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Abstract

We define a certain type of subcategories of the category of graded
differential r-algebras and associate to such subcategories a sequence of
algebras An(R) (n ≥ 0 and R a commutative ring). We show that the
case n = 2 is the extension of the well known mod 2 Steenrod algebra A2.
A brief calculation on Adem relations of the mod 4 Steenrod algebra are
also given.

1 Introduction

The mod p Steenrod algebra Ap at the prime p is the algebra of stable coho-
mology operations

θ : Hm(−,Fp) → Hn(−,Fp)

under the compositionHm(X;Fp)
θX−−→ Hn(X;Fp)

θ′
X−−→ Hk(X;Fp). This algebra

is completely characterized by the Steenrod squares Sqk, for p = 2, and Steenrod
reduced powers Pk accompanied by the Bockstein homomorphism involved the
sequence

0 → Z/(p) → Z/(p2) → Z/(p) → 0,

for p > 2.
Let R be a commutative ring with unity. While the ring of stable coho-

mology operations Hm(−, R) → Hn(−, R) exist, it is hard to determine its
structure. One of the difficulties is that the group of all cohomology opera-
tions Hm(−, R) → Hn(−, R) is isomorphic to the cohomology Hn(K(R,m);R),
where K(R,m) is the Eilenberg-MacLane space (see eg. [1, 2, 3]).

The problem of computing the cohomology groups Hn(K(R,m);R) is not
completely solved. Thus, the study of ring of stable cohomology operations
Hm(−, R) → Hn(−, R) is not so known.

There are many attempts of extending the Steenrod algebra A2 over an
arbitrary commutative ring with unity R. The most significant of them is the
algebraic introduction to the Steenrod algebra by Smith [5], who defines the
Steenrod algebra P∗(Fq) over any Galois field Fq. Smith redefines the Steenrod
reduced powers Pk as certain natural transformations of the functor Fq[−],
which assign to any finite dimensional vector space V , its dual algebra V ∗ =
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Fq[V ] being simply a polynomial in dimFq
V indeterminates. Then he embeds

P∗(Fq) into the P∗(Fp)⊗Fp Fq as a Hopf subalgebra.
Another important extension of the Steenrod algebra is the Wood’s integral

Steenrod algebra N [7]. He uses differentiation as a property of the Steenrod
square Sqk, and defines the integral Steenrod squares as differential operators
acting on W = Z[x1, x2, . . .] by

SQk =
1

k!

∑
(i1,...,ik)

x2
i1 · · ·x

2
ik

∂k

∂xi1 · · · ∂xik

,

where the summation runs over all sequences (i1, . . . , ik) of non-negative inte-
gers. Then he proves that N ⊗ F2

∼= A2, the mod 2 Steenrod algebra.
Both of the aforementioned extensions generalize Steenrod operations and

then collect these operations inside a Hopf algebra.
In this paper, we extend the mod 2 Steenrod algebra A2 considering some

properties of it. The main properties ofA2 is the following, called the unstability
properties [4].

1. If x ∈ H∗(X;F2) and k > |x|, then Sqk(x) = 0, where |x| denotes the
degree of x;

2. For any x, y ∈ H∗(X;F2) and any k ≥ 0,

Sqk(xy) =
∑

i+j=k

Sqi(x)Sqj(y);

3. For any x ∈ H∗(X;F2), Sq
|x|(x) = x2.

Through this paper, we assume R is a commutative ring with unity.

2 Unstable categories

Let GrAlg(R) denote the category of all graded commutative R-algebras with
algebra homomorphisms as morphisms.

Definition 2.1. A subcategory C of GrAlg(R) is called unstable if there exist
symbols {d0, d1, d2, . . .} such that any object A of C is a left module over the non-
commutative free R-algebra S = R⟨d0, d1, . . .⟩ provided the following properties
hold.

1. d0 acts identically on the objects of C(R); i.e., d0 = id.

2. For any object A of C and any a ∈ A, dk(a) = 0 if k > deg(a);

3. (Cartan formula) Given any object A of C and any a, b ∈ A, any k ≥ 0,

dk(ab) =
∑

i+j=k

di(a)dj(b);
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4. Given the objects A,B ∈ C and morphism f : A → B, f(dk(a)) = dk(f(a))
for all a ∈ A and all k ≥ 0.

Alternatively, we write C(R) for C to emphasis the ring R.

The R-algebra S = R⟨d0, d1, . . .⟩ has a Hopf algebra structure given by

∆ : S → S ⊗R S,

∆(dk) =
∑

i+j=k

di ⊗ dj .

The next result follows from this fact.

Proposition 2.2. Let C be unstable over S = R⟨d0, d1, . . .⟩. Then C is closed
under the tensor product.

