Categorical Steenrod algebras

Gh. Soleymanpour and Ali S. Janfada

9 July 2020

Abstract

We define a certain type of subcategories of the category of graded differential *r*-algebras and associate to such subcategories a sequence of algebras $A_n(R)$ ($n \geq 0$ and R a commutative ring). We show that the case $n = 2$ is the extension of the well known mod 2 Steenrod algebra A_2 . A brief calculation on Adem relations of the mod 4 Steenrod algebra are also given.

1 Introduction

The mod *p* Steenrod algebra A_p at the prime *p* is the algebra of stable cohomology operations

$$
\theta: H^m(-,\mathbb{F}_p) \to H^n(-,\mathbb{F}_p)
$$

under the composition $H^m(X; \mathbb{F}_p) \xrightarrow{\theta_X} H^n(X; \mathbb{F}_p) \xrightarrow{\theta'_X} H^k(X; \mathbb{F}_p)$. This algebra is completely characterized by the Steenrod squares Sq^k , for $p = 2$, and Steenrod reduced powers \mathcal{P}^k accompanied by the Bockstein homomorphism involved the sequence

$$
0 \to \mathbb{Z}/(p) \to \mathbb{Z}/(p^2) \to \mathbb{Z}/(p) \to 0,
$$

for $p > 2$.

Let R be a commutative ring with unity. While the ring of stable cohomology operations $H^m(-, R) \to H^n(-, R)$ exist, it is hard to determine its structure. One of the difficulties is that the group of all cohomology operations $H^m(-, R) \to H^n(-, R)$ is isomorphic to the cohomology $H^n(K(R, m); R)$, where $K(R, m)$ is the Eilenberg-MacLane space (see eg. [1, 2, 3]).

The problem of computing the cohomology groups $H^n(K(R,m); R)$ is not completely solved. Thus, the study of ring of stable cohomology operations $H^m(-, R) \to H^n(-, R)$ is not so known.

There are many attempts of extending the Steenrod algebra A_2 over an arbitrary commutative ring with unity *R*. The most significant of them is the algebraic introduction to the Steenrod algebra by Smith [5], who defines the Steenrod algebra $\mathcal{P}^*(\mathbb{F}_q)$ over any Galois field \mathbb{F}_q . Smith redefines the Steenrod reduced powers \mathcal{P}^k as certain natural transformations of the functor $\mathbb{F}_q[-]$, which assign to any finite dimensional vector space *V*, its dual algebra V^* =

 $\mathbb{F}_q[V]$ being simply a polynomial in $\dim_{\mathbb{F}_q} V$ indeterminates. Then he embeds $\mathcal{P}^*(\mathbb{F}_q)$ into the $\mathcal{P}^*(\mathbb{F}_p) \otimes_{\mathbb{F}_p} \mathbb{F}_q$ as a Hopf subalgebra.

Another important extension of the Steenrod algebra is the Wood's integral Steenrod algebra \mathcal{N} [7]. He uses differentiation as a property of the Steenrod square Sq^k , and defines the integral Steenrod squares as differential operators acting on $W = \mathbb{Z}[x_1, x_2, \ldots]$ by

$$
SQ^{k} = \frac{1}{k!} \sum_{(i_1,\ldots,i_k)} x_{i_1}^2 \cdots x_{i_k}^2 \frac{\partial^{k}}{\partial x_{i_1} \cdots \partial x_{i_k}},
$$

where the summation runs over all sequences (i_1, \ldots, i_k) of non-negative integers. Then he proves that $\mathcal{N} \otimes \mathbb{F}_2 \cong \mathcal{A}_2$, the mod 2 Steenrod algebra.

Both of the aforementioned extensions generalize Steenrod operations and then collect these operations inside a Hopf algebra.

In this paper, we extend the mod 2 Steenrod algebra A_2 considering some properties of it. The main properties of A_2 is the following, called the unstability properties [4].

- 1. If $x \in H^*(X; \mathbb{F}_2)$ and $k > |x|$, then $Sq^k(x) = 0$, where |x| denotes the degree of *x*;
- 2. For any $x, y \in H^*(X; \mathbb{F}_2)$ and any $k \geq 0$,

$$
Sq^{k}(xy) = \sum_{i+j=k} Sq^{i}(x)Sq^{j}(y);
$$

3. For any $x \in H^*(X; \mathbb{F}_2)$, $Sq^{|x|}(x) = x^2$.

Through this paper, we assume *R* is a commutative ring with unity.

2 Unstable categories

Let $\mathsf{GrAlg}(R)$ denote the category of all graded commutative R -algebras with algebra homomorphisms as morphisms.

Definition 2.1. A subcategory C of $\mathsf{GrAlg}(R)$ is called unstable if there exist symbols $\{d^0, d^1, d^2, \ldots\}$ such that any object *A* of *C* is a left module over the noncommutative free *R*-algebra $S = R\langle d^0, d^1, \ldots \rangle$ provided the following properties hold.

- 1. d^0 acts identically on the objects of $C(R)$; i.e., $d^0 = id$.
- 2. For any object *A* of *C* and any $a \in A$, $d^k(a) = 0$ if $k > \deg(a)$;
- 3. (Cartan formula) Given any object *A* of *C* and any $a, b \in A$, any $k \geq 0$,

$$
d^k(ab) = \sum_{i+j=k} d^i(a)d^j(b);
$$

4. Given the objects $A, B \in \mathcal{C}$ and morphism $f : A \to B$, $f(d^k(a)) = d^k(f(a))$ for all $a \in A$ and all $k \geq 0$.

Alternatively, we write $C(R)$ for C to emphasis the ring R .

The *R*-algebra $S = R\langle d^0, d^1, \ldots \rangle$ has a Hopf algebra structure given by

$$
\Delta: S \to S \otimes_R S,
$$

$$
\Delta(d^k) = \sum_{i+j=k} d^i \otimes d^j.
$$

The next result follows from this fact.

