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Note to Instructors

These notes were motivated by conversations with graduating seniors in mathemat-
ics and economics who were headed for the finance world. Finance? From where
did they get their training? It turned out at that time at Northwestern University there
were no relevant undergraduate courses. And so, after discussions with colleagues
from the Departments of Finance and of Economics, I developed a course for the
Mathematics Department.

Based on the advantages gained by students who have taken this course,
including job opportunities and a new focus on course material, I believe that such
a course should be offered in most undergraduate math programs. And so, this book
is designed to help the reader grasp the fundamentals. This is both for students
and for instructors who wish to teach the course but may be hesitant without a
previous background. Course enrollments have been a healthy mixture where about
half are math majors and the other half are mathematically stronger students from
economics and elsewhere (e.g., engineering, graduate students, etc.). After my move
to the sunnier climes at the University of California, Irvine, the notes were modified
to meet the realities of larger class sizes.

The course addresses several needs:

1. Capstone: Students learn a considerable amount of mathematics as undergrad-
uates, but many fail to see how it is connected, what to do with it, or how it is
relevant for their future. Even more, many either forgot fundamental concepts
or never moved beyond technical details to grasp the absorbing power of
mathematics.

As an example, it is not unusual to find students who dismiss Taylor series as
a side topic or as an illustration of infinite series. They most surely carried out
numerous exercises yet failed to recall that, for practical purposes, this powerful
tool requires only a finite number of terms. Then, many fail to remember how to
create Taylor series for several variables. The material was taught, but for some
(not all), it was forgotten.

So, rather than assuming students recall material from earlier courses (includ-
ing basic concepts from probability and statistics), the relevant concerns are
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viii Note to Instructors

quickly reviewed with an emphasis on their power and utility. This is not a
course on these subjects, so an intuitive review, rather than a detailed, rigorous
exposition, is presented. A nice feature of this finance topic is that it incorporates
so many mathematical concepts, which explain why the course has served as a
capstone for students with only a passing curiosity about finance.

2. Introduction: The main purpose is to introduce students to the fundamentals of
the mathematics of finance. Most arrive knowing nothing about this area, so this
book starts with basics and quickly moves to more complicated material. The
choice of material is directed to provide a mathematical understanding of the
fundamentals with an emphasis on why certain equations and concepts are of
value and what they really mean.

It is standard in some courses, for instance, to present the solution for the
Black–Scholes Equation without explaining from where terms come, why they
should be expected, and what they mean. One way to close this gap is to carefully
solve the Black–Scholes Equation. But once the course’s popularity attracted
classes of around 200 students, time limitations made this impossible.

Fortunately, the Black–Scholes solution can be understood without solving the
partial differential equation; it suffices to appreciate how changes of variables (to
convert the Black–Scholes Equation into the heat equation) are manifested in the
final solution. In this manner, students understand from where and why terms
arise rather than confronting a confusing memory lesson. Attention can then be
focussed on what all of this means.

3. Developing mathematical intuition: Students who have taken this course have
directly entered the finance world or moved to graduate programs to learn more.
This means that they must develop intuition for what is being presented, the
limitations of various conclusions,1 and what topics are open for research.

Limitations are emphasized throughout the book starting with the intro-
duction. Students catch on: they begin to appreciate the importance of those
hypotheses that, in the past, they might have ignored. Better students recognize
where added research is required.

To help students develop an instinctive understanding of the material, the
approach of this book differs from a traditional course: new material is introduced
in terms of what they can readily grasp. That is, topics are launched with stories
or closely related themes.2 The definition and significance of arbitrage, for
instance, are introduced in the first chapter with a simple gambling example.
The limitations of the “Efficient Market Hypothesis” are compared with the
constraints of a quadratic Taylor series representation for y = cos(x).

1This is critical: After the 2008 crash, some government experts attended an NRC committee
meeting to explore what they missed. A couple were surprised to discover that key equations
from this area are not always applicable. When one wondered how to discover such information, I
volunteered my better students.
2This appeal to general concepts avoids the common problem where you must know something
about finance before you can study (or teach a course) in this area.
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Teaching always involves compromises between time and depth of coverage,
such as in quarter length courses. My advice is to pace the course to ensure that the
messages of Chapters 6, 7, and 8 are covered. Not doing so would be akin to reading
an Agatha Christie mystery novel only to discover that the last chapters are missing.

Problems at the end of each chapter are roughly in the order of the chapter’s
presentation, which makes it easier for assigning homework. Coming up with other
problems, by mimicking examples in the text, is easy. My students are responsible
for all the problems in covered chapters, and my spot quizzes typically come from
changing numbers in assigned problems.

Ideally, the course should emphasize how the power of mathematics significantly
assists developing a sense, an intuition, about the market. When the material
becomes mathematically more technical, there is a danger that students will focus on
mathematical details at the expense of developing intuition about financial options.
To counter this, “intuition breaks” are inserted in various locations. Many serve as
reasonable homework problems.

Subject to time constraints, other features can be addressed. To suggest opportu-
nities when teaching a course on dynamics, it is possible to appeal to Newton’s law
or blocks sliding down inclined boards. But for the uninitiated, much of economics
is a mysterious world; instinct, experience, and intuition should be provided. OK.
How?

Central to the material is the “buy low, sell high” phrase. A way to experience
this cliché (time permitting) is with an experiment where a portion of the class,
the suppliers, produce widgets: in fact, they buy them from an imaginary “Sue.” A
different portion of the class are the buyers or consumers. The value each attaches
to widgets is determined as follows: each consumer can purchase widgets from the
suppliers and sell them to me.

Reflecting different levels of manufacturing expertise, Sue offers different
students different prices (as specified on slips of paper that the students draw from a
bowl); they have no idea what prices the other suppliers have. Similarly, each buyer
draws a slip from a bowl which states what I will pay for a widget; different buyers
have different prices to reflect the different values consumers place on widgets.

The market opens as soon as some student offers to buy, or sell, a widget at a
price they specify: if someone agrees, a sale is made, and the two are out of the
market. Each person marks on the slip the sale price to determine personal profits.
(The instructor’s role is to explain the process, ensure that the auction starts, and
maintain order—whatever happens with the bidding happens.) Everything continues
until no more sales can be made. For instance, Sue (i.e., the slips of paper drawn by
the students who are suppliers) may offer each of six students a price from 2, 4, 5, 7,
9, and 10; similarly, my offers may come from 3, 5, 6, 6, 8, and 9. (Efficient group
sizes range from 25 to 30 each; they need not be the same size.) No real money is
involved, but students, even observers, quickly become captivated.

This game is carried out several times (there is a learning process; in later rounds,
students become more strategic and sophisticated) where each round uses different
prices. (So, if a student with a raw deal ends up in a subsequent round, she or he may
draw a better choice.) The message is when the supply and demand curves from each
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experiment are plotted on the board, the intersection is close to the price obtained
through the games: not only does this exercise provide validity for the supply versus
demand story (for particular settings), but the bidding process demonstrates how the
“wisdom of the crowd” influences the search for an equilibrium price.

This course is enjoyable to teach! Of help for readers are my YouTube lectures
found under “Math 176, Mathematics of Finance,” which cover most of the material
in this book. As for required background, students who have finished the calculus
sequence (several variables) and an introductory course in probability and statistics
have been successful.

Finally, my thanks to Dan Jessie for corrections and suggested changes in the
notes after he taught this course several times. Santiago Guisasola modified portions
of these notes to teach gifted high school students in a summer camp. My thanks to
Anneli Duffin and Katri Sieberg for their assistance during the development of this
material. Thanks to the five reviewers for their useful comments. And, in particular,
my thanks to the many students for their feedback!



Introduction

A delight surrounding the Mathematics of Finance is that while much is known, so
much is unknown. Consequently, with the current state of understanding, it is wise
to treat the models to be discussed as first-cut attempts of providing structure, sense,
and some science to that vast amount of data and uncertainty that characterizes
financial interactions. With time, these expressions will be, and are being, improved.
The message is to learn to be skeptical: don’t fully accept anything.

As true for any area characterized by a lack of a mature understanding, there is a
sense of excitement generated by the inherent dangers and the hidden opportunities.
The dangers reflect the reality that serious errors can be, and are being, made. In
particular, anticipate errors whenever existing models are applied in inappropriate
settings. (This happens!!) Remember, in finance, an error can translate into a
significant loss of money.

Opportunities exist because so much of the unknown is waiting to be discovered.
To exploit these opportunities, limitations of existing models must first be under-
stood. Doing so requires knowing when and why a particular model can provide
wrong answers and where caution is advised—this requires understanding the
mathematics behind the finance. Can, for instance, models be corrected, extended,
or changed to more accurately handle emerging challenges?

Of particular importance is the need to develop intuition about what might
happen and why. After all, should a financial opportunity arise, it most surely will
not wait for you to run home, pull out a book, find the appropriate equation, and then
compute an answer. Intuition, developed by questioning why certain conclusions are
true, by understanding when and why certain approaches are applicable, can help
make a rapid response.

To handle the challenges of this area, develop the habit of critical thinking. Rather
than accepting given assumptions—following the traditional approach expected in
most courses where a student fully accepts what is said and then concentrates on
details—carefully and critically examine all assumptions. Take the attitude of:

• Can these assumptions be believed?
• Do they make sense?

xi



xii Introduction

• When and where are they valid? When and where can they be wrong?
• What impact do these assumptions have on the conclusions?
• Would different assumptions lead to conclusions more consistent with what is

observed?
• What happens should assumptions be modified?

Remember, a model is a mathematical attempt to understand or, at least, approxi-
mate reality. When differences occur between theoretical predictions and observa-
tions, when data keeps pushing forth contrary messages, be willing to suspect that
the model, not reality, is at fault.1 Thus, there is a need to continually compare
models with actual events. Develop a habit of reading the financial and business
news.

The reader might be wondering: “How can I construct or improve mathematical
models?” Simply take advantage of whatever mathematical and economic tools you
understand and can use. The more tools and the more mathematics and economics
a person knows, the better equipped she or he is to make advances. Again, “critical
thinking” is required. To employ mathematics and economics in new, novel ways,
there is a need to go beyond knowing what is found in standard textbooks.

• Develop intuition about what kinds of mathematics can and should be used in
different settings.

• Understand how and when particular mathematical results are overly restrictive
for our needs.

• Become sensitive to the kinds of general results that need to be created to
accomplish your goals.

An important element implicit through this book is the need to develop skills in
critical thinking.

• Learn how to separate details from concepts. Here is an easy test: details are
technical specifics of a field, while concepts tend to be more general; they apply
to a variety of simple, everyday examples.

An excellent test of whether concepts are being mastered is the ability to
explain a newly learned concept to a sibling, a friend, or someone who is not
familiar with this topic. If this can be done successfully, the concepts probably
are being grasped, and the true meaning of the models are better understood.
This approach offers a chance to understand where and why assumptions are
reasonable tools to advance our understanding and where and why they may be
lacking. If such stories cannot be told, there is the danger of becoming a slave to
the technical details and models proposed by others.

1As this comment is obvious, it is surprising how even experts can forget it. It is not overly difficult
to find examples where experts brand people as being “irrational” because their actions fail to
match theoretical predictions. The people are not at fault; it is the model.
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• Learn how to evaluate assumptions and models. The most important question is
WGAD?2 Assume a pragmatic stance of critically evaluating an approach, a set
of assumptions, with others.

• To understand how and what kind of mathematics may be useful, acquire an
intuitive sense about what each type of mathematics offers. To develop intuition,
tell stories about the different topics to mathematically challenged friends. If
the concepts can be explained, there is reason to believe you understand the
mathematics.

Throughout this book, an attempt is made to illustrate these points. Several of the
important concepts are introduced with stories involving commonly understood
behavior. Rather than assuming the reader recalls needed mathematical results,
many are reviewed with, again, stories. Some exercises are designed to help you
develop intuition about what should happen.

Only so much can be covered in any course. And so, this book provides a
mathematical introduction into a portion of that broad and fascinating area of
finance. There is so much more to explore. In doing so, let me emphasize, again,
the importance of developing intuition and to start paying attention to the business
pages.

And now, enjoy the material!

2Who gives a darn!
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Chapter 1
Preliminaries via Gambles

1.1 A Football Game

Before tackling the complexities of the financial market and encountering unfamiliar
words such as “options,” “hedging,” “arbitrage,” “Puts,” and “Calls,” consider a
simpler issue that, in fact, captures much of what will be discussed. Suppose next
Sunday there will be a football game between the Vikings from Minneapolis and the
Packers from Green Bay.

It is not clear which team has an advantage, but Bob, an avid Viking fan, is so
confident about his favored team that he offers 25 to 1 odds.1 This means that:

• If the Vikings win, Bob collects all of the money bet against him.
• If the Packers win, then for each dollar bet against him, Bob will pay $25.

No money changes hand until the game is over.
Sue supports Green Bay but with more restraint as manifested by her offered 6

to 5 odds. Again,

• If the Packers win, Sue wins all of money bet against her.
• If the Vikings win, Sue pays $6/5 = $1.20 for each dollar bet against her.

To make this personal, suppose you, the reader, have only $100 where every
single penny is urgently needed to buy course books. Should you bet this money? If
so, with whom?

Beyond the risk inherent in gambling with desperately needed money, what
makes this problem challenging is that many readers will know nothing, nor even
care, about football! Others may know there is such a game, but know nothing about

1Outrageous! But this is the actual choice offered by a student during a course!
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2 1 Preliminaries via Gambles

the abilities of these two teams. And then those with some knowledge need not be
experts. Consequently, no matter what bet might be made—with Bob or with Sue—
it most surely is accompanied with uncertainty and risk. Similar to how some people
buy stocks on the market, bets may even be based on emotion and instinct rather than
careful analysis.

1.1.1 Removing Uncertainty

On the other hand, maybe, just maybe, it might be possible to remove the uncertainty
from such wagers. Is there a way to create a “sure thing” by betting in a sufficiently
clever style to ensure a profit no matter which team wins the game?

Sounds impossible. But should such a strategy exist, the scheme clearly must
involve betting on both teams. Namely,

• Bet some money on the Packers with Bob.
• Bet the rest of the money on the Vikings with Sue.

The problem is to determine the appropriate split—the correct amounts to wager
on each of the two possible outcomes. Later, after introducing financial terms,
this strategy of betting on both sides of an issue as a calculated way to reduce or
eliminate risk will be called hedging. Among the various definitions, the one used
here is:

Definition 1 Hedging is taking a contrary position (making an investment) to offset
and balance the risk associated by assuming a position in a market.

Sounds complicated, but it is not. Hedging merely is a strategy to minimize an
investor’s exposure to market changes. Hedging, for instance, permits supporting
new ventures. Suppose Tatjana is evaluating whether to invest in a new technology,
which could thrive or take a dive. She may be more inclined to make an investment
if she can minimize her losses should disaster hit, so Tatjana would seek ways to
hedge her bet.

Hedging provides a level of “insurance” to reduce risk. This “insurance” is
achieved by betting on both sides of what the future may reveal. In fact, not only is
hedging commonly used, but the reader probably has been involved: Car insurance,
for instance, pays off—it rewards you—only if you have an accident. We drive
carefully to avoid accidents, but insurance covers consequences should a mishap
occur. As such, buying car insurance, which is betting on both sides of having an
accident or not having an accident, covers whatever may happen. For this reason,
hedging plays a central role in the material starting in the next chapter. But while
hedging can provide protection, it can be, and has been, abused.



1.1 A Football Game 3

1.1.2 Computations

To determine how much of the $100 our fearless gambler should bet with Bob and
with Sue, let the gambler bet $x on the Packers with Bob and the rest, $(100 − x),
on the Vikings with Sue. The problem is to determine

• the value of x and
• the ensured amount of profit.

Only two events can occur: Either the Vikings or the Packer will win.

• If the Packers win.
Bob loses so he must pay our gambler $25x.
But Sue wins, so our gambler must pay her $(100−x). (Remember, no money

is exchanged until the game is over.)
Therefore, our gambler’s earnings should the Packers win are

25x − (100 − x) = 26x − 100. (1.1)

Money is earned if and only if 26x > 100 or if and only if

x > 100/26 = 3.85. (1.2)

• If the Vikings win.
Sue loses, so she pays our gambler $ 6

5 [100 − x] = 120 − 6
5x.

Bob wins, so our gambler pays him $x.
Therefore, the total earnings should the Vikings win are

[−x] + [120 − 6

5
x] = 120 − 11

5
x, (1.3)

which has a positive outcome if and only if

5

11
(120) = 54.55 > x. (1.4)

By combining both inequalities, it follows that any $x choice satisfying

3.85 < x < 54.55 (1.5)

simultaneously satisfies Equations 1.2 and 1.4. Thus, any $x value offered by
Equation 1.5 to hedge on this bet—betting an appropriate amount on each team—
results in a profit no matter which team wins the game.
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Guaranteed profit region
-$100
$100

$2500 Profit line
if the Packers win

Profit line
if the Vikings win

$x

Profit

Fig. 1.1 Profits from betting

1.1.3 Profit Curves

The profits accruing to the various x choices are displayed in Figure 1.1. The interval
described in Equation 1.5 are those x values where both profit lines provide positive
values, so they are in the region where both lines are above the x-axis.

Figure 1.1 identifies various options. Should our gambler believe that Bob is
intemperate, or wrong, our gambler might bet on the high side of this 3.85 < x <

54.55 region, which is where the profit line for the Packers is much higher; e.g., bet
$50 on each team. Remember, each line’s y-value specifies the profit earned should
the indicated team win.

This x = $50 choice is a limited gamble because profit is guaranteed no matter
what happens. But the difference can make a huge difference: Should the Packers
pull it off, then, according to Equation 1.1 and Figure 1.1, our gambler would waltz
away with 26 × 50 − 100 = $1,200 in a risk free wager! Should the Packers lose,
the measly $10 winnings may not even cover the cab fare home. The point is that
the added information from curves of this type provide guidance.

1.1.4 Fixed Income

Rather than “betting” to enhance the excitement of the football game, suppose these
wagers are part of a vocation. Here our gambler has no interest in random earnings,
she wants to wager in a manner to ensure a fixed return no matter what happens
during the game.

To achieve this goal, notice from Figure 1.1 that the highest assured profit is
where the two profit lines cross. To find this profit value, set the two “earnings”
(from Equations 1.1, 1.3) equal to obtain
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26x − 100 = 120 − 11

5
x,

or

28
1

5
x = 141

5
x = 220.

The height of this point where the two profit lines cross provides the largest
guaranteed winnings.

The conclusion of this algebra is that by betting $x = $ 220×5
141 = $7.80 on Green

Bay and $100 − x = $92.20 on the Vikings, our gambler is ensured the earnings of

26 × 7.80 − 100 = $102.84

independent of which team wins the game. Remember, this profit is in addition to the
starting $100 of our gambler; it provides more than a 100% return on our gambler’s
investment of $100.

An unexpected conclusion is that the amount bet on Green Bay, where the odds
are tremendous, is much less than the amount to be bet on the Vikings. As it should
be expected, Figure 1.1 provides an explanation. The greater odds that Bob places on
Green Bay generates a profit line with a much higher slope. To ensure a guaranteed
amount of winnings, where the lines cross, the $x value must be smaller.

1.1.5 Arbitrage

This sizable return is guaranteed without our gambler spending, risking, or putting
forth even a dime! This is because, in the example, no money is exchanged until
after the game. Even a gambler with an empty wallet can handle the exchange by
first collecting the winnings to pay off the debt, and then return home with $102.84.

This sense of betting on all sides to ensure a fixed return is called arbitrage.
As with the football example, arbitrage is where different prices for the same
commodity on different markets make it possible to instantaneously “buy low, sell
high.” The “instantaneous” modifier implying there is no time gap is crucial because
it eliminates exposure to market changes and risk.

Definition 2 Arbitrage is a strategy of ensuring a profit by simultaneously buying
and selling the same asset in different markets in order to take advantage of the
asset’s different prices.

Here is an obvious question: Why doesn’t everyone adopt this strategy? A first
answer is that such circumstances do not always exist. Then, when arbitrage is
possible, many would like to take advantage of the setting—if they could. Doing
so requires knowing that the opportunity exists and how to exploit it.
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Realistically, not everyone recognizes when such opportunities arise: As an
illustration, probably most readers failed to recognize the financial opening provided
by this football example. Stated in blunt terms, to the observant and clever go the
profits: Market opportunities exist only for those who recognize how and where
they can be found. And so, throughout this book, the reader is encouraged to
sharpen personal instincts and intuition by checking whether and where arbitrage
opportunities exist.

Attached to arbitrage is the “money pump.” To describe this with the Bob and
Sue arbitrage opportunity, those who understand how to take advantage of the setting
might be tempted to “pump” money out of it. With more and more people exploiting
this opening, Bob and/or Sue will quickly learn either to be more cautious or to
suffer the consequences. In particular, expect their offered odds to quickly adjust
until the inefficient arbitrage opportunities either disappear or become minimal.

“Inefficiency” is key; savvy investors may seek markets that are known for
inefficiencies when seeking arbitrage advantages. It may involve a time delay in
transactions or lack of information about the market. Admittedly, this activity has
an unsavory, negative overtone, suggesting the need for a long hot shower. But, as
with Bob and Sue, its potentially positive effect is to force markets to adjust to
more realistic, efficient levels. In mathematical terms, the adjustment mechanism
of arbitrage is what forces markets to adjust, and then adhere, to appropriate, more
stable settings.

It is worth restating this last comment. Of importance to the mathematical theory
is that this arbitrage functioning is what permits us to assume that certain functions
and outcomes in the financial world are “continuous” or “differentiable.” As a
comparison, in the physical sciences, nature’s adjustments provide the rationale for
assuming that functions are smooth (that is, differentiable as many times as needed);
in finance, it is the opportunistic shoving and pushing of arbitrage that supplies the
justification.

With that said, expect arbitrage to be central to much of what follows: It is
what permits accepting invariants, such as the valuable “Put–Call Parity Equation”
(introduced in the next chapter) as well as smoothness assertions for mathematical
expressions. The possibility of arbitrage is what introduces adjustments to handle
appropriate kinds of equilibrium.

1.1.6 Hedging Without Arbitrage

The football example unites hedging with arbitrage; typically they are separate. To
illustrate, our gambler may wish to take advantage of Bob’s tempting odds. But to
have enough money to return home, she cannot afford to lose more than $10. What
should she do?

She could bet $10 with Bob, and only with Bob. If the Packers win, she goes
home with the sizable bonus of $250. If the Packers lose, she loses the full $10.
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There is another option; she could hedge by also betting with Sue. Here she
would bet $y on the Packers with Bob and $(100 − y) on the Vikings with Sue.
What differs from the previous analysis is that her bet on the Vikings serves as
insurance to ensure that she loses no more than $10. So, if the Vikings win, she
pays Bob $y and earns $ 6

5 (100 − y) from Sue (see Equation 1.3) for the return of
−y + [120 − 6

5y].
Remember, she is willing to take a ten dollar loss to enhance the amount that she

can bet on Green Bay. Thus, the appropriate equation for $y is

−y + [120 − 6

5
y] = −10,

which is what she can lose, or

130 = 11

5
y; y = 650

11
= 59.09.

This means she should bet y = 59.09 on the Packers with Bob, and the rest with
Sue; doing so ensures losing no more than $10 no matter what happens. Rather
than betting only $10 with Bob, she can significantly increase her bet to $59.09 and
remain within her budget.

If the Packers win, the profit comes from Equation 1.1 by substituting this y =
59.09 value. With this victory, she dances all the way home with

26
650

11
− 100 = 1,436.36.

A powerful return of over a thousand dollars is achieved with the risk of losing only
$10! OK, it is highly unlikely to encounter such an extreme setting; presumably
Bob has learned his lesson and no longer offers such odds. But this example
demonstrates how hedging provides insurance by minimizing risk and losses while
offering opportunities. Think in terms of how it allows an investor to invest more
money in a new venture.

1.1.7 A Cautionary Word of Interpretation

A word of caution: this hedging and arbitrage analysis is described in terms of
profits; it describes a setting among trusting individuals. The expectation is that
if you lose, then, as fully accepted, you will pay. There is no need to rely on
“collectors” with hairy knuckles deploying baseball bats.

Settings that do not enjoy personal connections cannot survive on such trust. One
would not expect to see a flood of anonymous betters grasping losing tickets while
rushing with their money to pay what they owe. Where trust is questionable, bets
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are collected in advance. If you win, you will get it back. With Sue’s 6:5, or 1.20:1
odds, what may be expressed is that you bet $1 bet and win, then you will receive

your $1 back plus your profit of $1.20 or $2.20.

With actual examples, be sure to determine whether the description is in terms
of profits or in terms of profits plus the money put up in advance. The results differ
significantly should attention not be paid to this distinction.

Experts learn quickly, so rarely do settings provide an arbitrage opportunity. Yet
it is reasonable to expect non-experts will wager over emotional events, such as
the (fictional) upcoming election between the Green and Orange parties. To ensure
payment at the end, when Tyler places a $1 bet with Mikko that the Greens will win,
he will receive $1.50 if the Greens succeed (so, this is Tyler’s $1 guarantee plus the
$0.50 profit) and if Tyler places a $1 bet with Jane on the Orange party’s success,
he will receive $1.80 if the Orange group wins (but only $0.80 profit). If Tyler used
the above analysis without paying attention to profits, it will appear there are strong
arbitrage opportunities. In reality, there may be hedging options, but there are no
arbitrage possibilities.

To see why, consider Jane, a Green party supporter: After removing what it cost
to buy the bet and concentrating only on profits, her offered odds are 1

2 :1. Similarly,
Mikko supports the Orange party and he really is offering 4

5 :1 odds. What follows
is the analysis where Tyler has $1000.

If, with Jane, Tyler bets $x on the Orange party and bets the rest, $1000−x, with
Mikko on the Greens, the analysis is as follows:

• If the Greens win, Tyler loses the $x bet with Jane, but wins $ 4
5 [1000−x] dollars

from Mikko for winnings of

− x + 4

5
(1000 − x) = −9

5
x + 800. (1.6)

To ensure a profit when the Greens win, it must be that

4000

9
≈ 444.44 > x. (1.7)

• If the Orange party wins, then $(1000-x) is lost to Mikko, but Jane must pay $ 1
2x

leading to the earnings of

−(1000 − x) + 1

2
x = 3

2
x − 1000,

where, to have a profit should the Orange party win, it must be that

x >
2000

3
≈ 666.67. (1.8)
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• So, by betting any $x on the Orange party where

444.44 < x < 666.67

and the rest of the $1000 on the Greens leads to a guaranteed loss no matter
which team wins!! Ouch!

An immediate issue is to understand when arbitrage opportunities arise, and
when risk and loss prevail. The analysis starts next.