Proof. For objects A and B of C, the map

ν : (S ⊗R S)⊗ (A⊗R B) → A⊗R B

defined by
(di ⊗ dj)(a⊗ b) = (−1)j deg(a)di(a)⊗ dj(b) (1)

gives A⊗R B a left module structure over S ⊗R S. Now the composition

S ⊗R (A⊗R B)
∆⊗id−−−→ (S ⊗R S)⊗ (A⊗R B)

ν−→ A⊗R B

makes A⊗R B a left S-module.
For a ⊗ b ∈ A ⊗R B and k > deg(a ⊗ b) = deg(a) deg(b), from (1) we have

by Cartan formula,

dk(a⊗ b) =
∑

i+j=k

di(a)⊗ dj(b) = 0,

since either k > deg(a) or k > deg(b). Also,

dk((a1 ⊗ b1)(a2 ⊗ b2)) = (−1)deg(b1) deg(a2)dk(a1a2 ⊗ b1b2)

= (−1)deg(b1) deg(a2)
∑

i+j=k

di(a1a2)⊗ dj(b1b2)

Corollary 2.3. There exist a topological space Z such that

H∗(Z;F2) = H∗(X;F2)⊗F2 H
∗(Y ;F2).
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Proof. The category Cohom(F2) of cohomology rings of topological spaces is
closed under the tensor product since it is unstable over F2⟨Sq0, Sq1, . . .⟩. There-
fore, for the spaces X and Y , the tensor product H∗(X;F2) ⊗F2

H∗(Y ;F2) is
an object of Cohom(F2). That is to say that, there exist a space Z such that

H∗(Z;F2) = H∗(X;F2)⊗F2
H∗(Y ;F2).

Of course, by Künneth formula, Z = X × Y .

Recall that a graded differential R-algebra is a graded R-algebra A together
with a collection of linear maps {∂i : A → A} such that

∂i(ab) = ∂i(a)b+ a∂i(b),

∂i(ra) = r∂i(a), ∂i∂j = ∂j∂i,

for all a, b ∈ A and all r ∈ R. For any i, ∂i is called a differential operator on
A.

Consider the category GrDiff(R) of all graded differential R-algebras as ob-
jects. For the objects A and B of GrDiff(R), the morphism f : A → B is an
algebra homomorphism preserving the differential operators; i.e., f∂A = ∂Bf ,
where ∂A and ∂B are differential operators on A and B, respectively.

Theorem 2.4. Any unstable category C(R) is a subcategory of GrDiff(R).

Proof. Suppose that C(R) is an unstable category over S = R⟨d0, d1, . . .⟩. We
show that all objects of C(R) are differential algebras and all morphisms preserve
differential operators. For any object A of C(R), from Cartan formula,

d1(ab) = d1(a)b+ ad1(b) and d1(r) = 0

for all a, b ∈ A and all r ∈ R, since deg(r) = 0 < 1. Therefore any object A
of C(R) is a differential ring with differential operator d1. Given a morphism
f : A → B of objects A,B ∈ C(R), by property 3 of Definition 2.1, fd1 = d1f
which shows f preserves the differential operator d1.

3 Steenrod algebra of an unstable category

One of the main concepts in the study of the Steenrod algebra is the ideal
⟨R2(a, b) : a ≤ 2b⟩ of F2⟨Sq0, Sq1, . . .⟩, where

R2(a, b) = SqaSqb −
∑
j≥0

(
b− j − 1

a− 2j

)
Sqa+b−jSqj

is called Adem relations with the property that for any cohomology class α ∈
H∗(X;F2), R2(a, b)(α) = 0.

In order to associate an algebra to an unstable category C(R), we need to
have relations such that the object A of C(R) are 0 over them. We establish
this relation in the following definition.
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Definition 3.1. Let C(R) be an unstable category on S = R⟨d0, d1, . . .⟩. The
Steenrod algebra associated to C(R), denoted by AS(C(R)), is defined to be the
quotient

R⟨d0, d1, . . .⟩/
∩

A∈C(R)

AnnS(A),

where AnnS(A) is the annihilator of the S-moduleA. The ideal
∩

A∈C(R) AnnS(A)

is called Adem relations of the category C(R).

For example, since Cohom(F2) is unstable over F2⟨Sq0, Sq1, . . .⟩, then we
have AS(Cohom(F2)) = A2, the mod 2 Steenrod algebra.

Let GrDiff−1(R) be the category of graded differential algebras (A, ∂), where
the differentiation operator ∂ decreases degree by 1. Morphisms in this category
are algebra homomorphisms f : A → B preserving differential operators. For
example, R[x] is an object of GrDiff−1(R). In the next result we exhibit a
canonical Steenrod algebra and its Adem relations on category GrDiff−1(R)

Theorem 3.2. The category GrDiff−1(R) is unstable and its associated Steenrod
algebra is the following divided polynomial algebra.

