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For Jerome and Emily

The beauty of a snow crystal depends on its mathematical regularity and
symmetry; but somehow the association of many variants of a single
type, all related but no two the same, vastly increases our pleasure and
admiration.

D’ARrRcYy THOMPSON
(On Growth and Form, Cambridge, 1917.)

En général je crois que les seules structures mathématiques intéressantes,
dotées d’une certaine légitimité, sont celles ayant une réalisation na-
turelle dans le continu.... Du reste, cela se voit trés bien dans des
théories purement algébriques comme la théorie des groupes abstraits
ou on a des groupes plus ou moins étranges apparaissant comme des
groupes d’automorphismes de figures continues.

RENE THOM
(Paraboles et Catastrophes, Flammarion, 1983.)



Preface

Numbers measure size, groups measure symmetry. The first statement comes
as no surprise; after all, that is what numbers “are for”. The second will be
exploited here in an attempt to introduce the vocabulary and some of the
highlights of elementary group theory.

A word about content and style seems appropriate. In this volume, the
emphasis is on examples throughout, with a weighting towards the symmetry
groups of solids and patterns. Almost all the topics have been chosen so as to
show groups in their most natural role, acting on (or permuting) the members
of a set, whether it be the diagonals of a cube, the edges of a tree, or even some
collection of subgroups of the given group. The material is divided into
twenty-eight short chapters, each of which introduces a new result or idea.
A glance at the Contents will show that most of the mainstays of a ““first
course” are here. The theorems of Lagrange, Cauchy, and Sylow all have a
chapter to themselves, as do the classification of finitely generated abelian
groups, the enumeration of the finite rotation groups and the plane crystallo-
graphic groups, and the Nielsen—Schreier theorem.

I have tried to be informal wherever possible, listing only significant results
as theorems and avoiding endless lists of definitions. My aim has been to write
a book which can be read with or without the support of a course of lectures.
It is not designed for use as a dictionary or handbook, though new concepts
are shown in bold type and are easily found in the index. Every chapter ends
with a collection of exercises designed to consolidate, and in some cases fill
out, the main text. It is essential to work through as many of these as possible
before moving from one chapter to the next. Mathematics is not for spectators;
to gain in understanding, confidence, and enthusiasm one has to participate.

As prerequisites I assume a first course in linear algebra (including matrix
multiplication and the representation of linear maps between Euclidean
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spaces by matrices, though not the abstract theory of vector spaces) plus
familiarity with the basic properties of the real and complex numbers. It
would seem a pity to teach group theory without matrix groups available as
a rich source of examples, especially since matrices are so heavily used in
applications.

Elementary material of this type is all common stock, nevertheless it is not
static, and improvements are made from time to time. Three such should be
mentioned here: H. Wielandt’s approach to the Sylow theorems (Chapter 20),
James H. McKay’s proof of Cauchy’s theorem (Chapter 13), and the introduc-
tion of groups acting on trees by J.-P. Serre (Chapter 28). Another influence
is of a more personal nature. As a student I had the good fortune to study
with A.M. Macbeath, whose lectures first introduced me to group theory. The
debt of gratitude from pupil to teacher is best paid in kind. If this little book
can pass on something of the same appreciation of the beauty of mathematics
as was shown to me, then I shall be more than satisfied.

Durham, England M.AA.
September 1987
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CHAPTER 1

Symmetries of the
Tetrahedron

How much symmetry has a tetrahedron? Consider a regular tetrahedron 7'
and, for simplicity, think only of rotational symmetry. Figure 1.1 shows two
axes. One, labelled L, passes through a vertex of the tetrahedron and through
the centroid of the opposite face; the other, labelled M, is determined by the
midpoints of a pair of opposite edges. There are four axes like L and two
rotations about each of these, through 27/3 and 4n/3, which send the tetra-
hedron to itself. The sense of the rotations is as shown: looking along the axis
from the vertex in question the opposite face is rotated anticlockwise. Of
course, rotating through 2n/3 (or 4n/3) in the opposite sense has the same
effect on T as our rotation through 4xn/3 (respectively 2n/3). As for axis M, all
we can do is rotate through =, and there are three axes of this kind. So far we
have (4 x 2) + 3 = 11 symmetries. Throwing in the identity symmetry, which
leaves 7 fixed and is equivalent to a full rotation through 2 about any of our
axes, gives a total of twelve rotations.

We seem to have answered our original question. There are precisely twelve
rotations, counting the identity, which move the tetrahedron onto itself. But
this is not the end of the story. A flat hexagonal plate with equal sides also has
twelve rotational symmetries (Fig. 1.2), as does a right regular pyramid on a
twelve sided base (Fig. 1.3). For the plate we have five rotations (through n/3,
2n/3, n, 4x/3, and 5m/3) about the axis perpendicular to it which passes
through its centre of gravity. In addition there are three axes of symmetry
determined by pairs of opposite corners, three determined by the midpoints of
pairs of opposite sides, and we can rotate the plate through 7 about each of
these. Not forgetting the identity, our total is again twelve. The pyramid has
only one axis of rotational symmetry. It joins the apex of the pyramid to the
centroid of its base, and there are twelve distinct rotations (through kn/6,
1 < k < 12, in some chosen sense) about this axis. Despite the fact that we
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have counted twelve rotations in each case, the tetrahedron, the plate, and the
pyramid quite clearly do not exhibit the same symmetry.

The most striking difference is that the pyramid possesses just one axis of
symmetry. A rotation of 7/6 about this axis has to be repeated (in other words,
combined with itself) twelve times before the pyramid returns to its original
position. Indeed, by suitable repetition of this basic rotation we can produce
all the other eleven symmetries. However, no single rotation of the plate or the
tetrahedron when repeated will give us all the other rotations.

If we look more carefully we can spot other differences, all of which have to
do, in one way or another, with the way in which our symmetries combine. For
example, the symmetries of the pyramid all commute with each other. That is
to say, if we take any two and perform one rotation after the other, the effect
on the pyramid is the same no matter which one we choose to do first. (These
rotations all have the same axis, so if, for the sake of argument, we rotate
through n/3 then through 57/6, we obtain rotation through 77/6, which is also
the result of 57/6 first followed by 7/3.) This is not the case for the tetrahedron
or the plate. We recommend an experiment with the tetrahedron. Labelling
the vertices of T as in Figure 1.4 enables us to see clearly the effect of a
Figure 1.2 particular symmetry. Think of the rotations r (27/3 about axis L in the sense

indicated) and s (n about axis M). Performing first r then s takes vertex 2 back
to its initial position and gives a rotation about axis N. But first s then r moves
2 to the place originally occupied by 4, and so cannot be the same rotation. Do
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Figure 1.4

not fall into the trap of carrying the axis of s along with you as you do r first.
Both r and s should be thought of as rigid motions of space, each of which has
an axis that is fixed in space, and each of which rotates T onto itself.

Here is a third observation. There is only one rotation of the pyramid
which, when combined once with itself, gives the identity; namely, the unique
rotation through z. The plate has seven such symmetries and the tetrahedron
three. These three rotations through = of the tetrahedron commute with one
another, but only one of the seven belonging to the plate commutes with all the
other six. Which one? Experiment until you find out.

To obtain a decent measure of symmetry, simply counting symmetries is not
enough; we must also take into consideration how they combine with each
other. It is the so-called symmetry group which captures this information and
which we now attempt to describe.

The set of rotational symmetries of 7" has a certain amount of ‘‘algebraic
structure”. Given two rotations u and v we can combine them, by first doing v,
then doing u, to produce a new rotation which also takes T to itself, and which
we write uv. (Our choice of uv rather than vu is influenced by the convention
for the composition of two functions, where fg usually means first apply g,
then apply f.) The identity rotation, which we denote by e, behaves in a rather
special way. Applying first e then another rotation u, or first u then e, always
gives the same result as just applying u. In other words ue = u and eu = u for
every symmetry u of 7. Each rotation u has a so-called inverse u™*, which is
also a symmetry of T and which satisfies u '« = e and uu™! = e. To obtain
11, just rotate about the same axis and through the same angle as for u, but
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in the opposite sense. (For example, the inverse of the rotation r is rr, because
applying r three times gives the identity.) Finally, if we take three of our
rotations u,v, and w, it does not matter whether we first do w then the
composite rotation uv, or whether we apply vw first and then u. In symbols this
reduces to (uv)w = u(vw) for any three (not necessarily distinct) symmetries
of T. )

The twelve symmetries of the tetrahedron together with this algebraic
structure make up its rotational symmetry group.

EXERCISES

1.1. Glue two copies of a regular tetrahedron together so that they have a
triangular face in common, and work out all the rotational symmetries

of this new solid.
1.2. Find all the rotational symmetries of a cube.

1.3. Adopt the notation of Figure 1.4. Show that the axis of the composite
rotation srs passes through vertex 4, and that the axis of rsrr is deter-
mined by the midpoints of edges 12 and 34.

1.4. Having completed the previous exercise, express each of the twelve
rotational symmetries of the tetrahedron in terms of r and s.

1.5. Again with the notation of Figure 1.4, check that r™' =rr, s™' =3y,

(rs)™* = srr, and (sr)"! = rrs.

1.6. Show that a regular tetrahedron has a total of twenty-four symmetries
if reflections and products of reflections are allowed. Identify a sym-
metry which is not a rotation and not a reflection. Check that this
symmetry is a product of three reflections.

1.7. Let g denote reflection of a regular tetrahedron in the plane determined
by its centroid and one of its edges. Show that the rotational symmetries,
together with those of the form ug, where u is a rotation, give all twenty-
four symmetries of the tetrahedron.

1.8. Find all plane symmetries (rotations and reflections) of a regular pen-
tagon and of a regular hexagon.

1.9. Show that the hexagonal plate of Figure 1.2 has twenty-four symmetries
in all. Identify those symmetries which commute with all the others.

1.10. Make models of the octahedron, dodecahedron, and icosahedron (see
Fig. 8.1). Try to spot as many symmetries of each of these solids as you
can.



CHAPTER 2

Axioms

Without further ado we define the notion of a group, using the symmetries of
the tetrahedron as guide. The first ingredient is a set. The second is a rule
which allows us to combine any ordered pair x, y of elements from the set and
obtain a unique “product” xy which also lies in the set. This rule is usually
referred to as a “multiplication” on the given set.

A group is a set G together with a multiplication on G which satisfies three
axioms:

(a) The multiplication is associative, that is to say (xy)z = x(yz) for any three
(not necessarily distinct) elements from G.

(b) Thereis an element e in G, called an identity element, such that xe = x = ex
for every xin G.

(c) Each element x of G has a (so-called) inverse x ~* which belongs to the set G
and satisfies x 'x = e = xx 71,

How does a formal definition couched in terms of axioms help? So far not at
all; indeed, if the only group turned out to be the rotational symmetry group
of the tetrahedron, we would be wasting our time. But this is not the case;
groups crop up in many different situations.

All of us take the additive group structure of the set of real numbers for
granted. Here the rule for combining an ordered pair of numbers x, y is simply
to add them to give x + y. We accept that (x + y) + z = x + (y + z) for any
three real numbers, there is an identity element, namely, zero, and — x is
clearly an inverse for the real number x. This example shows why we previ-
ously placed the words product and multiplication in quotation marks. The
rule which enables us to combine our elements is invariably referred to as a
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multiplication, but may have nothing to do with multiplication of numbers in
the usual sense.

A chemist may be interested in the amount of symmetry possessed by a
particular molecule. Methane (CH,), for example, can be thought of as
having a carbon nucleus at the centroid of a regular tetrahedron, with four
protons (hydrogen nuclei) arranged at the vertices. The benzene molecule
(C4Hg), on the other hand, is modelled by a hexagonal structure with a carbon
and a hydrogen nucleus at each vertex. (Hexagonal symmetry is common in
nature, perhaps nowhere more pleasing than in the structure of a snow crystal;
see Fig. 2.1.) From our experience with the tetrahedron and the hexagon we
know that it matters in which order we combine two symmetries. Hence, the
continual reference to ordered pairs of elements. It matters whether we take
two elements of a group in the order x, y or in the opposite order y, x. In the
first case our rule gives the answer xy, in the second yx, and these two need not

be equal.
A physicist learning relativity meets the Lorentz group, whose elements
are matrices of the form
coshu sinh u
: (*)
sinh u coshu

and which are combined via matrix multiplication. Remember that cosh «,
sinh u are the hyperbolic functions, so called because the equations x = cosh
u, y = sinh u determine the hyperbola x* — y? = 1. They satisfy

cosh(u + v) = cosh u cosh v + sinh u sinh v,
sinh(u £ v) = sinh u cosh v + cosh u sinh v
consequently,

[cosh u sinhu |{ coshv sinhv | [ cosh(u + v) sinh(u + v)
sinh u coshu || sinhv coshv | | sinh(u + v) cosh(u + v)
and this product does give a matrix of the same form. The identity matrix fulfils

the requirements of an identity, and lies in the given set of matrices because it
is equal to

cosh0 sinh 0
sinh 0 cosh 0

As an inverse for () we can use

I:cosh(— u) sinh(— u):l

sinh(— u) cosh(— u)

which has the required form. Since matrix multiplication is associative, we
have a group.

A mathematician thinking about Euclidean geometry finds he is studying
those properties of figures which are left unchanged by the elements of a
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particular group, the group of similarities of the plane. A similarity enlarges or
shrinks figures while keeping them the same shape. More precisely, it sends
straight-line segments to straight-line segments, multiplying their lengths by a
factor which is the same for every segment. Triangles are sent to similar
triangles, angles being preserved in magnitude, though not necessarily in
sense. The composition of two similarities is another, and the group axioms
are easily checked (see Exercise 2.4).

It is precisely when we recognise the same amount of structure in a wide
variety of interesting examples that the abstract approach comes into its own.
Starting from the axioms for a group, we shall build up a body of results which
may be used whenever these axioms are satisfied, a much more satisfactory
state of affairs than having to verify a specific property time and time again for
different groups.

Here are two properties common to all groups. The identity element of a
group is unique. Suppose two elements e and e’ are both identities. Then
ee’ = ¢ because e is an identity, and ee’ = e because ¢ is an identity. Hence e
is equal to €'. The inverse of each element of a group is unique. Assume y and z
are both inverses for the element x. Then

y=ey (where e is the identity in the group)
= (zx)y (since z is an inverse for x)
= z(xy) (because the multiplication is associative)
= ze (since y is also an inverse for x)
=z (as e is the identity).

Hence y is equal to z, and the inverse of x is indeed unique. Notice that both
arguments use only those facts about a group which are supplied by the
axioms. For this reason we can be confident that the conclusions hold for
every group.

In the next few sections we shall begin to develop theoretical results along-
side concrete examples of groups. Remember, the examples are important;
without them the theory is at best a poor form of intellectual entertainment.

EXERCISES

2.1. Compare the symmetry of a snow crystal with that of the hexagonal
plate in Figure 1.2.

2.2. Show that the set of positive real numbers forms a group under multi-
plication.

2.3. Which of the following collections of 2 x 2 matrices with real entries
form groups under matrix multiplication?

b
(i) Those of the form [Z } for which ac # b2.
.
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2.5.

2.6.

2.7.

2.8.

2. Axioms

.. b
(i1) Those with entries [a :I such that a® # bc.
c a

b .
(iii) Those of the form [g :| where ac is not zero.
c

(iv) Those which have non-zero determinant and whose entries are
integers.

Let f be a similarity of the plane. Show that f'is a bijection and that the
inverse function f ! is also a similarity. Verify that the collection of all
similarities of the plane forms a group under composition of functions.

A function from the plane to itself which preserves the distance between
any two points is called an isometry. Prove that an isometry must be a
bijection and check that the collection of all isometries of the plane
forms a group under composition of functions.

Show that the collection of all rotations of the plane about a fixed point
P forms a group under composition of functions. Is the same true of the
set of all reflections in lines which pass through P? What happens if we
take all the rotations and all the reflections?

Let x and y be elements of a group G. Prove that G contains elements w,
z which satisfy wx = y and xz = y, and show that these elements are

unique.

If x and y are elements of a group, prove that (xy)™ = y “'x 7'

CHAPTER 3

Numbers

Perhaps the quickest way to get used to the group axioms is to look at some
groups of numbers. The list below serves to give examples and to establish
some notation.

Addition of numbers (real or complex) makes each of the following sets into
a group:

Z, the set of integers;

@, the set of rational numbers;
R, the set of real numbers;

C, the set of complex numbers.

In each case zero is the identity element, and — x is the inverse of the number
X.

Multiplication of numbers (real or complex) makes each of the following
sets into a group:

@ — {0}, the non-zero rationals;

R — {0}, the non-zero reals;

Qr°s, the positive rationals;

RPes| the positive reals;

{+ 1, — 1}9

C — {0}, the non-zero complex numbers;
C, the complex numbers of modulus I;
{£1, +i}.

In each case the number 1 is the identity element, and 1/x is the inverse of the
number x.

Itis worth examining this list in some detail, as much for what is missing as
for what it contains. Adding two integers always produces an integer. This is
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the first thing we need to notice when checking that the integers form a group
under addition. But if we took, say, the set of all odd integers, and again used
addition as the rule for combining elements, the result could not be a group
because the sum of two odd integers is even and so does not belong to the given
set.

Turning to multiplication of numbers as group multiplication, we must
remove zero from the set of real numbers if we wish to have a group. There is
clearly no number x such that x.0 = 1; in other words, zero does not have a
multiplicative inverse. It is easy to check that the non-zero real, rational, and
complex numbers all form groups under multiplication. What about the non-
zero integers? Multiplication does not make them into a group. The only
number x which satisfies 2. x = 1 is 4, which is not an integer. Therefore, 2
has no multiplicative inverse in the set of integers.

We use C to denote the unit circle in the complex plane, that is to say, the
set of those complex numbers which have modulus one. If z,we C, then
|zw| = |z||w| = 1, showing that zw € C. The number 1 lies in C and acts as
identity for complex multiplication. Finally, if z € C, then|1/z| = 1/|z| = 1,50
1/z € C and each element of C has a multiplicative inverse which also belongs
to C. Therefore, complex multiplication makes C into a group. We have made
no mention of the associative law, but if we accept that it holds for multiplica-
tion of any three complex numbers, then it certainly holds for any three
numbers taken from C.

Strictly speaking, we should use notation such as (R, +) to denote the
additive group of reals, making it absolutely clear that the underlying set is the
set of real numbers, and the group “multiplication” is addition of numbers. In
practice, this is cumbersome to work with, so we agree (o use the same symbol
R for the set of real numbers, and for the group of real numbers under
addition. It will usually be clear from the context which one we mean. The
other symbols introduced in our list will also be used to stand for the corre-
sponding groups.

The set of integers is a subset of the set of real numbers, and both form
groups under addition. We shall say that Zisa “subgroup” of R. This idea will
be taken up again in Chapter 5.

A group is commutative, or abelian, if xy = yx for any two of its elements.
All of the examples in our list are abelian because x + y =y + X and x.y =
. x for any two numbers x, y, real or complex.

Let n be a positive integer. The set 0, 1,2, ..., n — 1 can be made into a
group using addition modulo n. That is to say, if x and y are members of this
set, define

x+y ifos<x+y<n
X4,y = .
{x+yfn ifx+y=n

and use this as “multiplication”. For example, 5 +¢ 3 =8 — 6=2.
(Counting modulo a particular number is a familiar idea; think of adding
angles modulo 27.) The group axioms are easy to check. This sum x +, y is
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again an integer between Oand n — 1. Both (x +, y) +, zand x 4, (y +, z) are
equal to ’
x+y+z fO0<x+y+z<n

x+y+z—n fn<x+y+z<2n
X+y+z—2n ifx+y+z=2n

so associativity follows. Zero is the identity element, and # — x is the inverse
of x for x # 0. The group is abelian because x +, y = y 4, x. Therefore we
have a finite abelian group with n elements which will be denoted by Z,,.
Two integers are congruent modulo n if they differ by a multiple of "n of
course each integer x is congruent modulo n to exactly one of the integers 0
1,2,...,n — 1,namely, to the remainder obtained on dividing x by n. We shali
refer to this remainder as *“x read mod »”, or simply x(mod n). Then x +, y is
just x + y read mod n. ’
The integers 0, 1, 2, ..., » — 1 may also be multiplied modulo » via

X ., ¥y = xy(modn).

Forexample 5 . 3 = 3 because dividing fifteen by six leaves remainder three.
Can we obtain a group using this multiplication? As usual we must remove the
number zero. But this may not be enough. Take # to be ten. Then2 .,, 5 =0

so multiplication modulo ten of two numbers from 1, 2, . .., 9 does not alway;
produce another number between 1 and 9. Therefore, we do not have a group.
In fact, multiplication modulo n makes the integers 1, 2, ..., n — 1 into a
group precisely when z is a prime number (Exercise 3.10). A simple experiment
shows that deleting the integers 0, 2, 4, 5, 6, 8 leaves a collection which do have
the structure of a group when multiplied modulo ten. Does this suggest a
general result? (The answer can be found in Chapter 11.)

EXERrcIsgs

3.1. Show that each of the following collections of numbers forms a group
under addition.

(i) The even integers.

(ii) All real numbers of the form a + b \/2_ where a,b e Z.
(%ii) All real numbers of the form a + b \/5 where a,b € Q.
(iv) All complex numbers of the form a + bi where a,b € Z.

3.2, Write @(ﬁ) for the set described in Exercise 3.1 (iii). Given a

non-zero element a + b\/i of @(\/5), express 1/(a + bﬁ) in the
form c+d\/2, where c¢,de Q. Prove that multiplication makes

@(ﬁ) — {0} into a group.

3.3. Let n bea ppsitive integer and let G consist of all those complex numbers
z which satisfy z" = 1. Show that G forms a group under multiplication
of complex numbers.
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3.4.

3.5.

3.6.

3.7.

3.8.

39.

3.10.

3. Numbers

Vary n in the previous exercise and check that the union of all these
groups

18

{zeCl"= 1}
1

n
is also a group under multiplication of complex numbers.
Let n be a positive integer. Prove that

(X ¥z =%x.0(y02)
for all x,y,z e Z.
Verify that each of the sets

(1,3,7,9,11,13,17,19}
{1,3,7,9}
{1,9,13,17}

forms a group under multiplication modulo 20.

Which of the following sets form groups under multiplication modulo
14?7

{1,3,5}, {1,3,5,7}
{1,7,13},  {1,9,11,13}.
Show that if a subset of {I,2,...,21} contains an even number, or

contains the number 11, then it cannot form a group under multiplica-
tion modulo 22.

Let p be a prime number and let x be an integer which satisfies
1 < x < p — 1. Show that none of x, 2x, ..., (p — 1)x is a multiple
of p. Deduce the existence of an integer z such that 1 <z < p — 1 and
xz(modp) = 1.

Use the results of Exercises 3.5 and 3.9 to verify that multiplication
modulo n makes {1,2, ..., n — 1} into a group if » is prime. What goes
wrong when 7 is not a prime number?

CHAPTER 4

Dihedral Groups

Think back to the flat hexagonal plate mentioned earlier. Its twelve rotational
symmetries combine in the natural way to form a group. For each positive
integer n greater than or equal to three we can manufacture a plate which has
n equal sides. In this way we produce a family of symmetry groups which are
not commutative, the so-called dihedral groups.

When 7 is three we have a triangular plate. It has six rotational symmetries
and, if r and s are the rotations shown in Figure 4.1, they are

e, r, re, s, rs, rs. (*)

Here 12 is shorthand for rr and means carry out r twice. Clearly r3 is the
identity, since repeating r three times gives a full rotation through 2, and
higher powers of r will not give anything new. Of course, s? is also the identity.
Remember our convention that rs means the symmetry obtained by first
applying s to the triangle, then applying r. If we do this, as in Figure 4.2, we see
that rs is rotation through = about the axis of symmetry labeiled M. Similarly
r2s is rotation through = about axis N.

The six elements () form a group denoted by D5. So if we take two of them
and combine them in either order, we should in each case obtain a member of
the group. We see rs listed, but where is s7? A glance at Figure 4.2 again shows
it is equal to r%s. Similarly s? = rs: this may be checked geometrically, or
algebraically as follows:

sr2 = s(rr) = (sr)r = (r2s)r = r’(sr)
= r2(r¥s) = r*s = r3(rs) = e(rs)
=rs.

Notice the repeated use of the associative law. We have made quite a meal of
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Figure 4.1

this calculation, with a little practice one would not include all the steps! Our
aim is to illustrate that knowing r* = e, s? = ¢, and sr = r%s allows us to
manipulate any product and produce one of the six elements of the list (x).
Here are two more examples:

Hris) =r’s=es=ys,
(r2s) (rs) = r3(s(rs)) = ri((sr)s) = r3((rs)s)
=r(rs) =r*s? =re=r.

The first step in the previous calculation could have been (rZs)(rs) =
((r?s)r)s. Hopefully the answer would be the same. In fact, a product such as
r2srs is independent of the way in which we choose to bracket its terms. More

A=A
ir
A

Figure 4.2
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generally, if x,, x,, ..., x, are elements of a group, any two ways of combining
these elements in this order give the same answer. In other words the product
X, X3 ... X, makes sense without any brackets. A proof by induction is outlined
in Exercise 4.10. The inductive step uses the associative law.

Calculations can now be carried out with less fuss, for example

xyyIx T =xex '=xx"1=e,
and similarly y 'x"'xy = e. Therefore, if x and y are elements of a group, then
(x»)"* = y71x71. In the same way, if x,, x,, ..., X, are elements of a group,

then
-1 _ ,.—1 -1 ,.-1
(xyxy...x) t=x0 0 x5 X

Write x™ for the product of m copies of the element x, and x™ for the
product of n copies of x7*. Then x™x" = x™*" and (x™)" = x™ for any two
integers m and n, provided we interpret x° as the identity.

The following table, called a multiplication table, shows all 36 possible
products xy of ordered pairs of elements x, y taken from D,

e r r? s rs r’s
e e r 2 s rs ris
¥ r r? e rs ris s
r? r? e r ris s rs
s s rs rs e @ r
rs rs s rs r e r?
rs r2s rs s r? r e

The product xy lies at the intersection of row x with column y. For example
theentry circled is s(rs). Notice each element of the group appears exactly once
in every row and every column of the table. This is true of the multiplication
table of any group (see Exercise 4.4). In particular, the identity occurs exactly
once in each row, corresponding to the fact that each element of a group has
a unique inverse.

The dihedral group D, is the rotational symmetry group of a flat plate with
nequal sides. Its elements can be described in the same manner as that used for
Dj. Let r be a rotation of the plate through 2n/n about the axis of symmetry
perpendicular to the plate, and s rotation through 7 about an axis of symmetry
which lies in the plane of the plate. Then the elements of D, are

25, ..., s,

n

e,r,r3 . s s,

PR

Clearly r" = ¢, s* = e, and we can check geometrically that sr = r"~s. Since
r"~1 = r7! we usually write this last relation as sr = r~'s. As before, all other
products can be worked out using these. For example,

srt=srr=rlsr=r2s=r

Each element of the group has the form r® or r%s where 0 < @ < n — 1 and we
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find that
rarb — rk

ro(rbs) = r"s} where k = a +, b,

r*s)yr® =r's
(ros)(rbs) = r'
We say that r and s together “generate” the group D,, an idea that will be
developed in Chapter 5.

The order of a finite group is the number of elements in the group. A group
that contains infinitely many elements is said to have infinite order. We usually
write |G| for the order of the group G. If x is an element of a group, and if
x" = e for some positive integer #, then we say x has finite order, and the
smallest positive integer m such that x™ = e is called the order of x. Otherwise
x has infinite order.

} where [ = a +, (n — b).

EXAMPLES.

(i) The order of Dj is six. There are two elements of order three (r, r?) and
three elements of order two (s, s, r2s).

(ii) The order of Z is also six. The elements 1 and 5 both have order six, 2 and
4 have order three, and 3 has order two.

(iii) R has infinite order, and every element (except 0) has infinite order
because repeatedly adding a real number to itself never gives zero, unless
of course the number was zero to start with.

(iv) C is the unit circle in the complex plane made into a group by multipli-
cation of complex numbers. It is an infinite group and has elements of
both finite and infinite order. A typical element ¢ has finite order
precisely when @ is a rational multiple of 2=, that is to say when 6 = 2mn/n
for some integers m and n.

EXERCISES

4.1. Work out the multiplication table of the dihedral group D,. How many
elements of order 2 are there in D,?

4.2. Find the order of each element of Z, Z,, and Z;,.

4.3. Check that the integers 1, 2, 4, 7, 8, 11, 13, 14 form a group under
multiplication modulo 15. Work out its multiplication table and find the
order of each element.

4.4. Let g be anelement of a group G. Keep g fixed and let x vary through G.
Prove that the products gx are all distinct and fill out G. Do the same for
the products xg.

4.5. An element x of a group satisfies x? = ¢ precisely when x = x7*. Use
this observation to show that a group of even order must contain an odd
number of elements of order 2.
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4.6.

4.7.

4.38.

4.9.

4.10.

If x, y are elements of a group G, and if all three of x, y, xy have order
2, prove that xy = yx.

Let G be the collection of all rational numbers x which satisfy 0 < x < 1.
Show that the operation

x+y
xX+ty=
x+y—1

fos<x+y<l1
ifx+y=>1

makes G into an infinite abelian group all of whose elements have finite
order.

Let x and g be elements of a group G. Show that x and gxg ! have the
same order. Now prove that xy and yx have the same order for any two
elements x, y of G.

Check that the 2 x 2 matrices
a b .
l:c d:' for which a, b, ¢, de Z and ad — bc = 1

form a group under matrix multiplication. Let

0 -1 0 1
A= =
and find the orders of A, B, AB, BA.

General associative law. Let G be a group and assume inductively that
products x, x, ... x, of elements of G always make sense without any
brackets provided 1 < k <n— 1. We must verify that an arbitrary
product x; x, ... x, of length n is well defined regardless of the way in
which we bracket its terms. Suppose we combine these elements in two
different ways, and that the final multiplications in the two procedures
are

(x1x2"°xr)(xr+l"‘xn): (])
(x1x2"'xs)(xs+1"'~xn)a (2)

where 1 < r < s < n— 1. These terms inside brackets make sense by our
inductive hypothesis. Write (1) as

Cerxg e X ) [Oerar - X)) (Xgag - X,)]

express (2) in a similar fashion, and use the ordinary associative law for
three elements to finish the argument.



CHAPTER 5

Subgroups and Generators

Inside Dg the six elements
e, r2 rt, s, r2s, rts

form a group with respect to composition of symmetries. This is easy to check.
The product of any two of these gives another, the identity is present, and
since

e l=e, (PP) V=14 () L =12 s =5, (r2s) T = 25, (r*s) ! = s

all the inverses are also present. If we look at Figure 5.1 we see that these
elements form the rotational symmetry group of a triangle inscribed inside the
hexagon. So they make up a “copy” of Dj sitting inside D¢, a so called
subgroup of Dy in the following sense.

A subgroup of a group G is a subset of G which itself forms a group under the
multiplication of G.

(When we use the symbol G to denote a group we must remember that G
carries with it a “multiplication” and is not just a set of elements.)

Suppose we have a subset H of G, and want to know whether or not it is a
subgroup. Then we must ask three questions. Given two elements x, y of H we
can form their product xy in G. Does this product always belong to H? Does
the identity element of G belong to H? Each element of H certainly has an
inverse in G; does this inverse always belong to H? If the answer to all three
questions is yes, then H forms a group with respect to the multiplication of G,
and is therefore a subgroup of G. Notice: It is not necessary to check the
associative law. For if (xy)z and x(yz) are equal for any three elements of G,
they are certainly equal for any three elements chosen from a subset of G.
When H is a subgroup of G we write H < G.
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Figure 5.1

EXAMPLES.

i) Z<Q,0<R,andR < C.

(ii) The even integers, which we denote by 27, form a subgroup of the
additive group of integers. For any positive integer n, the set nZ of all
integer multiples of # is a subgroup of Z.

(i) @ — {0} <R — {0} and R — {0} <C — {0}.

(ivy {+1, -1} <Cand C<C — {0}.

(v) The elements e, r, r?, r*, r*, r* form a subgroup of Ds. These are the
rotations which leave the plate the same way up.

(vi) The collection e, r, s, rs does not form a subgroup of D,. The element r
lies in the set, but the product rr = r? is missing.

(vii) The integers 0, 2, 4 form a subgroup of Z.

Example (v) generalises as follows: Given a group G and an element x of G,
the set of all powers of x (i.c., the set of all elements of G of the form x" for
some integer n) is a subgroup of G. (The product x™x" of two powers of x is
x™* " which is again a power of x, the identity element of G is x°, and the
inverse of x" is x ™", which is also a power of x.) This subgroup is called the
subgroup generated by x and written {x). If x has infinite order, then (x)
consists of ...x7%, x7!, e, x, x%, x3, ... . If x has finite order, say m, the
elements of (x) are e, x, x2, ..., x™'. So the order of x is precisely the order
of the subgroup generated by x. If there is an element x in G which generates
all of G (in other words, for which {x) = G), we say that G is a cyclic group.

ExampLEs. (i) The number 1 generates Z, as does — 1, so Z is an infinite cyclic
group. (Since the group structure is addition of integers, the fourth power, say,
oflisl+1+1+1=4)
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(i) The number 1 generates Z,, so Z,, is a cyclic group of order n.

(iii) In Z; we have

<0y = {0},

Ay =<5) =7,

2y =<4y ={0,2,4},
3y =1{0,3}.

For example, the elements of 4> are 4,4 +,4 =2,and 4 +54 +54 = 0.

(iv) In D5 we have

(e> = {e},

{ry =<r*) ={e,r, r*},
(s) = {e, s},

Krsy = {e, rs},

sy = {e, r’s}.

The dihedral group D, is not cyclic, but each of its elements can be written
in terms of the two elements r and s, and we say that r and s together generate
D,. Let X be a non-empty subset of a group G. An expression of the form

xPixTr . oxphe (*)

where x,,...,x; belong to X (they need not be distinct) and m;,...,m, are
integers is called a word in the elements of X. The collection of all these words
is a subgroup of G. (Given two of them, writing one after the other shows that a
product of two words in the elements of X is again a word in the elements of
X. The identity element of G can be thought of as the word x° for any element
x of X, and the inverse of the word

xPixT oo 08 x M xy My ™

which is also a word in the elements of X.) This subgroup is called the subgroup
generated by X. If it fills out all of G we say that X is a set of generators for G,
or that the elements of X together generate G. Suppose X is a set of generators
for G, and let Y be another subset of G. Then if Y contains X it is also a set of
generators for G. More generally, if every element of X can be written as a
word in the elements of Y, then Y is a set of generators for G.

ExXAMPLES. (i) The elements r and s together generate D,. This choice of two
generators is not unique. For example rs and s together also generate D,,
because r = (rs)s and therefore any word in r and s can be converted into a
word in rs and s.

(ii) The group structure on C is addition of complex numbers; consequently,
words are written as linear combinations m,z, + m,z, + -+ + mz, with
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Figure 5.2

integer coefficients. The subgroup generated by {1, i} is the group of Gaus-
sian integers whose elements are the complex numbers a + ib for which

a,be”.

(iii) Consider the real line with the set of integers marked on as in Figure 5.2.
Let G be the set of functions from the line to itself which preserve distance and
which send the integers among themselves. Then G is a group under composi-
tion of functions. It is not hard to check (Exercise 5.9) that each element of G
is either a translation to the left or right through an integral distance, a
reflection in an integer point, or a reflection in a point which lies midway
between two integers. Let ¢ be translation to the right through one unit, so
t(x) = x + 1, and let s be reflection in the origin, so s(x) = —x. Then the
elements of G are
LTt et 1R

T2, 7 s, s, s, s, L (%)

where e is the identity function. For example 1 ~2(x) = x — 2, showing that 12
is translation to the left through two units, and ts(x) =(—x) = —x + 1,
showing that ts is reflection in the point 3. The translation ¢ and the reflection
s together generate G. Equally well the two reflections ts and s together
generate G. Note that

stx)=s(x+1)= —x—1
and

tTls(x) =t (=x)= —x—1,

which means sz = r~'s. Knowing s> = e and st = ¢~ 's allows us to multiply

any two elements from the list (*x) and manipulate the product to have the

same form. This reminds us very much of D,. Indeed, the only difference is

that the rotation r of order n has been replaced by the translation ¢ of infinite

order. For this reason we call G the infinite dikedral group and denoteitby D, .
We end this section with one or two useful facts about subgroups.

