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Motivated by Schur’s result on computing the Galois groups of the exponential Taylor
polynomials, this paper aims to compute the Galois groups of the Taylor polynomials of
the elementary functions 1 + log(1 − x) and cos x. We first show that the Galois groups
of the nth Taylor polynomials of 1 + log(1− x) are as large as possible, namely, Sn (full
symmetric group) or An (alternating group), depending on the residue of the integer
number n modulo 4. We then compute the Galois groups of the nth Taylor polynomials
of cos(x) and show that these Galois groups essentially coincide with the Coexter groups
of type Bn (or an index 2 subgroup of the corresponding Coexter group).
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1. Introduction

A famous result of David Hilbert asserts that there exist irreducible polynomials
of every degree n over Q having the largest possible Galois group Sn. However,
Hilbert’s proof, based on his irreducibility theorem, is non-constructive. Schur [9]
proved a constructive (and explicit) version of this result in 1930. He proved that
the Galois group of the splitting field of the exponential Taylor polynomials

fn(x) = 1 + x +
x2

2!
+ · · · + xn

n!
,

over Q, is the alternating group An if n is a multiple of 4, and the full symmetric
group Sn otherwise. Coleman [2] gave a different proof for this theorem in 1987
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using the p-adic Newton polygon of the polynomial fn, Bertrand’s postulate and
Jordan’s theorem.

As a result, for any positive integer n with 4 � n, Schur constructed a polynomial
of degree n with n + 1 terms so that its Galois group is Sn. Here it is worth
mentioning that in [5] for any n and s with gcd(n, (s− 1)(s− 2)) = 1, a polynomial
of degree n with s terms was constructed so that the corresponding Galois group is
Sn (see, [5, Theorem 4.3]).

A natural question is that how the Galois groups of the Taylor polynomials of
other elementary functions are similar to logarithm and trigonometric functions?
The study of the corresponding Galois groups of these polynomials seems to be
more complicated than the Taylor exponential polynomials for at least two reasons:
first, unlike the exponential Taylor polynomials, there is no explicit formula for the
discriminant of logarithm and trigonometric Taylor polynomials, and second, the
p-adic Newton polygon of logarithm and trigonometric functions are not as easy as
the exponential Taylor polynomials to study.

In this paper, we first focus on the Taylor polynomials of the logarithm function
1 + log(1 − x), i.e.

fn(x) = 1 + x +
x2

2
+ · · · + xn

n
,

and after showing the irreducibility, we prove that the Galois group of the splitting
fields of fn(x) is either Sn or An. We then, working on the discriminants of the
polynomials, we show that the corresponding Galois groups are exactly the full
symmetric group Sn in the case n is of the form 4k, 4k + 2, 4k + 3, and of the form
4k + 1, provided n is prime. The same method can compute the Galois groups of
the Taylor polynomials of 1 + sin(x), i.e.

fn(x) = 1 + x − x3

3!
+ · · · ± x2n−1

(2n − 1)!
.

Finally, we use a different argument to study the Galois groups Gn of the Taylor
polynomials of the elementary function cos(x), i.e.

fn(x) = 1 − x2

2!
+

x4

4!
+ · · · + (−1)n x2n

(2n)!
.

In this case, we first compute the Galois groups G̃n of the polynomials

gn(x) = 1 − x

2!
+

x2

4!
+ · · · + (−1)n xn

(2n)!

as Sn or An. Although we are not able to give an explicit formula for the discriminant
of gn(x), we provide some sufficient conditions so that G̃n � Sn. We then prove that
Gn is isomorphic to the semi-direct product (Z/2Z)n �Sn. In the end of this paper,
we give a geometric picture of the Galois group Gn of the Taylor polynomial fn(x).
After recalling the concept of special regular polytopes and their corresponding



June 12, 2019 17:3 WSPC/S1793-0421 203-IJNT 1950062

Galois groups of Taylor polynomials of some elementary functions 1129

Fig. 1. The Newton polygon of 1 + x + x2

2
+ x3

3
+ x4

4
+ x5

5
+ x6

6
∈ Q5[x].

Coexter groups, it is shown that Gn is indeed isomorphic to the symmetry group
of a regular polytope, namely, cross-polytope which is a Coexter group of type Bn

(or an index 2 subgroup).

2. Review of the Newton Polygons Over Local Fields

In this section, we briefly recall the main theorem on the Newton polygons of a
polynomial f(x) over the local fields, e.g., the p-adic field Qp for a prime number
p. For more details, one can consult [1, Chap. 4].