AS(GrDiff−1(R)) = R

⟨
dk0 : d00 = 1, dk0d

l
0 =

(
k + l

k

)
dk+l
0

⟩
.

Proof. Suppose that A is an object of GrDiff−1(R) with differential operators
{∂i}. Let ∂(= ∂A) =

∑
i ∂i. Put

d00 = id, d10 = ∂, dk0 =
1

k!
∂k.

We claim that the category GrDiff−1(R) is unstable over S = R⟨dk0 : k ≥ 0⟩.
For any a ∈ A and any k > deg(a), dk0(a) = 0 since dk0 decreases degree by k.
From Leibnitz formula

∂k(ab) =
∑

i+j=k

(
k

i

)
∂i(a)∂j(b),

we have

dk0(ab) =
1

k!
∂k(ab) =

∑
i+j=k

1

i!j!
∂i(a)∂j(b) =

∑
i+j=k

di0(a)d
j
0(b).

Finally, for any morphism f : A → B in GrDiff−1(R), f(∂A(a)) = ∂B(f(a)) since
f preserves each ∂i. Thus, the first part of the theorem holds. To determine
the associated Steenrod algebra AS(GrDiff−1(R)), we find out Adem relations
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as follows.

dk0d
l
0 =

1

k!

1

l!

∑
(i1,...,ik)

∑
(j1,...,jl)

∂i1...ik∂j1...jl

=
1

k!

1

l!

∑
(i1,...,ik)
(j1,...,jl)

∂i1...ikj1...jl

=
(k + l)!

k!l!
dk+l
0

=

(
k + l

k

)
dk+l
0 .

This completes the proof.

4 The n-Steenrod algebra

In this section, an unstable subcategory of GrDiff−1(R) is introduced and a
particular kind of Steenrod algebra is associated to it. Consider the subcategory
GrDiff1

−1(R) of GrDiff−1(R) in which objects are all graded differential algebras
A such that, for any differential operator ∂i on A, there exists an element xj of
degree 1 in A such that

∂i(xj) = δij =

{
1, if i = j,

0, if i ̸= j.

It is clear that for the objects A,B and the morphism f : A → B,

∂if(xj) = f(∂i(xj)) = δij .

Being the subcategory of GrDiff−1(R) with the same argument as in Theo-
rem 3.2, the category GrDiff1

−1(R) is unstable over S0 = R⟨dk0 : k ≥ 0⟩ and the

associated Steenrod algebra AS0(GrDiff
1
−1(R)) is also a divided polynomial alge-

bra. However, the aim of this section is to verify the unstability of GrDiff1
−1(R)

over an special algebra.

Theorem 4.1. For any n ≥ 0, there is a non-commutative free R-algebra
Sn = R⟨dkn : k ≥ 0⟩ such that GrDiff1

−1(R) is unstable on Sn.

Proof. Given any object A of GrDiff1
−1(R) with differential operators {∂i} sat-

isfying the ∂i(xj) = δij , define d0n = id, d1n =
∑

i x
n
i ∂i, and

dkn =
1

k!

∑
(i1,...,ik)

xn
i1 · · ·x

n
ik
∂(i1,...,ik),

where ∂(i1,...,ik) = ∂i1 · · · ∂ik . We claim that GrDiff1
−1(R) is unstable over Sn =

R⟨dkn : k ≥ 0⟩. The operator ∂(i1,...,ik) decreases degree by k since ∂i downs it

by 1. Therefore for any a ∈ A and any k > deg(a), we have dkn(a) = 0.
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To prove Cartan formula for dkn, first note that

∂(i1,...,ik)(ab) =
∑
S

∂(S)(a)∂(S′)(b),

where the summation is taken over all subsets S = {s1, . . . , sr} of {i1, . . . , ik},
1 ≤ r ≤ k, S′ is the complement of S in {i1, . . . , ik}, and ∂(S) denotes the
operator ∂s1 · · · ∂sr . Now we have

dkn(ab) =
1

k!

∑
(i1,...,ik)

xn
i1 · · ·x

n
ik
∂(i1,...,ik)(ab)

=
1

k!

∑
(i1,...,ik)

xn
i1 · · ·x

n
ik

∑
S

∂(S)(a)∂(S′)(b)

=
1

k!

∑
(i1,...,ik)

∑
S

xn
i1 · · ·x

n
ik
∂(S)(a)∂(S′)(b)

=
1

k!

∑
(i1,...,ik)

∑
S

(
xn
(S)∂(S)(a)

)(
xn
(S′)∂(S′)(b)

)
,

where xn
(S) = xn

s1 · · ·x
n
sr . But, there exists

(
k
r

)
subsets of {i1, . . . , ik} of size r,

therefore, the Cartan formula holds, noting that for an arbitrary subset S of
{i1, . . . , ik}, of size |S| = r, we have

xn
i1 · · ·x

n
ik
∂(S)(a)∂(S′)(b) =

(
xn
(S)∂(S)(a)

)(
xn
(S′)∂(S′)(b)

)
.