(5.1) Theorem. A non-empty subset H of agroup G is a subgroup of G if and only
if xy~! belongs to H whenever x and y belong to H.
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Proof. If His a subgroup, and if x,y € H, then we know y~! must be in H, and
so the product xy~! belongs to H. Conversely, suppose H is non-empty and
that xy~' € H whenever x,ye H. If xe H, then e = xx '€ H, and x™' =
ex~! € H. Finally, if y is also an element of H, then y~! € H as above, and so

xy = x(y~1)"! € H. Therefore, H is a subgroup of G. O
(5.2) Theorem. The intersection of two subgroups of a group is itself a subgroup.

Proof. Let H and K be subgroups of the group G. The identity lies in both H
and K, so Hn K is non-empty. If x and y are elements of the intersection
H n K, they are both elements of H and both elements of K. Since H, K are
subgroups the product xy ~* lies in H and K. Therefore xy ! € H~ K and we
can apply (5.1). O

(5.3) Theorem. (a) Every subgroup of Z is cyclic.
(b) Even better, every subgroup of a cyclic group is cyclic.

Proofof (a). Let H be a subgroup of Z. If H = {0} then H is cyclic. If H # {0},
then H contains a non-zero integer x, and since H is a subgroup it must also
contain —x. So H contains a positive integer. Let 4 be the smallest posi-
tive integer in H. We claim that d generates H. If n e H, divide n by d to
give n = gd + m where g and m are integers and 0 < m <d. In other words
m = n(mod d). We know that n € H and de H. As H is a subgroup gd e H,
hence —gd € H, and therefore

m=n-—gd=n+(—qd)

belongs to H. This contradicts our choice of d unless m is zero. Consequently
n = qd, showing each element of H to be an integer multiple of d as required.

O

Proof of (b). Let G be a cyclic group and K a subgroup of G which is not the
trivial subgroup {e}. If x is a generator for G, then every element of G, and
hence every element of K, is a power of x. Let H = {n € Z|x" € K}. One casily
checks that H is a subgroup of Z. By (a) H is cyclic and, if d generates H, then
x4 generates K. This completes the proof. O

EXERCISES
5.1. Find all the subgroups of each of the groups Z,, Z,, Z,,, D4, and D;.

5.2. If m and n are positive integers, and if m is a factor of n, show that Z,
contains a subgroup of order m. Does Z, contain more than one
subgroup of order m?

5.3. With the notation of Section 4, check that rs and r*s together generate
D,.
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5.4. Find the subgroup of D, generated by r? and r’s, distinguishing care-
fully between the cases n odd and n even.

5.5. Suppose H is a finite non-empty subset of a group G. Prove that His a
subgroup of G if and only if xy belongs to H whenever x and y belong
to H.

5.6. Draw a diagonal in a regular hexagon. List those plane symmetries of
the hexagon which leave the diagonal fixed, and those which send the
diagonal to itself. Show that both collections of symmetries are sub-
groups of the group of all plane symmetries of the hexagon.

5.7. Let G be an abelian group and let H consist of those elements of G which
have finite order. Prove that H is a subgroup of G.

5.8. Which elements of the infinite dihedral group have finite order? Do
these elements form a subgroup of D,?

5.9. Let f be a function from the real line to itself which preserves the dis-
tance between every pair of points and which sends the integers among
themselves.

(a) Assuming f has no fixed points, show that fis a translation through
an integral distance.

(b) If fleaves exactly one point fixed, show that this point is either an
integer or lies midway between two integers, and that fis reflection
in this fixed point.

(¢) Finally, check that f must be the identity if it leaves more than one
point fixed.

5.10. Make a list of those elements of Z,, which generate Z,,. Answer the
same question for Z5 and for Z,. Do your answers suggest a general
result?

5.11. Show that Q is not cyclic. Even better, prove that Q cannot be generated
by a finite number of elements.

5.12. Ifa, b € Z are not both zero and if H = {ia + ub|4, u € Z}, show that H
is a subgroup of Z. Let d be the smallest positive integer in H. Check that
d is the highest common factor of @ and b. (Consequently, the highest
common factor of two integers a, b can always be written as a linear
combination Aa + ub with integer coefficients.)



CHAPTER 6

Permutations

We continue to increase our stock of examples by introducing groups of
permutations. Rearranging or permuting the members of a set is a familiar
idea, for example interchanging 1 and 3 while leaving 2 fixed gives a permuta-
tion of the first three integers. By a permutation of an arbitrary set X we shall
mean a bijection from X to itself. The collection of a// permutations of X forms
a group Sx under composition of functions. There is very little to check. If
a: X' — X and B: X — X are permutations, the composite function «f: X - X
defined by a f(x) = a(B(x))is also a permutation. Composition of functions is
associative, and the special permutation ¢ which leaves every point of X fixed
clearly acts as an identity. Finally, each permutation « is a bijection and
therefore has an inverse «™!: X — X, which is also a permutation and which
satisfies @ 'o = ¢ = a0 L. If X is an infinite set, Sy is an infinite group. When
X consists of the first » positive integers, then Sy is written S, and called the
symmetric group of degree n. The order of S, is n!.

For the time being, we shall concentrate on the symmetric groups. Here are
the six elements of S,.

o [1237] [123] [1237 [123] [123] [123
L1232z 32 P32 231 Pl 312 )

To find the image of an integer under a particular permutation just look
vertically underneath it. Thus
123
[312]

sends 1 to 3,2 to 1, and 3 to 2. Remembering that af means first apply B, then
apply a, we calculate
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[123 1237 123]
213] [132] ”'[231 ’
[123 123] __[123] )
132][213 T2

Therefore, S; is not abelian. We can immediately say that S, is not abelian
when n = 3. Why?

When extended to higher values of n, this notation is too cumbersome to
work with. For example, the element a of Sg defined by «(1) =5, a(2) = 4,
2(3) = 3, a(4) = 6, a(5) = 1, a(6) = 2 becomes

123456]
*= [543612 '
The same information can be captured by o = (15)(246). Inside each pair of
brackets an integer is sent to the integer following it, the final integer being
sent to the first. Therefore 1 issent to 5and Sto 1, 2is sent to 4,4 to 6, and 6
to 2. There is no need to mention integers which are left fixed by the permuta-
tion. Here there is no mention of 3. We can describe any permutation in this
way, the prescription being as follows: Open a pair of brackets, then write
down the smallest integer which is moved by the given permutation. Now, list
the image of this integer under the permutation, followed by its image and so
on, eventually closing the brackets at the stage where we would come full circle
to our starting point. Open a new pair of brackets, list the smallest integer
which has so far not been mentioned and which is moved by the permutation,
etc.

whereas

ExaMPLES
123456789
i = (2856)(394).
® [189362754] (2856)(394)
12345678
i = (182)(365)(47).
(i) [81673542} (182)(365) (47)

(iii) The elements of Sy are
g, (12), (13), (23), (123), and (132).
(iv) The calculation (*) becomes
(12)(23) = (123), whereas (23)(12) = (132).

With this new notation a permutation (4,4, ...q,) inside a single pair of
brackets is called a cyclic permutation. It sends a, t0 @, @, 0 ay, ..., a;,_; to g
and g, to a,, leaving all other integers fixed. The number £ is its length and a
cyclic permutation of length k is called a k-cycle. A 2-cycle is usually referred
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to as a transposition. The above argument shows that every element of S, may
be written as a product of disjoint cyclic permutations, disjoint in the sense that
no integer is moved by more than one of them.

Look again at Example (i) where we obtain (2856) and (394). The first of
these affects only the integers 2, 5, 6, 8, and the second moves only 3,4 and 9.
Because these permutations are disjoint, they commute with one another, that
is to say (2856)(394) = (394)(2856). There is of course a general result here,
if « and B are elements of S, and if no integer is moved by both a and f then
af = Ba. The decomposition of an element of S, as a product of disjoint cyclic
permutations is unique up to the order in which we write down these cyclic
permutations.

(6.1) Theorem. The transpositions in S, together generate S,.

Proof. Each element of S, can be written as a product of cyclic permutations,
and any cyclic permutation can be written as a product of transpositions, since

(@1ay...a) = (@a) .. (qa3)(a,ay).

Therefore, each element of S, can be written as a product of transpositions.
Note that these transpositions need not be disjoint, and that this decomposi-

tion is not unique. O
ExaMPLE
123456
[543612} = (15)(246) = (15)(26)(24).
Since (246) = (624) we have, equally well,
123456 (15)(624) = (15)(64)(62)
543612 | = (15)(

= (15)(46)(26).

(6.2) Theorem. (a) The transpositions (12), (13), ..., (1n) together generate S,,.
(b) The transpositions (12), (23), ..., (n — 1n) together generate S,.

Proof. (a) Note that (ab) = (1a)(1b)(1a) and use (6.1).
(b) Note that (1k) = (k — 1k)...(34)(23)(12)(23)(34)...(k — 1k) and use
part (a). [

(6.3) Theorem. The transposition (12) and the n-cycle (12 ... n) together
generate S,.

Proof. By (6.2)(b) we need only write each transposition of the form (kk + 1)
as a word in (12) and (12...»). This can be achieved as follows

(23)=12...m12)(12...m)1,
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and more generally
(kk + 1) =(2...n)1(12)(12...n)' 7*
for2<k<n 0O

A given element of S, can be written as a product of transpositions in many
different ways. However, the number of transpositions which occur is either
always even or always odd. To check this we introduce the polynomial

P=Px, x5, ..., %)
=00 — X)) —x3) .. (0 — X) (0 — X3) ... (o — X),

in other words, the product of all factors (x; — x;) where 1 <i<n, 1 <j<n,
andi < j. If a € §,, we define a P to be the product of all factors (x,;, — X))
where again 1 < i< n, 1 <j<n, and i <. The effect of « is to permute the
terms of P, while at the same time changing the sign of some of them.
Therefore, a P is either + P or — P, and this determines the so called sign of
o to be + 1 in the first instance and — 1 in the second. To clear the air, here is
an example.

EXAMPLE. n = 3 and « = (132). Then
P=(x; — x)(x; — x3) (x5 — x3),
and
aP = (x3 — x)(x3 — x3)(x; — x;) = +P.

So the sign of (132) is + 1.

In general, if a, f € S, the sign of a8 is the product of the signs of « and f,
and the sign of the transposition (12) is clearly — 1. Since (1a) = (2a)(12)(2a)
for a > 2, the sign of (la) is also — 1, and since (ab) = (1a)(15)(1a), the sign
of any transposition is — 1. Consequently, if an element of S, can be written
as the product of an even number of transpositions, then its sign must be + 1,
whereas the product of an odd number of transpositions always has sign — 1.

An element of S, which can be expressed as the product of an even number
of transpositions is called an even permutation: the others are odd permuta-
tions. Since

(@ a;...a4) =(a,4)...(a1a3)(a,a,),
a cyclic permutation is even precisely when its length is odd.

(6.4) Theorem. The even permutations in S, form a subgroup of order n!/2
called the alternating group A, of degree n.

Proof. If o and f are even permutations, write each of them as the product of
an even number of transpositions. Juxtaposition of these products shows that
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«f is even. Writing the product for « in the reverse order shows that a7 is
even. The identity is of course even because ¢ = (12)(12). Therefore, the even
permutations form a subgroup of S,,. If « is even then (12)a is odd. This pairs
off the elements of S, and shows that precisely half its elements are even. (Why
can every odd permutation be expressed as an even permutation followed by

(12)7) d
(6.5) Theorem. For n > 3 the 3-cycles generate A,.

Proof. Each 3-cycle is certainly an even permutation. Given an element of 4,,
use (6.2a) to write it as the product of an even number of transpositions of the
form (1a). Collect these transpositions into adjacent pairs, and combine each
pair using (1a)(15) = (1ba). Our element is now expressed as a product of

3-cycles. O

The twelve elements of A, are

€, (12)(34), (13)(24), (14)(23)
(123), (124), (134), (234),
(132), (142), (143), (243).

The remaining elements of S,, the odd permutations, are
(12), (13), (14), (23), (24). (34),
(1234), (1243), (1324),
(1432),  (1342),  (1423).

If we wish to write (13)(24) as a product of 3-cycles, the procedure in (6.5)
gives

(13)(24) = (13)(12)(14)(12)
= (123)(124).

EXERCISES
6.1. Write out a multiplication table for S;.

6.2. Express each of the following elements of Sg as a product of disjoint
cyclic permutations, and as a product of transpositions.

12345678
b) (4568)(1245
. [764182351 (b) (4568)(1243)

(¢) (624)(253)(876)(45)

Which, if any, of these permutations belong to Ag?
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6.3. Show that the elements of S, which send the numbers 2, 5, 7 among
themselves form a subgroup of S,. What is the order of this subgroup?

6.4. Find a subgroup of S, which contains six elements. How many sub-
groups of order six are there in §,?

6.5. Compute a P(x,, X, X3, x4) when a = (143) and when a = (23)(412).

6.6. If H is a subgroup of S,, and if H is not contained in A4,, prove that
precisely one-half of the elements of H are even permutations.

6.7. Show that if nis at least 4 every element of S, can be written as a product
of two permutations, each of which has order 2. (Experiment first with
cyclic permutations.)

6.8. Ifa, fareelements of S, check thatafo ™! 7" always lies in 4,, and that
afa ! belongs to 4, whenever § is an even permutation. Work out these
elements when n = 4, o = (2143), and f = (423).

6.9. When nis odd show that (123) and (12...n) together generate 4,. If nis
even show that (123) and (23...n) together generate A,.

6.10. If o, B € S, and if af = Pa, prove that § permutes those integers which
are left fixed by o. Show that f must be a power of « when a is an n-cycle.

6.11. Find the order of each permutation listed in Exercise 6.2.

6.12. Prove that the order of an element « of S, is the least common multiple
of the lengths of the cycles which are obtained when o is written as a
product of disjoint cyclic permutations.



CHAPTER 7

Isomorphisms

A chessboard (Fig. 7.1) has four plane symmetries, the identity e, rotation r
through = about its centre, and the reflections q,, ¢, in its two diagonals. They
form a group under composition whose multiplication table is given below. It
is easy to check that multiplication modulo eight makes the numbers 1, 3, 5,
7 into a group. Again we provide the corresponding table.

| e r '8 q, l 1 3 5 7
e e r q, q, 1 1 3 5 7
r r e g, 9, 3 3 1 7 5
q, q, q, e r 5 S 7 1 3
g5 45 q4 r e 7 7 5 3 1

There is an apparent similarity between these tables if we ignore their origins.
In each case the group has four elements, and these elements appear to
combine in the same manner. Only the way in which the elements are labelled
distinguishes one table from the other.

Label the first group G, the second G’, and the correspondence

e—>1, r=3, ¢, -5, g,—7

by x — x’. When we say that the elements combine in the same manner, we
mean that if x — x” and y — y’, then xy — x'y’. This correspondence is called
an isomorphism between G and G'. It is a bijection and it carries the multi-
plication of G to that of G'. To all intents and purposes then, G and G’ are “the
same”’. Technically they are isomorphic in the following sense.

Two groups G and G’ are isomorphic if there is a bijection ¢ from G to G’
which satisfies ¢(xy) = @(x)@(y) for all x,y € G. The function ¢ is called an
isomorphism between G and G'.
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Figure 7.1

Asking for a bijection ¢ from G to G’ ensures that the underlying sets of G and
G’ have the same size. If, in addition, ¢(xy) = @(x)@(y) for any two elements
x,y of G, it does not matter whether we first combine two elements in G and
then send their product into G’ using @, or first send the elements separately
into G’ via ¢ and then combine their images in G'. Therefore, G’ is really just
G in disguise. Notice that the inverse function ¢~': G’ — G is equally well an
isomorphism, so our definition is symmetrical in G and G'. To indicate that
two groups G and G’ are isomorphic, we shall write G = G'.

ExaMPLEs. (i) Define ¢: R — RP* by ¢(x) = e*. Then ¢ is a bijection and
Pp(x +y) = e = e%e’ = p(x)9(y)

for all x,y € R. Therefore R and RP* are isomorphic groups. Remember that
the group operation in R is addition, whereas that in R is multiplication.

(i) We already know a good deal about the tetrahedron. It has twelve rota-
tional symmetries which form a non-abelian group G. We can learn more
as follows. Number the vertices 1, 2, 3, 4 as in Figure 7.2. Each rotational
symmetry induces a permutation of the vertices, and therefore a permutation
of the first four integers. For example, the rotation r illustrated induces the
cyclic permutation (234), and s induces (14)(23). Working systematically
through all the other possibilities produces the twelve elements of A4,. If two
rotations u,v induce permutations a, 8, respectively then uv clearly induces of3.
Therefore, the correspondence

rotational symmetry — induced permutation

shows that G is isomorphic to A4,.
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Figure 7.2

(iii) Any infinite cyclic group is isomorphic to Z. If G is an infinite cyclic
group, and if x generates G, define ¢: G—Z by ¢(x™) =m. Then ¢ is a
bijection and

P(x"x") = @(x™") =m + n= o(x") + ¢(x").
This shows that ¢ is an isomorphism.

(iv) Any finite cyclic group of order nisisomorphicto Z,. If G is a cyclic group
of order n, and if x generates G, define ¢: G — Z, by ¢(x™) = m(mod n). Then
@ is an isomorphism.

(v) The numbers 1, —1, i, —i form a group under complex multiplication. It
is cyclic and i, —i are both generators. The procedure in (iv) gives two
isomorphisms

1-0, i»1, —1=-2, —i—>3, and

150, —iol, —1-2,  i-3

between this group and Z,,.

(vi) D, and S, are isomorphic. Do this in the spirit of the calculation for the
tetrahedron by labelling the vertices of an equilateral triangle 1, 2, 3.

(vii) There is no isomorphism between @ and Q. For suppose ¢: Q — Qpes
is a candidate. Choose x € Q such that ¢(x) = 2, then
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x + x| |x xl_,
Pl2 727 2% 27
and @(x/2) has to be ﬁ Since ﬁ is irrational, we have a contradiction.

An isomorphism @: G — G’ is a bijection, therefore G and G' must have the
same order. It sends the identity of G to that of G'. For suppose x’ € G’ and
@(x) = x’, then

x'p(e) = p(x)p(e) = p(xe) = p(x) = x’

and similarly @(e)x’ = x', showing that ¢(e) is the identity element of G'.
Alternatively we can observe that

p(e)p(e) = plee) = ¢(e)
and then multiply both sides of this equation by the inverse of ¢ (e} in G’. The
latter argument is preferable to the first one; it does not use the fact that ¢ is
a bijection, only that ¢ sends the multiplication of G to the multiplication of
G
The isomorphism @ sends inverses to inverses in the sense that

o(x) ' =o(kx™) forall xe G.
Again this is easy to check. We have

p(x o) = p(x'x) = ¢ple) = e,

and similarly @(x)@(x™!) = e. Therefore @(x ') is indeed the inverse of @ (x)
in G'. If G is abelian then so is G'. For if x',y" € G’ and if p(x) = X', 9(y) = y’
then

X'y = o(x)e(y) = o(xy)

= p(yx) because G is abelian
=op(Me(x)=y'x".

If ¢: G- G' is an isomorphism and if H is a subgroup of G, then o (H) is a
subgroup of G'. We check this using (5.1). Suppose x',y’ are elements of ¢(H),
then we can find x,y € H such that ¢(x) = x" and ¢(y) =y’. Now His a
subgroup of G, so xy~! belongs to H, and since

e(xy ™) =e@e(y ) =eXe(» 7 =x(y)!

we see that x'(y’) ™! belongs to @(H) as required. Consider the special case
where H is cyclic, generated by the element g of G. If x’ € ¢(H), we have
X' = @(g™) = p(g)™ for some integer m. Therefore, p(H) is generated by the
element ¢(g). As H and ¢ (H ) have the same number of elements, the order of
¢(g) must be the same as the order of g. Therefore, an isomorphism preserves
the order of each element. We comment, finally, thatif ¢: G - G’ and y: G’ —
G” are both isomorphisms, then the composition Y¢: G — G” is also an
isomorphism.
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In Chapter 1 we introduced three solids; a regular tetrahedron, a flat
hexagonal plate with equal sides, and a right regular prism on a twelve-sided
base. The geometrical observation that these solids exhibit different amounts
of symmetry translates to the algebraic statement that no two of them have
isomorphic symmetry groups. We have just shown the rotational symmetry
group of the tetrahedron to be isomorphic to A4,. That of the plate is by
definition Dy, and that of the pyramid is cyclic (generated by a rotation
through 7/6 about the single axis of symmetry) and must therefore be iso-
morphic to Z, ,. Of these three groups Z, , is the only one which is abelian, so
it cannot be isomorphic to either of the other two. And Dy, unlike 4,, contains
an element of order six, so Dg cannot be isomorphic to A4,.

EXERCISES

7.1. Check that the numbers 1,2, 4, 5, 7, 8 form a group under multiplication
modulo 9 and show that this group is isomorphic to Zg.

7.2. Verify that the integers 1, 3, 7, 9, 11, 13, 17, 19 form a group under
multiplication modulo 20. Explain why this group is not isomorphic to
Zs.

7.3. Show that the subgroup {e,(12)(34),(13)(24),(14)(23)} of A, is iso-
morphic to the group of plane symmetries of a chessboard.

7.4. Produce a specific isomorphism between S; and D;. How many dif-
ferent isomorphisms are there from S; to D;?

7.5. Let G be a group. Show that the correspondence x <> x ! is an iso-

morphism from G to G if and only if G is abelian.
7.6. Prove that QP is not isomorphic to Z.

7.7. If G is a group, and if g is an element of G, show that the function
¢: G - G defined by ¢(x) = gxg™! is an isomorphism. Work out this
isomorphism when G is 4, and g is the permutation (123).

7.8. Call H a proper subgroup of the group G if H is neither {e} nor all of G.
Find a group which is isomorphic to one of its proper subgroups.

7.9. Suppose G is a cyclic group. If x generates G, and if ¢: G — G is an
isomorphism, prove that ¢ is completely determined by ¢(x) and that
@(x) also generates G. Use these facts to find all isomorphisms from Z
to Z, and all isomorphisms from Z,, to Z,,.

7.10. Show that R is not isomorphic to @ and that R — {0} is not isomorphic
to @ — {0}. Is R isomorphic to R — {0}?

7.11. Prove that the subgroup of Sy generated by (1234) and (56) is iso-
morphic to the group described in Exercise 7.2.

7.12. Show that the subgroup of S, generated by (1234) and (24) is isomorphic
to D,.

CHAPTER 8

Plato’s Solids and Cayley’s
Theorem

There are five convex regular solids, the tetrahedron (four triangular faces),
cube (six square faces), octahedron (cight triangular faces), dodecahedron
(twelve pentagonal faces), and icosahedron (twenty triangular faces). They are
illustrated in Figure 8.1. We have already shown that the group of rotational
symmetries of the tetrahedron is isomorphic to the alternating group 4,. In
this chapter we shall produce analogous results for the other four solids.

A cube has twenty-four rotational symmetries. They may be counted in the
same way as for the tetrahedron, by finding all axes of symmetry together with
the number of distinct rotations about each axis. The different types of axis are
represented by L, M, and N in Figure 8.2. There are three axes such as L which
together provide a total of nine rotations, six axes of type M with just one
rotation each, and four principal diagonals like N about each of which the
cube can be rotated through 2n/3 and 47/3. This accounts for all twenty-three
non-identity symmetries.

By numbering the vertices of the cube, we could produce an isomorphism
from the cube group to a subgroup of Sg. A much better observation is that
each rotational symmetry permutes the four principal diagonals of the cube.
We shall use this fact to show that our group is isomorphic to S,. Label the
corners of the cube as shown, and let N, denote the diagonal which joins
corner k to corner k', 1 < k < 4. Each rotational symmetry permutes N,, N,,
N;, N, among themselves and consequently gives us a permutation of the
numbers 1, 2, 3, 4. For example, referring to Figure 8.2, r sends N to N,, N,
to N;, Ny to N, and N, to Ny, giving the 4-cycle (1234), and s induces (143).
Under ¢, diagonals N, and N, are interchanged, while N; and N, are sent to
themselves (though they are not left fixed, each has its ends swapped round),
s0 ¢ gives the transposition (12). Write G for the symmetry group and ¢: G —
S, for the function constructed above. Since the product of two rotations
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Tetrahedron

Octahedron

4>

7

Dodecahedron

%,

N

lcosahedron

Figure 8.1

clearly induces the appropriate product permutation, it only remains to check
that ¢ is a bijection.

This can of course be done by elimination; in other words, by working out
the effect of every single rotation of the cube on the four diagonals, rather a
tedious process. Instead, we remember that a surjection between two finite sets
which have the same number of elements must be a bijection, and show that
@ is surjective. But this is easy. Both (1234) and (12) lie in ¢(G), and ¢(G) is
a subgroup of S, because ¢ sends the multiplication of G to that of §,.
Therefore, every word which can be formed from (1234) and (12) must belong
to ¢(G). Since (1234) and (12) together generate all of S;, we have ¢ (G) = S,
completing our argument.
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By joining up the centres of each pair of adjacent faces of a cube we can
produce a regular octahedron inscribed in the cube (Fig. 8.3). The same
procedure carried out on an octahedron gives a cube inscribed in the octa-
hedron, and we say that the cube and the octahedron are dual solids. They
clearly have the same amount of symmetry. Any symmetry of the cube is a
symmetry of the inscribed dual octahedron, and vice versa. Without further
ado we can say that the rotational symmetry groups of the cube and the
octahedron are isomorphic.

There are two more regular solids, the dodecahedron and the icosahedron.
They are dual to one another, and the reader should check this; so for the
purposes of rotational symmetry we need only examine one of them, say the

Figure 8.3



40 8. Plato’s Solids and Cayley’s Theorem

Figure 8.4

dodecahedron. Figure 8.4 shows a cube inside a dodecahedron. Each vertex of
the cube is a vertex of the dodecahedron, and each edge is a diagonal of one of
the pentagonal faces. If we look at a particular pentagon, exactly one of its five
diagonals is an edge of the cube. There is nothing special about this diagonal
and of course there are four more inscribed cubes corresponding to the other
four diagonals of the pentagon. These five cubes are permuted by every
rotational symmetry of the dodecahedron. Using them, just as we used the
principal diagonals when looking at symmetries of a cube, it is not hard to
check that the rotational symmetry group of a regular dodecahedron is
isomorphic to A5. We suggest the following steps and leave the details to the

reader.

(i) Count the rotational symmetries of the dodecahedron and show there are

sixty of them.

(ii) Observe that the order of 45 is 60.

(iii)) Number the inscribed cubes mentioned above 1 to 5 so that each rotation
of the dodecahedron produces an element of Ss.

(iv) By considering rotations about axes which join opposite pairs of vertices,
show that every 3-cycle in S; is produced in this way.

(v) Remember that the 3-cycles in Ss together generate the subgroup As.

We summarise our results as follows. The rotational symmetry group of the
tetrahedron is isomorphic to A,. The cube and octahedron both have rota-
tional symmetry groups which are isomorphic to S,. The dodecahedron and
icosahedron both have rotational symmetry groups which are isomorphic to As.
We emphasise that all these groups contain only rotations. The full symmetry
group of the tetrahedron is worked out in the exercises below; those of the
other regular solids will be dealt with in Chapter 10.

So far we have represented the symmetry groups of the regular solids as
groups of permutations. We now show that every group is isomorphic to a
subgroup of a group of permutations.
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(8.1) Cayley’s Theorem. Let G be a group, then G is isomorphic to a subgroup
of S¢-

Proof. Each element g in G gives a permutation L,: G — G defined by L,(x) =
gx. (L, is injective because if L,(x) = L,(y) then gx = gy, giving g 'gx =
g 'gy and x = y. It is also surjective since if z € G then L,(g™'z) = g9 7'z =
z.) We call L, left translation by g. Notice that if G = R then L, really is
physical translation through a distance g. Let G’ denote the subset {L,|g € G}

of S;. Multiplication in Sg; is composition of functions and
L,(Ly(x)) = Ly(hx) = ghx = Lg(x)

for all x € G. Therefore, the product of two elements of G’ lies in G'. The
identity element ¢ of S; belongs to G’ because it equals L., and the inverse of
L, in S; is L,- which also lies in G’. This shows that G’ is a subgroup of Sg.
The correspondence between G and G’ defined by g — L, is certainly surjective,
and it sends the multiplication of G to that of G’ because gh — L, = L, L,. It
is injective since if L, = L,, then g = L,(e) = L,(e) = h. Therefore, we have
constructed an isomorphism between G and the subgroup G’ of S;. O

(8.2) Theorem. If G is a finite group of order n, then G is isomorphic to a
subgroup of S,,.

Proof. If the elements of G are numbered 1, 2, ..., n in some way, then each
permutation of G induces a permutation of 1, 2, ..., n. This gives an iso-
morphism from S; to S, and the subgroup G’ of Sy is therefore isomorphic to
asubgroup G” of S,. As G is isomorphic to G’, and as the composition of two
isomorphisms is an isomorphism, G is isomorphic to G”. |

As an example we work out G” when G is the group of plane symmetries of
a chessboard introduced at the beginning of the previous chapter. From the
multiplication table we have

L.(e)=r, L(n=r*=e,
L(q,)=rq1 =42, LAq)=rq,=gq;.

Therefore, L, interchanges e and r, and interchanges ¢, and g,. Calculating
L, , L,, in the same way, then labelling the elements e, r, g, g, with 1,2, 3, 4
respectively shows that G is isomorphic to the subgroup {&, (12) (34), (13)(24),
(14)(23)} of S,.

EXERCISES

8.1. Label the edges of a regular tetrahedron 1 to 6, so that each rotational
symmetry of the tetrahedron produces an element of Sg. Work out the
twelve elements of Sy which occur in this way and check that they form

a subgroup of Se.
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8.2

8.3.

8.4.

8.5.

8.6.

8.7.

8.8.

8.9.

8.10.

8. Plato’s Solids and Cayley’s Theorem

Join up the centres of each pair of adjacent faces of a regular tetrahedron
and observe that the result is a second regular tetrahedron inscribed
“upside down” in the first.

Number the faces of a cube 1 to 6. Find the elements of Sg which
correspond to the rotations r, s, and ¢ of Figure 8.2.

Refer to the cube with a stripe marked on each face shown in Figure
18.1. Which rotational symmetries of the cube send stripes to stripes? To
which subgroup of S, do these rotations correspond?

Draw five dodecahedra, with a different inscribed cube in each one. Use
your pictures to examine how these cubes are permuted by the following
rotations.

(a) A rotation of the dodecahedron through 27/5 about an axis which
joins the centres of a pair of opposite faces.

(b) A rotation through = about an axis determined by the midpoints of
a pair of opposite edges.

(¢) Arotation through 27/3 about an axis which joins a pair of opposite
vertices.

Carry out the procedure of Cayley’s theorem to obtain a subgroup of Sg
which is isomorphic to D;.

Show that Cayley’s theorem, when applied to R, produces the sub-
group of S, which contains all translations of the real line.

Convert each element a of S, into an element «,, of S, , as follows. The
new permutation «, behaves just like o on the integers 1,2, ..., n. Ifa is
an even permutation then «, fixes n + 1 and n + 2, whereas if a is odd
a, interchanges n+ 1 and n + 2. Verify that «, is always an even
permutation and that the correspondence « — o, defines an isomor-
phism from S, to a subgroup of A4,.,. Work out this subgroup when
n=23.

If G is a finite group of order n, prove that G is isomorphicto a subgroup

of the alternating group A, ,.

If o is an element of S, write «, for the permutation in S, defined by
k) = alk), I1<k<n

WO =Ytk —ny+n,  n+l<k<2n

Show that a4is always an even permutation and that the correspon-
dence o — o, is an isomorphism from S, to a subgroup of 4,,. Work out
this subgroup when n = 3.

. Let G denote the full symmetry group of a regular tetrahedron 7, and

adopt the notation of Figure 7.2. Find a symmetry g of T which induces
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8.12.

the transposition (12) of the vertices, and show that gr induces the 4-
cycle (1234). Check that gr is neither a rotation nor a reflection, but is
the product of three reflections. Count the symmetries of 7 and prove
that G is isomorphic to S,.

Working.with the full symmetry group of the cube, show that each
permutation of the principal diagonals can be realized by precisely two
symmetries.



CHAPTER 9

Matrix Groups

The set of all invertible n x n matrices with real numbers as entries forms a
group under matrix multiplication. We recall that if 4 = (a;), B = (b;) are
two such matrices, the ijth entry of the product AB is the sum

a; by + apby+ 0+ Qiubyj.

Matrix multiplication is associative, the n x n identity matrix I, plays the role
of identity element, and the above product 4B is invertible with inverse
B~'471,

Each matrix 4 in this group determines an invertible linear transformation
fy: R" - R*defined by £, (x) = x4’ for all vectors x = (x,,...,x,) in R", where
t stands for transpose. Since

Sfap(x) = X(AB)' = xB'A" = f,(f(x))

we see that the product matrix AB determines the composite linear transforma-
tion f, fy. Conversely, if £ R" - R" is an invertible linear transformation, and
if A is the matrix which represents it with respect to the standard basis in both
copies of R”, then A is invertible and f = f,. For these reasons the group is
called the General Linear Group, GL,. If we wish to emphasise that the
matrices all have real entries, then we write GL,(R). Changing R to C gives the
corresponding group GL,(C) of n x n invertible complex matrices.

Matrix multiplication is not commutative for n = 2, so we have a family of
infinite non-abelian groups GL,, GL; ... .Whenn =1 each matrix has a single
entry which is a non-zero real number (non-zero because the matrix is in-
vertible), and multiplication of matrices reduces to ordinary multiplication
of numbers. Hence GL, is isomorphic to R — {0}. If 4 € GL,, the (n + 1) x
(n + 1) matrix
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=[]

belongs to GL,,,. To construct 4 we first add an extra column of zeros to A
to produce an n x (n + 1) matrix, then add to this an extra row, all of whose
entries are zero except the final one which is 1. The collection of all matrices
formed in this way is a subgroup of GL,,, and the correspondence 4 — A4
shows that GL, is isomorphic to this subgroup. In terms of linear transforma-
tions, if we identify R" with the subspace of R"*! consisting of those vectors
which have zero final coordinate, then f7 acts as f;, on R" and leaves the
last coordinate of each point unchanged. That is to say, R"*! = R" x R and
f5: R"* > R™! is given by

Ji(x. 2) = (fa(x), 2).

An n x nmatrix A4 is orthogonal if A* A is the identity matrix, in which case
the sum
1@y + azia5; + 0+ Gpiay

is one when i equals j and zero otherwise. Therefore, the columns of 4 all have
unit length and are perpendicular to one another; in technical language they
form an orthonormal basis for R*. Of course, the rows of 4 also form an
orthonormal basis for R", and since det(4°4) = (det 4)?, the determinant of
Aiseither +1 or —1.If 4 and B are orthogonal, then

(AB™'YAB™' = (B™')Y4'4AB™!

= (Bt)tAlAB—l

=BA'AB™' = 1.
Therefore, 4B is orthogonal and by Theorem (5.1) the collection of alln x #
orthogonal matrices is a subgroup of GL,. This subgroup is called the Ortho-
gonal Group, O,. Those elements of O, which have determinant equal to + 1
form a subgroup of O, called the Special Orthogonal Group, SO,.

