d), H P(Pn, d)},

where H P(X , d) is the Hilbert polynomial of X . In [7], the authors called a scheme X
with such Hilbert function for all d ≥ 0, has bipolynomial Hilbert function. It always
holds H F(X , d) ≤ min{H P(X , d), H P(Pn, d)}, so a natural question to ask is:
when does this inequality turn into equality?

An important observation is that the postulation problem depends not only on the
numerical data involved in it, but also on the position of the components of X . If X is
in sufficiently general position one expects that X has bipolynomial Hilbert function,
and therefore has good postulation, but this naive guess is in general false.

When we restrict our attention to the special class of schemes X ⊂ P
n which

supported on unions of generic linear spaces, there is much interest in the postulation
problem. In this situation it is noteworthy that the notions of good postulation and
bipolynomial Hilbert function coincide. Original investigation mostly concentrated
on the reduced cases (see e.g. [3,4,7,9,13,14,19,22]): if dim X = 0, i.e. X is a generic
collection of points in P

n , it is well known that X has good postulation (see [18]); if
dim X = 1, we have a brilliant result due to Hartshorne and Hirschowitz, going back
to 1981 [22], which states that a generic collection of lines in P

n, n ≥ 3, has good
postulation; as soon as we go up to dim X > 1, the postulation problem becomes more
and more complicated. The extent of our ignorance in this situation is illustrated by
the fact that the complete answer to the postulation problem even in two-dimensional
case is not yet known (see [4,7] for a generic union of lines and a few planes, and [3]
for a generic union of lines and a linear space).

On the other hand there is also a lot of interest on the postulation of non-reduced
schemes supported on linear spaces: concerning the zero-dimensional case, i.e. fat
points schemes, the postulation problem is a field of active research in algebraic
geometry which has occupied researchers’s minds for over a century, but, despite
all the progress made on this problem, it is still very live and widely open in its
generality (see e.g. [2,12,20], and also [11] for a survey of results, related conjec-
tures and open questions); concerning the positive dimensional case, the postulation
problem turns out to be far too complicated and giving a complete answer appears
to be ambitious and quite difficult, this is why that it has never been systematically
studied and in fact it had remained unsolved for a long time. Apparently the work
of Carlini–Catalisano–Geramita [10] is a turning point in this story, which together
with the recent papers [1] and [5] shows that a generic union X of s lines and one
m-multiple point in P

n, n ≥ 3, always has good postulation in degree d except for the
cases {n = 3, m = d, 2 ≤ s ≤ d}, (see for the proof: [10] in the case of n ≥ 4, [1] in
the case of {n = 3, m = 3}, and [5] in the case of {n = 3, m ≥ 4}). As far as we know,
this is the only complete knowledge of the postulation in the case of non-reduced
positive dimensional schemes supported on linear spaces (for other related results see
[15,16]). This paper wasmotivated by an attempt to go further in this direction, namely
one may ask about the generic union of lines and one m-multiple line and one may
hope that behaves well with respect to the postulation problemmodulo a certain list of
exceptions. The main result of this paper is solving the case of m = 2, i.e. the case of
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a generic union of lines and one double line. More precisely, we prove the following
theorem:

Theorem 1.1 Let n, d ∈ N, and n ≥ 3. Let the scheme X ⊂ P
n be a generic union of

s ≥ 1 lines and one double line. Then X has good postulation, i.e.,

h0(IX (d)) = max

{(
d + n

n

)
− (nd + 1) − s(d + 1), 0

}
,

except for the only case {n = 4, s = 2, d = 2}.
Geometrically, the theorem says that one generic double line in P

n imposes inde-
pendent conditions to hypersurfaces of given degree d containing s generic lines, with
the exception of only the case {n = 4, s = 2, d = 2}.

A first generalization is asking not only for m = 2, but also for m > 2 arbi-
trary. Inspired by the question involving an arbitrary multiple line instead of a double
line, and based on several examples, we conjecture that a similar result should hold,
in analogy with the statement of Theorem 1.1. Namely we formulate the following
conjecture:

The scheme X ⊂ P
n, n ≥ 3, consisting of s ≥ 1 generic lines and one generic

m-multiple line, (m ≥ 2), always has good postulation, except for the cases
{n = 4, m = d, 2 ≤ s ≤ d}.
From this conjecturewe can deduce the important relation of the failure of X to have

good postulation in degree d, with the multiplicity of a multiple line, the dimension
of the ambient space, and the number of apparent simple lines. This seems to be fairly
general behavior, which leads us to advance in more general situation. Indeed, one can
push the problem we are facing even further, in the sense of substituting a multiple
line with a multiple linear space of any dimension, and try to make a conjecture which
parallels the above one.

Based on a similar analogy and some further evidence, we propose a conjecture as
follows, which is significantly stronger than the former.

Conjecture 1.2 Let n, d, c ∈ N, and n ≥ c +2 ≥ 3. The scheme X ⊂ P
n consisting of

s ≥ 1 generic lines and one generic m-multiple linear space of dimension c, (m ≥ 2),
always has good postulation, except for the cases

{n = c + 3, m = d, 2 ≤ s ≤ d} .

Of course, this conjecture coincides with the previous one for c = 1. As we shall
see in Sect. 7, there are results that make the conjecture rather plausible. It is worth
mentioning that the case m = 1 is considered in [3], where Ballico proved that a
generic disjoint union of lines and one linear space always has good postulation [3,
Proposition 1].

Wewant to finish by pointing out that a non-reduced scheme X supported on generic
union of linear spaces always has exceptions, a phenomenon that does not happenwhen
X is reduced (according to a conjecture in [7]). In fact, the “bad behavior” of X is
always related to the multiple components of it.
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The structure of the paper

Section 2 contains background material. To be more explicit, after recalling basic
definitions and notations on the schemes of multiple linear spaces in Sect. 2.1, we
then give, in Sect. 2.2, some lemmas and some elementary observations which are
extremely useful in dealing with the postulation problem. Next, in Sect. 2.3 we collect
the known results concerning the postulation of lines as well as of lines and one
multiple point, that are necessary for our proofs in Sects. 4–6, in addition, we look at
the Hilbert polynomial of multiple linear spaces. We will study the postulation of our
schemes by a degeneration approach, namely, degeneration of two skew lines in such
a way that the resulting degenerated scheme would be a sundial, in the sense of [8],
thanks to a theorem of Carlini–Catalisano–Geramita on the postulation of sundials in
any projective space; all this is represented in Sect. 2.4.

Section 3 making up the core of the paper devoted to the outline of the proof
of our main theorem, Theorem 1.1. We begin this section with the exceptional case
{n = 4, s = 2, d = 2} of the theorem. We make explicit, in Sect. 3.1, the geometric
reason that prevents a scheme consisting of one generic double line and two generic
simple lines in P

4 from imposing independent conditions to quadric hypersurfaces.
Moreover,we solve completely the case ofd = 2of the theorem. InSect. 3.2weexplain
a rephrasing of Theorem 1.1, that is Theorem 3.2. So our goal will be to prove Theorem
1.1 in the reformulation of Theorem 3.2. Sect. 3.3 describes in detail our strategy for
proving Theorem 3.2, which is based on geometric constructions of specialized and
degenerated schemes, the well-known Horace lemma, and the intersection theory on a
hyperplane or on a smooth quadric surface.We would like to point out that our method
of degenerations owed to the works [8,10].

In order to apply the strategy we will use an induction procedure which has difficult
but delicate beginning steps for n = 3 and n = 4. In Sects. 4 and 5 we prove Theorem
3.2 for, respectively, n = 3 and n = 4, setting the stage for our induction approach.
While, the proof for the general case n ≥ 5 will be carried out in Sect. 6.

Conjecture 1.2, which geometrically amounts to saying that one genericm-multiple
c-dimensional linear space mP

c in P
n , (n ≥ c + 2 ≥ 3), fails to impose independent

conditions to degree d hypersurfaces through s generic lines if and only if n = c +
3, m = d and 2 ≤ s ≤ d, is stated and discussed in Sect. 7, where we prove it for the
exceptional cases, and we describe completely what happen for d = m.

Finally, in “Appendix”, Sect. 8, we collect several numerical lemmas needed for
our proofs in Sects. 5 and 6.

2 Background

We work throughout over an algebraically closed field k with characteristic zero.
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2.1 Notations

Given a closed subscheme X of P
n , IX will denote the ideal sheaf of X . If X , Y are

closed subschemes of P
n and X ⊂ Y , then we denote by IX ,Y the ideal sheaf of X in

OY .
If F is a coherent sheaf on the scheme X , for any integer i ≥ 0 we use hi (X ,F) to

denote the k-vector space dimension of the cohomology group Hi (X ,F). In particular,
when X = P

n , we will often omit X and we will simply write hi (F).

A (fat) point of multiplicity m, or anm-multiple point, with support P ∈ P
n , denoted

m P , is the zero-dimensional subscheme of P
n defined by the ideal sheaf (IP )m , i.e.

the (m − 1)th infinitesimal neighborhood of P . In case P ∈ X for any smooth variety
X ⊂ P

n , we will write m P|X for the (m − 1)th infinitesimal neighborhood of P in
X , that is the schematic intersection of the m-multiple point m P of P

n and X with
(IP,X )m as its ideal sheaf.

Similarly, if L ⊂ P
n is a line (resp. linear space), the closed subscheme of P

n

supported on L and defined by the ideal sheaf (IL)m is called a (fat) line of multiplicity
m (resp. linear space), or an m-multiple line (resp. linear space), and is denoted by
mL .

Let m1, . . . , ms be positive integers and let X1, . . . , Xs be s closed subschemes of
P

n . We denote by

m1X1 + · · · + ms Xs

the schematic union ofm1X1, . . . , ms Xs , i.e. the subscheme of P
n defined by the ideal

sheaf (IX1)
m1 ∩ · · · ∩ (IXs )

ms .

2.2 Preliminary lemmas

The basic tool for the study of the postulation problem is the so called Casteln-
uovo’s inequality, that is an immediate consequence of the well-known residual exact
sequence (for more details see e.g. [2, Section 2]).

We first recall the notion of residual scheme [17, §9.2.8].

Definition 2.1 Let X , Y be closed subschemes of P
n .

(i) The closed subscheme of P
n defined by the ideal sheaf (IX : IY ) is called the

residual of X with respect to Y and denoted by ResY (X).
(ii) The schematic intersection X ∩Y defined by the ideal sheaf (IX +IY )/IY ofOY

is called the trace of X on Y and denoted by T rY (X).

We note that the generally valid identity for ideal sheaves

(IX1 ∩ IX2) : IY = (IX1 : IY ) ∩ (IX2 : IY )

implies that the residual of the schematic union X1 + X2 is the schematic union of the
residuals.
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Lemma 2.2 (Castelnuovo’s Inequality) Let d, e ∈ N, and d ≥ e. Let H ⊆ P
n be a

hypersurface of degree e, and let X ⊆ P
n be a closed subscheme. Then

h0(Pn, IX (d)) ≤ h0(Pn, IResH (X)(d − e)) + h0(H , IT rH (X)(d)).

This lemma, especially after the outstanding work of Hirschowitz [23], is the basis
for a standard method of working inductively with degree to solve the postulation
problem and particularly is central to our proofs in the present paper (Sects. 4–6).

The following remark is quite immediate.

Remark 2.3 Let n, m, d, s, s′ ∈ N, s′ < s. Let L and L1, . . . , Ls be generic lines in
P

n , n ≥ 3. Let Xs = mL + L1 + · · · + Ls ⊂ P
n .

(i) If h1(IXs (d)) = 0, then h1(IXs′ (d)) = 0.
(ii) If h0(IXs′ (d)) = 0, then h0(IXs (d)) = 0.

The following lemma shows that how to add a collection of collinear points to a
scheme X ⊂ P

n , in such a way that imposes independent conditions on the linear
system of degree d hypersurfaces passing through X for a given degree d (which is a
special case of [7, Lemma 2.2]).