1.2 Expected Value and Variance

It is reasonable to wonder why a discussion about the mathematics of finance opens
with a betting description. To provide an answer, consider whether you should,
or should not, buy Apple stock today. (Remember, buying a stock means you are
buying a unit of ownership of the company.) Doing so is a gamble; it is a bet.
Consequently, certain principles that are easier to understand with gambling stories,
such as the football or election narrative, transfer to appreciate subtle issues of
finance.

To decide what needs to be known whether to purchase that stock, appeal
to instinct. Knowing there is a 70% chance Apple stock will increase is valued
knowledge. To appreciate how to use this information, a review of the appropriate
mathematics of “likelihood” is needed. What follows is a swift reminder of basic
concepts from probability and statistics; it is based on an expectation that the reader
has at least an elementary understanding of these topics, so only an outline of terms
and notions is necessary. To make the discussion inviting, some unusual examples
are provided.

1.2.1 Probability and PDF

Suppose there are n ≥ 2 mutually exclusive events where pj is the probability that
the j th event will occur where, of course, pj ≥ 0. The fact that one event must
occur leads to the standard constraint

n∑

j=1

pj = 1. (1.9)
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Examples

Spinning Coins. When a coin is spun on edge, the only possible events are Heads
or Tails.2 The probability of getting H, or T, denoted by p(H) and p(T ), when
flipping a coin, is essentially 1

2 for each event. Surprisingly, these values differ
significantly for a spinning coin.

The reason is that should one side of the coin be slightly heavier, it will tilt the
axis of rotation making that face more likely to end up on the bottom. With an older
American penny, the heavier Head makes it more likely for Tails to come up. After
considerable experimentation from students in several classes, we learned that

p(H) = 0.3, p(T ) = 0.7. (1.10)

These results are based on using pennies from prior to 2000;3 I don’t know what
happens with more “modern” coins. Try it; spin a penny, or, because pennies are
rarely used, maybe a quarter, to determine the approximate probabilities for the
specified coin.

Dice. The likelihood of each face of a regular six-sided die occurring is 1
6 . Each pi

is greater than zero and, trivially, the sum of these six values of 1
6 equals unity. So,

the likelihood of rolling a six or a three is the same; both equal 1
6 .

With two dice and the 36 possible outcomes for the combination of the red and
blue die, the answer changes depending on how the question is phrased. If the
question is to find the likelihood that the red die is one and the blue one is six, the
answer is 1

36 —there are 36 possibilities and only one choice satisfies the specified
condition. If the question is to find the likelihood that a seven is rolled, the answer
changes. Carry out the details by making a table of all 36 outcomes. (Six of these
outcomes sum to seven, so the likelihood is 6

36 = 1
6 .)

Gender of Children. Assume it is equally likely for a newly born child to be a boy
or a girl, which means that p(B) = p(G) = 1

2 . With two children in a family, the
sample space, or space of possible events, is

{BB, BG, GG, GB}, (1.11)

2An unlikely outcome has the coin stopping on edge: Once, while with faculty from Boston
University after giving a colloquium talk, I spun a penny to illustrate the unexpected H and T
values described in this example. To everyone’s surprise, the penny stopped—on edge! Now that
this “once in a lifetime” event is behind us, treat “landing on edge” as having a zero probability.
That is, if E represents “edge,” then p(E) = 0. As this description illustrates, the probability of an
event being zero need not mean it is impossible. It only means it is smaller than any imagined
positive number, no matter how small.
3After a class of mine discovered these values, I learned that some of the students used this fact to
increase their discretionary funds.
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where the ordering specifies the birth order; e.g., BG means that a boy was born
first and a girl second. The importance of this ordering will become apparent.

A common expectation is that each of these four Equation 1.11 events is equally
likely. Is this true? Data confirms that it is reasonably accurate in the aggregate.
But as experience already with course grades proves, results about the aggregate
can differ from assertions about an individual. So, what are the probabilities for
a particular family? What underlying assumptions would ensure this condition?
Whatever are the appropriate requirements to establish that each event is equally
likely, it follows that

P(BB) = P(BG) = P(GB) = P(GG) = 1

4
.

Suppose the goal is to compute the likelihood a family has one boy and one girl.
This event, BG ∪ GB, which means that either a boy or a girl is the first born, and
the second child is of the opposite gender. As the events are disjoint, it follows that

P(BG ∪ GB) = P(BG) + P(GB) = 1

4
+ 1

4
= 1

2
.

The care taken in listing the order of births makes this a simple computation.
An important aspect of finance is to understand how to use information to your

advantage; information may be useful even it appears to be extraneous. To illustrate
with this two child example, suppose Jacqueline is invited to have dinner with a
friend and her family. All Jacqueline knows is that her friend has two children.
Consider two possibilities:

1. When Jacqueline rings the doorbell, a delightful, polite, little girl answers and
says, “Hello. My name is Anni. Please come in.”

2. When Jacqueline rings the doorbell, Amy, a snotty little girl, answers and says,
“Go away, I don’t want anybody to come here! And I always get my way because
I am the youngest.”

For each case, compute the likelihood the other child is a boy. Does the answer
change? Surprisingly, it does.

All Jacqueline knows with the first scenario is that one of the two children is a
girl, which means that her friend does not have two boys. Consequently, rather than
Equation 1.11 sample space, the actual sample space is

{BB, BG, GG, GB} = {BG, GG, GB},

where BB means that the event is eliminated. Each of the three remaining events is
equally likely, so each now has the probability of one-third. The only way the other
child could also be a girl is with GG. The two remaining possibilities have a boy as
the other child, so the answer is two-thirds.
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The second scenario’s relevant information has nothing to do with the girl’s sour
attitude; it is that the youngest child is a girl. Therefore, neither GB nor BB (where
a boy is the youngest) are admissible events; the actual sample space is

{BB, BG, GG, GB} = {BG, GG}.

Both events in this reduced space are equally likely: P(BG) = P(GG) = 1
2 , so the

likelihood the other child, the older one, is a boy is 0.5.
Here is a question; suppose the girl announced that she was the oldest? Does the

answer change?

Comment: The above involves conditional probability. The reader is advised to
review conditional probability and then relate it to the above examples.

Examples Involving Integrals. Discrete probability models are not sufficient for
many financial settings. To handle the more extensive distributions, turn to the power
of integral calculus.

Recall that the value of an integral,
∫ b

a
f (x) dx, can be interpreted as the area

under the curve y = f (x) over the interval a ≤ x ≤ b. (This is an interpretation,
not a definition.) To illustrate with the function y = f (x) depicted in Figure 1.2a,
this

∫ b

a
f (x) dx value represents the area between the curve and the x-axis.

A way to compute this Figure 1.2a area is to approximate the integral’s value.
As the reader most surely recalls from an introductory course in calculus, to do so,
partition the interval [a, b] into n subintervals as indicated in Figure 1.2b.

Select these subintervals to have an equal width of

�x = b − a

n
.

On each subinterval, form a rectangle to approximate the area under the curve in
this region. The height of the rectangle is given by the f (xj ) value for some point

a. The continuous distribution b. A discrete approximation

aa bb

Fig. 1.2 Continuous distribution
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xj in the subinterval, which leads to the rectangle area (of height times width) of
f (xj ) × �x. By adding the areas of all the regions (as represented in Figure 1.2b),
an approximate value is given by

Area ≈
n∑

j=1

f (xj )�x.

The sum of the depicted rectangular areas offers a reasonable approximation for
the area, but it is possible to do much better. For a sharper answer, use more intervals
and rectangles; i.e., choose a larger n value.

The definition of the integral is the limiting value obtained if this process could
be continued indefinitely. Namely, the definition is

lim
n→∞

n∑

j=1

f (xj )�x →
∫ b

a

f (x) dx. (1.12)

(assuming that the limit exists).
This approach shows how to replace a complicated, continuous probability

density function with a finite discrete approximation! Just as in Figure 1.2b,
replace the continuous model with a discrete approximation defined over the small
�p intervals: The probability is approximated by summing the various f (p)�p

rectangle areas, where f (p) ≥ 0. With this integral formulation, Equation 1.9
constraint assumes the representation

∫ ∞

−∞
f (p) dp = 1. (1.13)

Function f (p) (or, if you wish, the value f (p)�p leading to f (p) dp) is called the
probability density function or PDF.4

To illustrate, the probability of randomly selecting a number that lies in a specific
subinterval of [0, 3], where each value is equally likely, has a constant PDF. Thus,

f (p) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if − ∞ < p < 0,

C for 0 ≤ p ≤ 3

0, for 3 < p < ∞.

(1.14)

The value of C is determined from Equation 1.13; this means that

4The original notation was “pdf,” which now is more commonly associated with something else in
common use.
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∫ ∞

−∞
f (p)dp =

∫ 3

0
C dp = 1, or C[3 − 0] = 1; thus C = 1

3
.

Armed with the PDF, the probability of selecting a number in a specified
subinterval can be computed. The probability that the selected number is between
0.45 and 0.78, for instance, is

P(0.45 < x < 0.78) =
∫ 0.78

0.45

1

3
dp = 1

3
[0.78 − 0.45] = 0.11.

1.2.2 Random Variable

A random variable is a function, which differs from the usual y = x2 variety in that
its inputs—its domain—consist of the random events that can occur. In spinning a
penny, the two events are Heads and Tails.

The random variable’s range specifies what happens with each particular random
event. For instance, flipping a penny to determine whether or not to watch the movie
might have the consequences

X(x) =
{

Watch the movie if x = H ;
Don’t watch the movie if x = T .

A common example is where the outcome is determined by the random event,
such as whether the weather is, or is not, nice. The random variable X could be

• X(bad weather) = {go to class}
• X(good weather) = {skip class; go to the beach}

Standard choices of a random variable X identify a number with each event. One
example has X(j) representing the “winnings” that occur when the j th event occurs.
Another choice with the roll of a die is where the random variable just identifies the
number on the die’s top face.

1.2.3 Expected Value

Loosely speaking, when the outcomes of a random variable X are numbers, its
expected value, denoted by E(X), is what can be “expected”—it is a form of an
average. To illustrate, consider the expected winnings from spinning a coin where
p(H) = 0.4 and p(T ) = 0.6 and the winnings are $10 if Heads occurs, but a loss
of $10 with Tails. Because H can be expected to occur 0.4 of the time, the expected
winnings should be



1.2 Expected Value and Variance 15

0.4 × $10 = $4,

while the expected losses are

0.6 × −$10 = −$6,

for a total of

$4 − $6 = −$2.

More generally and precisely,

Definition 3 Let X be a random variable with f (p) as the PDF. The expected value
of X is

E(X) =
∫ ∞

−∞
X(p) f (p) dp. (1.15)

If the probability distribution is discrete, then

E(X) =
n∑

j=1

X(j)pj .

Example In Equation 1.14 example of randomly selecting a number from the unit
interval [0, 3], the random variable X(t) = t specifies the selected number. The
expected value of X is

∫ ∞

−∞
X(t) f (t)dt =

∫ 3

0
X(t)

1

3
dt =

∫ 3

0

t

3
dt = t2

6
|30 = 1.5. (1.16)

This makes sense; 1.5 is the midpoint.

1.2.4 Variance

It is fair to identify the expected value with the “center of mass.” Of particular
interest, the expected value is a natural reference point from which to measure
something. Stating that a test score is 80, for instance, fails to indicate whether
it is good or bad. Learning that it is 10 points above the expected value (the average)
implies that it is good. But, how good?

Answering the “how good” concern requires a unit of measure. As an intro-
duction, suppose the only store that carries a needed course book is seven away
from here. “Seven?” The statement that the store is seven away means nothing.
Seven “what?” Seven meters? Seven blocks? Seven kilometers? Seven miles? Seven
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states? The choice of units distinguishes between walking or hitching a ride. A step
toward creating a unit of measure for data is the definition of “variance.”

The following description borrows heavily from the usual
√

x2 + y2 distance
definition. In fact, this expression is used to find the “distance of data” from the
expected value.

Definition 4 For a random variable X with expected value μ = E(X), the variance
is

Var(X) = E([X − E(X)]2) = E([X − μ]2). (1.17)

For a discrete probability, Equation 1.17 becomes

Var(X) =
n∑

j=1

[X(j) − μ]2pj . (1.18)

For a continuous probability distribution with PDF f(t), Equation 1.17 becomes

Var(X) =
∫ ∞

−∞
(X(p) − μ)2f (p) dp. (1.19)

Equation 1.18 resembles the
∑n

i=1(xi−ai)
2 equation for finding the square of the

distance of a point x = (x1, · · · , xn) from a specified location a = (a1, · · · , an) in a
n-dimensional space. (Readers familiar with concepts from astronomy and general
physics will recognize this expression as the “polar moment of inertia” relative to
the center of mass.) The actual distance between x and a is the square root, or√∑n

i=1(xi − ai)2. Similarly the unit of data measurement of “distance from the
expected value” is the square root of the variance; it is the standard deviation.

Definition 5 The standard deviation of a random variable X is given by

σ = √
Var(X).

For a quick way to compute the variance of a random variable, notice that because
(X − μ)2 = X2 − 2μX + μ2, it follows that

Var(X) = E([X − μ]2) = E(X2) − 2μE(X) + μ2. (1.20)

This expression relies upon the facts:

• An integral of a sum is the sum of the integrals (i.e.,
∫
(f (x) + g(x))dx =∫

f (x)dx + ∫
g(x)dx, so E(X2 − 2μX + μ2) = E(X2) − E(2μX) + E(μ2)).

• A constant (2μ in the second integral) can be factored out of an integral.
• The expected value of a constant is the constant (here, μ2).
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Because μ = E(X), Equation 1.20 becomes the more convenient

Var(X) = E(X2) − (E(X))2. (1.21)

Example When randomly selecting a number from the interval [0, 3] with PDF
given by Equation 1.14 and X(t) = t , the μ = 3

2 value was computed. To determine
the variance by using the definition, the integral

Var(X) = E([X − 3

2
]2) =

∫ ∞

−∞
[X(t) − 3

2
]2f (t)dt =

∫ 3

0
(t − 3

2
)2 dt

must be evaluated, which it can with a change of variables. However, Equation 1.21
permits the simpler computation of

E(X2) =
∫ 3

0

1

3
X(t)2dt = 1

3

∫ 3

0
t2 dt = t3

9

∣∣3
0 = 3,

so

Var(X) = E(X2) − (E(X))2 = 3 − (
3

2
)2 = 3

4
.

Therefore, σ =
√

3
2 .

Example When randomly selecting a number from the unit interval [0, 1], a similar
computation shows that μ = 1

2 and the PDF is f (p) = 1 for 0 ≤ p ≤ 1, and zero
elsewhere. Thus

E(X2) =
∫ ∞

−∞
X2(t)f (t)dt =

∫ 1

0
X(t)2 dt =

∫ 1

0
t2 dt = t3

3

∣∣1
0 = 1

3
.

This means that

Var(X) = E(X2) − [E(X)]2 = 1

3
−

(
1

2

)2

= 1

12
,

leading to σ =
√

1
12 = 1

6

√
3.

Common examples using the mean (or expected value) and the standard deviation
are IQ tests and SAT scores. One form of an IQ test adjusts the scores so that μ =
100 and σ = 15. Therefore, a person with an IQ of 130 means that person’s score
on the test is 2 standard deviations above the mean. On some tests, a “genius” is
treated as someone whose score is two or more standard deviations above the mean.
Thus, rather than being someone special, a genius could be just a good “test taker.”

Similarly, on the SAT tests, the mean is adjusted to be μ = 1000, while σ = 194.

A student with a 1200 SAT, then, scored slightly better than a standard deviation



18 1 Preliminaries via Gambles

above the mean. For the ACT, the average composite score is 20.8 with a standard
deviation of 4.8. So, a student with a composite 26 is slightly above one standard
deviation.

1.2.5 Standard Form

Following up on the SAT and IQ tests, there is a standard representation of a random
variable X. The first step captures whether the outcome is larger, or smaller, than
the expected value, which suggests using

X − E(X).

The sign of X−E(X) indicates if an outcome is above or below the expected value:
Did you do better or poorer than the class average?

To impose a sense of distance, divide by the standard deviation σ to obtain the
standard form of X of

Z = X − E(X)

σ
. (1.22)

Thus the above SAT scores can be expressed as 1000 + 194Z, while the ACTs are
20.8 + 4.8Z.

A Z = 2.5 value for a random event not only is above the expected value (the
sign is positive), but it is significantly above. On the other hand, a Z = −0.5 means
it is below the average (the negative sign) by half a standard deviation. Using these
values in more personal settings, a student receiving a 60 on the first exam where
the average (expected value) is 85 did a horrible job if the standard deviation is 10,
but not so bad if the standard deviation is 30.

Here is an application that might be dear to some readers. On the first exam,
Ernesto’s grade was right on the class average of 70, while Junying earned an 80;
the standard deviation is σ = 5. On the second exam, Ernesto received a 90, while
Junying’s 80 was the class average with σ = 10. Are Junying and Ernesto tied in
the class standing because each has an average test score of 80, or should Ernesto
be ranked higher with his strong 90 performance on the second exam, or should
Junying be ranked higher with her average Z score of 1 compared to Ernesto’s 0.5?
What is the more reasonable choice?

1.3 Fair Bets and Ensuring Profits

By using these notions, the reason profits can be ensured in certain wagers can be
explained.
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1.3.1 Fair Bet

The notion of a fair bet means that the gamble, from either side, is equitable. It is
so unbiased that the person offering the wager is willing to take either side because
the expected winnings for either event prevailing are the same. Returning to the
introductory Packers–Vikings game, if Bob offers what he views as a fair bet, then
with these odds he would be willing to bet on either Green Bay or the Vikings.

Definition 6 If random variable X represents winnings from a bet, the bet is “fair”
if the expected value of the winnings is zero. That is, if

E(X) =
n∑

j=1

pjX(j) = 0. (1.23)

All we know with the football example are the odds that Sue and Bob offer—
these are the X(j) payoff values. The likelihoods that each person assigns to the
success of a team remain a mystery. But they can be computed if both believe they
are offering a fair bet. This is because in addition to the fundamental Equation 1.9,
which here is p1 + p2 = 1, Equation 1.23 introduces an extra equation with added
information. With two equations and two unknowns, answers follow.

To illustrate, Bob’s 25 to 1 odds define the random variable

XB(V ) = 1, XB(GB) = −25,

where Bob wins $1 if the Vikings (V) win, but pays $25 if Green Bay (GB) wins.
Assuming Bob treats this as a fair bet, we can determine what Bob believes to be the
probabilities of the Vikings (denoted by pB(V )) and Green Bay (pB(GB)) winning.

From the definition of a “Fair Bet” and Equation 1.9, it follows that

pB(V )XB(V ) + pB(GB)XB(GB) = pB(V )(1) + (1 − pB(V ))(−25) = 0,

(1.24)
or that 26pB(V ) = 25. Therefore, Bob’s implicit probability, or subjective
probability, for the game is that the Vikings are highly likely to win because

pB(V ) = 25

26
, pB(GB) = 1

26
. (1.25)

Similarly, Sue’s implicit probability distribution for the game is

pS(V ) = 5

11
, pS(GB) = 6

11
. (1.26)

A “Fair Bet” is introduced here because it is widely used and will be in what
is discussed later. But for finding these personal subjective probabilities, all that is
needed is a second equation. To illustrate this comment with Bob, a second equation
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could be, rather than a fair bet, he expects a $5 return for each $10 bet. Replacing
Equation 1.24 would be

pB(V )(10) + (1 − pB(V ))(−250) = 5, (1.27)

or pB(V ) = 51
52 and PB(GB) = 1

52 . Again, all that is needed is two equations with
two unknowns; select whatever expression is realistic or convenient.

1.3.2 Making Money

If Bob and Sue offer what each views as a fair bet, why is it possible to make
money off of them? To have an edge, to make guaranteed money, the gambler is
not interested in a fair bet; the gambler seeks settings where Equation 1.23 replaces
the zero with a positive value. But as this equation involves probabilities and the
random variables X(V ), X(GB), there are only two ways to convert the fair bet into
a profitable setting—change the probabilities or change the winnings (the random
variables).

Encountering different people who are willing to bet on the game with different
odds is what can change the gambler’s de facto probabilities. To see this, the
probabilities offered the gambler through the bets are

pB(GB) + pS(V ) = 1

26
+ 5

11
= .4930 < 1, (1.28)

which grossly violates Equation 1.9. This inefficiency, this disregard for the laws
of probability, these values that are not real probabilities introduce an arbitrage
opportunity. And so the inequality of Equation 1.28 eliminates random effects; it
ensures positive winnings no matter what happens. As we will see later, eliminating
random effects is a prime motivation for the Black–Scholes Equations—an equation
that dominates the area of finance.

Of course, if both Bob and Sue offered the same odds for each team, there would
be no way to bet on both teams to ensure a profit. The reason is that Equation 1.28
would involve real probability values where the sum equals unity. More generally,
arbitrage seeks settings where inefficiencies reside.

To underscore the point, return to the political example of the Orange and Green
parties (Section 1.1.7). Jane offers odds of 1

2 : 1, so if this is a fair bet, then
pJ (Green) + pJ (Orange) = 1, while the fair bet expression (from her odds) is

pJ (Green) − 1

2
pJ (Orange) = 0.

Be solving these equations, it turns out that Jane is a pessimistic Green supporter
because she believes there is only a
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pJ (Green) = 1

3

chance her party will be successful. Mikko is not so pessimistic about his party, the
Oranges. Here we have pM(Green) + pM(Orange) = 1 with the fair bet value of

−4

5
PM(Green) + PM(Orange) = 0.

Thus Mikko’s sense of the Orange party winning is

pM(Orange) = 4

9
.

Now turn to Tyler’s plight. His wager on the Orange party with Jane has the
implied probability pJ (Orange) = 2

3 , and on the Green party with Mikko has the
implied probability of pM(Green) = 5

9 . Instead of an Equation 1.28 inequality,
Tyler encounters a reversed

pJ (Orange) + pM(Green) = 2

3
+ 5

9
= 11

9
> 1. (1.29)

This violation of Equation 1.9 runs against Tyler’s interest, which explains the lack
of arbitrage opportunities (see Section 1.1.7).

To explain in a slightly different manner, suppose Jane and Mikko are agents for
a betting group. If Equation 1.29 holds, then the betting group’s probabilities are

pJ (Green) + pM(Orange) = 1

3
+ 4

9
= 7

9
< 1,

so this group’s choices convert the expected outcome from a fair zero to a positive
value.

1.3.3 Horse Racing

The message of the inequality in Equation 1.29 is that if a gambler confronts a
setting where the sum of implied probabilities over all events equals or exceeds
unity, there are no arbitrage opportunities. Expect such situations to arise when there
are more than two possible events.

A natural example is the American roulette wheel, which offers a casino an
advantage of slightly over 5% on gambles. A source of this advantage is the
inclusion of a double zero green slot leading to a total of 38 slots. Rather than
describing the computations in terms of gambling devices (which the reader might
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find to be an informative computation), a simpler example can describe what
happens and why.

Suppose Zhihong, a hardworking, underpaid faculty member, needs to earn extra
money on weekends, so he runs an off-track betting establishment. Today three
horses, with the exotic names of A, B, C, are running: Zhihong must determine
each horse’s winning payoffs. Forget basing these payoffs on the abilities of the
individual horses; base them on the amount of money that has been bet. Remember,
this is a business: Zhihong could care less about which horse wins, but he needs to
make 5 cents on each dollar bet independent of what happens in the race. Zhihong
wants a 5% profit.

At the moment that betting is closed,5 suppose $50 is bet on A, $30 on B, and $20
on C. Let the random variable X(K) be the winnings per dollar bet if horse K wins.
By using this information, if A, B, or C wins, Zhihong’s earnings are, respectively,

Winning Horse Zhihong′s Earnings
A 20 + 30 − 50X(A)

B 20 + 50 − 30X(B)

C 30 + 50 − 20X(C)

(1.30)

Again, using nothing more than elementary algebra, the X(K) values can be
determined to ensure the desired fixed profit of 5 cents on each dollar wagered.
With each $100 being bet, Zhihong must make $5. So, for horse A, the equation
becomes

5 = 20 + 30 − 50X(A), or X(A) = 45

50
= 9

10
,

where the stated odds are 9:10 (that is, a winner earns 90 cents for each dollar bet).6

Similarly,

X(B) = 65

30
= 13

6
, and X(C) = 75

20
= 15

4
.

Therefore Zhihong would state the odds for A of 9:10, for B of 13:6, and for C of
15:4.

An alternative way to compute these values is to let pK be the implied probability
that horse K = A,B,C will win as determined by the volume of betting. The $50
of the total of $100 bet on horse A reflects the implied belief (based on the money
wagered) that pA = 50/100. All three values are

5When a bet is made, don’t we see the odds? Yes, but they are based only on how much money has
been bet on each horse up to the moment; the final odds are determined by the money bet when the
betting stops. This feature is captured in movies where heavy bets are made just prior to race time.
6Notice how these expressions assume the form of Equation 1.27.
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pA = 0.5, pB = 0.3, pC = 0.2.

Dividing each expression in Equation 1.30 by the total amount wagered, $100,
and setting it equal to the desired earning per dollar wagered leads to the general
expression

(1 − pK) − pKX(K) = 0.05, K = A,B,C,

where the right-hand side represents the objective of earning 5 cents on each dollar
wagered.

Solving these equations leads to the values

Horse Wagered pX Payoff Odds Implied Winning Prob
A 50 0.5 0.90 9 : 10 10/19 ≈ 0.526
B 30 0.3 2.16 6.5 : 3 30/95 ≈ 0.316
C 20 0.2 3.75 3.75 : 1 4/19 ≈ 0.211

(1.31)

The third column has the victory probabilities as determined by the amount of
money wagered; the sum is, as it should be, unity. The fourth column has the payoff
for each dollar bet. (To understand the payoff of $0.90 on a $1 bet, recall that
this column represents the “winnings.” In a horse race, as distinct from the earlier
example, the establishment is not confident that betters who lose will eagerly show
up to pay the losses. So, all bets are collected in advance. This means that for each
dollar bet on A, the winning gambler receives the dollar back plus $0.90.) The fifth
column describes the payoff in terms of the “odds” that are actually used, which is
in the manner of the football example.

To understand a gambler’s chances in winning, recall that the likelihood some
horse will win is unity, so the sum of the probabilities of each horse winning is
unity. Adding the probabilities in the third column does, indeed, have the value 1.
But now compute the “implied” odds that some horse will win as determined by
the “implied probabilities” of the last column. To remind you of the computations,
let pA(w), pA(l) be the implied probabilities of horse A winning and losing if the
odds in the fifth column represented a fair bet. If this were a fair bet, we would have

pA(w)(0.90) + pA(l)(−1.00) = 0.

As pA(l) = 1 − pA(w), it follows that pA(w) = 10/19 ≈ 0.526.