If A € O,, the corresponding linear transformation f, preserves distance and

preserves orthogonality. To see why, let x, y be points of R" and consider the
scalar product of f,(x) and f,(y). We have

Ja(x) Sa(y) = (xA4") (yA")
=xA'Ay’
=xy'=x.y

Since || x| = ./x.x, setting y equal to x shows that || f,(x)|| = ||x|, so £,
preserves length. Also,

1a(x) =LaW | = 1 fax =l = lIx —yl,
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which shows that f, preserves the distance between any two points. Finally, we
note that f;(x) . fy(y) is zero precisely when x .y is zero, therefore, if x and y are
perpendicular vectors, then so are f;(x) and f,(y).

We can argue in the opposite direction. Suppose f: R" — R" is a linear
transformation which preserves length. Then fpreserves the distance between

any two points because
10 —fWMI=1f&x=—WI=Ilx—yl
and preserves right angles because
SO =3IS®I2 = 1/ =W+ 1/ W17

=3[Ix)2 = Ix = ylI* + [y [1?)

=X.Yy.
Therefore, f maps the standard basis for R” to an orthonormal basis. The
matrix 4 which represents f has the elements of this basis as its columns;
consequently A is orthogonal. We conclude that f = f, where 4 € O,.

We immediately feel more ““at home” if we set nequal to 2 or 3. If 4 € O, the
columns of A are unit vectors and are orthogonal to one another. Suppose

a ¢
[
then (a, b) lies on the unit circle giving a = cos 8, b = sin 6 for some 6 satisfying
0 < 0 < 2. As (c, d) is at right angles to (a, b) and also lies on the unit circle,
we have ¢ = cos @, d = sin ¢ where either ¢ = 0 + n/2 or ¢ = 6 — n/2. In the
first case we obtain
[cosd —sin@
| sinf cosf :| ’

which is an element of SO, and represents anticlockwise rotation through 6.
The second case gives

[ cos 0 sin 6
| sinf — cosf

which has determinant — 1 and represents reflectionin a line at angle 6/2 to the
positive x-axis. Therefore, a 2 x 2 orthogonal matrix represents either a rota-
tion of the plane about the origin, or a reflection in a straight line through the
origin, and the matrix has determinant + 1 precisely when it represents a rola-
tion. We have seen SO, before, albeit disguised as the unit circle in the complex
plane. Each point on the unit circle has the form e, where 0 < 6 < 27, and

” cosf —sin@
—
¢ sin 6 cos @

is an isomorphism from C to SO,.

the correspondence
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Now suppose that 4 belongs to SO;. The characteristic polynomial
det(A4 — ZI) is a cubic and therefore must have at least one real root. That is
to say, A has a real eigenvalue. As the eigenvalues all have unit modulus, and
as their product is det(A), we see that +1 is an eigenvalue of 4. If v is a
corresponding eigenvector, the line through the origin determined by v is left
fixed by f,. Also since f, preserves right angles, it must send the plane which
is perpendicular to v, and which contains the origin, to itself. Construct an
orthonormal basis for R* which has the unit vector v/||v| as first member. The
matrix of f; with respect to this new basis will be an element of SO, of the form

1 0 0

0

o B
Clearly B € S0O,, so that f, is a rotation with axis determined by v. Therefore,
each matrix in SOy represents a rotation of R® about an axis which passes
through the origin. Conversely, every rotation of R* which fixes the origin is

represented by a matrix in SO, (see Exercise 9.11).
If 4 lies in O; but not in SO;, then AU € SO, where

1 0 0
U=]0 1 0
0 0 -1

Note that U represents reflection in the (x,y) plane. We write 4 as the product
(AU)U to give
Ja=favtu-

As above f,; is a rotation. Consequently, f, is reflection in the (x, y) plane
followed by a rotation.

We shall often refer to SO, as the rotation group in three dimensions. If a
regular solid is positioned in R? with its centre of gravity at the origin, then
each of its symmetries is represented by a matrix in O,. Its rotational symme-
try group is therefore isomorphic to a subgoup of SO,, and its full symmetry
group to a subgroup of O5.

ExaMpLE. The points P = (1,1, D,9=(-1,-11), R=(1,—1,—1), and
S$ =(—1,1, —1) are the vertices of a regular tetrahedron which has its centroid
at the origin (see Figure 9.1). The two rotations about the axis through vertex
P cyclically permute the coordinate axes and are represented by the matrices

0 0 1 0 1 0
1 0 0, 0 0 1
0 1 0 1 0 0

The'axis of symmetry which joins the midpoints of the edges PQ and RS is the
2 axis, and rotation through 7 about this axis has matrix
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Figure 9.1
—1 0 0
0 —1 0
0 0 1

Reflection in the plane determined by P, Q, and O keeps P and Q fixed while
interchanging R and S. The corresponding matrix is

0 1 0
1 0 0
0 0 1

The symmetry which cyclically permutes P, 0, R, S is neither a rotation nor a
reflection, it is the product of three reflections. What is its matrix?

We shall classify finite subgroups of SO, in Chapter 19. Any such subgroup
is either isomorphic to a cyclic group, isomorphic to a dihedral group, or iso-

morphic to the rotational symmetry group of a regular solid.

The matrices in GL,(C) correspond to linear transformations of the
standard n-dimensional complex vector space C". If z € C", the length of z is
the square root of zz*, where * denotes complex conjugation. A complex
matrix U is called a unitary matrix if U*' U is the identity matrix, and the
unitary matrices are precisely those whose corresponding linear transfor-
mations preserve length in C". The collection of all n x n unitary matrices
forms a subgroup of GL,(C) called the Unitary Group, U,. Those elements
of U, which have determinant equal to + 1 form the Special Unitary Group,

SU,.
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EXERCISES
In those exercises which involve the representation of linear transformations
by matrices, we assume that the Euclidean space involved is equipped with the
standard basis.

9.1. Which of the following collections of n x » real matrices form groups
under matrix multiplication?

(a) The diagonal matrices whose diagonal entries are non-zero.
(b) The symmetric matrices.

(c) Those invertible matrices which have integer entries.

(d) Those invertible matrices which have rational entries.

9.2. Check that the set of all matrices of the form

b
[g C:I, where a, b,ce Rand ac # 0

is a subgroup of GL,(R).

9.3. Prove that the elements of GL,(R) which have integer entries and
determinant equal to +1 or —1 form a subgroup of GL,(R). This
subgroup is denoted by GL,(Z).

9.4. The points (1, — \/3), (1, \/5), and (—2,0) determine an equilateral
triangle. Work out the matrices in O, which represent plane symmetries
of this triangle. Do the same caiculation for the regular hexagon, whose

corners have coordinates (2,0), (1, \/5), (-1, \/5), (—=2,0),(—1, — ﬁ),
(1. -3
9.5. Let

cos @ —sinf si
a4y = sin and B, - c?s<p sin @ '
sinf cosf sin @ —COos @

Prove that Ag A4, = 4g,,, 4B, = By.,, Byd, = By ,,and BB, = A4,_,,
where the angles in the matrices are read mod 27. Interpret these results
geometrically.

9.6. Adopt the notation of the previous question and work out the products
ApB, Ay}, B,AgB,, AyB,A,™! B,. Evaluate each of these when 0 = Zand
» =%
9.7. Complete the entries in
l/ﬁ 0
0 1

~1//2 0

to give an element of SO5, and to give an element of Oy — SO;. Describe
the linear transformations represented by these matrices.
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9.8.

9.9.

9.10.

9.11.

9.12.

9. Matrix Groups

Show that

2/3 1/3 2/3 —1/2 1.3 1/./6
—2/3 2/3 1/3 |, 1//2 11/3 1/,/6
—13 =23 23 0 1/3 -2/6

both represent rotations and find axes for these rotations.

Letv,, v, V5 be three mutually orthogonal vectors in R® and let 4 be the
matrix formed by taking v, as first column, v, as second column, and v3
as third column. If

1 0 0
B=(0 1 0
0 0 -1

show that A BA ~! represents reflection in the plane containing v, andv,,
and that —ABA ™! represents rotation through = about the axis de-
termined by v,. Find the matrix which represents reflection in the plane

x+\/5=z.

Prove that the correspondence

A 0 .
[0 1] if 4 € SO,
A 0 .
[0 _1:| if4e 0, — SO,

is an isomorphism from O, to a subgroup of SO;. Thicken the shapes of
Exercise 9.4 to produce horizontal triangular and hexagonal plates, and
write down the elements of SO, which represent the rotational sym-
metries of these plates.

Show that a rotation of R® which fixes the origin is represented by a
matrix in SO;. First assume that the axis of the rotation is the z-axis,
then deal with the general case.

Prove that the matrices

1 0 0 1 0 0
o 1 of (o -1 01,
0o o 1 0 0o -1
-1 0 0 —1 0 0
0o 1 0], 0 -1 0
o o —1 0 0o 1

form a subgroup of SO; and find the corresponding rotations. Draw a
picture of
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9.13.

9.14.

{02 e R + (y —3)? <25, x2 + (y+ 3> <25, —1<z< 1}

and Yerify that it. is a “regular two-sided shape”” whose rotational sym-
metries are precisely those represented above. We often refer to the
rotational symmetry group of this solid as the dihedral group D,.

Chec.k Fhat. the #n x n unitary matrices do form a group under matrix
multiplication, and that the determinant of each of these matrices is a
complex number of modulus 1.

Show that the elements of U, have the form

z w
— e y* 0o *

where z,we C, 6 e R and zz* + ww* = I. Which of these matrices
belong to SU,?



CHAPTER 10

Products

The direct product G x H of two groups G and H is constructed as follows. Its
elements are ordered pairs (g, #) where g € G and h € H, with multiplication
defined by

(9. W) (g'. 1) = (gg', hh").

Both g and ¢’ are elements of G, and they are multiplied in G to give the first
entry, gg’, of this product. The second entry is obtained by multiplying h and
k' in H. Therefore (gg', hh’) is an element of G x H. Associativity follows
directly from associativity in both G and H. The pair (e, e) is the identity, and
(g7, k7 ')is the inverse of (g, h). So G x H is a group. (We hope our use of the
same symbol for the identity elements of G and H will not cause confusion.)
The correspondence (g, ) — (h, g) makes it clear that G x H is isomorphic
to H x G. If either G or H is an infinite group, then G x H is infinite,
otherwise the order of G x H is the product of the orders of G and H. If G and
H are both abelian, then G x H is abelian. Now G is isomorphic to the
subgroup {(g, ¢)|g € G} of G x H via the correspondence g — (¢, e), and His
isomorphic to the subgroup {(e, h)|h € H} via h — (e, h). Since any subgroup
of an abelian group is abelian, we see thatif G x H is abelian, then so are both
G and H. The direct product G, x - -+ x G, of a finite collection of groups has
elements (x;,...,x,) where ;€ G;,  <i<n, which are combined via

(xl" . sxn)(x/l’- N ’xr,l) = (xlx/la e ’xnxr,x)-
Again, changing the order of the factors always produces an isomorphic
group.
EXAMPLES. (i) Z, x Z, has six elements, (0,0), (1,0),(0,1),(1,1),(0,2), (1, 2),
which are combined by

P+ (XL YY) = (x +2xy +3)).
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It seems sensible to use + for the group structure, since we have “‘addition” in
each factor. We shall follow this convention whenever we have products of
cyclic groups. By repeatedly adding the element (1, 1) to itself we can fill out
the whole group. Therefore, Z, x Z, is cyclic and must be isomorphic to Z,.
A specific isomorphism from Z, x Z, to Z is given by

0,0) >0, 1, n-1, 0,2)-2,

1,00-3, (O,Dh-4, (1,2)-5.
(i) In a similar fashion we can write down the four elements of Z, x Z, as
(0,0), (1,0), (0,1), (1, 1), this time taking addition modulo 2 in both coordi-
nates. Each non-identity element now has order 2, so the group is not cyclic.

It is isomorphic to the group of plane symmetries of a chessboard (Chapter 7)
via the correspondence

(050)_‘)89 (190)'—)‘119
(091)_"]25 (1> 1)—’7‘
Z, x Z, is often called Klein’s group.

(iii) We write R” for the direct product of n copies of R. In the usual way, we
think of elements of R” as vectors x = (x,,..., x,), and the group operation is
just vector addition written

X+y =0+ ps Xyt V)

(10.1) Theorem. Z,, x Z, is cyclic if and only if the highest common factor of m
andnis 1.

Prqof. Let k be the order of the element (1, 1)in Z,, x Z,. Adding (1, 1) toitself
k times gives (0, 0), in other words

(k(mod m), k(mod n)) = (0, 0).

This means that m and » are both factors of k. If the highest common factor
of mand nis 1, then mn must be a factor of k, and therefore ¥ = mn. So in this
case (1, 1) generates Z,, x Z, and we have a cyclic group.

Now let d be the highest common factor of m and n, and suppose dis greater
than 1. We must show that Z,, x Z,, is not cyclic. Let m’ = m/d and n’ = n/d.
For any element (x, y) of Z,, x Z,, we have

m'dn'(x,y) = (m'dn’ x(mod m), m’dn’ y(mod n))
= (mn’ x(mod m), m'ny(mod n))

=(0,0),

so the order of (x, y) is at most m’dn’. Therefore, Z,, x Z, does not contain an
element of order mn and consequently cannot be cyclic. ]
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EXAMPLE (iv). Let / denote the 3 x 3 identity matrix and write J for — /. Both
I and J commute with every other matrix in O;, and together they form a
subgroup of O; of order 2. We shall show that O, is isomorphic to the direct
product of SO; and this subgroup. Define
@: SO, x {I,J} > O,
by @(A4,U) = AU, where 4 € SO; and Ue {I,J}. Then ¢ preserves the al-
gebraic structures involved because
o((4, U)(B, V) = @(AB,UYV)
= ABUV
= AUBV
= @4, U)e(B,V)
for all 4,Be SO; and U,V e {I,J}. If ¢(4,U) = ¢(B,V), then AU = BV,
giving det(4U) = det(BV'). But
det(AU) = det(A4) .det(U) = det(U)
because A4 € SO, and similarly det(BV) = det(V). Hence, U=V, 4 =B,
and we conclude that ¢ is injective. It only remains to check that ¢ is

surjective. Given A € Os, either 4 € SO,, in which case A = ¢(4,1), or AJ €
SO, and 4 = ¢(AJ,J). This completes the argument.

We note that {I,J} is isomorphic to Z,; just send 7 to 0 and J to 1.
Therefore, O is isomorphic to SO; x Z,. The same argument shows that O, is
isomorphic to SO, x Z, when n is odd. For even n this result is false (see

Exercise 10.9).

The above example generalises as follows: If H and K are subsets of a group
G, let HK denote the collection of all products xy where x € H, y € K.

(10.2) Theorem. If H and K are subgroups of G for which HK = G, if they have
only the identity element in common, and if every element of H commutes with

every element of K, then G is isomorphic to H x K.

Proof. Mimic the argument of Example (iv). Define
o Hx K—>G
by @(x,y) = xy forall x € H, y € K. Then
e((x, ) (X', ¥") = o(xx, yy")
= xx'yy’

= xyx'y’, because elements of H commute with
elements of K

= o(x, V), y").

. Product
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So ¢ takes the multiplication of H x K to that of G. Ifp(x,y) = @(x’,y’), then
xy = x'y" and, therefore, |
COREES S NS
As the left-hand side belongs to H and the right-hand side to K, both belong
‘m‘H.m K and must therefore be the identity. Thus, x = x',y=y',and ¢ is
injective. We also know that HK = G, which means that every element of G
can be. expressed as a product xy for some x € H, ye K. Therefore, ¢ is
surjective and provides us with an isomorphism from H x K to G. O

The linear transformation f;: R® — R? sends each vector x to —x and is
called central inversion. Place a regular solid in R? with its centre of gravity at
the origin. Then, with the exception of the tetrahedron, it has central inversion
as one of its symmetries. If G is the full symmetry group of the solid, and if H
is thg supgroup of rotational symmetries (so elements of H correspond to
matrices in SO;), an application of Theorem (10.2) shows that G is isomorphic
to H x {f;> and thus to H x Z,. Therefore, the full symmetry groups of the
cube and octahedron are isomorphic to S, x Z,, and those of the dodecahedron
and icosahedron are isomorphic to As x Z,.

EXERCISES
10.1. If G x H is cyclic, prove that G and H are both cyclic.
10.2. Show that Z x Z is not isomorphic to Z.

10.3. Prove that C is isomorphic to R x R, and that C — {0} is isomorphic
to RP** x C.

10.4. Klein’s group is often referred to as the Sour group (Vierergruppe) and
denoted by V. Show that Z, x Vis isomorphic to Z, x Z.

10.5. Show that the “diagonal” {(x, x)|x € G} is a subgroup of G x G, and
that this subgroup is isomorphic to G.

10.6. .lfA is a subgroup of G, and if Bis a subgroup of H, check that 4 x B
is a su.bgroup of G x H. Find a subgroup of Z x Z which does not
occur in this way.

10.7. Which of the following groups are isomorphic to one another?
Z,,, Dy x Z,, D,,, Ay x Z,,
Z,x Dg, S, Z,, x Z,.

10.8. The element (e, 1) of 4, x Z, commutes with every clementof 4, x Z,.
Use this observation to prove that 4, x Z, is not isomorphic to S
when n > 3. ’

10.9. Why does the construction of Example (iv) not lead to an isomorphism
from SO, x Z, to O, when n is even? Which elements of O, commute
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10.10.

10.11.
10.12.

10.13.

10. Products

with every element of 0,? Show that SO, x Z, is not isomorphic to O,
when 7 is even.

Let G be the group whose elements are infinite sequences (a;, 4, . . .)
of integers which combine termwise via

(ay,a,...)(by, by, ...) =(ay + az, by + by,...).
Prove that G x Z and G x G are both isomorphic to G.
Show that D,, is isomorphic to D, x Z, when n is odd.

If G is a group of order 4 which is not cyclic, prove that G is isomorphic
to Klein’s group.

Let G be a finite group in which every element other than the identity
has order 2. Prove that G is isomorphic to the direct product of a finite
number of copies of Z,.

CHAPTER 11

Lagrange’s Theorem

Consider a finite group G together with a subgroup H of G. Are the orders of
H and G related in any way? Assuming H is not all of G, choose an element g,
from G — H, and multiply every element of H on the left by g, to form the set

g H={g,hlhe H}.

We claim that g, H has the same size as H and is disjoint from H. The first
assertion follows because the correspondence & — g, 4 from H to g, H can be
inverted (just multiply every element of g, H on the left by g7!) and is
therefore a bijection. For the second, suppose x lies in both H and g, H. Then
there is an element /i, € H such that x = g, 4,. But this gives g, = xh7!,
which contradicts our initial choice of g, outside H.

If Hand g, H together fill out all of G, then clearly |G| = 2| H|. Otherwise we
choose g, e G — (H U g, H) and form g, H. Again, this has the same number
of elements as H and is disjoint from H. We hope that it does not meet g, H.
To check this, suppose x lies in g; H and g, H. Then there are elements hy, hy
of H such that x = g, h; = g, h,, giving g, = g, (h, h;') and contradicting
our choice of g, outside g, H. If H, g, H, and g, H together fill out G, then
|G| = 3| H|. If not, we choose g, in their complement and continue, checking
that g, H does not meet any of H, g, H, or g, H. As G is finite, this process stops
after a finite number of steps, and if there are k steps we find G broken up as
the union of k& + 1 pieces

H . g,H, ..., 9.H
no two of which overlap, and each of which has the same size as H. Con-

sequently, |G| = (k + 1)|H|. We have proved the following result:

(11.1) Lagrange’s Theorem. The order of a subgroup of a finite group is always
a divisor of the order of the group.
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A word of caution is appropriate at this point. If G is a finite group, and if
m is a divisor of the order of G, there is no guarantee that G will contain a
subgroup of order m. Indeed, 4, has no subgroup of order 6, as we shall see
later. This is disappointing, but we can salvage something. In Chapter 13 we
shall prove that if p is a prime divisor of the order of G, then G does contain a
subgroup of order p, and a second existence theorem for subgroups can be
found in the chapter dealing with Sylow’s theorems.

It is instructive to carry out the above procedure for a particular example.
Suppose G is S and the subgroup is H = {¢, (13)}. Select g, outside H; say
g, = (123), then

g, H = {(123)¢,(123)(13)} = {(123),(23)}.
Select g, outside H U g, H; say g, = (12), then
g, H = {(12)e,(12)(13)} = {(12),(132)}.

The group is now broken up into three disjoint subsets, H, g, H, g, H, each of
which contains two elements.
Here are some useful corollaries of Lagrange’s theorem; G denotes a finite

group throughout.
(11.2) Corollary. The order of every element of G is a divisor of the order of G.

Proof. Remember that the order of an element is equal to the order of the
subgroup generated by that element. O

(11.3) Corollary. If G has prime order, then G is cyclic.

Proof. If x € G — {e}, the order of x must equal the order of G by (11.2).
Therefore, {x) = G. ] O

(11.4) Corollary. If x is an element of G then X' = e.

Proof. Let m be the order of x. By (11.2) we know that |G| = km for some
integer k. Hence
Xl = xkm — (xm)k =e. 0

Let n be a positive integer and consider the collection R, of all those integers
m which satisfy 1 < m < n — 1, and for which the highest common factor of
m and n is 1. We claim that multiplication modulo n makes R, into a group.
(This answers the question raised at the end of Chapter 3.) If m, and m, belong
to R,, the highest common factor of m,m, and n is certainly 1. Therefore,
mym,(mod ») and n have highest common factor 1, verifying that R, is closed
under multiplication modulo n. Associativity is easily checked (Exercise 3.5)
and the integer 1 acts as identity. Finally, if m € R, there are integers x and y
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suchthat xm + yn = 1. Reading this equation mod n provides a multiplicative
inverse for m, namely x(mod n). Clearly R, is abelian. Its order is written ¢ (n)
and ¢ is called Euler’s phi-function.

EXAMPLES. (i) The elements of Ry are 1, 2,4, 5,7, 8 and ¢(9) = 6. As 22 = 4,
23 =8,2% = 16(mod 9) = 7, and 2° = 32(mod 9) = 5, we see that R, is cyclic
generated by the integer 2.

(i1) Theelementsof R,gare1,3,5,7,9,11,13,15and ¢(16) = 8. Let H = {(3)
and K = (15). Weeasily check that # = {1,3,9,11}, K = {1,15}, HK = R,
and H n K = {1}. By (10.2) we have

Ris=2HXx Kx=2,xZ,.

(11.5) Euler’s Theorem. If the highest common factor of x and n is 1, then x*™
is congruent to 1 modulo n.

Proof. Divide x by n to give a remainder m which belongs to R,. By (11.4) we
know that m®™ is congruent to 1 modulo n. Since x®™® is congruent to m®®
modulo n, the result follows. O

(11.6) Fermat’s Little Theorem. If p is prime and if x is not a multiple of p, then
xP~Y is congruent to | modulo p.

Proof. Apply Euler’s theorem noting that ¢(p) =p — 1. ]

By Lagrange’s theorem, the order of a subgroup of 4, must be a factor of
12. The extreme cases 1 and 12 correspond to the subgroup which consists
just of the identity element and to the whole group, respectively. A subgroup
of order 2 will contain the identity plus an element of order 2, so we have three
possibilities {¢, (12)(34)}, {¢,(13)(24)}, and {¢, (14)(23)}. There are four sub-
groups of order 3, each generated by a 3-cycle, namely

{e,(123),(132)}, {e,(124),(142)},
{e,(134),(143)}, {e,(234), (243)}.
There is a single subgroup of order 4

{e,(12)(34),(13)(24), (14)(23)}.

It is unique because all the other elements of A, are 3-cycles, and a 3-cycle
cannot belong to a group of order 4 by (11.2).

As we mentioned earlier, 4, does not contain a subgroup of order 6. For
suppose H is a subgroup of 4,, which has six elements. If a 3-cycle belongs
to H, its inverse must also belong to H, so the number of 3-cycles in H is
even. There cannot be six as we need room for the identity element. Suppose
there are four, say «, ™', 8, and 7. Then ¢, a, a™, B, B}, af, af~! are
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all distinct and belong to H, contradicting our assumption that |H| = 6.
Finally, if only two 3-cycles lie in H, then H must contain the subgroup
{e,(12)(34), (13)(24), (14)(23)}. But 4 is not a factor of 6, so Lagrange’s
theorem rules out this case too. We conclude that no such subgroup of order

6 exists.

EXERCISES

11.1. Carry out the procedure used in the proof of Lagrange’s theorem,
taking G = Dy, H = {r), then G = D¢, H = {r*), and finally G = 4,,
H = {(234)).

11.2. Let H be a subgroup of a group G. Prove that g, H = g, H if and only
if g7'g, belongs to H.

11.3. If H and K are finite subgroups of a group G, and if their orders are
relatively prime, show that they have only the identity element in
common.

11.4. Suppose the order of G is the product of two distinct primes. Show that
any proper subgroup of G must be cyclic.

11.5. Givensubsets X and Y of a group G, write X'Y for the set of all products
xy where x € Xand y € Y. If X and Y are both finite, if Y is a subgroup
of G, and if XY is contained in X, prove that the size of X is a multiple
of the size of Y.

11.6. If the highest common factor of m and n is 1, show that R, is
isomorphic to the product group R,, x R,. Use this observation to
check that R, is isomorphic to Z, x Z,.

11.7. Let n be a positive integer and let 7 be a factor of 2n. Show that D,
contains a subgroup of order m.

11.8. Does 45 contain a subgroup of order m for each factor m of 60?

11.9. Let G be a finite abelian group and let m be the least common multiple
of the orders of its elements. Prove that G contains an element of order

m.

11.10. Supply a finite non-abelian group for which the conclusion of the
previous exercise fails.

11.11. If H is a subgroup of a finite group G, and if |G| = m|H|, adapt the
proof of Lagrange’s theorem to show that g™ eHforallgeG.

11.12. Prove that R, is a cyclic group when p is a prime number.

CHAPTER 12

Partitions

A partition of a set X is a decomposition of the set into non-empty subsets, no
two of which overlap and whose union is all of X. The proof of Lagrange’s
theorem involved partitioning a group into subsets, each of which had the
same number of elements as a given subgroup. In this chapter we shall show
how to recognise partitions.

Suppose we have a partition of X, and let x,y be points of X. We shall say
that x is related to y if x lies in the same member of the partition as y. The
following properties are immediate:

(a) Each x € X is related to itself.

(b) If x is related to y, then y is related to x, for any two points x,y € X.

(¢) If xisrelated to y and if y is related to z, then x is related to z, for any three
points x,y,z € X.

This may seem rather abstract, but Figure 12.1 should help. The shaded areas
represent the different members of the partition.

We now change our point of view. Let X be a set and let % be a subset of the
cartesian product X x X. In other words, £ is a collection of ordered pairs
(x, ) whose coordinates x,y come from X. Given two points x and y of X we
shall say that x is related to y if the ordered pair (x,y) happens to lie in R. If
properties (a), (b), and (c) are valid, then we call Z an equivalence relation on
X. For each x e X the collection of all points which are related to it is written
2(x) and called the equivalence class of x.

(12.1) Theorem. #(x) = R(y) whenever (x,y) € A.

Proof. Suppose (x,y) € Z and let z € #(x). Then z is related to x. But x is
related to y, so by property (c) we know that z is related to y. Hence, z € 2(y)
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x isrelated to y

x is not related to z

Figure 12.1

and we have 2(x) = #2(y). We also know that (y, x) € Z by property (b),

so reversing the roles of x and y gives us Z(y) € #(x) and completes the
O

argument.

ExaMpLE (i). Let X = Z and let # consist of all ordered pairs (x, y) in Z x Z for
which x — y is divisible by 3. Certainly x — x is divisible by 3 for any integer
x. If x — y is divisible by 3, then so is y — x, and if both x — y and y — z are
divisible by 3, then so is their sum x — z. So £ is an equivalence relation on Z.
Any integer x is related to either 0, 1, or 2; consequently, there are three
distinct equivalence classes. The equivalence class of 0 consists of all multiples
of 3, that of I contains all integers which are congruent to 1 modulo 3, and that
of 2 the remaining integers which are congruent to 2 modulo 3. Notice that
#(0), Z(1), and #(2) form a partition of Z (see Fig. 12.2). This gives a clue to
the statement of our next result.

(12.2) Theorem. The distinct equivalence classes of an equivalence relation on X
form a partition of X.

3 4 e - o+
""" 3 2 I 0 ! 2 3 4 5
K@) o
R
R(2) *

Figure 12.2
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Proof. Each equivalence class is non-empty because #(x) always contains x by
property (a). If Z(x) and #(y) overlap, there must be a point z in their
intersection. Then z is related to both x and y. By property (b), x is related to
z, and therefore also related to y by property (c). We conclude that £(x) =
#(y). So two equivalence classes can only overlap if they coincide. Finally, as
each point x lies in its own equivalence class #(x), the union of the equivalence
classes is all of X. O

ExaMPLE (ii). Replacing 3 in the previous example by the positive integer n
gives an equivalence relation on Z which partitions Z into n equivalence
classes #(0), Z(1), ..., #(n — 1) called congruence classes. An integer x
belongs to #(m) precisely when x is congruent to m modulo n.

ExAMPLE (iii). Let A be a subgroup of G and let # be the collection of ordered
pairs (x,y) with entries from G for which y~'x € H. It is easy to check that #
is an equivalence relation on G. (For any x € G we have x"'x = ee H, if
ylxeH, then x'y=(y"'x)'eH, and if y™'x, z7tye H, then z7'x =
(z"'»)(y~'x) € H.) The equivalence class of a particular element g € G con-
sists of all those x € G which satisfy g"'x e H. Now g 'x belongs to H
precisely when x = gh for some element ~# € H. Therefore, Z(g) is the set gH
obtained by multiplying every element of H on the left by g. This set gH is
called the left coset of H determined by g. By (12.2) we know that the distinct
left cosets of H in G form a partition of G, precisely what was needed in the
proof of Lagrange’s theorem. If Z is changed to the collection of ordered pairs
(x,¥) e G x G, for which xy™ € H, we again have an equivalence relation on
G. This time the equivalence class of g is the right coset Hg, obtained if we
multiply every element of H on the right by g.

Nothing very new has emerged so far. We managed a perfectly satisfactory
proof of Lagrange’s theorem without (12.2), just using our common sense.
The strength of (12.2) is its generality. It will allow us to check quickly and
easily that certain decompositions of sets are partitions. We hint at two
applications below. Both will be important in later chapters.

EXAMPLE (iv). Let x, be elements of a group G. We say that x is conjugate to
yif gxg™' = y for some g € G. The collection of all elements conjugate to a
given element is called a comjugacy class, and we claim that the distinct
conjugacy classes form a partition of G. Let # be the subset of G x G
consisting of pairs (x, y) for which x is conjugate to y. Each x € G is conjugate
to itself because exe™! = x. If x is conjugate to y, say gxg~* = y, then y is
conjugate to x because g~ yg = x. Finally, if x is conjugate to y and y to z, say
g,xg;' = y,g,yg9;" = z, then x is conjugate to z because

(9291)x(g29,)7" = 92(91)‘91_1)9;1
=9,y92"

= Z.
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Therefore, # is an equivalence relation on G and its equivalence classes, the
conjugacy classes mentioned above, partition G. These conjugacy classes will
be worked out for various groups in Chapter 14.

EXAMPLE (v). Let X be a set and let G be a subgroup of Sy, so that each element
of G permutes the points of X. Let 2 be the subset of X x X defined as follows.
An ordered pair (x, y) liesin Z if g(x) = y forsome g € G. This is an equivalence
relation on X whose equivalence classes are called the orbits of G. (As usual the
verification is easy. For each x € X we have ¢(x) = x, $0 X is related to itself.
If x is related to y, say g(x) = y, then g~Y(») = x which shows that y is related
to x. Finally, if x is related to y and y to z, say g(x) = y and ¢g'(y) = z, then
g'g(x) = g'(y) = z, showing that x is related to z.) It will be important to us
later that the distinct orbits always form a partition of X, and we can be sure
of this by (12.2). To make this more concrete, take X to be R? and G to be the
group of linear transformations f; for which 4 € SO,. The origin is fixed by
every linear transformation, so the orbit of 0 is just {0}. Remembering that
orthogonal transformations preserve length, it is not hard to check that the
orbit of a non-zero vector x is the sphere which has the origin as its centre and
||| as its radius. The spheres of different radii, together with the point at the
origin, do indeed form a partition of R®.

We end this chapter by introducing a group whose elements are most
naturally defined as the equivalence classes of an equivalence relation.

ExAMPLE (vi). Begin with a pair of horizontal planes, three points in the top
plane and the corresponding three vertically below them in the lower plane.
Add strings which join the top points to the lower ones (Fig. 12.3). These
strings must not intersect, and an individual string should meet each level
between our two planes exactly once. Such a configuration is called a braid.
Given two braids b,, b, we can “multiply them” to give a new braid b, b, by
simply stacking b, on top of b, as in Figure 12.4.

We write e for the trivial braid whose strings are vertical. The essential
quality of a braid is the way in which its strings wind around one another, so
the trivial braid seems to act as an identity for our multiplication (Fig. 12.5).
Reflecting a braid b in the lower plane gives a braid which we denote by 7',
Notice that ™5 is to all intents and purposes trivial (Fig. 12.6). We are very
close to the structure of a group, and the notion of an equivalence relation
is ideally suited to handle the remaining lack of precision.

If b, and b, are braids, we shall say that b, is related to b, provided the
strings of b, can be deformed in a continuous fashion until they land on top of
those of b,. During the deformation the strings must stay between the two
horizontal planes, their end points should remain fixed, and they are not
allowed to intersect. The resulting relation # is an equivalence relation on the
collection of all braids, and its equivalence classes form a group under the

multiplication
R(b)R(by) = R(byb,),
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Figure 12.3
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as the reader may easily check. It should not cause any surprise when we say
that #(e) is the identity element, and that R(b7') is the inverse of Z(b). This
is the braid group B; on three strings. There is of course a corresponding group
B, for each positive integer n.

EXERCISES

12.1. Which of the following subsets of R x R are equivalence relations on

12.2.

12.3.

12.4.

12.5.

12.6.

12.7.

R?

(@) {(x,)|x — yis an even integer}

(b) {(x,y)|x — yis rational}

(©) {(x,»)lx + yis rational}

@ {(x, »lx —y =0}

Do any of the following define equivalence relations on the set of all
non-zero complex numbers?

(a) zis related to w if zw is real.
(b) zis related to w if z/w is real.
(c) zis related to w if z/w is an integer.

Find a group G and a subgroup H for which {(x,y)|xy € H } is not an
equivalence relation on G.

Supply a group G and a subgroup H for which {(x, Mlxyx"tyte H}
is not an equivalence relation on G.

Let # be an equivalence relation on X. Given x € X, choose y € X such
that (x, y) € #. Property (b) gives (y,x) € #Z, and property (c) then
shows that (x, x) € . Therefore, the first property of an equivalence
relation seems to be redundant. What is wrong with this argument?

Let n be a positive integer and consider the equivalence relation on YA
given by congruence modulo n. Write [x] for the congruence class of x
and define the sum of two such classes by
x] + ] =[x+ ]

At first sight this rule seems to depend on the particular represgn?atives
chosen from the two equivalence classes. Show that addition is in fact
well defined; in other words, if [x] = [x']and [y] = [)'], then[x + y] =
[x' + y']. Prove that the collection of congruence classes forms an abe-

lian group under this operation, and that the resulting group is isomor-
phic to Z,. (Indeed, many authors prefer to define Z,, in this way.)

Work out the left and right cosets of H in G when
G=4,  H={e(12)(34),(13)(24),(14)(23)}

and when
G=4,  H={e(123),(132)}.
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12.8.

12.9.

12.10.

12.11.

12.12.

Verify that the left and right cosets coincide in the first case, but not in
the second.

Let G be a finite group and let H be a subgroup of G which contains
precisely half the elements of G. Show that gH = Hg for every element
g of G.