Lemma 2.4 Let d ∈ N. Let X ⊆ P
n be a closed subscheme, and let P1, . . . , Ps be

generic points on a line L ⊂ P
n.

If h0(IX (d)) = s and h0(IX+L(d)) = 0, then h0(IX+P1+···+Ps (d)) = 0.

2.3 What results were previously known

As a key question in the direction of studying the postulation problem of a scheme
X ⊂ P

n supported on generic union of linear spaces, one can ask: What is the Hilbert
polynomial of X? When X is reduced, Derksen answered this question by giving a
formula for computing the Hilbert polynomial of X (see [13] for details). Moreover,
the Hilbert polynomial of a multiple linear space is well-known, and it is not difficult
to verify it by a count of parameters, that can be found in e.g. [6, §2] and [15, Lemma
2.1].

Lemma 2.5 Let n, d, c ∈ N, c < n and 1 ≤ m ≤ d. Let � ⊂ P
n be a linear space of

dimension c, then

H P(m�, d) =
m−1∑
i=0

(
c + d − i

c

)(
n + i − c − 1

i

)
. (1)

Indeed, the requirement for a degree d hypersurface in P
n to contain m�, i.e. to

have multiplicity m along the linear space �, imposes the number of conditions on it,
which is at most the right hand side of (1).

In our case, i.e. the case of double line, one knows that for a hypersurface to contain
a double line 2L is equivalent to saying that it is singular along the line L , and the
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above lemma asserts that 2L in P
n imposes (nd +1) independent conditions to degree

d hypersurfaces.
Now we recall a few results on the postulation of schemes supported on generic

linear spaces which we will use to prove our Theorem 1.1 in Sects. 4–6. We start with
a spectacular result due to Hartshorne and Hirschowitz, about the generic lines.

Theorem 2.6 (Hartshorne–Hirschowitz) [22, Theorem 0.1] Let n, d ∈ N, and n ≥ 3.
Let X ⊂ P

n be a generic union of s lines. Then X has good postulation, i.e.,

h0(IX(d)) = max

{(
d + n

n

)
− s(d + 1), 0

}
.

As a first step for positive dimensional non-reduced cases, in [1,10] and [5] the
authors examined the postulation problem for a generic collection of skew lines and
one fat point of multiplicity m in P

n , n ≥ 3, and they found out that when n ≥ 4
these schemes have good postulation, but when n = 3 there are several defective such
schemes. Now, one can present these results simultaneously in a theorem as follows
(see [10, Theorem 3.2] for n ≥ 4 and m arbitrary, [10, Proposition 4.1] for n = 3 and
m = 2, [1, Theorem 1] for n = 3 and m = 3, and finally [5, Theorem 1] for n = 3
and m ≥ 4).

Theorem 2.7 Let n, m, d ∈ N, and n ≥ 3. Let the scheme X ⊂ P
n be a generic union

of s ≥ 1 lines and one fat point of multiplicity m ≥ 2. Then X has good postulation,
i.e.,

h0(IX (d)) = max

{(
d + n

n

)
−

(
m + n − 1

n

)
− s(d + 1), 0

}
,

except for the cases {n = 3, m = d, 2 ≤ s ≤ d}.
Since we will apply the theorem for the case m = 2 and d ≥ 3 several times in the

next sections, it is convenient to restate it as follows.

Corollary 2.8 Let n, d ∈ N, and n, d ≥ 3. Let the scheme X ⊂ P
n be a generic union

of s ≥ 1 lines and one double point. Then X has good postulation in degree d, i.e.

h0(IX (d)) = max

{(
d + n

n

)
− (n + 1) − s(d + 1), 0

}
.

2.4 A degeneration approach

A natural approach to the postulation problem is to argue by degeneration. In view
of the fact that we have the semicontinuity theorem for cohomology groups in a flat
family [21, III, 12.8], one may use the degenerations and the semicontinuity theorem
in order to be able to better handle the postulation of schemes supported on generic
unions of linear spaces. Specifically, if one can prove that the property of having good
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postulation is satisfied in the special fiber, i.e. the degenerate scheme, then one may
hope to obtain the same property in the general fiber, i.e. the original scheme.

In the celebrated paper [22] Hartshorne and Hirschowitz investigated a new degen-
eration technique to attack the postulation problem for a generic union of lines. In
fact, they degenerate two skew lines in P

3 in such a way that the resulting scheme
becomes a “degenerate conic with an embedded point” (which also was used in [23]).
Even more generally, one can push this trick of “adding nilpotents” further, to give a
degeneration of two skew lines in higher dimensional projective spaces P

n, n ≥ 3,
this is what the authors introduced in [7, Definition 2.7 with m = 1] and called a
(3-dimensional) sundial.

According to the terminology of [22], we say that C is a degenerate conic if C is
the union of two intersecting lines L and M , so C = L + M .

Now we recall the definition of a 3-dimensional sundial or simply a sundial (see
[8, Definition 3.7] or [7, Definition 2.7 with m = 1]).

Definition 2.9 Let L and M be two intersecting lines in P
n, n ≥ 3, and let T ∼= P

3 be
a generic linear space containing the degenerate conic L + M . Let P be the singular
point of L + M , i.e. P = L ∩ M . We call the scheme L + M + 2P|T a degenerate
conic with an embedded point or a (3-dimensional) sundial.

One can show a sundial is a flat limit inside P
n of a flat family whose general fiber

is the disjoint union of two lines, i.e. a sundial is a degeneration of two generic lines
in P

n , n ≥ 3. This is the content of the following lemma (see [22, Example 2.1.1] for
the case n = 3, and [8, Lemma 3.8] or [7, Lemma 2.5 with m = 1] for the general
case n ≥ 3).

Lemma 2.10 Let X1 ⊂ P
n, n ≥ 3, be the disjoint union of two lines L1 and M.

Then there exists a flat family of subschemes Xi ⊂ 〈X1〉 ∼= P
3, (i ∈ k), whose

general fiber is the union of two skew lines and whose special fiber is the sundial
X0 = M + L + 2P|〈X1〉, where L is a line and M ∩ L = P.

Note that we can also easily degenerate a simple generic point and a degenerate
conic to a sundial. Therefore, a sundial is either a degeneration of two generic lines,
or a degeneration of a scheme which is the union of a degenerate conic and a simple
generic point [8, Remark 3.9].

We recall here the main result in [8] which guarantees that a generic collection of
lines and sundials will behave well with respect to the postulation problem.

Theorem 2.11 [8, Theorem 4.4] Let n, d ∈ N, and n ≥ 3. Let the scheme X ⊂ P
n be

a generic union of x sundials and y lines. Then X has good postulation, i.e.

h0(IX (d)) = max

{(
d + n

n

)
− (2x + y)(d + 1), 0

}
.

3 Outline of the proof of Theorem 1.1

Now we have all the necessary tools to tackle our main theorem, Theorem 1.1.
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3.1 The exceptional case

We look for the case where X fails to have good postulation. Actually, there is only one
exception in this infinite family, namely the case {n = 4, s = 2} which, H0(IX (2))
has dimension one instead of zero. As we will see below, this exceptional case arises
from geometric reason, although the proof follows from numerical reason.

Now we prove the following proposition, which completely describes the case
d = 2 of Theorem 1.1:

Proposition 3.1 The scheme X ⊂ P
n, n ≥ 3, consisting of s ≥ 1 generic lines and

one generic double line 2L has good postulation in degree d = 2, i.e.,

h0(IX (2)) = max

{(
n + 2

n

)
− (2n + 1) − 3s, 0

}

= max

{(
n

2

)
− 3s, 0

}
,

except for the only case {n = 4, s = 2}.
Proof The sections of IX (2) correspond to quadric hypersurfaces inP

n which, in order
to contain 2L , have to be cones whose vertex contains the line L .

If n = 3, we obviously have h0(IX (2)) = 0, as expected.
If n ≥ 4, we consider the projection X ′ of X from L onto a generic linear subspace

P
n−2 ⊂ P

n , hence X ′ is a scheme consisting of s generic lines in P
n−2. It follows that

h0(Pn, IX (2)) = h0(Pn−2, IX ′(2)).

In case n > 4, by Hartshorne–Hirschowitz theorem (Theorem 2.6) we get

h0(Pn−2, IX ′(2)) = max

{(
2 + n − 2

2

)
− 3s, 0

}
= max

{(
n

2

)
− 3s, 0

}
,

and we get the conclusion.
In case n = 4, X ′ is a generic union of s lines inP

2. Hence, for s > 2 it is immediate
to see that h0(IX ′(2)) = 0. For s ≤ 2 we have h0(IX ′(2)) = (2−s+2

2

) = (4−s
2

)
, on

the other hand the expected value for h0(IX (2)) is max {6 − 3s, 0}. Thus for s = 1,
h0(IX (2)) = 3, as expected; but for s = 2, h0(IX (2)) = 1 while the expected one is
0, which is what we wanted to show. �

3.2 Rephrasing Theorem 1.1

From what we have observed in the previous subsection, it remains to verify Theorem
1.1 for d ≥ 3, asserts that schemes X ⊂ P

n consisting of s generic lines and one
generic double line have good postulation for all d ≥ 3, i.e., h0(IX (d)) = 0 or
h1(IX (d)) = 0. (Note that the case d = 1 of Theorem 1.1 being trivial, so we omit
it.)
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First note that, as X varies in a flat family, by the semicontinuity of cohomology
[21, III, 12.8], the condition of good postulation, is clearly an open condition on the
family of X . Hence to prove Theorem 1.1, it is enough to find any scheme of s lines
and one double line, or even any scheme which is a specialization of a flat family of
s lines and one double line, which has good postulation.

Given n and d, suppose one can choose s so that:

(
d + n

n

)
= (nd + 1) + s(d + 1)

and suppose one can find X so that h0(IX (d)) = h1(IX (d)) = 0. Then if one removes
some lines from X , one gets a scheme X ′ ⊂ X such that h1(IX ′(d)) will still be zero
(by Remark 2.3 (i)); and if one adds some lines to X , one gets a scheme X ′′ ⊃ X
such that h0(IX ′′(d)) will still be zero (by Remark 2.3 (ii)). In other words, the good
postulation for that given n, d and the unique integer s, that gives the equality above,
implies the good postulation for the same n, d and any s whatsoever.

Unfortunately for given n, d one can not always find such an s. Therefore we will
make adjustments by adding some collinear points to X , to get a similar equality. In
particular, we prove the following theorem which, by Remark 2.3, implies our main
Theorem 1.1 for d ≥ 3:

Theorem 3.2 Let n, d ∈ N, and n, d ≥ 3. Let

r =
⌊(d+n

n

) − (nd + 1)

d + 1

⌋
; q =

(
d + n

n

)
− (nd + 1) − r(d + 1).

Let the scheme X ⊂ P
n be the generic union of r lines L1, . . . , Lr , one double line

2L and q points P1, . . . , Pq lying on a generic line M. Then X has good postulation,
i.e.,

h1(IX (d)) = h0(IX (d)) =
(

d + n

n

)
− (nd + 1) − r(d + 1) − q = 0.

From our discussion above, Theorem 1.1 follows immediately from this theorem.
Indeed, to prove Theorem 1.1 for that n, d and any r ′ ≤ r , simply remove the q points
and r − r ′ lines, then the corresponding h1(I(d)) will be zero; to prove it for r ′′ > r ,
first add the line M passing through the q collinear points, then add r ′′ −r −1 disjoint
lines, then the corresponding h0(I(d)) will be zero.

Remark 3.3 As we have seen, Theorem 3.2 implies Theorem 1.1. On the other hand,
the converse also follows directly from Lemma 2.4.