Proposition 2.2. Let C be unstable over $S = R\langle d^0, d^1, \ldots \rangle$. Then C is closed *under the tensor product.*

Proof. For objects *A* and *B* of *C*, the map

$$
\nu : (S \otimes_R S) \otimes (A \otimes_R B) \to A \otimes_R B
$$

defined by

$$
(di \otimes dj)(a \otimes b) = (-1)j deg(a) di(a) \otimes dj(b)
$$
 (1)

gives $A \otimes_R B$ a left module structure over $S \otimes_R S$. Now the composition

$$
S\otimes_R (A\otimes_R B)\xrightarrow{\Delta\otimes \mathrm{id}} (S\otimes_R S)\otimes (A\otimes_R B)\xrightarrow{\nu} A\otimes_R B
$$

makes $A \otimes_R B$ a left *S*-module.

For $a \otimes b \in A \otimes_R B$ and $k > \deg(a \otimes b) = \deg(a) \deg(b)$, from (1) we have by Cartan formula,

$$
d^k(a \otimes b) = \sum_{i+j=k} d^i(a) \otimes d^j(b) = 0,
$$

since either $k > \deg(a)$ or $k > \deg(b)$. Also,

$$
d^{k}((a_{1} \otimes b_{1})(a_{2} \otimes b_{2})) = (-1)^{\deg(b_{1}) \deg(a_{2})} d^{k}(a_{1}a_{2} \otimes b_{1}b_{2})
$$

= $(-1)^{\deg(b_{1}) \deg(a_{2})} \sum_{i+j=k} d^{i}(a_{1}a_{2}) \otimes d^{j}(b_{1}b_{2})$

 \Box

Corollary 2.3. *There exist a topological space Z such that*

$$
H^*(Z; \mathbb{F}_2) = H^*(X; \mathbb{F}_2) \otimes_{\mathbb{F}_2} H^*(Y; \mathbb{F}_2).
$$

Proof. The category $\text{Cohom}(\mathbb{F}_2)$ of cohomology rings of topological spaces is closed under the tensor product since it is unstable over $\mathbb{F}_2 \langle Sq^0, Sq^1, \ldots \rangle$. Therefore, for the spaces *X* and *Y*, the tensor product $H^*(X; \mathbb{F}_2) \otimes_{\mathbb{F}_2} H^*(Y; \mathbb{F}_2)$ is an object of $\mathsf{Cohom}(\mathbb{F}_2)$. That is to say that, there exist a space Z such that

$$
H^*(Z; \mathbb{F}_2) = H^*(X; \mathbb{F}_2) \otimes_{\mathbb{F}_2} H^*(Y; \mathbb{F}_2).
$$

 \Box

Of course, by Künneth formula, $Z = X \times Y$.

Recall that a graded differential *R*-algebra is a graded *R*-algebra *A* together with a collection of linear maps $\{\partial_i : A \to A\}$ such that

$$
\partial_i(ab) = \partial_i(a)b + a\partial_i(b),
$$

$$
\partial_i-ra) = r\partial_i(a), \partial_i\partial_j = \partial_j\partial_i,
$$

for all $a, b \in A$ and all $r \in R$. For any *i*, ∂_i is called a differential operator on *A*.

Consider the category GrDiff(*R*) of all graded differential *R*-algebras as objects. For the objects *A* and *B* of GrDiff(*R*), the morphism $f : A \rightarrow B$ is an algebra homomorphism preserving the differential operators; i.e., $f\partial_A = \partial_B f$, where ∂_A and ∂_B are differential operators on *A* and *B*, respectively.

Theorem 2.4. *Any unstable category* $C(R)$ *is a subcategory of* $\text{GrDiff}(R)$ *.*

Proof. Suppose that $C(R)$ is an unstable category over $S = R\langle d^0, d^1, \ldots \rangle$. We show that all objects of $C(R)$ are differential algebras and all morphisms preserve differential operators. For any object *A* of $\mathcal{C}(R)$, from Cartan formula,

$$
d^1(ab) = d^1(a)b + ad^1(b)
$$
 and $d^1(r) = 0$

for all $a, b \in A$ and all $r \in R$, since $\deg(r) = 0 < 1$. Therefore any object A of $\mathcal{C}(R)$ is a differential ring with differential operator d^1 . Given a morphism $f: A \to B$ of objects $A, B \in \mathcal{C}(R)$, by property 3 of Definition 2.1, $fd¹ = d¹f$ which shows f preserves the differential operator d^1 . \Box

3 Steenrod algebra of an unstable category

One of the main concepts in the study of the Steenrod algebra is the ideal $\langle R_2(a, b) : a \leq 2b \rangle$ of $\mathbb{F}_2 \langle Sq^0, Sq^1, \ldots \rangle$, where

$$
R_2(a,b) = Sq^a Sq^b - \sum_{j\geq 0} {b-j-1 \choose a-2j} Sq^{a+b-j} Sq^j
$$

is called Adem relations with the property that for any cohomology class $\alpha \in$ *H*^{*}(*X*; **F**₂), *R*₂(*a*, *b*)(α) = 0.

In order to associate an algebra to an unstable category $\mathcal{C}(R)$, we need to have relations such that the object *A* of $\mathcal{C}(R)$ are 0 over them. We establish this relation in the following definition.

Definition 3.1. Let $C(R)$ be an unstable category on $S = R\langle d^0, d^1, \ldots \rangle$. The Steenrod algebra associated to $C(R)$, denoted by $A_S(C(R))$, is defined to be the quotient

$$
R\langle d^0, d^1, \ldots \rangle / \bigcap_{A \in \mathcal{C}(R)} \text{Ann}_S(A),
$$

where $\text{Ann}_S(A)$ is the annihilator of the *S*-module *A*. The ideal $\bigcap_{A \in \mathcal{C}(R)} \text{Ann}_S(A)$ is called Adem relations of the category $C(R)$.

For example, since $\textsf{Cohom}(\mathbb{F}_2)$ is unstable over $\mathbb{F}_2\langle Sq^0, Sq^1, \ldots \rangle$, then we have A_S (Cohom(\mathbb{F}_2)) = A_2 , the mod 2 Steenrod algebra.

