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Abstract. The famous Erdős-Ko-Rado theorem (EKR) states
that when 2k < n are positive integers, the largest family of pair-
wise intersecting k-subsets of an n-set is when all the subsets share
one specific element. Many different generalization of this theorem
has been discovered. In this work, we propose a novel approach
to prove EKR Theorem as well as some of its generalizations and
related extremal combinatorics problems.

1. Introduction and Main Results

Erdős-Ko-Rado Theorem (EKR) states that for every pair 2k < n of
positive integers, the maximum size of a family of pairwise intersect-
ing k-subsets of an n set is equal to

(
n−1
k−1

)
[2]. This is perhaps one of

the most, if not the most, well-known problems concerning intersect-
ing families. A general intersecting family problem asks the following
question: An underlying set together with a given family of its subsets
is given. What is the largest size of a sub-family such that every pair of
elements intersect? When the family consists of all the k-subsets, then
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EKR answers the problem. A similar question can be asked when the
underlying set is the edge set of a graph (For instance, the complete
graph) and the family of the subsets is the set of all the edges of the
graph with a certain property (for instance, all the matchings of a cer-
tain size). In this paper, we present a new approach that can prove the
original EKR Theorem as well as many other questions of this type.

2. Main Results

In this section, we start by proving a simple lemma which is the basis
for the consequent results. After stating it, we show how it can be used
to conclude EKR-type results, including the original EKR Theorem.

Lemma 1. Let A,X be two arbitrary finite sets and R be a family of
subsets on X. If there is a map f : A×R → {0, 1} such that

• for every r ∈ R, the number of a ∈ A for which f(a, r) = 1 is
at least ℓ and

• for every a ∈ A, the number of r ∈ R for which f(a, r) = 1 is
at most t, then

|R | ≤ t

ℓ
|A|.

Proof. Consider the number of pairs (a, r) ∈ A × R with f(a, r) = 1.
First, for a fixed a, the number of r’s is at most t. Thus, this number
is at most t|A|. Similarly, this number is at least ℓ|R |. Now, the
assertion follows. □

Next, we derive several applications of the above Lemma. In fact,
this lemma provides a unifying framework to prove such results.

Corollary 1 (EKR). Let S be a set of size n and U be a family of k-
subsets of it such that every pair of elements of U intersect. If n > 2k
then |U| ≤

(
n−1
k−1

)
.

Proof. In the above lemma set R := U and define A to be the set of
all cyclic permutations on [n] = {1, 2, . . . , n}. Define the function f
as follows. f(a, r) = 1 if and only if the permutation a preserves the
elements of r cyclically consecutive. That is, the elements of r are
located in positions s to s+ k− 1 for some value of s and the locations
are taken modulo n. One can observe that the conditions of the lemma
holds for the values ℓ = n · k! · (n − k)! and t = n. Substituting to
the assertion of the lemma and considering the fact that |A| = n! we
obtain that |R | ≤

(
n−1
k−1

)
. □

The next application is the well-known Sperner Theorem which is
regarding the maximum size anti-chain in the lattice of the subsets
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with inclusion order. An anti-chain is a set of elements such that no
two of them are comparable.

Corollary 2. Let n be a positive integer and S be a set of size n. Then,
the largest size anti-chain of the subsets of S with inclusion relation is(

n
[n
2
]

)
.

Proof. We will only sketch the proof due to the space constraint. In the
lemma, let R be an anti-chain and A be the set of all permutations of
[n]. Now, define the function f as follows. Let f(a, r) = 1 if and only
if the elements of r appear at the beginning of the permutation a. It is
not hard to observe that the parameters t = 1 and ℓ = ⌈n

2
⌉![n

2
]! will fit

the lemma. Thus, if we apply the lemma we conclude this corollary. □

The next two corollary can also be proved using our machinery. How-
ever, we leave their proofs because of the space limit.

Corollary 3. [5] Let k be a positive integer number. For n > 2k, the
maximum size subset of pairwise intersecting k-matchings of the graph
Kn is when all these matchings share a particular edge in common.

Corollary 4. For any positive integer n, the maximum size of the
pairwise intersecting family of the subsets of an n-set is 2n−1.

We now proof a new EKR-type result using the main lemma. We
call a family of Hamiltonian cycles H of Kn is intersecting if any two
cycles C1, C2 ∈ H has a common edge.

Theorem 1. Let n be an odd positive integer. If H is an intersecting
Hamiltonian cycles of Kn, then |H | ≤ (n − 2)!; moreover equality
holds if and only if H is the family of all Hamiltonian cycles of Kn

that contain some fixed edge.

Proof of Theorem 1. We prove the inequality. The second part of the
theorem is not hard to show. First by using Lemma 1 we show that
|H | ≤ (n− 2)!.
Let Sn be a family of all permutation on {1, 2, . . . , n}. Define

S∗
n = {π| π ∈ Sn , π(1) = 1}.

For a permutation σ ∈ S∗
n, define cycle Dσ as follows,

Dσ = vσ(1)vσ(2) · · · σ(n)σ(1).
For a permutation σ ∈ S∗

n, define the permutation σ̄ ∈ S∗
n as follows.

∀i 2 ≤ i ≤ n σ̄(i) = σ(n− i+ 2)

For a Hamiltonian cycle C we assign two permutation πC , π̄C ∈ S∗
n

such that C = DπC
and C = Dπ̄C

; moreover πDσ ∈ {σ, σ̄}. Note that
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For any permutation σ ∈ S∗
n we have Hamiltonian cycles Dσ, Dσ̄ are

identical.
In Lemma 1, assume that X = E(Kn), A = S∗

n and R is a family of
intersecting Hamiltonian cycles ofKn. In what follows we define f : A×
R → {0, 1}. By a theorem by Edouard Lucas in 1892, Kn has an edge
decomposition to Hamiltonian cycles, say C = {C1, C2, · · · , Cn−1

2
}(Note

that ordering is important).
First without loss of generality assume that π

C1
= id. For any σ ∈ A

and D ∈ R, define f(σ,D) = 1 if

D ∈ {DσπCi
| 1 ≤ i ≤ n− 1

2
} ∪ {DσπCi

| 1 ≤ i ≤ n− 1

2
},

else define f(σ,D) = 0.
Note that because C1, C2, · · · , Cn−1

2
forms a decomposition of Kn all

πCi
’s and π̄Ci

’s are distinct. Therefore, for each Hamiltonian cycle D
we have exactly n− 1 permutation in A such that f(σ,D) = 1.

Now, take a permutation σ in A, we shall show that only for one
Hamiltonian cycle vσ(1)vσ(2) · · · vσ(1)vσ(n)vσ(1), sayDσ, we have f(σ,Dσ) =
1. First note it is obvious that f(σ,Dσ) = 1. Now on the contrary,
suppose that there are two intersecting Hamiltonian cycles D,D′ for
which f(σ,D) = f(σ,D′) = 1. Therefore, without loss of generality
assume that D = DσπC2

and D′ = DσπC3

Assume that ab ∈ E(D) ∩ E(D′). There for there are i, j such that
σπC2(i) = σπC3(j) = a and σπC2(i + 1) = σπC3(j + 1) = b. Therefore,
πC2(i) = πC3(i) = σ−1(a) and πC2(i + 1) = πC3(j + 1) = σ−1(b), which
means that C2 and C3 has an common edge. □
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intersecting families of permutations. European Journal of Combinatorics.,
2009.
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