Definition 4.2. The associated Steenrod algebra ASn(GrDiff
1
−1)(R) is defined

as the n-Steenrod R-algebra and denote by An(R).

Example 4.3. We experienced the 0-Steenrod R-algebra

A0(R) = R

⟨
dk0 : dk0d

l
0 =

(
k + l

k

)
dk+l
0

⟩
in the preamble of Theorem 4.1, where the differential operators dk0 , for k ≥ 0,
are as in Theorem 3.2. Another example is the commutative 1-Steenrod R-
algebra A1(R) with Adem relations

dk1d
l
1 =

k∑
i=0

(
l

i

)(
k + l − i

l

)
dk+l−i
1 .

The 1-Steenrod algebras are studied in details in [6].
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5 Adem relations of the n-Steenrod algebras

For n > 1, computing Adem relations of the n-Steenrod algebra An(R) is not
so easy. We attempt to some special cases.

Let dn =
∑

i≥0 d
i
n. Then dn(xi) = xi + xn

i . Therefore, for q = pv (p prime),

the operations dkn in the algebra Aq(Fq) are exactly the Steenrod reduced powers
Pk with Adem relations as in the next result [5, section 2].

Theorem 5.1. Suppose that q = pv is a power of the prime p. Let Fq be the
Galois field of q elements. Then Adem relations of the q-Steenrod Fq-algebra
Aq(Fq) are as follows.

dand
b
n =

[a/q]∑
j=0

(−1)a−qj

(
(q − 1)(b− j)− 1

a− qj

)
da+b−j
n djn, a, b ≥ 0, a ≤ qb.

To compute Adem relations of n-Steenrod algebra An(R), we need some
formulae from [7]. Define

Dn =
∑
i

xn+1
i ∂i = d1n+1.

The commutative wedge product of xn
i ∂i and xm

j ∂j is defined by

xn
i ∂i ∨ xm

j ∂j = xn
i x

m
j ∂ij ,

and is extended linearly to(∑
i

xn
i ∂i

)
∨

∑
j

xm
j ∂j

 =
∑
i,j

xn
i x

m
j ∂ij .

For example,

dkn =
1

k!
d1n ∨ d1n ∨ · · · ∨ d1n =

1

k!
(d1n)

∨k.

For a multiset K = (nr1
1 nr2

2 · · ·nra
a ), let

D(K) =
D∨r1

n1

r1!
∨

D∨r2
n2

r2!
∨ · · · ∨

D∨ra
na

ra!
.

For instance, D(n) = Dn = d1n+1 and D(nr) = 1
r!D

∨r
n = drn+1. Note that

D(nr1nr2) = D(nr1) ∨D(nr2) =

(
r1 + r2

r1

)
D(nr1+r2),

where (nr1nr2) and (nr1+r2) are distinct multisets.
In his paper [7], Wood gives a general formula of decomposition D(K) ◦

D(L) for the multisets K = (nr1
1 nr2

2 · · ·nra
a ) and L = (ms1

1 ms2
2 · · ·msb

b ). For the
present purpose, we need only the following two special cases. The first one is
the following [7, Example 4.5].
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Theorem 5.2. We have

Dn ◦ (Dm1 ∨Dm2 ∨ · · · ∨Dmb
) = Dn ∨Dm1 ∨Dm2 ∨ · · · ∨Dmb

+ (m1 + 1)Dn+m1 ∨Dm2 ∨ · · · ∨Dmb

+ (m2 + 1)Dm1 ∨Dn+m2 ∨ · · · ∨Dmb
+ · · ·

+ (mb + 1)Dm1 ∨Dm2 ∨ · · · ∨Dn+mb
.

(2)

For example,

d1n+1d
k
n+1 = D(n)D(nk) =

1

k!
Dn ◦ (Dn ∨ · · · ∨Dn)

=
1

k!
[Dn ∨Dn ∨ · · · ∨Dn + k(n+ 1)D2n ∨Dn ∨ · · · ∨Dn]

=
1

k!
[(k + 1)!D(nk+1) + (n+ 1)D((2n)1) ∨D(nk−1)].

Thus,
d1n+1d

k
n+1 = (k + 1)dk+1

n+1 + (n+ 1)D(nk−1) ∨D((2n)1). (3)

The second special case is as follows [8, Example 2.10].

Theorem 5.3. For multisets N = (nr) and M = (ms), we have

drn+1d
s
m+1 = D(nr)D(ms) =

∑
Θ

ρ(Θ)D(nθ0) ∨
m+1∨
j=0

D((m+ jn)tj ), (4)

where the summation is running over all solutions Θ of the simultaneous equa-
tions

r = θ0 +
n+1∑
i=1

iti, s = t0 +
n+1∑
i=1

ti

in non-negative integers θ0 and ti and ρ(Θ) =
∏n+1

i=1

(
n+1
i

)ti
.