Let GrDiff*−*¹(*R*) be the category of graded differential algebras (*A, ∂*), where the differentiation operator *∂* decreases degree by 1. Morphisms in this category are algebra homomorphisms $f : A \rightarrow B$ preserving differential operators. For example, $R[x]$ is an object of $\text{GrDiff}_{-1}(R)$. In the next result we exhibit a canonical Steenrod algebra and its Adem relations on category GrDiff*−*¹(*R*)

Theorem 3.2. *The category* GrDiff*−*¹(*R*) *is unstable and its associated Steenrod algebra is the following divided polynomial algebra.*

$$
\mathcal{A}_S(\text{GrDiff}_{-1}(R)) = R\left\langle d_0^k : d_0^0 = 1, d_0^k d_0^l = \binom{k+l}{k} d_0^{k+l} \right\rangle.
$$

Proof. Suppose that *A* is an object of GrDiff_{−1}(*R*) with differential operators *{∂i}*. Let *∂*(= *∂A*) = ∑ *i ∂i* . Put

$$
d_0^0 = id, d_0^1 = \partial, d_0^k = \frac{1}{k!} \partial^k.
$$

We claim that the category $\text{GrDiff}_{-1}(R)$ is unstable over $S = R\langle d_0^k : k \geq 0 \rangle$. For any $a \in A$ and any $k > \deg(a)$, $d_0^k(a) = 0$ since d_0^k decreases degree by k . From Leibnitz formula

$$
\partial^k(ab) = \sum_{i+j=k} {k \choose i} \partial^i(a) \partial^j(b),
$$

we have

$$
d_0^k(ab) = \frac{1}{k!} \partial^k(ab) = \sum_{i+j=k} \frac{1}{i!j!} \partial^i(a) \partial^j(b) = \sum_{i+j=k} d_0^i(a) d_0^j(b).
$$

Finally, for any morphism $f : A \to B$ in GrDiff_{-1} (R) , $f(\partial_A(a)) = \partial_B(f(a))$ since *f* preserves each *∂ⁱ* . Thus, the first part of the theorem holds. To determine the associated Steenrod algebra $A_S(GrDiff_{−1}(R))$, we find out Adem relations as follows.

$$
d_0^k d_0^l = \frac{1}{k!} \frac{1}{l!} \sum_{(i_1, ..., i_k)} \sum_{(j_1, ..., j_l)} \partial_{i_1...i_k} \partial_{j_1...j_l}
$$

=
$$
\frac{1}{k!} \frac{1}{l!} \sum_{\substack{(i_1, ..., i_k) \\ (j_1, ..., j_l)}} \partial_{i_1...i_k j_1...j_l}
$$

=
$$
\frac{(k+l)!}{k!l!} d_0^{k+l}
$$

=
$$
\binom{k+l}{k} d_0^{k+l}.
$$

This completes the proof.

4 The *n***-Steenrod algebra**

In this section, an unstable subcategory of GrDiff*−*¹(*R*) is introduced and a particular kind of Steenrod algebra is associated to it. Consider the subcategory $\mathsf{GrDiff}_{-1}^1(R)$ of $\mathsf{GrDiff}_{-1}(R)$ in which objects are all graded differential algebras *A* such that, for any differential operator ∂_i on *A*, there exists an element x_j of degree 1 in *A* such that

$$
\partial_i(x_j) = \delta_{ij} = \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{if } i \neq j. \end{cases}
$$

It is clear that for the objects *A, B* and the morphism $f : A \rightarrow B$,

$$
\partial_i f(x_j) = f(\partial_i(x_j)) = \delta_{ij}.
$$

Being the subcategory of GrDiff*−*¹(*R*) with the same argument as in Theorem 3.2, the category $\text{GrDiff}^1_{-1}(R)$ is unstable over $S_0 = R\langle d_0^k : k \geq 0 \rangle$ and the associated Steenrod algebra $\mathcal{A}_{S_0}(\mathsf{GrDiff}^1_{-1}(R))$ is also a divided polynomial algebra. However, the aim of this section is to verify the unstability of $\mathsf{GrDiff}^1_{-1}(R)$ over an special algebra.

Theorem 4.1. For any $n \geq 0$, there is a non-commutative free R-algebra $S_n = R\langle d_n^k : k \geq 0 \rangle$ *such that* GrDiff¹₋₁(*R*) *is unstable on* S_n .

Proof. Given any object *A* of $\mathsf{GrDiff}^1_{-1}(R)$ with differential operators $\{\partial_i\}$ satisfying the $\partial_i(x_j) = \delta_{ij}$, define $d_n^0 = \text{id}$, $d_n^1 = \sum_i x_i^n \partial_i$, and

$$
d_n^k = \frac{1}{k!} \sum_{(i_1, ..., i_k)} x_{i_1}^n \cdots x_{i_k}^n \partial_{(i_1, ..., i_k)},
$$

where $\partial_{(i_1,...,i_k)} = \partial_{i_1} \cdots \partial_{i_k}$. We claim that $\mathsf{GrDiff}^1_{-1}(R)$ is unstable over $S_n =$ $R\langle d_n^k : k \geq 0 \rangle$. The operator $\partial_{(i_1,...,i_k)}$ decreases degree by *k* since ∂_i downs it by 1. Therefore for any $a \in A$ and any $k > \deg(a)$, we have $d_n^k(a) = 0$.

 \Box

To prove Cartan formula for d_h^k , first note that

$$
\partial_{(i_1,\ldots,i_k)}(ab) = \sum_S \partial_{(S)}(a)\partial_{(S')}(b),
$$

where the summation is taken over all subsets $S = \{s_1, \ldots, s_r\}$ of $\{i_1, \ldots, i_k\}$, $1 \leq r \leq k$, *S'* is the complement of *S* in $\{i_1, \ldots, i_k\}$, and $\partial_{(S)}$ denotes the operator $\partial_{s_1} \cdots \partial_{s_r}$. Now we have

$$
d_n^k(ab) = \frac{1}{k!} \sum_{(i_1, ..., i_k)} x_{i_1}^n \cdots x_{i_k}^n \partial_{(i_1, ..., i_k)}(ab)
$$

\n
$$
= \frac{1}{k!} \sum_{(i_1, ..., i_k)} x_{i_1}^n \cdots x_{i_k}^n \sum_S \partial_{(S)}(a) \partial_{(S')}(b)
$$

\n
$$
= \frac{1}{k!} \sum_{(i_1, ..., i_k)} \sum_S x_{i_1}^n \cdots x_{i_k}^n \partial_{(S)}(a) \partial_{(S')}(b)
$$