3.3 Strategy of the proof

We illustrate our general strategy explicitly to prove Theorem 3.2 for a generic scheme
X ⊂ P

n consisting of one double line, r simple lines and q collinear points, as follows:
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The difficulty with proving a property like “good postulation” is that, it is very hard to
lay hands on a generic scheme X . Our approach to overcome to this difficulty is to start
with a special scheme,which is obtained by several different kind of specializations and
degenerations, and then use semicontinuity theorem for cohomology groups [21, III,
12.8] to discover the same property for generic scheme X . The next step is to reduce the
postulation problem of the specialized scheme, via Castelnuovo’s inequality (Lemma
2.2), to the study of the postulation of a residual scheme and a trace scheme, that is
La méthode d’Horace, elaborated by Hirschowitz [23].

To be more precise, for n ≥ 4, we specialize x simple lines into a fixed hyperplane
P

n−1 ⊂ P
n and degenerate q ′ other pairs of simple lines to sundials, further, we

specialize these q ′ sundials into P
n−1 unless their singular points. Thus if one can

choose these numbers correctly, that is in such a way that the numbers x and q ′ are
sufficiently many to comply with the induction hypothesis on degree (see “Appendix”,
Lemma 8.1), then the residual has good postulation, while the trace is a scheme in
P

n−1, which is more complicated to verify because of the appearance of q ′ degenerate
conics and one double point. Now to handle the problem involving the postulation
of the trace scheme we specialize r̄ lines, q̄ simple points, and the double point into
a fixed hyperplane P

n−2 ⊂ P
n−1, then we take again residual and trace. Of course,

the numbers r̄ and q̄ should not be too numerous, and we have to find these numbers
satisfying all the necessary inequalities (see “Appendix”, Lemma 8.2). This time the
trace consists of r̄ lines, some simple points, and one double point, which by Corollary
2.8 has good postulation, while the residual consists of q ′ degenerate conics, (x − r̄)

lines and some simple points, which we will degenerate it to a scheme consisting of
q ′ sundials, (x − r̄) lines and some simple points, that by Theorem 2.11 has good
postulation (these arrangements contain a lot of technical details which can be found
in “Appendix”, Lemma 8.2).

This argument for the trace of X can be applied in the case n ≥ 5, but unfortunately
does not cover the case n = 4, where forced intersection of lines appear in P

n−2 = P
2.

In fact the case n = 4 will be taken care of by a smooth quadric surface Q and a way of
specialization which is considerably different from that mentioned above. Explicitly,
we specialize one line of each of the degenerate conics, together with r̂ simple lines,
into the same ruling on Q, moreover, we specialize q̂ simple points onto Q, then we
take again residual and trace. Surely, the numbers r̂ and q̂ should not be so much, and
wehave tofind these numbers satisfying all the necessary inequalities (see “Appendix”,
Lemma 8.3). Now the current residual consisting of one double point, (x −r̂ +q ′) lines
and some simple points will be verified byCorollary 2.8, while the current trace, which
is a scheme in Q, will be verified by applying some results from internal geometry of
Q.

What about in P
3? Actually, the most difficult part of the proof is the case ofP

3. Our
approach to this case uses extremely an ad hoc method which is done by specializing
as many lines as is needed into a smooth quadric surface instead of a plane, and then,
if necessary, by degenerating some other pairs of simple lines to sundials (and even
more by specializing sundials and points if need be), that requires a case by case
discussion. Here the role of the smooth quadric is explained by the property of having
two rulings of skew lines and by the known results from intersection theory on it.
We notice that also in the case of P

3 our method can then be applied under certain



Postulation of generic lines and one double line in P
n in view of… Page 13 of 45     9 

numerical conditions, and this is why the proof splits into three specific cases d ≡ 0
(mod 3), d ≡ 1 (mod 3) and d ≡ 2 (mod 3), which described exactly in Sect. 4. In
fact, our method can be safely applied for d ≡ 0 (mod 3), as well as for d ≡ 1 (mod
3), but a slight complication arises in the case of d ≡ 2 (mod 3), where we have to
consider a different specializaton, which is done by placing the support of the double
line into the smooth quadric.

Summing up, the method for proving our Theorem 3.2, based on the induction on
degree d, breaks down into three parts: n = 3, n = 4, and n ≥ 5, which we have to
investigate each of them separately in Sects. 4–6.

We would like to point out that to make the strategy applicable, many verifications
are needed because of the messy arithmetic involved (see Sect. 8).

Since to prove the property of good postulation, according to our strategy, we will
use in the sequel Castelnuovo’s inequality (Lemma 2.2) and the semicontinuity of
cohomology ([21, III, 12.8]) several times, it will be useful to consider the following
remark.

Remark 3.4 With the hypotheses of Theorem 3.2, let X̃ be the scheme obtained from
X by combining specializations and degenerations via a fixed hypersurface H ⊂ P

n

of degree e.
If h0(IResH (X̃)(d − e)) = 0 and h0(H , IT rH (X̃)(d)) = 0, then by Castelnuovo’s

inequality we have h0(IX̃ (d)) = 0, and this implies, by the semicontinuity of coho-
mology, h0(IX (d)) = 0.

4 Proof in P
3

In this section we prove Theorem 3.2 in P
3.

We start with a useful observation concerning the behavior of certain one-
dimensional subschemes of a smooth quadric surface Q ∼= P

1 × P
1 with respect

to the linear system of curves of type (d, d) on Q, which we will often use in the
sequel (for a proof see [22, Lemma 2.3]).

Lemma 4.1 Let α, β, γ, δ, d ∈ N, and let Q ⊂ P
3 be a smooth quadric. Let the scheme

W ⊂ Q be a generic union of α lines belonging to the same ruling of Q, β simple
points, γ simple points lying on a line belonging to the same ruling of the α lines, and
δ double points. If the following conditions are satisfied:

(1) α(d + 1) + β + γ + 3δ = (d + 1)2;
(2) δ ≤ d + 1;
(3) γ ≤ d + 1;
(4) if d > α then δ ≤ d+1−γ

2 + (d − α − 1)
⌊ d+1

2

⌋
, otherwise δ = 0;

then h1(Q, IW (d)) = h0(Q, IW (d)) = 0.

Before we begin our investigations in the case of P
3, we recall some elementary

facts about the geometry on the smooth quadric surface Q: the divisor class group of
Q is Z ⊕ Z, generated by a line in each of the two rulings; by the type we mean the
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class in Z ⊕ Z; the curves on Q are those of type (a, b) with a, b ≥ 0; by convention
OQ(d) = OQ(d, d); finally h0(Q,OQ(a, b)) = (a + 1)(b + 1).

Now we state and prove Theorem 3.2 in P
3, that is:

Proposition 4.2 Let d ≥ 3 and

r =
⌊(d+3

3

) − (3d + 1)

d + 1

⌋
; q =

(
d + 3

3

)
− (3d + 1) − r(d + 1).

Let the scheme X ⊂ P
3 be the generic union of r lines L1, . . . , Lr , one double line

2L and q points P1, . . . , Pq lying on a generic line M. Then X has good postulation,
i.e.,

h1(IX (d)) = h0(IX (d)) =
(

d + 3

3

)
− (3d + 1) − r(d + 1) − q = 0.

Proof In order to start the induction argument we need to establish the base cases
d = 3, 4.

First consider the case d = 3. In this case we have r = 2 and q = 2, therefore

X = 2L + L1 + L2 + P1 + P2 ⊂ P
3.

Fix a generic plane H ⊂ P
3, and consider the scheme X̃ obtained from X by special-

izing the line L1 and the points P1, P2 into H . By abuse of notation, we will again
denote these specialized line and points by L1 and P1, P2, respectively. (Keeping in
mind that in the remainder of the paper, by abuse of notation, we will always denote
the specialized components by the same letters as the original ones.)

We have

ResH (X̃) = 2L + L2 ⊂ P
3,

then it is obvious that

h0(IResH (X̃)(2)) = 0.

Also,

T rH (X̃) = 2R|H + L1 + S + P1 + P2 ⊂ H ∼= P
2,

where L ∩ H = R, so 2L ∩ H = 2R|H is a double point in H , and L2 ∩ H = S.
Since L1 is a fixed component for the sections of IT rH (X̃)(3), we have

h0(H , IT rH (X̃)(3)) = h0(H , IT rH (X̃)−L1
(2)).
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Since the double point 2R|H imposes 3 independent conditions on |OH (2)|, and the
points P1, P2, S are generic points in H , we easily get that

h0(H , IT rH (X̃)−L1
(2)) =

(
2 + 2

2

)
− 3 − 3 = 0.

Thus by Remark 3.4, with (n = 3, e = 1, d = 3), we have h0(IX (3)) = 0, that is, X
has good postulation in degree 3.

Now consider the case d = 4. We have r = 4 and q = 2, then X is the schematic
union:

X = 2L + L1 + L2 + L3 + L4 + P1 + P2 ⊂ P
3.

Let Q be a smooth quadric surface, and let X̃ be the scheme obtained from X by
specializing three of the lines Li in such a way that L1, L2, L3 become lines of the
same ruling on Q, and by specializing the points P1, P2 onto Q.

Then we get

ResQ(X̃) = 2L + L4 ⊂ P
3,

and it clearly follows that

h0(IResQ(X̃)(2)) = 0.

Consider the trace of X̃ on Q, that is

T rQ(X̃) = 2R1|Q + 2R2|Q + L1 + L2 + L3 + S1 + S2 + P1 + P2 ⊂ Q,

where L ∩ Q = R1 + R2, so 2L ∩ Q = 2R1|Q + 2R2|Q consists of two double points
on Q, and L4 ∩ Q = S1 + S2. Note that the scheme T rQ(X̃) is generic union in Q
of three lines belonging to the same ruling of Q, four simple points and two double
points, hence we can apply Lemma 4.1, with (α = 3, β = 4, γ = 0, δ = 2, d = 4),
and we obtain

h0(Q, IT rQ(X̃)(4)) = 0.

Therefore by Remark 3.4, with (n = 3, e = 2, d = 4), it follows that h0(IX (4)) = 0.
Hence the case d = 4 is done.

Now assume d ≥ 5. We consider three cases, and we proceed by induction on d.
Let Q be a smooth quadric surface in P

3.

Case d ≡ 0 (mod 3) Write d = 3t, t ≥ 2. Then

r = (t + 1)(3t + 2)

2
− 3, q = 2.
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We have

X = 2L + L1 + · · · + Lr + P1 + P2 ⊂ P
3.

Since 2t +1 ≤ r , we specialize 2t +1 of the lines Li in such a way that L1, . . . , L2t+1
become lines of the same ruling on Q, and we denote by X̃ the specialized scheme.
We have

ResQ(X̃) = 2L + L2t+2 + · · · + Lr + P1 + P2 ⊂ P
3,

which is the generic union of one double line, t(3t+1)
2 − 3 lines and two points, so by

the induction hypothesis it follows that

h0(IResQ(X̃)(d − 2)) = 0.

Now we treat the trace scheme

T rQ(X̃) = 2R1|Q + 2R2|Q + L1 + · · · + L2t+1

+S1,2t+2 + S2,2t+2 + · · · + S1,r + S2,r ⊂ Q,

where L∩Q = R1+R2 and Li ∩Q = S1,i +S2,i , (2t+2 ≤ i ≤ r). Note that the points
R1, R2, S1,i , S2,i , (2t +2 ≤ i ≤ r), are generic points on Q. That is T rQ(X̃) consists
of 2t + 1 lines of the same ruling on Q, two generic double points and t(3t + 1) − 6
generic simple points, then we can easily check that T rQ(X̃) satisfies the conditions
of Lemma 4.1, with (α = 2t + 1, β = t(3t + 1) − 6, γ = 0, δ = 2), and this implies

h0(Q, IT rQ(X̃)(d)) = 0.

Hence by Remark 3.4, with (n = 3, e = 2), we get h0(IX (d)) = 0.