Now, we are ready to compute particular Adem relation of the n-Steenrod
algebra for n > 1. We start with the grading 3.

Theorem 5.4. In the n-Steenrod R-algebra An(R), we have

3(n− 1)d3n − (4n− 2)d2nd
1
n + (n+ 1)d1nd

2
n + (n− 1)(d1n)

3 = 0 (5)

Proof. For the coefficients a0, a1, a2, and a3 ∈ R put

a0d
3
n + a1d

2
nd

1
n + a2d

1
nd

2
n + a3(d

1
n)

3 = 0. (6)

Using (3) and (4) we get

d2n+1d
1
n+1 = 3d3n+1 + (n+ 1)D(n1) ∨D((2n)1) +

(
n+ 1

2

)
D((3n)1)

d1n+1d
2
n+1 = 3d3n+1 + (n+ 1)D(n1) ∨D((2n)1)

(d1n+1)
3 = 6d3n+1 + 3(n+ 1)D(n1) ∨D((2n)1) + (n+ 1)(2n+ 1)D((3n)1).

9



Substituting these equations in (6) gives

(a0 + 3a1 + 3a2 + 6a3)d
3
n+1 + (n+ 1)(a1 + a2 + 3a3)D(n1) ∨D((2n)1)+((

n+ 1

n

)
a1 + (n+ 1)(2n+ 1)a3

)
(d1n+1)

3 = 0

which leads to the homogenous linear system

1 3 3 6
0 1 1 3
0 n 0 4n+ 2



a0
a1
a2
a3

 = 0

of three equations and four unknowns a0, a1, a2, and a3. The result is now
comes by solving this system of equations.

Using Equations (3) and (4), we have

d1n+1d
3
n+1 = 4d4n+1 + (n+ 1)D(n2) ∨D((2n)1),

d2n+1d
2
n+1 = 6d4n+1 + 2(n+ 1)D(n2) ∨D((2n)1) + (n+ 1)2D((2n)2)

+

(
n+ 1

2

)
D(n1) ∨D((3n)1),

d3n+1d
1
n+1 = 4d4n+1 + (n+ 1)D(n2) ∨D((2n)1)

+

(
n+ 1

2

)
D(n1) ∨D((3n)1) +

(
n+ 1

3

)
D((4n)1),

d1n+1d
1
n+1d

2
n+1 = 12d4n+1 + (n+ 1)D(n2) ∨D((2n)1) + 2(n+ 1)2D((2n)2)

+ (n+ 1)(2n+ 1)D(n1) ∨D((3n)1),

d1n+1d
2
n+1d

1
n+1 = 12d4n+1 + 5(n+ 1)D(n2) ∨D((2n)1) + 2(n+ 1)2D((2n)2)

+
(n+ 1)(5n+ 2)

2
D(n1) ∨D((3n)1) + (3n+ 1)

(
n+ 1

2

)
D((4n)1),

d2n+1d
1
n+1d

1
n+1 = 12d4n+1 + 5(n+ 1)D(n2) ∨D((2n)1) + 2(n+ 1)2D((2n)2)

+ (2n+ 1)(n+ 1)D(n1) ∨D((3n)1) + (n+ 1)

(
n+ 1

2

)
D((4n)1),

(d1n+1)
4 = 24d4n+1 + 12(n+ 1)D(n2) ∨D((2n)1) + 6(n+ 1)2D((2n)2)

+ 4(n+ 1)(2n+ 1)D(n1) ∨D((3n)1)

+ (n+ 1)(2n+ 1)(3n+ 1)D((4n)1).

Substituting the above equalities in the equation

a0d
4
n+1 + a1d

3
n+1d

1
n+1 + a2d

2
n+1d

2
n+1 + a3d

1
n+1d

3
n+1 + a4d

1
n+1d

2
n+1d

1
n+1+

a5d
1
n+1d

1
n+1d

2
n+1 + a6d

2
n+1d

1
n+1d

1
n+1 + a7(dn+1)

4 = 0. (7)

10



leads to the homogenous linear system AX = 0 of five equations and eight
unknowns, where

A =


1 4 6 4 12 12 12 24
0 1 1 1 5 1 5 12
0 n n 0 5n+ 1 4n+ 2 4n+ 2 16n+ 8
0 0 1 0 2 2 2 6
0 n(n− 1) 0 0 3n(3n+ 1) 0 3n(n+ 1) 6(2n+ 1)(3n+ 1)

 .

By solving this system we get the next result.

Theorem 5.5. In the n-Steenrod R-algebra An(R), the following equation holds.

