

A GENERAL FRAMEWORK FOR ERDOS-KO-RADO TYPE PROBLEMS

JAVAD B. EBRAHIMI $^{\rm 1}$ AND ALI TAHERKHANI $^{\rm 2}$ *

¹ Department of Mathematical Sciences, Sharif University of Technology and IPM - Institute for Research in Fundamental Sciences, Tehran, Iran.

 2 Department of Mathematics, Institute for Advanced Studies in Basic Sciences

(IASBS), Zanjan, Iran. javad.ebrahimi@sharif.ir ali.taherhani@iasbs.ac.ir

ABSTRACT. The famous Erdős-Ko-Rado theorem (EKR) states that when 2k < n are positive integers, the largest family of pairwise intersecting k-subsets of an n-set is when all the subsets share one specific element. Many different generalization of this theorem has been discovered. In this work, we propose a novel approach to prove EKR Theorem as well as some of its generalizations and related extremal combinatorics problems.

1. INTRODUCTION AND MAIN RESULTS

Erdős-Ko-Rado Theorem (EKR) states that for every pair 2k < n of positive integers, the maximum size of a family of pairwise intersecting k-subsets of an n set is equal to $\binom{n-1}{k-1}$ [2]. This is perhaps one of the most, if not the most, well-known problems concerning intersecting families. A general intersecting family problem asks the following question: An underlying set together with a given family of its subsets is given. What is the largest size of a sub-family such that every pair of elements intersect? When the family consists of all the k-subsets, then

Date: June 2023.

²⁰¹⁰ Mathematics Subject Classification. Primary: 47A63; Secondary: 46L05, 47A60.

 $Key\ words\ and\ phrases.$ extremal combinatorics, Erdos-Ko-Rado Theorem, intersecting families.

^{*} Speaker.

EKR answers the problem. A similar question can be asked when the underlying set is the edge set of a graph (For instance, the complete graph) and the family of the subsets is the set of all the edges of the graph with a certain property (for instance, all the matchings of a certain size). In this paper, we present a new approach that can prove the original EKR Theorem as well as many other questions of this type.

2. Main Results

In this section, we start by proving a simple lemma which is the basis for the consequent results. After stating it, we show how it can be used to conclude EKR-type results, including the original EKR Theorem.

Lemma 1. Let A, X be two arbitrary finite sets and \mathcal{R} be a family of subsets on X. If there is a map $f : A \times \mathcal{R} \to \{0, 1\}$ such that

- for every $r \in \mathcal{R}$, the number of $a \in A$ for which f(a, r) = 1 is at least ℓ and
- for every $a \in A$, the number of $r \in \mathcal{R}$ for which f(a, r) = 1 is at most t, then

$$|\mathcal{R}| \le \frac{t}{\ell} |A|.$$

Proof. Consider the number of pairs $(a, r) \in A \times \mathcal{R}$ with f(a, r) = 1. First, for a fixed a, the number of r's is at most t. Thus, this number is at most t|A|. Similarly, this number is at least $\ell|\mathcal{R}|$. Now, the assertion follows.

Next, we derive several applications of the above Lemma. In fact, this lemma provides a unifying framework to prove such results.

Corollary 1 (EKR). Let S be a set of size n and U be a family of ksubsets of it such that every pair of elements of U intersect. If n > 2kthen $|\mathcal{U}| \leq {\binom{n-1}{k-1}}$.

Proof. In the above lemma set $\mathcal{R} := \mathcal{U}$ and define A to be the set of all cyclic permutations on $[n] = \{1, 2, \ldots, n\}$. Define the function f as follows. f(a, r) = 1 if and only if the permutation a preserves the elements of r cyclically consecutive. That is, the elements of r are located in positions s to s + k - 1 for some value of s and the locations are taken modulo n. One can observe that the conditions of the lemma holds for the values $\ell = n \cdot k! \cdot (n - k)!$ and t = n. Substituting to the assertion of the lemma and considering the fact that $|\mathcal{A}| = n!$ we obtain that $|\mathcal{R}| \leq {n-1 \choose k-1}$.

The next application is the well-known Sperner Theorem which is regarding the maximum size anti-chain in the lattice of the subsets

 $\mathbf{2}$

 \mathbf{EKR}

with inclusion order. An anti-chain is a set of elements such that no two of them are comparable.

Corollary 2. Let n be a positive integer and S be a set of size n. Then, the largest size anti-chain of the subsets of S with inclusion relation is $\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}$.

Proof. We will only sketch the proof due to the space constraint. In the lemma, let \mathcal{R} be an anti-chain and A be the set of all permutations of [n]. Now, define the function f as follows. Let f(a, r) = 1 if and only if the elements of r appear at the beginning of the permutation a. It is not hard to observe that the parameters t = 1 and $\ell = \lceil \frac{n}{2} \rceil! \lceil \frac{n}{2} \rceil!$ will fit the lemma. Thus, if we apply the lemma we conclude this corollary. \Box

The next two corollary can also be proved using our machinery. However, we leave their proofs because of the space limit.

Corollary 3. [5] Let k be a positive integer number. For n > 2k, the maximum size subset of pairwise intersecting k-matchings of the graph K_n is when all these matchings share a particular edge in common.