Theorem 2.1. Let L be a local field with discrete valuation vL, and let f(x) =
a0 + a1x + · · · + an−1x

n−1 + anxn ∈ L[x] be a polynomial with a0an �= 0 whose
Newton polygon is defined as the convex hull in R2 of the points

(0, vL(a0)), (1, vL(a1)), . . . , (n, vL(an)).

If one denotes the vertices of this polygon by the points (x0, y0), (x1, y1), . . . , (x�, y�),
then f(x) factors over L as

f(x) = f1(x) · · · f�(x),

in which for any 1 ≤ i ≤ n, the degree of fi(x) is xi − xi−1 and all roots of fi(x)
in L̄ have valuations − yi−yi−1

xi−xi−1
.

Corollary 2.2. With the above notations, assume that fi(x) ∈ Qp[x] is irreducible.
If d divides xi − xi−1 for some 1 ≤ i ≤ �, then the order of the Galois group of the
splitting field of f(x) over Q is a multiple of d.

Proof. Take a root α ∈ Q̄p of the irreducible polynomial fi(x) ∈ Qp[x]. Then

[Qp(α) : Qp] = deg(fi(x)) = xi − xi−1

(see Theorem 2.1 for the second equality) divides the order of the Galois group of
the splitting field of fi(x) (and hence f(x)) over Qp. To complete the proof, it is
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enough to note that the Galois group of the splitting field of f(x) ∈ Qp[x] over Qp

is embedded in the Galois group of the splitting field of f(x) ∈ Q[x] over Q.

3. Galois Groups of the Taylor Polynomials of 1 + log(1 − x)

In this section, we study the Galois groups Gn of the splitting fields of the Taylor
polynomials

fn(x) := 1 + x +
x2

2
+ · · · + xn

n

of the function 1 + log(1 − x) for integers n ≥ 12 over Q. We first show that fn is
irreducible for any integer n ≥ 12.

To show the irreducibility of fn(x) ∈ Q[x] for any n ≥ 12, we first choose a prime
number p strictly between n/2 and n using Chebyshev theorem, and consider the
polynomial fn in Qp[x]. Then the Newton polygon of fn(x) has only three vertices
(0, 0), (p,−1), (n, 0) and therefore using Theorem 2.1, fn factors in Qp[x] as

fn(x) = gn(x)hn(x),

in which gn is a polynomial of degree p with roots of valuations 1/p. As a result,
gn(x) ∈ Qp[x] is an irreducible factor of fn(x) ∈ Qp[x]. Repeating the same argu-
ment for another prime q �= p between n/2 and n, the polynomial fn(x) ∈ Qq[x]
has an irreducible factor of degree q. We note that since n ≥ 12, there are at
least two primes between n and n/2. Now assuming that the degree n polynomial
fn(x) ∈ Q[x] is reducible, it must have two irreducible factors of degree p > n/2
and q > n/2 which is a contradiction.

Irreducibility of fn(x) implies that Gn is a transitive subgroup of Sn. On the
other hand, using Corollary 2.2, p divides the order of the group Gn and so Gn

has a p-cycle for the prime p between n/2 and n. Hence by Jordan’s Theorem (see
[4, Theorem 3.3]), Gn contains the alternating group An.

In the rest of this section, we show that in the case n �≡ 1 (mod 4) and also
in the case n ≡ 1 (mod 4) provided that n is prime, the discriminant of fn(x)
is not a perfect square and hence Gn is the full symmetric group Sn. We recall
that if the Galois group of a polynomial of degree n is contained in the alternating
group An if and only if the discriminant of that polynomial is a perfect square (see
[6, Corollary 12.4]).

Observing that derivative function of fn(x) is f ′
n(x) = xn−1

x−1 , the minimum of
fn(x) occurs at x = −1 with a positive value for any even integer n. Thus fn(x)
has no real roots for even integers n. Therefore in the case n = 4k + 2, the sign
of the discriminant of fn(x) is (−1)t = (−1)2k+1 = −1. For odd integers n, the
derivative f ′

n(x) is always strictly greater than 1, and hence it has exactly one real
root. Therefore in the case n = 4k + 3, the sign of the discriminant of f ′

n(x) is
again (−1)t = (−1)2k+1 = −1. From this, we conclude that the discriminant of
the polynomial fn(x) is not a perfect square for any positive integer n of the form
n = 4k + 2, 4k + 3, and the Galois group Gn is the full symmetric group Sn.
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In the case n = 4k, we first note that the discriminant of fn(x) is

disc(fn) = nn(1/n)n−1
n∏

i=1

f(ζi)

= nn(1/n)n−1
n∏

i=1

(
1 +

ζi

1
+

ζ2
i

2
+ · · · + ζn

i

n

)

= n


1 +

∑
1≤r1,...,rn−1≤n−1

ζr1
1 · · · ζrn−1

n−1

r1 · · · rn−1


 ,

where the (n − 1)th roots of unities ζi �= 1 are the roots of the derivative f ′
n(x).