4(n− 1)[4(n+ 1)a5 − 3(n− 1)(5n− 4)a6 + 12(n+ 1)(2n− 1)a7]d
4
n

+ 3[2n(n− 1)(3n− 2)a5 + 3n(n− 1)2a6 − 2n(n+ 1)(3n− 2)a7]d
3
nd

1
n

+ 2(n− 1)[4(n− 1)(2n− 1)a5 + (n− 1)(5n− 4)a6 − 4(2n− 1)(n+ 1)a7]d
2
nd

2
n

+ 2[−n(9n2 − 4n+ 2)a5 + 3(n− 1)2(n− 2)a6 − 6n(n− 2)(2n− 1)a7]d
1
nd

3
n

+ (n− 1)[−2n(n− 2)a5 + n(n+ 1)a6 + 2(13n2 − 10n+ 4)a7]d
1
nd

2
nd

1
n

+ 2(n− 1)(3n2 − 4n+ 2)a5d
2
nd

1
nd

1
n + 2(n− 1)(3n2 − 4n+ 2)a6d

1
nd

1
nd

2
n

+ 2(n− 1)(3n2 − 4n+ 2)a7(d
1
n)

4 = 0

From equation (3), it is easy to see that in the algebra An(Z/(n)) we have

d1nd
k
n = (k + 1)dk+1

n . (8)

Also, we have
3d3n − 2d2nd

1
n − d1nd

2
n + (d1n)

3 = 0,

and

4[4a5 − 12a6 − 12a7]d
4
n + 2[4a5 − 4a6 + 4a7]d

2
nd

2
n + 12a6d

1
nd

3
n

+ 8a7d
1
nd

2
nd

1
n + 4a5d

2
nd

1
nd

1
n + 4a6d

1
nd

1
nd

2
n + 4a7(d

1
n)

4 = 0.

Noting the fact d1nd
2
n = 3d3n and d1nd

1
n = 2d2n in An(Z/(n)), we get the following

equation in An(Z/(n)).

4(a5 − 3a6 − 3a7)d
4
n + 2(2a5 + 3a7)d

2
nd

2
n + 3a6d

1
nd

3
n + 6a7d

3
nd

1
n = 0.

6 4-Steenrod algebra mod 4

In this section we compute some Adem relations in A4(Z/(4)). Recall from (4)
that,

dp4d
q
4 = D(3p)D(3q) =

∑
Θ

ρ(Θ)D(3θ0) ∨
4∨

j=0

D((3 + 3j)tj ), (9)

11



where the summation is taken over all non-negative integer solutions of the
simultaneous equations{

θ0 + t1 + 2t2 + 3t3 + 4t4 = p,

t0 + t1 + t2 + t3 + t4 = q,
(10)

and ρ(Θ) =
∏4

i=1

(
4
i

)ti
.

If Θ is a solution of (10) with t1 ̸= 0 or t3 ̸= 0, then ρ(Θ) = 0, since(
4
1

)t1
=
(
4
3

)t3
= 0 (mod 4). This shows that the solutions with t1 ̸= 0 and

t3 ̸= 0 do not effect (9). Also note that if t2 > 1, then(
4

2

)t2

= 6t2 = 2t2 = 0 (mod 4).

Therefore, in (10), only the solutions Θ with t1 = 0, t2 = 0, 1 and t3 = 0 are
valid. In other words, to compute dp4d

q
4 in A4(Z/(4)), we need only to solve{

θ0 + 4t4 = p

t0 + t4 = q
, (11)

and {
θ0 + 4t4 = p− 2

t0 + t4 = q − 1
(12)

where in (11), t4 ranges between 0 and min {q, [p/4]} and for any solution Θ of
(11), ρ(Θ) = 1. Also, in (12), 0 ≤ t4 ≤ min {q − 1, [(p− 2)/4]} and ρ(Θ) = 2 for
all solution Θ of (12). Therefore for non-negative integers p and q, in A4(Z/(4))
we have

dp4d
q
4 =

min{q,[p/4]}∑
j=0

(
p+ q − 5j

p− 4j

)
D(3p+q−5j15j)

+

min{q−1,[(p−2)/4]}∑
j=0

2

(
p+ q − 3− 5j

p− 2− 4j

)
d(3p+q−3−5j9115j). (13)

Here, we used the abbreviation D(nr1) ∨D(mr2) = D(nr1mr2). In particular,

2dp4d
q
4 =

min{q,[p/4]}∑
j=0

2

(
p+ q − 5j

p− 4j

)
D(3p+q−5j15j). (14)

One of the main concepts in Steenrod algebra, is the concept of admissibility.
In Ap(Fp) (p prime), the element da1

p da2
p · · · dar

p is called admissible if ai ≥
pai+1 for 1 ≤ i ≤ r − 1. Adem relations on Ap(Fp) provides a method to
write the product dapd

b
p in terms of admissible monomials. In the sequel, we

12



find a method to write da4d
b
4 in terms of admissible monomials in a non-prime

characteristic. As we will see, the result is not totally satisfactory because
in a non-prime characteristic there are zero divisors which makes elements of
A4(Z/(4)) indecompossable.