\n
$$
= \frac{1}{k!} \sum_{(i_1, ..., i_k)} \sum_S \left(x_{(S)}^n \partial_{(S)}(a) \right) \left(x_{(S')}^n \partial_{(S')}(b) \right)
$$

where $x_{(S)}^n = x_{s_1}^n \cdots x_{s_r}^n$. But, there exists $\binom{k}{r}$ subsets of $\{i_1, \ldots, i_k\}$ of size r, therefore, the Cartan formula holds, noting that for an arbitrary subset *S* of $\{i_1, \ldots, i_k\}$, of size $|S| = r$, we have

$$
x_{i_1}^n \cdots x_{i_k}^n \partial_{(S)}(a) \partial_{(S')}(b) = \left(x_{(S)}^n \partial_{(S)}(a)\right) \left(x_{(S')}^n \partial_{(S')}(b)\right).
$$

,

Definition 4.2. The associated Steenrod algebra $\mathcal{A}_{S_n}(\mathsf{GrDiff}^1_{-1})(R)$ is defined as the *n*-Steenrod *R*-algebra and denote by $A_n(R)$.

Example 4.3. We experienced the 0-Steenrod *R*-algebra

$$
\mathcal{A}_0(R) = R \left\langle d_0^k : d_0^k d_0^l = \binom{k+l}{k} d_0^{k+l} \right\rangle
$$

in the preamble of Theorem 4.1, where the differential operators d_0^k , for $k \geq 0$, are as in Theorem 3.2. Another example is the commutative 1-Steenrod *R*algebra $A_1(R)$ with Adem relations

$$
d_1^k d_1^l = \sum_{i=0}^k \binom{l}{i} \binom{k+l-i}{l} d_1^{k+l-i}.
$$

The 1-Steenrod algebras are studied in details in [6].

5 Adem relations of the *n***-Steenrod algebras**

For $n > 1$, computing Adem relations of the *n*-Steenrod algebra $\mathcal{A}_n(R)$ is not so easy. We attempt to some special cases.

Let $d_n = \sum_{i \geq 0} d_n^i$. Then $d_n(x_i) = x_i + x_i^n$. Therefore, for $q = p^v$ (*p* prime), the operations d_n^k in the algebra $\mathcal{A}_q(\mathbb{F}_q)$ are exactly the Steenrod reduced powers \mathcal{P}^k with Adem relations as in the next result [5, section 2].

Theorem 5.1. *Suppose that* $q = p^v$ *is a power of the prime p. Let* \mathbb{F}_q *be the Galois field of q elements. Then Adem relations of the q-Steenrod* F*q-algebra* $\mathcal{A}_q(\mathbb{F}_q)$ *are as follows.*

$$
d_n^a d_n^b = \sum_{j=0}^{[a/q]} (-1)^{a-qj} \binom{(q-1)(b-j)-1}{a-qj} d_n^{a+b-j} d_n^j, \ a, b \ge 0, \ a \le qb.
$$

To compute Adem relations of *n*-Steenrod algebra $\mathcal{A}_n(R)$, we need some formulae from [7]. Define

$$
D_n = \sum_i x_i^{n+1} \partial_i = d_{n+1}^1.
$$

The commutative wedge product of $x_i^n \partial_i$ and $x_j^m \partial_j$ is defined by

$$
x_i^n \partial_i \vee x_j^m \partial_j = x_i^n x_j^m \partial_{ij},
$$

and is extended linearly to

$$
\left(\sum_i x_i^n \partial_i\right) \vee \left(\sum_j x_j^m \partial_j\right) = \sum_{i,j} x_i^n x_j^m \partial_{ij}.
$$

For example,

$$
d_n^k = \frac{1}{k!} d_n^1 \vee d_n^1 \vee \dots \vee d_n^1 = \frac{1}{k!} (d_n^1)^{\vee k}.
$$

For a multiset $K = (n_1^{r_1} n_2^{r_2} \cdots n_a^{r_a})$, let

$$
D(K) = \frac{D_{n_1}^{\vee r_1}}{r_1!} \vee \frac{D_{n_2}^{\vee r_2}}{r_2!} \vee \dots \vee \frac{D_{n_a}^{\vee r_a}}{r_a!}.
$$

For instance, $D(n) = D_n = d_{n+1}^1$ and $D(n^r) = \frac{1}{r!}D_n^{\vee r} = d_{n+1}^r$. Note that

$$
D(n^{r_1}n^{r_2}) = D(n^{r_1}) \vee D(n^{r_2}) = {\binom{r_1+r_2}{r_1}} D(n^{r_1+r_2}),
$$

where $(n^{r_1}n^{r_2})$ and $(n^{r_1+r_2})$ are distinct multisets.

In his paper [7], Wood gives a general formula of decomposition $D(K) \circ$ $D(L)$ for the multisets $K = (n_1^{r_1} n_2^{r_2} \cdots n_a^{r_a})$ and $L = (m_1^{s_1} m_2^{s_2} \cdots m_b^{s_b})$. For the present purpose, we need only the following two special cases. The first one is the following [7, Example 4.5].

Theorem 5.2. *We have*

$$
D_n \circ (D_{m_1} \vee D_{m_2} \vee \cdots \vee D_{m_b}) = D_n \vee D_{m_1} \vee D_{m_2} \vee \cdots \vee D_{m_b}
$$

+ $(m_1 + 1)D_{n+m_1} \vee D_{m_2} \vee \cdots \vee D_{m_b}$
+ $(m_2 + 1)D_{m_1} \vee D_{n+m_2} \vee \cdots \vee D_{m_b} + \cdots$
+ $(m_b + 1)D_{m_1} \vee D_{m_2} \vee \cdots \vee D_{n+m_b}.$ (2)

For example,

$$
d_{n+1}^1 d_{n+1}^k = D(n)D(n^k) = \frac{1}{k!}D_n \circ (D_n \vee \cdots \vee D_n)
$$

=
$$
\frac{1}{k!} [D_n \vee D_n \vee \cdots \vee D_n + k(n+1)D_{2n} \vee D_n \vee \cdots \vee D_n]
$$

=
$$
\frac{1}{k!} [(k+1)!D(n^{k+1}) + (n+1)D((2n)^1) \vee D(n^{k-1})].
$$

Thus,

 $d_{n+1}^1 d_{n+1}^k = (k+1)d_{n+1}^{k+1} + (n+1)D(n^{k-1}) \vee D((2n)^1)$)*.* (3)

The second special case is as follows [8, Example 2.10].