Here is a prescription which enables us to construct the rational num-
bers from the integers. Begin with the set X of all ordered pairs (m, n) of
integers in which the second coordinate is non-zero. We think of (m, n)
as representing the fraction m/n. Of course many different ordered
pairs represent the same rational number, for example (2, 3), (4, 6), and
(—6, —9) all represent . Somehow we have to identify all these pairs,
and the notion of an equivalence relation is the appropriate tool. Agree
that (m, n) is related to (m’, n’) whenever mn’ = m’n. Show this is an
equivalence relation on X. Write [(m, n)] for the equivalence class of
the ordered pair (m, n) and, motivated by the rules for adding and
multiplying fractions, define

[((m,m)] + [(my,n)] = [(mny + myn,nn,)],

[(m,m)].[(m,,n,)] = [(mm,,nn,)].

Check that both operations are well defined, that the set of all equiva-
lence classes forms an abelian group under addition, and that if we
remove the “zero class” [(0, n)] the remainder form an abelian group
under multiplication. Each rational number is represented by precisely
one equivalence class and we have now modelled the algebraic struc-
ture of the rationals.

Consider the relation of conjugacy defined in Example (iv) and work
out the conjugacy classes when G = D,. Try to do the same for the
infinite dihedral group D .

Convince yourself that the braid group B, is infinite, is not abelian, and
is generated by the two braids b,, b, shown in Figure 12.4.

The construction of B; involves a pair of horizontal planes, three
points in the top plane and the corresponding three vertically below
them in the lower plane. Label the upper points, and the lower points,
1, 2, 3 so that points which are vertically aligned have the same label.
Sliding along the strings of a braid now produces an element of S,.
Show that the function from B; to S, constructed in this way is
surjective and sends the multiplication of B, to the multiplication of S,.
Find two different braids which both map to the permutation (123).



CHAPTER 13

Cauchy’s Theorem

Here is the partial converse to Lagrange’s theorem promised in Chapter 11.

(13.1) Cauchy’s Theorem. If p is a prime divisor of the order of a finite group G,
then G contains an element of order p.

Proof. We need an element x € G — {e} such that x” = e. Consider the set X of
all ordered strings x = (xy, x,,..., x,) of elements of G for which

X1Xp...X, =e.

Our problem is to find such a string which has all its coordinates equal, but
which is not (e, e, . . ., ). We shall do this by a careful analysis of the size of
X.

How big is X7 If the string (x,, x,, ..., x,) is to lie in X we may choose x,,
X3, ..., X, arbitrarily from G, when x, is completely determined by x, =
(x4Xx3...x,-y)7". So the number of strings in X is |G|?~*, which is a multiple
of p.

Let # be the subset of X x X defined as follows. An ordered pair (x,Y)
belongs to # if y can be obtained by cyclically permuting the coordinates of x.
In other words y is one of

(X1, X355 Xp)
(Xps X1sevs Xpoy)

. (*)
(Xz,---,Xp’x1)~

Note that these cyclic permutations do all belong to X. For example,
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-1
XpXy .o Xpoy = Xp(Xy ... Xpo1 Xp)X,

— -1
= XpeXy,
=€

which shows that (x,, x;,...,x,_,)€X, and repeating this process deals with
the others. One easily checks that # is an equivalence relation on X and that
the equivalence class #(x) of the string x = (x, x5,...,X,) is precisely the
collection ().

Does cyclic permutation of the coordinates of a string always produce p
different strings? Certainly not in the case of e = (e, e, . . ., ) where cyclically
permuting the entries does not give anything new, and #(e) contains just one
element. The distinct equivalence classes of # partition X, so adding together
the sizes of these classes gives the total number of elements in X. If every
equivalence class other than Z(e) contains p elements, then the size of X will
be congruent to 1 modulo p, contradicting our earlier calculation. Therefore,
there must be a string x = (X, X,,..., x,), other than e, whose equivalence
class contains less than p elements. So two of the cyclic permutations in () are
equal, say

(Xptgs e Xps X e es X)) = (Xgirs 0o v s Xps X150 e s Xg)-
Assume r > s and cycle back p — r times to give
(15 Xg5 -3 Xp) = (Xpaas oo o> Xpy Xpav e vy Xio)

where k = p — r + 5. Equating corresponding coordinates we observe that
X; = Xpyimodp fOT 1 <7 < p, and consequently

Xp = Xga1 = Xope1 = 777 = Xp-1)k+1

where the suffices are read mod p. Suppose ak + 1 and bk + 1 are congruent
modulo p where 0 < a < b < p — 1. Then p divides (b — a)k, which is impos-
sible because p is prime and both b — a and k are less than p. Therefore the

numbers
Lk+1,2k+1,....,(p— Dk +1

are all different when read mod p. As there are p of them, reading them mod
p just gives 1,2,...,p possibly jumbled up in some different order. We

conclude that x, = x, = --- = x,, which gives x? = e as required. (Once we
have a little more machinery at our disposal we will be able to steamline this
type of argument; see Chapter 17.) O

As an application of Cauchy’s theorem we show that a group of order 6
must be either cyclic or dihedral. We should be more precise.

(13.2) Theorem. A group of order 6 is either isomorphic to Z s or isomorphic to
D;.
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Proof. Let G be a group which contains six elements. Use Cauchy’s theorem to
select an element x of order 3 and an element y of order 2. The right cosets {x),
{x)y give six elements e, x, x2, y, xy, x>y which fill out G. Now yx is one of
these six and it is certainly not in {x) or equal to y. If yx = xy, then (10.2)
shows that G is isomorphic to {x}> x {y>, and hence to Z; x Z,, which is
cyclic by (10.1). Otherwise yx = x*y and (in the notation of Section 4)
changing x to r and y to s gives an isomorphism from G to D;. a

It is not much harder to show that if p is an odd prime, then any group of
order 2p is either cyclic or dihedral (see Chapter 15).

We now have a good deal of information about groups of small order. Any
group of order 2, 3, 5, or 7 is cyclic by (11.3), a group of order 4 is isomorphic
to either Z, or Klein’s group (see Exercise 10.12), and any group of order 6 is
cyclic or dihedral. The situation for order 8 is more complicated. We have
already met four groups, each of which has eight elements, namely Zg,
Z, x Z,, Zy x Z, x Z,, and D,. Here is a fifth. A quaternion (or hyper-
complex number) is an expression of the form a + bi + ¢j + dk, where a, b, c,
d are real numbers and i, j, k satisfy

2=j2=k*= —1, ij=—ji=k (%)
and the set of all quaternions is denoted by H. The eight symbols + 1, +i, +J,

+ k when multiplied according to (x) form a group Q called the quaternion
group. Its multiplication table is shown below

1 -1 i —i j —j kK —k

1 1 -1 i —i j —j kK —k

-1 | -1 1 i i —j j -k k
i i —i -1 1 k -k —j J

—i —i i 1 -1 -k k J —J
J J —j ~k koo -1 1 i —i

— —j j k —k 1 -1 —i i
k kK —k J —Jj —i i -1 1

—k | —k ko —j j i —i 1 -1

Q is not abelian (so it cannot be isomorphic to one of Zg, Z, x Z,, Z, x
Z, x Z,) and as +1 are the only elements of order 2 it is not isomorphic
to D,, which contains five elements of order 2.

(13.3) Theorem. A group of order 8 is isomorphic to one of the following: Zg,
ZyxZy,Zyx Ly x Zy, Dy, Q.

Proof. Let G be a group which has eight elements. If there is an element of
order 8, then G is isomorphic to Zg. Suppose now that the largest order of an
element of G is 4. Choose an element x whose order is 4 and an element y from
G — {x). The cosets (x>, (x> fill out G and provide the elements
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2 3
e, x,x2%, x3, y, xy, xty, x3y.

We know that yx is not in {x), cannot equal y (as yx = y gives x = ¢) and
cannot equal x?y (because yx = x%y leads to x = y ! x?y, which in turn gives
x2 =y 'x?py ' x%y = e). Therefore, yx is either xy or x*y. In addition the
order of the element y is 2 or 4. Observe that y? does not belong to {x>y (as
y ¢ {x>) and cannot equal x or x? (because the order of y is not 8). So if y has
order 4, then y? = x?. Hence we have four possibilities:

(i) If yx = xyand y? = e, the group is abelian and x — (1,0), y — (0, 1) leads

to an isomorphism between G and Z, x Z,.

(ii) If yx =x%y and y? = e, then (with the usual notation) x >r, y —>s
determines an isomorphism between G and D,.

(iii) If yx = xy and p? = x2, the group is abelian, xy™' has order 2, and
x—(1,0), xy~' — (0, 1) leads to an isomorphism between G and Z, x
Z,.

(iv) Finally, if yx = x3y and y% = x2, then x — i, y - j determines an iso-
morphism between G and Q.

What if every element of G — {e} has order 2? In this case G is an abelian
group. Choose x, y, z from G — {e} and make sure xy is not equal to z. The
subgroup H = {e, x, y, xy} is isomorphic to Z, x Z, and if K = {z) we easily
check that HK = G and H n K = {e}. Therefore, G= H x K = 7, x Z, x
Z, by (10.2). O

EXERCISES

13.1. Verify that the relation # used in the proof of Cauchy’s theorem is
indeed an equivalence relation.

13.2. Ifpy, p,, ..., p,aredistinct primes, show that an abelian group of order
P1Ps - .. ps must be cyclic.

13.3. In Theorem 13.2 we showed that a group of order 6 must be cyclic or
dihedral. Follow the proof until you have the six elements e, x, x2, y,
xp, x*y. There are three possibilities for the order of xy. Show that one
leads to Z, a second to Ds, and the third to a contradiction.

13.4. Prove that a group of order 10 is either isomorphic to Z,, or isomor-
phic to Ds.

13.5. Let G be a group of order 4n + 2. Use Cauchy’s theorem, Cayley’s
theorem, and Exercise 6.6 to show that G contains a subgroup of order
2n + 1.

13.6. Check that every proper subgroup of @ is cyclic.

13.7. Given quaternions g=a+ bi+ ¢+ dk,q =a' +b'i+cj+dk
define
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13.8.

13.10.

13.11.

13.12.

13. Cauchy’s Theorem

g+q =(@+a)+G+b)i+(c+c)+d+d)k,
q.q = (aa’ —bb' — cc’ —dd') + (ab’ + ba’ + cd' — dc')i
+ (ac' — bd' + ca’ + db")j + (ad' + bc’ — cb’ + da')k.
Prove that H forms an abelian group under addition, and that H — {0}

is a group (though not an abelian group) under multiplication. Show
that the correspondence

a+bi+ ¢+ dk(ab,c,d)
is an isomorphism from the additive group H to R*.

The conjugate of a quaternion g = a + bi + ¢j + dk is defined to be
g* = a — bi — ¢j — dk, and the length of g is the square root of g. ¢*;
in other words \/(a®> + b% + ¢® + d*). Show that the quaternions of
unit length form a subgroup of H — {0}. We shall denote this group by
S3 because it corresponds to the unit sphere if we identify H with R4,

. Prove that the correspondence

. . a+ib ¢+ id
a+bt+c1+dk<—>[_c+id a—ib}
defines an isomorphism between S* and SU,.

Write out the elements of SU, which correspond to the subgroup Q of
S3. Find a subgroup of S which is isomorphic to C.

An element of H of the form bi + ¢j + dk is called a pure quaternion.
Show that . (bi + ¢j + dk).q ! is a pure quaternion for every g € H.

Given x = (x,,X,,X;3) in R?, let g(x) denote the quaternion x,i +
x,j + x3k. If x,y € R® prove that

g(x x y) =x.y + q(x).q(y).

CHAPTER 14

Conjugacy

The relation of conjugacy was introduced in Chapter 12 and shown to be an
equivalence relation. We recall the definition. Given elements x,y of a group
G we say that x is conjugate to y if gxg™ = y for some g € G. The equivalence
classes are called conjugacy classes, and we begin by working out these classes
for some specific groups.

For a fixed element g € G the function from G to G given by x — gxg~' is an
isomorphism called conjugation by g. (It is a bijection because it is invertible,
its inverse being conjugation by g ™!, and it preserves the algebraic structure of
G because
Y= (gxg7")(gyg7™")
for any two elements x,y € G.) Since an isomorphism preserves the order of an
element we see that elements in the same conjugacy class must have the same
order.

g(xy)g~

ExampLE (i). If G is abelian and if x is an element of G, then gxg ™! = x for all
ge G. So x is only conjugate to itself and the conjugacy classes are the
singletons {x} where x € G.

EXAMPLE (ii). Take G to be the dihedral group D4 and adopt the notation of
Chapter 4. The elements of D are

e, r,r2, r3

s, rs, r2s, r3s, r*s, ris

and multiplication is completely determined once we know r® = ¢, 52 = ¢,
sr = r3s. To find the conjugacy class of a power of r, say r® where | < a < 5,
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we must calculate grég™! for every g in Dg. If g is the identity or a power of

r, we get r® back again. Taking g = s (and remembering that s =15) we
have
a2 6*a.

sris =ro79s? =r

Finally, if g = r’s where 1 < b < 5, then
(rts)ro(rts)™t = rb(sres)ré?
= ro(r® )50
=674
Therefore, the conjugacy class of r*is {r*,#°7*}. For the remaining elements
note that

and

Po(rs)r b = rbripbs = p2b+iy,
Conjugation by r’s also sends s to r2*s and sends rs to r?*~'s. Therefore, the
elements s, r2s, ¥*s form a conjugacy class, as do rs, r*s, r’s. In summary, the
conjugacy classes of Dy are

{e}. {r.r*} (2%, {7,
{s,r2s,r4s}, {rs,r*s,r’s}.

At this point we recommend Exercises 14.1 and 14.2.

EXAMPLE (iii). Two elements of S, are said to have the same cycle structure if
when they are decomposed as products of disjoint cyclic permutations they
both have the same number of 2-cycles, the same number of 3-cycles, and so
on. If , ¢ € S, have the same cycle structure, write out the cycle decomposi-
tion of ¢ underneath that of 6, taking the constituent cycles in order of
decreasing length. In both cases include the integers left fixed by the permuta-
tion as cycles of length 1. Let g be the element of S, which sends each integer
mentioned in 0 to the integer vertically below it in ¢. Then gfg~' = ¢ because
moving an integer up from ¢ to 6, pushing it along one position in 6, then
dropping it back down to ¢ is the same as moving along one position in ¢.
Therefore, permutations which have the same cycle structure are conjugate in
S,

Here is a specific calculation. The permutations 6 = (67) (2539)(14), ¢ =
(12)(38)(5467) are both elements of S, and have the same cycle structure
consisting of two transpositions plus a single 4-cycle. Our procedure gives

(2539)(67)(14)(8)
(5467)(12)(38)(9)
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and we read off g = (136)(254897). Thus,
g0g7' (1) = gb(6)
=9(7)
=2=¢(1), etc

The element g is not unique. Writing 6 as (2539) (14)(67)(8) and keeping ¢ the
same gives g = (254)(36)(789).

Conversely, conjugate permutations have the same cycle structure. To see
why, let 8 = 6,0, ...6, be an element of S, written as a product of disjoint
cyclic permutations. For any g € S, we have

9097t = g(6,0,...0)g7!
=(96:97")(90297") ... (g097").
Assume 0, has length k, say 6, = (a,a, . ..a,), then
96,97' (9(a,)) = gb.(a,) = g(a,),
9697 (g9(a2)) = g6.(a,) = g(a3),

90971 (9(a)) = gbi(a) = g(ay).
Also, if m is not one of g(a,), ..., g(a,) then 6, fixes g~*(m) and
90:g™'(m) = gg~*(m) = m.

Therefore, g()z-g‘l = (g(a;)g(a,)...g(a)), a cyclic permutation of the same
length as 6,. Since gf,g™*, g0,97", .. ., gf,g™* are clearly disjoint, we conclude
that g8g~! has the same cycle structure as 0.

E;(AMPLE (iv). From the previous example we know that the conjugacy classes
of S, are

{e}

{(12),(13),(14),(23),(24), (34)},

{(123),(132), (142), (124), (134), (143), (243), (234)},
{(1234),(1432), (1243), (1342), (1324), (1423)},

{(12)(34), (13)(24), (14)(23) }.

How about those of A,? We must be careful, if 8,¢ € A, have the same cycle
structure, there is certainly an element g € S, such that g8g~! = ¢, but it may
not be possible to produce an even permutation g with this property. For
example if g(123)g™ = (132), then (g(1)g(2)g(3)) = (132) and g must be one
of the transpositions (23), (13), (12). So g cannot lie in 4,. We quickly check
that the conjugacy classes of 4, are
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{e}

{(123),(142),(134), 243)},
{(132),(124),(143),(234)},
{(12)(34),(13)(24). 14 (23)}-

These classes have a simple geometrical interpretation. Identify 4, with the
rotational symmetry group of a regular tetrahedron in the usual way. Given
an axis of symmetry through one of the vertices, we can rotate by 27/3 so that,
when viewed from the vertex in question, the opposite face appears to move
clockwise. The four rotations of this type are conjugate, as are the other four
where the face moves anticlockwise. These classes correspond to the two
distinct conjugacy classes of four 3-cycles. The identity rotation forms a
conjugacy class on its own, and the remaining class consists of the three
rotations through = about axes determined by the midpoints of pairs of

opposite edges.

ExXAMPLE (v). Take G to be O, and let
cos @ —sin @ cos @ sin @
Ay =1 . . B,=| . .
sin 6 cosf sin @ —Cos @
Remember that A4, represents anticlockwise rotation through 8, and B, reflec-
tion in a line inclined at an angle of ¢/2 to the positive x-axis. Conjugate

matrices have the same determinant, so each conjugacy class will consist
entirely of rotations or entirely of reflections. As

AgB,Agt = AgB,A g = B,
we see that any two of the B’s are conjugate. Also
A, AgA;t = Ag

and
BwABB(;1 = B,4yB, = Ao

which shows that the rotation matrices divide up into conjugacy classes of the
form {4,, A_,}. Thus, the distinct conjugacy classes of O, are

{13},

{Ag, Ao}, 0<0<m,
{4}

{B,0 < @ < 27},

In the next chapter, we shall study subgroups which are made up of complete
conjugacy classes. One such is the so-called centre of a group. The centre of a
group G consists of all those elements which commute with every element of
G. Tt is usually denoted by Z(G) so that Z{(G) = {xeGlxg =gx,VgeG}.
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(14.1) Theorem. The centre is a subgroup of G and is made up of the conjugacy
classes which contain just one element.

Proof. If x,y € Z(G) and g € G, then
gxy~! = xgy™! (because xe Z(G))
=x(yg" )"
=x(g7*n7! (because y € Z(G))
= xy lg.

Therefore, xy™' belongs to Z(G). Certainly e € Z(G), so the centre is a
subgroup py (5.1). Since xg = gxif and only if gxg™' = x, we see that x lies in
Z(G) precisely when the conjugacy class of x is the singleton {x}. 1

ExXAMPLE (vi). The centre of any abelian group is the whole group.

EXAMPLE (vii). For n > 3 the centre of S, is the trivial subgroup {¢}. This
follows from Example (iii).

EXAMPLE (viii). The centre of Dg is {e,r?} as we see from Example (ii). We ask
the reader to work out the centre of D, in the general case, distinguishing
carefully between the cases # even and n odd (Exercise 14.10).

EXAﬂMPLE (ix). The centre of GL, consists of all (non-zero) scalar multiples of
the identity matrix (Exercise 14.11).

EXERCISES
14.1. Work out the conjugacy classes of Ds.

14.2. Explain the structure of the conjugacy classes of D,, distinguishing
carefully between the cases where n is even and where 7 is odd.

14.3. Let ¢: G — G’ be an isomorphism. Prove that ¢ sends each conjugacy
class of G to a conjugacy class of G'.

14.4. Calculate the number of different conjugacy classes in S and write
down a representative permutation for each class. Find an element
g € Sg such that

g(123)(456)g™1 = (531)(264).

Show that (123)(456) and (531)(264) are conjugate in Ag, but
(12345)(678) and (43786)(215) are not conjugate in Ag.

14.5. Prove that the 3-cycles in 44 form a single conjugacy class. Find two
5-cycles in A5 which are not conjugate in A45.
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14.6.

14.7.

14.8.

14.9.

14.10.

14.11.

14.12.
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How many elements of Sg have the same cycle structure as
(12)(345)(678)?

Work out the conjugacy classes and the centre of the quaternion group
Q. What is the centre of S3?

Use Exercise 6.10 to show that the centre of S, is the trivial subgroup
{¢} when n > 3.

The group A, is abelian, therefore Z(A4;) = A,. Prove that Z(4,) = {¢}
when 7 is greater than 3.

Read off the centre of D, from your calculations in Exercise 14.2. You
should find that Z(D,) is {e} when nis odd and {e, r"'*} when n is even.

Consider the matrices which can be obtained from the » x » identity
matrix either by altering one of the diagonal entries to —1, or by
interchanging two rows. Show that these matrices are all invertible and
use them to compute the centre of GL,(R).

Find the centres of O, and SO,. Prove that the centre of U, consists of
all matrices of the form eI, where 0 € R and I, denotes the n x n
identity matrix.

CHAPTER 15

Quotient Groups

We shall devote this chapter to subgroups which are made up of complete
conjugacy classes.

A subgroup H of a group G is called a normal subgroup of G if H is a union of
conjugacy classes of G.

Normal subgroups are important because their left cosets form a group in a
natural way. If X and Y are subsets of G, we can multiply them to form the set
XY of all products xy where xe X and y € Y.

(15.1) Theorem. If H is a normal subgroup of G, the set of all left cosets of H in
G forms a group under this multiplication.

Proof. The product of two left cosets is again a left coset because
(xH)(yH) = xyH (%)

for any two elements x, y € G. Accepting this for the moment, associativity
follows from associativity in G, the coset e H = H acts asan identity,and x "' H
is the inverse of xH for each x € G. So we do indeed have a group.

Just why does () hold and what does it have to do with the hypothesis that
H be a normal subgroup of G? Each element of (xH)( yH ) has the form xhyh’
for some h,h’ € H. Rewrite this as

xy(y thy)i’

and notice that y 'hy is a conjugate of h. By assumption the subgroup H is a
normal subgroup of G and therefore contains the whole conjugacy class of 4.
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Hence, y 'hy = h” for some h” € H, giving
xhyh' = xy(y *hy)h' = xy(h"h).

Now we can see that xhyh’ belongs to xyH. So far we have (xH)(yH) < xyH.
The reverse inclusion is easier to check and works for any subgroup H. Each
element of xyH has the form xyh for some 4 € H. Rewriting this as (xe)(yh)
shows that it belongs to (xH)(yH) and we deduce xyH < (xH)(yH). This
completes the argument. O

If H is a normal subgroup of G we write H<a G. The group of left cosets of
Hin G introduced above is called the quotient group (or factor group) of G by
H and denoted G/H. We recall that the left cosets of H in G form a partition
of G. Each of these cosets represents a single element in G/H and it is in this
sense that we have “divided G by H.”

ExaMmpLE (i). Let H be the subgroup of Ds generated by the element r3; then
H is a normal subgroup of D as it is made up of the conjugacy classes {e}
and {r3}. There are six distinct left cosets, namely

eH = {e,r}, rH = {r,r*}, rPH = {r},r*},
sH = {s,sr3} = {s, s}, rsH = {rs,r*s},

and
risH = {r?s,r’s}.

These are the elements of Dg/H. Our definition of multiplication gives
(rH)(sH) = {xy|x e rH, y € sH}
= {rs, rr3s, r*s, r*ris}
= {rs, r*s}
=rsH
exactly as predicted by (+) in (15.1). Writing our cosets as
eH, rH, (rH)2, sH, (rH) (sH), (rH)*(sH)

and checking
(rH)® =r*H = eH,

(sH)? = s*H = eH,
(sH)(rH) = srH = r*sH = (rH)*(sH)
we conclude that the quotient group Dg/H is isomorphic to Dj.
ExampLE (ii). The conjugacy classes {¢} and {(12)(34),(13)(24), (14)(23)}

make up a normal subgroup J of A,. There are three left cosets &J, (123)J,
(132)J, and the quotient group A,/J is isomorphic to Z;.
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EXAMPLE (iii). Every subgroup of an abelian group is a normal subgroup
because in this case the conjugacy classes are just the elements of the group.
Let n be a positive integer and consider the subgroup nZ (all multiples of n) of
Z. There are n distinct cosets

O+nZ,1+nz,...,(n—1)+nZ
which when combined via
x+nZ)y+(y+nZ)y=(x+y)+nZ

make up the quotient group Z/nZ. The element | + nZ generates the whole
group; therefore, Z/nZ is isomorphic to Z,.

If we wish to check that the subgroup H of G is normal, without first
working out all the conjugacy classes of G, we can do so by showing that

ghg™te H forallhe H, geG.

For ?xample, SO, is a normal subgroup of O, because every conjugate of a
matrix of determinant + 1 also has determinant + 1. We can sometimes be
more efficient using the following result.

(15.2) Thgorem. Let H be a subgroup of G and let X be a set of generators for
G which, if G is infinite, contains the inverse of each of its elements. Then H is
a normal subgroup of G, provided xhx™' € H for allhe H, x € X.

Proof. If h € H, we must show that every conjugate ghg ~* also belongs to H.
Express g as a product x, x, ... x, in which each x; is an element of X. Then

-1

ghg (136 )h(x X, )7

1

=xyXp. x5kt xgt Xyt

and conj‘ugation by g amounts to repeated conjugation by elements of X. By
assumption, each time we conjugate by an element of X we produce another
member of H. Therefore, ghg ™' does indeed belong to H. ]

EXAMPLE (iv). The subgroup H of D, generated by r2 is a normal subgroup.
Take X = {r,s} and check that conjugating a power of r? by either r or s gives
back a power of r2. If nis odd, then H = (r*» = {r>, so D,/H has two elements
H, sH, and is isomorphic to Z,. If nis even there are four distinct cosets H, rH
sH, rsH. We note that T

(rH) =r*H=H (because r? € H),
)

(sH)? = s*H=H,
and
(rsH)? = (rs)*H = H.

Therefore, we have a group of order 4 in which the square of every element is
the identity. Hence, D,/H is isomorphic to Z, x Z,.
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We have chosen to work with left cosets, but the next result shows that H is
a normal subgroup of G precisely when its left and right cosets coincide.

(15.3) Theorem. The subgroup H of G is normal if and only if xH = Hx for all
xed.

Proof. Suppose H is normal. Given x € G, h € H, we know that the conjugates
xhx~! and x ~'hx must belong to H. Therefore,

xh = (xhx " )x e Hx

and we have xH < Hx. Similarly, hx = x(x "'hx) € xH provides the reverse
inclusion Hx < xH. Now assume xH = Hx forallxe G.If he H, x € G, the
conjugate xhx ! belongs to

(xH)x ' = (Hx)x™' = H,

and therefore H must be normal in G. |

This means that we can equally well think of the elements of G/H as the
right cosets of H in G, multiplying them via (Hx)(Hy) = Hxy. The index of a
subgroup H of G is the number of distinct left (or right) cosets of H in G. Even
if H is not a normal subgroup it does not matter which type of coset we use,
since the correspondence xH — Hx™* is a bijection between the set of left
cosets and the set of right cosets.

(15.4) Theorem. If the index of H in G is equal to 2, then H is a normal subgroup
of G and the quotient group G|H is isomorphic to Z ,.

Proof. We show that xH = Hx for every x € G. This is clear when x € H. If
x € G — H, the left cosets H, xH form a partition of G. But H and Hx also
partition G. Therefore, xH must equal Hx as required. As there are only two
distinct cosets, the quotient group G/H has order 2 and is isomorphic to Z,.

a

EXAMPLE (V). A4, is a normal subgroup of S,.
EXAMPLE (vi). The subgroup generated by r is a normal subgroup of D,.

EXAMPLE (vii). For a second time we see that SO, is a normal subgroup of O,.
The index of SO, in O, is equal to two because the cosets ISO,, USO, fill out
0,, where I is the identity matrix and U is obtained from / by changing the final
1 on the diagonal to — 1.

(15.5) Theorem. If p is an odd prime, any group of order 2p is either cyclic or
dihedral.

Proof. Use Cauchy’s theorem to select an element x of order p and an element
y of order 2. The right cosets (x>, (x> provide 2p elements e, x, ..., xPt
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», Xy, ...xP71y, which fill out the group, and {(x) is a normal subgroup
because its index is equal to 2. By Lagrange’s theorem the order of xy is 2p, p,
or 2. If xy has order 2p, then our group is cyclic. If it has order 2, then
xyxy = e, giving yx = x"'y, and we have a group which is isomorphic to the
dihedral group D,. We claim that xy cannot have order p. For suppose
(xy)? = e, then

) =) = ((Dxp) = (Kxpy) = x)y? = {xDy,

which leads to the contradiction y € {x). O

We now change tack and describe a process which allows us to “‘abelianise”
an arbitrary group G. An element of G of the form xyx~!'y~! is called a
commutator and the subgroup generated by all commutators is the commaesta-
tor subgroup [G, G] of G. Since x and y commute precisely when the commuta-
tor xyx 'y ™! is the identity, the size of [G, G] can be thought of as a measure
of how far G is from being abelian. The commutator subgroup of any abelian
group is just the trivial subgroup {e}.

EXAMPLE (viii). Each commutator in S, is obviously an even permutation and
therefore [S,, S,] is contained in 4,. Every 3-cycle is a commutator because

(abc) = (ab)(ac)(ab)(ac),

and the 3-cycles generate 4, when n > 3. We conclude that the commutator
subgroup of S, is all of 4,.

(15.6) Theorem. The commutator subgroup is a normal subgroup, the quotient
group G/[G, G] is abelian, and if H is a normal subgroup of G for which G/H is
abelian, then [G, G is contained in H.

Proof. Any conjugate of a commutator is again a commutator because
glxyxTly g™ = (gxg 7 ) (gyg T ) (gxg ™) " (gyg ) L.

A general element of [G, G] may not be a commutator, but is a product of
commutators, say ¢; ¢, ... c,. Conjugating by an element of G gives
glerey . a)g ™t =(g9e197')(ge9™) .. (gag™)

which again lies in [G., G]. Therefore, the commutator subgroup is a normal
subgroup of G.

If x, y are elements of G, then xyx "'y ™! € [G, G]. Hence, [G, Glxyx 1yl =
[G, G), which in turn gives [G, G]xy = [G, G]yx and shows that G/[G, G] is
abelian.

Finally, if G/H is abelian and if x,y € G, then Hxy = Hyx. Therefore,
Hxyx~'y~' = H, which tells us that the commutator xyx 'y ! must lie in H.
So H contains [G, G). |

The commutator subgroup is the smallest normal subgroup of G for which
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the corresponding quotient group is abelian. In forming G/[G, G] we say that
we abelianise G.

ExAMPLE (ix). With our usual notation {r*) is a normal subgroup of D,. If n
is odd, then {r?> = {r) hasindex 2 in D,, whereas for neven the index of {r?)
in D, is 4. In both cases the quotient group D,/{r*> must be abelian and
therefore the commutator subgroup of D, is contained in {r?}. But

1

rsris t=rrss=r?

showing that r? is a commutator. Hence, [D,, D,] = {r*>. If nis odd, we have
D,/[D,, D,) = Z,, and for n even, D,/[D,, D,] =12, x Z,.

ExaMpLE (x). The subgroup {+ 1} of the quaternion group Q is a normal
subgroup and Q/{ + 1} is isomorphic to Z; x Z,. Therefore, the commutator
subgroup of Q is contained in { + 1}, and it must equal { £ 1} because Q is not
an abelian group.

EXERCISES

15.1. If H and J are both subgroups of a group G, prove that HJ is &
subgroup of G if and only if HJ = JH.

15.2. Find all normal subgroups of D, and Ds. Generalise and deal with D,
for arbitrary #.

15.3. Show that every subgroup of the quaternion group Q is a normal
subgroup of Q.

15.4. Is O, a normal subgroup of GL,(R)?

15.5. Let H be a normal subgroup of a group G, and let J be a normal
subgroup of H. Then of course J is a subgroup of G. Supply an example
to show that J need not be normal in G.

15.6. If H, J are normal subgroups of a group, and if they have only the
identity element in common, show that xy = yx forallxe H,yeJ.

15.7. Let K be a normal subgroup of G x H, which has only the identity in
common with each of G x {e} and {¢} x H.Show that K is abelian.

15.8. Find the commutator subgroup of 4,. If nis at least 5, show that the
commutator subgroup of 4, is all of 4,.

15.9. Let ¢: G — G' be an isomorphism. Prove that ¢ sends the commutator
subgroup of G to the commutator subgroup of G'.

15.10. Improve Theorem 15.2 as follows: Let H be a subgroup of a group G,
let X be a set of generators for G which contains the inverse of each of
its elements, and let Y be a set of generators for H. Show that H is a
normal subgroup of Gif xyx™' e H forall xe X, ye Y.
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15.11. Let H be a subgroup of finite index of an infinite group G. Prove that
G has a normal subgroup of finite index which is contained in H.

15.12. A simple group is one whose only normal subgroups are {e} and the
whole group. Find a proper normal subgroup of 4,. Now consider the
alternating group 45. Work out the commutators

(12345)~1(345) ~1(12345) (345),
(12)(34)(345) 71 (12) (34) (345).

Show that a non-trivial normal subgroup of A5 must contain a 3-cycle.
Use the first part of Exercise 14.5 to conclude that this subgroup must
be all of 45, and that A; is therefore a simple group. (It is not much
harder to verify that 4, is simple when » is greater than 5.)

15.13. If His a cyclic normal subgroup of a group G, prove that any subgroup
of H is also a normal subgroup of G.

15.14. Show that every element of the quotient group Q/Z has finite order,
but that only the identity element of R/Q has finite order.

15.15. If G contair.ls a normal subgroup which is isomorphic to Z,, and if the
corresponding quotient group is infinite cyclic, prove that G is isomor-
phicto Z x Z,.

15.16. Suppose that G contains an infinite cyclic normal subgroup for which
the corresponding quotient group is cyclic of order 2. Show that G
must be isomorphic to one of Z, Z x Z,, D,.



CHAPTER 16

Homomorphisms

Let G, G’ be groups. A function ¢: G — G’ is a homomorphism if it takes the
multiplication of G to that of G'; in other words if

o(xy) = o(x)p(y) forallx,yeG.

The kernel K of ¢ is then defined to be the set of those elements of G which ¢
maps to the identity of G'; in symbols K = {x € Glp(x) = e}. If ¢ is also a
bijection, then it is an isomorphism, and in this case its kernel is just the
identity element of G. Various properties of isomorphisms were checked in
Chapter 7. Those arguments which do not use the fact that an isomorphism is
a bijection are equally valid here. Therefore, a homomorphism sends the
identity of G to that of G, sends inverses to inverses, and sends each subgroup
of G to a subgroup of G'. In particular, ¢ maps the whole group G to a
subgroup of G’ which is called the image of ¢.

Notice that if H is a normal subgroup of G the function ¢: G — G/H defined
by ¢(x) = xH is a homomorphism because

o(xy) = xyH = (xH)(yH) = ¢(x)9(y)

for all x,y € G. The image of this homomorphism is G/H and its kernel is
precisely A.

(16.1) First Isomorphism Theorem. The kernel K of a homomorphism
©: G —> G’ is a normal subgroup of G, and the correspondence xK — ¢(x) is
an isomorphism from the quotient group G/K to the image of ¢.

Proof. Suppose x,y € K, then @(xy™') = @(x)@(»)™" = e, showing that
xy~1 e K. Certainly K is non-empty because e € K, hence K'is a subgroup of G
by (5.1). If x e Kand g € G, then
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P(gxg™") = p(Po()e(9) ' = e(Po(g) ' =e.

Therefore, gxg ' belongs to K and the subgroup X is normal in G.