For example, let compute d24d
b
4 and d34d

b
4. From (13), we have

d24d
b
4 =

(
b+ 2

2

)
db+2
4 + 2D(3b−1) ∨D(91),

d34d
b
4 =

(
b+ 3

3

)
db+3
4 + 2bD(3b) ∨D(91).

The term 2D(3k)∨D(91) appears only in these two products which makes d24d
b
4

indecomposible, while

2d24d
b
4 = 2

(
b+ 2

2

)
db+2
4 =

{
2db+2

4 if b ≡ 0, 1 (mod 4)

0 if b ≡ 2, 3 (mod 4).

But d34d
b
4 may be decomposed since 2bD(3b) ∨ D(91) = bd24d

b+1
4 − b

(
b+3
2

)
db+3
4 .

In other words

d34d
b
4 =

[(
b+ 3

3

)
− b

(
b+ 3

2

)]
db+3
4 + bd24d

b+1
4 .

Note also that

2d34d
q
4 = 2

(
q + 3

3

)
dq+3
4 .

Theorem 6.1. For p < 4q, the monomial 2dp4d
q
4 is a sum of admissible mono-

mials, i.e. there are unique Bk(p, q) ∈ Z/(4) (0 ≤ k ≤ [p/4]) such that

2dp4d
q
4 =

[p/4]∑
k=0

2Bk(p, q)d
p+q−k
4 dk4 . (15)

Proof. When p < 4q, then min{[p/4], q} = [p/4] and min{[(p − 2)/4], q − 1} =
[(p− 2)/4]. Also, for 0 ≤ k ≤ [p/4], min{[(p+ q− k)/4], k} = k. Therefore from
(14), we have

2dp4d
q
4 =

[p/4]∑
j=0

2

(
p+ q − 5j

p− 4j

)
D(3p+q−5j15j),

2dp+q−k
4 dk4 =

k∑
j=0

(
p+ q − 5j

k − j

)
D(3p+q−5j15j).

It means that the equation

2dp4d
q
4 =

[p/4]∑
k=0

2Bk(p, q)d
p+q−k
4 dk4 .

13



turns to

[p/4]∑
j=0

2

(
p+ q − 5j

p− 4j

)
D(3p+q−5j15j)

=

[p/4]∑
k=0

 k∑
j=0

2Bk(a, b)

(
p+ q − 5j

k − j

)
D(3p+q−5j15j)


=

[p/4]∑
j=0

[p/4]∑
k=j

2Bk(p, q)

(
p+ q − 5j

k − j

)D(3p+q−5j15j).

The system (
p+ q − 5j

p− 4j

)
=

[p/4]∑
k=j

Bk(p, q)

(
p+ q − 5j

k − j

)
for 0 ≤ j ≤ [p/4] is a system of linear equation of the form AX = B in unknowns
Bk(p, q) where the matrix A is so that all entries below main diagonal equal 0
and main diagonal entries equal to 1 because for any fixed j, the jth equation
is

Bj +

[p/4]∑
k=j+1

(
p+ q − 5j

k − j

)
Bk(p, q) =

(
p+ q − 5j

p− 4j

)
.

Clearly, this system of linear equations has integer solutions. Reducing these
solution modulo 4 gives the requested equation and uniqueness comes from the
uniqueness of solution of the linear system.

Corollary 6.2.

2Bk(4a+ i, q) = 2

(
q + i− k

i

)
B(4a, q).

In particular,

2Ba(4a+ i, q) = 2

(
q − a+ i

i

)
= 2

(
3(q − a)− 1

i

)
.

Proof. From the relations

2di4d
b
4 = 2

(
b+ i

i

)
db+i
4 , (i = 1, 2, 3)

we have

2di4d
4a
4 = 2

(
4a+ i

i

)
d4a+i
4 = 2d4a+i

4 .

14



It shows that

2d4a+i
4 dq4 = 2di4d

4a
4 dq4

=

a∑
k=0

2Bk(4a, q)d
i
4d

4a+q−k
4 dk4

=
a∑

k=0

2Bk(4a, q)

(
q + i− k

i

)
d4a+i+q−k
4 dk4 .

Therefore the uniqueness of the coefficients Bk gives the requested.

Example 6.3. For i = 0, 1, 2 and 3, we have

2d4+i
4 dq4 =

[(4+i)/4]∑
j=0

2

(
3(q − j)− 1

4 + i− 4j

)
d4+i+q−j
4 dj4.

Also

2d84d
q
4 =

[8/2]∑
j=0

2

(
3(q − j)− 1

8− 4j

)
dq+8−j
4 dj4.