We now separate this summation into two parts: let the terms for which r1 = r2 =
· · · = rn−1, i.e.

n ·
(

1
nn−1

+
1

(n − 1)n−1
+ · · · + 1

2n−1

)
,

in one part, and the terms

n


1 +

∑
1≤r1,...,rn−1≤n−1

not all the same

ζr1
1 · · · ζrn−1

n−1

r1 · · · rn−1




in the second part. Here we note that in
∑

1≤r1,...,rn−1≤n−1

not all the same

ζr1
1 · · · ζrn−1

n−1

r1 · · · rn−1
=

∑
1≤r1,...,rn−1≤n−1

not all the same

1
r1r2 · · · rn−1

∑
σ∈Sn−1

ζr1
σ(1) · · · ζrn−1

σ(n−1),

the expression
∑

σ∈Sn−1
ζr1
σ(1) · · · ζn−1

σ(n−1) is symmetric, and thus is a rational number.
Moreover, the p-valuations of all fractions in this summation are at most n − 2.

Now taking the common denominator of all terms in these two parts leads to
the fraction

n · a + pb

(l.c.m.(1, 2, . . . , n))n−1
,

in which p � a. Hence the exact power of the prime p in this fraction is the odd
number n − 1, and so disc(fn) is not a perfect square.

Finally, we show that if n is a prime number of the form 4k+1, the discriminant
of the polynomial fn(x) is not again a perfect square. By multiplying to n, we first
make the polynomial fn monic as

f̃n(x) = n + nx +
n

2
x2 + · · · + n

n − 1
xn−1 + xn

with derivative

f̃ ′
n(x) = n + nx + · · · + nxn−1 + nxn.
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Therefore, we obtain the corresponding resultant as

Res(f̃n, f̃ ′
n) = det




n n
n

2
. . .

n

n − 1
1 0 · · · 0 0

0 n n
n

2
. . .

n

n − 1
1 0 · · · 0

...
...

0 0 · · · 0 0 n n
n

2
· · · n

n − 1
1

n n · · · n n 0 0 · · · 0 0

0 n · · · n n n 0 0 · · · 0

...
...

0 0 · · · 0 n n n n · · · n




whose n-valuation is exactly equal to n. Here we note that determinant of this
(2n−1)× (2n−1) is the product of the diagonal entries. All entries are multiples of
n except the entries one in the partial diagonal. Hence in the product of the diagonal
entries, all terms are multiples of nn+1 except one term, obtained from the diagonal
including entries one, of n-valuation equal to n. Hence valn(Res(f̃n, f̃ ′

n)) = n which
is an odd number. Since the f̃n is monic, we have the equality

disc(f̃n) = (−1)
n(n−1)

2 Res(f̃n, f̃ ′
n),

and the n-valuation of the discriminant of f̃n is the odd integer n. This implies that
the discriminant of fn, whose valuation is the same as f̃n up to a square, is not
again a perfect square.

We summarize these results in the following theorem.

Theorem 3.1. The Galois group of the splitting field of the polynomial

fn(x) := 1 + x +
x

2
+ · · · + xn

n

is the full symmetric group Sn for any positive integer n ≥ 12 with n �≡ 1 (mod 4)
and for any positive prime number n ≥ 12 with n ≡ 1 (mod 4).

4. Galois Groups of the Taylor Polynomials of cos(x)

In this section, we study the Galois groups Gn of the polynomials

fn(x) = 1 − x2

2!
+

x4

4!
+ · · · + (−1)n x2n

(2n)!
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for all n ∈ Z > 0. To do that, we first compute the Galois groups G̃n of the
polynomials

gn(x) = 1 − x

2!
+

x2

4!
+ · · · + (−1)n xn

(2n)!

for all n ∈ Z > 0, and then the Galois group Gn in the first part. In the second
part, we provide a geometric interpretation of the Galois group Gn as the symmetry
group of a regular polytope.