If two cosets xK, yK are equal, then y "' x € K. Applying ¢ gives ¢(y 'x) =
©(¥) ' @(x) = e, and therefore ¢(x) = ¢(»). This means we have a function
Y: G/K— G’ defined by y(xK) = ¢(x). Reversing the above computation
shows that if ¢(x) = ¢(y), then xK = yK, so ¥ is injective. It is a homomor-
phism because

Y(xKyK) = Y (xpK) = o(xy) = ¢(x)0(») = Y (xK)Y (yK)

for any two cosets xK, yK € G/K. Finally, the image of { is the same as the
image of ¢. We have proved that ¥ is an isomorphism from G/K to the image
of . O

Two special cases of (16.1) are particularly useful.

(16.2) Corollary. If the image of ¢ is all of G', then G/K is isomorphic to
G'.

(16.3) Corollary. Suppose the image of ¢ is all of G'. Then ¢ is an isomorphism
if and only if K consists just of the identity element of G.

ExampLES. The reader should check that each of the following functions is a
surjective homomorphism.

i zZ-72, x = x(mod n).
K = nZ (the set of all multiples of n) and Z/nZ is isomorphic to Z,.
(i) R—>C, X — &2mix,
K = 7 and R/Z is isomorphic to C.
(iii) C - {0} > C, z > z/|z].
K = RP* and C — {0}/RP* is isomorphic to C.
(iv) 0, {+1}, A —det A.
K = SO, and 0,/SO, is isomorphic to Z,.
) U,—-C, A —det A.
K = SU, and U, /SU, is isomorphic to C.

(vi) C- C, z - 22
K = {+1} and C/{ + 1} is isomorphic to C.

(vii) The group S, contains three elements of order 2, namely (12)(34),
(13)(24),(14)(23). Together with the identity, these elements form a
subgroup of S, which is isomorphic to Klein’s group and which we
denote by V. Conjugation by a permutation 8 € S, must permute our
three elements of order 2 among themselves, because conjugate elements
always have the same order. By sending each 6 to the corresponding
permutation (of these elements of order 2) we can produce a function
from S, to S; which is a homomorphism and surjective. Its kernel is
precisely ¥ and (16.2) shows that S,/V is isomorphic to S;.
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(viii) An element of H of the form bi + ¢j + dk is called a ““pure quaternion.”
Identify the set of all pure quaternions with R? via the correspondence
bi + ¢j + dk — (b, ¢,d). If q is a non-zero quaternion, conjugation by
q sends the pure quaternions to themselves and induces a rotation of
R3. This construction provides a homomorphism from H — {0} to SO;.
Its image is all of SO;, its kernel is R — {0}, and (16.2) tells us that
H — {0}/R — {0} is isomorphic to SO;.

(16.4) Second Isomorphism Theorem. Suppose H, J are subgroups of G with J
normal in G. Then HJ is a subgroup of G, H n J is a normal subgroup of H, and
the quotient groups HJ|J, H/H N J are isomorphic.

Proof. Let g, g, be elements of HJ and write g = Xy, g4 = X4V« where x, x, €
H,y,y,€J. Then
99x" = xXyyyixy!
= (ex ) (rayyy' Xyt e HY,
and HJ is a subgroup of G by (5.1). Where has the normality of J been used?

The function ¢: H — HJ/J defined by ¢(x) = xeJ = xJ is a homomor-
phism. It is surjective because if g = xy € HJ, then

o(x) =xJ
xyJ (because y € J)
=gJ.

The element x of H belongs to the kernel of ¢ precisely when xJ = J, in other
words when x e J. Therefore, the kernel of ¢ is H nJ and the result follows

from (16.1). O

(16.5) Third Isomorphism Theorem. Let H, J be normal subgroups of G and
suppose H is contained in J. Then J/H is a normal subgroup of G/H and the
quotient group (G/H)/(J/H) is isomorphic to G/J.

Proof. The function ¢: G/H — G/J defined by o(xH)=xJis a k}omomor-
phism and is surjective. A coset xH belongs to the kernel of @ Premsely when
xJ = J; in other words, when x € J. Therefore, the kernel of ¢ is J/H and the

result follows from (16.1). O
EXERCISES
16.1. Which of the following define homomorphisms from C — {0} to
C — {0}?
(a) z—z* (b) z—z?

(c) z—iz d) z—|z|
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16.2. Do any of the following determine homomorphisms from GL,(C) to
GL,(C)?
(a) 4 - A' (b)) A4~
() A—> A% (d) 4— 4*

i6.3. Show that G x {e} is a normal subgroup of G x H and that the
quotient group (G x H)/(G x {e}) is isomorphic to H.

16.4. If A is a normal subgroup of G, and if B is a normal subgroup of H,
prove that 4 x Bis a normal subgroup of G x H and that the quotient
group (G x H)/(A x B) is isomorphic to (G/A4) x (H/B).

16.5. Verify that the translations in D, form a normal subgroup of D, and

that the corresponding quotient group is isomorphic to Z,.

16.6. Given numbers a € R — {0}, b € R define a function f(a, ») from R to
R by f(a, b)(x) = ax + b. Show that the collection of all such functions
forms a group G under composition of functions. If H consists of those
elements of G for which a = 1, prove that H is a normal subgroup of G
and that G/H is isomorphic to R — {0}.

16.7. Each element
a b
c d

of GL,(C) gives rise to a so called Mdbius transformation

az+b

z— -

cz+d
of the extended complex plane C U {c0}. Show that these transforma-
tions form a group, the Mébius group, under composition of functions,

and that this group is isomorphic to the quotient of GL,(C) by its
centre.

16.8. Show that a function ¢: G — G’ is a homomorphism if and only if
{(g,0(g9))lg € G} is a subgroup of G x G’

16.9. Prove that the quotient group S3/{ £/} is isomorphic to SO,. Check
that S and SO, are not isomorphic to one another.

16.10. Use the idea of Exercise 12.12 to argue that S, is isomorphic to a
quotient of the braid group B,.

16.11. Let ¢: G — G’ be a surjective homomorphism and let X denote its
kernel. If H' is a subgroup of G’ define

e N H')={geGlo(g)e H'}.

Verify that ¢ “'(H’) is a subgroup of G which contains K, and that the
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16.12.

16. Homomorphisms

correspondence H' < ¢ ~'(H') is a bijection between the collection of
all subgroups of G’ and the collection of all those subgroups of G which

contain K.
Show that H is a maximal normal subgroup of G if and only if G/H is
a simple group. (Maximal means that the only normal subgroups of G
which contain H are G and H.)

CHAPTER 17

Actions, Orbits, and Stabilizers

A good definition should be precise, economical, and capture a simple intui-
tive idea. If in addition it is easy to work with, so much the better. We begin
this chapter with a definition having all these qualities.

An action of a group G on a set X is a homomorphism from G to Sy.

Examine this in detail. Let ¢: G — Sy be a homomorphism. For each group
element g in G the function @ gives us a permutation ¢(g) of the points of X.
If g,h € G the permutation ¢(gh) associated to the product gk is equal to the
composition @(g)@(h) because ¢ is a homomorphism. We imagine the ele-
ments of G permuting the points of X in a way that is compatible with the
algebraic structure of G.

Most of the time we will simplify our notation by writing g(x) for the image
of the point x € X under the permutation corresponding to g, instead of the
more cumbersome ¢(g)(x). We shall often say that the group element g € G
sends the point x € X to the point g(x) € X. The requirement that ¢ be a
homomorphism becomes

gh(x) = g(h(x))
for any two elements g,4 € G and any point x € X.
ExaMPLE (i). The infinite cyclic group Z acts on the real line by translation.
The integer # sends the real number x to n + x. If m and n are integers, then
m+n+x=m+ (n+ x),

so we do have an action.
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ExaMmpLE (ii). Even the first word of our definition is suggestive. We say “‘an”
action because a given group may act on the same set in different ways. Here
is a second action of Z on R. Agree that n € Z sends x € R to (— 1)"x. In other
words, the permutation associated to every even integer is the identity permu-
tation of R, and that associated to all the odd integers is x - —x. Since
(—D™*"x = (—1)™(—1)"x for any two integers m, n and any real number x,
this is an action.

Before increasing our stock of examples, we need a little more terminology.
Given an action of G on X and a point x € X, the set of all images g(x), as g
varies through G, is called the orbit of x and written G(x). Notice that G(x)
is a subset of X. In our first example the orbit of a real number x consists of
all translates # + x where n € Z. In the second example the orbit of x consists
of the two points x, —x provided x is not zero, and the orbit of 0 is just {0}.

Let # be the subset of X x X consisting of those ordered pairs (x, y) such
that g(x) = y for some g € G. Then £ is an equivalence relation on X. (The
permutation associated to the identity element of G is the identity permuta-
tion, consequently each x is related to itself because e(x) = x. If x is related
to y, say g(x) = y, then

g () =97 (g(0) =g7lg(x) = e(x) = x
and yisrelated to x. If xis related to y, and y to z, say g(x) = y,g'(y) = z, then
g'9(x) =g'(g(x)) =g'(p) =z

showing that x is related to z.) The equivalence classes of # are just the orbits
of our group action. Therefore, the distinct orbits partition X.

If x is a point of X, the elements of G which leave x fixed form a subgroup
of G called the stabilizer G, of x. In Example (i) the stabilizer of each real
number is the trivial subgroup {0} of Z. In Example (ii) the stabilizer of x is
the subgroup 2Z of 7 if x is not zero, and all of Z when x = 0.

ExAMPLE (iii). Let X be the set of edges of a cube. We can produce an action
of Z, on X by rotating the cube about an axis which passes through the centres
of two opposite faces. Formally, if r is the permutation of X induced by the
rotation shown in Figure 17.1, then we define ¢: Z, — Sy by ¢(m) = r™. There
are three distinct orbits; the top four edges, the bottom four edges, and the
four vertical edges. The stabilizer of every edge is the trivial subgroup {0} of
Z,.

EXAMPLE (iv). Orthogonal transformations preserve length, so if X is the unit
sphere in R>, we have a natural action of SO; on X. The matrix 4 € SO; sends
the unit vector x to the unit vector xA4‘. The orbit of any vector is the whole
sphere. (Two unit vectors x, y determine a plane and a suitable rotation of R3
about the axis through 0 perpendicular to this plane will bring x to the position
of y. The matrix of this rotation is an element of SO; which sends x to y.) Let
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Figure 17.1

¢, be the first member of the standard basis for R3. If 4 € SO, fixes e,, then
A has the form

where B € SO,. Thus, the stabilizer of e, is this “standard copy”’ of SO, inside
SO;. Points in the same orbit always have conjugate stabilizers (see (17.1));
therefore, the stabilizer of every unit vector is isomorphic to SO,. This is an
example of a transitive action. An action is transitive if there is only one orbit.

EXAMPLE (v). Take any group G and let X be the underlying set of G. Let G
acton X by conjugation. Here g € G sends x to gxg~'. This is an action because

(gh)x(gh)™ = g(hxh™")g™!
for all g, h e G and all x € X. The orbits are the conjugacy classes of G. The

stabilizer of the point x is

1

{9 € Glgxg™' = x} = {g € Glgx = xg},

in other words, the subgroup of G consisting of all those elements which
commute with x.
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Suppose we are given an action of a group G on a set X.
(17.1) Theorem. Points in the same orbit have conjugate stabilizers.

Proof. Suppose x and y belong to the same orbit, say g(x) = y. We show
that
) - G

y-

9G.9~
If h e G, then
ghg™'(¥) = ghg *(9(x))
= gh(x)
=g(x)
=y

Therefore, gG,g~* is contained in G,. Reversing the roles of x and y the same
argument providesg ™' G,g < G,; in other words, G, = gG.g~!. This completes
the proof. ]

(17.2) Orbit-Stabilizer Theorem. For each x € X, the correspondence g(x) —
gG, is a bijection between G(x) and the set of left cosets of G, in G.

Proof. The correspondence is clearly surjective. It is injective because if
gG, = g'G,, then g = g’h for some element & of G,, and therefore g(x) =

g'h(x) = g'(h(x))= g'(x)- O

Put another way, the Orbit-Stabilizer theorem says that the cardinality of
the orbit of x is equal to the index of the stabilizer of x in G.

(17.3) Corollary. If G is finite, the size of each orbit is a divisor of the order of
G.

Proof. By the Orbit-Stabilizer theorem the size of G(x) is |G|/| G|, therefore
[G(x)]. |G| =Gl O

EXAMPLE (v, continued). If G is finite, (17.3) tells us that the number of
elements in each conjugacy class is a divisor of the order of G.

EXAMPLE (vi). We can recast the proof of Cauchy’s theorem as follows. Let
G be a finite group and p be a prime divisor of the order of G. As beforez X
is the set of all ordered strings (x,, X, ...,x,) of elements of G. for which
X1X5...%, = e. Werecall that the size of Xis divisible b.y p- There is a natural
action of Z, on X. The element meZ, senc_is the sFrmg‘ (X4, X5, ,xl_,) to
opats - sXpsX15-nnrXm)- BY (17.3) each orbit contains either 1 or p st'rmgs.
If all orbits other than that of (e, e, ...,e) contain p strings, then the size of
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X cannot be divisible by p. We therefore have a string (x,, x,, ... ,X,) other
than (e, e, ...,e) which is left fixed by every element of Z,,. In other words,
Xy =X, =+ = X, as required.

(17.4) Theorem. If p is prime and if the order of G is a power of p, then G has
a non-trivial centre.

Proof. Consider the partition of G into its conjugacy classes. We know from
(17.3) that the size of each class is either 1 or a power of p, and by definition
the centre is made up of the conjugacy classes which contain just one element.
If the centre was trivial, the order of G would be congruent to 1 modulo p,
contradicting our assumption that the order of G is a power of p. O

(17.5) Theorem. If p is prime a group of order p* is either cyclic or isomorphic
toZ, x Z,.

Proof. Suppose the order of G is p?. If G contains an element of order p?, then
it is cyclic. Otherwise, all the elements except e have order p. The centre of G
is non-trivial by (17.4), so choose x (not e) from Z(G) and choose y outside
{x). The p? elements x'y/, 1 < i, j < p, are distinct because (x)» and {y) only
have the identity element in common. Therefore, {(x>{y) = G. Every element
of (x) commutes with every element of {y)> since x € Z(G). By (10.2), G is

isomorphic to {x» x {y)> and hence to Z, x Z,,. O

EXERCISES
17.1. Let G be the subgroup of Sy generated by (123)(45) and (78). Then G
acts as a group of permutations of the set X = {1,2,...,8}. Calculate

the orbit and the stabilizer of every integer in X.

17.2. The infinite dihedral group D, acts on the real line in a natural way
(see Chapter 5). Work out the orbit and the stabilizer of each of the
points 1, 4, 3.

17.3. Identify S, with the rotational symmetry group of a cube as in Chapter
8, and consider the action of A4, on the set of vertices of the cube. Find
the orbit and the stabilizer of each vertex.

17.4. Given an action of G on a set, show that every point of some orbit has
the same stabilizer if and only if this stabilizer is a normal subgroup
of G.

17.5. If G acts on X and H acts on Y prove that G x H acts on X x Y via

(9, M) (x,y) = (g(x), h(y)).

Check that the orbit of (x, y) is G(x) x H(y) and that its stabilizer is
G, x H,. We shall call this action the product action of G x H on
X x7Y.
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17.6.

17.7.

17.8.

17.9.

17.10.

17.11.

17.12.

17.13.

17. Actions, Orbits, and Stabilizers

Here are four group actions on R*:

(a) The usual action of GL,(R).

(b) Identify R* with R? x R? and take the product action of SO, x
SO,.

(c) Think of R* as C x C and let SU, act in the usual way.

(d) Identify R* with R® x R and take the product action of SO; x Z,
where Z acts on R by addition.

Discuss the structure of the orbits and the stabilizers in each case.

If G acts on X and on Y, show that the formula g((x, »)) = (g(x),g(»))
defines an action of G on X x Y. Check that the stabilizer of (x, y) is
the intersection of G, and G,.. Give an example which shows this action
need not be transitive even if G acts transitively on both X and Y. We
shall call this action the diagonal action of Gon X x Y.

Let X = {1,2,3,4} and let G be the subgroup of S, generated by (1234)
and (24). Work out the orbits and stabilizers for the diagonal action
of Gon X x X.

The group C x Cis called the torus. Draw a picture of C x C'to show
why we give it this name. Describe the orbits of the following actions
of R on the torus.

(a) The real number 7 sends (¢, e?) to (e"**", ™).
(b) This time 7 sends (e'*, ™) to (e'™*", V"),
(c) Finally, agree that ¢ sends (e™%, e”) to (¢"**", ei"+'\/§’).

Let x be an element of a group G. Show that the elements of G which
commute with x form a subgroup of G. This subgroup is called the
centraliser of x and written C(x). Prove that the size of the conjugacy
class of x is equal to the index of C(x) in G. If some conjugacy class
contains precisely two elements, show that G cannot be a simple group.

If n is odd show there are exactly two conjugacy classes of n-cycles in
A, each of which contains (n — 1)!/2 elements. When n is even, prove
that the (n — 1)-cycles in A, make up two conjugacy classes, each of
which contains (n — 2)!n/2 elements.

Let p be a prime number. Show that the matrices

1 a b
0 1 c |, abce”Z,
0 0 1

form a non-abelian group of order p>.

If G is a finite group which acts transitively on X, and if His a normal
subgroup of G, show that the orbits of the induced action of H on X
all have the same size.
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17.14. Let H be a finite subgroup of a group G. Verify that the formula
(h,h')(x) = hxh' ™!

deﬁne.s an action of H x H on G. Prove that H is a normal subgroup
of QG if and only if every orbit of this action contains precisely | H|
points.
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Counting Orbits

Two children, Jerome and Emily, each have a supply of cubes, a pot of red
paint, and a pot of green paint. Emily decides to decorate her cubes by
painting each face either red or green. Jerome plans to bisect each face with
either a red or green stripe as in Figure 18.1 so that no two of his stripes meet.
Who produces the largest number of differently decorated cubes?

Eventually Jerome wins 12 to 10. Children realise instinctively that rota-
tions of the cube play a vital role. Painting the top red and all the other faces
green produces the same result, from a decorative point of view, as colouring
the bottom red and all the rest green. We can obtain one from the other by
just turning the cube upside down, and we must agree that two coloured cubes
are the same if one can be rotated into the other.

Trial and error is not the way to solve this type of problem. We are unlikely
to discover all 9,099 different ways of colouring each face of a dodecahedron
red, white, or blue by experiment! Instead, we analyse Emily’s problem as
follows. Painting each face either red or green produces an object which we
call a coloured cube. The cube has six faces, so there are 2¢ coloured cubes in
all, and they form a set which we denote by X. The rotational symmetry group
of the cube acts on X, and two coloured cubes are genuinely different provided
they do not lie in the same orbit. To solve our problem we need the number
of distinct orbits of the action.

Suppose we have an action of a finite group G on a set X. Write X for the
subset of X consisting of those points which are lef? fixed by the element g of G.

(18.1) The Counting Theorem. The number of distinct orbits is
1
— | X9

geG

in other words, the average number of points left fixed by an element of G.
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Figure 18.1

Proof. Count the collection of those ordered pairs (g, x) from G x X for which
g(x) = x. The number of such pairs is

Y X (*)
geG
It is also equal to
2 Gy (x%)
xeX
Let X, X,, ..., X, be the distinct orbits and rewrite (*x) as
k
> X G
i=1 xeX;

Points in the same orbit have conjugate stabilizers, so if X is some chosen
point of X;, we have
Y |G =1X)].|GH

xeX;
=|G(X)|.1Gsl

which is just |G| by the Orbit-Stabilizer theorem. Therefore expression (*#) is
equal to k|G|. Equating (*) and (*x) gives the result. O

(18.2) Theorem. Group elements which are conjugate fix the same number of
points.

Proof. Suppose g and h are conjugate in G; say ugu™'
h fixes u(x) because

h(u(x)) = ugu™ (u(x)) = ug(x) = u(x).

Therefore, u sends the set X9 into X'*. The same argument, with the roles of
g and h reversed, shows that u™! sends X* back to X?. This means that u
provides a bijection from X7 to X* and the two sets of fixed points must have
the same size. |

= h. If g fixes x, then

Now for our original problems.
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Figure 18.2

Emily’s Problem. We must take an element from each conjugacy class of the
rotational symmetry group of the cube and work out how many coloured
cubes it leaves fixed. As representatives of the conjugacy classes we choose
the rotations r, 2, s, and ¢ shown in Figure 18.2, together with the identity
element. A coloured cube which is left fixed by r must have all four vertical
faces painted the same colour because r rotates each of these to the position
of its right-hand neighbour. We have a choice of two colours for the top, two
for the bottom, and two for all the rest; therefore | X”| = 23. The effect of s
on the faces of the cube can be summarised by

top — right-hand side — back — top
bottom — left-hand side — front — bottom

giving | X*| = 22. We leave r? and ¢ to the reader, r? fixes 2* coloured cubes
and ¢ fixes 23. Of course the identity fixes all 2°. The conjugacy classes of r,
r2, s, t contain six, three, eight, and six elements respectively. Therefore, the
number of genuinely different coloured cubes which can be obtained by
painting each face either red or green is

{(6 x 2%) + (3 x 2%) + (8 x 2%) + (6 x 2%) + 2°}
=3{6+6+4+6+8}
= 10. O
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Jerome’s Problem. We have lines drawn on the faces of the cube as in Figure
18.1 and plan to paint each line either red or green. This is almost the same
problem as before, but not quite. The given pattern of lines is not sent into
itself by every rotational symmetry of the cube, only by half of them, those
which induce even permutations of the four leading diagonals. The group
involved is A4, rather than S,. The conjugacy classes are represented by r?, s,
52, e and the number of different coloured cubes is now

H{3 x 2%) + (4 x 22) + (4 x 2%) + 25}
=4{12+4+4+ 16}
=12. O

We finish with a third problem of this type (suggested by L.M. Woodward).
A 5 x 1 rectangular strip of paper is marked off on both sides into five unit
squares. The ends of the strip are then joined with a half twist to produce a
Mébius band M. How many different bands can result if we have three colours
with which to paint the squares? There are ten squares and three colours,
giving a total of 3'° painted bands. “Different” now means different up to
the “natural” symmetry of the Mdbius band. Make a model of M and run it
through your fingers so that the squares move along one position. Call this
symmetry r. After ten moves you get back to where you started, so r'? is the
identity. (Note that r is not induced by a rotation of R?; it is a movement of
the Mébius band in itself. This type of symmetry shows up well if the band
is used as a belt drive connecting two pulleys.) There is another natural
symmetry s; just turn M over as in Figure 18.3. Together r and s generate a
group which is isomorphic to the dihkedral group D, and which acts on the
set of painted bands in the obvious way. The conjugacy classes of D, are

Figure 18.3
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{e}, {nrh {Pr%)
SN N AT S N

4

{s,r2s,r*s, r%s, r8s},

and

{rs,r3s,r’s,r’s,r’s}.
Taking the first element from each of these and working out how many
painted bands it leaves fixed gives: 3'° for e; 3 for r; 32 for r?; 3 for r3; 32 for
r*; 33 for r%; 3% for s and 3° for rs. (For example, s leaves two squares
invariant, those which are pierced at their centre by its axis, and interchanges

the other eight in pairs, so it fixes 3° painted bands.) By the Counting
Theorem, the number of distinct painted Mdbius bands is

230+ 2 x3)+@x3)+2x3)+@2x32)+ (1 x 3%
+ (5 x 3%) + (5 x 3%)
= 3210.

The reader may well wish to have explicit formulae for the symmetries r
and s. The neatest approach is as follows. Think of M as the subset

{(e®® ie®)|—n <0< m, 0< A1)
of C x C. Then r sends (e?”, 1e®) to (e*'®*™> 1e'®*™) and s sends
(92i9, I{eiﬂ) to (8*21‘9’ /’Leﬁilf)‘

Applications of the Counting Theorem to Chemistry may be found in
Section 20 of Reference [5].

EXERCISES

18.1. Each edge of a cube is painted black or white. How many different
decorated cubes result?

18.2. Show there really are 9,099 essentially different ways of colouring the
faces of a dodecahedron red, white, or blue.

18.3. A circular birthday cake is subdivided into eight equal wedges. In how
many different ways can we distribute red and green candles so there is
a candle at the centre of each piece?

18.4. Instead of painting the stripes in Figure 18.1, paint each half of the
subdivided faces. In how many different ways can this be done if we
have two colours available?

18.5. A bracelet is made from five beads mounted on a circular wire. How
many different bracelets can we manufacture if we have red, blue, and
yellow beads at our disposal?
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18.6.

18.7.

18.8.

The vertices, the midpoints of the edges, and the centroids of the faces
of a regular tetrahedron T are to be labelled using three colours. Prove
that there are 400,707 ways of doing this if we take into account the
rotational symmetry of 7.

How many different ways are there of colouring the vertices and edges
of a regular hexagon using red, blue, or yellow for the edges and black
or white for the vertices?

Look at our description of the Mobius band as a subset of C x C and
find matrices in U, which represent the symmetries r and s.



CHAPTER 19

Finite Rotation Groups

The special orthogonal group SO; may be identified with the group of
rotations of R® which fix the origin (Chapter 9). If an object is positioned in
R3 with its centre of gravity at the origin, then its rotational symmetry group
“is” a subgroup of SO;. We are familiar with several possibilities. From a
right regular pyramid with an n-sided base we obtain a cyclic group of order
n, while a regular plate with 7 sides exhibits dihedral symmetry and gives D,.
(Regular with two sides means the lens shape described in Exercise 9.12.) In
addition, we have the symmetry groups of the regular solids. As we shall see,
these are the only possibilities, provided our object has only a finite amount
of symmetry. In other words a finite subgroup of SO is either cyclic, dihedral,
or isomorphic to the rotational symmetry group of one of the regular solids.
We begin with a less ambitious result which deals with finite subgroups of
0,.

(19.1) Theorem. A finite subgroup of O, is either cyclic or dihedral.

Proof. Let G be a finite non-trivial subgroup of O,. Suppose first of all that
G lies inside SO, so that each element of G represents a rotation of the plane.
Write 4, for the matrix which represents rotation anticlockwise through 0
about the origin, where 0 < 8 < 2x, and choose A4, € G so that ¢ is positive
and as small as possible. Given 4, € G, divide 0 by ¢ to produce 6 = k¢ + ¥
where k € Z and 0 < y < ¢. Then

Ag= Aypy = (404, and Ay, = (4,)7%4,.

Since 4, and A, both lic in G, we see that 4, is also in G. This gives =0,
since otherwise we contradict our choice of ¢. Therefore, G is generated by

A, and is cyclic.
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If G is not wholly contained inside SO,, we set H = G ~ SO,. Then His a
subgroup of G which has index 2, and by the first part H is cyclic because it
is contained in SO,. Choose a generator 4 for H and an element B from
G — H. As B represents a reflection we have B> = I If A = I, then G consists
of I'and B and is a cyclic group of order 2. Otherwise, the order of 4 is an
integer n > 2. The elements of G are now

LA,..,A"', B AB,..., A" 'B

and they satisfy 4" = I, B> = I, BA = A~'B. In this case the correspondence
A - r, B — sdetermines an isomorphism between G and the dikedral group D,.

(]

(19.2) Theorem. A finite subgroup of SO; is isomorphic either to a cyclic group,
a dihedral group, or the rotational symmetry group of one of the regular solids.

Proof. Let G be a finite subgroup of SO;. Then each element of G, other than
the identity, represents a rotation of R® about an axis which passes through
the origin. We shall argue geometrically and work with rotations rather than
the corresponding matrices. The two points where the axis of a rotationg € G
meets the unit sphere are called the poles of g (Fig. 19.1). If the axis happens
to be the z-axis, we have the usual North and South poles of the sphere. These
poles are the only points on the unit sphere which are left fixed by the given
rotation. Let X denote the set of all poles of all elements of G — {e}. Suppose
xe Xandg e G. Let x be a pole of the element 4 € G. Then (ghg™)(g(x)) =
g(h(x)) = g(x), which shows that g(x) is a pole of ghg™" and hence g(x) € X.
Therefore, we have an action of G on X. The idea of the proof is to apply the
Counting Theorem to this action and show that X has to be a particularly
nice configuration of points.

Poles of g

Figure 19.1
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Let N denote the number of distinct orbits, choose a pole from each orbit,
and call these poles x,, X,, ..., xy. Every element of G — {e} fixes pre-
cisely two poles, while the identity fixes them all, so the Counting Theorem

gives

N= |G| —{2(IG| = D) + | XI}

=Gl {2(IGI -D+ Z IG(X)\}

This rearranges to

1
2(1 _—> N—@Z 1G]

|G|
(*)

N Z (' B |Gle|>'

Assuming G is not the trivial group, the left-hand side of the above expression
is greater than or equal to 1 and less than 2. But each stabilizer G, has order

at least 2 so that

for 1 < i < N. Therefore, N is either 2 or 3.

If N = 2, then (%) gives 2 = |G(x,)| + |G(x,)| and there can only be two
poles. These poles determine an axis L and every element of G — {e} must be
a rotation about this axis. The plane which passes through the origin and
which is perpendicular to L is rotated on itself by G. Therefore, G is isomor-

phic to a subgroup of SO, and has to be cyclic by (19.1).
When N = 3 the situation is more complicated. Writing x, y, z instead of

X1, X5, X3 wWe have

- 1 3 (1 N 1 n l)
2( G G icl Ticl
and, therefore,

2 1 4 1 . 1
Y6 TG e TGl

1

The sum of the three terms on the right-hand side is greater than 1, so there
are only four possibilities:
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where n > 2;

-

—
o
~—

(®)
(©)
(d 2

We shall consider each of these cases in turn.

R bt N B0

[FERTRRNEYNTSN
Dl B e

Case (a). If |G,| = |G,| = |G,| = 2, then G is a group of order 4 in which every
element other than the identity has order 2. Therefore, G is isomorphic to
Klein’s group, thought of here as a dihedral group with four elements. Let g
generate G, and remember that g preserves distance. The poles x and g(x) are
equidistant from z, as are y and g(»). So —z must be the other point in G(z)
and we have g(x) = —x, g(y) = —y. Therefore, the axes through x, y and z
are perpendicular to one another, and the three orbits are { + x}, { +y}, {+ z}
as in Figure 19.2.

If |G,] = |G,| = 2and |G,| = n > 3, then G is a group of order 2#. The axis
through z is fixed by every rotation in the stabilizer G,; therefore, G, is a cyclic
group of order n. Suppose g is a minimal rotation which generates G,. The
points x, g(x), ..., g" ' (x) are all distinct. To see this, suppose g"(x) = g*(x)
where r > 5. Then g""*(x) = x. But z and — z are the only poles which are left
fixed by g"*, and x cannot be —z, as |G, | = 2, whereas |G_,| = |G,| = n > 3.
Because g preserves distance, we have

lx —g@l = llg(x) = g* )l = -~ = 1g" 7" (x) — xI|.

Therefore, x, g(x), ..., g" ' (x) are the vertices of a regular n-gon P. Since G
consists of 2n rotations each of which sends P to itself, G must be the
rotational symmetry group of P. Hence, G is dikedral. Of course the plane of
P contains the origin and is perpendicular to the axis through z. The orbits
of x, y and z are shown in Figure 19.3.

Figure 19.2
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Figure 19.3

Case (b). If |G,| = 2 and |G,| = |G| = 3, then G is a group of order 12. The
orbit of z consists of four points. Choose one, say u, which satisfies 0 <
|z — u| < 2, and choose a generator g for G,. Then u, g(u), and g*(u) are all
distinct. Since g preserves distance, they are equidistant from z and lie at the
corners of an equilateral triangle. Focusing our attention at « rather than z
shows that z, g(x), and g?(u) are equidistant from u. Therefore, z, u, g(u),
g*(u) are the vertices of a regular tetrahedron, which is sent to itself by
every rotation in G. As G has the correct order (twelve), it must be the rota-
tional symmetry group of this tetrahedron. Figure 19.4 shows the three orbits.

Case (¢). If |G,| = 2, |G,| = 3, and |G,| = 4, then G is a group of order 24.
There are six points in the orbit of z. Choose one, say u, which is not z or —z,
and let g generate G,. Then u, g(u), g>(u), and g*(u) are distinct, equidistant
from z, and lie at the corners of a square. We have room for only one more
point in G(z), so this point must be —z. Equally well, —u lies in G(u) = G(2).
This pole —u is certainly not z or —z, and it cannot be g(u) or g°(u) because
lg(w) — ull = |g3(u) — u| < 2. So —u must be g*(u). Therefore, z, u, g(u),
9%(u), g>(u), — z are the vertices of a regular octahedron, and G is its rotational
symmetry group (see Fig. 19.5).

Case (@). If |G| = 2, |G,| = 3, and |G| = 5, then G is a group of order 60.
There are twelve points in the orbit of z. Choose two, say u and v, which
satisfy

19. Finite Rotation Groups

Figure 19.4

*
%

from orbit of x

Figure 19.5

* from orbit of x

x

Y

Y
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* from orbit of x
*x —m y

Figure 19.6

O<|lz—ull <|z—rv| <2.

Why can we do this? If g is a minimal rotation which generates G,, then u,
g(u), g*> (), g°(u), and g*(u) are all distinct, equidistant from z, and lie at the
corners of a regular pentagon. Also, v, g(v), g*(v), g°(v), and g*(v) are distinct,
equidistant from z (further away than ), and form the vertices of a regular
pentagon. This leaves — z as the only possibility for the twelfth point of G(2).
Changing our attention to u, we see that —u e G(u) = G(z). As —uliesata
distance of 2 from w, it must be one of the points v, g(v), g2 (v), g*(v), or g*(v).
Relabelling if necessary, we can arrange that —u = v, when —g"(u) = g"(v),
1 < r <4, as in Figure 19.6. Looking out from u we see eleven points, and
the five which are closest to ¥ must be equidistant from u. These are z, g(u),
g3(v), g*(v), and g*(u); therefore,
lu—z|| = |u— gl = u—g*@®)|.

It is now easy to check that our twelve points lie at the vertices of a regular
icosahedron, and G is the rotational symmetry group of this icosahedron. []

EXERCISES

19.1. Find the poles of the rotations described in Exercise 9.8.

19.2. Glue two dodecahedra together along a pentagonal face and find the
rotational symmetry group of this new solid. What is its full symretry
group?
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Stella octangula

Figure 19.7

19.3. A solid is made up of two regular tetrahedra arranged so that their edges
bisect one another at rightangles (Fig. 19.7). Find its rotational sym-
metry group.

19.4. Show that the rotational symmetry group of the cuboctahedron (Figure
19.8) is isomorphic to S,. A cube is made up of six pyramids, each of
which has a face of the cube as its base, and the centroid of the cube as
apex. By mounting these pyramids on the faces of a second cube,
we obtain the rhombic dodecahedron. Make a model of the rhombic
dodecahedron and show that its dual is the cuboctahedron.

19.5. Finite subgroups of Oy. Let G be a finite subgroup of O, and let H be its
intersection with SO;. If G contains the matrix —/, prove that G is

Cuboctahedron

Figure 19.8
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19.6.

19.7.

19.8.

19. Finite Rotation Groups

isomorphic to H x Z,. If on the other hand — I does not belong to G,
show that the function 4 — (det A). A provides an isomorphism from
G to a subgroup of SO,. Verify that all possibilities are listed in the
following table.

H | G
{e} {e}. Z,
Zz Ly Zy % 24,24,
D,, D, x Z, D,,
Ay Ay, Ay X 25, Sa

S4 S4, S4 X ZZ
As As, As x Z,

Realise each of Z,,, D,,, and A, x Z, as the (full) symmetry group of
an appropriate solid.

Find solids whose rotational symmetry groups are isomorphic to SO,,
SO, x Z, and O, respectively.

Prove that SO, does not contain a subgroup which is isomorphic to
SO, x SO,.

CHAPTER 20

The Sylow Theorems

Let G be a finite group whose order is divisible by the prime number p.
Suppose p™ is the highest power of p which is a factor of |G| and set k = |G|/p™.