Theorem 5.3. For multisets $N = (n^r)$ and $M = (m^s)$, we have

$$
d_{n+1}^r d_{m+1}^s = D(n^r)D(m^s) = \sum_{\Theta} \rho(\Theta)D(n^{\theta_0}) \vee \bigvee_{j=0}^{m+1} D((m+jn)^{t_j}), \quad (4)
$$

where the summation is running over all solutions Θ *of the simultaneous equations*

$$
r = \theta_0 + \sum_{i=1}^{n+1} it_i
$$
, $s = t_0 + \sum_{i=1}^{n+1} t_i$

in non-negative integers θ_0 *and* t_i *and* $\rho(\Theta) = \prod_{i=1}^{n+1} {n+1 \choose i}^{t_i}$.

Now, we are ready to compute particular Adem relation of the *n*-Steenrod algebra for $n > 1$. We start with the grading 3.

Theorem 5.4. *In the n-Steenrod R-algebra* $A_n(R)$ *, we have*

$$
3(n-1)d_n^3 - (4n-2)d_n^2d_n^1 + (n+1)d_n^1d_n^2 + (n-1)(d_n^1)^3 = 0
$$
 (5)

Proof. For the coefficients a_0 , a_1 , a_2 , and $a_3 \in R$ put

$$
a_0 d_n^3 + a_1 d_n^2 d_n^1 + a_2 d_n^1 d_n^2 + a_3 (d_n^1)^3 = 0.
$$
 (6)

Using (3) and (4) we get

$$
d_{n+1}^{2}d_{n+1}^{1} = 3d_{n+1}^{3} + (n+1)D(n^{1}) \vee D((2n)^{1}) + {n+1 \choose 2}D((3n)^{1})
$$

\n
$$
d_{n+1}^{1}d_{n+1}^{2} = 3d_{n+1}^{3} + (n+1)D(n^{1}) \vee D((2n)^{1})
$$

\n
$$
(d_{n+1}^{1})^{3} = 6d_{n+1}^{3} + 3(n+1)D(n^{1}) \vee D((2n)^{1}) + (n+1)(2n+1)D((3n)^{1}).
$$

Substituting these equations in (6) gives

$$
(a_0 + 3a_1 + 3a_2 + 6a_3)d_{n+1}^3 + (n+1)(a_1 + a_2 + 3a_3)D(n^1) \vee D((2n)^1) +
$$

$$
\left({n+1 \choose n} a_1 + (n+1)(2n+1)a_3 \right) (d_{n+1}^1)^3 = 0
$$

which leads to the homogenous linear system

$$
\begin{bmatrix} 1 & 3 & 3 & 6 \ 0 & 1 & 1 & 3 \ 0 & n & 0 & 4n+2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = 0
$$

of three equations and four unknowns a_0 , a_1 , a_2 , and a_3 . The result is now comes by solving this system of equations. \Box

Using Equations (3) and (4) , we have

$$
d_{n+1}^{1}d_{n+1}^{3} = 4d_{n+1}^{4} + (n+1)D(n^{2}) \vee D((2n)^{1}),
$$

\n
$$
d_{n+1}^{2}d_{n+1}^{2} = 6d_{n+1}^{4} + 2(n+1)D(n^{2}) \vee D((2n)^{1}) + (n+1)^{2}D((2n)^{2})
$$

\n
$$
+ {n+1 \choose 2}D(n^{1}) \vee D((3n)^{1}),
$$

\n
$$
d_{n+1}^{3}d_{n+1}^{1} = 4d_{n+1}^{4} + (n+1)D(n^{2}) \vee D((2n)^{1})
$$

\n
$$
+ {n+1 \choose 2}D(n^{1}) \vee D((3n)^{1}) + {n+1 \choose 3}D((4n)^{1}),
$$

\n
$$
d_{n+1}^{1}d_{n+1}^{1}d_{n+1}^{2} = 12d_{n+1}^{4} + (n+1)D(n^{2}) \vee D((2n)^{1}) + 2(n+1)^{2}D((2n)^{2})
$$

\n
$$
+ (n+1)(2n+1)D(n^{1}) \vee D((3n)^{1}),
$$

\n
$$
d_{n+1}^{1}d_{n+1}^{2}d_{n+1}^{1} = 12d_{n+1}^{4} + 5(n+1)D(n^{2}) \vee D((2n)^{1}) + 2(n+1)^{2}D((2n)^{2})
$$

\n
$$
+ \frac{(n+1)(5n+2)}{2}D(n^{1}) \vee D((3n)^{1}) + (3n+1){n+1 \choose 2}D((4n)^{1}),
$$

\n
$$
d_{n+1}^{2}d_{n+1}^{1}d_{n+1}^{1} = 12d_{n+1}^{4} + 5(n+1)D(n^{2}) \vee D((2n)^{1}) + 2(n+1)^{2}D((2n)^{2})
$$

\n
$$
+ (2n+1)(n+1)D(n^{1}) \vee D((3n)^{1}) + (n+1){n+1 \choose 2}D((4n)^{1}),
$$

\n
$$
(d_{n+1}^{1})^{
$$

Substituting the above equalities in the equation

$$
a_0 d_{n+1}^4 + a_1 d_{n+1}^3 d_{n+1}^1 + a_2 d_{n+1}^2 d_{n+1}^2 + a_3 d_{n+1}^1 d_{n+1}^3 + a_4 d_{n+1}^1 d_{n+1}^2 d_{n+1}^1 +
$$

$$
a_5 d_{n+1}^1 d_{n+1}^1 d_{n+1}^2 + a_6 d_{n+1}^2 d_{n+1}^1 d_{n+1}^1 + a_7 (d_{n+1})^4 = 0. \quad (7)
$$

leads to the homogenous linear system $AX = 0$ of five equations and eight unknowns, where

By solving this system we get the next result.