The computation of the Galois groups of the cosine Taylor polynomials, using
the corresponding Newton polygon, is quite different from the exponential and the
logarithm Taylor polynomials. The reason is as follows: unlike the exponential and
logarithm cases, the first place that any prime p between n/2 and n appears in the
coefficients of the cosine Taylor polynomials fn(x) is the term xp+1

(p+1)! which gives the
slope 1

p+1 . So, we cannot conclude that p divides the denominator of the slope, and
that the Galois group has a cycle of length p. Therefore, we have to use a different
argument in this section.

4.1. Computing the Galois groups G̃n and Gn

By a classical result of Schur [8] in 1929, any polynomial of the form

1 + c1x + c2
x2

2!
+ · · · + c�−1

x�−1

(� − 1)!
± x�

�!
∈ Q[x]

with ci ∈ Z is irreducible. Hence, as a corollary, the polynomial fn(x) and so the
polynomial gn(x) are irreducible in Q[x].

Let n �= 3, 5, 11 be a positive integer, and choose a prime p with 2n/3 < p < n

(by consequence of prime number theorem). Then all places that p appears in the
coefficients of the polynomial fn(x) are the coefficients ± 1

(p+j)! for 0 < j < p with
valuations −1, and in ± 1

(2p+j)! for 0 ≤ j ≤ 2n−2p with valuations −2. Here we note
that 2p < 2n and 2n < 3p. Comparing the slopes of lines from (0, 0) to (p+1

2 ,−1)

Fig. 2. The Newton polygon of gn(x) ∈ Qp[x].
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and to (p,−2), the slope of the first segment of the Newton polygon of fn(x) is
obtained as −2

p by connecting (0, 0) to (p,−2). Therefore using Corollary 2.2 and
again Jordan’s theorem, the Galois group of the splitting field of gn(x) over Q is
of order divisible by p and, since n/2 < p, has a cycle of length p. On the other
hand, by irreducibility of gn(x), the corresponding Galois group is transitive. Hence
assuming n �= 3, 5, 11, the Galois group G̃n is the full symmetric group Sn or the
alternating group An.

In exceptional cases n = 3, 5, 11, the Galois group G̃n is also isomorphic to
either Sn or An. For n = 11, in the polynomial g11(x), the prime 7 appears only
in the terms x4

8! ,
x7

14! and x11

22! . So the first segment in the 7-adic Newton polygon
of g11(x) is −2

7 . Again, since 7 divides the denominator of this slope, the order of
the Galois group G̃7 is divisible by 7, and consequently G̃n has a cycle of length 7
by Corollary 2.2. Therefore, since 7 > 11/2 by Jordan’s theorem, G̃n is isomorphic
to Sn or An. In the cases n = 3 and n = 5, using the software PARI/GP, the
discriminants have the prime factors 7 and 37 with exponents one, respectively.
Moreover, g3(x) and g5(x) have the double roots 2 modulo 7 and 12 modulo 37,
respectively. Therefore, by [7, Lemma 1], the groups G̃3 and G̃7 are generated by
transpositions, and since these groups are transitive, they are isomorphic to S3 and
S5, respectively. Consequently, G̃n is isomorphic to Sn or An for any positive integer
n. At the end of this section, we give some sufficient conditions so that G̃n � Sn.

Now to relate the Galois group G̃n to Gn, let α2
1, α

2
2, . . . , α

2
n be the roots of fn(x).

So Q(α2
1, . . . , α

2
n) is the splitting field of the polynomial fn(x), and Q(α1, . . . , αn)

is the splitting field of the polynomial gn(x). Let us consider the following Galois
extensions:

Q ⊆ Q(α2
1, α

2
2, . . . , α

2
n) ⊆ Q(α1, α

2
2, . . . , α

2
n)

⊆ · · · ⊆ Q(α1, α2, α
2
3, . . . , α

2
n) ⊆ Q(α1, . . . , αn).

For simplicity, we use the following notations:

F := Q(α2
1, α

2
2, . . . , α

2
n), E := Q(α1, α

2
2, . . . , α

2
n).

The strategy is as follows: we first show that the Galois group Gal(E/F ) is isomor-
phic to Z/2Z, and then similarly

Gal(Q(α1, α2, α
2
3, . . . , α

2
n)/Q(α1, α

2
2, . . . , α

2
n)) � Z/2Z,

and so on. As a result, the Galois group of the extension Q(α1, . . . , αn) over
Q(α2

1, α
2
2, . . . , α

2
n), which is indeed a 2-group, is obtained as follows:

Gal(Q(α1, . . . , αn)/Q(α2
1, α

2
2, . . . , α

2
n)) � (Z/2Z)n.