Case d ≡ 1 (mod 3)Write d = 3t + 1, t ≥ 2. Then

r = (t + 1)(3t + 4)

2
− 3, q = 2.

In this case we have

X = 2L + L1 + · · · + Lr + P1 + P2 ⊂ P
3.

We wish to construct a specialization of X so that the expected vanishing
h0(IX (d)) = 0 is obtained. In order to do this, we introduce the specialization X̃
of X in the following way:

• specialize the points P1, P2 onto Q;
• specialize the first 2t + 1 lines Li in such a way that they become lines of the same
ruling on Q, and call the resulting set of lines X1;
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• degenerate the next 2t − 2 pairs of lines Li , so that they become 2t − 2 sundials
Ĉi = Ci + 2Ni , (1 ≤ i ≤ 2t − 2), where Ci is a degenerate conic and 2Ni is a
double point with support at the singular point of Ci , furthermore, specialize the
points N1, . . . , N2t−2 onto Q, and call the resulting scheme of sundials X2, that is

X2 = Ĉ1 + · · · + Ĉ2t−2,

with the property that the singular points of Ĉi lie on Q;
• leave the remaining simple lines Li , which are r −(2t +1)−2(2t −2) = t(3t−5)

2 +2
lines, generic outside Q, and call this collection of lines X3;

notice that we can do the above specialization because of the inequality r ≥ 2t + 1+
2(2t − 2). Then by letting

X̃ = 2L + X1 + X2 + X3 + P1 + P2 ⊂ P
3,

we get the desired specialization of X .
Now we perform the process of verifying the residual and the trace on this special-

ized scheme X̃ . We obtain

T rQ(X̃) = 2R1|Q + 2R2|Q + X1 + T rQ(X2)

+T rQ(X3) + P1 + P2 ⊂ Q,

where L ∩ Q = R1 + R2; T rQ(Ĉi ) = Ci ∩ Q + 2Ni |Q , and Ci ∩ Q is a union
of two simple points, (1 ≤ i ≤ 2t − 2), therefore T rQ(X2) consists of 2t − 2
double points and 4t − 4 simple points; moreover, T rQ(X3) consists of t(3t − 5) + 4
simple points. Hence T rQ(X̃) is generic union in Q of 2t + 1 lines belonging to
the same ruling of Q, 2t double points and t(3t − 1) + 2 simple points. An easy
computation, yields that the scheme T rQ(X̃) verifies the conditions of Lemma 4.1,
with (α = 2t + 1, β = t(3t − 1) + 2, γ = 0, δ = 2t), then we have

h0(Q, IT rQ(X̃)(d)) = 0.

So we are done with T rQ(X̃). If we can prove h0(IResQ(X̃)(d − 2)) = 0 then, by

Castelnuovo’s inequality, we get h0(IX̃ (d)) = 0.
Here we consider the residual scheme

ResQ(X̃) = 2L + C1 + · · · + C2t−2 + X3 ⊂ P
3.

In order to compute h0(IResQ(X̃)(d − 2)), we need to construct a specialization of

ResQ(X̃), and take again the residual and the trace with respect to Q.
First, let M1,i , M2,i be the two lines which form the degenerate conic Ci , (1 ≤ i ≤

2t − 2), this means Ci = M1,i + M2,i . Pick a line L ′ ⊂ X3. Now let R̃ be the scheme
obtained from ResQ(X̃) by specializing the degenerate conics Ci and the lines L, L ′
in such a way that the lines M1,1, . . . , M1,2t−2 and L, L ′ become 2t lines of the same
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ruling on Q (the lines M2,1, . . . , M2,2t−2 and the other
t(3t−5)

2 + 1 lines of X3 remain
generic lines, not lying on Q).

From this specialization we have

ResQ(R̃) = L + M2,1 + · · · + M2,2t−2 + (X3 − L ′) ⊂ P
3,

that is generic union of t(3t−1)
2 lines in P

3, hence by Hartshorne–Hirschowitz theorem
(Theorem 2.6) we immediately get (note that d = 3t + 1)

h0(IResQ(R̃)(d − 4)) =
(

d − 4 + 3

3

)
− t(3t − 1)

2
(d − 4 + 1) = 0.

On the other hand, M2,i meets Q in the two points which are M1,i ∩ M2,i , that is
contained in M1,i , and another point, which we denote by Si . Thus

T rQ(R̃) = 2L|Q + M1,1 + · · · + M1,2t−2 + L ′

+S1 + · · · + S2t−2 + T rQ(X3 − L ′) ⊂ Q,

where T rQ(X3 − L ′) is made by t(3t − 5) + 2 generic points. Therefore the scheme
T rQ(R̃) is generic union in Q of one double line 2L|Q , 2t − 1 simple lines, such that
all of these 2t lines are placed in the same ruling of Q, and 3t(t − 1) simple points.
Considering Q as P

1 ×P
1 and assuming these lines belong to the first ruling of Q, we

see that each of these simple lines is a curve of type (1, 0) and the double line 2L|Q

is a curve of type (2, 0).
Note that the double line 2L|Q and the lines M1,i , L ′, (1 ≤ i ≤ 2t − 2), are fixed

components for the curves of H0(Q, IT rQ(R̃)(d − 2, d − 2)), since d − 2 ≥ 2t + 1.
Now set

� = 2L|Q + M1,1 + · · · + M1,2t−2 + L ′ ⊂ Q,

which is of type (2t + 1, 0). Hence by removing the fixed component �, and by using
the fact that the scheme T rQ(R̃) − � is generic union of 3t(t − 1) simple points,
moreover by recalling the equality d = 3t + 1, we deduce

h0(Q, IT rQ(R̃)(d − 2, d − 2)) = h0(Q, IT rQ(R̃)−�(d − 2 − (2t + 1), d − 2))

= h0(Q, IT rQ(R̃)−�(t − 2, 3t − 1))

= h0(Q,OQ(t − 2, 3t − 1)) − 3t(t − 1)

= (t − 1)3t − 3t(t − 1) = 0.

This together with h0(IResQ(R̃)(d −4)) = 0, by Castelnuovo’s inequality, implies that

h0(IR̃(d − 2)) = 0, and consequently, by semicontinuity,

h0(IResQ(X̃)(d − 2)) = 0.
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So we conclude that h0(IX̃ (d)) = 0, and from here, again by semicontinuity, we get
h0(IX (d)) = 0.

Case d ≡ 2 (mod 3) Write d = 3t + 2, t ≥ 1. Then

r = 3t(t + 3)

2
, q = t + 3.

We have

X = 2L + L1 + · · · + Lr + P1 + · · · + Pt+3 ⊂ P
3,

where P1, . . . , Pt+3 are points lying on a generic line M .
Realize Q as P

1 × P
1. We specialize 2t of the lines Li and the lines L, M in such a

way that L1, . . . , L2t and L, M become 2t + 2 lines of the first ruling on Q, i.e. each
has type (1, 0), and we denote by X̃ the specialized scheme (note that this is possible
since r ≥ 2t + 2).

First we consider the residual scheme

ResQ(X̃) = L + L2t+1 + · · · + Lr ⊂ P
3,

that is generic union of r − 2t + 1 = (t+1)(3t+2)
2 lines, so according to Hartshorne–

Hirschowitz theorem (Theorem 2.6) we get (note that d = 3t + 2)

h0(IResQ(X̃)(d − 2)) =
(

d − 2 + 3

3

)
− (t + 1)(3t + 2)

2
(d − 2 + 1) = 0.

Then we are left with the trace scheme, which is

T rQ(X̃) = 2L|Q + L1 + · · · + L2t + X1 + P1 + · · · + Pt+3 ⊂ Q,

where X1 = T rQ(L2t+1 + · · · + Lr ). Using the fact that each Li meets Q at two
points, (2t + 1 ≤ i ≤ r), it follows that X1 is made by 2(r − 2t) = t(3t + 5) simple
points.

Observe that the double line 2L|Q and the lines L1, . . . , L2t are fixed components
for the curves of H0(Q, IT rQ(X̃)(d, d)), (note that d ≥ 2t + 2). Set

� = 2L|Q + L1 + · · · + L2t ⊂ Q,

which has type (2t + 2, 0). Removing the fixed component � implies that

h0(Q, IT rQ(X̃)(d, d)) = h0(Q, IT rQ(X̃)−�(d − (2t + 2), d))

= h0(Q, IT rQ(X̃)−�(t, 3t + 2)).

Hence we need to show that h0(Q, IT rQ(X̃)−�(t, 3t + 2)) = 0, where

T rQ(X̃) − � = X1 + P1 + · · · + Pt+3 ⊂ Q,
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(recall that X1 is a generic collection of t(3t + 5) points, and P1, . . . , Pt+3 are points
on the line M belonging to the first ruling of Q). To see this, we wish to construct
a specialization of T rQ(X̃) − � with the desired vanishing, we then must verify the
residual and the trace in this new situation.

We start by choosing t lines M1, . . . , Mt of the first ruling on Q, Mi �= M . Next,
let Y be the scheme obtained from T rQ(X̃)−� by specializing the t(3t +3) points of
X1 onto the lines Mi in such a way that each of these lines contains exactly 3t + 3 of
these points, and by specializing the remaining 2t points of X1 onto the line M (this
is possible because t(3t + 5) = 2t + t(3t + 3)).

Now suppose that C is a curve of H0(Q, IY (t, 3t + 2)), i.e. a curve on Q of type
(t, 3t + 2) containing Y . As we have just seen, the line M and also each line Mi ,
(1 ≤ i ≤ t), contains 3t + 3 points of Y . The fact that C contains these points forces
C to have the lines M, Mi as fixed components (since otherwise C must intersect M
(resp. Mi ) at 3t + 2 points, while C already passes through the 3t + 3 points of M
(resp. Mi ), which is impossible), but the number of these lines is t + 1 and they are
placed in the first ruling, which is a contradiction with the type (t, 3t + 2) of C . So
such a C cannot exist, i.e., we have proved that h0(Q, IY (t, 3t + 2)) = 0. Then by
semicontinuity one can deduce that

h0(Q, IT rQ(X̃)−�(t, 3t + 2)) = 0,

which is equivalent to

h0(Q, IT rQ(X̃)(d, d)) = 0.

Finally, from Remark 3.4, with (n = 3, e = 2), we get the conclusion. �

5 Proof in P
4

In this section we will prove Theorem 3.2 for the case n = 4.

Proposition 5.1 Let d ≥ 3 and

r =
⌊(d+4

4

) − (4d + 1)

d + 1

⌋
; q =

(
d + 4

4

)
− (4d + 1) − r(d + 1).

Let the scheme X ⊂ P
4 be the generic union of r lines L1, . . . , Lr , one double line

2L and q points P1, . . . , Pq lying on a generic line M. Then X has good postulation,
i.e.,

h1(IX (d)) = h0(IX (d)) =
(

d + 4

4

)
− (4d + 1) − r(d + 1) − q = 0.
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Proof Let us begin with the case d = 3. In this case we have r = 5, and q = 2, then

X = 2L + L1 + · · · + L5 + P1 + P2 ⊂ P
4.

Pick a generic hyperplane H ⊂ P
4. Now specialize the lines L, L1 and also the points

P1, P2 into H , and denote by X̃ the specialized scheme.
On the one hand we obtain

ResH (X̃) = L + L2 + · · · + L5 ⊂ P
4,

that is, ResH (X̃) is union of 5 generic lines. Thus byHartshorne–Hirschowitz theorem
(Theorem 2.6) we immediately get

h0(IResH (X̃)(2)) =
(
2 + 4

4

)
− 15 = 0.