(20.1) Theorem. The group G contains at least one subgroup of order p™.
(20.2) Theorem. Any two subgroups of G of order p™ are conjugate.

(20.3) Theorem. The number of subgroups of G of order p™ is congruent to 1
modulo p and is a factor of k.

These results were first published by L. Sylow rather more than a century
ago. The arguments presented below (the first is due to H. Wielandt, 1959)
make repeated use of the Orbit-Stabilizer theorem. Each reference to this
theorem will be indicated by an asterisk so as to avoid tedious repetition.

Proof of (20.1). Let X denote the collection of all subsets of G which have p"
clements and let G act on X by left translation, so that the group element
g € G sends the subset 4 € X to g4. The size of X is the binomial coeffi-
cient (":,:,"), which is not divisible by p (see Exercise 20.14). Hence, there
must be an orbit G(A) whose size is not a multiple of p. We have |G| =
|G(A4)|.1G,] (*), consequently |G,] is divisible by p™. Now G, is the stabilizer
of 4, s0 if ae A and g € G, then ga e A. This means that the whole right
coset G,a is contained in 4 whenever a € 4, and |G,| cannot exceed p™.
Therefore, G, is a subgroup of G which has order p™. 0

Proofs of (20.2) and (20.3). Let H,, ..., H, denote the subgroups of G which
have order p™, and let H, act on the set {H,,..., H,} by conjugation so that
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he H, sends H; to hH;h™". If K;is the stabilizer of H;, then K; = H, N H;. (So
as not to interrupt the flow of our argument, we prove this as a lemma below.)
In particular, K, = H, and the orbit of H; has just one element (), namely
H, itself. If j is not equal to 1, the order of K; is a smaller power of p than p™,
so the size of every other orbit is a multiple of p (x). Adding up the sizes of
the orbits shows that ¢ is congruent to 1 modulo p.

Now let the whole group G act on {H,, ..., H,} by conjugation. In order to
prove (20.2) we must verify that this G-action is transitive. Each G-orbit is
made up of various H,-orbits. The G-orbit of H, certainly contains H,, and
therefore its size is congruent to 1 modulo p. Suppose now that H, is not in
the G-orbit of H,, and let H, act on {H,, ..., H,} by conjugation. The G-orbit
of H, is now partitioned into H,-orbits and the size of each of these is a
multiple of p (because the exceptional orbit {H,} is not present). This leads
us to conclude that |G(H,)| is congruent to zero modulo p, which does not
agree with our previous calculation. Therefore the G-orbit of H; must be all
of {H,,...,H,} as required.

Since the size of an orbit is always a factor of the order of the group involved
(%), we now know that ¢ divides kp™. But p does not divide 7, so that # must
be a factor of k. Our argument is now complete except for one detail.

Lemma. K; is the intersection of H, and H;.

Proof of the lemma. By definition, K; = {h € H,|hH;h™" = H;} and therefore
K; < H, and H, n H; = K;. We must show that K;is contained in H;. Certainly
K;H, = HK;, so K;H; is a subgroup of G (see Exercise 15.1). In addition, H;
sits inside K;H; as a normal subgroup and the Second Isomorphism Theorem
gives

KyHy Hy = K((K; 0 H.

The order of K;H, is therefore |K}| . |Hj|/| K; » Hj|, which is a power of p. But
the largest available power of p is p™ = | H}|, hence K;H; = H;, and we have
K; < Hj as required. This ends the proofs of (20.1)-(20.3). O

We shall use the Sylow theorems to help classify groups of order 12. First
we make a minor though useful observation. If H is a subgroup of G, then
each conjugate gHg ™! is also a subgroup of G and has the same order as H.
Therefore, if G has no other subgroup of the same order as H, then H must
be a normal subgroup of G.

Classification of Groups of Order 12

Let G be a group which contains twelve elements and suppose it has ¢
subgroups of order 3. The Sylow theorems tell us that 7 is congruent to 1
modulo 3 and is a factor of 4. Therefore, G has either a single subgroup of
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order 3, which must be a normal subgroup, or four conjugate subgroups of order
3. We shgl] treat these two cases separately. Note that the Sylow theorems
also predict either one or three subgroups of order 4.

Case 1. Suppose G contains a normal subgroup H of order 3 generated by x.
Let K'be a subgroup of order 4. Then Kis either cyclic or isomorphic to Klein’s
group Z, x Z,.

(a) Assume for the moment that K is cyclic and choose a generator y of K.
The identity is the only element which lies in both H and K, so the cosets
H, Hy, Hy?, Hy* are all distinct and HK = G. Since H is a normal
subgroup, we know that yxy~! belongs to H.
(i) If ypxy™! = x, then G is abelian and we have

GxHxK=ZyxZ,=7,,
by (10.1) and (10.2).

(ii) The other possibility, yxy™! = x?, or equivalently, yx = x2y, leads
to

yix = yx’y = x?yxy
= x*p? = xp2.

So x commutes with y? and the element z = xy? has order 6. We also
have

and
vz =yxy*=y’x
=¥ty =z"y.
The order of y is 4; therefore, y does not lie in (z) and the cosets {z,
{z)y fill out G. Their elements multiply via

b
z92% =z%h
Za(zby) =za+by’
(zay)zb =Za‘by’

(Zay) (Zby) :Za—byz —_ za—b+3
where the powers of z are read modulo 6. Associativity requires a
little patience, though no real flair, and we do have a group. This
group belongs to the family of dicyclic groups whose first member is
the quaternion group Q (see Exercise 20.15).

(b) Now suppose that K is isomorphic to Klein’s group, labelling its elements
e, u, v, w, where w = uv and u? = v? = e. Again, Hn K = {e}, and the
cosets H, Hu, Hv, Hw fill out G, giving HK = G. Since H is normal in G,
we have
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1 ab

1 b = x

uxu ' = x° vxv T = Xx°, wxw™~

where each of g, b, ab is either +1 or —1.
(iii) Ifa = b = ab = + 1, our group is abelian and isomorphic to H x K,
hence
GoZyx 2y x Ly =1Zgx L,

(iv) Otherwise two of a, b, ab, equal —1 and the third is + 1. Relabel u,
v, wif necessary so that a = +1and b = — 1. Then u commutes with
x and z = ux has order 6. The elements z, v together generate G and
they satisfy z® = e, v* = e, vz = z'v, giving a group isomorphic to
the dihedral group of order 12. O

Case 2. If G contains four conjugate subgroups of order 3, these subgroups

use up eight elements from G — {e}, leaving room for only one subgroup K

of order 4.

(c) We first show that K cannot be cyclic. Suppose K is cyclic, generated by
the element y, and let x be an element of G — K. Then x has order 3 and
the cosets K, Kx, Kx? fill out G. Since K must be normal in G, we have
xyx~'e K. If xyx™' =y, then G is an abelian group, contradicting our
assumption that G contains four conjugate subgroups of order 3. We
recognise xyx~! = y? as nonsense because y and y? have different orders.
Finally, xyx™! = p* cannot hold, since it leads to

3

y=x3yx73 =y =y

(d) The normal subgroup K of order 4 must therefore be isomorphic to Klein’s

group. Label its elements e, u, v, w as before, and let x be an element of

G which has order 3. The cosets K, Kx, Kx? are all distinct, so u, v, and

x together generate G. Conjugation by x permutes the three elements u,

v, w among themselves, since K is a normal subgroup of G, and this

permutation is either the identity or a 3-cycle because x> =e.

(v) We cannot obtain the identity permutation, as this leads us to an
abelian group, and hence to a contradiction as above.

(vi) Relabelling as necessary, we may assume that xux"! = v, xvx~
xwx~! = u when the correspondence

u > (12)(34), ve> (13)(24),
x> (234)

1oy,

determines an isomorphism between G and the alternating group A,.

a

We have proved that every group of order 12 is isomorphic to one of the
following: the cyclic group Z 5, the product Z g x Z,, the dihedral group Dy, the
dicyclic group of order 12, and the alternating group A, .
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EXERCISES

Assume the order of G is kp™, where p is prime and is not a factor of k. Then
any subgroup of G which contains p™ elements will be called a Sylow p-
subgroup of G, or just a Sylow subgroup if we do not need to emphasise that
it belongs to the prime p.

20.1. Show that a group of order 126 must contain a normal subgroup of
order 7. Prove that a group of order 1,000 cannot be a simple group.

20.2. Write down all Sylow subgroups of 4. Are any of these subgroups
normal subgroups?

20.3. If every Sylow subgroup of G is a normal subgroup, show that G is
isomorphic to the product of its Sylow subgroups.

20.4. Classify the groups which have order 1,225.
20.5. Prove that a finite abelian group is isomorphic to the product of a

finite number of (abelian) groups the order of each of which is a power
of a prime.

In the next three exercises p and g are both prime numbers and p is greater
than g¢.

20.6. If p is not congruent to 1 modulo ¢, show that every group of order
pq is cyclic.

20.7. Classify the groups of order p2g if p is not congruent to +1 or —1
modulo g¢.

20.8. Assume p? is not congruent to 1 modulo g, and ¢? is not congruent to
1 modulo p. Classify the groups which have order p2¢>.

20.9. Let p be a prime factor of the order of a finite group G. If H is a normal
subgroup of G whose index is not a multiple of p, show that H must
contain every Sylow p-subgroup of G.

20.10. Suppose H is a Sylow subgroup of G and let J be a subgroup of G which
contains H. If H is normal in J, and if J is normal in G, prove that H
is normal in G.

20.11. Let H be a subgroup of G and write X for the set of left cosets of H
in G. Show that the formula

g(xH) = gxH

defines an e}ction of G on X. Prove that H is a normal subgroup of G
if and only if every orbit of the induced action of H on X contains just
one point.

20.12. Let G be a finite group and let p be the smallest prime which is a factor
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20.13.

20.14.

20.15.
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of |G|. Prove that a subgroup of G which has index p must be a normal
subgroup of G. (You may like to use the action defined in Exercise

20.11.)

If J is a subgroup of G whose order is a power of a prime p, verify
that J must be contained in a Sylow p-subgroup of G. (Take H to be
a Sylow p-subgroup in Exercise 20.11 and consider the induced action

of Jon X.)

If p is a prime number, if k is not a multiple of p, and if 0 < x < p™ — 1,
show that (kp™ — x)/(p™ — x) is not divisible by p.

Let m be an integer which is greater than or equal to 2. Begin with 4m

elements
2m—1

-1
e X, ..., x" Ly, xy, ..., x*" 1y

and multiply them via

xa(xby) — x"*"y,
(o)t = X"y,
(xay) (be) - xa—b+m
where 0 < a, b < 2m — 1 and the powers of x are read modulo 2m.
Check that this defines a group G which is isomorphic to the quaternion
group when m = 2. We call G the dicyclic group of order 4m.

CHAPTER 21

Finitely Generated Abelian
Groups

A group is finitely generated if it has a finite set of generators. Finitely
generated abelian groups may be classified. By this we mean we can draw up
a list (albeit infinite) of “standard” examples, no two of which are isomorphic,
so that if we are presented with an arbitrary finitely generated abelian group,
it is isomorphic to one on our list.

(21.1) Theorem. Any finitely generated abelian group is isomorphic to a direct
product of cyclic groups

.- s
2y, X 2, X X Ly X Z

in which m; is a factor of my,( for 1 <i<k — 1.

We use Z° as shorthand for the direct product of s copies of the additive group
of integers. The number s is the rank of our group, and m,, ..., m, are its
torsion coefficients. Two special cases are worth listing separately.

(21.2) Corollary. Any finite abelian group is isomorphic to a direct product of
cyclic groups
Logy X Ly X =+ X Ly,

m

Jor which m |m,) . ..|m,. (Here the rank s is zero.)

(21.3) Corollary. Any finitely generated abelian group in which there are no
elements of finite order is isomorphic to the direct product of a finite number of
copies of Z. (This fits into the general case if we allow & to be zero. A group
which is isomorphic to the direct product of s copies of Z is called a firee
abelian group of rank s.)
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ExaMPLEs. (i) Do not be fooled by a group such as Zg x Z,,. At first sight we
may be puzzled because 6 is not a factor of 10. But using (10.1) we have

Zogx Zyg=Zy X Ly x Lyg=Zy X Ly,
which is on our list.

(i) An abelian group of order 12 must be isomorphic to either Z,, or
Z, x Zg. This bears out our calculations in Chapter 20.

(iii) The subgroup of C — {0} generated by the two elements —1 and /2 is
isomorphic to Z, x Z.

(iv) Ris not finitely generated (Exercise 21.12) and is not isomorphic to one
of the groups on our list.

Let G be a finitely generated abelian group and let x4, ..., x, be distinct
elements which together generate G. If no set of r — 1 elements can generate
G,wecall x,, ..., x,aminimal set of generators. Because our group is abelian,
each g € G can be written in a particularly nice way as a word

g=xP'x5. .. x" (%)
where n,, ..., n, are integers, simply by collecting together powers of the
various generators. An expression of the form

e=x x5 xr (%*)
is called a relation between our generators. If g is an integer, notice that

xlxgaXZs R ] xr

is also a minimal set of generators for G because each word
x{x5r. L xlr

can be rewritten in terms of these new generators as

ny

(e xg)m x5 mxs . x

Proof of (21.1). Suppose first of all that G has a minimal set of generators x,,

.., x, for which the only relation is the trivial one obtained by setting
n, = n, = -+ = n, = 0in (++). Then the expression () for g in terms of these
generators is unique and the correspondence

g—(ny,ny,...5n,)

is an isomorphism between G and Z".

The general case needs, as one might expect, more effort. We now have a
situation in which no matter how we select a minimal set of generators for G,
there is always a non-trivial relation between them. Among all relations
between all possible minimal sets of generators, there will be a smallest positive
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exponent, say m,. Suppose m, occurs as the exponent of x; in the relation
e= xMxh2. . . xr (k%)

between the generators x, ..., x,. We claim that m, is a factor of n,. For if
n, = gm; + u where 0 < u < m,, then

e=xMxi™m*xp . X

= (x; x3) "M x5x5 ... x0

Since x; x4, x,, ..., x, is also a minimal set of generators this contradicts our
choice of m, (as the smallest positive exponent) unless u is zero. Hence,
n, = gm, as required. In a similar fashion, we can show that m, is a factor
of each of ns, ..., n,and weset n, = g;m, for3 <i<r.

Change to the new set of generators z,, x,, ..., x, where

zy = x;x§x$ ... xxr
and note that relation («**) now becomes
e =z
Our initial choice of m, ensures that no smaller positive power of z, is the
identity, so m, is the order of z,. Let H = {z,) and let G, be the subgroup
generated by x., ..., x,. It is easy to check that HG, = G and H N G; = {e}.
Therefore, 6 = H x G, = Z,,, x G, by (10.2).

Now work with G, and carry out exactly the same procedure. Again, there
are two possibilities, G, = 7! and G, = Z,,, x G,. Thus, the original group
G is either isomorphic to Z,, x Z"”', in which case we are finished, or to
Z,, x Z,, x G,.In the latter case the integer m, occurs as the exponent of,
say, y, in the relation - ”
e=yy" Vs’ Y
between the minimal set of generators y,, ..., y, for G,. Since z,, y,, ..., y,
is a minimal set of generators for G, and since

e=zlyryT.
we see that m, is a factor of m,. We now have all the essential ingredients for

our proof, and we continue with G,. The process eventually terminates
because at each stage we reduce the number of generators by one. O

To complete our classification we must show that if two finitely generated
abelian groups are isomorphic then they have the same rank and the same
torsion coefficients.

(21.4) Theorem. Let G, = Z,, x Z,, x -+ X Z,, x Z° where m;|m,]|...|m,

and Gy = Z, X Ln, X "+ X Z, x Z', where ny|n,|...|n. If G, and G, are
isomorphic thens = t, k = land m; = n; for 1 <i<k.

We shall need the following simple observation.
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(21.5) Lemma. Let m, q be positive integers. The number of integers r which
satisfy 0 < r < m and m\qr is the highest common factor of m and q.

Proof. If d is the highest common factor of m and ¢ set m = m'd, q = q'd so
that hef(m’, ¢') = 1. As m|qr, we have m'd|q’dr and therefore m’|r. This means
risoneof 0, m’,2m’, ..., (d — 1)m’. Conversely each of these integers satisfies
our two hypotheses and we do indeed have d possibilities. O

(21.6) Lemma. If H = Z,,, the number of elements xe H which satisfy x? = e
is the highest common factor of m and q. If H=7,, X Z,,, X *** X L, this
number is hef(m,, q) . hef(m,, q) .- - - hef(my, q).

Proof. This number is preserved by an isomorphism, so the first part is just
a restatement of (21.5). (Since the group operation in Z,, is addition modulo
m, the gth power of an element r is the identity precisely when m divides gr.)
For the second part, if the gth power of (r(,r,, ..., r) is to be the identity in
Z,y, % Ly, X~ X Z,,, then we have hcf(m,, q) choices for r, hcf(m;,q)
choices for r,, and so on. 0O

Proof of (21.4)—torsion coefficients. The elements of finite order in G| form
the subgroup H, = Z,, x Z,,, X -** x Z,, x {e} and those in G, make up
H,=127, xZ, %% Z, x {e}. An isomorphism between G, and G, will
send elements of finite order to elements of finite order, therefore H, is isomor-
phic to H,. Assume for the sake of argument that k& > / and apply (21.6) to
each of H,, H, with ¢ = m,. Then hef(m,,m;) . hcf(m,,m,) ... hcf(my,m;) =
hef(ny,m;). hef(n,, my). . hef(n, m,); in other words,

m* = hef(n,,m,) . hef(ny, m,). . hef(n, m).

Each factor on the right-hand side is at most m,, so we must have / = k and
m,|n,. Now play the same trick with ¢ = n, to produce

hef(my, ny) . hef(my,ny). . hef(my, ny) = nf,

which gives n,|m,. At this stage we know k = land m; = n,.
Apply (21.6) again to H, and H, with g = m,. Then
m,;m&™! = hef(n,,m,) . hef(ny, my). . hef(ny,m,)
= m, .hef(n,,m,) .. hef(n, my)
which gives m,|n,. Taking g = n,, we have
m, .hef(m,, ny). . hef(my, ny) = mns™!
$0 ny|m,. Therefore, m, is equal to n,. We leave the reader to continue this
process, taking g to be mj, then n;, and so on. d

(21.7) Lemma. If Z° is isomorphic to Z' then s = 1.
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Proof. Assume that s is less than or equal to ¢. Let ¢: Z° — Z' be an isomor-
phism, and think of Z* as the subgroup of R’ consisting of those points whose
coordinates are all integers. Use x; to denote the element of Z° which has 1
as its ith coordinate and all other coordinates zero. If (r,, ..., r,) € Z°, then

(rl3""rs):r1x1 +o T TsXs
and
(p(rl"-'srs) = rl(/)(xl) + 0+ rsw(xs)'

So the image of ¢ lies in the subspace of R spanned by ¢(x,), ..., ¢(x,). In
order to contain Z', this subspace must be the whole of R'. Therefore, s = t as
required. 0

Proof of (21.4)—rank. We have a homomorphism from G, to Z° given by

(Fpse s Tis Fitts v o Fias) = (Fertn e oo s Tps)-

It is surjective and its kernel is precisely H,, so G,/H, is isomorphic to Z* by
the First Isomorphism Theorem. Similarly, G,/H, is isomorphic to Z'. As we
explained earlier, an isomorphism between G, and G, sends H, to H,. It will
therefore induce an isomorphism from the quotient group G,/H, to G,/H,,
consequently s = ¢ by (21.7). O

Our proof of (21.1) is efficient, but not a great deal of help in recognis-
ing an abelian group from a given set of generators and relations. We shall
show how to do this in a systematic way in the next chapter. The method uses
matrix row and column operations, so we shall change to additive notation,
writing x + y for the group operation, 0 for the identity element, and —x
for the inverse of x. The standard form of (21.1) is then referred to as the
abelian group determined by k + s generators x,, ..., x,.5, which satisfy the
relations

mix; =0,...,mx, =0
It is isomorphic to the quotient group A/N where 4 is the free abelian group
whose elements are linear combinations
RyXy o+ Mg Xprs

with integer coefficients, and N is the subgroup of 4 generated by m, x,, ...,
mx,.

EXERCISES

21.1. Find the torsion coefficients of each of the following.
(@) Zyo % Zy5 x 2 (b) Zy5 x 24,
(€) Zog X Zya X Zg X 7y,
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21.2.

21.3.

21.4.
21.5.

21.6.

21.7.

21.8.

21.9.

21.10.

21.11.

21.12.

21.13.

21.14.

21. Finitely Generated Abelian Groups

Let G be an abelian group of order 100. Show that G must contain an
element of order 10. What are the torsion coefficients of G if no element
of G has order greater than 10?

If the order of a finite abelian group is not divisible by a square, show
that the group must be cyclic.

Classify the abelian groups of order 81, 144, and 216.

Let p be a prime number. An abelian group has order p" and contains
p — 1 elements of order p. Show that the group is cyclic.

If G, A, B are finite abelian groups, and if G x 4 is isomorphic to
G x B, prove that A is isomorphic to B.

Let G be a finite abelian group of order 360 which does not contain
any elements of order 12 or 18. Find the torsion coefficients of G. How
many elements of order 6 does G contain?

Prove that a finitely generated non-trivial subgroup of R — {0} must
be isomorphic to Z, or to Z* or Z, x Z* for some positive integer s.

Let G be a finite abelian group and write # (g) for the number of
elements x of G which satisfy x? = e. Find the torsion coefficients of
G when # (2) = 16, #(4) = 32, #(3) = 9, #(9) = 81 and x3® = e for
allxe G.

As for the previous exercise, but this time #(2) =4, #(3) =3,
#(5) =125and x*° = eforall x e G.

Abelianise each of

(@) @ xS, (b) Dy, x A,

(¢) G x Z,,, where G is the dicyclic group of order 12

and write down the torsion coefficients of the resulting abelian groups.

Prove that R cannot be generated by a finite number of elements by
showing that every finitely generated group is countable.

Let G be an abelian group and use additive notation. Call G a divisible
group if given x € G and a positive integer m we can always find an
element y of G such that my = x. For example, Q, R, C, and C are all
divisible groups. Show that Z and @P* are not divisible. Prove that a
non-trivial divisible group cannot be finitely generated.

Show that QP contains a free abelian subgroup of rank s for ar-
bitrarily large values of s.

CHAPTER 22

Row and Column Operations

Armed with generators and relations for a finitely generated abelian group,
we would like to be able to recognise the group in the canonical form provided
by (21.1). An effective procedure for doing this is given below. We shall use
additive notation throughout, and we begin with an example.

ExAMPLE (i). Let G be the abelian group determined by the generators x, y, z
and the relations
3x+Sy—3z=0 Ry),

4x +2y=0 (R,).

That s to say, G is isomorphic to the quotient A/N where 4 is the free abelian
group whose elements are linear combinations ax + by + ¢z with integer
coefficients and N is the subgroup of 4 generated by 3x + 5y — 3z and
4x + 2yp. Subtract R, from R, to give

x—3y+3z=0 (R3)
and then subtract three times R, from R, so that
14y — 12z =0 (Ry).

Ifu = 3x + 5y — 3zand v = 4x + 2, all we have done so far is to change our
generators for N from u, v to

u, U'_u=X—3y+3Z
and then to
v— U, u—3(—u) =14y — 12z.

Therefore, we have the same group G whether we use the relations R; and
R, or R; and R,. Rewrite R, as
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14y — 12z =2y + 12(y — 2)

=2(y+6(y—2)=0
and set
x'=x—3y+ 3z, Yy =y+6(y— 2), Z'=y-—-z

Then x', y', z’ is a new set of generators for G as we see if we break down the
change from x, y, z to x’, y', z’ into several stages, viz.,

X, ¥, z
x—3y, », z
x—3y+3z, y z
x—3y+3z, y y—z
x—3y+3z, y+6(y—2), y—z

The relations R, R, now simplify to x’ = 0 and 2y’ = 0, respectively. So x’
makes no contribution and G is generated by an element y’ of order 2 together
with an element z’ which has infinite order. We conclude that G must be

isomorphic to Z, x Z.

All of these manipulations can be conveniently summarised using the
coefficient matrix of the original relations R; and R,. The corresponding

steps are as follows.
3 5 -3 take row 1 3 5 =3 interchange 1 -3 3:|
4 2 0| fromrow2 |1 =3 3| rowsland2 |3 5 =3
take3@ow ) [1 —3 3] add3@oln [1 O 3}
from row 2 [0 14 —12 to col 2 0 14 —12
subtract 1 0 0 add col 3 [] 0 O]
3(col 1) fromeol3 |0 14 —12 to col 2 0 2 —12

add6(col2) [1 O O
adev ol A, .
to col 3 0 2 0
This final matrix represents our new relations x’ = 0, 2y’ = 0, which in turn

allow us to read off the canonical form Z, x Z for AG‘ .
A general procedure has now evolved from this simple example. If G is the

abelian group determined by generators xy, X, ..., X, and relations
A Xy + Xy + o+ ax, =0

Ay Xy + X, + 0+ Ay X, =0

Ay X1 + Ao Xz + -+ QX = 0

we simplify the coefficient matrix 4 = (a;) using the following operations.
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(I) Interchange two rows or two columns.
(IT) Multiply all the entries of a row or a column by —1.
(III) Add an integer multiple of one row to another row, or an integer
multiple of one column to another column.

The operations on rows alter the relations, those on columns alter the genera-
tors, while keeping the same group G throughout. We hope for a new set of
generators and relations which present our group in its canonical form. These
are guaranteed by the next result.

(22.1) Theorem. Given an m x n matrix A whose entries are integers, there
is a finite sequence of operations of type I, II, Il that converts A into a
diagonal matrix D for whichd;; > 0,1 < i< k,andd,,|d,,|...|dy, where k =
min(m, n).

In terms of suitable new generators x1, ..., x, the matrix D represents the
relations dy;x] =0, ..., d,x; = 0. Abbreviate d; to d; and suppose d, > 2,
d, # 0. Then the canonical form of G is

Ly X Zyy % - X Ly x "%,

1

If,say,d; =---=d;=1andd,,, = - = d, =0, then the generators x}, .. .,
x, are redundant, whereas x,,,, ..., x; have infinite order. Therefore, in this
case the standard form becomes

Ly, X 2y, X X Ly x L™

s+1 s+2

Outline Proof for (22.1). We say “‘outline” because the idea, though simple,
is very easily lost if we become too formal. If 4 is the zero matrix, there is
nothing to do. Otherwise, 4 has at least one non-zero entry and using
operations of type I and II we can produce a matrix (which we still call A)
whose leading entry a, | is positive. Look along the first row. If we see an entry
a,; that is not a multiple of a,,, we divide a,; by a,, to give a;;=4qa; +u,
where 0 < u < a,,. Subtract g times column 1 from column j (operation III),
then interchange the new jth column with the first column (operation I). The
resulting matrix has u as leading entry and we ask whether « now divides every
other entry in the first row. If the answer is no, we repeat our procedure and
produce a matrix whose leading entry v is positive and less than u. This process
cannot go on indefinitely because the decreasing sequence a,,, u, v ... of
positive integers must terminate. Therefore, a finite number of steps brings
us to a matrix B whose leading entry divides every other entry of the first row.
Using operations of type III to subtract appropriate multiples of the first
column of B from the other columns, we reduce all elements of the first row,
other than b, , to zero. Now focus attention on the first column and proceed
in exactly the same way, using row operations in place of column operations,
until we reach a matrix of the form
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11 0 e 0
0
' cC .
0 1

At this point we may be tempted to work with the smaller matrix C,,
carrying out the above procedure until we have

€11 0 0 0
0 €32 0 0

0 0 (%*)

- C
0 0 2

and so on. This does give a diagonal matrix, but unfortunately its diagonal
elements may not successively divide one another. So instead we ask whether
every entry of C; is a multiple of ¢,;. If ¢;; does not divide ¢;;, we add row
i of (%) to row 1 and start the whole process again from the very beginning.
Quite depressing until we realise that this will lead to a new version of () with
a smaller positive leading entry than ¢, ;. Repeat the procedure (again it must
terminate after a finite number of steps) until we reach a matrix of type (%)
whose leading entry does divide every other entry. This leading entry is our
first genuine diagonal term d,,. We can now begin to simplify the smaller
matrix which corresponds to C;, confident that we can reach

dy, 0 0 ... 0
0 dysy 0 .. 0
0 0 C
: : 3
0 0
where d, ,|d,, and every element of Cj is a multiple of d,,. The whole process
finally comes to a halt at the required matrix D. O

ExAMPLE (ii). Let G be the abelian group determined by generators x, y and
relations 2x = 0, 3y = 0. We immediately recognise Z, x Z3, whose standard
form is Z¢. The above procedure gives

2 0 addrow?2 |2 3 subtract 2 1
_— _
0 3 to row | 0 3| collfromcol2 |0 3
interchange | 1 2 subtract 1 0
—_— -_
colsland2 |3 0| 2(coll)fromcol2 |3 —6
subtract 1 0 multiply 1 0
_—— —_—
3 (row 1) from row 2 0 —6 col2by —1 0 6
The new presentation has generators x’, y’ subject to x” = 0, 6y’ = 0, and we
do indeed have Zg.
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EXAMPLE (iii). Let G be the abelian group determined by generators x,, x,,
X3, X4, X5 and relations

Xy — 5x, + 10x4 — 15x5 =0

4x, — 8x4 + 12x5 =0

3x; —3x, — 2x3 + 6x4 — Y9x5 =0
Xy —X; +2x, - 3xs =0

We indicate a reduction of the coefficient matrix below. There is no need to
follow the procedure of (22.1) exactly; short cuts may be taken. Here, for
example, we can immediately remove columns 4 and 5, as they are both integer
multiples of column 2. To save space we allow each arrow to represent several
row or column operations.

1 -5 0 10 —15 (1—5 0 0 0
0 4 0 -8 12 0 4 00 0
3 -3 -2 6 —9|7 {3 =3 -2 0 0
1 -t 0 2 -3 |1 -1 000
(1 -4 0 0 0]
|0 4000
30200
(1 0 0 0 0]
[0 —4 0 0 0]
o 4000
0 0200
(1 0 0 0 0]
(10 0 0 0
02000
o
0 0400
[0 0 0 00

Therefore, G is isomorphic to Z, x Z, x Z x Z. (Here m=k =4, n=5
s=1,andr=3) ,

>

EXERCISES

22.1. Fi.nd the rank and the torsion coefficients of the abelian group deter-
mined by generators x, x,, x5, x, and relations

9x1 + 6x, + 5x3 +4x, =0
6x; + 5x, —3x, + 1lx, =0
3, +2x, — X3+ 4x, =0
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22.2.

223

22.4.

22.5.

22.6.

22. Row and Column Operations

An abelian group is determined by five generators and four relations,
the coefficient matrix of the relations being

3 —4 5 3 7
3 2 —1 -3 i
8 2 -2 -8 2
11 —8 9 -5 9

Show that the group is isomorphic to Z, x Zg x Zg X Z.

Let G be the abelian group which is determined by generators x,, x,,
x3, x4 and relations

4x, +2x, +3x3+Tx, =0
5x; +x, —x3+ 12x, =0
2x; +4x, + 11x3—3x, =0
Prove that G is a free abelian group and find its rank.

How do integer row and column operations affect the determinant of
a square matrix?

An abelian group G is determined by generators x, y, z and relations
3x+2y+4z=0
6x+y+T7z=0
2x + 3y +6z2=0

Calculate the determinant of the coefficient matrix of these relations.
Does the determinant give you any information about G? Find the rank
and the torsion coefficients of G.

You are given n generators and n relations which determine an abelian
group G. What can you say about G if the coefficient matrix of the
relations has non-zero determinant? What happens if the determinant
of this matrix is +1 or —1?

CHAPTER 23

Automorphisms

An automorphism of a group G is an isomorphism from G to G. The set of all
automorphisms forms a group under composition of functions which is called
the automorphism group of G and written Aut(G).

ExAaMPLES. (i) An automorphism 8 of Z must send 1 to an integer which
generates Z, therefore 6(1) = +1. If 6(1) = 1, we have the identity automor-
phism. Otherwise, 8(1) = —1 and 6 sends each integer n to —n. We see
immediately that Aut(Z) is isomorphic to Z,.

(ii) The correspondence x — x~! determines an automorphism of any abelian
group.

(iii) Suppose G is Z, x Z,. An automorphism permutes the three non-
identity elements, and one easily checks that any such permutation, when
completed by sending e to e, is an automorphism of Z, x Z,. Therefore,
Aut(Z, x Z,) is isomorphic to S;.

(iv) Aut(Z,) is isomorphic to the group R, introduced in Chapter 11. The
elements of R, are the positive integers less than n which are relatively prime
to n, and the group operation is multiplication modulo s#. Suppose 6 is an
automorphism of Z,, then 0(1) generates Z, and consequently the highest
common factor of 8(1) and n must be 1. The correspondence § — (1) is an
isomorphism between Aut(Z,) and R,. We shall work out the structure of the
finite abelian group R, in Exercise 23.4.

(v) An automorphism preserves the order of each element, so an automor-
phism of S; has to permute the transpositions (12), (13), (23) among them-
selves. Conversely, every permutation of (12), (13), (23) determines an auto-
morphism of S;. Therefore Aut(S;) is isomorphic to S;.
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(vi) Let 8 be an automorphism of Z x Z. Suppose 6 sends (1,0) to (a, b) and
(0,1) to (c,d), then

0(m, n) = mb(1,0) + nb(0, 1)
= (ma + nc,mb + nd)

b
= (m.n) {[cz d]

so that @ is represented by a 2 x 2 matrix with integer entries. The determinant
ad — beis equal to + 1 or — 1 because 6 is invertible and its inverse must also
be represented by a matrix whose entries are integers. Aut(Z x Z) is isomor-
phic to the group GL,(Z) of 2 x 2 matrices, which have integer entries and
determinant +1.

(vii) Conjugation by a fixed element g of G gives a particular type of automor-
phism x — gxg~* called an inner automorphism. The inner automorphisms
form a normal subgroup Inn(G) of Aut(G). If G is abelian, only the identity
automorphism is an inner automorphism.

(23.1) Theorem. Inn(G) is isomorphic to the quotient group G/Z(G).

Proof. The function from G to Aut(G) which sends each g to the inner
automorphism x — gxg~! is a homomorphism. Its image consists of the inner
automorphisms, and its kernel is

{geGlx=gxg ', Vxe G}
= {ge G|xg = gx, Vx e G}
= Z(G).

The result now follows from the First Isomorphism Theorem. 0O

(23.2) Theorem. If p, q are primes which satisfy p > q and q}(p — 1), then
every group of order pq is cyclic.

Proof. Either apply the Sylow theorems (see Exercise 20.6), or proceed as
follows. Let G be a group whose order is pg. Choose an element x of order
p, an element y of order g, and set H = {x). We first show that H is a normal
subgroup of G. The set of left cosets of H in G has g members and H acts on
this set by left translation; that is to say, h € H sends the coset gH to hgH.
The size of each orbit is at most ¢ and must be a factor of | H| = p. Therefore,
every orbit contains just one coset, in other words igH = gH forallge G
and all # € H. Rewriting this as

g thge H, Vge G, he H

we see at once that H is normal in G.
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The element y gives an automorphism 4 — yhy™ of H whose order is a
factor of g (because y? = ¢) and a factor of p — 1 (by Lagrange because
|[Aut(H)| = |Au(Z,)| = p — 1). Asg | (p — 1), this order is 1 and we have the
identity automorphism. Therefore, yh = hy for all he H. If K = (p), then
HK = G, H K = {¢} and hk = kh whenever h € H, k € K, consequently

GxHxKz=Z,xZ,=7Z,
by (10.2). 0

Suppose we are given groups H, J and a homomorphism ¢: J — Aut(H).
We shall construct a new group H x,, J called the semidirect product of H and
J determined by ¢ as follows. Its elements are ordered pairs (x, y) where x € H,
y € J, and multiplication is defined by

X (xy) = (x.0()(x),y.¥).