We then conclude that Gn � (Z/2Z)n�G̃n, in which Gn is either the full symmetric
group Sn or the alternating group An.

To complete the proof, by contrast, assume that F = E, and write α1 as follows:

α1 = c0(α2
2, . . . , α

2
n) + c1(α2

2, . . . , α
2
n)α2

1 + · · · + cn−1(α2
2, . . . , α

2
n)α2n−2

1 . (4.1)
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Here ci(α2
2, . . . , α

2
n) ∈ Q(α2

2, . . . , α
2
n). For the rest of the proof, denote

T12 := {σ ∈ Gal(E/Q); σ(α2
1) = α2

2} ⊆ Gal(E/Q).

We take the action of all σ ∈ T12 on both sides of the equality 4.1, and finally sum
up both sides of equalities:∑

σ∈T12

σ(α1) =
∑

σ∈T12

c0(α2
2, . . . , α

2
n) +

∑
σ∈T12

σ(c1(α2
2, . . . , α

2
n))α2

2

+ · · · +
∑

σ∈T12

σ(cn−1(α2
2, . . . , α

2
n))α2n−2

2 .

We note that σ(α1) = ±α2, and therefore∑
σ∈T12

σ(α1) = mα2

for some integer m. On the other hand, we claim that the sum∑
σ∈T12

σ(ci(α2
2, . . . , α

2
n))

is in the field Q(α2
2). To see this, we observe for any

τ ∈ Gal(Q(α1, α
2
2, . . . , α

2
n)/Q(α2

2))

that τ ◦ σ(α2
1) = α2

2, and so

τ

( ∑
σ∈T12

σ(ci(α2
2, . . . , α

2
n))

)
=
∑

σ∈T12

(τ ◦ σ)(ci(α2
2, . . . , α

2
n))

=
∑

τ◦σ∈T12

σ(ci(α2
2, . . . , α

2
n))

=
∑

σ∈T12

σ(ci(α2
2, . . . , α

2
n)).

Hence,
∑

σ∈T12
σ(ci(α2

2, . . . , α
2
n)) is in the fixed field of the subgroup

Gal(Q(α1, α
2
2, . . . , α

2
n)/Q(α2

2)) ≤ Gal(Q(α1, α
2
2, . . . , α

2
n)/Q)

for any 0 ≤ i ≤ n − 1. Here we remark that the extension

Q(α1, α
2
2, . . . , α

2
n) = Q(α2

1, α
2
2, . . . , α

2
n)

is Galois over Q. Thus we obtain the following equality:

mα2 = d0 + d1α
2
2 + · · · + dn−1α

2n−2
2

for di ∈ Q. Since the polynomial gn(x) ∈ Q(x) is irreducible and so the Galois group

Gal(Q(α2
1, α

2
2, . . . , α

2
n)/Q)
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is transitive, applying an element of this Galois group which maps 2 to j on the
above equality, we obtain

mαj = d0 + d1α
2
j + · · · + dn−1α

2n−2
j

for all 0 ≤ j ≤ n − 1. Then multiplying all these equalities for 0 ≤ j ≤ n − 1 leads
to the following:

mn−1α1 · · ·αn =
∏

0≤j≤n−1

(d0 + d1α
2
j + · · · + dn−1α

2n−2
j ). (4.2)

Now the right-hand side of equality 4.2 is a symmetric function in terms of the roots
α2

1, . . . , α
2
n of gn(x) ∈ Q[x], and consequently is a rational number. This contradicts

with the irrationality of the left-hand side of equality 4.2, i.e. the irrationality of
mn−1

√
(2n)!, unless m = 0. As a result, m should be zero, and so∑

σ∈T12

σ(α1) = 0.

This means that

#{σ ∈ T12; σ(α1) = α2} = #{σ ∈ T12; σ(α1) = −α2}. (4.3)

Hence for any τ ∈ Gal(F/Q) which maps α2
1 to α2

2, there are two lifts τ1 (sending
α1 to α2) and τ2 (sending α1 to −α2) in Gal(E/Q). This is a contradiction with
the equality F = E. Therefore

Gal(Q(α1, α
2
2, . . . , α

2
n)/Q(α2

1, α
2
2, . . . , α

2
n)) � Z/2Z. (4.4)

In the next step, we claim that

Gal(Q(α1, α2, α
2
3, . . . , α

2
n)/Q(α1, α

2
2, . . . , α

2
n)) � Z/2Z.