Theorem 5.5. In the *n*-Steenrod R-algebra $A_n(R)$, the following equation holds.

$$
4(n-1)[4(n+1)a_5 - 3(n-1)(5n-4)a_6 + 12(n+1)(2n-1)a_7]d_n^4
$$

+3[2n(n-1)(3n-2)a_5 + 3n(n-1)²a_6 - 2n(n+1)(3n-2)a_7]d_n^3d_n^1
+2(n-1)[4(n-1)(2n-1)a_5 + (n-1)(5n-4)a_6 - 4(2n-1)(n+1)a_7]d_n^2d_n^2
+2[-n(9n² - 4n + 2)a_5 + 3(n-1)²(n-2)a_6 - 6n(n-2)(2n-1)a_7]d_n^1d_n^3
+ (n-1)[-2n(n-2)a_5 + n(n+1)a_6 + 2(13n² - 10n + 4)a_7]d_n^1d_n^2d_n^1
+2(n-1)(3n² - 4n + 2)a_5d_n^2d_n^1d_n^1 + 2(n-1)(3n² - 4n + 2)a_6d_n^1d_n^1d_n^2
+2(n-1)(3n² - 4n + 2)a_7(d_n^1)^4 = 0

From equation (3), it is easy to see that in the algebra $\mathcal{A}_n(\mathbb{Z}/(n))$ we have

$$
d_n^1 d_n^k = (k+1)d_n^{k+1}.
$$
\n(8)

Also, we have

$$
3d_n^3 - 2d_n^2d_n^1 - d_n^1d_n^2 + (d_n^1)^3 = 0,
$$

and

$$
4[4a_5 - 12a_6 - 12a_7]d_n^4 + 2[4a_5 - 4a_6 + 4a_7]d_n^2d_n^2 + 12a_6d_n^1d_n^3 + 8a_7d_n^1d_n^2d_n^1 + 4a_5d_n^2d_n^1d_n^1 + 4a_6d_n^1d_n^1d_n^2 + 4a_7(d_n^1)^4 = 0.
$$

Noting the fact $d_n^1 d_n^2 = 3d_n^3$ and $d_n^1 d_n^1 = 2d_n^2$ in $\mathcal{A}_n(\mathbb{Z}/(n))$, we get the following equation in $\mathcal{A}_n(\mathbb{Z}/(n)).$

$$
4(a_5 - 3a_6 - 3a_7)d_n^4 + 2(2a_5 + 3a_7)d_n^2d_n^2 + 3a_6d_n^1d_n^3 + 6a_7d_n^3d_n^1 = 0.
$$

6 4-Steenrod algebra mod 4

In this section we compute some Adem relations in $\mathcal{A}_4(\mathbb{Z}/(4))$. Recall from (4) that,

$$
d_4^p d_4^q = D(3^p)D(3^q) = \sum_{\Theta} \rho(\Theta)D(3^{\theta_0}) \vee \bigvee_{j=0}^4 D((3+3j)^{t_j}),\tag{9}
$$

where the summation is taken over all non-negative integer solutions of the simultaneous equations

$$
\begin{cases} \theta_0 + t_1 + 2t_2 + 3t_3 + 4t_4 = p, \\ t_0 + t_1 + t_2 + t_3 + t_4 = q, \end{cases}
$$
 (10)

and $\rho(\Theta) = \prod_{i=1}^{4} {4 \choose i}^{t_i}$.

If Θ is a solution of (10) with $t_1 \neq 0$ or $t_3 \neq 0$, then $\rho(\Theta) = 0$, since $\binom{4}{1}^{t_1} = \binom{4}{3}^{t_3} = 0 \pmod{4}$. This shows that the solutions with $t_1 \neq 0$ and $t_3 \neq 0$ do not effect (9). Also note that if $t_2 > 1$, then

$$
\binom{4}{2}^{t_2} = 6^{t_2} = 2^{t_2} = 0 \pmod{4}.
$$

Therefore, in (10), only the solutions Θ with $t_1 = 0$, $t_2 = 0$, 1 and $t_3 = 0$ are valid. In other words, to compute $d_4^p d_4^q$ in $\mathcal{A}_4(\mathbb{Z}/(4))$, we need only to solve

$$
\begin{cases} \theta_0 + 4t_4 = p \\ t_0 + t_4 = q \end{cases} , \qquad (11)
$$

and

$$
\begin{cases} \theta_0 + 4t_4 = p - 2 \\ t_0 + t_4 = q - 1 \end{cases}
$$
\n(12)

where in (11), t_4 ranges between 0 and min $\{q, [p/4]\}$ and for any solution Θ of (11), $\rho(\Theta) = 1$. Also, in (12), $0 \le t_4 \le \min\{q-1, [(p-2)/4]\}\$ and $\rho(\Theta) = 2$ for all solution Θ of (12). Therefore for non-negative integers p and q, in $\mathcal{A}_4(\mathbb{Z}/(4))$ we have

$$
d_4^p d_4^q = \sum_{j=0}^{\min\{q, [p/4]\}} \binom{p+q-5j}{p-4j} D(3^{p+q-5j} 15^j) + \sum_{j=0}^{\min\{q-1, [(p-2)/4]\}} 2\binom{p+q-3-5j}{p-2-4j} d(3^{p+q-3-5j} 9^1 15^j). \tag{13}
$$

Here, we used the abbreviation $D(n^{r_1}) \vee D(m^{r_2}) = D(n^{r_1}m^{r_2})$. In particular,

$$
2d_4^p d_4^q = \sum_{j=0}^{\min\{q, [p/4]\}} 2\binom{p+q-5j}{p-4j} D(3^{p+q-5j} 15^j). \tag{14}
$$

One of the main concepts in Steenrod algebra, is the concept of admissibility. In $\mathcal{A}_p(\mathbb{F}_p)$ (*p* prime), the element $d_p^{a_1}d_p^{a_2}\cdots d_p^{a_r}$ is called admissible if $a_i \geq$ *pa*_{*i*+1} for $1 \leq i \leq r-1$. Adem relations on $\mathcal{A}_p(\mathbb{F}_p)$ provides a method to write the product $d_p^a d_p^b$ in terms of admissible monomials. In the sequel, we

find a method to write $d_4^a d_4^b$ in terms of admissible monomials in a non-prime characteristic. As we will see, the result is not totally satisfactory because in a non-prime characteristic there are zero divisors which makes elements of $\mathcal{A}_4(\mathbb{Z}/(4))$ indecompossable.