Corollary 4. For any positive integer n, the maximum size of the pairwise intersecting family of the subsets of an n-set is 2^{n-1} .

We now proof a new EKR-type result using the main lemma. We call a family of Hamiltonian cycles \mathcal{H} of K_n is intersecting if any two cycles $C_1, C_2 \in \mathcal{H}$ has a common edge.

Theorem 1. Let n be an odd positive integer. If \mathcal{H} is an intersecting Hamiltonian cycles of K_n , then $|\mathcal{H}| \leq (n-2)!$; moreover equality holds if and only if \mathcal{H} is the family of all Hamiltonian cycles of K_n that contain some fixed edge.

Proof of Theorem 1. We prove the inequality. The second part of the theorem is not hard to show. First by using Lemma 1 we show that $|\mathcal{H}| \leq (n-2)!$.

Let S_n be a family of all permutation on $\{1, 2, ..., n\}$. Define

$$S_n^* = \{ \pi | \, \pi \in S_n, \, \pi(1) = 1 \}.$$

For a permutation $\sigma \in S_n^*$, define cycle D_{σ} as follows,

$$D_{\sigma} = v_{\sigma(1)}v_{\sigma(2)}\cdots\sigma(n)\sigma(1).$$

For a permutation $\sigma \in S_n^*$, define the permutation $\bar{\sigma} \in S_n^*$ as follows.

$$\forall i \ 2 \le i \le n \ \bar{\sigma}(i) = \sigma(n - i + 2)$$

For a Hamiltonian cycle C we assign two permutation $\pi_C, \bar{\pi}_C \in S_n^*$ such that $C = D_{\pi_C}$ and $C = D_{\bar{\pi}_C}$; moreover $\pi_{D_{\sigma}} \in \{\sigma, \bar{\sigma}\}$. Note that For any permutation $\sigma \in S_n^*$ we have Hamiltonian cycles $D_{\sigma}, D_{\bar{\sigma}}$ are identical.

In Lemma 1, assume that $X = E(K_n)$, $A = S_n^*$ and \mathcal{R} is a family of intersecting Hamiltonian cycles of K_n . In what follows we define $f : A \times \mathcal{R} \to \{0, 1\}$. By a theorem by Edouard Lucas in 1892, K_n has an edge decomposition to Hamiltonian cycles, say $\mathcal{C} = \{C_1, C_2, \cdots, C_{\frac{n-1}{2}}\}$ (Note that ordering is important).

First without loss of generality assume that $\pi_{C_1} = id$. For any $\sigma \in A$ and $D \in \mathcal{R}$, define $f(\sigma, D) = 1$ if

$$D \in \{D_{\sigma\pi_{C_i}} | 1 \le i \le \frac{n-1}{2}\} \cup \{D_{\sigma\overline{\pi}_{C_i}} | 1 \le i \le \frac{n-1}{2}\},\$$

else define $f(\sigma, D) = 0$.

Note that because $C_1, C_2, \dots, C_{\frac{n-1}{2}}$ forms a decomposition of K_n all π_{C_i} 's and $\bar{\pi}_{C_i}$'s are distinct. Therefore, for each Hamiltonian cycle D we have exactly n-1 permutation in A such that $f(\sigma, D) = 1$.

Now, take a permutation σ in A, we shall show that only for one Hamiltonian cycle $v_{\sigma(1)}v_{\sigma(2)}\cdots v_{\sigma(1)}v_{\sigma(n)}v_{\sigma(1)}$, say D_{σ} , we have $f(\sigma, D_{\sigma}) =$ 1. First note it is obvious that $f(\sigma, D_{\sigma}) = 1$. Now on the contrary, suppose that there are two intersecting Hamiltonian cycles D, D' for which $f(\sigma, D) = f(\sigma, D') = 1$. Therefore, without loss of generality assume that $D = D_{\sigma\pi_{C_2}}$ and $D' = D_{\sigma\pi_{C_3}}$

Assume that $ab \in \tilde{E(D)} \cap E(D')$. There for there are i, j such that $\sigma \pi_{C_2}(i) = \sigma \pi_{C_3}(j) = a$ and $\sigma \pi_{C_2}(i+1) = \sigma \pi_{C_3}(j+1) = b$. Therefore, $\pi_{C_2}(i) = \pi_{C_3}(i) = \sigma^{-1}(a)$ and $\pi_{C_2}(i+1) = \pi_{C_3}(j+1) = \sigma^{-1}(b)$, which means that C_2 and C_3 has an common edge.

References

- M. Deza, P. Frankl Erdös-Ko-Rado Theorem—22 Years Later, Siam Journal on Algebraic and Discrete Methods, 1983.
- [2] Erdös, P.; Ko, Chao; Rado, R. Intersection theorems for systems of finite sets, Quarterly Journal of Mathematics, 1961.
- [3] C. Godsil and K. Meagher. A new proof of the Erdős-Ko-Rado theorem for intersecting families of permutations. *European Journal of Combinatorics.*, 2009.
- [4] N. Lindzey Erdős-Ko-Rado for perfect matchings European Journal of Combinatorics., 2017.
- [5] P. Borg, K. Meagher. The Katona cycle proof of the Erdős–Ko–Rado theorem and its possibilities *Journal of Algebraic Combinatoriccs.*, 2016.

4