In reality, one horse must win. If this were a fair bet, we would have pA(w) +
pB(w) + pC(w) = 1. However, this is not a fair situation; nor was it ever intended
to be. In order for the track to make money, the odds must be stacked in favor of the
house. To see how much by using the above numbers, we have that

pA(w) + pB(w) + pC(w) = 10

19
+ 30

95
+ 4

19
≈ 1.053.
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Clearly this game is stacked against the gambler. It must be if Zhihong is to
ensure a profit. It is reasonable to wonder whether the odds implied in this example
are outrageous. Not really. For comparison, check the odds offered on many gambles
such as on sport teams; they often sum to at least 2 rather than the value of unity for
a “fair” bet. (This reality provides a sense of how badly the odds are stacked against
a gambler.)

1.4 Exercises

1. Weather forecaster Gonnarain is so certain it will rain on Sunday that he would
offer a bet of 3:2 that it will happen. Remember, if it rains after someone bets
with Gonnarain, Gonnarain keeps all of the money. If it does not rain, then
Gonnarain pays the better $3 for each $2 that was wagered.

On a different channel, Alwaysunny is confident that on Sunday it will not
rain; she offers 4:3 odds.

(a) A person has $100. Set up a hedge where the person will win the same
amount of money no matter what happens on Sunday.

(b) Draw the two profit lines.
(c) How much money is the person guaranteed to win no matter what happens?
(d) Both forecasters believe they are making a fair bet; that is, they are willing

to take either side. Determine the likelihood each has for rain on Sunday,
for no rain on Sunday.

(e) Add the probabilities of rain from Alwaysunny and of no rain from
Gonnarain. Add the probabilities of rain from Gonnarain and no rain
from Alwaysunny. What do you notice? How does the answer help you
understand when a bet is to your advantage?

2. Two people have different opinions on the Tennessee and Florida game to be
played tonight. One person supports Tennessee and is willing to offer 11 to 10
odds; the other person supports Florida and is willing to offer 5 to 3 odds. Go
through the analysis to determine how much to bet with each person. If Heili
has $100 to invest, how much is she assured of earning?

3. In the above discussion, it is shown how to convert specified odds from a “fair
bet” into the gambler’s belief about the likelihood of an event happening. The
following are related.

(a) Torik gives 5:3 odds that someone will walk in late for class tomorrow.
What probability does he assign for this event?

(b) Mikko believes there is a 60% chance that at least five students from this
class will be at the next basketball game. If he were to set up odds, what
would they be?

(c) Change the 60% to 75%. Now what would be the odds?
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4. Suppose John offers what he believes to be a fair bet as to whether an instructor
will or will not give a class quiz tomorrow. He believes there will be a quiz and
offers a:b odds. John views this as a fair bet; compute the probability he assigns
to a quiz being given and a quiz not being given.

5. Returning to a possible class quiz, Sue believes there will be a quiz and offers
3:2 odds, Torik does not and offers 3:1 odds. The odds Torik is offering are
enticing, and you have $200 where you can afford to lose up to $20. Now, one
possibility is to bet $20 only with Torik; if there is not a quiz, he wins and keeps
your $20. If there is quiz, you win and he owes you $60. But, by hedging, you
can bet more without incurring any greater risk. Explain what to do and how
much you can earn if there is a quiz.

6. In the Olympic finals, only three teams are represented; USA, England, and
China. Svetlana believes the USA will win and offers even odds of 1:1. Roberto
is supporting England and is offering 2:1 odds. (So, if England wins, Roberto
keeps his money. If one of the other teams wins, Roberto pays $2 for each
dollar bet.) Finally, Jeff supports China as given by his 5:4 odds. Determine the
optimal way of dividing $100 to bet that ensures the largest winning.

A message from this example is that whenever exuberance causes individ-
uals to offer strong odds, such as during a political campaign, arbitrage is
available. To see the arbitrage opportunities from this example, if a third of
the money is bet with each person, only one can win; the winnings from one
other bet cover the loss and winnings from the third are profit.

But this exercise, as with the gender example, also emphasizes the impor-
tance of understanding the provided information. When betting with one of
these individuals, such as Jeff, is the bet whether China will or will not win, or
does the bet require you to put forth a team and you win money only if your
team wins. The difference is huge; the intent is the first, but, as a challenge, can
the second be handled?

7. With a Swedish Krona, suppose the likelihood of getting Heads when it is spun
on edge is 0.2. If X is the random variable where

X(H) = 1, X(T ) = −1,

find the expected value E(X), the variance, Var(X), and express X in its
standard form.

8. With an American penny, the likelihood of getting H when it is spun on edge
is 0.3. If X is the random variable where X(H) = 1, X(T ) = −1, find the
expected value E(X), the variance, Var(X), and express X in its standard form.

9. The next problem involves dice.

(a) In rolling a die, it is called a “fair die” if each of the six number are equally
likely, which means that the probability of a particular number appearing is
1/6. What is the expected value when rolling a die? The variance?

(b) When rolling two fair dice and adding the numbers on the faces, the number
1 cannot occur, so this event has probability 0. What is the probability of 2,
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of 3, of 4, of . . .? (Hint: In doing this problem, assume you have a red and
a green die.) What is the expected value? Variance?

10. Suppose the probability of selecting a number from the interval [0, 2] is given
by f (x) = Cx.

(a) Find the value of C so that this is a probability distribution.
(b) Find the probability that the given number is in the interval [0,1]. Now find

the probability that the selected number is in the interval [1, 2]. The answers
differ. Why?

(c) If X(x) = x is the random variable giving the value of the selected number,
what is E(X)? The Var(X)?

11. Suppose the PDF is given by f (x), which is zero for x < 0 and x > 4. It has
a constant value for 0 ≤ x ≤ 4. (This is a uniform distribution; each point is
equally likely.)

(a) Find the constant value.
(b) Find the likelihood that when selecting a point at random with this

distribution, it is greater than 3.5.
(c) If X(x) = x (so, it equals the selected value), find E(X) and Var(X).

12. Suppose the PDF is given by f (x) = Cx2 for 1 ≤ x ≤ 2, and zero otherwise.

(a) Find the value of C.
(b) Find the likelihood that a point selected at random with respect to this PDF

is between 1.5 and 2.
(c) With X(x) = x, find E(X) and Var(X).

13. A company that prints Blue Books for exams makes a profit according to the
number of books sold. Suppose that the Profit is

P(x) = 2(1 − e−2x),

where x is the demand or number of books sold. The demand, of course, is
measured in terms of a probability distribution. After all, we cannot be assured
that at any time there will be a specified demand. So, the PDF for the demand
is given by

f (x) =
{

6e−6x for x > 0, and

0 for x < 0.

(a) Show that the above is a PDF.
(b) Find the company’s expected profit.
(c) The company worries about the variation in the profit. So, set up the integral

to find the variance of the profit.
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14. Show that Var(aX + b) = a2Var(X).
We know that the standard form is Z = X−E(X)

σ
where σ 2 = Var(X). Use

the above to compute the Var(Z).

15. The fact that Var(X) = E(X2) − [E(X)]2 was proved using properties of
integrals. Prove it for the discrete case.

16. Suppose at an off-track betting facility, just before the four horse race starts, it
is learned that 600 dollar bets have been made on A, 300 on B, 400 on C, and
200 on D. In order for the owner to earn 3 cents on each dollar bet, determine
the payoff, or winnings, for each horse.

17. In the first test of a course, Barb got 66 and Dave got 71, where the average was
70 and σ = 25, while on the second test Barb earned 87 and Dave received 84,
the average was 85 and σ = 5. They are close, but show why it is arguable that
Barb did better over the two tests.



Chapter 2
Options

A valued lesson from Chapter 1 is that a way to reduce risk is to bet on both sides of
an issue. To apply this theme to finance, appropriate market devices, with features
similar what has been discussed, are identified.

2.1 Calls

Anna buys oranges from a supplier in order to sell them to grocery stores. To survive
in this business, stability is required. The fate of our poor distributor is influenced
by weather conditions, insects, economic conditions, trade wars, or whatever events
may, or may not conspire to drive Anna into bankruptcy. For a multitude of reasons,
it may be in Anna’s best interest to sign a contract to ensure that on a specified date
the correct amount of oranges can be purchased from the supplier at an agreed upon
price.

The object, then, is to find a supplier and sign a contract for a Call. This
means that the distributor can, if she wishes, call the supplier on the specified date,
designated as the expiration date T , for a specified number of oranges at a specified
price that is called the exercise or strike price E. Key to this description is the
word can; the distributor can enforce this contract if she wishes,1 but she need not.
The contract provides her a legal right, not an obligation. The contract, however,
obligates the supplier.

1The word “can” is critical. In contrast, a “futures contract” (which is an interesting topic not
covered here) loses this flexibility; it requires buying or selling at a specified time and price. To
illustrate a difference, with decreasing prices, there is no reason to exercise a Call, but a futures
contract remains fixed. This explains why, for instance, there can be a time delay between sharply
decreasing oil prices and lower gasoline prices—the refineries are locked in to the higher future
contract prices.
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2.1.1 A Long Call

To make these notions more precise, suppose there will be a rare book convention
on March 9. Katri has an first edition of Agatha Christie’s “Murder on the Orient
Express” that is in excellent condition; today, she could sell it for $100.2 Erik is
interested, but he is not sure whether to buy it now or at the convention. On the other
hand, Erik worries whether the book price will increase to, say, $120 by convention
time. The problem confronting Erik is to decide whether

1. to buy the book now, or
2. to secure a legal agreement from Katri giving him the option of buying the book

on the day of the convention for $100. (So, the expiration date is T = March 9,
with strike price E =$100.)

Again, with the Call, Erik—the purchaser—has the legal right to decide what will
be done. If Katri agrees to the contract, she has an obligation; if he calls to purchase
the book, she must go along with Erik’s decision.

Profit from a Call

To determine the value of this contract for Erik, remember, a Call provides a
legal right—whether to buy, or not to buy, the circumstance is the question. Erik’s
decision depends on what happens on the day of the convention—the expiration
date.

If on March 9 the going price of a “Murder on the Orient Express” book is less
than $100, Erik has no interest in buying Katri’s copy. It would be foolish for him to
exercise the agreement when he can purchase the book elsewhere at a lower price.
On the other hand, should the book value be $120, then Erik would enforce the
contract because, by buying Katri’s book at the agreed strike price of $100, he makes
a profit of $20.

The Figure 2.1 solid line describes this situation. Erik’s “profit” (savings, etc.) at
time t = T should the book become more expensive is the difference between the
current price S and the strike price E, or S − E. In general, Erik’s profit is

Profit from CallE(S, T ) = max(0, S − E) (2.1)

as plotted with the profit line in Figure 2.1 with a slope of either 0 or +1.

2There is a wide range of prices for rare books. A pristine copy of this novel, complete with book
cover, would sell in the thousands. More commonly found copies in excellent shape would be in
the range of the example.
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Fig. 2.1 Analyzing a Call Profit

Price

strike price

Cost of option .
.
.

How Much?

Why would Katri, a brilliant woman, agree to such a silly contract? After all, this
Call cedes the advantage to Erik, while Katri incurs an obligation. Erik can decide
what will happen—whether or not to exercise the option—and it is in his best
interest to buy the book only in circumstances that hurt Katri.

Katri would endow Erik with this power only for a price. For a certain amount
of money, she would sign the agreement. The problem is to determine the value of
the contract. How much should she charge?

This pricing issue is a topic that will be analyzed in great detail after developing
the appropriate mathematical tools. To develop intuition by examining a simple
illustration, suppose it is accepted that there is

• a
1

3
chance the value of the book will reach $120, and

• a
2

3
chance the value will drop to $90.

Maybe she should charge Erik the difference between the “Expected value of the
book on March 9” and the strike price.

To analyze this strategy, the expected value is

E(book value) = 1

3
(120) + 2

3
(90) = 100.

Because the difference between the expected value and the strike price is zero, this
pricing approach suggests that Katri would charge Erik nothing to give him a right.
How reckless! She most surely will not do that!

An alternative way to determine the value of the option is to emphasize what
it means to Erik: Base the price on Erik’s expected earnings with the Call. This
approach shifts the emphasis to Erik’s potential profits. Namely:
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• With probability 1/3, the price will be $120. If this is the case, Erik will purchase
the book and quickly resell it to obtain a profit of $20.

• With probability 2/3, the price is less than or equal to $100. Here Erik will not
buy the book from Katri for $100 because he would take a loss. In this setting,
Erik’s earnings are $0.

The random variable from this approach is the expected profit resulting from the
Call, which is

E(Call profit) = 1

3
[120 − 100] + 2

3
0 = 6

2

3
,

and which could be the option’s value. With this information, the price of the Call
becomes a “fair bet;” neither Katri nor Erik would have an unfair advantage over
the other.

Be warned; this is not how the value of the Call is computed. This example,
for instance, specifies probabilities that most surely are never known in practice.
As an illustration, what is the probability of Google stock jumping precisely $10
tomorrow? Secondly, Calls are bought and sold to make money, so, as we will
discover in Chapter 6 with the Black–Scholes equation for the pricing of a Call,
market pressures and arbitrage effects are involved. Nevertheless, a virtue of this
discussion is that it captures the complexity of the problem while suggesting what
can cause a Call’s price to vary.

To appreciate how the strike price affects the option’s value, the same computa-
tions with the larger strike price of $110 lead to the lower

1

3
[120 − 110] + 2

3
0 = 3

1

3
.

This makes sense; a higher strike price offers less profit, so the Call has a smaller
value. Conversely, a smaller strike price leads to a larger expected profit, so the value
of the Call increases. In general,

expect a Call’s value to monotonically decrease with an increase in the strike price.

Suppose Erik invests the $6 2
3 to buy the option at the $100 strike price. Once

this is done, the Figure 2.1 profit line must be translated downwards by this value,
which is given by the Figure 2.1 dashed lines. So, for Erik to break even, the price
must reach at least $106 2

3 . With a higher price, Erik makes a profit. Should the price
reach $120, Erik reaps a [20 − 6 2

3 ]/(6 2
3 ) = 200% profit. If the price goes down,

Erik would not buy the book, where he would lose the option price causing a -100%
loss.

A question left to the reader: What should Erik do at t = T (expiration date) if
the price is $105, which is lower than needed to make a profit?
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Comparison

Is this “Call” a wise idea? Such a question can only be answered by comparing
alternatives. Suppose, for example, that Tyler deals in old books, and he has $100
to invest. Tyler could buy one copy of “Murder on the Orient Express” now, or he
could buy as many Calls as he can afford.

To make the numbers come out right, suppose it costs $5 to purchase a Call with
strike price $100. At this charge, Tyler could purchase 100/5 = 20 Calls.

• If the price jumps to $120, each Call would be exercised. Once each copy of
“Murder on the Orient Express” is bought, it is instantly sold at the prevailing
price leading to a profit of $120 − 100 = $20. Take off the $5 expense of
purchasing the Call, and the profit is $15. For the 20 Calls, the total profit is
$300 on an investment of $100, or a 300% profit.

• If the price drops to $90, no Call is exercised. All money is lost.

On the other hand, if Tyler is risk-adverse and purchased the book, he would have
the following scenarios:

• If the price jumps to $120, he could sell it leading to a $20 profit.
• If the price drops to $90, the loss is 10% or $10.

Different approaches offer different levels of risk and return.
As a summary, buying the book now ties up money with smaller percentage of

profits or losses—but with a smaller risk of going broke. By purchasing an option,

1. the buyer invests smaller amounts of money
2. with a larger risk of going broke,
3. with the potential advantage of sizable profits. Indeed, there is no limit to the

amount of profit. This occurs, however, only if the price increases beyond the
strike price.

2.1.2 Going Short

Buying the Call is referred to as taking a long position, which is denoted here by
CE(S, t) where E is the strike price and S refers both to the commodity (often stock)
and its price. The “t” variable is time, which reflects the reality that the value of the
Call will change with events over time.

Selling a Call is referred to as taking a short position; here a negative sign
captures the short position, or −CE(S, t). In the “Murder on the Orient Express”
illustration, Heili sold the option to Tyler, so she is going short. Her profit curve is
given in Figure 2.2, which demonstrates that Heili’s profit derives from selling the
option. From this curve, the advantages and disadvantages can be determined.
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Fig. 2.2 The analysis of a
short Call

Profit

Price

strike price

Cost of option

1. Going short on a Call has unbounded risk; if the price increases to sufficiently
high levels, the loss can be unbounded.

2. If the price does not increase, a guaranteed earning is obtained.

As with the football game, different people can have different opinions about
what will happen—here it is how prices might change. The person with a long Call
expects the prices to increase; the person with a short Call believes the prices will
remain the same or decrease.

To offer another example of taking the short position, suppose John wants to go
short on Mesmerized stock; this means he wants to sell this stock. There is a slight
complication; John doesn’t own any. No problem: The way this is accomplished,
with appropriate controls to avoid abuse, is that John calls his broker and asks to go
short. The broker “borrows” the stock from somewhere, maybe from Mary, sells it,
and gives the money to John. The notation used here for going short on the stock
is −S.

But John must replace that stock at a specified time, so why would he do this?
What is John’s expectation about the prices?

2.1.3 Hedging

John just went short of the Mesmerized stock; he sold it for $100. He did so because
he expects the cost of Mesmerized stock to decrease. If, for instance, it drops to $80,
John can quickly buy the replacement stock for $80, and return it to Mary for a nice
quick profit of $100-$80 = $20.

Fine, but what a risk! Suppose the public suddenly becomes bedazzled with
Mesmerized stock making it so popular that the price jumps to $125. Poor John
must buy this replacement stock for $125 to return it to Mary for a loss of $25. This
is where lessons from the football gambles (Chapter 1) provide insight: Maybe there
is a way to hedge.

Remember, a purpose of a hedge is to provide protection for John should the
price increase. As described above, a Call is based on the assumption that the price
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will increase; going short on the stock is based on the assumption that the price will
decrease. Combining a Call with going short, denoted by

C100(S, t) − S,

constitutes betting on whatever will happen.
To appreciate this hedge, if the price decreases, as John expects, he can ignore

the Call and earn money by buying a replacement stock on the market at the lower
price. But should the price skyrocket to, say, $130, John is protected. Rather than
buying the replacement stock at the high price of $130, he can exercise the Call to
obtain the replacement for $100. All John loses is the cost of the Call.

This hedge, which combines a short sale with a Call, is a form of insurance. More
about how options provide protection is described as we continue.

2.2 Puts

The opposite of a Call is a Put: Here a person has the right to sell something—to
put it on sale—at a specified price (strike price E) on a specified date (expiration
date T ). It is denote by PE(S, t).

2.2.1 A Long Put

Adrian, who sells old books, believes that the $100 price for a copy of “Murder on
the Orient Express” is overvalued; the price will drop. He doesn’t have a copy, but
Adrian would like to take advantage of his expectation that the price will drop by
selling one to Anneli for $100 at that March 9 conference.

If the price drops, why would Anneli buy the book from Adrian for $100 when
she can get it cheaper elsewhere? So, for a fee, they agree that Adrian has the right
to decide whether or not he will sell her a book on the expiration date of March 9
for the strike price of $100. Namely, the contract Adrian purchases from Anneli—a
Put denoted by P100(S, t)—gives Adrian the right to put the book on the market to
Anneli.

If the book price decreases, it is in Adrian’s interest to exercise this option. After
all, if the price drops to $90, he can buy a book from someone else, sell it to Anneli
for $100, and pocket the $10 profit. On the other hand, should the price be $120,
there is no way Adrian will sell Anneli the book for $100; Adrian would ignore the
Put. With a Put, the benefit and rights belong to the seller.

Again, the concern is to determine how much Anneli should charge for the Put. A
rough approach to compute this fee is in terms of the expected profits to the person
holding the option. Using the earlier assumptions about this book:
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• With probability 1/3 the book value will be $120. Here, Adrian will not sell the
book, so his profit is zero.

• With probability 2/3, the book value will drop to $90. Here, Adrian will exercise
the Put: His profit will be $10,

Thus, the expected value of the Put option is

1

3
0 + 2

3
10 = 20

3
= 6

2

3
.

Therefore, the value of this option is $6 2
3 , which happens to agree with the value of

the Call with the same strike price.
This price agreement is a coincidence. To demonstrate how the values of a Put

and Call can differ, suppose the strike price for the Put is $110—that is, on March 9
Anneli must buy the book from Adrian for $110 if he wishes to sell it. Clearly, with
the higher strike price, Adrian can make a larger profit: The expected value of the
Put now is

1

3
0 + 2

3
[110 − 90] = 40

3
= 13

1

3
.

So,

with an increase in the strike price the value of a Call decreases,
but the value of a Put increases.

(2.2)

Returning to the Put, if the price decreases, Adrian can buy a book at the lower
price to sell to Anneli, which ensures a profit for Adrian. If the price increases,
Adrian will not exercise this Put option because he would lose money, and incurs
only the cost of buying the option. Figure 2.3, which graphs Adrian’s situation,
displays the advantages and disadvantages of a Put. The profit is given by

PE(S, T ) = max(0, E − S). (2.3)

Fig. 2.3 The analysis of a
Put

Profit

Price

strike price

Cost of option
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as depicted in Figure 2.3.

1. A profit is made on a long put if the price drops.
2. Limited risk.

2.2.2 Short Put

A “short Put” is where a person sells such a “Put” contract. The profit curve relative
to changes in the price is depicted in Figure 2.4.

2.2.3 Some Jargon

To conclude this section, it is worth mentioning some of the market jargon. A
common one is “in the money” represented by ITM. Let me ask the reader to predict
what this means when applied to a Call or a Put.

As one might guess, “in the money” is when the option is, well, in the money; it
is worth something. Now, CE(S, t) is worth something if S > E, so a Call is “in
the money” if the current, or spot price, is greater than the strike price. For a Put
PE(S, t), everything is reversed: Its value derives from the spot price being below
E, so a Put is “in the money” if the spot price S is below the strike price E.

The “out of the money,” or OTM, has the obvious and opposite meaning. This
OTM designation for an option is where S is not causing the option to be of interest.
Thus CE(S, t) is out of the money if the spot price S is smaller than the strike price
E, and PE(S, t) is out of the money if the current S is greater than the strike price.
What reflects the contrasting roles of Puts and Calls is that CE(S, t) is OTM when
PE(S, t) is ITM.

Fig. 2.4 The analysis of a
short Put
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Price

strike price

Cost of option
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If phrases such as “in the money” and “out of the money” are tossed about, surely
there is something in the middle, which would be an option “at the money,” or ATM.
Quite naturally, here the current price is approximately equal to the strike price.

2.3 Hedging

The above introduces basic terms. In all of these situations, a certain element of risk
is involved. The goal, as with the football game illustration, is to discover how to
minimize risk by betting on both sides.

A way to underscore the importance of hedging is to point out that many
attorneys, including personal friends, have done quite well in suing money managers
who did not appropriately hedge a client’s investments; an oversight that caused the
client to suffer unnecessary financial losses.

2.3.1 Straddle

With a volatile market, where it is not clear whether prices will go up or down, one
strategic approach is to buy a Call and a Put for the same strike price and the same
expiration date; in this manner, no matter what happens, at least one, the Call or
the Put, will be in the money. Comparing this strategy with the Chapter 1 football
example, it resembles betting on the Vikings and the Packers.

This portfolio

Port (S, t) = PE(S, t) + CE(S, t) (2.4)

is called a straddle. In Figure 2.5, the dashed lines represent the Call and Put; the
solid line is the combination, along with the cost, creating the straddle. It is left to
the reader to examine the figure and determine the advantages and disadvantages.

In doing so, it is worth describing what happened years ago when I introduced
this strategy to my class. At this same time, a firm was waiting for a court decision.

Fig. 2.5 Straddle Profit
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.

Cost of two options
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Fig. 2.6 Strangle Profit

Price

Cost of two options

strike prices

Long CallLong Put

.

.

.

.

.

If the firm would lose, its stock value would drop; if the firm would win, the stock
value would jump. And so the price would change—in some direction—but nobody
knew what would happen and in which way the price would vary. The straddle
handled this difficulty; if prices change, in either direction, a profit would be made.
A profit would be denied only if prices remained fixed; e.g. if the court decision
would be delayed. It was not, and several adventurous students benefited.

The strike prices need not be the same for the Put and Call; when they differ, the
combination is called a strangle, which is represented in Figure 2.6. A question left
to the reader is to explain why someone would prefer a strangle to a straddle. (Hint,
how does a change in the strike price alter the return—and cost—of the option?)

As a related issue, the reader should explore how to use short Calls and Puts. The
exercises provide examples.

2.3.2 Designing Portfolios

Treat the Calls and Puts as building blocks to assemble a portion of a portfolio or
an investment strategy. Names for certain of the better known approaches, such as
the straddle and strangle, are in Exercise 4 at the end of this chapter. But, to develop
intuition, to better understand how and why different methods work, to be able to
create your own strategy to fit a current opportunity, it is worth understanding how
to generate new approaches. In particular, a reader should be able to take a portfolio
and graph its profit curve at expiration date. Conversely, you should be able to take
a desired profit curve and design an associated portfolio. Let’s go after it.

An introduction comes from Figure 2.7, which captures the earlier story where
John goes short on Mesmerized stock. Figure 2.7a is the profit curve. As long as the
price of the stock is below E = 100, John will make money. This feature, where
each dollar the price drops is another dollar of profit, is given by the graph above
the x-axis with the slope of −1. But should the price increase above E, each dollar
increase is a dollar loss for John, as reflected by the portion of the line below the
x-axis.
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Figure 2.7b shows how the Call can come to the rescue! The Call is worth nothing
for John should the price of Mesmerized stock, S, be below E, but for each dollar
S is above E, it provides a dollar profit for John, as reflected by the CE slope of
+1. The dollar profit offsets the dollar loss John incurs by going short on the stock,
so the loss and profit cancel. This leads to Figure 2.7c, which is the profit curve
(without the cost of options) for CE(S, T ) − S. The dashed lines in Figure 2.7c
represent the offsetting profit and loss.

Figure 2.8 is a practice curve that is divorced from reality. It represents a
hypothetical profit curve where the goal is to determine an associated portfolio.
The numbers in parenthesis, such as (−2), represent the slope.

To interpret the curve, this person appears to believe the price might increase
above 90, probably taper off between 110 and 120, but most surely it will not exceed
120. Although the price might decrease below 70, it probably will not sink below
50. (Be sure to understand why these comments may, or may not, reflect the shape
of the curve.) Your goal is to design a portfolio; for now, ignore the cost of options,
just use Puts and Calls to create the shape. Do it in three ways:

1. Create a portfolio using only Calls—long and short.
2. Create a portfolio using only Puts.
3. Today’s price is 80. Create a cost-effective portfolio using a mixture of Puts and

Calls.