Otherwise, α2 ∈ Q(α1, α
2
2, . . . , α

2
n) which implies the equality

α2 = c0(α2
1, . . . , α

2
n) + c1(α2

1, . . . , α
2
n)α1 (4.5)

for some ci(α2
1, . . . , α

2
n) ∈ Q(α2

1, . . . , α
2
n). The element

τ = (α2
1, α

2
2)(α

2
3, α

2
4) ∈ Gal(F/Q)

has the following possible lifts in Gal(E/Q):

(α1, α2)(α2
3, α

2
4), (α1, α2,−α1,−α2)(α2

3, α
2
4),

(α1,−α2)(α2
3, α

2
4), (α1,−α2,−α1, α2)(α2

3, α
2
4).

(4.6)

Among these lifts, two lifts certainly occur in Gal(E/Q) by isomorphism 4.4. But
applying any two lifts among all possible cases in 4.6 on the both sides of equality
4.5 implies that α1 = 0, α1 ∈ Q(α2

1, . . . , α
2
n) or c0(α2

1, . . . , α
2
n) = 0. The first two

cases are obviously contradictions. In the latter case,

α2 = c1(α2
1, . . . , α

2
n)α1
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implies that α1α2 ∈ Q(α2
1, α

2
2, . . . , α

2
n), and more generally by the transitivity of the

Galois group Gal(F/Q), αiαj ∈ Q(α2
1, α

2
2, . . . , α

2
n) for any 1 ≤ i, j ≤ n. As a result,

the symmetric polynomial∑
i,j

αiαj ∈ Q(α2
1, α

2
2, . . . , α

2
n)

in terms of αi’s is indeed a symmetric polynomial in terms of α2
i ’s. Conse-

quently, it is fixed by all elements of the Galois group of the Galois extension
Q(α2

1, α
2
2, . . . , α

2
n)/Q, and thus

∑
i,j αiαj ∈ Q. Equivalently, since

∑
i α2

i ∈ Q,
we obtain that (

∑
i αi)2 ∈ Q. One can extend this argument simply to obtain

(
∑

i,j,k αiαjαk)2 ∈ Q, and so on. To summarize what we have obtained is that
(
∑

i1,...,il
αi1αi2 . . . αim)2 ∈ Q for any odd integer m, and

∑
i1,...,il

αi1αi2 . . . αim ∈ Q

for any even integer m. As a result, we have the decomposition

f(x) =


 ∏

1≤i≤n

(x − αi)




 ∏

1≤i≤n

(x + αi)


,

where
∏

i(x − αi),
∏

i(x + αi) ∈ K[x], where K := Q(
√

d1,
√

d2, . . . ,
√

ds) for some
di ∈ Z and s ≤ n/2. So to obtain a contradiction, it is enough to show that f(x) is
irreducible in the number field K. To show that, we look at this polynomial in the
local field KP for a prime ideal P in the ring of integers K above a prime number
2n/3 < p < n. The first segment of the Newton polygon of f(x) ∈ KP[x] connects
(0, 0) to (2p,−2r) for certain positive integer r ≤ s. Here we note that K/Q is Galois,
and so the ramification index is a divisor of [K : Q] = 2s. Thus f(x) ∈ KP[x] has
a factor of degree 2p with roots of P-valuations 2t

2p . Therefore, this factor is either
irreducible or the product of two irreducible factors of degrees p. By substituting
a prime ideal P′ lying above another prime number 2n/3 < p′ < n provided n

is large enough, e.g., n ≥ 30, the same argument says that f(x) ∈ KP′ [x] has an
irreducible factor of degree 2p′ or decomposes to the product of two irreducible
factors of degrees p′. In any case if one assumes that f(x) ∈ K[x] is reducible, we
have a contradiction. Therefore

Gal(Q(α1, α2, α
2
3, . . . , α

2
n)/Q(α1, α

2
2, . . . , α

2
n)) � Z/2Z.

In the third step to show that

Gal(Q(α1, α2, α3, α
2
4, . . . , α

2
n)/Q(α1, α2, α

2
3, . . . , α

2
n))

is of order 2, we assume again the contrary. So one can write the equality

α3 = c0(α2
1, . . . , α

2
n) + c1(α2

1, . . . , α
2
n)α1 + c2(α2

1, . . . , α
2
n)α2 + c3(α2

1, . . . , α
2
n)α1α2.