On the other hand we have

T rH (X̃) = 2L|H + L1 + S2 + · · · + S5 + P1 + P2 ⊂ H ∼= P
3,

where Li ∩ H = Si , (2 ≤ i ≤ 5). This means that T rH (X̃) is generic union of one
double line, one simple line, and 6 simple points in H ∼= P

3. Now Proposition 4.2,
with d = 3, implies that Theorem 1.1 holds for the case (n, d) = (3, 3). By applying
Theorem 1.1, with (n, d, s) = (3, 3, 1), we get that the scheme 2L|H + L1 ⊂ H ∼= P

3

has good postulation in degree 3, i.e.,

h0(H , I2L|H +L1(3)) =
(
3 + 3

3

)
− 10 − 4 = 6.

Since P1, P2 and Si , (2 ≤ i ≤ 5), are 6 generic points in H , we get

h0(H , IT rH (X̃)(3)) = 0.

Now by Remark 3.4, with (n = 4, e = 1, d = 3), it follows that h0(IX (3)) = 0.

Let us consider the case d = 4. Then r = 10 and q = 3. We observe that

X = 2L + L1 + · · · + L10 + P1 + P2 + P3 ⊂ P
4,

where P1, P2, P3 are generic points lying on the line M .
Fix a generic hyperplane H ⊂ P

4. Let X̃ be the scheme obtained from X by
specializing the lines L and L1, L2, L3 into H .

We have

ResH (X̃) = X1 + P1 + P2 + P3 ⊂ P
4,

where X1 = L + L4 + · · · + L10.
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Applying Hartshorne–Hirschowitz theorem to X1, which is union of 8 generic lines
in P

4, yields

h0(IX1(3)) =
(
3 + 4

4

)
− 32 = 3;

and also to X1 + M , which is union of 9 generic lines in P
4, yields

h0(IX1+M (3)) = max

{(
3 + 4

4

)
− 36, 0

}
= 0.

Hence by Lemma 2.4 we get

h0(IResH (X̃)(3)) = 0.

Moreover, we have

T rH (X̃) = 2L|H + L1 + L2 + L3 + S4 + · · · + S10 ⊂ H ∼= P
3,

where Li ∩ H = Si , (4 ≤ i ≤ 10).
By setting X2 = 2L|H + L1 + L2 + L3, we see that X2 is generic union in H ∼= P

3

of one double line and 3 simple lines, so by Theorem 1.1, with (n, d, s) = (3, 4, 3),
we obtain

h0(H , IX2(4)) =
(
4 + 3

3

)
− 13 − 15 = 7.

Notice that the points S4, . . . , S10 are 7 generic points in H , therefore

h0(H , IT rH (X̃)(4)) = 0.

This together with h0(IResH (X̃)(3)) = 0, by Castelnuovo’s inequality, implies that
h0(IX̃ (4)) = 0, and from here, by semicontinuity, it follows the conclusion, which
finishes the proof in this case.

Now assume d ≥ 5. The rest of the proof will be by induction on d.
We start by letting

r ′ =
⌊(d+3

4

) − (4(d − 1) + 1) − q

d

⌋
;

q ′ =
(

d + 3

4

)
− (4(d − 1) + 1) − r ′d − q;

x = r − r ′ − 2q ′,

further, noting that r ′, q ′, x ≥ 0 (see “Appendix”, Lemma 8.1).
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Recall that the scheme

X = 2L + L1 + · · · + Lr + P1 + · · · + Pq ⊂ P
4,

is generic union of the double line 2L , the r simple lines Li , and the q points Pi

belonging to the generic line M .
Fix a generic hyperplane H ⊂ P

4. In order to prove that X has good postulation
in degree d, we construct a scheme X̃ obtained from X by combining specializations
and degenerations as follows:

• specialize the first x lines Li into H , and call the resulting set of lines X1;
• degenerate the next q ′ pairs of lines Li , so that they become q ′ sundials

Ĉi = Ci + 2Ni |Hi ; (1 ≤ i ≤ q ′),

where Ci is a degenerate conic, Hi ∼= P
3 is a generic linear space containing Ci and

2Ni |Hi is a double point in Hi with support at the singular point of Ci , furthermore,
specialize Ĉi in such a way that Ci ⊂ H , but 2Ni |Hi �⊂ H , and call the resulting
scheme of sundials X2, that is

X2 = Ĉ1 + · · · + Ĉq ′ ,

with the property that the degenerate conics Ci lie in H , but 2Ni |Hi �⊂ H ;
• leave the remaining simple lines Li , which are r ′ = r − x − 2q ′ lines, generic not
lying in H , and call this collection of lines X3;

then let

X̃ = 2L + X1 + X2 + X3 + P1 + · · · + Pq ⊂ P
4.

We need to show that h0(IX̃ (d)) = 0, which clearly, by semicontinuity, implies
that h0(IX (d)) = 0. To do that, by Castelnuovo’s inequality, it would be enough to
show that h0(IResH (X̃)(d − 1)) = 0 and h0(H , IT rH (X̃)(d)) = 0.

First we verify the residual, which is

ResH (X̃) = 2L + ResH (X2) + X3 + P1 + · · · + Pq ⊂ P
4,

where ResH (X2) = N1 + · · · + Nq ′ . Recall that the points Pi are q generic points
lying on the line M . In order to apply Lemma 2.4 to get h0(IResH (X̃)(d − 1)) = 0, it
suffices to prove the two following equalities

h0(I2L+ResH (X2)+X3(d − 1)) = q;
h0(I2L+ResH (X2)+X3+M (d − 1)) = 0.

By the induction hypothesis we have that Proposition 5.1 holds with degree d − 1,
then Theorem 1.1 holds in P

4 with degree d − 1. Now by applying Theorem 1.1, with
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degree d −1, to the scheme 2L + X3, which consists of one double line and r ′ generic
lines in P

4, we get

h0(I2L+X3(d − 1)) =
(

d + 3

4

)
− (4(d − 1) + 1) − r ′d

= q + q ′.

Since ResH (X2) consists of q ′ generic points, it immediately follows

h0(I2L+X3+ResH (X2)(d − 1)) = q. (2)

In the same way, by applying Theorem 1.1, with degree d − 1, to the scheme 2L +
X3 + M , which consists of one double line and r ′ + 1 generic lines in P

4, we get

h0(I2L+X3+M (d − 1)) = max

{(
d + 3

4

)
− (4(d − 1) + 1) − (r ′ + 1)d, 0

}

= max{q + q ′ − d, 0},

and therefore (note that q ≤ d by the definition)

h0(I2L+X3+M+ResH (X2)(d − 1)) = max{q − d, 0} = 0. (3)

Hence by (2) and (3) we have

h0(IResH (X̃)(d − 1)) = 0,

so we are done with the residual scheme.
Now we treat the trace scheme T rH (X̃), which we denote by T for short, that is

T = T rH (X̃) = 2R|H + X1 + C1 + · · · + Cq ′ + X ′
3 ⊂ H ∼= P

3,

where L ∩ H = R, thus 2L ∩ H = 2R|H is a double point in H , and X ′
3 = T rH (X3) is

a generic collection of r ′ simple points; moreover, recall that X1 is made by x generic
lines, where x = r − r ′ − 2q ′ as defined before.

We must prove that h0(H , IT (d)) = 0. In order to do this, we wish to construct
a specialization of T , with the desired vanishing, but this time our specialization will
be via a smooth quadric surface in H . Since our investigations of T will be done in
H ∼= P

3, as the ambient space, then for simplicity of notation we will from now on
write P

3 instead of H , as well as, 2R instead of 2R|H .
Let Q ∼= P

1×P
1 be a smooth quadric in P

3. Notations and terminology concerning
Q are those of Sect. 4. Let

r̂ =
⌊

(d + 1)2 − (d + 2)q ′ − 2x

d − 1

⌋
,

q̂ = (d + 1)2 − (d + 2)q ′ − (d − 1)r̂ − 2x .
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Note that r̂ ≥ 0, and so q̂ ≥ 0 (see “Appendix”, Lemma 8.3 (i)).
To begin, let M1,i , M2,i be the two lines which form the degenerate conic Ci ,

(1 ≤ i ≤ q ′), this means Ci = M1,i + M2,i , and let S1, . . . , Sr ′ be the points of X ′
3.

Because of the inequalities r̂ ≤ x and q̂ ≤ r ′, (both are proved in “Appendix”, Lemma
8.3 (ii), (iii)), we can specialize T in the following way.

Let T̃ be the scheme obtained from T by specializing the degenerate conics Ci and
r̂ lines L1, . . . , Lr̂ of X1 in such a way that the lines M1,1, . . . , M1,q ′ and L1, . . . , Lr̂
become lines belonging to the first ruling of Q, and by specializing q̂ points S1, . . . , Sq̂
of X ′

3 onto Q (the lines M2,1, . . . , M2,q ′ and the other lines Lr̂+1, . . . , Lx of X1, also
the remaining points Sq̂+1, . . . , Sr ′ of X ′

3 and the point R, remain generic not lying
on Q).

Next, we perform the process of treating the residual and the trace of the specialized
scheme T̃ , with respect to Q, to get h0(P3, IT̃ (d)) = 0.

We have

ResQ(T̃ ) = 2R + Lr̂+1 + · · · + Lx + M2,1 + · · ·
+M2,q ′ + Sq̂+1 + · · · + Sr ′ ⊂ P

3.

Observe that the scheme ResQ(T̃ )− (Sq̂+1+· · ·+ Sr ′) is generic union of one double
point and q ′ + x − r̂ lines in P

3, and that d − 2 ≥ 3, thus by Corollary 2.8 we get

h0(IResQ(T̃ )−(Sq̂+1+···+Sr ′ )(d − 2)) =
(

d − 2 + 3

3

)
− 4 − (q ′ + x − r̂)(d − 1)

= r ′ − q̂,

(the last equality is proved in “Appendix”, Lemma 8.3 (v)). Moreover, the points
Sq̂+1, . . . , Sr ′ are r ′ − q̂ generic points, so we immediately get

h0(IResQ(T̃ )(d − 2)) = 0.

Now it remains to consider the trace scheme. We first notice that M2,i meets Q in
the two points which are (M1,i ∩ M2,i ) and another point, which we denote by S′

i , also
recall that M1,i ⊂ Q, so we have that Ci ∩ Q = M1,i + S′

i , (1 ≤ i ≤ q ′). Similarly,
L j , (r̂ +1 ≤ j ≤ x), meets Q in two points, then T rQ(Lr̂+1+· · ·+Lx ) is a collection
of 2(x − r̂) points, which we denote by T1. Thus we obtain

T rQ(T̃ ) = L1 + · · · + Lr̂ + T1 + M1,1 + · · · + M1,q ′

+ S′
1 + · · · + S′

q ′ + S1 + · · · + Sq̂ ⊂ Q.

Since the lines M1,i and L j , (1 ≤ i ≤ q ′; 1 ≤ j ≤ r̂), are contained in the first ruling
of Q, furthermore d ≥ q ′ + r̂ (see “Appendix”, Lemma 8.3 (iv)), then all of these
lines are fixed components for the curves of H0(Q, IT rQ(T̃ )(d, d)). Set

� = L1 + · · · + Lr̂ + M1,1 + · · · + M1,q ′ ⊂ Q,
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which is of type (q ′ + r̂ , 0). Now by removing the fixed component �, and by using
the fact that the points S′

i , Sk , (1 ≤ i ≤ q ′; 1 ≤ k ≤ q̂), are generic on Q, as well as
the points of T1, we conclude that

h0(Q, IT rQ(T̃ )(d, d)) = h0(Q, IT rQ(T̃ )−�(d − q ′ − r̂ , d))

= h0(Q,OQ(d − q ′ − r̂ , d)) − (q ′ + q̂ + 2x − 2r̂)

= (d − q ′ − r̂ + 1)(d + 1) − (q ′ + q̂ + 2x − 2r̂)

= (d + 1)2 − (d + 2)q ′ − (d − 1)r̂ − 2x − q̂ = 0.