For example, let compute $d_4^2 d_4^b$ and $d_4^3 d_4^b$. From (13), we have

$$
d_4^2 d_4^b = {b+2 \choose 2} d_4^{b+2} + 2D(3^{b-1}) \vee D(9^1),
$$

$$
d_4^3 d_4^b = {b+3 \choose 3} d_4^{b+3} + 2bD(3^b) \vee D(9^1).
$$

The term $2D(3^k) \vee D(9^1)$ appears only in these two products which makes $d_4^2 d_4^b$ indecomposible, while

$$
2d_4^2 d_4^b = 2\binom{b+2}{2} d_4^{b+2} = \begin{cases} 2d_4^{b+2} & \text{if } b \equiv 0,1 \pmod{4} \\ 0 & \text{if } b \equiv 2,3 \pmod{4}. \end{cases}
$$

But $d_4^3 d_4^b$ may be decomposed since $2bD(3^b) \vee D(9^1) = bd_4^2 d_4^{b+1} - b\binom{b+3}{2} d_4^{b+3}$. In other words

$$
d_4^3d_4^b = \left[\binom{b+3}{3} - b \binom{b+3}{2} \right] d_4^{b+3} + b d_4^2 d_4^{b+1}.
$$

Note also that

$$
2d_4^3 d_4^q = 2\binom{q+3}{3}d_4^{q+3}.
$$

Theorem 6.1. For $p < 4q$, the monomial $2d_4^p d_4^q$ is a sum of admissible mono*mials, i.e. there are unique* $B_k(p,q) \in \mathbb{Z}/(4)$ $(0 \leq k \leq [p/4])$ such that

$$
2d_4^p d_4^q = \sum_{k=0}^{[p/4]} 2B_k(p,q)d_4^{p+q-k} d_4^k.
$$
 (15)

Proof. When $p < 4q$, then $\min\{[p/4], q\} = [p/4]$ and $\min\{[(p-2)/4], q-1\}$ [(*p −* 2)*/*4]. Also, for 0 *≤ k ≤* [*p/*4], min*{*[(*p* + *q − k*)*/*4]*, k}* = *k*. Therefore from (14) , we have

$$
2d_4^p d_4^q = \sum_{j=0}^{[p/4]} 2\binom{p+q-5j}{p-4j} D(3^{p+q-5j}15^j),
$$

$$
2d_4^{p+q-k} d_4^k = \sum_{j=0}^k \binom{p+q-5j}{k-j} D(3^{p+q-5j}15^j).
$$

It means that the equation

$$
2d_4^p d_4^q = \sum_{k=0}^{[p/4]} 2B_k(p,q) d_4^{p+q-k} d_4^k.
$$

turns to

$$
\sum_{j=0}^{[p/4]} 2\binom{p+q-5j}{p-4j} D(3^{p+q-5j}15^j)
$$

=
$$
\sum_{k=0}^{[p/4]} \left[\sum_{j=0}^k 2B_k(a,b) \binom{p+q-5j}{k-j} D(3^{p+q-5j}15^j) \right]
$$

=
$$
\sum_{j=0}^{[p/4]} \left[\sum_{k=j}^{[p/4]} 2B_k(p,q) \binom{p+q-5j}{k-j} \right] D(3^{p+q-5j}15^j).
$$

The system

$$
\binom{p+q-5j}{p-4j} = \sum_{k=j}^{[p/4]} B_k(p,q) \binom{p+q-5j}{k-j}
$$

for $0 \le j \le [p/4]$ is a system of linear equation of the form $AX = B$ in unknowns $B_k(p,q)$ where the matrix *A* is so that all entries below main diagonal equal 0 and main diagonal entries equal to 1 because for any fixed *j*, the *j*th equation is

$$
B_j + \sum_{k=j+1}^{[p/4]} {p+q-5j \choose k-j} B_k(p,q) = {p+q-5j \choose p-4j}.
$$

Clearly, this system of linear equations has integer solutions. Reducing these solution modulo 4 gives the requested equation and uniqueness comes from the uniqueness of solution of the linear system. \Box

Corollary 6.2.

$$
2B_k(4a + i, q) = 2\binom{q + i - k}{i}B(4a, q).
$$

In particular,

$$
2B_a(4a + i, q) = 2\binom{q - a + i}{i} = 2\binom{3(q - a) - 1}{i}.
$$

Proof. From the relations

$$
2d_4^i d_4^b = 2\binom{b+i}{i} d_4^{b+i}, \quad (i = 1, 2, 3)
$$

we have

$$
2d_4^i d_4^{4a} = 2\binom{4a+i}{i} d_4^{4a+i} = 2d_4^{4a+i}.
$$

It shows that

$$
2d_4^{4a+i}d_4^q = 2d_4^i d_4^{4a} d_4^q
$$

=
$$
\sum_{k=0}^a 2B_k(4a,q)d_4^i d_4^{4a+q-k} d_4^k
$$

=
$$
\sum_{k=0}^a 2B_k(4a,q) {q+i-k \choose i} d_4^{4a+i+q-k} d_4^k
$$

.

 \Box

Therefore the uniqueness of the coefficients B_k gives the requested. **Example 6.3.** For $i = 0, 1, 2$ and 3, we have

$$
2d_4^{4+i}d_4^q = \sum_{j=0}^{[(4+i)/4]} 2\binom{3(q-j)-1}{4+i-4j} d_4^{4+i+q-j} d_4^j.
$$

Also

$$
2d_4^8 d_4^q = \sum_{j=0}^{[8/2]} 2\binom{3(q-j)-1}{8-4j} d_4^{q+8-j} d_4^j.
$$

Now we investigate $d_4^p d_4^q$ for $p < 4q$. First let $p = 4$. Then from (13), we have

$$
d_4^4 d_4^q = {4+q \choose 4} d_4^{4+q} + D(3^{q-1}15^1) + 2{q+1 \choose 2} D(3^{q+1}9^1),
$$

$$
d_4^{q+3} d_4^1 = (q+4)d_4^{q+4} + D(3^{q-1}15^1) + 2D(3^{q+1}9^1).
$$

Therefore if $2\binom{q+1}{2} = 2 \pmod{4}$, then $d_4^4 d_4^q$ may be written as sum of admissible monomials. But if $q = 0$ or 3 (mod 4) then $2\binom{q+1}{2} = 0$ (mod 4) and in order to establish an equation for $d_4^4 d_4^q$ we need to add an extra non-admissible term, namely $d_4^2 d_4^{q+2} = {\binom{4+q}{2}} d_4^{4+q} + 2D(3^{q+1}9^1)$. The next theorem generalizes the calculation above.