Since so far we obtain that the Galois group of Q(α1, α2, α
2
3, . . . , α

2
n) over

Q(α2
1, α

2
2, α

2
3, . . . , α

2
n) is of order 4, the element

τ = (α2
1, α

2
2, α

2
3) ∈ Gal(Q(α2

1, α
2
2, . . . , α

2
n)/Q)
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has four lifts among all possible cases — similar to 4.6 — in the Galois group of
Q(α1, α2, α

2
3, . . . , α

2
n) over Q(α2

1, α
2
2, . . . , α

2
n). By applying any two lifts among them,

we get a simple contradiction or we come up with the case

α1 = c0(α2
1, . . . , α

2
n) + c1(α2

1, . . . , α
2
n)α2 + c2(α2

1, . . . , α
2
n)α3 + c3(α2

1, . . . , α
2
n)α2α3,

−α1 = c0(α2
1, . . . , α

2
n) + c1(α2

1, . . . , α
2
n)α2 + c2(α2

1, . . . , α
2
n)α3 + c3(α2

1, . . . , α
2
n)α2α3,

which imply α1 = 0. This is again a contradiction. As a result, we have the following
isomorphism:

Gal(Q(α1, α2, α3, α
2
4, . . . , α

2
n)/Q(α1, α2, α

2
3, . . . , α

2
n)) � Z/2Z.

By induction and repeating the same argument as in the third step, we finally derive
the structure of the 2-group Gal(Q(α1, . . . , αn)/Q(α2

1, . . . , α
2
n)) as follows:

Gal(Q(α1, . . . , αn)/Q(α2
1, . . . , α

2
n)) � (Z/2Z)n.

Here we note that this group, as the Galois group of a Galois extension, is a normal
subgroup of Gal(Q(α1, . . . , αn)/Q).

We can now write the following exact sequence:

0 → (Z/2Z)n → Gn → G̃n → 0

with the splitting map G̃n → Gn sending any permutation α2
i → α2

j simply to
the permutation αi → αj . On the other hand, we showed that the Galois group
G̃n = Gal(Q(α2

1, . . . , α
2
n)/Q) is Sn or An. Therefore, we conclude that Gn is the

semi-direct product of the normal subgroup (Z/2Z)n and G̃n, and the action of G̃n

on (Z/2Z)n is just permutations of direct factors. We summarize these results in
the following theorem.

Theorem 4.1. The Galois group of the splitting field of the polynomial

fn(x) = 1 − x2

2!
+

x4

4!
+ · · · + (−1)n x2n

(2n)!

over Q is the group H � G̃n with the prescribed action for any n ∈ Z > 0 in which
H � (Z/2Z)t for t ≤ n, and G̃n — the Galois group of the splitting field of the
polynomial

gn(x) = 1 − x

2!
+

x2

4!
+ · · · + (−1)n xn

(2n)!

over Q — is either the full symmetric group Sn or the alternating group An. For
large enough positive integers n, e.g., n ≥ 30, we have H � (Z/2Z)n.

Although we are not able to give an explicit formula for disc(gn), we provide
some conditions so that G̃n is the full symmetric group Sn in the last part of this
section. To do that, we remark that if disc(gn) is a perfect square, then disc(gn) is
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a perfect square modulo any prime number p. Now choose a prime number p �= 3
such that p | 2n − 4, and multiply gn by (2n)! to obtain the monic polynomial

1
(2n)!

+
x

(2n − 2)!
+

x2

(2n − 1)!
+ · · · + xn.

This polynomial is congruent to 1 + 12x + 24x2 modulo the prime p, and has the
discriminant

disc(gn) ≡ 3 (mod p)

modulo p. This implies that the discriminant disc(gn) is not a perfect square pro-
vided that the Legender symbol ( 3

p ) is −1, equivalently p ≡ ±5 (mod 12). For
example, we note that if n ≡ 7, 9 (mod 12), the number 2n − 4 has a prime factor
p with p ≡ ±5 (mod 12).

Similarly, choosing a prime number p �= 2 such that p | 2n − 5, the polynomial
gn(x) is of the form 1 − 20x + 120x2 modulo p with discriminant −20. Therefore,
disc(gn) is not again a perfect square provided that the Legender symbol (−5

p ) is -1,
equivalently p ≡ 11, 13, 17, 19 (mod 20). Thus we have the following proposition.

Proposition 4.2.