Using Calls

With Calls, the curve’s building blocks come from Figures 2.1 and 2.2. Starting
from the extreme left, the horizontal slope changes to −2 at S = 50, which requires
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(Figure 2.2) going short: The first term is −2C50(S, t). At S = 70, the slope
becomes zero. Now, each dollar beyond S = 70 means that −2C50(S, t) is losing
two dollars. A way to earn a dollar for each dollar of price increase above S = 70 is
with a Call. Thus, to offset the losses from −2C50(S, t), purchase two Calls leading
to −2C50(S, t) + 2C70(S, t).

The next change at S = 90 is where the slope jumps to 3 to earn three
dollars for each dollar S goes above 90; this means we need three Calls for
−2C50(S, t) + 2C70(S, t) + 3C90(S, t). This portfolio provides three dollars for
each dollar S moves beyond 90. But the curve is tempered after S = 110 to receive
two dollars for each dollar increase. This decrease from 3 to 2 is achieved by going
short to have

−2C50(S, t) + 2C70(S, t) + 3C90(S, t) − C110(S, t).

Finally, the objective is for no money to come in after S = 120. This requires
going short on two Calls to obtain

Port = −2C50(S, t)+2C70(S, t)+3C90(S, t)−C110(S, t)−2C120(S, t). (2.5)

Here is an interesting question: Why would anyone want to decrease the amount
of money coming in by going short? An answer is that this person does not believe
the market will reach these regions, but she can make money by going short—by
selling Calls.

Using Puts

To create a portfolio by using Puts, the building blocks are Figures 2.3 and 2.4. A
hint in doing so:

When dealing with Calls, start from the left and work to the right. When dealing with Puts,
start from the right and work to the left.

Following this advice, when moving from the right to left, the first change is at
S = 120 where the slope goes downward. According to Figure 2.4, go short on a Put,
so the portfolio starts with −2P120(S, t). At S = 110, there is another slope that is
captured by a short to give −P110(S, t)−2P120(S, t). At S = 90, the slope becomes
horizontal, which requires three Puts for 3P90(S, t) − P110(S, t) − 2P120(S, t). At
S = 70, the slope increases to two, which (Figure 2.3) requires acquiring two Puts
leading to 2P70(S, t) + 3P90(S, t) − P110(S, t) − 2P120(S, t). Finally, lower than
S = 50, the slope is zero, which requires going short on two Puts to obtain

Port = −2P50(S, t)+2P70(S, t)+3P90(S, t)−P110(S, t)−2P120(S, t). (2.6)
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Here is a question: There are coefficient similarities between Equations 2.5
and 2.6. Can you explain why this relationship holds in general? The explanation
reflects a duality of Puts and Calls.

Mixed Choice

For a useful combination of Puts and Calls, use Calls to the right of S = 80 (today’s
price) and Puts to the left. In doing so, follow the earlier hint of moving from the
left to right with Calls. As the slope of Figure 2.8 is zero around S = 80, but jumps
to three at 90, this portion of the portfolio is 3C90(S, t). Proceeding as above, the
Call portion is 3C90(S, t) − C110(S, t) − 2C120(S, t).

Similarly, for the Put portion, start at 80 and move to the left. Thus the Put portion
is −2P50(S, t) + 2P70(S, t). Combined, the portfolio is

Port = −2P50(S, t)+2P70(S, t)+3C90(S, t)−C110(S, t)−2C120(S, t), (2.7)

which, with the coefficients, bears a strong similarity to Equations 2.5 and 2.6. This
is not a coincidence.

Which of these three possibilities, Equations 2.5, 2.6, or 2.7 should be used?
Modifying a phrase introduced by James Carville during the 1992 US presidential
campaign; the answer reflects the comment

“It’s the profit, stupid!”

This is where the information that today’s price of 80 enters along with the
Equation 2.2 statement. The cost of Puts with a strike price above the current value
can be prohibitive, while the cost of Calls is more reasonable. Conversely, the cost
of Calls with a strike price below the current value can be expensive, while the cost
of Puts is more reasonable. Thus, expect the choice of Equation 2.7 to be more
reasonable, which leads to greater returns.

2.4 Put–Call Parity

Puts and Calls are financial tools. As true with any collection of instruments, a
flailing, inexperienced amateur can create a mess while a craftsman can produce
something beautiful. The attractive combination described in this section is a
powerful tool called the “Put–Call Parity Equation,” which plays a central role in
the pricing of Puts and Calls.

A message resulting from this relationship is that the earlier “expected profit”
analysis for pricing these tools is overly naive. This new relationship will involve
interest rates and something called “The present value of money,” which makes it
clear that the actual pricing of Puts and Calls includes more complicated interactions
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between investing in a particular commodity or stock, or placing this money in a
bank and collecting interest.

2.4.1 Present Value of Money

James has a note granting its holder $1000 on September 1. James, as always, needs
money—now. So, he wants to sell the note to Diane. At the rate of interest of 5%,
which is to be compounded continuously, what is this note worth today?3

Stated in another manner, Diane could buy the note from James, or she could
deposit her money in the bank and collect interest. To compare her options, Diane
must know how much money she needs to deposit in a bank that provides 5% interest
to have precisely $1000 on the expiration date.

To set up this problem, let M(t) represent money value at time t , E is the final
value of the note (for the problem, E = $1000), T the expiration date (which, for
the problem, is September 1), t is today’s date, and r is the interest rate. The change
in money, the interest, over a very short period is approximated by the usual “interest
equals rate × money × time,” or

�M(t) = r M(t)�t. (2.8)

Using the typical strategy of collecting similar variables on different sides of an
equation, this expression becomes

�M

M
= r �t,

which equates the ratio of change in money with the product of the interest rate and
change in time. The goal is to sum both sides over the duration of time leading to
the approximation

∑ �M

M
= r

∑
�t,

where the summations are over all �t time intervals from t to T .
A better approximation is obtained by taking the limit of the approximating

summations as the size of the �t time intervals shrink. Using the Equation 1.12
expression, this leads to

∫
1

M
dM = r

∫
dt.

3Many, if not most, readers are familiar with the present value of money, but read along because
the structure leading to this expression is used in several other places.
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The limits of integration are determined by the provided information. At time t ,
for instance, the note is worth (the unknown value) M(t); these values determine
each integral’s lower limit. At time T , the note is worth the expressed value of
M(T ) = E. Thus the integrals become

∫ E

M(t)

1

M
dM = r

∫ T

t

dt.

As learned in a first course of calculus, the answer is

ln(M)|EM(t) = ln

(
E

M(t)

)
= r(T − t).

Eliminating the natural log term—by raising both sides to a power of e— leads to
the the present value of money expression

M(t) = Ee−r(T −t). (2.9)

To take an intuition break involving finance, suppose the current price of a stock is higher
than the present value of E; that is, S > Ee−r(T −t). Which is worth more; CE(S, t) or
PE(S, t)? Is there a relationship?

2.4.2 Security

To appreciate how to use this information, suppose Tyler borrows money from
Heili. With the interest of r on the loan, Tyler promises to pay Heili $E on the
expiration date T . As derived above, the present value of this money—the amount
Tyler borrows—is given by Equation 2.9.

There is no way Heili will loan money to Tyler without some security. So, Tyler
gives her his Mesmerized stock, S, with the expectation that this stock is worth $E

on the expiration date. Right now, Heili has the stock and Tyler has the money: Both
have good intensions of making an exchange on the expiration date; that is, they
expect that on date T , Tyler will pay Heili $E and Heili will return Tyler’s stock.
Here is a problem; there are no legal guarantees to ensure this will happen!

Heili, a realist, does not believe in “good intensions.” Consequently she seeks
legal shielding to ensure that this exchange will take place. Her worry is that should
the stock price drop, it is in Tyler’s financial interest to keep the $E and forget about
having his stock returned. So, for protection, Heili insists on a Put with strike price
$E on expiration date T . Her reasoning is that even should the stock price crumble,
the Put gives her the legal right to sell the stock back to Tyler at the price $E.

The current situation, then, is that Heili has the stock, S, and the Put, PE(S, t);
Tyler has the money worth Ee−r(T −t). To appreciate how this arrangement puts
Tyler at a disadvantage, suppose the stock price jumps so high that at expiration
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date it is worth far more than $E. Here, Heili would have no interest in selling the
stock back to Tyler for a measly $E; she can command a better price on the market.
Consequently, to provide protection, Tyler insists on having a Call, which gives him
the legal right to buy back the stock at the specified price of $E at time t = T , which
is ensured through CE(S, t).

At this stage, all problems are covered with a sense of equality. Combining these
expressions leads to what is known as the “Put–Call Parity Equation”

S + PE(S, t) = CE(S, t) + Ee−r(T −t). (2.10)

Consistent with the story is that the asset (S) and the power (the Put) to sell it are on
one side of Equation 2.10, while the power to buy an asset (the Call) and the money
to do so (the Ee−r(T −t)) are on the other side.

It will be shown that Equation 2.10 is, indeed, an equality. But first, any
relationship should be examined to determine whether it provides useful market
information. This expression, for instance, asserts that subtle market pressures, such
as the interest rate r , affect the Call and Put prices. This is because the difference of
their values at price S is

CE(S, t) − PE(S, t) = S − Ee−r(T −t). (2.11)

The answer for the question following Equation 2.9 now is immediate. If S is larger
than the present value of E (that is, S > Eer(T −t)), then CE(S, t) is worth more
than PE(S, t) where the precise difference follows from Equation 2.11.

Example Today’s price of Ecstatic Stock is $100, the interest rate r = 0.04, and
a Call with expiration date one-fourth of a year from now with strike price $110
is worth $11. How much is a Put, with the same expiration date and strike price,
worth?

To compute with Equation 2.10 by substituting in the knowns, the expression
becomes

100 + P110(100, t) = 11 + 110e−0.04(1/4) = 11 + 110e−0.01 = 11 + 108.91,

or

P110(100, t) = 19.91.

For an intuition break, suppose all information is the same except that today’s price of the
stock is $115 and the price of the Call is $2. Is there anything wrong with these figures?

Instead of $2, compute a lower bound on the price for the Call with this information.

Back to the Put–Call Parity Equation. To prove that Equation 2.10 always holds,
first consider what happens at time t = T . The easy case is if S = E because at
this price neither the Put nor the Call will be used; i.e. PE(E, T ) = CE(E, T ) = 0.

(See Figures 2.1, 2.3.) Consequently, Equation 2.10 becomes the obvious equality
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E + 0 = 0 + Ee−r(T −T ) = E.

The first of two remaining cases is that S < E, where the term on the right-hand
side of Equation 2.10 equals

CE(S, T ) + Ee−r(T −T ) = 0 + E.

After all, with S < E, the Call is worth zero (Figure 2.1).
On the left-hand side, because S < E, the Put will be exercised (Figure 2.3), so

the asset S is sold for $E. Thus, this left side equals

S + PE(S, T ) = S + (E − S) = E.

Both sides of Equation 2.10 are equal.
For the remaining S > E case, the Put is useless (Figure 2.3), so the left-hand

side of Equation 2.10 equals

S + PE(S, T ) = S.

On the right-hand side, spend $E and exercise the Call to purchase the stock for the
specified price of $E; the profit from the Call is $(S −E). Thus, the right-hand side
equals CE(S, T ) + E = (S − E) + E = S, and Equation 2.10 is satisfied.

What Happens for t < T ? Credit for why Equation 2.10 holds (well, up to
transaction costs, etc.) for t < T belongs to our old friend “arbitrage.” The reason
is that if the two sides fail to agree, the disagreement introduces an opportunity to
make some money—risk free. To see how to do so, suppose at time t < T that,
rather than equality,

S + PE(S, t) > CE(S, t) + Ee−r(T −t). (2.12)

Remember the old phrase, “Buy low, sell high.” As the “high side” is S + PE(S, t),
Mikko sells it by going short. Perhaps he goes short on the Put with Torik (so Torik
purchases the Put, which gives Mikko money) and borrows stock from Tatjana to
sell at price S. In this way, Mikko has enough cash to buy the CE(S, t)+Ee−r(T −t)

package and have extra money! (The excess is the difference between the left and
right sides of Equation 2.12.) “Buying” Ee−r(T −t) means investing this amount of
money in the bank.

According to the above, at expiration date t = T the Put–Call Parity Equation
holds. For assets, Mikko has $E from the bank and a Call; against him is a FF and
the need to replace the borrowed asset (by going “short”) to Tatjana. No problem. If
S = E, neither the Call or Put would be exercised, so Mikko can use the $E from
the bank to buy the asset and return it to Tatjana.

Suppose S > E. Remember, Mikko is short on the Put, which allows Torik to
exercise it. There are no worries, because Torik will not do so. If he did, he would
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“require” Mikko to buy an asset at a reduced price of E; Mikko would happily do
so as he could immediately sell it for $S and a S − E profit—with Torik suffering
a loss. All that remains is for Mikko to replace the asset that he owes Tatjana. But
Mikko has the Call CE(S, T ) that he can exercise by using the $E that he has in the
bank to purchase the asset and return it to Tatjana. Everything is fine; Mikko can
meet his obligations at t = T —and he still has that excess arbitrage profit!

Similarly, if S < E, the Call Mikko purchased is useless, so all Mikko has is
the $E from the bank. But, Mikko is short on a Put: Because S < E, Torik would
exercise the Put to force Mikko to buy the asset at the higher price of $E! This is
fine with Mikko; he needed to buy the asset anyway in order to return it to Tatjana.
All obligations are cleared, and Mikko still has the added arbitrage profit.

With an available arbitrage opportunity, wise people will jump in. With many
selling Puts and buying Calls, the demand for Puts goes down, so the price of a Put
will decrease. Similarly, with the increased demand to buy Calls, the cost of a Call
will go up. It will continue doing so until the arbitrage opportunities are squeezed
out of the system, which is the “Put–Call Parity” relationship.

The argument on the other side of the equation is similar. Namely, if it is true at
t < T that

S + PE(S, t) < CE(S, t) + Ee−r(T −t), (2.13)

then “sell high.” That is, sell CE(S, t) + Ee−r(T −t), which means Mikko is going
short on the Call and borrowing $Ee−r(T −t) from the bank. With the money earned
from the Call and borrowed from the bank, Mikko can buy S+PE(S, t). The money
left over is his arbitrage profit.

At time t = T , accounts must be settled. Remember, Mikko purchased S +
PE(S, T ), with debts coming from CE(S, T ) + E; more precisely, he must pay the
bank $E. With a similar argument, if S > E, then Torik, who has the Call, will call
Mikko to buy his asset for the reduced price of $E. Fine; Mikko now has the money
to pay off the bank. Similarly, should S < E, then Mikko can exercise his Put to
sell the asset for $E and pay off the bank.

2.5 Information Gained

The Put–Call Parity Equation provides insightful information concerning the value
of a Put and a Call. Start with CE(S, t). As described above, at time t = T the
value of

C(S, T ) = max(S − E, 0). (2.14)

What happens for t < T ?
The Put–Call Parity Equation asserts that at t < T , the E value is replaced by

the present value of E (as given with the bracketed term in Equation 2.15), with a
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buffer supplied by the price of a Put. In other words, replace Equation 2.14 with the
more general

CE(S, t) = [S − Ee−r(T −t)] + PE(S, t). (2.15)

At time t = T , the value of Equation 2.15 reverts to Equation 2.14. (Carry out the
details to show this.)

A similar expression replaces the PE(S, T ) = max(0, E − S) with the more
general assertion

PE(S, t) = [Ee−r(T −t) − S] + CE(S, t). (2.16)

that holds for t ≤ T Again, Equation 2.16 reverts to the standard value when t = T .

Also, at the beginning of this chapter, a relationship between the price of, say, a Call
and the expected profit was explored. But the actual price is determined by what
agents are willing to pay; it is determined by market pressures. What we learn from
the Put–Call Parity Equation is that arbitrage plays a strong role in setting these
values; that is, the price of a Call or Put is an arbitrage value. This theme is further
explored next.

2.5.1 Our Friend: Arbitrage

To explore what else can be squeezed out of this Put–Call expression, suppose all
that is known for T − t equal to one year and r = 0.02 is that

C50(51, t) − P50(51, t) = 7.

How can this information be used, or exploited?
To appreciate the use of this information, rewrite the Put–Call equation as

CE(S, t) − PE(S, t) = [S − Ee−r(T −t)], (2.17)

which means that the difference in cost between a Call and a Put should be the
difference between current price S and the present value of E. But in this particular
case,

[S − Ee−r(T −t)] = 51 − 50e−0.02(1) ≈ 2, (2.18)

which creates a large discrepancy! So, “sell high, buy low” by going short on the
C50(51, t)−P50(51, t). That is, Torik, who follows this strategy, sells the Call, buys
the Put to acquire P50(S, t) − C50(S, t) plus $7. The next step is for Torik to buy
low, so he purchases [S − Ee−r(T −t)].
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A problem for Torik is to find where to get the money. Part from the bank because,
remember, the −50e−r(T −t) terms means that Torik borrows $50e−0.02. The rest
comes from the $7 Torik earned by going short on C50(51, t) − P50(51, t). Thus
(from Equation 2.18), after everything is bought and sold, the extra,

7 + 50e−0.02 − 51 ≈ 7 − 2 = 5,

goes into Torik’s pocket as arbitrage earnings. In addition, Torik has a Put, he is
short on a Call, and he has the item—but he must repay $50.

On expiration date, that $50 loan must be repaid, which, somehow, must come
from Torik’s P50(S, T )−C50(S, T )+S holdings. To see how this is done, if S > 50,

then the Put is worth nothing. But Torik went short on a Call, so the person owning
the Call will call Torik to make a profit by buying Torik’s asset S for $50. Fine;
Torik now has the $50 to replay his loan.

If S < 50, the Call is worth nothing (Figure 2.1), but the Put allows Torik to sell
the item for $50, and repay the loan. Of course, if S = $50, just sell it and pay off
the loan. Important is that these transactions do not involve the arbitrage profit of $5
that Torik earned by selling high and buying low.

Again, our friend “arbitrage” kicks in; this is where observant people on the
market buy and sell appropriate items from the Put–Call equation to realize a profit.
With many people wishing to go short on C50(51, t) − P50(51, t), the cost of
this combination will decrease causing arbitrage opportunities to fade away. This
analysis reaffirms an earlier comment that, while principles of physics allow making
mathematical assumptions of continuity, what permits such assumptions in finance
is the mathematical friend arbitrage. If Equation 2.10 does not hold, opportunities
for arbitrage do!

2.5.2 Properties of Puts and Calls

The Put–Call Parity Equation introduces refinements on our understanding of the
cost of Puts and Calls. As argued earlier, for instance, if E1 < E2, then anticipate
the cost of CE1(S, t) to be greater than CE2(S, t). That is, a higher strike price
decreases the Call’s value. To appreciate why this is so, at expiration date and if S is
large enough, the profit of CEj

(S, T ) = S − Ej . Thus the smaller the Ej the larger
the profit, or that CE1 is potentially more valuable than CE2 . And so, the cost should
be more.

Similarly, if S > E1, E2, the lower bounds for CEj
(S, t) coming from the

Put–Call Parity Equation are

CE1(S, t) > S − E1e
−r(T −t) and CE2(S, t) > S − E2e

−r(T −t), (2.19)

or the difference between S and the present value of Ej . So, the smaller Ej value
creates a larger lower bound, which confirms suspicions. A similar analysis applies
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to Puts, except that the costs are reversed; that is, PE2(S, t) ≥ PE1(S, t), which
reflects the sense that with E2 being larger, profits start coming in at an earlier S

value.

Interest and Other Rates

Everywhere in these notes, it is assumed that the interest rate r not only is fixed but
is the same for money in the bank and money being borrowed from the bank. This
is not true! But it is a standard simplification.

If r increases, how does this affect the cost of Puts and Calls? Again, help comes
from versions of our new friend the Put–Call Parity Equation. To see how it can be
used, the Equation 2.11 version

CE(S, t) − PE(S, t) = S − Ee−r(T −t)

states that the difference between cost of the two options is determined by the current
difference between the price of S and the present value of E.

An increase in r means that a smaller amount of money needs to be deposited
in the bank to receive $E on the scheduled date. In turn, the present value of E is
smaller. So, if S > E, it follows that:

• With an increase in r , the CE(S, t) − PE(S, t) difference increases.
• With an increase in E, the CE(S, t) − PE(S, t) difference decreases.
• With an increase in S, the CE(S, t) − PE(S, t) difference increases.
• With an increase in T − t (that is, more time until expiration date), CE(S, t) −

PE(S, t) difference increases.

Of course, if S is less than the present value of E, then an analysis is simplified
by rewriting the expression as

PE(S, t) − CE(S, t) = Eer(T −t) − S,

and a similar analysis applies.

2.6 Exercises

1. Suppose on the strike date, the price of a security will be $120 with probability
1
4 , $100 with probability 1

2 , and $80 with probability 1
4 .

(a) Use the crude, expected profit approach to figure the value of a call option
with strike price 100.

(b) Do the same for strike price 110.
(c) Do the same for a put with the above two strike prices.
(d) What basic points become clear from this exercise?
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2. Instead of using the expected profit approach, try a “fair bet” approach. The
idea is that if a dealer charges too much for a Call, people will not buy it. If the
dealer charge too little, she runs a risk. To eliminate the risk, treat this as a “fair
bet.” Namely, charge $x for a Call where x is the value that makes my expected
winnings equal to zero. Compute this cost with the above data for a Call with
strike price $100. Explain any similarities or differences with the answer from
the first part of Exercise 1.

3. Sandra bought item S for $65 with the intent of selling it to Sam on March
1. If the price for the item jumps to $100, which is her guess, she will make
$100 − $65 = $35.

(a) Draw the profit curve.
(b) If the price drops to $20, she is incurring a $20 − $65 = −$45 loss. (This

should be in the profit curve.) What can she do to protect herself? What
should be her portfolio?

4. What follows are several portfolios; each is denoted by the term Port. Graph
the profit curve at t = T for each of them. Determine the strengths and
weaknesses of each portfolio. Namely, explain what a reasonable investor must
be expecting to adopt each portfolio.

In this listing, CE denotes a Call with strike price E, −CE represents going
short on a Call—the Call was sold, PE is a put, −PE is going short on a put,
and the numbers E indicate the strike price.

(a) A “Long Call” is Port = CE.

(b) A “Short Call” is Port = −CE.

(c) A “Long Put” is Port = PE.

(d) A “Short Put” is Port = −PE.

(e) A “Long Straddle” is Port = PE + CE; namely, buy both a Put and Call
with the same strike price.

(f) A “Short Straddle” is Port = −P − C.

(g) A “Long Strangle” is Port = PE1 + CE2; namely, it is a purchase of a put
at strike price E1, which is less than the strike price of a Call at E2

(h) a “Short butterfly” is Port = −CE1 + 2CE2 −CE3 where E1 < E2 < E3.

(i) A “Long butterfly” is Port = CE1 − 2CE2 + CE3) where E1 < E2 < E3.

(j) A “Short Condor” is Port = −CE1 + CE2 + CE3 − CE4 where E1 <

E2 < E3 < E4.

(k) A “Long Condor” is Port = CE1 − CE2 − CE3 + CE4

5. Compare a long straddle with a long strangle explaining advantages of each.
6. This is another question about portfolios. Here, for a given shape of the profit

curve, design the portfolio.

(a) Construct a portfolio using only Calls where, at time t = T , the profit line
is horizontal until price $60. At that point, it has slope 3 until price $70.
Then, the line has slope 2 until price $100. Next, it has slope zero until
price $110. It then has a slope of −1 until $120. After that, it has slope
zero.
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(b) Construct a portfolio with the above behavior but using only Puts.
(c) Construct a portfolio with the above behavior using both Puts and Calls.

7. All of the following problems involve interest that is being compounded
continuously.

(a) Compute the interest rate needed to double an investment every seven years.
(b) With a 10% interest, how long will it take to triple an initial investment.
(c) Irvin forgot what is the interest rate at his bank. All he knows is that

after five years, his initial investment doubled. When will it triple? (Hint:
There are two unknowns; one is the interest rate. Whenever there are two
unknowns, two equations are needed. So, use the information about money
at different times in an appropriate manner.)

(d) A person has money withdrawn from his savings account to be placed in
his checking account at a continuous fixed basis at a rate of $1,000 a year.
This person started with $20,000 placed in the savings account that has a
5% interest. How much will be in the savings account in one year? (Hint: A
different expression for the growth of money needs to be derived. So, start
with �M and, instead of the Equation 2.8 expression, determine what �M

equals in this setting. Then, solve the equation.)

8. Two days before expiration date, Patty wants to sell a Call with strike price
$100; i.e. she wants to go short on C100,t . The interest rate is r = 10%, and the
current value of the stock is $120. Use the Put–Call Parity Equation to find a
lower bound on the value of C100,t .

9. Igor read in the press this morning that, for an expiration date of a year from
now (with 5% interest) that C60(70, t) = 9 and P60(70, t) = 4. How can he use
this information to make some money?

10. For this problem, assume that at this moment, S = $99, r = 0.02, C100(99, T −
1
2 ) − P100(99, T − 1

2 ) = $8, and T = t + 1
2 year.

(a) Are there any arbitrage opportunities? If so, explain how to tackle this
opportunity and determine how much money can be made.

(b) All sorts of events can happen in the next six months. Nevertheless, you are
safe at expiration date. List the possibilities to explain how the profit you
made remains made, and you can cover all debts.

11. For S = 105, r = 0.05, compute the following:

(a) Find the value of P100(105, T − 1) − C100(105, T − 1) if T − t = 1 year.
(b) Find the value of P105(105, T − 1) − C105(105, T − 1) if T − t = 1 year.
(c) Find the value of P115(105, T − 1) − C115(105, T − 1) if T − t = 1 year.
(d) Find the value of P100(105, T − 2) − C100(105, T − 2) if T − t = 2 years.
(e) Find the value of P100(105, T − 1) − C100(105, T − 1) if T − t = 1 year

and r = 0.10.

12. By using Equation 2.11, differences in the value of CE(S, t) − PE(S, t) are
computed.
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(a) As shown above, if S > E, then the CE(S, t) − PE(S, t) difference
decreases with an increase in E. Why? Is it because CE(S, t) decreases in
value? Or does PE(S, t) increase in value? Or both? Support your answer.

(b) The above analysis was done for S greater than the present value of E.
Carry out the same analysis if S is less than the present value of E. That is,
find what happens should

i. E increase (i.e., buying options with higher strike prices),
ii. should E decrease,

iii. should r increase,
iv. should T − t be larger, and
v. should S decrease.



Chapter 3
Modeling

3.1 Assumptions and Modeling

The football example demonstrated the wisdom of treating tacit assumptions with
care: They may be false. Yes, the sum of the probabilities over all events equals
one. But when dealing with different individuals, a selective sum of their “implicit
probabilities” could differ from unity—which can either hurt or help you.

Similar concerns arise when modeling how asset prices change. The challenge
is that the forces causing price changes probably are too complicated to be fully
established. The best that can be expected is to identify situations where behavior is
partly understood, which then is modeled with assumptions. Should the assumptions
come close to being satisfied, conclusions may be reliable; if not, well, worry
whether to trust the model.