Putting together h0(IResQ(T̃ )(d−2)) = 0 and h0(Q, IT rQ(T̃ )(d, d)) = 0, fromCastel-

nuovo’s inequality we have h0(IT̃ (d)) = 0, therefore, by semicontinuity, we have
h0(IT (d)) = 0. This completes the proof. �

6 Proof in P
n for n ≥ 5

We come to the general case n ≥ 5. Nowwe have the bases for our inductive approach,
we are ready to prove Theorem 3.2 in the general setting.

Proposition 6.1 Let n, d ∈ N, and n ≥ 5, d ≥ 3. Let

r =
⌊(d+n

n

) − (nd + 1)

d + 1

⌋
; q =

(
d + n

n

)
− (nd + 1) − r(d + 1).

Let the scheme X ⊂ P
n be the generic union of r lines L1, . . . , Lr , one double line

2L and q points P1, . . . , Pq lying on a generic line M. Then X has good postulation,
i.e.,

h1(IX (d)) = h0(IX (d)) =
(

d + n

n

)
− (nd + 1) − r(d + 1) − q = 0.

Proof We will prove the theorem by induction on d. We proceed to the general case
of n ≥ 5, noting that Theorem 3.2 have been proved for the cases P

3 and P
4 in

Propositions 4.2 and 5.1.
To begin, let

r ′ =
⌊(d−1+n

n

) − (n(d − 1) + 1) − q

d

⌋
;

q ′ =
(

d − 1 + n

n

)
− (n(d − 1) + 1) − r ′d − q;

x = r − r ′ − 2q ′,

we can check that r ′, q ′, x ≥ 0 (see “Appendix”, Lemma 8.1).
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Let H ⊂ P
n be a generic hyperplane. For the purpose of getting h0(IX (d)) =

0, we wish to find a scheme X̃ obtained from X by combining specializations and
degenerations so that the desired vanishing can be achieved. Now we construct the
required X̃ in the following way, which is analogous to the one used in P

4 in the
previous section:

• specialize the first x lines Li into H , and call the resulting set of lines X1;
• degenerate the next q ′ pairs of lines Li , so that they become q ′ sundials

Ĉi = Ci + 2Ni |Hi ; (1 ≤ i ≤ q ′),

where Ci is a degenerate conic, Hi ∼= P
3 is a generic linear space containing Ci and

2Ni |Hi is a double point in Hi with support at the singular point of Ci , furthermore,
specialize Ĉi in such a way that Ci ⊂ H , but 2Ni |Hi �⊂ H , and call the resulting
scheme of sundials X2, that is

X2 = Ĉ1 + · · · + Ĉq ′ ;

• leave the remaining simple lines Li , which are r ′ = r − x − 2q ′ lines, generic not
lying in H , and call this collection of lines X3;

then let

X̃ = 2L + X1 + X2 + X3 + P1 + · · · + Pq ⊂ P
n .

To show that h0(IX̃ (d)) = 0, by Castelnuovo’s inequality, our goal will be to show
that the following vanishings

h0(IResH (X̃)(d − 1)) = 0; h0(H , IT rH (X̃)(d)) = 0.

With regard to residual, we have

ResH (X̃) = 2L + ResH (X2) + X3 + P1 + · · · + Pq ⊂ P
n,

where ResH (X2) = N1 + · · · + Nq ′ .
By the induction hypothesis we know that Proposition 6.1 holds with degree d −1,

which implies that Theorem 1.1 holds with degree d − 1 too (note that n ≥ 5, then,
even if d − 1 = 2, by Proposition 3.1 we have that Theorem 1.1 holds for d = 2). So
we can apply Theorem 1.1, with degree d − 1, to the scheme 2L + X3, as well as, to
the scheme 2L + X3 + M , therefore

h0(I2L+X3(d − 1)) =
(

d − 1 + n

n

)
− (n(d − 1) + 1) − r ′d

= q + q ′;
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h0(I2L+X3+M (d − 1)) = max

{(
d − 1 + n

n

)
− (n(d − 1) + 1) − (r ′ + 1)d, 0

}

= max{q + q ′ − d, 0}.

Observe that ResH (X2) is made by q ′ generic points, so we get

h0(I2L+X3+ResH (X2)(d − 1)) = q; (4)

h0(I2L+X3+M+ResH (X2)(d − 1)) = max{q − d, 0} = 0. (5)

Having (4) and (5), moreover, recalling that the points Pi are q generic points lying
on the line M , we can now apply Lemma 2.4, hence

h0(IResH (X̃)(d − 1)) = 0,

as we wanted.
Now, we consider the trace scheme T rH (X̃), which we denote by T for short,

T = T rH (X̃) = 2R|H + X1 + C1 + · · · + Cq ′ + X ′
3 ⊂ H ∼= P

n−1,

where L ∩ H = R, thus 2L ∩ H = 2R|H is a double point in H , and X ′
3 = T rH (X3)

is a generic collection of r ′ simple points, which we denote by S1, . . . , Sr ′ . In addition,
recall that X1 is made by x generic lines, where x = r − r ′ − 2q ′ as defined before.

For simplicity in the notation, we will henceforward write P
n−1 instead of H , as

well as, 2R instead of 2R|H .
In order to verify the scheme T , we make a specialization T̃ of T via a fixed

hyperplane as follows: we start by setting

r̄ =
⌊(d+n−2

n−2

) − (n − 1) − r + r ′

d

⌋
;

q̄ =
(

d + n − 2

n − 2

)
− (n − 1) − r̄d − r + r ′,

also noting that r̄ , q̄ ≥ 0 (“Appendix”, Lemma 8.2 (i)). Pick a generic hyperplane
H ′ ∼= P

n−2 in P
n−1. Now using the inequalities r̄ ≤ x and q̄ ≤ r ′, (both are proved in

“Appendix”, Lemma 8.2 (ii), (iii)), we specialize the lines L1, . . . , Lr̄ of X1, also the
points S1, . . . , Sq̄ of X ′

3 and the point R into H ′, and we denote by T̃ the specialized
scheme (note that the other lines Lr̄+1, . . . , Lx of X1, the degenerate conics Ci , and
the other points of X ′

3 remain generic outside H ′).
Now in order to prove that h0(Pn−1, IT (d)) = 0, by semicontinuity, our next goal

will be to prove that h0(Pn−1, IT̃ (d)) = 0.
Li meets H ′ at one point, (r̄ + 1 ≤ i ≤ x), so T rH ′(Lr̄+1 + · · · + Lx ) is a

union of x − r̄ points, which we denote by T1. Moreover, C j meets H ′ in two points,
(1 ≤ j ≤ q ′), then T rH ′(C1 + · · · + Cq ′) is a collection of 2q ′ points, which we
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denote by T2. Accordingly with these notations, we have

T rH ′(T̃ ) = 2R|H ′ + L1 + · · · + Lr̄ + T1 + T2
+S1 + · · · + Sq̄ ⊂ H ′ ∼= P

n−2.

First we apply Corollary 2.8 to the scheme 2R|H ′ + L1 +· · ·+ Lr̄ , which implies that

h0(H ′, I2R|H ′+L1+···+Lr̄ (d)) =
(

d + n − 2

n − 2

)
− (n − 1) − r̄(d + 1)

= q̄ − r̄ + r − r ′

= q̄ − r̄ + 2q ′ + x,

next, by the fact that the schematic union (T1 + T2 + S1 +· · ·+ Sq̄) is a generic union
of x − r̄ + 2q ′ + q̄ simple points, we immediately get

h0(H ′, IT rH ′ (T̃ )(d)) = 0, (6)

so we are finished with the trace scheme.
Then we are left with the residual of T̃ with respect to H ′ ∼= P

n−2, which is

ResH ′(T̃ ) = R + C1 + · · · + Cq ′ + Lr̄+1 + · · · + Lx

+Sq̄+1 + · · · + Sr ′ ⊂ P
n−1.

It is the existence of the degenerate conics Ci that impedes us to directly investigate
the residual scheme. Our method to afford this difficulty is to take a degeneration of
ResH ′(T̃ ), but using a different way to do so. Indeed, according to the observation of
Sect. 2.4 saying that a sundial can be considered as a degeneration of a degenerate
conic together with a simple point, we then degenerate q ′ points Sq̄+1, . . . , Sq̄+q ′
together with q ′ conics Ci so that they become q ′ sundials Ĉi , (it is possible because
q̄ + q ′ ≤ r ′, “Appendix”, Lemma 8.2 (iii)). We set 	 = R + Sq̄+q ′+1 + · · · + Sr ′ .

Let Y be the scheme obtained from ResH ′(T̃ ) by this degeneration, more precisely,

Y = Ĉ1 + · · · + Ĉq ′ + Lr̄+1 + · · · + Lx + 	 ⊂ P
n−1.

The scheme Y − 	 is generic union of q ′ sundials and x − r̄ lines in P
n−1, so by

Theorem 2.11, has good postulation, in other words

h0(Pn−1, IY−	(d − 1)) =
(

d − 1 + n − 1

n − 1

)
− (2q ′ + x − r̄)d

= r ′ − q ′ − q̄ + 1,

the computations to get the last equality can be found in “Appendix”, Lemma 8.2 (iv).
Since 	 is generic union of r ′ − q̄ − q ′ + 1 points, it then immediately follows that

h0(Pn−1, IY (d − 1)) = 0,
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and from here, again by semicontinuity, we obtain

h0(Pn−1, IResH ′ (T̃ )(d − 1)) = 0.

This together with (6), by Castelnuovo’s inequality, yields that

h0(Pn−1, IT̃ (d)) = 0,

and this is in fact what we wanted to show, hence the proof is complete. �

7 On Conjecture 1.2

Now coming back to our Conjecture 1.2, we will prove it only in a special case.

7.1 Some evidence for Conjecture 1.2

The main result of this paper, Theorem 1.1, attracts our attention to a natural class of
objects that is schemes X of lines and one fat linear space in projective space. In fact,
the geometry of the exception that we determined in Theorem 1.1 (see Proposition
3.1) leads us to conjecture that it can be generalized somehow to the families of lines
and one fat linear space. The basic motivation lies in the fact that, no defective cases
with respect to the linear system |IX (d)| have been discovered, unless d = m, where
m is the multiplicity of that linear space. So we hope the following conjecture, which
exactly describes the failure of X to have good postulation.

Conjecture 7.1 (Conjecture 1.2 of the Introduction) Let n, d, c ∈ N, and n ≥ c + 2 ≥
3. The scheme X ⊂ P

n consisting of s ≥ 1 generic lines and one generic m-multiple
linear space m�, (m ≥ 2), with � ∼= P

c ⊂ P
n, always has good postulation, except

for the cases

{n = c + 3, m = d, 2 ≤ s ≤ d} .

This conjecture would be in perfect analogy with Theorem 1.1. Note that it is a
hard problem to prove it in general case, and doing so requires the most sophisti-
cated investigations with a lot of technical details, in the setting of specialization and
degeneration.

Now we show that the conjecture is true for the special case of d = m, which is
in the center of our attention. Before proceeding to state and prove it, let us introduce
the following integer α(n,d;c,m), for all integers n, c, d, m with n > c and d ≥ m − 1,
which we will use throughout this section:
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α(n,d;c,m) =
m−1∑
i=0

(
c + d − i

c

)(
n + i − c − 1

i

)
.

Observe that α(n,d;c,m) is exactly the Hilbert polynomial of m� in degree d, Lemma
2.5. Moreover, when d = m with a straightforward computation, one easily sees that:

α(n,m;c,m) =
(

n + m

n

)
−

(
n + m − c − 1

n − c − 1

)
.

Proposition 7.2 The scheme X ⊂ P
n, n ≥ c + 2 ≥ 3, consisting of s ≥ 1 generic

lines and one generic m-multiple linear space m�, (m ≥ 2), with � ∼= P
c ⊂ P

n, has
good postulation in degree m, i.e.,

h0(IX (m)) = max

{(
m + n

n

)
− α(n,m;c,m) − s(m + 1), 0

}

= max

{(
n + m − c − 1

n − c − 1

)
− s(m + 1), 0

}
,

except for {n = c + 3, 2 ≤ s ≤ m} , in which case the defect is
(s
2

)
.