The first coordinate of this product is obtained by applying the automorphism
¢(») to x’, then multiplying the result on the left by x. For emphasis multipli-
cation in both H and J has been denoted by a dot. The identity element is
(ey.ey) and the inverse of (x, y) is

(e(») ' (x71), y™1). Associativity follows from
[, )y Y") = (X)) (x),y - y) (X", ¥")
= x. oM. @y . y)E")y. ¥ y")
= (x. oM (¥ Y.y »")

because ¢ is a homomorphism
= (6, eI, Y ¥")
= (e, Iy "y

The function (x, y)— y is a homomorphism from H x,, J onto J, whose kernel
{(x,e;)|x € H} is isomorphic to H. So we have a copy of H which sits inside
H x,J as a normal subgroup. There is also a copy of J inside the semi-
direct product namely {(ey, y)|y € J}, though this subgroup is not necessarily
normal.

If ¢ sends every element of J to the identity automorphism of H, we
recapture the direct product H x J introduced in Section 10. The next result
generalises (10.2).

(23.3) Theorem. Let H, J be subgroups of a group G. If H is a normal subgroup,
if HI = G and HnJ = {e}, then G is isomorphic to the semidirect product
H x, J, where ¢: J — Aut(H) is the homomorphism defined by ¢(y)(x) =
yxy lforallxe H, y€J.

Proof. Define y: H x,J— G by y(x,y) = xy. Then y is a homomorphism
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because

Y[, )Y = x. o)y )
=yloxyhy.y)
= xyx'yyy’
= xpx'y’
=YY, y).

The image of  is all of G because G = HJ, so that every element of G may
be written in the form xy for some x € H, y € J. If (x, y) lies in the kernel of
¥, then xy = e, giving x = . Therefore, xand y both belongto Hn J = {e},
and (x, y) is the identity element of H x, J. By (16.3), ¢ is an isomorphism.
O

ExXAMPLES. (i) In S, the subgroups H = {(123))> and J = {(12)) satisfy the
hypotheses of (23.3). Therefore, S, is isomorphic to the semidirect product
74 %, Z,, where ¢ sends the generator of Z, to the non-trivial automorphism
of Z5.

(i) The isometries (distance preserving transformations) of the plane form a
group E, called the Euclidean group. Let T denote the subgroup of E, which
consists of all the translations, and let O be the subgroup of orthogonal
transformations f,;, 4 € O,. In the next chapter we shall check that T is a
normal subgroup of E,, TO = E,, and T~ O = {I}. Therefore, E, is the
semidirect product T x,, O, where ¢: O — Aut(T) is induced by conjugation.

EXERCISES
23.1. Find the automorphism groups of D, and Ds.

23.2. Work out Aut(Q) and Inn(Q).

23.3. If Z(G) = {e}, prove that the centre of the automorphism group of G
contains only the identity automorphism.

23.4. Let m be a positive integer. Show that R(2™) is isomorphic to Z, x
Zym - for m = 3, and that R(p™) is cyclic of order p™ Y(p— 1) when
pisan odd prime. Exercise 11.6 now allows you to work out the torsion
coefficients of R(n) for any positive integer n.

23.5. A subgroup H of G is called a characteristic subgroup of G if H is sent
to itself by every automorphism of G. Show that Z(G) and [G, G] are
both characteristic subgroups of G.

23.6. Normal subgroups are precisely those which are left invariant by all
inner automorphisms. Supply a group G and a normal subgroup of G
which is not a characteristic subgroup.
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23.7. Let G and H be finite groups whose orders are relatively prime. Show
that G x {e} and {€} x H are both characteristic subgroups of G x H.
Prove that Aut(G x H) is isomorphic to Aut(G) x Aut(H).

A group of the form H x,, J will be called a semidirect product of H by J.
23.8. Prove that the dicyclic group of order 12 is isomorphic to a semidirect

product of Z; by Z,

23.9. Show that Q is not isomorphic to a semidirect product of two non-
trivial groups.

23.10. Let G be an abelian group and write G X Z, for the semidirect product
G x, Z,,where ¢: Z, — Aut(G) takes 1 to the automorphism x — x™*
of G. Prove that Z,, X Z, is isomorphic to D,, that Z X Z, is isomor-
phic to D, and that SO, X Z, is isomorphic to O,.

23.11. Use the matrix

1 0 0
0 1 0
0 0 -1

and the construction of Theorem 23.3 to express O, as a semidirect
product of SO; by Z,. Find an isomorphism between this semidirect
product and SO; x Z,.

23.12. Let G be the group of distance preserving transformations of R?
which is generated by (x,y) »(x + 1,y) and (x,y) > (—x,y + 1).
Prove that G is isomorphic to the semidirect product Z x, Z where ¢
sends 1 to the non-trivial automorphism of Z.



CHAPTER 24

The Euclidean Group

The isometries of the plane form a group under composition of functions, the
so called Euclidean group E,. A function g: R? — R? belongs to E,, provided it
preserves distance; that is to say
lg(x) — gl = lIx —yli
for every pair of points x, y in R2. If g, h € E,, we have
lg(h(x)) — g(h(YNI = l|A(x) — AV

because g is an isometry

=[x —yl
because 4 is an isometry;

therefore, gh € E,. Composition of functions is associative, and the identity
transformation of the plane acts as identity element. Finally, eachge E, isa
bijection and satisfies

lg™*x) — g7 W = llg(g7 (x)) — g(g7 Wl

because g is an isometry

=[x -yl

so g~! € E, and we do indeed have a group.

Rotations, reflections, and translations are all familiar isometries. Transla-
tion by the vector v is the function : R* — R? defined by 7(x) = v + x for all
x € R2. Since 1(0) = v, a translation is completely determined if we know
where it sends the origin.

We begin by showing that a general element of E, is either a rotation about
the origin followed by a translation, or a reflection in a line through the origin
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IX

Figure 24.1

Sfollowed by a translation. To this end, suppose g € E, sends 0 to the point v.
Let 7 denote translation by v. Then the composite isometry f = t™g fixes the
origin. We claim that fis either a rotation about 0 or a reflection in a line
through 0. Take p = (1,0) and q = (0, 1) as reference points and agree to
abbreviate f(x) to X’ throughout. Each point x of R? is completely determined
by the three measurements

Ixl,  Ix—=mpl,  Ix—gql

because three circles whose centres are not collinear intersect in at most one
point (Figure 24.1). For the same reason x’ is determined by its distance from
0, p’ and q'. But

I =1lxi, Ix—=pl=Ix—pl and |x—q|=]x—gql

Therefore, once we know the positions of p’ and ¢’ we know the effect of fon
every point of the plane. There are two possibilities as shown in Figure 24.2.
Since

IPl=1lpl=1 lqi=1lql=1 and [p~ql=Ilp—ql=2

the angle p'0q’ is a right angle. So if anticlockwise rotation through 6 takes p
to p’, then q rotates either to q' or to —q'. In the first case f'is anticlockwise
rotation through 6 about the origin, and in the second case f'is reflection in
the line through the origin which subtends an angle of 6/2 with the positive
x-axis. As g consists of f followed by t our argument is complete.

The translations make up a subgroup 7T of E,. This is easily checked using
(5.1). If 1, 7, € T are defined by 7,(x) = u + x, 7,(x) = v + x for all x € R?,
then
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9 0/2

Figure 24.2

7,77 (%) = 1 (=) + %)
=u+((—Vv)+Xx)
=@Uu-—v)+Xx

So 7,1t;! is translation by u — v and therefore belongs to 7. Let O denote the
subgroup of E, which consists of the orthogonal transformations. In other
words the elements of O are rotations about the origin and reflections in lines
through the origin. The discussion in the previous paragraph shows that
E,=TO.

The intersection of Tand O is just the identity transformation because every
non-trivial translation moves the origin, whereas every element of O keeps
the origin fixed. The usual argument now shows that each isometry can be
written in only one way as an orthogonal transformation followed by a
translation. For if g = tf = ©'f’ where 7, 7 € T and f, /" € O, then (r’)"r =
f/ftliesin TnOandhencet =7, f=f".If g = tfand if fisa r(.)tatlon., the_n
g is called a direct isometry. In the other case, when f'is a reflection, g is said
to be an opposite isometry.

Suppose fe€ O, t € T and 7(0) = v. Then foreach x € R? we have

Ff I = f(v + f7H(x)
=fW + /(71 (x)
= f(v) + x.

Therefore the conjugate fif ™! is translation by the vector f(v). Since .the
elements of T and O together generate E,, we see (using (15.2)) that T'1s a

normal subgroup of E,. .
We can now understand the product structure of our group in terms of the

because fis linear
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decomposition E, = T0.1Ifg = tf, h = 1, f, where 1,1, € Tandf,f, € O, then
gh =1/t fi = (tfr, fTHU)

expresses gh as an orthogonal transformation followed by a translation. Put
another way the correspondence

g-.f)
is an isomorphism between E, and the semidirect product T x, O where
¢: O - Aut(T) is given by conjugation.
Specific calculations are best carried out using rather different notation.
Suppose g = 1f'where t € T'and f'€ O. If v = 1(0), and if M is the orthogonal
matrix which represents f'in the standard basis for R?, then

g(x) =v+ fu(x) = v+ xM' (*)

forall x € R2. Conversely, given v e R? and M € O,, the formula (%) determines
an isometry of the plane. We may therefore think of each isometry as an
ordered pair (v, M) in which v € R? and M e O,, with multiplication given by

(v, M)(vi, M) = (v + for (vy), MM).

If we are pressed to be very precise we explain that we have identified E, with
the semidirect product R x,, O,, the homomorphism : 0, » Aut(R?) being
the usual action of O, on R?. Notice that (v, M) is a direct isometry when
det M = + 1 and an opposite isometry when det M = —1.

The “*simplest” isometries are easily described as ordered pairs. Let

4= cos —sin @ B |cose sin @
" | sin® cosf | " |sing —cos ¢
and let /, m be the lines shown in Figure 24.3.

m i

|

%/2

/

Figure 24.3
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¢+ fx-o X = C+(x-C)
0
<
Figure 24.4

(a) Translation by the vector v becomes (v, ) where [ is the 2 x 2 identity
matrix.
(b) Rotation anticlockwise through @ about the origin is (0, A).
(c) Reflection in the line /is (0, B).
(d) Rotation anticlockwise through 8 about the point ¢ is (¢ — f,(c), A).
(¢) Reflection in the line m is (2a, B). Notice that fz(a) = —a.
Both (d) and (e) require some explanation. Rotation about ¢ sends each
vector X to ¢ + f,(x — ¢) as shown in Figure 24.4, and

¢+ fa(x —©) = ¢+ f4(x) — f4(©)
= (¢ — f4(0)) + [4(x)

as required. To realise reflection in m we can first translate by —a so that m
goes onto /, then reflect in / and finally translate / back to m. So x goes to
x — a, then to fz(x — a) and finally to

a+ fz(x —a) = a + fz(x) — fp(a)
=a+ fzg(x)+a
= 2a + fp(x).

A reflection in a line followed by a translation parallel to the same line is
called a glide reflection. If we take m as the line then each glide reflection along
m has the form

(2a + b, B)

where fz(b) = b, and b # 0.

(24.1) Theorem. Every direct isometry is a translation or a rotation. Every
opposite isometry is a reflection or a glide reflection.
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Proof. A direct isometry is represented by an ordered pair (v, 4) where
0 < 0 < 2n. When 6 = 0 we have the translation (v, I'}). Otherwise

1 —cos@ sin @

det(I—A):detI: ]22—20039

—siné I —cosf

is positive. Therefore, I — A is invertible and the equation
c—fale) =fi-alc) =¥

has a unique solution for ¢. The given isometry is the rotation (¢ — f(c), A)
about this point c.

Each opposite isometry is represented by an ordered pair (v, B) where
0 < ¢ < 2n. If f(v) = —v, we have reflection in the line m for which a = v/2.
When fz(v) # —v we set w = v — f3(v) and observe that

Se(W) = fz(v — fz(V))
= (V) —fZ ()
=fg(V) —v= —w.

Resqlving v al.ong w as in Figure 24.5 gives the vector (v.w/||w|?)w and
our isometry is the glide reflection (2a + b, B), where 2a = (v.w/|w|*)w,
b =v— 2a.

Figure 24.5
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ExaMPLE (i). The function g: R? — R? given by
1 1
) =[(1+-—2kx-2,1- 2+~v(x+y))
gt < 2 V2 V2

is the isometry which corresponds to the ordered pair (v, M), where v =

(1,1 —/2) and
1 1

NG
M= \/ \/ .
1 1
NG
Since cos(n/4) = sin(n/4) = l/\/i this is an anticlockwise roration through
n/4. Its centre ¢ is given by

c—fule)=c—cM' =y,

so that
c=v(]— M)Y!

=(1,1-2

=(1,1).

Therefore, g is anticlockwise rotation through n/4 about the point (1, 1).

ExaMpLE (ii). If #: R? - R? is defined by
h(x,y) = (—3(x + /39,4 + 3y — /3%)),

then h is the isometry (v, M) where v = (0,4) and

Y 2 2
V3 1
T2 2

This matrix M represents a reflection and

Su(¥) = VM = (=2./3.2).
Since f;;(v) is not equal to —v, the given isometry is a glide reflection. With
the notation established earlier, we have
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W=V — f(¥) = (2,/3.2),

v.w=8§, w]? = 16,

2a = (v.w/wlH)w = (/3,1),

and

b=v—2a=(—./33)

The line of our glide goes through a and is parallel to b, so its equation is
| 3
y2=—\/§<x—§> or \/§x+y=2.

To apply # we first reflect in this line, then translate by b = (—ﬁ, 3).

EXERCISES

24.1. Write each of the following rotations as an ordered pair (v, M) where
veRZand M€ O,.

(a) Anticlockwise rotation through £ about the point (—1, —1).
(b) Clockwise rotation through % about the point (1, 2).

24.2. Express reflection in the line x + y + 3 = 0, and reflection in the line
\/Sy — x = 4, as ordered pairs.

24.3. A rotation through = is usually called a half-turn. Prove that the
product of two half-turns is always a translation.

24.4. Show that every isometry can be expressed as the product of either
two or three reflections.

24.5. Prove that every opposite isometry can be decomposed as a reflection
followed by a half-turn.

24.6. If his a glide reflection with axis m, and if g is an isometry, show that
ghg™! is a glide along the line g(m).

24.7. Show that reflection in the line m followed by reflection in m’ is a
translation when m is parallel to m’ and a rotation otherwise.

24.8. Prove that
1 3 3 1
f(x,y)=<3—ﬂ—w—£y, ~3—ﬁ+£x—~y
2 2 2 2
is a rotation. Find its centre and the angle through which points are
rotated.
24.9. Show that

g(Xy)=(§x+i st 3 +3
, s¥+gy X
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represents a glide reflection. Find the axis of the glide and the amount

24. The Euclidean Group

by which points are translated along this axis.

24.10. Prove that

6 5 12
h(x,y) = —ﬁx_l3y’

is a reflection and find its mirror.

12
13

+
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CHAPTER 25

Lattices and Point Groups

Figure 25.1 shows a repeating pattern of hexagons which, if continued indefi-
nitely, fills out the whole plane. The pattern has a certain amount of symmetry.
For example, if we apply either of the translations 1, 7, or reflect in the x-axis,
or rotate anticlockwise through n/3 about the origin, then hexagons go to
hexagons and the pattern is preserved. By shading in part of each hexagon,
as in Figure 25.2, we produce a new design which is “less symmetrical”
because the rotational symmetry has been destroyed. As usual, the symmetry
is measured by a group, in this case the appropriate subgroup of £, whose
elements are the isometries of the plane which send a given pattern to itself,
We shall classify the groups which can arise in this way as symmetry groups
of two dimensional repeating patterns or, as we shall call them, wallpaper
patterns. If you find hexagons rather dull for a wallpaper, then try the designs
shown in Figure 25.3. Both exhibit precisely the same symmetry as the pattern
of (unshaded) hexagons.

We take on board all the ideas and notation of the previous chapter. In
particular we denote each isometry of the plane by an ordered pair (v, M )
where v e R? and M € O,. Recall that if g = (v, M), then

gxX) =V + fiu (X) = v + xM*

forallx € R?. Definen: E, - O, byn(v, M) = M.Thenris a homomorphism
because

(v, M) (v;, M,)) = n(v + fu(v1), MM,)
= MM,
=n(v, M)n(v,,M,)

and its kernel consists of the isometries (v, /), v € R2, in other words of the
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Y
A
|

- >X

Figure 25.1

translations. If G is a subgroup of E,, we write H for G n T and J for n(G),
calling H the translation subgroup of G and J the point group of G. For the
symmetry group of the unshaded pattern of hexagons H is generated by the
translations 7, 7, and J is the copy of D¢ in O, determined by the two matrices

n . T

COS§ sin 3 ) 0

sin d cos d ’ 0 -
3 3

With the shading added H remains the same but J is reduced to the subgroup

el
Bebul
—(

%‘*1 e

Figure 25.2
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of O, of order 2 generated by

F.

The restriction of n to G is a surjective homomorphism from G to J whose
kernel is H. Therefore, J is isomorphic to the quotient group G/H by the First
[somorphism Theorem.

Here is a precise description of the groups which we shall classify.

A subgroup of E, is a wallpaper group if its translation subgroup is generated
by two independent translations and its point group is finite.

The classiﬁcatipn will be carried out in Chapter 26. First we need to build up
some information about the translation subgroup and the point group of a
wallpaper group.
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From now on G will denote a wallpaper group with translation subgroup
H and point group J. Let L be the orbit of the origin under the action of H
on R2. The set L certainly contains two independent vectors because H is
generated by two independent translations. Select a non-zero vector a of
minimum length in L, then choose a second vector b from L which is skew to
a and whose length is as small as possible.

(25.1) Theorem. The set L is the lattice spanned by a and b. That is to say, L
consists of all linear combinations ma + nb where m,n € Z.

Proof. The correspondence (v, /) — v is an isomorphism between 7" and the
additive group R? which sends H to L. Therefore L is a subgroup of R? and
every point ma + nb of the lattice spanned by a and b belongs to L. Using
the points of this lattice we can divide up the plane into parallelograms as
illustrated in Figure 25.4. If x belongs to L yet is not in the lattice, choose a
parallelogram which contains x and a corner ¢ of this parallelogram wh.ich is
as close as possible to x. Then the vector x — ¢ is not the zero vector, is not
equal to a or to b, and its length is less than [[b]|. But x — ¢ belongs to L
because x and ¢ both lie in L. We cannot have |x — ¢| < [la]| since a 1s
supposed to be of minimum length in L. On the other hand, if [la] <
Ix —¢|| < ||b|l, then x — ¢ must be skew to a and contradicts our choice of
b. Therefore, no such point x can exist and L is the lattice spanned by a and b.

a

We shall classify lattices into five different types according to the shape .of
the basic parallelogram determined by the vectors a and b. From properpes
of the lattice of G and the point group of G we plan to build up information

J / J

/]
]

Figure 25.4

‘\T%//////j
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about G itself. Replace b by —b if necessary to ensure that
la — bl < [la+b].
With this assumption the different lattices are defined as follows.

(a) Oblique ||a| < |b]| < |la —b| < |la + b]|

(b) Rectangular |a|l < |b|| < {la—b| = ||a+ b|

(c) Centred Rectangular |aj < |b|| = ||a — b]] < [la + b|
(d) Square |a| = |b| < [a —b| = [la + bj

(e) Hexagonal |a|| = ||bl| = [la — b|| < |la + b]|.

A glance at Figure 25.5 shows why we use these names. At first sight we appear
to have forgotten the possibility

lall = IIbll < lla —bfi < Ja + b]|.

Here the basic parallelogram is a rhombus. Now the diagonals of a rhombus
bisect one another at right angles, so we have a centred rectangular structure
whose rectangles are based on the vectors a — b and a + b (Fig. 25.6).

(Wallpaper groups occur in the literature under a variety of aliases, the
most common being ““plane crystallographic group”. If we imagine a similar
scenario in three dimensions, the corresponding lattice is spanned by three
independent vectors and gives a configuration of points which models the
internal atomic structure found in crystals.)

The point group J is, by its very definition, a subgroup of O,. However,
there may be no copy of J inside G. Consider the wallpaper group which
is generated by the translation t(x,y) = (x + 1, y) and the glide reflection
h(x,y) = (—x, y + 1). The line of the glide is the y-axis and is perpendicular
to the direction of the translation. A suitable pattern is shown in Figure 25.7.
Here the point group is the subgroup

i DRI

of 0,. The group G, however, consists entirely of translations and glide
reflections, all of which have infinite order. Therefore, G cannot contain a
copy of J. Carrying out the glide reflection % twice gives the translation
(x,¥) = (x, y + 2) and the lartice in this example is spanned by the vectors
a = (1,0), b = (0, 2). Observe that not all the elements of G send this lattice
to itself. None the less the point group does preserve the lattice.

(25.2) Theorem. The point group J acts on the lattice L.

Proof. The point group, being a subgroup of O,, acts on the plane in the usual
way. If M € J, and if x € L, we must show that f;,(x) belongs to L. Suppose
n(g) = M where g = (v, M) and let = denote the translation (x, /). Since H is
the kernel of the homomorphism n: G — J, it is a normal subgroup of G, and
therefore grg~* lies in H. But
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grg ™t = (v, M)(X, ) (—fir' (), M)
=V M)x—fi'(V. M)
=V +/u(xX—fu' (), MM™})
=W+ fu(x)—v,I)
= (), D),

consequently, f,,(x) is a point of the lattice L as required. [

We recall from (19.1) that finite subgroups of O, are either cyclic or
dihedral. The next result tells us which of these subgroups can conceivably
arise as the point group of a wallpaper group. It is often referred to as the
“crystallographic restriction”.

(25.3) Theorem. The order of a rotation in a wallpaper group can only be 2, 3,
4, or 6.

Proof. Every rotation in a wallpaper group G has finite order because the
point group is finite. If we have a rotation of order ¢, then a suitable power
of this rotation is an anticlockwise rotation through 2n/q. Therefore the

rotation matrix
4 cos(%) —sin(3F)
sin(2%) cos(2%)

belongs to J. As before, we use a to denote a non-zero vector of shortest length
in the lattice L of G. Now J acts on L, so f,(a) lies in L. Suppose g is greater
than 6. Then 27/q is less than 60° and £, (a) — ais a vector in L which is shorter
than a (Fig. 25.8), contradicting our choice of a. If ¢ is equal to five the angle
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Figure 25.8

between f7(a) and ~a is 36°. This time fZ(a) + a lies in L and is shorter than
a, and again we have a contradiction. O

(25.4) Corollary. The point group of a wallpaper group is generated b%) a
rotation through one of the angles 0, n, 2n/3, /2, n/3 and possibly a reflection.

Proof. This follows directly from the previous result. O

(25.5) Theorem. An isomorphism between wallpaper groups takes translations
to translations, rotations to rotations, reflections to reflections and glide reflec-

tions to glide reflections.

Proof. Let ¢: G — G, be an isomorphism between wallpaper groups, and let
7 be a translation in G. Translations and glides have infinite order, whereas
rotations and reflections are of finite order; therefore, ¢(7) must.be either a
translation or a glide. Assume ¢(7) is a glide and choose a translathn rl'fror.n
G, which does not commute with (7). (Any translation whose direction is
not parallel to the line of the glide will do.) If ¢(g) = 7,, then g has to' be a
translation or a glide. So g? is a translation, and hence commutes with 7,
contradicting the fact that ¢(g?) = t? does not commute with ¢ (1). Therefore,
translations correspond to translations and glides to glides.

Reflections have order 2, consequently the image of a reflection under'an
isomorphism is either a reflection or a half-turn. Let g € G be a reflecpon
whose image ¢(g) is a half-turn, and choose a translation t from. Gin a
direction which is not perpendicular to the mirror of g. Then g is a glide. But
@(tg9) = @(1)e(g) is the product of a translation and a half-turn, which
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is another half-turn. Therefore, we have a contradiction and reflections must
correspond to reflections. Finally, rotations are now forced to correspond to
rotations. O

(25.6) Corollary. If two wallpaper groups are isomorphic then their point groups
are also isomorphic.

Proof. Let G, G, be wallpaper groups with translation subgroups H, H, and
point groups J, J, respectively. If ¢: G — G, is an isomorphism we have
®(H) = H, by (25.5). Therefore, ¢ induces an isomorphism from G/H to
G,/H,. The result now follows because J is isomorphic to G/H and J, is
isomorphic to G, /H, . O

EXERCISES
25.1. Which of the following are wallpaper groups?

(1) The subgroup of E, generated by the glides g(x,y) = (—x, y + 1)

and 4(x,y) = (—x + 2,y + 1).

(ii) The subgroup of E, generated by the translation (x,y) =
(x + 1, ¥) and reflection in the y-axis.

(iif) The subgroup of E, generated by reflection in the x-axis and
anticlockwise rotation through 27/3 about the point (0, 1).

(iv) The subgroup of E, generated by reflection in the x-axis, reflec-
tion in the p-axis and reflection in the line x + y=1

25.2. Sketch the lattices which are spanned by the following pairs of vectors,
and state which type of lattice you obtain in each case.
(Ma=(-1,-/3), b=(1,-./3)
(i) a = (1,0), b=(2 -4
(iii) a = (—2,0), b=(-1,3).

25.3. Let m be a straight line which passes through two points of a lattice
L. Prove that m contains infinitely many points of L.

25.4. If L, and L, are lattices, show that the collection of points of the form
X +y, where xe L, and y € L,, is also a lattice.

25.5. What is the result of a half-turn followed by a translation?

25.6. The line fixed by a reflection will be called its mirror. Show that two
reflections commute if and only if their mirrors either coincide or are
perpendicular to one another.

25.7. Prove that a half-turn commutes with a reflection if and only if its
centre lies on the mirror of the reflection.

25.8. Show that a translation t commutes with a reflection g if and only if
7 sends the mirror of ¢ to itself.
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25.9.

25.10.

25.11.

25.12.

25.13.

25.14.

25. Lattices and Point Groups

Let 7 denote translation by v and g be reflection in the line m. Prove
that gt is a reflection if v is perpendicular to m and a glide reflection
otherwise.

Show that tilting a square lattice 45 degrees to the horizontal produces
a centred rectangular structure. In how many different ways can we
associate a centred rectangular structure with a hexagonal lattice?

Let L be a lattice spanned by vectors a and b, and let f be a rotation
which preserves L. Taking a and b as a basis for R? the matrix of fhas
integer entries, and in particular its trace is an integer. Use the fact
that the trace remains invariant under a change of basis to give a
second proof of Theorem 25.3.

Supply an example of a wallpaper group whose point group is isomor-
phic to Klein’s group, and one whose point group is cyclic of order
three.

Let G be a wallpaper group which has a square lattice. What possibili-
ties are there for the point group of G?

As for the previous exercise, but this time with a hexagonal lattice.

CHAPTER 26

Wallpaper Patterns

There are seventeen different wallpaper groups. To see why, we shall examine
each of the five possible types of lattice in turn. Given a lattice L we first work
out which orthogonal transformations preserve L. Such transformations form
a group and, by (25.2), the point group of any wallpaper group which has L
as its lattice must be a subgroup of this group. This limitation on the point
group is then sufficient to allow us to enumerate the different wallpaper
groups with lattice L. An exhaustive analysis of every case would take up too
much space. So we concentrate our attention on a small number of examples,
and defer the remaining calculations to the exercises. That all the groups we
find are genuinely different, in other words that no two are isomorphic, will
be shown at the end of the chapter.

Before beginning the classification we add a word or two about nota-
tion. Each wallpaper group has a name made up of several (internationally
recognised) symbols p, ¢, m, g and the integers 1, 2, 3, 4, 6. The letter p refers
to the lattice and stands for the word primitive. When we view a lattice as
being made up of primitive cells (copies of the basic parallelogram which do
not contain any lattice points in their interiors) we call it a primitive lattice.
In one case (the centred rectangular lattice) we take a non-primitive cell
together with its centre as the basic building block, and use the letter ¢ to
denote the resulting centred lattice. The symbol for a reflection is m (for
mirror) and g denotes a glide reflection. Finally, 1 is used for the identity
transformation and the numbers 2, 3, 4, 6 indicate rotations of the corre-
sponding order. Rotations of order two are usually called half turns.

The seventeen groups are iliustrated in Figure 26.1. We show the centres
of rotations and the positions of mirrors and glide lines relative to a basic
parallelogram. The symbols o, a, o, @ mean that the stabilizer of the corre-
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Figure 26.1

sponding point is cyclic of order two, three, four, or six, respectively. Mirrors
are drawn as thick lines and glides are indicated by broken lines.

We now proceed with our case-by-case analysis. As usual, G is a wallpaper
group with translation subgroup H, point group J, and lattice L. Vectors a
and b which span the lattice are selected as in Chapter 25. There is no harm
in assuming that a lies along the positive x-axis and that b is in the first
quadrant. Finally, 4, is the matrix which represents an anticlockwise rotation
of 0 about the origin, while B, represents reflection in the line through the
origin which subtends an angle of ¢/2 with the positive x-axis.

Case (a). The lattice of G is oblique. Then the only orthogonal transformations
which preserve L are the identity and rotation through 7 about the origin.
Therefore, the point group of G is a subgroup of { £ 7}.

26. Wallpaper Patterns 157

S
AT

p6 pBmm

Figure 26.1 (continued)

(p1) If J only contains the identity matrix, then G is the simplest of all
wallpaper groups; that generated by two independent translations. Its
elements have the form (ma + nb, I), where m, n€ Z.

(p2) Here J is { +1}. Therefore, G contains a half turn, and we may as
well take the fixed point of this half turn as origin, so that (0, —1)
belongs to G. The union of the two right cosets H and H(0, —1) is a
subgroup of E, which must be our group G. Those elements of G which
are not translations lie in H(0, —I) and have the form

(ma + nb,I)(0, —I) = (ma + nb, —1I)
where m, n € Z. In other words, we have all the half turns about the

points ima + $nb. O

Case (b). The lattiqe of G is rectangular. There are now four orthogonal
transformations which preserve L; namely, the identity, a half turn about 0,
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reflection in the x-axis, and reflection in the y-axis. Therefore, the point group
of G is a subgroup of {7, — 1, By, B, }. We look for wallpaper groups which we

have not seen before, ignoring the possibilities p1, p2 found above.

(pm) Jis {I, By} and G contains a reflection in a horizontal mirror.
(pg) Suppose Jis {1, B, }, yet there are no reflections in G. Then G has to
contain a glide reflection whose line is horizontal, and we choose a point
of this line as origin. Applying a glide reflection twice gives a translation,
hence our glide has the form (3ka, B,) for some integer k. If k is even,
then (—3%ka, ) is a translation in G, and the reflection

(0, BO = (—%kas I) (%ka, BO)

belongs to G, contradicting our initial assumption. Therefore, & is odd

and
(3a, By) = (—%(k — Da,I)(3ka, By)

lies in G. The elements of G which are not translations have the form
(ma + nb,I)(3a, By) = ((m + +)a + nb, By)

where m, n € Z. These are all glides along horizontal lines which either
pass through lattice points or lie midway between lattice points. The
length of each glide is an odd multiple of 3a.

Taking {I, B,} as point group instead of {1, B,} is tantamount to in-
terchanging the roles of ‘“horizontal” and “‘vertical” in the preceding
discussion, and does not lead to anything new. From now on we assume
that the point group is all of {I, —I, By, B, }. There are three possibilities
according as both, just one, or neither of B, B, can be realised by
reflections in G.

(p2mm) In this case G contains a reflection in a horizontal mirror and a
reflection in a vertical mirror.

(p2mg) Suppose G contains a reflection in a horizontal mirror but does
not contain a reflection in a vertical mirror. Then B, must be realised
in G by a vertical glide reflection. A judicious choice of origin, at the
intersection of the horizontal mirror and the vertical glide line, plus the
argument used for pg, allow us to assume that (0, B,) and (b, B,) lie in
G. The product

(3b, B,)(0, By) = (3b, — 1)
is the half turn about 4b. The right cosets
H, H(O, BO)’ H(%ba Bn)’ H(%bv - 1)

fill out G. In the first of these we have the translations. A typical element
of the second has the form

(ma + nb, I)(0, By) = (ma + nb, By)

where m, n € Z. When m = 0, this isometry is reflection in a horizontal
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mirror which either passes through lattice points or lies midway between
them. If m is not zero, the mirrors change to glide lines and the transla-
tion part of the glide is ma. The third coset contains the elements

(ma + (n + )b, B,)

which are all vertical glides whose lines pass through lattice points or lie
midway between them. The translation part of each of these glides is an
odd multiple of £b. Finally, H(3b, —I) consists of the half turns centred
at the points $ma + $(n + 1)b.

Interchanging horizontal and vertical in the preceding discussion
leads to a group which is isomorphic to p2mg.
(p2gg) Here there are no reflections in G. O

Case (c). The lattice of G is centred rectangular. The orthogonal transforma-
tions which preserve L are the same as in the rectangular case. Therefore, the
point group must again be a subgroup of {I, —1I, By, B,}. We discover two
new groups.

(em) Suppose Jis {I, By} and that (v, B, } realises B, in G. This isometry
is either a reflection in a horizontal mirror or a glide along a horizontal
line. Choose a point on the mirror or glide line as origin, so that 2vis a
multiple of a, and remember that the vertical direction is determined by
the vector 2b — a.

(1) If 2v = ka and k is even, the reflection

(07 BO) = (_%kavl)(%ka’ BO)

belongs to G. The elements of G which are not translations have the

form
(ma + nb, By) = ((m + 3n)a + 3n(2b — a), By)

where m, ne Z. Taking n to be even and m = —%n produces all the
reflections in horizontal mirrors which pass through lattice points. If n
iseven but m # —1n, these mirrors change to glide lines, the translation
part of each glide being a multiple of a. Finally, if n is odd, we have
glides along lines which lie midway between lattice points. The transla-
tion part of each of these glides is an odd multiple of }a.

(i1) If k is odd, then

(3(2b — a), By) = (—3(k + Da + b, 1) (3ka, By)

lies in G. This is again a reflection and shifting the origin onto its mirror
leads back to the previous case.

Substituting {7, B.} as point group instead of {/, B, } leads to a group
which is isomorphic to cm.
(c2mm) Jis {1, —1, By, B,}. The type of calculation carried out above
shows that both B, and B, can be realised by reflections in G. O
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Case (d). The lattice of G is square. Then the group of orthogonal transforma-
tions which preserves L is the dihedral group of order 8 generated by Az and
B,. The point group J is a subgroup of this group and, to obtain something
new, we must include Az in J. (The other cases are dealt with in Exercise 26.9.)

(p4) Here J is generated by Az.
(p4mm) J is generated by Az and B,, and B, can be realised by a

reflection in G.

(p4gm) Suppose J is generated by 4z and B,, but B, cannot be realised
by a reflection in G. Choose the fixed point of a rotation of order 4 as
origin, so that (0, Az) belongs to G, and let (la + ub, B,) realise B, in
G. Squaring (Aa + ub, By) gives (24a, I), so 24 is an integer. If 24 is even
the reflection

(ub, By) = (—4ia,I)(Aa + ub, B;)
lies in G and we have a contradiction. Therefore, 24 must be odd and
(3a + ub, By) = (3 — H)a,[)(4a + ub, By)
is an element of G. Also
(0, 43) (3a + pb, By) = (3b — pa, Bz)
and
(3b — pa, By)? = ((; — w(a +b). 1),
showing & — u to be an integer. We conclude that the glide
(3a + 3b. By) = (5 — wb.I)(3a + ub, By)
belongs to G. The right cosets
H(,I), H(0, Az)
H(O, —1), H(0, A37)
H(3a+3b,By)  H(}a+ ib, By
H(3a+ ib,B,) H(a + 3b, Bx)

fill out G, and it is easy to recognise their elements geometrically. For
example, a typical member of H(3a + 3b, Bg) has the form

((m + %)a + (n + 3)b, Bx)
=(4(m+n+1)(a+b)+3(m—n)a—Dh),Bz)

where m, n € Z. Takingm + n + 1 = 0 gives all the reflections in mirrors
tilted at 45° to the horizontal which pass midway between lattice points.
When m + n + 1 is non-zero and m — n is odd, these mirrors change
to glide lines. Finally, if m + 7 + 1 is non-zero and m — n is even,
we have glides along lines of gradient one which pass through lattice
points. The coset H(0, —I) on the other hand contains all the half turns
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(ma + nb, —1I) centred at the points 1ma + 4nb. We leave the reader to
work through the remaining cases. ]

Case (e). The lattice of G is hexagonal. Then the point group must be contained
in the dihedral group of order 12 generated by 4z and B,. We are led to new
wallpaper groups when J contains rotations of order 3 or 6. (The other cases
are dealt with in Exercise 26.10.)