Theorem 6.4. *For p* < 4*q, there are* $R_k(p,q), S_k(p,q) \in \mathbb{Z}/(4)$ (0 ≤ k ≤ [*p/*4]) *such that*

$$
d_4^p d_4^q = \sum_{k=0}^{[p/4]} R_k(p,q) d_4^{p+q-k} d_4^k + \sum_{k=0}^{[p/4]} S_k(p,q) d_4^{2+4k} d_4^{p+q-2-4k}.
$$
 (16)

Proof. We look for elements $R_k(p,q)$ and $S_k(p,q)$ to establish (16). During the proof we write simply R_k and S_k instead of $R_k(p,q)$ and $S_k(p,q)$, respectively.

From (13) , we have

$$
d_4^p d_4^q = \sum_{j=0}^{[p/4]} \binom{p+q-5j}{p-4j} D(3^{p+q-5j} 15^j)
$$

+
$$
2 \sum_{j=0}^{[(p-2)/4]} \binom{p+q-3-5j}{p-2-4j} D(3^{p+q-3-5j} 9^1 15^j),
$$

$$
d_4^{p+q-k} d_4^k = \sum_{j=0}^k \binom{p+q-5j}{p+q-k-4j} D(3^{p+q-5j} 15^j)
$$

+
$$
2 \sum_{j=0}^{k-1} \binom{p+q-3-5j}{p+q-k-2-4j} D(3^{p+q-3-5j} 9^1 15^j),
$$

$$
d_4^{2+4k} d_4^{p+q-2-4k} = \sum_{j=0}^k \binom{p+q-5j}{2+4k-4j} D(3^{p+q-5j} 15^j)
$$

+
$$
2 \sum_{j=0}^k \binom{p+q-3-5j}{4k-4j} D(3^{p+q-3-5j} 9^1 15^j).
$$

The right hand side of (16) then is

$$
\sum_{k=0}^{[p/4]} R_k \left[\sum_{j=0}^k {p+q-5j \choose k-j} D(3^{p+q-5j} 15^j) + 2 \sum_{j=0}^{k-1} {p+q-3-5j \choose k-j-1} D(3^{p+q-3-5j} 9^1 15^j) + \sum_{k=0}^{[p/4]} S_k \left[\sum_{j=0}^k {p+q-5j \choose 2+4k-4j} D(3^{p+q-5j} 15^j) + 2 \sum_{j=0}^{k-1} {p+q-3-5j \choose 4k-4j} D(3^{p+q-3-5j} 9^1 15^j) \right] = \sum_{j=0}^{[p/4]} \left[\sum_{k=j}^{[p/4]} {p+q-5j \choose k-j} R_k + {p+q-5j \choose 2+4k-4j} S_k \right] D(3^{p+q-5j} 15^j) + 2 \sum_{j=0}^{[p/4]} \left[\sum_{k=j}^{[p/4]} {p+q-3-5j \choose k-j-1} R_k + {p+q-3-5j \choose 4k-4j} S_k \right] D(3^{p+q-3-5j} 9^1 15^j).
$$

This shows that we have the system of linear equations

$$
\sum_{k=j}^{[p/4]} \binom{p+q-5j}{k-j} R_k + \binom{p+q-5j}{2+4k-4j} S_k = \binom{p+q-5j}{p-4j}
$$
\n
$$
\sum_{k=j}^{[p/4]} \binom{p+q-3-5j}{k-j-1} R_k + \binom{p+q-3-5j}{4k-4j} S_k = \binom{p+q-3-5j}{p-2-4j}
$$
\n(17)

for $0 \leq j \leq [p/4]$ which has integer solution.

$$
\qquad \qquad \Box
$$

If $p = 4a + i$ ($i = 0, 1, 2,$ or 3), then $[p/4] = a$ and from (17) we have

$$
S_a(4a + i, q) = {q - a + i - 3 \choose i - 2},
$$

\n
$$
R_a(4a + i, q) = {q - a + i \choose i} - {q - a + i \choose 2} {q - a + i - 3 \choose i - 2}
$$

\n
$$
= \frac{i - 2}{x + i - 2} {q - a + i \choose i} \frac{2 - (i + 1)(q - a)}{2}.
$$

Therefore

$$
S_a(4a, q) = 0, \t S_a(4a + 1, q) = 0, S_a(4a + 2, q) = 1, \t S_a(4a + 3, q) = q - a.
$$

As well,

$$
R_a(4a, q) = 1, \t R_a(4a + 1, q) = q - a + 1,
$$

\n
$$
R_a(4a + 2, q) = 0, \t R_a(4a + 3, q) = (2q - 2a + 3)\binom{q - a + 3}{2}.
$$

References

- [1] Dmitry Fuchs and Anatoly Fomenko. *Homotopical topology*. Springer International Publishing, 2016.
- [2] A. Hatcher. *Algebraic topology*. Cambridge University Press, 2002.
- [3] R. E. Mosher and M. E. Tangora. *Cohomology operations and applications in homotopy theory*. Harper & Row, 1968.
- [4] Lionel Schwartz. *Unstable modules over the Steenrod algebra and Sullivan's fixed point set conjecture*. University of Chicago Press, 1994.
- [5] L. Smith. An algebraic introduction to the steenrod algebra. *Geometry and Topology Monographs*, 11:327–348, 2007.
- [6] Gh. Soleymanpour and A. S. Janfada. Some algebras in terms of differential operators. *International electronic journal of algebra*, 29(29):120–133, 2021.
- [7] R. M. W. Wood. Differential operations and the steenrod algebra. *Proceedings of the London Mathematical Society*, 75(3):194–220, 1997.
- [8] R. M. W. Wood. Problems in the steenrod algebra. *Bull. London Math. Soc.*, 30:449–517, 1998.