Proof First notice that, the sections of IX (m) correspond to degree m hypersurfaces
in P

n which, in order to contain m�, have to be cones whose vertex contains the linear
space �.

For n = c + 2, it is easy to see that the linear system |IX (m)| is empty, i.e.
h0(IX (m)) = 0, that is what was expected.

For n ≥ c + 3, let us consider the projection X ′ of X from � into a generic linear
subspace P

n−c−1 ⊂ P
n . Then we have that the scheme X ′ consists of s generic lines

in P
n−c−1, also that the following equality

h0(Pn, IX (m)) = h0(Pn−c−1, IX ′(m)).

In case n > c + 3, we have n − c − 1 ≥ 3, therefore from Hartshorne–Hirschowitz
theorem (Theorem 2.6) it follows that

h0(Pn−c−1, IX ′(m)) = max

{(
m + n − c − 1

n − c − 1

)
− s(m + 1), 0

}
,

which is the expected value for h0(Pn, IX (m)), so we are done in this case.
In case n = c + 3, X ′ is a generic union of s lines in P

2. Hence, if s > m, we
obviously have h0(P2, IX ′(m)) = 0, as expected. If s ≤ m,wehave h0(P2, IX ′(m)) =(m−s+2

2

)
, and consequently h0(Pn, IX (m)) = (m−s+2

2

)
, on the other hand the expected

value for h0(Pn, IX (m)) is

max

{(
m + 2

2

)
− s(m + 1), 0

}
,
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which we denote by exp h0(Pn, IX (m)). Thus for s = 1, we get that h0(Pn, IX (m)) =(m+1
2

)
, as expected; but for 2 ≤ s ≤ m, we get that

h0(Pn, IX (m)) �= exp h0(Pn, IX (m))

and the defect is

h0(Pn, IX (m)) − exp h0(Pn, IX (m)) =
(

s

2

)
,

which finishes the proof. �

7.2 Final remark

A complete proof for Conjecture 7.1 (Conjecture 1.2 of the Introduction) will be a
substantial effort, however, we believe that a method analogous to that presented in
Sect. 3.3, can be successfully applied for studying postulation problem for a generic
scheme of lines and one fat linear space in P

n , and we plan to study this problem in the
future. Indeed, if one can provide a proof for Conjecture 7.1 in the case of a generic
union of lines and one fat line in P

n , then even interestingly enough, one may hope
to generalize this approach to the case of a generic union of lines and one fat linear
space, that seems to be quite difficult. Actually, compared with the proof we gave in
this paper, in the case of lines and one fat linear space we are forced to divide the proof
in much more steps. While an argument analogous to Theorem 1.1 works in a more
complicated way for the higher dimensional ambient projective spaces, investigations
in two initial ambient spaces cause troubles, and this is why we leave it for the future.

Acknowledgements Iwould like to thankProfessorM.V.Catalisano, for sharingwithmemanygeometrical
insight about techniques involved in the postulation problem during my stay at the university of Genova, for
suggesting that I study the problem considered here, and particularly for her willingness to read patiently
an early version of this paper.

8 Appendix: Calculations

Lemma 8.1 Let n ≥ 5, d ≥ 3 or n = 4, d ≥ 5. Let

r =
⌊(d+n

n

) − (nd + 1)

d + 1

⌋
, q =

(
d + n

n

)
− (nd + 1) − r(d + 1);

r ′ =
⌊(d−1+n

n

) − (n(d − 1) + 1) − q

d

⌋
,

q ′ =
(

d − 1 + n

n

)
− (n(d − 1) + 1) − r ′d − q.

Then
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(i) r ′ ≥ 0;
(ii) r − r ′ − 2q ′ ≥ 0.

Proof (i) Since q ≤ d, we have

(
d − 1 + n

n

)
− (n(d − 1) + 1) − q ≥

(
d − 1 + n

n

)
− (n(d − 1) + 1) − d,

so in order to show that r ′ ≥ 0 it is enough to show that

(
d − 1 + n

n

)
− (n(d − 1) + 1) ≥ d. (7)

First consider the case n = 4 and d ≥ 5, then we obviously have

(
d − 1 + n

n

)
− (n(d − 1) + 1) − d =

(
d + 3

4

)
− 5d + 3 ≥ 0.

Now consider the case n ≥ 5 and d ≥ 3. Notice that the function
(d−1+n

n

)− (n(d −
1) + 1) is an increasing function in n, hence to get the conclusion it suffices to prove
the inequality (7) only for n = 5. Now by letting n = 5, we easily see that

(
d − 1 + n

n

)
− (n(d − 1) + 1) − d =

(
d − 1 + 5

5

)
− (5(d − 1) + 1) − d

=
(

d + 4

5

)
− 6d + 4 ≥ 0,

the last inequality is surely holds for d ≥ 3.

(ii) We have to prove that

⌊(d+n
n

) − (nd + 1)

d + 1

⌋
≥ r ′ + 2q ′.

Since r ′ and q ′ are integers, the inequality above is equivalent to the following

(d+n
n

) − (nd + 1)

d + 1
≥ r ′ + 2q ′,

hence, it is enough to prove that

(
d + n

n

)
− (nd + 1) − (d + 1)r ′ − 2(d + 1)q ′ ≥ 0.
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We have

(
d + n

n

)
− (nd + 1) − (d + 1)r ′ − 2(d + 1)q ′

=
(

d + n

n

)
− 2(d + 1)

(
d − 1 + n

n

)
+ 2(d + 1)(n(d − 1) + 1) − (nd + 1)

+ 2(d + 1)q + (d + 1)(2d − 1)r ′

≥
(

d + n

n

)
− 2(d + 1)

(
d − 1 + n

n

)
+ 2(d + 1)(n(d − 1) + 1) − (nd + 1)

+ 2(d + 1)q + (d + 1)(2d − 1)

{(d−1+n
n

) − (n(d − 1) + 1) − q

d
− 1

}

= 1

d

{
d

(
d + n

n

)
− (d + 1)

(
d − 1 + n

n

)
− (n − 1) + q(d + 1) − d(d + 1)(2d − 1)

}

= 1

d

{
(n − 1)

(
d − 1 + n

n

)
− (n − 1) + q(d + 1) − d(d + 1)(2d − 1)

}

≥ 1

d

{
(n − 1)

(
d − 1 + n

n

)
−

(
d − 1 + n

n

)
− d(d + 1)(2d − 1)

}

= 1

d

{
(n − 2)

(
d − 1 + n

n

)
− d(d + 1)(2d − 1)

}
.

For n ≥ 5, we get

(n − 2)

(
d − 1 + n

n

)
− d(d + 1)(2d − 1)

≥ 3

(
d + 4

5

)
− d(d + 1)(2d − 1)

= 1

40
d(d + 1)((d + 2)(d + 3)(d + 4) − 80d + 40) ≥ 0,

it is quite immediate to check that the last inequality holds for all d ≥ 3, hence we are
done in the case n ≥ 5.

For n = 4, we get

(n − 2)

(
d − 1 + n

n

)
− d(d + 1)(2d − 1)

= 1

12
d(d + 1)((d + 2)(d + 3) − 24d + 12)

= 1

12
d(d + 1)(d − 1)(d − 18),

which is positive for all d ≥ 18. This is what wewanted to show for n = 4 and d ≥ 18,
then we are left with 5 ≤ d ≤ 17. Now by a direct computation we get the desired
inequality r − r ′ − 2q ′ ≥ 0 in the case n = 4 with 5 ≤ d ≤ 17 as follows:
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d 5 6 7 8 9 10 11 12 13 14 15 16 17
r − r ′ − 2q ′ 7 9 2 10 9 10 17 9 30 34 17 35 32

�

Lemma 8.2 Let n ≥ 5 and d ≥ 3. With the notations as in Lemma 8.1, let

r̄ =
⌊(d+n−2

n−2

) − (n − 1) − r + r ′

d

⌋
,

q̄ =
(

d + n − 2

n − 2

)
− (n − 1) − r̄d − r + r ′.

Then

(i) r̄ ≥ 0;
(ii) r̄ ≤ r − r ′ − 2q ′;
(iii) r ′ ≥ q ′ + q̄;
(iv)

(d+n−2
n−1

) − (r − r ′ − r̄)d = r ′ − q ′ − q̄ + 1.

Proof (i) We will verify that

(
d + n − 2

n − 2

)
− (n − 1) − r + r ′ ≥ 0.

Since

r ≤
(d+n

n

) − (nd + 1)

d + 1
; r ′ ≥

(d−1+n
n

) − (n(d − 1) + 1) − q

d
− 1,

we have

r − r ′ ≤ 1

d + 1

{(
d + n

n

)
− (nd + 1)

}

− 1

d

{(
d − 1 + n

n

)
− (n(d − 1) + 1) − q

}
+ 1

= 1

d(d + 1)

{
d

(
d + n

n

)
− (d + 1)

(
d − 1 + n

n

)
− (n − 1) + q(d + 1)

}
+ 1

= 1

d(d + 1)

{
(n − 1)

(
d − 1 + n

n

)
− (n − 1) + q(d + 1) + d(d + 1)

}
.
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Then we get

(
d + n − 2

n − 2

)
− (n − 1) − r + r ′

≥
(

d + n − 2

n − 2

)
− (n − 1)

− 1

d(d + 1)

{
(n − 1)

(
d − 1 + n

n

)
− (n − 1) + 2d(d + 1)

}

= A
d(d + 1)

,

where

A = d(d+1)

(
d + n − 2

n − 2

)
− (n−1)

(
d − 1 + n

n

)
− (n−1)(d2 + d − 1) −2d(d +1).

A straightforward computation, yields

A = 1

n

(
d + n − 2

n − 2

)
(nd2 − d2 + d) − (n − 1)(d2 + d − 1) − 2d(d + 1).

Since n ≥ 5, d ≥ 3 we have n(n − 1) ≤ (d+n−2
n−2

)
, and from here it follows

A ≥ (n − 1)(nd2 − d2 + d − (d2 + d − 1)) − 2d(d + 1)

= d2(n2 − 3n) − 2d + n − 1 ≥ 0,

which completes the proof.

(ii) In order to prove that r̄ ≤ r − r ′ − 2q ′, it suffices to prove that
(d+n−2

n−2

) − (n − 1) − r + r ′

d
≤ r − r ′ − 2q ′ + 1,

which is equivalent to the following

r(d + 1) − r ′(d + 1) −
(

d + n − 2

n − 2

)
+ (n − 1) − 2q ′d + d ≥ 0.

From the definitions of r and r ′, moreover the inequality q ′ ≤ d − 1, we get

r(d + 1) − r ′(d + 1) −
(

d + n − 2

n − 2

)
+ (n − 1) − 2q ′d + d

≥
(

d + n

n

)
−(nd+1) − (d + 1)− d + 1

d

{(
d− 1 + n

n

)
− (n(d − 1) + 1) − q

}

−
(

d + n − 2

n − 2

)
+ (n − 1) − 2d2 + 3d,
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which, by an easy computation, is equal to

1

d

{
(n − 1)

(
n + d − 2

n

)
+ n(d − 1) − 2d3 + 2d2 − 2d + 1 + q(d + 1)

}
.