Here is a practical concern: If a mathematical model could be created that
captures all relevant aspects in pricing options, it most surely would be too compli-
cated to analyze. Consequently, as typically true for modeling “real world” events,
tradeoffs are made between reality and simplifying assumptions. The tradeoff? With
overly simplified assumptions, the resulting models may be easy to use and analyze
while contributing nothing of value about reality. On the other hand, models that
adhere to reality may be impossible to solve and make predictions. Thus, adopted
assumptions impose compromises in the predictive value of what is going on.

Assumptions must be taken seriously; it must be known what they do, and do
not, mean; when they are, or are not, reasonably valid. By carefully identifying and
understanding the assumptions, it becomes possible to appreciate which emerging
predictions can be trusted.
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3.1.1 Taylor Series

A way to underscore this point is with an analogy. Suppose you are on a job where
you need to understand the behavior of a complicated function f (x) near the value
x = a. For an ugly example, suppose the goal is to understand the behavior of
y = Arctan

[
ln(ecos(x) + cot2(x))

]
near x = π

2 . No way!
Wouldn’t it be nice if, for practical purposes, the complicated function could be

replaced with a simple, approximating polynomial? This leads to the powerful tool
of Taylor series; it replaces complicated functions with a simpler, easier to analyze
polynomial approximations.

To review the approach for a single variable,1 the goal is to find an approximating
polynomial centered at x = a that can replace the actual function f (x). This
requires finding the values of the coefficients b0, b1, b2, . . . so that the approxi-
mation

f (x) ≈ b0 + b1(x − a) + b2(x − a)2 + b3(x − a)3 + . . . (3.1)

is reasonably accurate near x = a. Rather than the full infinite series, in practice,
as few terms as needed are used to create a polynomial that approximates f (x) to a
desired level.

To motivate the choice of coefficients, notice that when x is at a, the left-hand
side of Equation 3.1 is f (a), while the right-hand side is b0. So, a convenient way
to kill off all of those polynomial terms is to set x = a: This reduces Equation 3.1
to f (a) = b0, which suggests that the correct choice is

b0 = f (a).

Similarly, a way to find the b1 value is to discover how to eliminate the
(x − a) term of Equation 3.1. A natural approach is to differentiate both sides of
Equation 3.1 to obtain

f ′(x) ≈ b1 + 2b2(x − a) + 3b3(x − a)2 + . . . . (3.2)

Using the same strategy to eliminate polynomial terms, set x = a to obtain

b1 = f ′(a).

All other coefficients are found in the same manner. In particular, to find bj ,
differentiate Equation 3.1 j times (where f (j)(x) represents the j th derivative) to
obtain

1While readers may know how to compute Taylor series for y = f (x), what about for two variables
such as z = f (x, y) or three variables as with u = f (x, y, z)? Answers for multivariable settings
can be obtained in the manner described next.
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f (j)(x) ≈ (j !)bj + (j + 1) . . . (2)bj+1(x − a) + . . . .

To drop all terms on the right-hand side, other than bj , select x = a to eliminate all
(x − a)k terms. Solving both sides of the resulting equation for the remaining terms
suggests that

bj = f (j)(a)

j ! .

In particular, the Taylor series allows a smooth function f (x) to be approximated
by the nth degree polynomial

f (x) ≈ f (a) +
n∑

j=1

f (j)(a)

j ! (x − a)j , (3.3)

where f (j)(a) is the j th derivative of f evaluated at x = a.
The point is that an Equation 3.3 approximation is valid relative to basic

assumptions: It is useful only for values of x where |x − a| is sufficiently small
as determined by the error estimates (see any calculus book) and the desired degree
of accuracy. To dramatically underscore this point, consider the bounded function
f (x) = cos(x) with a = π and n = 2. While the quadratic equation on the right-
hand side of

cos(x) ≈ −1 + 1

2
(x − π)2 (3.4)

nicely approximates f (x) = cos(x) for x values near π , the approximation totally
collapses for larger x values! After all, the quadratic approximation flies off to
infinity as x → ∞, while the value of cos(x) remains bounded.

An Example

To review the computations, let f (x) = ln(x) and a = 1. A Taylor series expansion
requires computing the derivatives of f (x), which are

f (x) = ln(x), f ′(x) = 1

x
, f ′′(x) = − 1

x2
, . . . , f (n)(x) = (−1)n+1 (n − 1)!

xn
.

These derivatives are evaluated at the specified x = 1, which is easy because the
xj terms in the denominators will equal unity. As such,

f (1) = ln(1) = 0, f ′(1) = 1, f ′′(1) = −1, . . . , f (n)(1) = (−1)n+1(n − 1)!
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The (−1)n+1 term captures the alternating change of sign of the derivative where f ′
is positive, f ′′ is negative, and so forth. (Thus, if n is odd, then f (n) is positive as
required by the (−1)n+1 multiplier.)

Because

bj = f (j)(1)

n! = (−1)n+1(n − 1)!
n! = (−1)n+1 1

n
,

the Taylor series representation is

ln(x) ≈
∞∑

n=1

(−1)n+1

n
(x − 1)n. (3.5)

To illustrate by computing ln(1.1), let x = 1.1 in Equation 3.5 to obtain

ln(1.1) =
∞∑

n=1

(−1)n+1

n
(1.1 − 1)n.

As the (1.1 − 1)j = 1
10j , an answer accurate to five decimal places would have

n = 5, or

ln(1.1) ≈ .1 − 0.01

2
+ 0.001

3
− 0.0001

4
+ 0.00001

5
− 0.000001

6
.

Another Example

To compute the value of e−0.02 without a calculator, observe that a = 0 is close to
x = −0.02. This suggests finding the Taylor series approximation for f (x) = ex

about a = 0.
The computations are trivial; any derivative of ex is ex ; i.e., f (n)(x) = ex .

Moreover, ea = e0 = 1, so f (n)(0) = 1 for all n. Therefore the Taylor series is

f (x) = ex ≈ 1 + 1(x − 0) + 1
2! (x − 0)2 + 1

3! (x − 0)3 + 1
4! (x − 0)4 + . . .

= ∑∞
j=0

xj

j ! .
(3.6)

To approximate the e−0.02 value, let x = −0.02 in Equation 3.6 to obtain

e−0.02 ≈ 1 − 0.02 + 1

2! (−0.02)2 + 1

3! (−0.02)3 + . . .

= 1 − 0.02 + 0.0002 − 0.0000013.. + . . . ,

which is close to (but slightly larger than) 0.98.
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WGAD

As for the “Who gives a darn?” concern, the reader should. Imagine Helena, needing
to quickly reply to a client’s question, must compute the present value of $100 for
a year from now at 2% interest compounded continuously. Should Helena recall
from Equation 3.6 that ex ≈ 1 + x for small x values, she could respond with the
reasonable approximation of

100e−0.02 ≈ 100[1 − 0.02] = 100[0.98] = 98.

Similarly, the present value of $50 with 6% interest over a half year is
$50e−0.06(0.5) = 50e−0.03 ≈ 50(1 − 0.03) = $48.50. With large values such as
x = 1, however, the ex ≈ 1+x approximation loses validity. After all, e1 ≈ 2.71828
is larger than 1 + 1 = 2. This only means that more Equation 3.6 terms are required
to have an appropriate approximation.

3.1.2 More Variables

To analyze the behavior of f (x, y) = ecos(x)/y near x = π
2 and y = 2, try a simpler

polynomial approximation. It would be

f (x, y) ≈ b0,0 +b1,0(x − a1) + b0,1(y − a2)+
+b2,0(x − a1)

2 + b1,1(x − a1)(y − a2)+
+b0,2(y − a2)

2 + · · · + bj,k(x − a1)
j (y − a2)

k + . . . ,

where a1 = π
2 and a2 = 2.

Find the bj,k coefficients as above. Namely, differentiate f (x, y) and the series
the appropriate number of times to eliminate the variables in the bj,k(x − a1)

j (y −
a2)

k . Doing so leaves ∂j+kf (x,y)

∂xj ∂yk ≈ j !k!bj,k+ polynomial terms with (x − a1)
r (y −

a2)
s . Eliminate these extra polynomial terms by setting x = a1, y = a2, which

leads to

bj,k = 1

j !k!
(

∂j+kf (a1, a2)

∂xj ∂yk

)
. (3.7)

Illustrating with f (x, y) = ecos(x)/y, because a second order approximation is

f (x, y) ≈ f (a1, a2)+ ∂f (a1,a2)
∂x

(x − a1)+ ∂f (a1,a2)
∂y

(y − a2)+ 1
2

∂2f (a1,a2)

∂x2 (x − a1)
2

+ ∂2f (a1,a2)
∂x∂y

(x − a1)(y − a2) + 1
2

∂2f (a1,a2)

∂y2 (y − a2)
2,

(3.8)
the second order approximation for the above f (x, y) is
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ecos(x)

y
≈ 1 − 1

2 sin(π
2 )ecos( π

2 )(x − π
2 ) − 1

22 ecos( π
2 )(y − 2)

+ 1
2 [− cos(π

2 )+ sin2(π
2 )] 1

2ecos( π
2 )(x − π

2 )2− 1
22 sin(π

2 )ecos( π
2 )(x − π

2 )(y − 2)

+ 1
2 [ 2

23 ecos( π
2 )](y − 2)2

which reduces to a more civilized

ecos(x)

y
≈ 1− 1

2
(x − π

2
)− 1

4
(y −2)+ 1

4
(x − π

2
)2 − 1

4
(x − π

2
)(y −2)+ 1

8
(y −2)2.

Remember, this approximation is valid only near x = π
2 , y = 2.

3.1.3 Back to Modeling Approximations

Understanding whether a Taylor series approximation reasonably captures the
behavior of a function extends to understanding whether simplifying assumptions
represent how an asset’s prices change. Stated more strongly, a model’s predictive
value depends on whether the model’s underlying assumptions reasonably reflect
market behavior. Settings where assumptions fail to do so identify topics for
research and/or possible arbitrage advantage.

The message: Treat models and their constraints as

simplifying assumptions and approximations that can be wrong.

Just as with Taylor series, there is a need to understand where models fail, and where
they are reasonably accurate.

3.2 Efficient Market Hypothesis

What affects market prices? It is worth taking a break to consider relevant factors.
Jennifer, who has managerial interests, might accurately argue that the choice
of a company’s executives, corporate governing structures, election outcomes,
competitor strategies, and current prices are important, while Samuel, with an
agricultural background, might stress the relevance of weather conditions such as
droughts, hurricanes, and blizzards, along with tariffs and possible trade wars. Who
knows, maybe even what songs are currently popular might have an impact.

Here is the problem: How can any model be developed to incorporate all of these
conditions? Even if a model could be created, it most surely would be beyond any
realistic ability to analyze.

Simplifying assumptions are required: One choice is called the Efficient Market
Hypothesis (EMH). A basic premise of a simple version of the EMH is that, with
so many smart, rapidly reacting people on the market, certain types of market
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information already have been sucked out and used to determine current prices.
Namely,

1. All information about prices in the past already is reflected in the current price
of the asset.

2. All new information about the market is immediately incorporated into the price.

A real purpose of the EMH is to eliminate complicating concerns when creating
models: The choice of the company’s executives? Don’t worry as it already is built
into the price. Climate change? Not a concern because the price already captures
this feature. What remains is the price of the asset.

From a modeling perspective, assumption 1 is delightful; it allows complications
of the past history to be blissfully ignored. But while it simplifies the analysis,
does the assumption always make sense? For instance, suppose the news reports
that Apple stock is down so many points. If the EMH holds, then this stock would
be treated the same as another one that dropped this morning. But Apple has a
reputation of being a 800 pound gorilla, so rather than accepting item 1, perhaps
this news signals an opportunity to buy or that there are worries for the full market.
Similarly Apple’s demonstrated ability to overcome all sorts of adversity surely
plays a role in whether we should believe the stock price will increase. But the
EMH states that the current price already reflects all of this information.

Similarly, the helpful second assumption permits ignoring what kind of infor-
mation is on the market. Is it valid? Suppose, for instance, that Bernie spent last
summer enjoying the delights of Finland where he discovered that the Finns need
inexpensive, light weight but warm clothing. Suppose he also read in today’s Textile
Magazine that Professor X discovered how to convert used blue books from math
of finance exams into warm clothing. There is a tantalizing connection, but it is
unlikely that this public information has affected today’s price. Why? Most people
are unaware of the potential market for the new discovery perhaps coupled with a
deep aversion to exams and exam books: They have not made a connection between
the two events.

A purpose of these arguments is to encourage the reader to seriously think
about where and when the EMH is realistic and useful. Does this approximating
assumption, like Taylor series, apply only to “short run” settings where everything
is fairly calm?

The usefulness of the EMH depends on whether you represent that hidden
premise where “there are so many smart, rapidly reacting people on the market.” The
difference is whether you are a leader on the forefront—one of those smart, rapidly
reacting people—or a follower; the former probably can ignore the EMH, while
the latter should embrace it.2 Beyond expecting aspects of the EMH to hold during

2At Northwestern University, I would invite Arthur Pancoe, a highly successful investor, to visit
my class. (A measure of his success is a headline in a 1988 issue of Money Magazine, “Take Two
of Arthur Pancoe’s Drug Stocks and You May Be Rich in the Morning.”) He would ask the students
to guess what were his daily readings. To their surprise, the readings included non-finance outlets
such as Science and Nature, which gave him insights into what was being discovered. He also
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periods of calm, the reader is encouraged to explore whether there are other settings.
Doing so with EMH and other assumptions can provide a personal advantage.

As a summary, treat EMH as a convenient assumption—needed for the construc-
tion of a tractable mathematical model. Is it valid in general? Of course not! Just as
Equation 3.4 approximation for cos(x) is useful for certain settings, it can lead you
astray more generally. Similarly, the EMH is a reasonable expectation for certain
surroundings—but not for others.

Of “open disclosure” importance, the EMH is a basic hypothesis for what
follows. The value of assumptions is that they allow insights and answers for
appropriate settings. It is to the reader’s advantage to determine when and whether
this is true for what follows.

3.2.1 Modeling

If S is the price of asset S (yes, same notation for both), the goal is to predict price
changes �S. Relative price changes are important, so a first step is to determine
what causes changes in �S/S. The EMH simplifies that analysis by emphasizing
the current price.

For insight of what to do, recall how money in a bank changes according to the
interest. If M is the money in the bank, r is the interest rate, and �t is a small
increment of time, the accompanying change in money is

�M = rM�t. (3.9)

What makes Equation 3.9 format such a commonly used expression is that the
right-hand side often represents the first term in a Taylor series approximation of
an unknown force. Change in temperature in a room of T ∗ degrees is given by
�T = F(T )�t . Fine, but what if the function F is not known? One approach is to
replace the unknown F(T ) with what would be the first term of its Taylor series or
F(T ) ≈ μ(T − T ∗). This leads to Newton’s law of cooling

�T = μ(T − T ∗)�t. (3.10)

The unknown constant μ cannot come from the modeling, so it is determined from
data.

Such a linear model asserts that the rate of change in an object is proportional to
how much is currently available. For instance, for a first approximation, a change in

declared that he did not accept the EMH. Of course not: Pancoe was a leader, not a follower, so
the basic assumption behind the EMH did not apply to him. He was one of those reacting people
behind the premise.
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population, �P , is proportional (given by the constant α) to the current population
(P ) multiplied by the change in time.3 That is,

�P = αP�t,

or

�P

P
= α�t. (3.11)

This standard argument suggests that for a first approximation of how prices of
an asset change, it is reasonable to assume, at least for a short time span, that it is
proportional to the current price. For a start, assume that

�S

S
= μ�t. (3.12)

The proportionality constant μ measures a deterministic effect, where, as with
Newton’s law of cooling (Equation 3.10), its value is derived from available data
about the asset. A particularly simple assumption is that μ is a constant; more
accurate models require μ(S, t) to reflect how the price affects the “drift,” etc.

Here is a problem: Changes in an asset’s value are not strictly deterministic;
the adjusting forces most surely include random effects needed to capture what
cannot be accurately modeled. This requires Equation 3.12 to include random,
unanticipated motion. To prepare for this discussion, the reader is encouraged to
review facts from Chapter 1, which are needed for the discussion about the normal
distribution.

3.2.2 Random Variables

Recall that the expected value of a random variable X is

E(X) =
n∑

j=1

pjX(j) or E(X) =
∫ ∞

−∞
X(x) f (x)dx,

3Thomas Malthus (1786–1834) used an Equation 3.11 type expression to analyze population
growth. Similar to Equation 3.4, this approximation is reasonable “in the small” but definitely
not in general. Indeed, this incorrect representation led to the several century Malthusian debate.
One correction was to replace the linear term with a quadratic expression: Use not just the first, but
the first two terms of a Taylor series expansion of aP + bP 2 = P(a + bP ). Doing so created a
search for explanations of the coefficients, such as carrying capacity, death rates, and the logistic
equation. The message: Be careful; compare predictions with data.
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with the variance given by

Var(X) = E([X − E(X)]2) = E(X2 − 2XE(X) + (E(X))2)

= E(X2) − [E(X)]2,
(3.13)

where σ = √
Var(X), the standard deviation, serves as a unit of “distance.”

To review the terms with a penny spinning on its edge, where the probability of
getting a H is 0.3, if X(H) = 1, X(T ) = 0, then X counts Heads:

E(X) = 0.3X(H) + 0.7X(T ) = 0.3,

and

Var(X) = E(X2) − [E(X)]2 = [0.3X2(H) + 0.7X2(T )] − 0.09 = 0.3 − 0.09.

Also recall that the standard form is

Z = X − μ√
Var(X)

= X − μ

σ
,

which, with the above numbers, is

Z = X − μ

σ
= X − 0.3√

0.21
.

Normal Distribution

For another example, let U ∼ N(0, 1), where N(0, 1) represents the PDF of the
normal distribution with variance 1. The PDF is

f (x) = 1√
2π

e− x2
2 ;

the constant 1√
2π

means that the area under the curve y = e− x2
2 is

√
2π . Thus

U ’s standard form is Z = U−0
1 = U ; i.e., random variable U already is in its

standard form. The importance of this comment is that when comparing U with
another random variable in standard form, what is being compared are two random
variables in standard form.

To compute the probability that U ≤ t where t is some number is easy

P(U ≤ t) =
∫ t

−∞
f (x) dx = 1√

2π

∫ t

−∞
e− x2

2 dx. (3.14)
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The value of Equation 3.14 integral is given in “standard normal distribution tables,”
which are readily available everywhere; e.g., the internet: They specify the Z value
(the value of this integral) for given t (standard deviation) terms.

3.2.3 Back to Finance

The puzzle to be solved is to find an appropriate random variable to model
the random effects on the prices. This random term is intended to reflect the
accumulated, or aggregated, effects of many individuals, so insight may be gained
by reviewing sums of random variables, such as

Yn =
n∑

j=1

Xj .

Illustrating with the spinning coin example, if it is spun on edge 100 times, and Xj

is the random variable indicating whether the outcome is H on the j th spin, then
Y100 = ∑100

j=1 Xj is the number of Heads.
The analysis of Yn = ∑n

j=1 Xj , a sum of random variables, is carried out as
above: Find the standard form of Yn, which is

Zn = Yn − E(Yn)√
Var(Yn)

=
∑n

j=1 Xj − E(
∑n

j=1 Xj)√
Var(

∑n
j=1 Xj)

. (3.15)

If, for instance, an example has Zn ≤ −0.4, then the summation is below the
expected value by at least 0.4 standard deviations.

The probabilities of various events can be computed by using the amazing central
limit theorem. First the assumptions (which the reader should consider with care):
The theorem requires the Xj random variables to be iid, which means “independent
and identically distributed.”

1. The “identically distributed” requires each Xj to have the same PDF, so each Xj

has the same mean μ and standard deviation σ . Flipping the same penny many
times is an example.

2. The “independence condition” means that the outcome of each Xj is independent
of what happens with any other random variable. A classic example is tossing a
die n times: Each throw has no influence on what happens with any other throw.
For our purposes, the independence assumption has the powerful consequence
that

Var(
∑

Xj) =
∑

Var(Xj ). (3.16)

As such, the iid assumption about these terms simplifies Equation 3.15 to
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Zn =
∑n

j=1 Xj − E(
∑n

j=1 Xj)√
Var(

∑n
j=1 Xj)

=
∑n

j=1 Xj − nμ√
nσ 2

=
∑n

j=1 Xj − nμ√
nσ

.

(3.17)
If μ and σ > 0 have finite values, the central limit theorem surprisingly asserts

that, as n assumes larger values, the likelihood that Zn ≤ t (the likelihood that the
data is bounded above by t standard deviations) is the same as the likelihood that
U ≤ t where U ∼ N(0, 1) (i.e., U is the above normal distribution that already is
in standard form). Amazing! Moreover, this assertion holds for any choice of PDFs
for the Xj random variables!!

Solving problems becomes immediate: Convert a specified
∑N

j=1 Xj ≤ a issue
into its standard form. For an illustration, return to where the summation

∑
j Xj

counts the number of H s that arise when spinning the coin on its edge. (The PDF
is p(H) = 0.3, p(T ) = 0.7.) If the coin is spun 100 times, what is the likelihood
of obtaining no more than 20 Heads? That is, what is the likelihood that Y100 =∑100

j=1 Xi ≤ 20?
Each spin is iid, and μ = E(Xi) = X(H)p(H) + X(T )p(T ) = 0.3, where, as

computed above, Var(Xi) = E(X2
i ) − (E(Xi))

2 = 0.3 − 0.09 = 0.21. Next, use
this information to convert the Y100 ≤ 20 concern into a Z100 ≤ t format, and then
lean on the central limit theorem for an answer.

The needed terms to convert Y100 ≤ 20 to Z100 ≤ t are specified in
Equation 3.17. That is, first subtract E(Y100) from both sides of Y100 ≤ 20 inequality
and then divide both sides by

√
Var(Y100) to obtain

P(
∑100

j=1 Xi ≤ 20) = P(
∑100

j=1 Xi − E(
∑100

j=1 Xj) ≤ 20 − 30)

= P(

∑100
j=1 Xi−100μ√

Var(Y100)
≤ 20−30

4.58 )

= P(Z100 ≤ −2.18).

(3.18)

The central limit theorem asserts that with large values of n, the probability for
Equation 3.18 approaches the value

P(U ≤ −2.18) = 1√
2π

∫ −2.18

−∞
e− x2

2 dx = 0.0146.

The small probability value of only 0.0146 comes from normal distribution tables
by checking the value for the standard deviation of −2.18.4

Theorem 1 (Central Limit Theorem) Suppose that X1, . . . , Xn, . . . is a
sequence of independent, identically distributed random variables with finite

E(Xj ) = μ and Var(Xj ) = σ 2 > 0. Let Zn =
∑n

j=1 Xj −E(
∑n

j=1 Xj )
√

Var(
∑n

j=1 Xj )
. Then

4 Rather than Yn = ∑
Xi , the average Y ∗

n = 1
n

∑n
j=1 Xj is often used. No problem; do the same

by finding the associated Z representation, which leads to the same conclusion.
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lim
n→∞ P(Zn ≤ t) = 1√

2π

∫ t

−∞
e

−x2
2 dx, −∞ < t < ∞. (3.19)

As a parting example, suppose the average starting salaries of graduates from
Upper University is $40,000 with a standard deviation of σ = $1,200. Suppose that
Enrique, the university’s PR person, believes the average salary is higher. As such,
he took an arbitrary sample of 100 graduates, and found that their average starting
salary is over $42,000. As this value could be just luck, Enrique wants to find the
likelihood that, if the stated information is correct, the average starting salary of a
randomly drawn sample of 100 students is at least $42,000.

The problem is to find P(Y100 = 1
100

∑100
j=1 Xj > 42,000) where Xj is the

j th person’s starting salary. Re-expressing this problem in terms of Z100, we have
Z100 = Y100−40,000

120 > 42,000−40,000
120 = 1 2

3 .
To explain the denominator of 120, the standard deviation, recall that

Var(Y100) = Var( 1
100

∑100
j=1 Xj) = 1

1002 Var(
∑100

j=1 Xj). The fact the Xj are
independent means that the variance of the sum equals the sum of the variances
(which is partly explained at the beginning of Chapter 4). Thus,

Var(Y100) = 1

1002

100∑

j=1

Var(Xj ) = 1

100
Var(Xj ).

The standard deviation, or square root, is 1
10

√
Var(Xj ) = 1

10σ = 120.

After all of these computations, it follows from the central limit theorem that an
approximate value of the probability is

P(Y100 > 42,000) = P(
Y100 − 40,000

120
>

10

6
) ≈ 1√

2π

∫ ∞
10
6

e− x2
2 dx = 0.0479.

So, there is about a 1 in 20 chance that Enrique’s survey came from the university’s
specified distribution.

3.2.4 Random Effects

As this example concerning graduates indicates, the central limit theorem is incred-
ibly forgiving: After all, there is no information whatsoever about the probability
distribution of starting salaries for the UU graduates.

Here is a surprise: the choice of the random variable, whether its PDF is known or
not, does not matter! This permits the theorem to handle an assortment of concerns.
In particular, the random terms affecting changes of prices emerging from the
behavior of a large number of people, where the j th person is captured by Xj , often
are modeled in this manner.
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More specifically, the random change in the asset price is modeled with

σ�X,

where σ is called the volatility. The �X term is assumed to be �X ∼ N(0,�t).
This means that �X is

• a random variable with a normal distribution
• with mean zero
• and variance �t .

It is reasonable to believe that the variance of a random change in the asset
price over the �t time interval is a multiple of �t (after all, this is the length of
time over which something can happen), where the multiple reflects market activity.
According to the σ�X choice, it is σ 2�t , which captures the market’s volatility.

With these assumptions, a price change equation becomes

�S

S
= μ�t + σ�X, (3.20)

or

�S = μS�t + σS�X. (3.21)

Keeping with the counsel of remaining vigilant when modeling, what does the
above mean? Is this assumption, as applied to finance, reasonable? Do you really
believe that what one person does is independent of another? As we move along,
doubt will be cast on the assumptions validity.

3.3 Interpretation

It is tempting to appeal to calculus to solve Equation 3.20. Using the definition
of an integral, perhaps a quick way to solve for S(t) is to find the best possible
approximation of

∑ �S

S
= μ

∑
�t + σ

∑
�X. (3.22)

The best possible value from expressions of this type, as �t → 0, is

∫
1

S
dS = μ

∫
dt + σ

∫
dX. (3.23)

There is a problem; the second integral on right-hand side needs to be interpreted.
To explain,

∫ b

a
f (x) dx is the best possible value obtained by creating sums of
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rectangles with a small base �x. Doing this with
∫

dX, for a small �t value (the
variance), requires computing the corresponding �X value. But �X is a random
variable with a normal distribution, so the value could be positive, negative, or even
zero, and it most surely will change when recomputed. Thus, there is no reason to
expect that these summations tend toward some value. The best that can be expected
from this stochastic integral is for the answer to be a probability distribution.