(p3) Jis generated by A2z

(p3m1) Jis generated by A%z and B,.

(p31m) Suppose J is generated by A2z and Bz. Choose the fixed point
of a rotation of order 3 as origin, so that (0, 42z) belongs to G, and let
(Aa + ub, B%) realise Bz in G. Now

(Aa + pb, Bz)* = ((4 + p)(a +b), 1),
so A + pis an integer. Also

(0, A27)(a + pb, Bz) = (A(b — a) — ua, B,)
and
(A(b — a) — pa, B,)* = (A(2b — a), 1),
showing that 4 is an integer. Therefore, both A and p are integers and
the reflection
0,Bz) = (—4a — pb,I)(4a + ub, Bz)

belongs to G. The elements of G have the form (ma + nb, M) where m,
ne Z and M is one of the matrices I, Az, Aﬁgs, Bz, B,, B3r. We ask the
reader to interpret these elements geometrically. For example

(ma + nb, B,) = ((m + in)a + n(2b — a), B,)

is a reflection in a vertical mirror when #» =0 and a vertical glide
otherwise.

(p6) J is generated by Az.

(p6mm) J is generated by 4z and B,. O

Are all these seventeen groups genuinely different? The answer is yes, as we
shall see below. By (25.6) we need only concern ourselves with groups whose
point groups are isomorphic, so we begin with a summary of the point groups.

G J G J
pl trivial p4 Z,
p2 z, p4mm D,
pm Z, pagm D,
pg Z, p3 Zs
p2mm Zyx Z, p3ml D,
p2mg Z, x Z, p3lm D,
p2gg 7, x Z, p6 z,
cm Z, pémm D¢
c2mm 7,%xZ,
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Remember that an isomorphism between wallpaper groups sends translations
to translations, rotations to rotations, reflections to reflections, and glides to

glides.
(26.1) Theorem. No two of p2, pm, pg, cm are isomorphic

Proof. Among these only p2 contains rotations, so it cannot be isomorphic
to any of the others. Of the three remaining groups, pg is the only one which
does not contain a reflection; consequently, pg is not isomorphic to pm or cm.
Finally, we note that if we take a glide in pm and write it as a reflection
followed by a translation, then both the reflection and the translation belong
to pm. However, cm contains glides whose constituent parts do not lie in cm.
For example, consider the glide

(3a + 3(2b — a), By) = (3a,1)(5(2b — a), By).

Therefore, pm is not isomorphic to cm. OdJ
(26.2) Theorem. No two of p2mm, p2mg, p2gg, c2mm are isomorphic

Proof. Among these, p2gg is the only one which does not contain a reflection,
so it cannot be isomorphic to any of the others. Of the three remaining groups,
only p2mm contains the constituent parts of each of its glides, consequently
p2mm is not isomorphic to p2mg or c2mm. Finally, we note that the mirrors
of all the reflections in p2mg are horizontal, so the product of two reflections
is always a translation. But in c2mm there are reflections with horizontal
mirrors and reflections with vertical mirrors, and the product of one of each
is a half turn. Therefore, p2mg is not isomorphic to ¢2Zmm. O

(26.3) Theorem. p4mm is not isomorphic to p4gm.

Proof. Each rotation of order 4 in p4mm can be written as the product of two
reflections which both belong to p4mm. The corresponding statement is not
true for pd4gm. For example, (a, 42) cannot be factorised in pdgm as the
product of two reflections (see Exercise 26.4). Therefore, p4Amm is not isomor-
phic to pdgm. O

(26.4) Theorem. p3ml is not isomorphic to p3lm.

Proof. In p3Im each rotation of order 3 can be written as the product of two
reflections, but this is not the case in p3ml. For example, (a, 43%) cannot be
factorised in p3ml as the product of two reflections (see Exercise 26.5).
Therefore, p3lm is not isomorphic to p3ml. O

This completes our classification of wallpaper groups. We have adopted a
“hands on” approach, and deliberately so, only by working out the elements
of these groups do we gain any understanding of their structure. Figure 26.2
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Figure 26.2
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26. Wallpaper Patterns

shows examples of patterns from several different cultures which realise some
of the seventeen groups. The three-dimensional case, of interest to crystallo-
graphers, is more complicated. There are two hundred and nineteen isomor-
phism classes of crystallographic groups in three dimensions.

EXERCISES

26.1.

26.2.

26.3.

26.4.

26.5.

26.6.

26.7.

Describe the elements of each of the wallpaper groups c2mm, p4mm,
p3ml and verify that these groups are represented by the corre-
sponding parts of Figure 26.1.

Examine each of the patterns of Figure 26.2 in turn and work out its
wallpaper group. Compare your answers with those supplied in the
figure.

Find a glide in p2mg whose constituent parts do not lie in p2mg. Do
the same for c2mm.

Prove that (a, Az) cannot be factorised as the product of two reflections
in p4gm.

Show that (a, A2z) cannot be factorised as the product of two reflec-
tions in p3ml.

A pattern which repeats in a regular fashion along an infinite strip is
called a frieze, and the symmetry group of such a pattern is charac-
terised by the requirement that its translation subgroup be infinite
cyclic. We may as well imagine the strip to be {(x,y)eR}—-1<y< 1}
and assume that the smallest translation which preserves our pattern
ist(x,y) = (x + I, y). Show that (withan appropriate choice of origin)
seven possible groups result from frieze patterns; namely, those with
the following generators.

@) .
(i) The glide g(x,») = (x + %, —»).
(iif) t and the rotation f(x,y) = (—x, —¥).
(iv) 7 and the reflection g(x, y) = (—x, »)-
(v) 7 and the reflection fg.
(vi) 7, f,and q.
(vii) g, f, and q.
Invent patterns which realise these groups.

Notice that groups (i) and (ii) of the previous exercise are both infinite
cyclic even though they represent different types of symmetry. Sort the
seven “frieze groups” into isomorphism classes. Two frieze groups
should be thought of as equivalent if they are isomorphic via an isomor-
phism which sends translations to translations, rotations to rotations,
reflections to reflections, and glides to glides. Prove that no two of the
groups on our list are equivalent.
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26.8.

26.9.

26.10.

Show that the point group of a frieze group is trivial, cyclic of order
2, or isomorphic to Klein’s group.

Let G be a wallpaper group which has a square lattice, so that its point
group is a subgroup of

{I, Az, —1I, A3, B,, B3, By, B3z},

2
Show that the following table represents all possibilities when the point
group does not contain a rotation of order four.

Point Group J Wallpaper Group G

3 pl

{1} p2

{1, By} pm or pg

{I,B,} pm or pg

{1, -1, B,, B} p2mm, p2mg or p2gg
{L, Bz} cm

{1, B3z} cm

{I, -1, Bz, Bézﬂ} c2mm

For the last three cases you should tilt the lattice at 45 degrees to the
horizontal.

Let G be a wallpaper group which has a hexagonal lattice, so that its
point group is a subgroup of the dihedral group generated by Az and
B,. Show that the following table represents all possibilities when the
point group does not contain a rotation of order three.

Point Group J Wallpaper Group G

{1y pl
{1} p2
{I,B%n}, 0<k<S5 cm
{1, —1,B,, B;} c2mm
{I, —1, By, Bax} c2mm
{1, -1, BL;,BSTR} c2mm

You may wish to try Exercise 25.10 first.



CHAPTER 27

Free Groups and
Presentations

It is often convenient to be able to describe a group in terms of a set of
generators and a set of “relations”. For example, the dihedral group D, is
determined by two generators r and s subject to the relations r" = e, s?=e,
sr = rls, or equivalently r" = s? = (rs)? = e. We imagine that all the ele-
ments of the group can be written as products of powers of and s, and that
the multiplication table is compietely determined by the given relations. To
make this precise we shall introduce the notion of a free group.

Perhaps the easiest idea to understand is that of a free set of generators for
a given group. A subset X of a group G is called a free set of generators for
G if every g € G — {e} can be expressed in a unique way as a product

g=Xx{'xz. .. X (*)

of finite length, where the x; lie in X, x; is never equal to x;,4, and each »; is
a non-zero integer. We call the set of generators free because by the uniqueness
of (#) there can be no relations between its elements. If G has a free set of
generators then it is a free group.

Given a nonempty set X we can construct a group which has X as a free
set of generators as follows. Define a word in the alphabet X to be a finite
product

xtxge. o xd

in which each x; belongs to X and the m; are all integers, and say that the
word is reduced if x; is never equal to x;,, and all the m, are non-zero. Each
word can be simplified to a reduced word by collecting up powers when
adjacent elements are equal, and omitting zeroth powers, continuing this
process several times if necessary. An example is worth a page of explanation.
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Take X = {x,y,z} and consider the word

w=x"3x2y5y75x7z2z"2x " txzy?x L.
Then
w=x"1y0x7%x zy2x 7!
= x xTzy?xl
= xSzyp2x71

which is now reduced. Notice that the elements of X do not commute with
one another. It may be possible to carry out the actual process of reduction
in more than one way, for example
w= (x~3x2y5y—5x722)(Z~2X*1.xzy2x—l)
— (x—1y0x722) (Z_ZXOZ_VZX_I)
— (x41x722)(z—22y2x—1)
— (XGZZ) (Zflyzx—l)

x6222-—1y2x—~1

I

= x%zp?x71.

However, the end result is always the same, as we shall verify in (27.1), and
each word w leads to a unique reduced word w. Reducing the word x9 gives
a word with no symbols, which we refer to as the empty word. We can multiply
words together simply by writing one after the other. If we do this with two
reduced words w, and w,, then w,w, may not be reduced because the final
symbol of w; may be the same as the first symbol of w,. But w,w, simplifies
to a reduced word w; W, and the set of all reduced words forms a group if we
use w;w, as product. Associativity holds because (wyw,)wy and w, (W, W3)
result from two different reductions of the word w; w,w,, and are therefore
both equal to the reduced word w;w,ws. The identity is the empty word, and
the inverse of the reduced word

xMxh2,Lxpeis ML xg ™

which is also reduced. This group of reduced words formed from the alphabet
X is called the firee group generated by (the elements of ) X and will be denoted

by F(X).

The preceding discussion depends crucially on the following result.
(27.1) Theorem. Each word can be simplified to only one reduced word.

Proof. We use an idea reminiscent of the proof of Cayley’s theorem. For each
x e X we produce a permutation ¢, of the set of reduced words by the formula

@ (W) = XW
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where w is a reduced word. Clearly xw is well defined because w is reduced.
If

u=xpmxy...xp
is an arbitrary word we have the associated composite permutation

@0 = (0, )" (@)™ - (@)™

Now the permutations of the reduced words form a group under composition
of permutations and therefore if u, w are words, and if u reduces in some way
tow, then @, = ¢,,. Suppose the same word u can be simplified in two different
ways to give the reduced words v and w. Then @, = ¢, = ¢,,. But ¢, sends the
empty word to v, and ¢, sends it to w, so we must have v = w. O

A free group which is generated by a single element x is infinite cyclic, the
only possible reduced words being the powers x". When there are two or more
generators, F(X) is a non-abelian group in which every element has infinite
order. Notice that a bijection ¢ from X to Y induces an isomorphism between
F(X) and F(Y). The reduced word

xtxhr . xge
of F(X) corresponds to the reduced word
@(x )" @(x3)" ... p(x )™
of F(Y). Let F, stand for “the” group which is freely generated by » clements.

(27.2) Theorem. Abelianising F, gives Z".

Proof. Let z,, ..., z, be a free set of generators for F,. The quotient group
F,J[F,, F,] is abelian and is generated by the cosets z,[F,, F], | < k < n. By
collecting together powers of each generator, every element of this group can
be written in precisely one way in the form

iz .z [F,, F,).
The correspondence

PP Al F OB 08 B (SN ST

now provides an isomorphism between F,/[F,, F,] and Z". O
(27.3) Theorem. If F,, is isomorphic to F,, then m = n.

Proof. For any two groups G, H an isomorphism ¢: G - H sends [G, G] to
[H, H] because each commutator xyx~1y~!in G corresponds to the commuta-
tor p(x)p(¥)@(x) '@(p)~! of H. So ¢ induces an isomorphism from G/IG,G]
to H/[H, H]. Therefore, if F, is isomorphic to F, we have Z" = 7" and
consequently m = n. O
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Let G be a group and suppose X is a set of generators for G. There is a
natural homomorphism 7 from the free group F(X) to G which sends each
reduced word

xXPixr . xgx

onto the corresponding product of group elements in G. This homomorphism
is surjective because X generates G and, if N denotes its kernel, the First
Isomorphism Theorem tells us that F(X)/N is isomorphic to G. Therefore
every group is a quotient of some free group. It is this result which will allow
us to describe groups rigorously in terms of generators and relations. Let R
be a collection of words in F(X) which together with all their conjugates
generate N. That is to say, N is the smallest normal subgroup of F(X) which
contains R. These words determine precisely which words in F(X) become
the identity when we pass from F(X) to G or, equivalently, which products of
elements of G are the identity in G. We shall call R a set of defining relations
for G.

ExampLE (i). If G = D, and X = {r,s}, the words r", 5%, (rs)* form a set of
defining relations for G. Let M denote the smallest normal subgroup of F(X)
which contains these three words and, as before, use N for the kernel of the
homomorphism 7: F(X) — D,. We must show that M = N. Certainly r", 52,
and (rs)? are all sent to the identity by 7, so M is contained in N and by (16.5)
we have a surjective homomorphism F(X)/M — F(X)/N whose kernelis N/M.
In particular |F(X)/M| is at least 2n. Now the cosets rM, sM generate the
quotient group F(X)/M and they satisfy

(rM)" = M, (sM)* = M, rsM)? =M
or equivalently
(rM)' = M, M =M, srM=r"'sM (%)

because 7", 52, and (rs)? all belong to M. Using (x) it is easy to show that the
cosets

M, rM, ..., r" M, sM,rsM, ..., r" 'sM
form a subgroup of F(X)/M. This subgroup contains rM and sM so it has to
be the whole group F(X)/M. Therefore, | F(X)/M] is at most 2n. We conclude
that | F(X)/M| = 2n and M = N, as required.

Take a nonempty set X and let R be a collection of words in the alphabet
X. The group determined by the set X of generators and the collection R of
defining relations is defined to be the quotient group F(X)/N, where N is the
smallest normal subgroup of F(X) which contains R. If G is any group
isomorphic to F(X)/N the pair X, R is called a presentation for G. In particu-

lar, if X is a finite set with elements x, ..., x, and if R is a finite collection of
words wy, ..., w; We say that G is finitely presented and write
G={x{,...,x]|wg,....,w}
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EXAMPLE (ii). Z = {x|—}.

EXAMPLE (iii). Z, = {x|x"}.

EXAMPLE (iv). D, = {x, p|x", y%, (x)*}.
EXAMPLE (V). Q = {x, y|x*, x%y~ %, xyxy~'}.

ExaMPpLE (vi). For each integer m > 2, the presentation
{2, p1?m, xmy ™2 xyxy ™t}
determines a group of order 4m called a dicyclic group.

ExaMPLE (vii). The same group can of course have many different presenta-

tions, for example

This second presentation for Z describes it in the form Z5 x Z,.
EXAMPLE (Viii). Z x Z = {x, plxyx"'y7'}.

EXAMPLE (ix). The presentation
- .
{x1,.. ., xdxxxx L 1 <i<j<ng

determines a free abelian group of rank n.

ExaMPLE (x). Here are presentations for two wallpaper groups.
pg = {x,y|x?y7%}

The generators are parallel glide reflections. Using the notation of Section 26
we could take x = (1a, By) and y = (3a + b, B,).

p3ml = {x,ylxz,yS,(xy_IX)7)3}.
This time the group is generated by a reflection and a rotation of order 3, say
X = (Oa BO) and y= (as A%)
We can characterise free groups as follows.

(27.4) Theorem. Let X be a subset of a group G. Then X is a free set of
generators for G if and only if given an arbitrary group H, together with a
function from X to H, there is a unique extension of this function to a homomor-
phism from all of G to H.

Proof. Suppose X is a free set of generators for G. Then each element of
G — {e} can be written in one and only one way as a reduced word in the
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alphabet X. Given a group H and a function f: X - H, the only way we can
extend f'to a homomorphism from all of G to H is by sending each reduced
word

n n n,
XPTX52 L X,
to

DI S e)) . L (xd]™,

and the identity of G to that of H.

For the converse we assume that given a group H, together with a function
from X to H, we can always find a unique extension of this function to a
homomorphism from G to H. As before, let n: F(X) — G be the homomor-
phism which sends each reduced word to the same product thought of as an
element of G. We shall show that = is an isomorphism, when X is certainly a
free set of generators for G. Taking H = F(X), the inclusion of X into F(X)
extends to a homomorphism ¢: G — F(X). Clearly, ¢r is the identity from
F(X) to F(X) because ¢ is the identity on X. Also, both n¢: G — G and the
identity function from G to G are homomorphisms which extend the inclusion
of X in G over all of G. By hypothesis there can only be one such extension,
hence o is the identity from G to G. We conclude that = is an isomorphism.

O

EXERCISES

27.1. Convert the following words in the alphabet {x, y,z} into reduced
words.
(i) wy = x 13y iz zzy 74,
(i) wy, = 23y 2xx"1yxtz 7024
(iil) wy = zp3y 2y 325x2z 7 lzx T dxz T4 x4y

27.2. With w,, w,, w; as above check that w,w, = x327%, w,w; = z> and
wiw,wy = x"ly.

27.3. Let m and n be positive integers. Prove that there is a homomorphism
from F, onto F,, if and only if m is less than or equal to n.

27.4. Show that F, contains a normal subgroup of index 2.

27.5. Check in detail that {x, y|xyx~'y~'} is a presentation for Z x Z.

27.6. Prove that {x, y|y?, (xp)?} is a presentation for the infinite dihedral
group.

27.7. Show that F, x F, is not a free group. Write down a presentation for
F, x F,.

27.8. Find a presentation for each of the seven frieze groups. (These groups
were introduced in Exercise 26.6).
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27.9.

27.10.

27.11.

27.12.

27.13.
27.14.

27. Free Groups and Presentations

If x, y generate F,, let

X = {xyx L, x*yx" 2, x3yx73 L)

and let H denote the subgroup generated by X. Show that X is a free
set of generators for H.

Let n be a positive integer. Prove that F, contains a subgroup which
is isomorphic to F,.

If G and H are groups we can form words x, x, ... X, where each x;
lies in the disjoint union G U H. Call a word reduced this time if x; and
X+, never belong to the same group and if x; is never the identity of
G or H. Throw in the empty word, and agree to multiply reduced words
by juxtaposition, reducing the product as necessary. Show that the
result is a group. This group is called the free product G+ H of G and H.

Let P be a group which contains both G and H as subgroups. Show
that P is isomorphic to the free product G = H, via an isomorphism
which is the identity on both G and H, if and only if given an arbitrary
group K, plus a homomorphism from each of G and H to K, there is
a unique extension of these homomorphisms to a homomorphism

from all of P to K.
Show that Z x Z is isomorphic to F,.

Prove that the infinite dihedral group is isomorphic to Z, * Z,.

CHAPTER 28

Trees and the Nielsen—
Schreier Theorem

A graph T consists of two sets A (directed edges) and V (vertices) together
with two functions
A— A, a— o

A-V xV, a-(i(@)ta)

which satisfy & = o, & # « and i(&) = #(«) for each & in 4. The vertices i(a),
t(a) are the initial and terminal vertices of the directed edge a, and @ is the
reverse of «. Henceforth we refer to directed edges simply as edges.

This is very abstract! Luckily we can draw pictures using dots for vertices
and arcs for edges as in Figure 28.1(a). In fact our intuition is satisfied by the
simplified diagrams of Figure 28.1(b) provided we remember that each physi-
cal edge now has to represent a pair of directed edges.

A path in T joining vertex u to vertex v is an ordered string of edges
0%, ... o, such that i(ay) = u, i(a,,) = t(eg) for 1 <k <n—1,and t(a,) =
v. The special case a& where an edge is followed by its reverse is called a round
trip. A graph is a tree if any two distinct vertices may be joined by a path, and
if every path which joins a vertex to itself has to contain a round trip. Figure
28.2 illustrates these definitions. If I is a tree and if u, v are distinct vertices
of I', there is only one path which joins u to v and which does not contain any
round trips. This path is the geodesic ut from u to v. Any other path joining
u to v can be obtained from this geodesic by successively adding round trips
(see Exercise 28.2).

We shall exploit the idea of a group acting on a tree. An action of a group
G on a graph I' is an action of G on 4 and on ¥ such that g(a) = g(a),
g(i(2)) = i(g(«)) and g(«) # & for each g in G and « in 4. In other words the
elements of G permute the edges and vertices of I" in a way that is compatible
with the structure of I as a graph, and no element of G is allowed to reverse
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i(@) = u
t(a) = Vv
i(B) = tp) = v
@ S e e T
P 3 T
(b o o

Figure 28.1

an edge. The group elements behave correctly on terminal vertices because
9(t(®) = g(i(a)) = i(g(x))
= i(g(@) = t(g(x))

for every edge a. We shall say that G acts freely on I if the stabilizer of each
vertex is just the trivial subgroup {e} of G.

Not a tree

Tree

Figure 28.2
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ExaMPLE (i). Take a graph whose simplified picture is a letter Y and let
G be a cyclic group of order three acting by rotation. Formally we have
A={a,qlr=1,2,3} and ¥V = {v,0,,v,, v} With & = a,, i(2,) = 1(&,) = v,
t(a,) = i(&,) = v,. If g generates G then the action is determined by g(a,) =
&,+; (mod 3). The stabilizer of v is all of G so in this case G does not act freely.

ExAaMPLE (ii). Let 4 have a pair of edges «,, &, for each integer r, take ¥ to be
Z and set @, = q,, i(e,) = (&) = r, t(a,) = i(¥,) = r + 1. We think of this
graph as the real line with the integers marked on as vertices. If G is infinite
cyclic with generator g then g(,) = «,, determines a free action of Gon I.

EXAMPLE (iii). Take I as in the previous example and let G be the infinite
dihedral group with presentation {g, h|h%, (gh)*}. Then g(&,) = o,+,, h(a,) =
%_,_; gives an action of G on I'. In this example G does not act freely because
the stabilizer of each vertex is a cyclic group of order 2. To be very explicit
the stabilizer of r is {e, g"h}.

ExaMPLE (iv). Given a group G and a set X of generators for G we can construct
a graph I'(G, X) as follows. For simplicity assume x? # e if x € X. Let 4 be
the collection of all ordered pairs (g, z) where g comes from G and either z or
z7! belongs to X. Take V = G and define

(9.2) = (92,27"),
l((g’ 2)) =9 t((g’ Z)) = gz.

So we have a vertex for each element of G and an edge with initial vertex g,
and terminal vertex g, whenever either g,x = g, or g,x ! = g, for some
generator x in X. The action of G on itself by left translation permutes the
vertices of I'(G, X) and extends over the edges via g'((g,z)) = (¢9'g,2) to a free
action of G on I'(G, X). Extra edges are needed if x? = e for some x € X.

Any two vertices g, & of this graph can be joined by a path. Giveng, he G
express g~ 'h as a product z, z, . ... z, of symbols each of which either belongs
to X or has its inverse in X. Then & = gz,z, ...z, and the string of edges

(g»zl)a (921,22)’ ] (gzl . ‘Zk~l7zk)

is a path which starts at g and ends at 4.

Here are two special cases. If G is a finite cyclic group of order n, and if X
consists of a single generator, we can think of I'(G, X') as a polygon which
has 7 sides with the action of G represented by rotation. If G is a free group
generated by X = {x, y} the structure of I'(G, X) is illustrated in Figure 28.3.
Of course we can only draw the first few stages. We suspect, quite correctly,
that this graph is a tree.

(28.1) Theorem. If X is a free set of generators for G, then I' (G, X) is a tree.

Proof. Suppose a,a,...a, is a path which joins the vertex g to itself. If
o, =(g,21)s %2 =(921,22)s -, Oy = (g2, ...2,-;,2,) then g = gz,2, ...z, and
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yx?
Y
—— e
e X e
-1
_Yxy
Figure 28.3

thereforee = z,z,...z,. As Xis a free set of generators for G, the empty word
is the only reduced word which represents e, so z,z, . . . z, must include a pair
of adjacent symbols of the form zz~!. In other words, «, «, ..., contains a
round trip. Hence, T'(G, X) is a tree. O

Suppose G acts on the tree I'. Consider the collection T of all trees inside
I" which contain no more than one edge and one vertex from each orbit. An
element A of T which is maximal with respect to the partial order given by
inclusion will be called a reference tree. Maximal means that if A also belongs
to 7, and if A € A, then A = A. The existence of a maximal element is
guaranteed by Zorn’s lemma [7]

EXAMPLE (v). Let I" be the infinite tree which is represented in Figure 28.4.
Think of it as a subset of the plane and consider the action of Z x Z, =
{g.hlghg™ h™', h*} determined by g((x,»)) = (x + 3,»), h((x,¥)) = (x, —¥).
A reference tree is shown in the diagram. Find all possible reference trees
which contain the vertex 0; there are twelve altogether.

\ /A
© 7 0 7 2

Figure 28.4

-4 -3 -2
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(28.2) Theorem. A reference tree contains precisely one vertex from each
orbit.

Proof. Let A be a reference tree for the action of G on the tree T, By definition
no two vertices of A lie in the same orbit. Suppose that A does not contain a
vertex from each orbit. Select a vertex v from A and a vertex z of I’ whose
orbit does not meet A. Let a be the first edge of zJ and set y = t(a). If the
orbit of y meets A, say g(y) € A, adding g(z), g(«), g(a) to A produces a larger
tree than A which contains at most one vertex from each orbit. This con-
tradicts the maximality of A. On the other hand, if the orbit of y does not
meet A we simply replace z by y and repeat our argument until we reach a
contradiction. O

(28.3) Theorem. If G acts freely on a tree then G is a free group.

Proof. Suppose G acts freely on the tree I" and choose a reference tree A for
the action. Then A contains precisely one vertex from each orbit. Let A,
denote the collection of those edges of I' which, though not in A, do have
their initial vertices in A. Given a € 4, let z be the vertex of A which is in the
same orbit as #(x) and choose a group element g, such that g,(z) = £(). There
is only one element of G with this property, for if g, and 4, both send z to
1(o) then h;'g,(z) = z. But the action is free, so h;'g, must be the identity of
G and consequently 4, = g,. These edges and group elements come in pairs,
for the edge o’ = g, (@) also belongs to 4, and its corresponding group
element is g, = g, ', see Figure 28.5. From each such pair du» 921 we select
one and use X to denote the resulting subset of G. We shall show that X is a

free set of generators for G.

Choose a vertex v in A. Given g e G — {e} let a be the first edge of the
geodesic from v to g(v) which is not in A. Then, of course, a belongs to A,.
Apply g;! to the geodesic from 1(a) to g(v). The resulting path starts at the
vertex g, ' (1(«)) of A and ends at g;'g(v). Follow this new path to the first
edge f where it leaves A, then apply gz' to the geodesic from #(f) to g, 1g(v).
Again, we have a path which begins in A, and this time it ends at 95'9: 19 ).
Repeat the procedure and notice that the path is shortened at each stage.
Therefore, we eventually produce a path which lies entirely in A. Its end point
issay g,"...g;"9;'g(v). As no two vertices of A belong to the same orbit,
we must have g, ... g5'g;'g(v) = v, and since the action is free, this gives
g,'...95'9:'g = e and hence

9 =9u95---9y- (%)

Already we see that the elements of X generate G.

The right hand side of () determines a reduced word w(g) in symbols from
X. Our construction used the geodesic m, but any other path which joins
v to g(v) will do equally well and lead to the same reduced word. We check
first of all that the addition of a single round trip 6@ to the geodesic does not
alter w(yg). This is easy; just keep track of ¢ during the above process. Either
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Figure 28.5

o lands inside A at some stage, in which case (*) is unchanged, or ¢ goes to
an edge © of 4, when (+) changes to g = g,95...9.9. " ... g,. In both cases
w(g) is unaltered. Extra round trips may be dealt with in a similar fashion.
Now remember that an arbitrary path between two vertices can be obtained
from the geodesic by the successive addition of round trips.

To complete our argument we shall show that any decomposition g =
9,95---9,, where y, 6, ..., pallliein 4, , may be realised by a suitably chosen
path from v to g(v). We can then be sure that w(g) is the only reduced word
in the elements of X which represents g. Proceed by induction on the length
of the decomposition. Set g, = g;...g, and let P be a path from v to g,(v)
which realises this decomposition of g,. By following 7g;(v) thtﬁ_gy(P) we
produce a path Q from v to g(v). Ez(amine vg,(v), it begins with vi(y), leaves
A along 7, then continues via g,(zv) where z = g, (¢(y)) € A. Applying the
first step of our process to Q produces g, and leaves us with z3 (which lies in
A) followed by P. Therefore Q realises g,g;. . . g, as required. O

(28.4) Nielsen—Schreier Theorem. Every subgroup of a free group is free.

Proof. Let F be the free group generated by the set X and let G be a subgroup
of F. We know that Facts freely on the tree I'(F, X) and consequently so does
G. Hence, G is free by (28.3). O

EXERCISES
28.1. Draw (simplified) diagrams of the following graphs:

(1) A = {a’&’ﬁ’ﬁ’y3755’5}’
V = {u,v,w} and
i{0) = 1(y) = 1(0) = u,
t(o) = i(f) = i(8) = v,
1By =i(y) =w.
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28.2.

28.3.

28.4.

28.5.

28.6.

28.7.

28.8.

28.9.

(i) 4= {o,,%,|1<r<7}

V= {v,,v;,0;,0,} and

(o)) = t(ag) = ias) = 1(at7) = vy,

tay) = ia;) = 1(atg) = vy,

Haz) = i(a3) = t(as) = i(a7) = v3,

taz) = i(ay) = i(ag) = v4.
Let u,v be distinct vertices of a tree I'. Show there is only one path in
I" which joins u to v and which does not contain any round trips. This
path is the so called geodesic uo. If P is another path from u to v show
there are paths P,, ..., P, in T, all of which join u to v, such that P,
can be obtained from P, by the addition of a single round trip for
l<r<k-1,P,=udand P, = P.

Suppose we have a group action on a tree I'. If the group element g
fixes two vertices u, v of T, prove that g must leave all of the geodesic
up fixed.

Find reference trees for the group actions described in Examples (i),
(ii), and (iii) of this section.

Work out all possible actions of a cyclic group of order two on each
of the graphs described in Exercise 28.1.

Examine how the proof of Theorem 28.3 works in the situation of
Example (ii) of this section, and for the natural action of the free group
on two generators on the tree shown in Figure 28.3.

The elements of SL,(Z), the group of 2 x 2 matrices which have
integer entries and determinant +1, act on the upper half of the
complex plane as Mobius transformations. Let o denote the arc of the
unit circle which joins exp(in/3) to exp(in/2) in the upper half plane
and define I to be the union of all segments g(a) where g € SL,(Z).
Draw a picture of I" and check that it represents a tree. Show that the
action of SL,(Z) on this tree is not a free action.

Let u,v be vertices of a graph I'. If P, P’ are paths which both join u
to v we say that P’ is adjacent to P provided P’ can be obtained from
P by the addition or removal of a single round trip. Show that this
leads to an equivalence relation on the collection of all paths from u
tovin I', where P is related to Q provided there are paths P,, ..., B,
all of which join u to v, such that P, = P, P, = Q and P, is adjacent to
P, ., for 1 <r <k — 1. How many equivalence classes are there when
I is a tree?

Asusual T is a graph and v is a vertex of I'. A path P in I which joins
v to itself will be called a loop based at v, and [P] will be used to denote
its equivalence class under the equivalence relation introduced in the
previous exercise. If P = o, ... g and Q = B, B, ... B, both join u to
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v we write PQ for the loop o, ... g B, - . . f,. Prove that the collec-
tion of all equivalence classes of loops based at v forms a group under
the product [P][Q] = [PQ]. (You should begin by checking that the
product is well defined.) This group is called the fundamental group of
I" based at v.

Adopt the terminology of the previous exercise and assume that any
two distinct vertices of I’ may be joined by a path. Let A be a maximal
tree in I'. Show that A contains every vertex of I'. Choose an edge from
each pair of directed edges which do not lie in A, and let X denote the
resulting collection of edges. Prove that the fundamental group of I’
based at v is isomorphic to the free group F(X).
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oblique 149, 150
rectangular 149, 150
square 149, 150
Left coset 63

Length of cycle 27
Loop 179

Lorentz group 7

Matrix
orthogonal 45
reflection 46
rotation 46
special orthogonal 45
special unitary 48
unitary 48
Matrix product 44
Minimal set of generators 120
Mirror 153
Mobius band 101
Mébius group 89
Mobius transformation 89
Multiplication modulon 13
Multiplication of quaternions 72
Multiplication on a set 6
Multiplication table 17

Nielsen—Schreier Theorem 178
Normal subgroup 79

Oblique lattice 149, 150
Octahedron 38

full symmetry group of 55

rotational symmetry group of 40
Odd permutation 29
Opposite isometry 138
Orbit 92
Orbit-Stabilizer Theorem 94
Order

of element 18

of group 18
Orthogonal group 45
Orthogonal matrix 45
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Partition 61

Path 173
Permutation 26

cyclic 27

even 29

odd 29

Point group 146
Presentation 169
finitely presented 169

Product
direct 52
free 172

Product action 95
Product of subsets of a group 79
Proper subgroup 36

Quaternion 70
Quaternion group 70
Quotient group 80

Rank 119
Rational numbers 11
Rectangular lattice 149, 150
Reduced word 166
Reference tree 176
Reflection 46, 140
Reflection matrix 46
Regular solids 38
Relation 61
Rhombic dodecahedron 111
Right coset 63
Rotation 46, 140
Rotation group 47
Rotation matrix 46
Rotational symmetries

of cube 37

of dodecahedron 40

of hexagonal plate 1

of icosahedron 39

of octahedron 39

of tetrahedron 1

of triangular plate 15
Round trip 173
Row operation 127

Second isomorphism Theorem 88
Semidirect product 133

Set of generators 22

Similarity 9

Simple group 85

Snow crystal 8

Special orthogonal group 45
Special unitary group 48
Square lattice 149, 150
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Stabilizer 92
Stella octangula 111
Subgroup 20
characteristic 134
commutator 83
generated by a set of elements
22
index of 82
normal 79
of cyclic group 24
of free group 178
proper 36
Sylow 117
Sylow p-subgroup 117
Sylow subgroup 117
Sylow’s Theorems 113
Symmetric group 26

Terminal vertex 173
Tetrahedron 2, 38
full symmetry group of 42
rotational symmetries of 1
Third Isomorphism Theorem 88
Torsion coefficients 119

Torus 96

Transitive action 93
136
Translation subgroup
Transposition 28

Translation

Tree 173
reference

176
Triangular plate

16

Unitary group 48
special 48
Unitary matrix 48

Vertex 173

initial 173

terminal

Vierergruppe

Wallpaper group

173

lattice 148
point group
Wallpaper pattern

Word 166
reduced

166

55

147

146

145
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