Now we observe that

(n − 1)

(
n + d − 2

n

)
+ n(d − 1) − 2d3 + 2d2 − 2d + 1 + q(d + 1)

≥ (n − 1)

(
n + d − 2

n

)
+ n(d − 1) − 2d3 + 2d2 − 2d + 1,

hence, we will be done if we prove that

(n − 1)

(
n + d − 2

n

)
+ n(d − 1) − 2d3 + 2d2 − 2d + 1 ≥ 0. (8)

For n ≥ 6, we have

(n − 1)

(
n + d − 2

n

)
+ n(d − 1) − 2d3 + 2d2 − 2d + 1

≥ 5

(
d + 4

6

)
− (2d3 − 2d2 − 4d + 5),

which, for d ≥ 3, is positive, as we wanted.
For n = 5, the inequality (8) becomes:

4

(
d + 3

5

)
− (2d3 − 2d2 − 3d + 4) ≥ 0,

which is true for d ≥ 5, so we are left with d = 3, 4 in the case of n = 5. But direct
computations show that also these cases satisfy the required inequality r̄ ≤ r −r ′−2q ′.
More precisely, if d = 3, we have r̄ = 3 and r − r ′ − 2q ′ = 5; if d = 4, we have
r̄ = 5 and r − r ′ − 2q ′ = 11.

(iii) We want to prove that q ′ + q̄ ≤ r ′. By the inequalities q ′, q̄ ≤ d − 1, which
implies q ′ + q̄ ≤ 2d − 2, and also by the following one

r ′ ≥
(d−1+n

n

) − (n(d − 1) + 1) − q

d
− 1,

it is enough to prove that

(d−1+n
n

) − (n(d − 1) + 1) − q

d
− 1 ≥ 2d − 2,
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i.e.
(

d − 1 + n

n

)
− (n(d − 1) + 1) − q − 2d2 + d ≥ 0.

Using q ≤ d, we have to show that

(
d − 1 + n

n

)
− (n(d − 1) + 1) − 2d2 ≥ 0,

or, equivalently,

(
d − 1 + n

n

)
− n(d − 1) ≥ 2d2 + 1. (9)

Notice that the function
(d−1+n

n

) − n(d − 1) is an increasing function in n.
For n = 5, the inequality (9) becomes

(
d + 4

5

)
≥ 2d2 + 5d − 4,

which holds for d ≥ 4. So it remains to check q ′ + q̄ ≤ r ′ in the case of d = 3 with
n = 5. In this case we can directly compute that r ′ = 3, q ′ = 1, q̄ = 0. Hence the
case n = 5 is done.

For n = 6, the inequality (9) becomes

(
d + 5

6

)
≥ 2d2 + 6d − 5,

which holds for d ≥ 4. So we are left with d = 3. A direct computation in the case of
d = 3 with n = 6 yields that r ′ = 4, q ′ = 2, q̄ = 0. So we are done for n = 6.

Finally, for n = 7, the inequality (9) becomes

(
d + 6

7

)
≥ 2d2 + 7d − 6,

which is true for any d ≥ 3. Now, since
(d−1+n

n

) − n(d − 1) is an increasing function
in n, we have proved (9) for all n ≥ 7 and d ≥ 3. That finishes the proof of part (iii).

(iv) We must check that

(
d + n − 2

n − 1

)
− (r − r ′ − r̄)d = r ′ − q ′ − q̄ + 1,

that is
(

d + n − 2

n − 1

)
+ (r ′d + q ′) + (r̄d + q̄ − r ′) = rd + 1. (10)



Postulation of generic lines and one double line in P
n in view of… Page 39 of 45     9 

From the definitions of q ′, q̄ we have

r ′d + q ′ =
(

d − 1 + n

n

)
− n(d − 1) − 1 − q;

r̄d + q̄ − r ′ =
(

d + n − 2

n − 2

)
− (n − 1) − r .

Now using these equalities and an easy computation yields

(
d + n − 2

n − 1

)
+ (r ′d + q ′) + (r̄d + q̄ − r ′)

=
(

d + n

n

)
− nd − r − q,

which, by recalling that q = (d+n
n

) − (nd + 1) − r(d + 1), is equal to (rd + 1), that
is what we wanted (10). �
Lemma 8.3 Let d ≥ 5. Let r , r ′, q, q ′ be as in Lemma 8.1 in the case n = 4. Let

r̂ =
⌊

(d + 1)2 − (d + 2)q ′ − 2(r − r ′ − 2q ′)
d − 1

⌋
,

q̂ = (d + 1)2 − (d + 2)q ′ − (d − 1)r̂ − 2(r − r ′ − 2q ′).

Then

(i) r̂ ≥ 0;
(ii) r̂ ≤ r − r ′ − 2q ′;
(iii) q̂ ≤ r ′;
(iv) q ′ + r̂ ≤ d;
(v) r ′ − q̂ = (d+1

3

) − 4 − (d − 1)(r − r ′ − r̂ − q ′).

Proof (i) We need to show that

(d + 1)2 − (d + 2)q ′ − 2(r − r ′ − 2q ′) ≥ 0,

that is

(d + 1)2 − (d − 2)q ′ − 2(r − r ′) ≥ 0.

Recall:

r =
⌊(d+4

4

) − 4d − 1

d + 1

⌋
, q =

(
d + 4

4

)
− 4d − 1 − r(d + 1);

r ′ =
⌊(d+3

4

) − 4d + 3 − q

d

⌋
, q ′ =

(
d + 3

4

)
− 4d + 3 − q − r ′d.
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Let us start by computing (d − 2)q ′ + 2(r − r ′):

(d − 2)q ′ + 2r − 2r ′ = (d − 2)

(
d + 3

4

)
− (d − 2)(4d − 3)

−(d − 2)q − (d2 − 2d + 2)r ′ + 2r

≤ A
d(d + 1)

,

where

A = (d2 + d)(d − 2)

(
d + 3

4

)
− (d2 + d)(d − 2)(4d − 3)

− (d2 + d)(d − 2)q − (d + 1)(d2 − 2d + 2)

{(
d + 3

4

)
− 4d + 3 − q

}

+ 2d

{(
d + 4

4

)
− 4d − 1 − (d + 1)

}

= 2d

(
d + 4

4

)
− 2(d + 1)

(
d + 3

4

)
− 2(d2 + d + 3) + 2q(d + 1)

= 6

(
d + 3

4

)
− 2(d2 + d + 3) + 2q(d + 1).

Therefore we get

(d − 2)q ′ + 2(r − r ′) ≤ A
d(d + 1)

= (d + 2)(d + 3)

4
− 2(d2 + d + 3)

d2 + d
+ 2q

d
,

then, by noting that 2(d2+d+3)
d2+d

≥ 2 and that q ≤ d, it immediately follows

(d − 2)q ′ + 2(r − r ′) ≤ (d + 2)(d + 3)

4
.

Now from here we have

(d + 1)2 − (d − 2)q ′ − 2(r − r ′) ≥ (d + 1)2 − (d + 2)(d + 3)

4

= 3d2 + 3d − 2

4
≥ 0,

and this finishes the proof.

(ii) In order to check that r̂ ≤ r − r ′ − 2q ′, it suffices to check that

(d + 1)2 − (d + 2)q ′ − 2(r − r ′ − 2q ′)
d − 1

≤ r − r ′ − 2q ′ + 1,
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that is

(d + 1)2 − (d + 2)q ′ − 2(r − r ′ − 2q ′) ≤ (d − 1)(r − r ′ − 2q ′) + (d − 1),

or, equivalently

(d + 1)(r − r ′) − dq ′ − (d + 1)2 + (d − 1) ≥ 0.

Again, using the definitions of r and r ′, moreover the inequality q ′ ≤ d − 1, one gets

(d + 1)(r − r ′) − dq ′ − (d + 1)2 + (d − 1)

≥ (d + 1)r − (d + 1)r ′ − 2(d2 + 1)

≥
(

d + 4

4

)
− (4d + 1) − (d + 1)

−d + 1

d

{(
d + 3

4

)
− 4d + 3 − q

}
− 2(d2 + 1),

which, by a short computation, is equal to

1

d

{
3

(
d + 3

4

)
− (2d3 + d2 + 3d + 3) + q(d + 1)

}
.

Now we have

3

(
d + 3

4

)
− (2d3 + d2 + 3d + 3) + q(d + 1)

≥ 3

(
d + 3

4

)
− (2d3 + d2 + 3d + 3)

= 1

8
(d4 − 10d3 + 3d2 − 18d − 24),

which, in fact for d ≥ 10 is positive, as required. Then it remains to check that the
cases 5 ≤ d ≤ 9 satisfy r̂ ≤ r − r ′ − 2q ′. Computing each of these cases, we get the
conclusion:

d r̂ r − r ′ − 2q ′
5 5 7
6 6 9
7 2 2
8 5 10
9 4 9

(iii) To prove q̂ ≤ r ′, by noting that q̂ ≤ d − 2, it is enough to prove

(d+3
4

) − 4d + 3 − q

d
≥ d − 1,
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i.e.

(
d + 3

4

)
− 4d + 3 − q − d(d − 1) ≥ 0. (11)

Observe that

(
d + 3

4

)
− 4d + 3 − q − d(d − 1)

≥
(

d + 3

4

)
− 4d + 3 − d − d(d − 1)

=
(

d + 3

4

)
− (d2 + 4d − 3).

For d ≥ 5, it is immediate to see that

(
d + 3

4

)
− (d2 + 4d − 3) ≥ 0,

which gives (11).

(iv) We will show that d − q ′ − r̂ ≥ 0. We have

d − q ′ − r̂ ≥ d − q ′ − 1

d − 1
((d + 1)2 − (d − 2)q ′ − 2r + 2r ′)

= 1

d − 1
(2r − 2r ′ − q ′ − 3d − 1),

moreover,

2r − 2r ′ − q ′ − 3d − 1

= 2r + (d − 2)r ′ −
(

d + 3

4

)
+ d − 4 + q

≥ A
d(d + 1)

,

where,

A = 2d

(
d + 4

4

)
− 2d(4d + 1) − 2d(d + 1) + (d − 2)(d + 1)

(
d + 3

4

)

− (d − 2)(d + 1)(4d − 3) − (d − 2)(d + 1)q − d(d + 1)(d − 2)

− (d2 + d)

(
d + 3

4

)
+ (d2 + d)(d − 4) + (d2 + d)q.
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One can easily find that

A = 2d

(
d + 4

4

)
− 2(d + 1)

(
d + 3

4

)

− (4d3 + 5d2 + d + 6) + 2(d + 1)q

= 6

(
d + 3

4

)
− (4d3 + 5d2 + d + 6) + 2(d + 1)q

≥ 6

(
d + 3

4

)
− (4d3 + 5d2 + d + 6),

which is positive for d ≥ 11, hence we are left with 5 ≤ d ≤ 10. Now by direct
calculations we get q ′ + r̂ ≤ d in these cases as follows:

d q ′ r̂ q ′ + r̂
5 0 5 5
6 0 6 6
7 5 2 7
8 2 5 7
9 4 4 8
10 5 4 9

(v) We have to verify that

r ′ − q̂ =
(

d + 1

3

)
− 4 − (d − 1)(r − r ′ − r̂ − q ′),

that is

(d − 1)r̂ + q̂ + (d − 2)r ′ + (d − 1)q ′ = (d − 1)r −
(

d + 1

3

)
+ 4. (12)

Rewrite the left hand side as

((d − 1)r̂ + q̂ + (d − 2)q ′ − 2r ′) + (dr ′ + q ′).

Recalling that, from the definitions of q ′ and q̂ ,

(d − 1)r̂ + q̂ + (d − 2)q ′ − 2r ′ = (d + 1)2 − 2r;
dr ′ + q ′ =

(
d + 3

4

)
− 4d + 3 − q,
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the left hand side of (12) becomes:

(d + 1)2 − 2r +
(

d + 3

4

)
− 4d + 3 − q

= (d + 1)2 − 2r +
(

d + 3

4

)
− 4d + 3 −

(
d + 4

4

)
+ 4d + 1 + (d + 1)r

= (d + 1)2 −
(

d + 3

3

)
+ 4 + (d − 1)r

= −
(

d + 1

3

)
+ 4 + (d − 1)r ,

and we are done. �
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