3.3.1 Probability Distribution

So far we cannot solve Equation 3.21, but at least we can find some properties. The
expected value of �S is

E(�S) = μS�t + σSE(�X) = μS�t, (3.24)

which holds because μS�t is a deterministic term (so it equals its expected value),
and, by assumption, E(�X) = 0. According to Equation 3.24, the expected
incremental price change is determined by the drift term.

This fact that E(�X) = 0 simplifies the computation of the variance of �S. It is

Var(�S) = E((�S)2) − (E(�S))2

= E(σ 2S2(�X)2 + 2σμS2�X�t + μ2S2(�t)2) − μ2S2(�t)2

= E(σ 2S2(�X)2) + �t2σμS2E(�X) = σ 2S2�t.

(3.25)
The only above term not canceling is E(σ 2S2(�X)2) = σ 2S2E((�X)2), where,
because E(�X) = 0, E((�X)2) = Var(�X) = �t.

The standard deviation of �S is σS
√

�t, which means that the volatility—the
way in which the incremental price change swings around the drift—has a standard
deviation of σS

√
�t. For sake of intuition, this volatility depends on the current

price, S, the standard deviation of the random term,
√

�t , and an extra term σ that
captures the volatility of the market.

While these arguments provide useful information, they fail to identify the PDFs
that represent the changes in prices or value of an asset. This is computed in the next
chapter.

3.4 Exercises

1. Find examples from current events where it is arguable that the Efficient Market
Hypothesis is correct, and where it probably is false. (That is, check the business
pages.)
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2. Find the Taylor series approximation for f (x) = cos(x) about x = π . With this
approximation, find the value of cos(π − 0.1) that is valid for six decimal points.

3. By use of Taylor series, find an approximate value for e1.01 that is accurate to
three decimal places.

4. A cube is built with inside dimensions of 10 inches. The material is 0.2 inches
thick. Use a Taylor series approximation to find the approximate volume of
material used.

5. This problem is important for our development in the next chapter. Be sure you
understand it!

Suppose you want to find an approximate representation for a function z =
f (x, y) that is valid near x = 1, y = 2. Namely, you want to have

f (x, y) ≈ b0 + b1,0(x − 1) + b0,1(y − 2)+
b2,0(x − 1)2 + b1,1(x − 1)(y − 2) + b0,2(y − 2)2 + . . . .

a. Use the ideas from the beginning of this chapter to find the coefficients.
b. What are the four coefficients for the third order terms that have the form

(x − 1)3, (x − 1)2(y − 2), (x − 1)(y − 2)2, (y − 2)3?
c. How many coefficients are needed for the fourth order terms?
d. Find the Taylor series approximation up to order two near x = 0, y = π of

f (x, y) = ex cos(y).

e. For a function w = f (x, y, z), what is the Taylor series approximation up to
quadratic terms around x = a1, y = a2, z = a3.

6. Suppose you have a fair die. (Namely, when the die is tossed, it is equally likely
that any of the six numbers—1, 2, . . . , 6—will appear.) You are playing a game
where, if a 1 or 2 appears, you win $1. If a 3 or 4 appears, you win $2. If a 5
or 6 appears, you lose $3. If the game is played a hundred times, what is the
likelihood of winning ten or more dollars?

7. Suppose the only game in town involves flipping a fair coin (so Heads and Tails
are equally likely), with a $x bet. If Heads comes up, the payoff is $0.9x; if Tails
comes up, you lose the $x. You have $10,000, and must win at least $5,000 by
tomorrow morning to pay off a debt to a mean dude.

a. Compute the likelihood of winning at least $5000 by making a single bet of
$10,000.

b. Compute the likelihood of winning at least $1000 by playing the game
10,0000 times and betting a dollar each time. What is the likelihood of not
losing money?

Message learned?

8. Suppose a PDF f (x) is zero for x < 0, C x for 0 ≤ x ≤ 1, and zero for x > 1.

Suppose a game is played where the random variable X(x) = x specifies the
outcome. If the game is played 100 times, find the likelihood that the sum of the
numbers is between 0 and 50.



Chapter 4
Some Probability

4.1 Review of Some Probability

Imagine what personal advantage could accrue if we knew, weeks in advance,
tomorrow’s price of IBM or Uber stock! Such information would identify what
Calls, Puts, or other financial activities to put into place to support an early
retirement.

Finding such information means that, in some sense, Equation 3.21 must be
solved. This objective requires understanding Itô’s Lemma, which is introduced in
this chapter. But first, certain basic notions from probability are reviewed. A way to
introduce them is in terms of the pains of gambling.

Suppose the only game in town is to spin a Norwegian Kroner on edge where
you must take Heads. For reasons described earlier, the probability of Heads surely
differs from 0.50. For sake of analysis, assume that

p(H) = 0.4, p(T ) = 0.6

and the random variable is X(H) = 1, X(T ) = −1. That is, if Heads appear, a
dollar is won; if Tails appear, a dollar is lost.

The expected value per spin of this coin, or expected winning, is

E(X) = p(H)(1) + p(T )(−1) = 0.4 − 0.6 = −0.2.

with variance

Var(X) = E(X2)−(E(X))2 = p(H)(1)2+p(T )(−1)2−(0.2)2 = 1−0.04 = 0.96.

Suppose you decide to gamble and enjoy a winning streak, but then you suffer a
spell of bad luck. The almost universal temptation is to continue to play until your

© Springer Nature Switzerland AG 2019
D. G. Saari, Mathematics of Finance, Undergraduate Texts in Mathematics,
https://doi.org/10.1007/978-3-030-25443-8_4

71

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25443-8_4&domain=pdf
https://doi.org/10.1007/978-3-030-25443-8_4


72 4 Some Probability

luck changes in order to recover the lost money. All of this is personally justified, of
course, with the standard promise of “Then I’ll quit.”

To examine the potential consequences of continuing to gamble, each play,
Xi , is independent of all others, and the probability is identically distributed.
Consequently, the assumptions needed to invoke the central limit theorem are
satisfied.

If Yn = 1
n

∑n
i=1 Xi where n is the number of spins, then Yn is the average

winning per spin. This “average” interpretation suggests that, in some manner,
attained Yn values should be related to the expected value E(Xi) = −0.2. To see
whether this is true, suppose n = 100, and compute the probability that

P(−0.30 ≤ Y100 ≤ −0.10). (4.1)

Equation 4.1 determines the likelihood that, on average, our gambler is going broke.
To compute this value, according to the CLT,

lim
n→∞ P(a ≤ Yn − E(Yn)√

Var(Yn)
≤ b) = 1√

2π

∫ b

a

e− x2
2 dx. (4.2)

So compute the E(Yn) and Var(Yn) values and use them with Equation 4.1 to
determine Equation 4.2 a and b values.

The first computation uses

E(Yn) = E(
1

n

n∑

j=1

Xj) = 1

n

n∑

j=1

E(Xj ).

Because each Xj has the same distribution, all share the same mean and variance.
For our problem, E(Xj ) = −0.2, so

E(Yn) = 1

n

n∑

j=1

−0.2 = n

n
(−0.2) = −0.2.

Consequently Equation 4.1 can be expressed as

P(−0.30 ≤ Y100 ≤ −0.10) = P(−0.30−(−0.2) ≤ Yn−E(Yn) ≤ −0.10−(−0.2)),

which defines the equivalent problem of finding

P(−0.10 ≤ Yn − E(Yn) ≤ 0.10).

To compute the variance, notice that if Y = aX where a is a scalar, then E(Y ) =
aE(X). Of more interest,
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Var(Y ) = E(Y 2) − (E(Y ))2 = E(a2X2) − (aE(X))2 = a2Var(X).

Thus, when factoring a constant out of the variance, it is squared. This makes
sense: aX increases the X outcomes by the multiple a, and the variance is “distance
squared” of the data from the mean.

To appreciate potential difficulties of dealing with a sum of variables, compute
the variance of Z1 + Z2 where Z1 and Z2 are the random variables with mean zero.
Here,

Var(Z1 + Z2) = E((Z1 + Z2)
2) = E(Z2

1) + 2E(Z1Z2) + E(Z2
2). (4.3)

The first and last terms are, respectively, the variance of Z1 and Z2. (This is because
E(Z1) = E(Z2) = 0.)

The messy middle term can cause problems; this is where the assumption of
independence is important. With independence, E(Z1Z2) = E(Z1)E(Z2). Again,
this makes sense. If the PDFs for E1 and E2 are, respectively, h(x) and k(y),
then independence means that h values do not depend on y and k values are not
influenced by x values. Consequently, from calculus,

E(Z1Z2) =
∫ ∫

h(x)k(y) dxdy =
(∫

h(x) dx

) (∫
k(y) dy

)
= E(Z1)E(Z2).

Returning to Equation 4.3, the fact E(Z1Z2) = E(Z1)E(Z2) = (0)(0) = 0
eliminates the complicating middle term. Thus, the variance of a sum of independent
variables is the sum of the variances, or the expression we have been using

Var(Yn) = (
1

n
)2Var(

∑
Xj) = (

1

n
)2

n∑

j

Var(Xj ) = (
1

n
)2nσ 2 = σ 2

n
. (4.4)

Because σ 2 = 0.96, Var(Yn) = 0.96
n

, which converts the example into

P

(
−0.10

√
n√

0.96
≤ Yn − E(Yn)√

Var(Yn)
≤ 0.10

√
n√

0.96

)
. (4.5)

The values on the extreme sides determine the limits of integration for Equation 4.2.
With n = 100, they are a = −1.021 and b = 1.021. By checking normal tables, the
probability of the winnings being in this losing region is 0.69, which suggests that
the likelihood of personal ruin is setting in.

Return to the “If I play just a bit more” mantra. More plays are represented by
an increased value of n. Doing so reduces the variance, which means (Equation 4.5)
that rather than a turn of luck, it becomes more likely that you will lose all money.
Using n values that are perfect squares, if n = 202 = 400, then a = −2.041
and b = 2.041 where the likelihood that the average loss is between −.3 and −.1
flirts with unity with the 0.958 value: Expect to go broke. The main point is that
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a decreasing variance makes it increasingly likely for the outcome to land closely
around the mean.1

For our purposes, an important application of this observation is the following
claim about �X ∼ N(0,�t).

Proposition 1 For �X ∼ N(0,�t), as the variance �t → 0, then with probability
1 the values of (�X)2 approach �t .

To indicate why this is so, if Y = (�X)2, then E(Y ) = E((�X)2). But
E(�X) = 0, so E(Y ) = E((�X)2) = Var(�X) = �t. Coupled with the above
intuition, it should be expected that, with increasing likelihood as �t → 0, the
values allowed by Y are very close to that of �t .

This argument assumes that Var(Y ) becomes very small with �t . While this true
statement is, for now, taken on faith, the derivation of Y ’s PDF starts in the next
section.

4.1.1 Review of Chain Rule

The familiar chain rule, which simplifies computations such as where

d

dx
(x2 + 1)80 = 80(x2 + 1)79 d

dx
(x2 + 1) = 160x(x2 + 1)79,

is so commonly used that a full appreciation of its power can be lost. So, let’s step
back to review what the

d

dt
f (g(t)) = f ′(g(t))g′(t) (4.6)

expression means. To visualize this equation, think of z = f (x) as the altitude of
a mountain in the East–West direction where x denotes the distance. The x = g(t)

term determines a car’s location at time t on this East–West scale. The composite
equation f (g(t)) specifies the car’s altitude at time t.

Clearly, the rate of altitude change is determined by the slope of the mountain
at the current location, which is f ′(g(t)), and how fast the car is moving, which is
g′(t). Thus Equation 4.6 captures the intuition that the rate of change of altitude is
the product of two separate features: the mountain’s slope and the car’s speed.

This comment underscores a power of the chain rule; e.g., it can decompose
economic factors. For instance, suppose your profit in manufacturing a particular
product is based on the setting of a machine, M , where the speed of the raw product
fed into the machine is determined by the setting of the assembly line, A. For added

1Once, after presenting this lesson, a student cried in anguish, “Why didn’t you present this lesson
before I went to Vegas last weekend!”
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profit, should you deal with the machine or with the assembly line? To crudely
examine this question, the profit equation is P = M(A(t)). According to the chain
rule, the rate of change of profit is dP

dt
= M ′(A(t))A′(t). The chain rule separates

the efficiency of the machine, given by M ′, from the effectiveness of the assembly
line, given by A′, which provides tools for your analysis.

Returning to the chapter’s theme, a second result from calculus is that an integral∫ t

0 f (x) dx can be computed with the antiderivative of f (x). Namely,

F(t) − F(0) =
∫ t

0
f (x) dx, where F ′(t) = f (t). (4.7)

Combining the fundamental theorem of calculus with the chain rule leads to a
quick way to compute, say,

d

dt

[∫ t2

−t

esin(x) dx

]
. (4.8)

A horrendous approach would be to dutifully carry out all of the steps: First compute
the integral (if you can!), substitute in the limits, and then differentiate. With the
chain rule, everything becomes more civilized.

To do so with an abstract setting, suppose the goal is to compute

d

dt

[∫ h(t)

g(t)

f (x) dx

]
,

where F(x) is the antiderivative of f (x). This means that
∫ h(t)

g(t)
f (x) dx =

F(h(t)) − F(g(t)). Because F ′(x) = f (x), it follows from the chain rule that

d

dt
[F(h(t))− F(g(t))]= F ′(h(t))h′(t)− F ′(g(t))g′(t)= f (h(t))h′(t)− f (g(t))g′(t).

Therefore,

d

dt

[∫ h(t)

g(t)

f (x) dx

]
= f (h(t))h′(t) − f (g(t))g′(t). (4.9)

What a powerful result! The problem can be resolved without having to integrate
anything!! The barbarous chore of finding the antiderivative F is completely
avoided! The answer for Equation 4.8 is

d

dt

[∫ t2

−t

esin(x) dx

]
= 2tesin(t2) + esin(−t).
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4.1.2 Finding New PDFs

This change rule material introduces a way to derive PDFs that are needed in
our finance discussions. To do so, recall that if f (x) is the PDF for X, then the
cumulative distribution function, or cdf, is given by

F(t) = P(X ≤ t) =
∫ t

−∞
f (x) dx. (4.10)

Using words, the cdf is the cumulative probability from −∞ to t. Comparing
Equation 4.10 with Equation 4.7 proves that the cdf is the antiderivative of the PDF.

This observation, combined with the chain rule, allows finding the PDF for
different random variables. To illustrate with a special case, suppose Y = X2 where
the PDF for X is f (x). According to what was described (Equation 4.10), the PDF
for Y is d

dt
P (Y ≤ t). Therefore, to find Y ’s PDF,

1. find an integral expression for P(Y ≤ t),
2. then differentiate it.

For the first step, rewrite Y in terms of what is known, which is X. So

P(Y ≤ t) = P(0 ≤ X2 ≤ t) = P(−√
t ≤ X ≤ √

t) =
∫ √

t

−√
t

f (x) dx

is the sought after integral expression.
To find the PDF for Y , differentiate this integral by using Equation 4.9; the

answer is

d

dt
P (Y ≤ t) = d

dt

∫ √
t

−√
t

f (x) dx = 1

2
t−1/2[f (

√
t) + f (−√

t)].

Using this approach, find the PDF for Y = (�X)2 and the Var(Y ).
For a simpler example, suppose you are in a contest where you must select a

number at random from the interval [0, 1]. Your prize is determined by multiplying
the selected number by 2 and then cubed. This means that the prizes range from 0
to 8. You want to compute the likelihood that you prize number will be between 1
and 4.

To handle this problem, let X be the random variable of selecting a number at
random from the interval [0, 1], so its PDF f(x) = 1 for 0 ≤ x ≤ 1. The prize value is
given by Y = (2X)3 = 8X3, and the goal is to compute Y ′s unknown PDF of g(t).
Whatever the form of g, it is clear that it equals zero for t < 0 and t > 8 (because
the Y = 8X3).
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To find g(t), compute

P(0 ≤ Y < t) = P(0 ≤ 8X3 < t) = P(0 ≤ X <
1

2
t

1
3 ) =

∫ 1
2 t

1
3

0
1 dx.

Therefore the PDF for Y is

g(t) = d

dt
P (Y < t) = d

dt

∫ 1
2 t

1
3

0
dx = 1

6
t−

2
3 for 0 < t ≤ 8.

The answer to the problem is

P(1 < Y < 4) = 1

6

∫ 4

1
t−

2
3 dt = 1

2
[4 1

3 − 1].

4.2 Itô’s Lemma

Beyond determining how prices will change, a more general goal is to understand
how a financial function f (S, t) changes. Following the lead of calculus, if f (x) =
x2, an approximation for the change (the derivative) is given by

�f

h
= f (x + h) − f (x)

h
= (x + h)2 − x2

h
= 2xh + h2

h
= 2x + h,

which, when rewritten as a Taylor series approximation, becomes

�f = 2xh + h2.

The standard “take the limit as h goes to zero” comment can be restated as “keep
the slower, more dominant terms (multiples of h) and ignore terms that race off to
zero much faster (the h2 terms).” This leads to

�f ≈ 2xh.

This approach is used below by ignoring all terms smaller than �t .
Itô’s Lemma introduces a convenient method to approximate �f (S, t), which

are changes in f (S, t). Almost everything in finance revolves about some f (S, t)

choice. Already encountered are Puts (where f (S, t) = PE(S, t)), Calls (where
f (S, t) = CE(S, t)), or even straddles (where f (S, t) = PE(S, t) + CE(S, t)). A
key tool to understand the changing values of these financial instruments is Itô’s
Lemma.
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Theorem 2 Assume that

�S = σS�X + μS�t,

where �X ∼ N(0,�t). If f (S, t) is a smooth function, then for sufficiently small
values of �t ,

�f (S, t) ≈ σS
∂f

∂S
�X + [μS

∂f

∂S
+ 1

2
σ 2S2 ∂2f

∂S2
+ ∂f

∂t
]�t, (4.11)

where the error tends to zero faster than �t .

Before indicating the proof, the critical thinking reader should be wondering why
the mean for �X is zero and the variance equals �t . The first is easy to answer: If
the mean for �X is something else, move it to the drift term. As discussed in the
previous chapter, the variance captures the random change over the �t time interval,
so it is reasonable that the variance is some form of �t . But why not [�t]2, so the
standard deviation would be a multiple of �t , or how about

√
�t? Answers are

important for the modeling, and so, keeping with this book’s approach, the answer
is embedded in Exercise 8.

Turning to the theorem, a way to appreciate Equation 4.11 is to compare it
with the second order Taylor series expansion for a function f (x, t) (e.g., see
Equation 3.8) about the point (x0, t0), which is

�f = f (x, t) − f (x0, t0)) ≈ ∂f
∂x

(x − x0) + ∂f
∂t

(t − t0) + 1
2!

∂2f

∂x2 (x − x0)
2+

+ ∂2f
∂x∂t

(x − x0)(t − t0) + 1
2!

∂2f

∂t2 (t − t0)
2,

where all partial derivatives are evaluated at (x0, t0). The error term tends to zero
faster than the second order terms of (t − t0)

2, (x − x0)(t − t0), and (x − x0)
2.

Replacing x with S yields the expression

�f ≈ ∂f

∂S
�S + ∂f

∂t
�t + 1

2

∂2f

∂S2 (�S)2 + ∂2f

∂S∂t
�S�t + 1

2

∂2f

∂t2 (�t)2. (4.12)

Substituting �S into the first term on the right hand side of Equation 4.12 yields

∂f

∂S
�S = σS

∂f

∂S
�X + μS

∂f

∂S
�t,

which accounts for all of the ∂f
∂S

multiples in Equation 4.11. Similarly, the only

Equation 4.11 term with a ∂f
∂t

multiple is the second term on the right-hand side of
Equation 4.12.

This comparison means that the remaining 1
2σ 2S2 ∂2f

∂S2 term of Equation 4.11
represents all of Equation 4.12 second order terms. For this to happen, certain terms
must drop out by being too small to be of any interest.
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The elimination of minuscule terms is a standard mathematical approach, so it
is worth developing intuition. Consider a driver’s worries about a newly purchased
Lamborghini when driving at unallowable speeds. If that well-polished surface is
hit by a rock and a fly, the first is of concern, while that minute splat of the fly can
be ignored. The same philosophy applies in mathematics: Terms of, say, �t ≈ 1

100
can drive the modeling, but (at least for an approximation) those (�t)2 ≈ ( 1

100 )2 =
1

10,000 terms are like that gutless fly; they are not worth considering.
The first casualty in dropping insignificant terms (those that go to zero faster than

�t) is the (�t)2 term of Equation 4.12 with ∂2f

∂t2 . Similarly, as both �X and �t go
to zero, �S�t goes to zero faster than a speeding �t , which allows ignoring the
∂2f
∂S∂t

�S�t term of Equation 4.12.
What remains is the (�S)2 = σ 2S2(�X)2 + 2μσS2�X�t + μ2S2(�t)2 term.

The expression’s last two terms clearly go to zero faster than �t , so it remains to
examine (�X)2. This is where Proposition 1 plays a role; the proposition asserts
that this random term is (with probability approaching one as �t approaches
zero) approaching �t . This term survives; replacing (�X)2 with �t completes the
equation.

4.3 Application

Remember, a goal was to solve the expression

�S = σS�X + μS�t (4.13)

by finding the PDF for S(t). To motivate what follows, suppose by magic it becomes
possible to compute the precise future price of a commodity, perhaps an original
edition album that a musical group called the “Rolling Stones” released with the
song “(I Can’t Get No) Satisfaction.” Suppose the future value of the album’s price,
S(t), (particularly at a desired time t = T ) could be determined. Imagine the
guaranteed profits that could result from such information!!

Unfortunately, this is not to be. But while finding the exact value of S(t) is
beyond current powers, with a couple of assumptions (that may or may not be valid),
at least the PDF for S(t) can be computed! Being armed with this PDF is powerful;
it permits determining the likelihood that, for instance, on expiration date t = T my
Rolling Stones album is worth between $110 and $120. Finding the PDF for S(t)

provides a glimpse into the future. Not with a desired precision, but at least with a
sense of likelihood.

This PDF is computed with Itô’s expression Equation 4.11 where f (S, t) =
ln(S). Why this choice? Well, express Equation 4.13 as

�S

S
= μ�t + σ�X;
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that term on the left-hand side appears to be � ln(S).

As f (S, t) = ln(S) does not depend upon t , the ∂f
∂t

term equals zero. Because
∂f
∂S

= 1
S

and ∂2f

∂S2 = − 1
S2 , it follows, with a convenient cancelation, that

�(ln(S)) ≈ σ�X + (μ − 1

2
σ 2)�t. (4.14)

An immediate application of Section 4.1.2 material (Exercise 3) proves that if Y

has a normal distribution, then so does aY + b. (More precisely, if Y ∼ N(μ, σ 2),
then aY + b ∼ N(aμ + b, (aσ )2). This makes sense; the b merely translates the
mean, while a changes the scale.) Combining this fact with Equation 4.14 and the
assumption that �X has a normal distribution leads to the important conclusion that
�(ln(S)) has a normal distribution. It remains to find its mean and variance.

Computing the mean and variance is straightforward;

E(�(ln(S))) = σE(�X) + (μ − 1

2
σ 2)�t = (μ − 1

2
σ 2)�t.

Similarly, the variance is equal to the variance of σ�X, so it is σ 2(�t).

Another straightforward application of Section 4.1.2 material shows that if m and
s are, respectively, the mean and standard deviation of a normal distribution, then
the PDF is

1√
2πs

e− 1
2 ( x−m

s
)2

. (4.15)

Equation 4.15 provides the PDF for �(ln(S)).
Fine, but the PDF for �(ln(S)) is not what is wanted: The goal is to find the PDF

for S(t). To compute this term, mimic the way in which integrals are defined: Divide
the interval [t0, t] into n equal subintervals with the notation t0 < t1 < t2 < · · · <

tn = t , �t = tj − tj−1, and add Equation 4.14 increments. That is, compute both
sides of

n∑

j=1

�(ln(S)) ≈
n∑

j=1

σ�X +
n∑

j=1

(μ − 1

2
σ 2)�t. (4.16)

The sum on the left has the comfortable form

ln(S(t)) − ln(S(t0)) =
n∑

j=1

ln(S(tj )) − ln(S(tj−1). (4.17)

To explain, on the first �t = [t0, t1] interval, � ln(S) = ln S((t1))− ln(S(t0)). Then
on �t = [t1, t2], the increment is � ln(S) = ln(S(t2)) − ln(S(t1)). Adding these
two terms together yields
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[ln(S(t2)) − ln(S(t1))] + [ln(S(t1) − ln(S(t0))] = ln(S(t2)) − ln(S(t0)),

because the two ln(S(t1)) values cancel. Adding the next increment ln(S(t3)) −
ln(S(t2)) cancels the ln(S(t2)) terms leaving ln(S(t3)) − ln(S(t0)). In this manner,
Equation 4.17 is obtained.

So far, the summation of the left-hand side of Equation 4.16 is determined.
Summing the second component on the right-hand side of Equation 4.16 leads to
(μ − 1

2σ 2)(t − t0).

What remains is the summation
∑

σ�X. Help comes from probability if we
assume that what happens in each �t interval is independent of what happens in any
other interval. (What an assumption! Is the reader willing to accept that if the price
suddenly jumps in one time frame, it has no effect on what happens next?) With this
strong condition, Equation 4.16 is the sum of independent random variables, each
with a normal distribution, which allows invoking the following theorem.

Theorem 3 Let X1, . . . , Xn be independent random variables where Xj has a
normal distribution with mean mj and variance σj , j = 1, . . . , n. The random
variable Y = ∑n

j=1 Xj has a normal distribution with mean m = ∑n
j=1 mj and

variance σ 2 = ∑n
j=1 σ 2

j .

With this result, ln(S(t)) − ln(S(t0)) has a normal distribution with mean

∑
(μ − 1

2
σ 2)�t = (μ − 1

2
σ 2)(t − t0).

By adding the constant term ln(S(t0)), the mean for ln(S(t)) is

ln(S(t0)) + (μ − 1

2
σ 2)(t − t0).

Similarly, its variance is

∑
σ 2�t = σ 2(t − t0).

Therefore,

Theorem 4 With all of the standard assumptions, the random variable ln(S(t))

has a normal distribution with mean ln(S(t0)) + (μ − 1
2σ 2)(t − t0) and variance

σ 2(t − t0).

4.3.1 PDF for S(t)

Finally! Thanks to Theorem 4, the PDF for S(t) can be computed. Finding the
precise PDF is left as an exercise (Exercises 6aii, 14, and 15), which merely requires
computing
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d

dx
P (S(T ) ≤ x).

Because S(T ) is the asset price at time t = T , P(S(T ) ≤ x) is “the probability that
the asset price at time T is less than or equal to the value x.”