Now we investigate dp4d
q
4 for p < 4q. First let p = 4. Then from (13), we

have

d44d
q
4 =

(
4 + q

4

)
d4+q
4 +D(3q−1151) + 2

(
q + 1

2

)
D(3q+191),

dq+3
4 d14 = (q + 4)dq+4

4 +D(3q−1151) + 2D(3q+191).

Therefore if 2
(
q+1
2

)
= 2 (mod 4), then d44d

q
4 may be written as sum of admissible

monomials. But if q = 0 or 3 (mod 4) then 2
(
q+1
2

)
= 0 (mod 4) and in order

to establish an equation for d44d
q
4 we need to add an extra non-admissible term,

namely d24d
q+2
4 =

(
4+q
2

)
d4+q
4 + 2D(3q+191). The next theorem generalizes the

calculation above.

Theorem 6.4. For p < 4q, there are Rk(p, q), Sk(p, q) ∈ Z/(4) (0 ≤ k ≤ [p/4])
such that

dp4d
q
4 =

[p/4]∑
k=0

Rk(p, q)d
p+q−k
4 dk4 +

[p/4]∑
k=0

Sk(p, q)d
2+4k
4 dp+q−2−4k

4 . (16)

Proof. We look for elements Rk(p, q) and Sk(p, q) to establish (16). During the
proof we write simply Rk and Sk instead of Rk(p, q) and Sk(p, q), respectively.
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From (13), we have

dp4d
q
4 =

[p/4]∑
j=0

(
p+ q − 5j

p− 4j

)
D(3p+q−5j15j)

+ 2

[(p−2)/4]∑
j=0

(
p+ q − 3− 5j

p− 2− 4j

)
D(3p+q−3−5j9115j),

dp+q−k
4 dk4 =

k∑
j=0

(
p+ q − 5j

p+ q − k − 4j

)
D(3p+q−5j15j)

+ 2
k−1∑
j=0

(
p+ q − 3− 5j

p+ q − k − 2− 4j

)
D(3p+q−3−5j9115j),

d2+4k
4 dp+q−2−4k

4 =

k∑
j=0

(
p+ q − 5j

2 + 4k − 4j

)
D(3p+q−5j15j)

+ 2
k∑

j=0

(
p+ q − 3− 5j

4k − 4j

)
D(3p+q−3−5j9115j).

The right hand side of (16) then is

[p/4]∑
k=0

Rk

[
k∑

j=0

(
p+ q − 5j

k − j

)
D(3p+q−5j15j)

+ 2

k−1∑
j=0

(
p+ q − 3− 5j

k − j − 1

)
D(3p+q−3−5j9115j)

]

+

[p/4]∑
k=0

Sk

[
k∑

j=0

(
p+ q − 5j

2 + 4k − 4j

)
D(3p+q−5j15j)

+ 2
k−1∑
j=0

(
p+ q − 3− 5j

4k − 4j

)
D(3p+q−3−5j9115j)

]

=

[p/4]∑
j=0

[p/4]∑
k=j

(
p+ q − 5j

k − j

)
Rk +

(
p+ q − 5j

2 + 4k − 4j

)
Sk

D(3p+q−5j15j)

+2

[p/4]∑
j=0

[p/4]∑
k=j

(
p+ q − 3− 5j

k − j − 1

)
Rk +

(
p+ q − 3− 5j

4k − 4j

)
Sk

D(3p+q−3−5j9115j).
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This shows that we have the system of linear equations

[p/4]∑
k=j

(
p+ q − 5j

k − j

)
Rk +

(
p+ q − 5j

2 + 4k − 4j

)
Sk =

(
p+ q − 5j

p− 4j

)
[p/4]∑
k=j

(
p+ q − 3− 5j

k − j − 1

)
Rk +

(
p+ q − 3− 5j

4k − 4j

)
Sk =

(
p+ q − 3− 5j

p− 2− 4j

) (17)

for 0 ≤ j ≤ [p/4] which has integer solution.

If p = 4a+ i (i = 0, 1, 2, or 3), then [p/4] = a and from (17) we have

Sa(4a+ i, q) =

(
q − a+ i− 3

i− 2

)
,

Ra(4a+ i, q) =

(
q − a+ i

i

)
−
(
q − a+ i

2

)(
q − a+ i− 3

i− 2

)
=

i− 2

x+ i− 2

(
q − a+ i

i

)
2− (i+ 1)(q − a)

2
.

Therefore

Sa(4a, q) = 0, Sa(4a+ 1, q) = 0,

Sa(4a+ 2, q) = 1, Sa(4a+ 3, q) = q − a.

As well,

Ra(4a, q) = 1, Ra(4a+ 1, q) = q − a+ 1,

Ra(4a+ 2, q) = 0, Ra(4a+ 3, q) = (2q − 2a+ 3)

(
q − a+ 3

2

)
.
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