(1) If n is a positive number of the form 12k + 7 or 12k + 9, then G̃n � Sn.
(2) If n is a positive integer which has a prime factor p with p ≡ 11, 13, 17, 19

(mod 20), then G̃n � Sn.

Remark 4.3. The methods we used for computing the Galois groups of the loga-
rithm and cosine Taylor polynomials apply to the Taylor polynomials of the function
1 + sin(x). But these methods do not work for the Tangent and Cotangent Taylor
polynomials whose coefficients are related to Bernoulli numbers. To explain it, we
consider the Taylor polynomials

n∑
k=0

(−1)k B2k

(2k)!
(2x)2k

Fig. 3. The Newton polygon of the Taylor polynomials of x · cot(x) ∈ Qp[x].
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of the function x · cot(x). Here we note that, since for any prime p

B2p

2p
≡ Bp+1

p + 1
≡ B2

2
(mod p),

according to the Kummer criterion for Bernouli numbers, the first vertices of the
corresponding Newton polygon are (0, 0), (p + 1,−1), (2p,−1). Since the prime p

does not appear in the slopes of the connecting lines, the methods used in the
previous sections do not work!

4.2. Galois group Gn as the symmetry group of a regular polytope

To understand the structure of the Galois group Gn of the nth Taylor polynomial of
the elementary function cosx, we try to relate it to a well-known symmetry group
of a finite convex object in n-dimensional space called cross-polytope.

We recall that an n-simplex αn (we use Coexter notation, see [3]) is defined as
the convex hull of the origin O = (0, . . . , 0) and all n points are fixed on the n

coordinate axes in Rn. If the n points on the coordinate axes are equidistant from
the origin O, it is called a regular n-simplex. If we choose 2n points on the coordinate
axes equidistant from the origin O in both directions, the convex hull of the origin
O and these 2n points are another important figure, the cross-polytope βn, whose
facets consist of 2n regular simplex αn−1. To see it more visually, you can take
(±1, 0, . . . , 0), . . . , (0, . . . ,±1) in Rn as 2n vertices and the corresponding convex
hull in Rn is the cross-polytope. The Schlafli symbol of this regular cross-polytope
is {3, 3, . . . , 3, 4}, or say, βn = {3n−2, 4}, also αn = {3n−1} (for the definition of
Schlafli symbol, see [3] or the references therein). For example, the cross-polytope
in R2 is the square with vertices (±1, 0), (0,±1) with symbol {4}, and in R3, it
is an octahedron with symbol β3 = {3, 4}, i.e. all faces are triangles and around
each vertex, there are 4 triangles (it is in fact one of the Platonic solids). The
corresponding cross-polytope in R5 has 10 vertices (±1, 0, . . . , 0), . . . , (0, . . . ,±1)
and 40 edges and 80 triangle faces and 80 tetrahedron cells with the symbol {33, 4},
and also its orthogonal projection on the xy-plane is the following figure:

If we are given the position of one facet and one vertex of a regular polytope
in n-dimensional space, we can build up the whole polytope in a unique manner,
i.e. there is a symmetry group which is transitive on facets and likewise transitive
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on the vertices. In particular, the symmetry group of the regular simplex αn−1 or
{3n−1} is the full symmetric group Sn — group of all permutations of the n vertices
of the simplex αn−1 — and the order of the symmetry group of a regular simplex
is N(αn−1) = n!

Since the cross-polytope βn or {3n−2, 4} has 2n facets αn−1, then one can show
that the order of the symmetry group of the cross-polytope βn is as follows:

N(βn) = 2nN(αn−1) = 2nn! (4.7)

In fact, it is known that the symmetry group of the cross-polytope βn is just the
symmetry group of the frame of the orthogonal Cartesian axes (see [3]). So, it
consists of 2n possible changes of signs of the n coordinate axes combined with the
n! permutations of the axes. As we observed before, we see that the Galois group
of the nth Taylor polynomial gn of the function cosx consists of possible changes of
signs of the roots α1, . . . , αn and also it contains the permutations of these roots.
Hence, we can clearly consider the Galois group Gn as a subgroup of the symmetry
group Sym(βn). By the above argument and also by the computation of the order
of the Galois group of the Taylor polynomials of cosx (at least when this Galois
group is as large as possible), both groups have the same order, and consequently,

Gn � Sym(βn). (4.8)

Finally, we note that the symmetry group of the cross-polytope βn is a Coexter
group of type Bn, and its structure is of the form (Z/2Z)n � Sn.
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