Following the lead of Section 4.1.2, the first step is to find an integral expression
for P(S(T ) ≤ x). This is

P(S(T ) ≤ x) = P(ln(S(T )) ≤ ln(x)) = 1

σ ∗√2π

∫ ln(x)

−∞
e

(x−μ∗)2

2(σ∗)2 dx, (4.18)

where σ ∗ and μ∗ have the values specified in Theorem 4. What remains is
immediate: Differentiate! The resulting answer is called the lognormal distribution.

Once the PDF for S is found, it becomes possible to compute the probability
that, say, that Rolling Stones album will be worth between $100 and $120. Namely,
if g(x) is the PDF, then

P(100 < S < 120) =
∫ 120

100
g(x) dx.

4.3.2 Lognormal Distribution

The central limit theorem captures a reason for the notable standing of the normal
distribution. In this spirit, it is appropriate to add some words to underscore the
special, widespread status of the lognormal distribution.

An explanation comes from the ubiquitous expression that is used to model
change of a phenomenon Y given by

�Y = aY�t + bY�X, �X ∼ N(0,�t). (4.19)

Equation 3.20 is a special case for �S. A reason why Equation 4.19 seems to be
everywhere is that it simplifies a more accurate expression

�Y = G(Y, random effects)�t,

but where we may know absolutely nothing about G. This suggests adopting a
Taylor series philosophy: Replace the mysterious G with a linear approximation
(i.e., Equation 4.19). For many settings, this first approximation of the unknown
rate of growth, �Y , depends on a multiple (the a parameter, where a = μ in
Equation 3.20) of the current size of Y . Similarly, the random effect, �X, should be
a multiple (the b parameter, where b = σ in Equation 3.20) of the Y . Whenever this
is the case, and whenever Equation 4.19 occurs, expect the lognormal distribution
to play a major role.
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To appreciate where to anticipate such an expression, consider almost anything
where amount of what is currently available can be expected to propagate the level
of deterministic and random change. This comment immediately suggests ecology,
with its issues about the growth and commonality spread among species. Preston
[10] appears to be the first to discover that, indeed, the lognormal distribution is
central for this analysis; a conclusion that has been strongly supported by subsequent
ecological studies. Another example comes from communicable diseases; e.g.,
the more people who suffer the flu increases the risk that you will too. This is
true whether the “communicable disease” is the infection time of online Twitter
messages (e.g., [3, 8]), or even the dynamics of HIV [9].

Select just about any topic where the level of deterministic and random change
depends on the size of the current status, and expect that the log-normal distribution
plays a central role. This could be the growth of a fungus (Exercise 16), the
acceptance of a particular technology, communication of information about the price
of a commodity, or even the spread of a malicious but juicy rumor. Support for this
assertion can be found with internet searches combining the object with lognormal,
such as [rumors lognormal].

Why the lognormal? Several have wondered about the source of this ubiquitous
distribution. Grönholm and Annila [5], for instance, articulated a commonly
expressed concern: “Log-normal distributions describe data from diverse disciplines
of science. However, the fundamental basis of log-normal distributions is unknown.”

But it is known! An essential and somewhat satisfying answer is immediate: A
first approximation for change of so many objects is modeled by Equation 4.19,
which in turn ushers in the lognormal distribution.

This discussion also identifies when and why there are settings where the
lognormal need not provide a good fit for data. After all, Equation 4.19 is a first
approximation for change, which may not be adequate. A growing fungus, for
example, may encounter a natural barrier, such as a pond or rocky region, which
would require modifying at least the bY�Y term of Equation 4.19. A lognormal
distribution is determined by its mean and variance (Exercise 15), but these values
are determined by different features of the modeling (Theorem 4) that might change
over time intervals; this could cause the graph of the lognormal PDF to vary. The
modeling may require more than the first order Taylor series terms. But of value, we
now know where and what to check.

Changing the modeling alters certain properties. As an illustration, Equation 4.19
is “scale-free.” To suggest what this means, the change of variable Y = 10U

converts Equation 4.19 into

�(10U) = a(10U)�t + b(10U)�X,

or the same expression

�U = aU�t + bU�X.
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But if Equation 4.19 must be modified to include a Y 2 term to have

�Y = aY�t + Y 2�t + bY�X,

the change of scale expression differs; it now has the altered form

�U = aU�t + 10U2�t + bU�X.

The “scale-free” feature allows the expression to hold for behavior from the
minuscule to the monumental. In particular, expect lognormal distributions to
accompany such expressions. Conversely, if whatever is being modeled cannot
enjoy such a scaling feature, then Equation 4.19 approximation needs to be re-
evaluated.

4.4 Exercises

1. Find d
dt

∫ et

0 ex2
dx.

2. The purpose of this exercise is to provide experience in finding PDFs.

(a) Suppose Y = 3X + 4 where the PDF for X equals 1 for 0 ≤ x ≤ 1 and
zero elsewhere. Find the PDF for Y .

(b) Suppose Y = X2 where the PDF for X equals 1 for 0 ≤ x ≤ 1 and zero
elsewhere. Find the PDF for Y .

(c) Suppose f (x) = cx2 for 0 ≤ x ≤ 2 and zero elsewhere is the PDF for X.
Find the PDF for Y = 3X + 4.

(d) Suppose Y = X4 where X ∼ N(0, 4). Find the PDF for Y .

3. Suppose X ∼ N(0, 1) and σ is a positive constant.

(a) Find the PDF for Y = σX.

(b) Suppose μ is a constant; find the PDF for Z = σX + μ.

4. Let the PDF for X be f (x) = Cx for 0 ≤ x ≤ 1 and zero elsewhere where C

is a constant you have to determine. Let X(x) = x.

(a) Find the PDF for Y = 2X + 4.

(b) Find the PDF for Z = 4X2.

(c) Let the PDF for X(x) = x be given by f (x) = e−x for x ≥ 0 and zero
otherwise. Find the PDF for Y = X3.

5. Suppose X = ln(Y ) where X ∼ N(μ, σ 2). Find the PDF for Y .
6. Assume that X ∼ N(μσ 2).

(a) This exercise is to find the PDF for S(T ) as described in Theorem 4.

i. Find the PDF for Y = X2.
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ii. Suppose ln(S(T )) ∼ N(a, b2). Find the PDF for S(T ). (To complete
the above discussion concerning the distribution of S with Theorem 4,
a = ln(S(t0)) + (μ − 1

2σ 2)(T − t0) and b2 = σ 2(T − t0).)

(b) Find the PDF for Z = exp(X).

(c) Find the PDF for U = ln(X).

(d) Find the PDF for V = X3.

7. Suppose �X ∼ N(0,�t). Much of what was done uses the fact that
E((�X)2) = �t. By using the variance of �X, show why this is so.

8. The next two problems explain why it is necessary to assume that the variance
of �X is �t. As it will become clear, should any other power be used, certain
important terms would drop out of the equation.

(a) Suppose �X ∼ N(0, (�t)2). Repeat the derivation of Itô’s Lemma to find
which terms disappear. That is, determine what terms are the largest when
�t is very small, and keep only the terms of this magnitude. Explain why
the answer is not satisfactory for our objectives.

(b) Redo part (a) but where the variance of �X is
√

�t . Again, before
canceling terms, check to see which terms have the largest value.

The next two problems indicate how to use Itô’s Lemma for different choices
of �S.

9. If �S = .2S�t + 2S�X, what is the form of Itô’s Lemma?
10. Redo the above problem when �S = S2�t − S3�X.

11. In the following, assume that �X ∼ N(0,�t) and then find the conclusion of
Itô’s Lemma.

(a) �S = 3S2�t + 6S3�X.

(b) �S = μ�t + σS�X.
(c) �S = 2S�t + 3σS2�X.
(c) �S = μ 1

S
�t + σS2�X.

12. Let X ∼ N(0, 1).

(a) Let Y = a + σX. Find the PDF for Y .
(b) Do the same for Y = X2.

13. Suppose that �S = 3S�t + 2S�X and that today’s price is S(0) = 50. Find
(i.e., derive) the PDF for the price of S(1), the price one year from now.

14. Complete the derivation of the PDF for S(t); that is, find the derivative of
Equation 4.18 and include the σ ∗ and μ∗ values.

15. These problems have to do with the lognormal distribution.

(a) The normal distribution satisfies

1

σ
√

2π

∫ ∞

−∞
e
− (x−μ)2

2σ2 dx = 1.
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Find the form of the integral after the substitution x = ln(s). This defines
the PDF, f (s), for the lognormal distribution where the limits of integration
determine the allowed values of s.

(b) If f (s) is the PDF found in the above problem, find where f (s) has a
maximum value. What happens to the location of this maximum value as
σ → 0? As σ → ∞?

(c) From the information of the above two problems, and your knowledge of
the shape of the normal distribution, give a rough sketch of the lognormal
distribution for σ = 0.1 and μ = 2. Do the same for σ = 2 and μ = 2.

(d) It is clear from part a (and Exercise 14) that the PDF will have the

form e
− (ln(x)−μ)2

2σ2 . This suggests that a way to graph e
− (ln(x)−μ)2

2σ2 is to use
ln(x) units on the horizontal axis. To indicate how to do so, represent
x as a power of a favored value a > 1, such as x = 2s . With this
choice, ln(x) = ln(2s) = s ln(2). On the s-axis (the horizontal axis)
write down the values with the normal, equally spaced coordinate ticks
. . . ,−2,−1, 0, 1, 2, 3, . . . ; these will correspond to the s or ln(x) values.
Underneath each s value, write down the corresponding x = 2s values of
. . . , 1

4 , 1
2 , 1, 2, 4, 8, . . . . This means that one s segment has all of the x

values between 1 and 2, the next equal sized s segment has all x values
between 2 and 4, the following one has all values between 4 and 8, and so
forth.
Draw the standard normal curve where μ = 2 is in terms of x. This provides
an expanded display of the lognormal distribution.
Next, to obtain a usual depiction, draw the graph obtained by rescaling the
x values so they are equally spaced. This leads to a serious contraction from
0 to 1 (everything from −∞ to 0 on the s scale must be squeezed into a unit
interval of the x scale) accompanied by a massive expansion beyond 1 (e.g.,
everything from 0 < s < 3 on the s-scale must be expanded to the 1 to 8
units on the x-scale).

16. In Crystal Falls, Michigan (located in the Upper Peninsula of Michigan—
Michigan consists of two disconnected peninsulas; the Upper Peninsula is the
northern one with shores on Lake Superior), an enormous fungus, with radius
of 600 feet, is growing. Suppose the growth of the circumference, C(t), is such
that

�C(t) = 0.1C(t)�t + 0.2C(t)�X, �X ∼ N(0,�t). (4.20)

Find the probably distribution for C(100) (the circumference a century from
now) and state the assumptions needed to derive this statement. Are the
assumptions reasonable?

17. This exercise provides an opportunity to use Itô’s Lemma. Assume that �S =
μS�t + σS�X with �X ∼ N(0,�t).
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(a) Find � ln(S).

(b) Find �[[CE(S, t)]2].
(c) Find �[CE(S, t) − 4S].
(d) Find �[PE(S, t) + 2S].
(e) Find �[CE(S, t) − PE(S, t)].



Chapter 5
The Black–Scholes Equation

We now are ready to derive the important Black–Scholes Equation [1], which is
widely used to determine pricing of Calls and Puts! An outline is given next; details
are developed in the next chapter.

1. Hedging! The Black–Scholes Equation describes an interesting double hedge:
The first hedge involves a portfolio’s market structure; the second is a hedge
between markets.
More precisely, suppose a portfolio � is carefully hedged with Puts, Calls, going
long and short, to ensure against disaster. But there is nothing in the portfolio’s
design that requires an investor to stay in one market. Should opportunities
arise elsewhere, it is reasonable to transfer money to a competing financial
opportunity. One of the several possibilities, a neutral one, is to sell � and invest
the money in a bank.

2. Itô’s Lemma. Investors follow the change in investments. So, with the described
options, compute �market� and �bank�. The second term (as developed in
Section 2.4.1) with interest rate r is

�bank� = r ��t. (5.1)

To compute �market�, Itô’s Lemma assumes a central role.
3. Arbitrage. Differences between �market� and �bank� can create arbitrage

opportunities. As investors can be expected to move in the direction of advantage,
the accompanying changes in prices, interest rates, and other market features lead
to �market� = �bank�.

4. Football gambles, eliminating risk. Explicit risk is introduced by the random term
�X. Similar to how risk in the football examples is reduced by adjusting bets,
this random �X risk is eliminated by adjusting the portfolio.
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5. Put–Call Parity. Several technical details are resolved by appealing to the
Put–Call Parity Equation.

With this guideline, let us move to the derivation.

5.1 Black–Scholes Equation

To appreciate the implications and power of Itô’s Lemma,

�f (S, t) = σS
∂f

∂S
�X +

[
μS

∂f

∂S
+ 1

2
σ 2S2 ∂2f

∂S2
+ ∂f

∂t

]
�t, (5.2)

let V (S, t) be the value of an option, perhaps Puts or Calls with expiration price E

at expiration date T . The goal is to find the current value of V (S, t) for any asset
price S value at any time t prior to the expiration date.

To recognize why we should do so, suppose Torik owns a Call for E = $100 where
T is March 1 and today’s price is S = $102. Tatjana can buy this Call for $3.70; is
this a good or bad deal? An answer would follow immediately if the market value
of C100(102, t) could be computed.

Remember, options are not bought for amusement; they are parts of investments
to make money. Without allegiance to any particular stock, the value of an option
reflects a balance between owning the asset, hedging properties, and alternative
ways to earn money through other investments such as placing the money in the
bank.

To start, assume that a portfolio consists of a combination of the option and δ

units of the asset. The purpose of δ is to find an appropriate hedge mixture between
the amounts of options and an asset. With football bets, this is akin to betting $100
with Bob and then determining how much to bet with Sue to eliminate risk and
ensure a fixed return. The δ term, called the “hedge ratio,” plays a similar role; its
value during any �t period of time must be determined because it identifies how to
adjust a portfolio to reduce risk. The next �t time interval can be compared with a
new football game, so expect the δ value to change.1

The portfolio is modeled as

�(S, t) = V (S, t) − δS. (5.3)

The fact δ is a constant leads to the relationships

∂�

∂S
= ∂V

∂S
− δ,

∂2�

∂S2 = ∂2V

∂S2 ,
∂�

∂t
= ∂V

∂t
.

1Notation change! Although the literature usually uses Delta, in this book � represents mathe-
matical change. So, for this hedging purpose, use the lower case δ.
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Substituting these values into Itô’s Lemma defines

�market�(S, t) =
(

∂V

∂S
− δ

)
σS�X+

[(
∂V

∂S
− δ

)
μS + 1

2
σ 2S2 ∂2V

∂S2 + ∂V

∂t

]
�t.

(5.4)

Remember, the purpose of the hedge ratio δ is to remove risky consequences
caused by random �X changes. A natural way to eliminate these random terms is
to set the coefficient of the �X term equal to zero. Doing so defines the value

δ = ∂V

∂S
. (5.5)

This is done at the beginning of each �t ; hold this value constant throughout the
time interval. In terms of the football wager, should Bob change his odds, the
amount wagered with Sue should also change. Similarly, expect the δ value, which
determines the composition of the portfolio, to change with differing events, such
as the values of V and S, in the next time interval.

To appreciate this δ value, the hedge ratio, recall that (by definition) ∂V
∂S

measures
how V ’s value changes with respect to the price S. For this reason, δ identifies how
to readjust a portfolio to achieve the desired level of hedging. Indeed, the sign of
δ = ∂V

∂S
reflects the different ways to manage a portfolio: When δ is positive, the

−δS term requires going short; when δ is negative, the −δ > 0 value requires going
long.

As an intuition pause, what should be the sign of δ = ∂CE(S,t)
∂S

? For δ = ∂PE(S,t)
∂S

? To
answer this question, recall what causes CE(S, t), or PE(S, t), to increase (or decrease) in
value.

A consequence of Equation 5.5 risk management choice of the hedge ratio δ is
that two terms—not just the expression with �X—drop out of Equation 5.4. This
reduces the expression to the much simpler

�market�(S, t) =
[

1

2
σ 2S2 ∂2V

∂S2 + ∂V

∂t

]
�t. (5.6)

An interesting surprise is that Equation 5.6 has no μ terms. That is, a consequence
of removing risky random effects is to also eliminate drift behavior reflected by the
parameter μ. This means that, presumably, two traders with different estimates of μ

could reach the same conclusion about the value of V . What remains are volatility
effects captured by σ .

So far, Equation 5.6, along with the hedge ratio, represents the value of option V

as affected by the asset’s current price. But financial openings are not restricted to a
single asset; be honest, in your own finances, say in purchasing a new car, if you see
a better offer elsewhere, you probably would go for it. This requires comparing the
value of option V with other market opportunities. General market effects reflect
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changes in the value of money—the interest rate. So the next step is to compare
changes in the value of an option with that of the value of money.

The notion to be used is that if the current rate of interest in a risk free loan, or
a deposit in the bank, is r , then the amount of money made over interval �t on an
investment of $� is

�bank� = r��t. (5.7)

But how is �bank� from Equation 5.7 related to �market� in Equation 5.6?
Suppose in a cost free manner, a portfolio could be converted into money at

any desired time, or, in the opposite direction, money could be borrowed at the
interest rate r to buy more options and/or assets. If changes in the portfolio are
more favorable than what money costs to borrow, then borrow money from your
friendly banker to increase the portfolio holdings. This arbitrage opportunity makes
money more valuable, so, presumably, the interest rate r should go up (yes, another
assumption), which eventually squeezes out advantages of borrowing money.

Conversely, if more money can be made with a bank deposit at the r rate of
interest, sell off a portion of a portfolio and invest the money in a bank. Should
many people do so, expect the interest rate, r , to decrease.

This reasonable argument has a seeming flaw. Because S can be any asset,
including Rolling Stones albums, it requires a huge stretch of imagination to accept
that the interest rate, r , can be influenced by sales of Rolling Stones albums! Of
course not! But the market is interconnected, so the value of the albums are related
to “whatever,” which are connected to “something else,” and “even other stuff.”
So, rather than the neutral choice of a bank, expect the value of the portfolio
�(S, t) = V (S, t) − S ∂V

∂S
to react to the general market. The appropriate arbitrage

argument is left for the reader to carry out.
Combining the arbitrage arguments, in a highly idealized setting where there

is an instantaneous change in interest rates and total understanding of what course
of action is most profitable, it is reasonable to expect that �market� = �bank�.

Setting them equal and using Equations 5.3, 5.5 leads to

r(V − S
∂V

∂S
)�t = [1

2
σ 2S2 ∂2V

∂S2 + ∂V

∂t
]�t.

Dividing both sides by �t leads to a simple version of the Black–Scholes Equation

∂V

∂t
+ 1

2
σ 2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0. (5.8)

A solution of this equation determines the value of a Put, Call, or any combina-
tion, for any specified S and t < T . Wait! How can this assertion be true? After
all, a Call’s value is based on increasing prices; a Put is based on an expectation
of decreasing prices. How can the same equation bundle opposing directions?
Something is missing. There is, and it is determined next.
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5.2 Boundary Conditions

The Black–Scholes Equation is a backwards parabolic equation. The term parabolic
comes from comparing the highest order partial derivatives of both variables with
quadratic equations. Recall, a parabolic equation has the

y = ax2 + bx + c (5.9)

structure, where y is raised to the first power and the highest x power is squared.
Because Equation 5.8 has the same form, where derivatives replace the powers, it is
called a parabolic partial differential equation.

To describe the “backwards” term, retaining only the highest order derivatives
terms leads to

∂V

∂t
= −1

2
σ 2S2 ∂2V

∂S2 . (5.10)

For the moment, concentrate on the negative sign. To appreciate the impact of this
sign, consider a simple differential equation

dy

dt
= −5, y(t0) = 1

with the unique solution

y(t) − 1 = −5(t − t0),

where the negative multiple of the time term indicates a “backward” moving
solution. Similarly, solutions for the Black–Scholes Equation move backwards from
the expiration time of T . Actually, this motion is precisely what is desired; the goal
is to unravel what happens before the expiration date!

5.2.1 Heat Equation

To identify what information is missing from the Black–Scholes Equation, turn to
the forward parabolic partial differential equation given by

∂u(x, t)

∂t
= ∂2u(x, t)

∂x2
. (5.11)

Equation 5.11 is the heat equation. As an example, consider a thin bar that is 20
units long. The solution for the heat equation, u(x, t), identifies the temperature of
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the bar at each x location, 0 ≤ x ≤ 20, at any instant of time t ≥ 0. But finding the
answer requires supplementary information.

For instance, what was the initial status of the bar? Was it taken out of a freezer,
a furnace? Different choices must lead to contrasting u(x, t) solutions. Thus, one
type of information is the bar’s initial status given by

u(x, 0) = u0(x), (5.12)

where function u0(x) specifies the bar’s initial temperature at each position. As an
example, if the temperature is uniformly distributed ranging from 0o at x = 0 to
100o at x = 20, then

u(x, 0) = 100x

20
. (5.13)

Even should two bars have identical initial temperature distributions, expect
mismatched outcomes should the ends of the bars be treated differently for t > 0. To
illustrate this comment, consider dissimilar heat distributions for three bars, where
applying a blow-torch to each end of the first bar, a blow-torch is heating one end
but ice tied to the other end of a second bar, and ice is applied to both ends of the
third bar will cause differing answers. This means that information about u(0, t) and
u(20, t) also is needed. The choice of keeping both ends at zero temperature forever
after the start defines the conditions

u(0, t) = 0, u(20, t) = 0. (5.14)

All of this can be depicted in an infinite rectangular region

{ (x, t) | 0 ≤ x ≤ 20, t ≥ 0 }

with its three boundaries: The horizontal line segment (x, 0), 0 ≤ x ≤ 20 on the
x-axis, and two boundaries that are infinitely long corresponding to (x = 0, t ≥ 0)

and (x = 20, t ≥ 0). A solution requires specifying the desired behavior of u(x, t)

along each boundary segment.

5.2.2 Black–Scholes Boundary Conditions

Guided by the heat equation, it becomes clear that the values of option V along the
boundaries must be specified. But, what boundaries?

Rather than describing u(x, t) at starting time t = 0, with a backward equation,
it is the value of V at expiration date t = T that must be specified. Then, mimicking
expressions for u(x, t) at endpoints of the bar, what is needed are the V values at
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the price extremes of S = 0 and where S → ∞. This means that the values of an
option V occur in the region

{ (S, t) |0 ≤ S < ∞, −∞ < t ≤ T }. (5.15)

Call Conditions

As true with the heat equation, the values of option V along the boundaries of
Equation 5.15 region must be specified. To be specific, let V (S, t) = CE(S, t);
this is a Call with strike price E at expiration date T .

The value of CE(S, t) along the t = T boundary was developed in Chapter 2;
according to Equation 2.1, it is

CE(S, T ) = max(S − E, 0). (5.16)

Along the zero price boundary S = 0, it is reasonable to accept that CE(0, t) = 0.

After all, according to the price change equation,

�S = σS�X + μS�t,

once S = 0, it remains zero for all time. (Substituting S = 0 into the right-hand side
of this expression shows that a subsequent change in value, determined by �S = 0,
is zero.) This defines the second boundary condition

CE(0, t) = 0. (5.17)

It remains to find the boundary conditions for S → ∞. It is reasonable to expect
that CE(S, t) = S − E, where, with an infinite value for the asset price, the E

value becomes insignificant. Consequently, the value of CE(S, t) is, essentially, S.
A worry is whether an infinitely large price might suddenly collapse. The essence
of the argument showing this is not a problem is outlined in a footnote.2 The final
condition is

CE(S, t) → S as S → ∞. (5.18)

2 Start with Y = 1/S, and use Itô’s Lemma to derive �Y = −σY�X + [−μY + σ 2Y ]�t .
Assuming that S has a very large value is essentially the same as assuming that Y = 0. However,
the equation for �Y is such that Y = 0 requires Y to remain zero for all time. In turn, S remains
infinitely large for all time.
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Put Conditions

For a Put, money is made only when the asset price decreases. And so, as developed
for Equation 2.3, the boundary condition for t = T is

PE(S, T ) = max(E − S, 0). (5.19)

Similarly, should the asset price grow without bound, the Put becomes useless. Thus,

PE(S, t) = 0 as S → ∞. (5.20)

The final boundary condition is where the asset price drops to zero. The earlier
argument using the �S structure ensures that the asset price will not change, which
means at time t = T that PE(0, T ) = E. At an earlier time, the value of the option
is the present value of E.

To compute this present value of E, use the differential equation

dm

dt
= rm, m(T ) = E,

where m(t) represents the money. The solution is

∫ E

m(t)

1

s
ds =

∫ T

t

dt, m(t) = Ee−r(T −t).

Therefore, the last boundary condition for a Put is

PE(0, t) = Ee−r(T −t). (5.21)

Help from an Old Friend

The inclusion of the present value of E for PE(0, t) (Equation 5.21) may seem
mysterious. An explanation comes from our old friend the Put–Call Parity Equation

PE(S, t) + S = CE(S, t) + Ee−r(T −t).

By substituting S = 0, CE(0, t) = 0 into this expression, the desired PE(0, t) =
Ee−r(T −t) boundary value emerges. Later, after finding the CE(S, t) solution, the
Put–Call Parity Equation will be used to obtain the PE(S, t) solution.
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Comparisons

The same Black–Scholes Equation governs the values of a Put and a Call. What
differs are the boundary conditions. The same reason why different boundary
choices for the heat equation can lead to radically different solutions explains why
the different boundary conditions for a Put, or a Call, or some combination (which
would require different boundary conditions) create different behaviors.

The solutions of these equations provide valued information: They specify the
value of an option at any time t for any asset price S. This means that when entering
the market, you know what to expect. What remains is to indicate how to solve the
Black–Scholes Equation.

5.3 Conversion to the Heat Equation

In its current form, the Black–Scholes Equation is difficult to solve. But by using
the time honored mathematical approach of changing variables to create a simpler
problem, the equation is converted into the heat equation.

To indicate why it is of interest to describe the change of variables in a discussion
of the mathematics of finance, compare it with solving

∫
cot(x) dx. Rewriting this

expression as
∫ cos(x)

sin(x)
dx identifies the sin(x) denominator as the ugly (or u) part in

a change of variables. Setting u = sin(x) leads to the simpler
∫ 1

u
du = ln(|u|) + C

expression with the solution ln(| sin(x)|) + C. Now, with integral tables readily
available on the internet, the solution can be easily found. But to appreciate why the
sin(x) term is in the answer, the change of variable must be understood. Similarly,
to recognize the source of terms in solutions of the Black–Scholes Equation, the
change of variables used to convert the equation to the heat equation must be
tracked.

A clue how to solve the Black–Scholes Equation comes from the similarity of
Equation 5.10 with the heat equation, Equation 5.11. OK, the first is a backward
parabolic equation, while the second is forward, but a change of the independent
variable t = −τ handles that difference. A more serious concern is the variable
coefficient of Equation 5.10, while the heat equation has constant coefficients.

5.3.1 A Quick Tutorial in Differential Equations

An important mathematical tool, which is evoked to justify replacing variable
coefficients with constant ones, is the existence and uniqueness theorems. The value
of these results is that they identify which differential equations can be solved and
have unique solutions. Stated differently, this powerful assertion provides a license
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to find a solution in any desired way; if a wild guess turns out to be a solution, that
is fine.

Start with

dy

dx
= 3y. (5.22)

As described earlier (e.g., when computing the present value of money), an answer
is given by

dy

y
= 3dx, ln(y) = 3x + c1

or eln(y) = e3x+c1 = e3xec1 = Ce3x. As eln(y) = y, the solution is y = Ce3x.

The value of C is determined by initial conditions. If y(0) = 5, then 5 = y(0) =
Ce3×0 = C, so the solution is y(x) = 5e3x.

Now consider a more difficult problem

y′′ − 5y′ + 6y = 0 (5.23)

with initial conditions y(0) = 1, y′(0) = 4. Knowing that a unique solution exists
provides a license to find an answer by guess or trial and error.

A reasonable first choice is to mimic Equation 5.22 solution of y(x) = Cemx for
some value of m. Ignore the C for now (it is a constant of integration), and seek the
value of m. That is, if y = emx is a solution, then

y = emx, y′ = memx, y′′ = m2emx.

Substituting this hunch into Equation 5.23 leads to

m2emx − 5memx + 6emx = emx[m2 − 5m + 6] = 0.

Consequently, the task of solving the differential equation reduces to the high school
problem of finding the roots of the equation

m2 − 5m + 6 = 0, (m − 3)(m − 2) = 0, m = 2, 3.

It now follows that the solution is

y(x) = C1e
3x + C2e

2x.

It remains to find the values of C1 and C2 from the given information that

1 = y(0) = C1e
0 + C2e

0 = C1 + C2,
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and

4 = y′(0) = 3C1e
0 + 2C2e

0 = 3C1 + 2C2.

The solution of this “two equations, two unknowns” system is C1 = 2, C2 = −1,

so the answer for Equation 5.23 is y(x) = 2e3x − e2x.

Now a twist. To indicate how to remove the S2 and S variable coefficients of the
Black–Scholes Equation, consider the problem of solving

x
dy

dx
= 3y. (5.24)

The change-of-variable plan is to replace the variable x with some u(x).
Should the mathematical universe be accommodating, Equation 5.24 could be

converted into an Equation 5.22 form. According to the chain rule, any choice of u

leads to

dy

dx
= dy

du

du

dx
.

While it is unclear how to select u(x), a desired choice would lead to

x
dy

dx
= x

[
dy

du

] [
du

dx

]
= 3y.

Aha! Selecting u(x) so that x
[

du
dx

] = 1 defines the equation

x

[
du

dx

]
dy

du
= dy

du
= 3y, (5.25)

which is Equation 5.22 with a different independent variable. Therefore the general
solution is

y = Ce3u. (5.26)

The choice of a u(x) that generates the magic whereby x
[

du
dx

] = 1 requires
du
dx

= 1
x

. This means that u(x) = ln(x), so u(x) = ln(x) is a desired change of
variables! With this choice, Equation 5.26 becomes

y = Ce3u = Ce3 ln(x) = Celn(x3) = Cx3.

The Black–Scholes Equation has S2 and S coefficients, which suggests under-
standing how to handle equations of the form

x2y′′ − 4xy′ + 6y = 0. (5.27)
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The goal is to convert Equation 5.27 type of equations into Equation 5.23 format of
constant coefficient equations that can be solved.

Success was achieved with u(x) = ln(x) for first order equations, where, so far,
the change of variables defines

dy

dx
= dy

du

du

dx
= 1

x

dy

du
. (5.28)

Checking what happens with the second derivative leads to

y′′ = d
dx

[
dy
dx

]
= d

dx

[
1
x

dy
du

]
= − 1

x2
dy
du

+ 1
x

d
dx

[
dy
du

]
=

− 1
x2

dy
du

+ 1
x

d
du

[
dy
du

]
du
dx

,
(5.29)

or, because du
dx

= 1
x

,

y′′ = − 1

x2

dy

du
+ 1

x2

d2y

du2 . (5.30)

The first part of Equation 5.29 is the product rule, and the last part is the chain rule.
(Remember, the chain rule has

d( )

dx
= d( )

du

[
du

dx

]

for whatever is in the ( ) brackets. Here, the bracket term is dy
du

.)
Replacing y′ with Equation 5.28 and y′′ with Equation 5.30 converts Equa-

tion 5.27 into

x2[− 1

x2

dy

du
+ 1

x2

d2y

du2 ] − 4x[ 1

x

dy

du
] + 6y = d2y

du2 − 5
dy

du
+ 6y = 0. (5.31)

There is magic!! Equation 5.31 agrees with Equation 5.27 with the independent
variable u rather than x. Equation 5.27 has been solved, so Equation 5.31 solution
is

y(u) = C1e
3u + C2e

2u.

Changing u’s name to x leads to

y(x) = C1e
3 ln(x) + C2e

2 ln(x) = C1e
ln(x3) + C2e

ln(x2) = C1x
3 + C2x

2.
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5.3.2 Eliminating the Variable Coefficients

The first step in converting the Black–Scholes Equation into an easier expression
is to eliminate the S coefficients. This is done the same manner as with differential
equations.

To find an appropriate change of variables x = x(S), recall from the chain rule
that

∂V

∂S
= ∂V

∂x

dx(S)

dS
.

To meet the goal of eliminating the S multiple of rS ∂V
∂S

, define

dx(S)

dS
= 1

S
,

or

x(S) = ln(S) + ln(c) = ln(cS), (5.32)

where c is a constant that is selected to simplify the boundary conditions.
This change of variable leads to

∂V

∂S
= 1

S

∂V

∂x
,

∂2V

∂S2
= ∂

∂S

1

S

∂V

∂x
= 1

S2

[
∂2V

∂x2
− ∂V

∂x

]
.

Substituting these values into the Black–Scholes Equation 5.8 leads to

∂V

∂t
+ σ 2

2

∂2V

∂x2
+ (r − σ 2

2
)
∂V

∂x
− rV = 0. (5.33)

Notice the coefficients: It is reasonable to anticipate that these terms will appear as
parts of the Black–Scholes solution. This is the case.

This change also affects the boundary conditions. Express this change as cS = ex

where c = 1
E

. This leads to

ex = S

E
, or x(S) = ln

(
S

E

)
, (5.34)

so the boundary conditions at time t = T

CE(S, T ) = max(S − E, 0) = E max(S/E − 1, 0)
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become

E max(ex − 1, 0).

To eliminate the E multiple of the max term, let V = Ev, so that

∂v

∂t
+ σ 2

2

∂2v

∂x2 + (r − σ 2

2
)
∂v

∂x
− rv = 0 (5.35)

with initial conditions

v(x, T ) = max(ex − 1, 0). (5.36)

As for the other boundary conditions, as S → 0, x → −∞, so the CE(0, t) = 0
condition translates into v(x, t) → 0 as x → −∞. Similarly, the condition that
CE(S, t) → S as S → ∞ becomes v(x, t) → S/E = ex as x → ∞.

A next step is to eliminate the ∂v
∂x

and v terms.3 But this change does not
introduce terms that are needed to appreciate Black–Scholes solutions, so it is not
carried out.

5.4 Intuition

At this stage, the reader is encouraged to speculate about what terms to anticipate

in solutions for the Black–Scholes Equation. It is reasonable to expect r − σ 2

2
expressions, because they cropped up with the change of variables. Anything else?
An important change of variables involved ln(S/E), so we should expect that this
natural log expression will assume a dominant role; it does. Investing even a small
amount of time to develop these conjectures is a strong way to better understand an
area.

It also is worth exploring what might happen with changes in the market. Suppose
the market is very volatile as captured by a large σ value. How should this affect the
value of CE(S, t)? Of PE(S, t)? What about a stagnant market where σ has a small
value? An important market variable is the interest rate r; how would increasing and
decreasing r values affect the options? What about if σ decreases but r increases?

3 The standard approach, which mimics completing the square, is to set v(x, τ ) = eax+bτ u(x, t),

and select the a and b values to drop terms.
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5.5 Exercises

1. Return to Equation 5.4 and collect all terms with a ( ∂V
∂S

− δS) multiple. From
this, show that the objective of minimizing risk by introducing the hedge ratio
has the effect of dropping all �S terms from �market�(S, t).

2. Let f (S, t) = 1/S. With Itô’s Lemma, what is the expression for �f (S, t)?
3. A key step in deriving the Black–Scholes Equation was to set the value of

�market� equal to what would be gained at a bank. This comparison captures
the value of the option relative to interest rates on the market.

(a) Let V = CE . Instead of setting Equation 5.6 equal to bank rates, compare
it to what would be obtained with � = PE(S, t) + βS. Find the resulting
equation.

(b) Find the Black–Scholes Equation for � = CE(S, t) + PE(S, t) − δS with a
comparison to the interest rates. Compare answers and explain differences.

4. Suppose �S = 4S2�t + 6S�X with the usual assumptions on �X. First find
the form of Itô’s Lemma. Then find the corresponding Black–Scholes Equation.

5. Suppose �S = 5�t + 6S2�X. First find the form of Itô’s Lemma. Then find the
corresponding Black–Scholes Equation.

6. Find the boundary conditions for the Black–Scholes Equation for P100(S, t).
Remember, this question asks you to find P100(S, T ), P100(0, t), and P100(S, t)

as S → ∞.
7. Solve the following:

(a) y′′ + 2y′ − 3y = 0 with y(0) = 4, y′(0) = 0.

(b) 2y′′ − y′ − 3y = 0 with y(0) = 6, y′(0) = 4.

(c) y′′ − 3y′ + 2y = 0 with y′(0) = 2, y′(0) = 0.

(d) xy′ + 4y = 0, y(1) = 4.

(e) xy′ − 3y = 0, y(2) = 1
2 .

(f) Solve x2y′′ + xy′ − y = 0 where y(1) = 2, y′(1) = 0.

(g) x2y′′ − 5xy′ + 8y = 0 with y(1) = 3, y′(1) = 8.

8. Given

∂V

∂τ
= 2S2 ∂2V

∂S2 + S
∂V

∂S
− V,

find a change of variable of S to x(S) so that this equation has constant
coefficients.

9. Do the same for the Black–Scholes Equation (after using t = −τ )

∂V

∂τ
= 1

2
σ 2S2 ∂2V

∂S2 + rS
∂V

∂S
− rV .



Chapter 6
Solutions of Black–Scholes

6.1 The Heat Equation and CE(S, t) Solution

Because many introductory courses in partial differential equations solve the heat
equation, it is not necessary to do so here. Instead, the emphasis will be to explain
the various terms embedded in the solution: All reflect those change of variables
that converted the Black–Scholes Equation into the heat equation. These changes
must be reinserted into a heat equation solution to transform it into a Black–Scholes
solution.

The form of the CE(S, t) boundary conditions makes it reasonable to expect that
the general solution has the form

CE(S, t) = S × (modifying terms) − Ee−r(T −t) × (modifying terms), (6.1)

where the modifying terms reflect solutions for the heat equation. This is the case.
What is needed is a solution for the heat equation.

A surprise (to the uninitiated) is that a normal distribution’s PDF, with mean zero
and variance 2τ ,

u(x, τ ) = 1

2
√

πτ
e− x2

4τ , (6.2)

satisfies the heat equation Equation 5.11! This assertion can be verified by comput-
ing and comparing the indicated partial derivatives. For instance,

∂u

∂τ
= 1

2
√

π

[
−1

2
τ−3/2e− x2

4τ + τ−1/2{− x2

4τ 2 }e− x2
4τ

]
.

What remains to be computed are the partials with respect to x, which are left to the
reader.

© Springer Nature Switzerland AG 2019
D. G. Saari, Mathematics of Finance, Undergraduate Texts in Mathematics,
https://doi.org/10.1007/978-3-030-25443-8_6

105

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25443-8_6&domain=pdf
https://doi.org/10.1007/978-3-030-25443-8_6


106 6 Solutions of Black–Scholes

Another form of the solution is

u(x, τ ) = 1

2
√

πτ

∫ ∞

−∞
u0(s, 0)e− (s−x)2

2τ ds, (6.3)

where u0(s, 0) represents the boundary values. It is here, by using the CE(S, T ) =
max(S − E, 0) boundary condition, that the general form of Equation 6.1 emerges.
More precisely, Equation 6.3 makes it reasonable to anticipate that the modifying
terms of Equation 6.1 involve integrals resembling N(x), which is the cdf of the
normal distribution.

Indeed, the solution for CE(S, t) is

CE(S, t) = SN(d1) − Ee−r(T −t)N(d2) (6.4)

where

d1 = ln(S/E) + (r + σ 2

2 )(T − t)

σ
√

T − t
(6.5)

and

d2 = d1 − σ
√

T − t = ln(S/E) + (r − σ 2

2 )(T − t)

σ
√

T − t
. (6.6)

We have the answer! In fact, using this expression with appropriate values for the
parameters, the various prices for a particular Call (as, for instance, S changes) can
be computed and printed off to handle the business of a day.

Equations 6.4, 6.5, 6.6 may have an intimidating appearance. To bring this
solution down to a comfort zone, what follows is an explanation of what it means
and how it adds to our understanding of options.

6.2 Source of CE(S, t) Terms

A way to grasp the meaning of the CE(S, t) solution (Equations 6.4, 6.5, 6.6) is to
dissect its structure. With the

CE(S, t) = S[modifying terms] − Ee−r(T −t)[modifying term]

formulation of a Black–Scholes solution, somewhere—most surely in the modifying
components—forms of the heat equation solution should appear. This happens: The
modifying terms are given by
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N(d) = 1√
2π

∫ d

−∞
e− x2

2 dx (6.7)

from the normal distribution and a solution of the heat equation. These are the N(d1)

and N(d2) terms in Equation 6.4.
Now turn to the d1 and d2 expressions, which are dominated by the ln(S/E) term.

The ln(S/E) value is positive if S > E (so with increasing S values, d1 and d2, along
with N(d1) and N(d2), increase in value) and it is negative if S < E. Rather than
a surprise, it is reasonable to expect that ln(S/E) is part of the solution because of
its role (Equation 5.34) in eliminating the variable S and S2 coefficients from the

Black–Scholes Equation. Similarly, r − σ 2

2 is a term that arose when computing the
second derivative of this change of independent variable. (See Equation 5.33.)

The denominators in Equations 6.5, 6.6 make sense. According to Theorem 4,
this σ

√
T − t value is related to the standard deviation of ln(S(t)), which makes its

role as a denominator quite reasonable. Indeed, according to Equation 4.18, N(d)

resembles what was used to find the PDF for S(t). Consequently, the modifying
terms of Equation 6.4 are related to changes in S(t) values as captured in Section 4.3.

To appreciate the role played by the d1 and d2 numerators, both include

ln

(
S

E

)
+ r(T − t) = ln

(
S

Ee−r(T −t)

)
. (6.8)

This means that the numerators of d1 and d2 compare the current price of the asset
with the present value of the strike price, which again is an expected relationship. In
this manner, the CE(S, t) value is tied in with the market (captured by the r value)
and action of the asset as captured by the standard deviation of ln(S).

Using Equation 6.8, the dj expressions become

d1 =
ln

(
S

Ee−r(T −t)

)

σ
√

T − t
+ σ

2

√
T − t, d2 =

ln
(

S

Ee−r(T −t)

)

σ
√

T − t
− σ

2

√
T − t, (6.9)

which catches the d1 − d2 = σ
√

T − t relationship.

6.3 Interpretation

As true with any newly derived equation, the WGAD concern must be addressed.
Beyond providing pricing information for Calls and Puts (which already is valu-
able), what other information can be extracted from Equations 6.4, 6.9?

A first answer is that the equations indicate how market effects can change
a Call’s value. For instance, should t , the time, be near the expiration date
(so (T − t) ≈ 0), the denominators of d1 and d2 are arbitrarily small. This
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requires the d1 and d2 values to be heavily determined by the numerator value of

ln
(

S

Ee−r(T −t)

)
.

To illustrate, should the spot price be larger than the present value of E, which
is S(t) > Ee−r(T −t), then ln(S/Ee−r(T −t)) > 0, which (with (T − t) ≈ 0) forces
d1 and d2 to assume arbitrarily large values. In turn, N(d1) and N(d2) have values
close to unity, which means that CE(S, t) ≈ S − Ee−r(T −t). This makes sense; it
asserts that near the expiration date T , the value of CE(S, t) is close to that of the
boundary condition for CE(S, T ).

Similarly, should S(t) < Ee−r(T −t), then d1 and d2 have large negative values,
which force N(d1), N(d2) to be close to zero and C(S, t) ≈ 0. This also makes
sense; should S be below the present value of E near the expiration date, there
probably is not enough time for prices to change to allow S ≥ E at expiration date.
So the CE(S, t) value should be close to the CE(S, T ) boundary value, which is
zero.1

Equations 6.4, 6.9 include other variables, which permit developing intuition
about what can happen with changes in volatility (σ ), interest rates (r), strike price
(E), and various combinations. As an example, suppose the market is quiet, which
means that σ has a small value. To develop intuition about what this means, consider
the extreme case σ ≈ 0.

With a small σ value, the σ
√

T − t terms has minimal consequences (Equa-
tion 6.9); this means that d1 and d2 are close in value to

d1, d2 ≈
ln

(
S

Ee−r(T −t)

)

σ
√

T − t
. (6.10)

If these small σ values are accompanied with S

Ee−r(T −t) > 1 (S exceeds the present
value of E), then d1 and d2 have large positive values. This means that should σ →
0, then d1 → ∞ and d2 → ∞, which requires N(d1), N(d2) → 1. Consequently,
with an almost flat market but where S exceeds the present value of E, expect the
Call’s value to satisfy CE(S, t) ≈ S − Ee−r(T −t).

Similarly, should S be smaller than the present value of E (i.e., S < Ee−r(T −t))
the Equation 6.10 numerator is negative. If this is accompanied with a very flat
market, it follows that d1, d2 → −∞ as σ → 0, so N(d1), N(d2) → 0. In turn,
CE(S, T ) ≈ 0.

These assertions make sense; if the market is not sufficiently active, there is
no reason to expect much change. Consequently, CE(S, t) reflects either how the
current value of S differs from the present value of E, or it is near zero reflecting
the CE(S, T ) = max(SE, 0) constraint.

It is left to the reader to determine what happens when the market has a large
σ ; that is, the volatility is high. Here N(d1) differs from N(d2), which leads to
different interpretations. Other issues involve changes in several variables, such as

1Recall, if S < Ee−r(T −t), then S < E.
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if σ → 0 when t → T . These double limit concerns are left for the interested reader
to explore.

6.4 Exercises

1. Instead of using V − δS in deriving the Black–Scholes Equation, suppose there
is a reason (there are many) to use �bank = r(V − δS)�t + d∗δS�t where d∗
is a fixed constant. Find the new Black–Scholes equation.
The importance of this problem is that it indicates how to create new equations
to handle modified situations.

2. Find the solution of the Black–Scholes Equation for PE(S, t). (Hint: Put–Call
Parity Equation)

3. Suppose the market is wild; it is modeled by σ → ∞.

(a) What is the value of a Call?
(b) What is the value of a Put?
(c) Explain both answers in terms of finance.

4. Suppose the modeling allows σ → 0; i.e. not much is happening.

(a) What is the value of a Call?
(b) What is the value of a Put?
(c) Explain both answers in terms of finance.

5. Suppose the modeling allows S → ∞;

(a) What is the value of a Call?
(b) What is the value of a Put?
(c) Explain both answers in terms of finance.

6. Suppose the modeling allows S → 0,

(a) What is the value of a Call?
(b) What is the value of a Put?
(c) Explain both answers in terms of finance.

7. Suppose the modeling is that t → T .

(a) What is the value of a Call?
(b) What is the value of a Put?
(c) Explain both answers in terms of finance.

8. Suppose interest rates are increasing enough that it can be modeled with r →
∞.

(a) What is the value of a Call?
(b) What is the value of a Put?
(c) Explain both answers in terms of finance.
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9. In deriving the Black–Scholes Equation for a call, we used Port = CE(S, t)−
δS. In deriving the Black–Scholes Equation, use CE(S, t) − δCE(S∗, t) where
S∗ is another asset.

10. Derive the Black–Scholes Equation for C − δS for two commodities, where
another option is to invest money in a bank.

11. Find the delta value to reduce risk for a portfolio CE(S, t) − δPE(S, t).

12. In the last ten minutes, the value of a call jumped $0.50 while the price of the
commodity jumped $1. How should the portfolio be adjusted? (Hint: Find the
δ value.)



Chapter 7
Partial Information: The Greeks

7.1 The PE(S, t) Solution

Applying the Equation 6.1 argument to PE(S, t), along with the boundary condition
PE(S, T ) = max(E − S, 0), makes it reasonable to expect that

PE(S, t) = Ee−r(T −t) × [modifying terms] − S × [modifying terms].

This the case. The actual PE(S, t) solution follows immediately from our powerful
friend the Put–Call Parity Equation.

The approach is as suggested in Exercise 2 of the preceding chapter; the Put–Call
Parity Equation requires that

PE(S, t) = CE(S, t) − S + Ee−r(T −t)

= Ee−r(T −t)[1 − N(d2)] − S[1 − N(d1)].

While this expression suffices for applications, such as the exercises in the
preceding chapter, a cleaner equation follows by replacing the [1 − N(d)] terms.
To do so, notice that

1 − N(d) = 1√
2π

∫ ∞

−∞
e− x2

2 dx − 1√
2π

∫ d

−∞
e− x2

2 dx = 1√
2π

∫ ∞

d

e− x2
2 dx.

The change of variable s = −x shows that

1 − N(d) = 1√
2π

∫ ∞

d

e− x2
2 dx = 1√

2π

∫ −d

−∞
e− s2

2 ds = N(−d). (7.1)
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Thus, the solution for the Put assumes the more compact form

PE(S, t) = Ee−r(T −t)N(−d2) − SN(−d1). (7.2)

7.2 Here Come the Greeks!

Knowing “what is the current status” at a given moment (e.g., the values of
CE(S, t), PE(S, t)) is fine, but it sure would be valuable to have a preview of
“what will be.” A start in this direction was made with the exercises at the end
of the preceding chapter. But some of those questions involved extreme, unlikely
settings for the variables S, σ , r , and τ = (T − t). With thanks to mathematical
tools, partial information about “what will be” with option V comes from, well,
the partial derivatives ∂V

∂v
where v represents one of these variables. A reason this

must be the case is that a partial derivative provides slope information, which in turn
offers a sense of what will happen.

More precisely, by computing the appropriate partial derivatives of the Equa-
tions 6.4 and 7.2 solutions of the Black–Scholes Equation, the sensitivity of an
option, how it will change with changes of these variables, emerges. The thrust
of this WGAD concern is that, to be successful, there is a need to appreciate how
changes in σ, or S, or r , or . . . affect CE(S, t) and PE(S, t) values. As an example,
with an increasing volatility, should a CE(S, t) be sold now or will it be worth more
in the near future? The computations are standard, and, with a little mathematical
trickery, lead to fairly simple representations. Of importance is the intuition obtained
from these terms.

In the examples, the emphasis is on finding ∂CE(S,t)
∂v

. This is because the

corresponding ∂PE(S,t)
∂v

expression follows immediately from the PE(S, t) =
CE(S, t) − S + Ee−r(T −t) Put–Call Parity Equation. For instance, the second two
terms on the right side, S and Ee−r(T −t), do not include the volatility term σ , so it
follows immediately that ∂CE(S,t)

∂σ
= ∂PE(S,t)

∂σ
.

Each partial is represented by a member of the Greek family, which leads to the
moniker of “the Greeks.” As each ∂V (S,t)

∂v
captures information about how a market

change in parameter v affects the value of an option, the Greeks become valued
tools in managing portfolios and risk.

7.2.1 The Hedge Ratio δ Term

Central to the derivation of the Black–Scholes Equation is the hedge ratio parameter
δ. This δ parameter captures the rate of change of the option with respect to S as
given by
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δ = ∂V

∂S
. (7.3)

Importance of δ comes from its risk management role with the V (S, t) − δS hedge.
Recall, this expression is used to balance the hedge mixture between the options and
the level of going long or short with the commodity (stock).

To be more precise, according to Taylor’s series, should the only change be in
the value of S, then the corresponding change in V is

�V ≈ ∂V

∂S
�S = δ�S. (7.4)

(In reading this expression, � is the mathematical change in a variable and δ is the
hedge ratio.) Thus if δ = 1

2 , a change in S will have half that effect in the change
in V . Here is a portfolio management question: In this example, the δ = 1

2 value is
given. If you are managing a portfolio, you will need to compute this δ value. How?
Is there a convenient expression for δ?

To answer this question by carrying out computations with V (S, t) = CE(S, t),

the risk avoidance expression is δC = ∂CE(S,t)
∂S

, where the δ subscript identifies the

option. For V (S, t) = PE(S, t), it is δP = ∂PE(S,t)
∂S

. These two δ values share a nice
relationship, which, courtesy of Put–Call Parity Equation, is

δP = ∂PE(S, t)

∂S
= ∂CE(S, t)

∂S
− 1 = δC − 1. (7.5)

It remains to find a convenient expression for δC . Here, the CE(S, t) = SN(d1)−
Ee−r(T −t)N(d2) solution makes it tempting to write

δC = ∂CE(S, t)

∂S
= N(d1). (7.6)

Tempting, but maybe wrong: After all, N(d1) and N(d2) also are functions of S, so
they must be included in the partial derivative computation.

A way to be delivered from temptation is to embrace the product and chain rule
(to differentiate the integrals) to obtain

∂CE(S, t)

∂S
= N(d1) + S

∂N(d1)

∂S
− Ee−r(T −t) ∂N(d2)

∂S
, (7.7)

where ∂N(d)
∂S

= 1√
2π

e− d2
2 ∂d

∂S
. According to Equations 6.5, 6.6,

∂d1

∂S
= ∂d2

∂S
= 1

σ
√

T − t

[
1

S/Ee−r(T −t)

]
1

Ee−r(T −t)
= 1

Sσ
√

T − t
.
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Substituting this information into Equation 7.7 leads to

∂CE(S, t)

∂S
= N(d1) + 1

Sσ
√

2π(T − t)

[
Se− d2

1
2 − Ee−r(T −t)e− d2

2
2

]
. (7.8)

What a mess! That bracket term makes Equation 7.8 clumsy to use. Fortunately,
this clutter can be cleaned up with the a2−b2 = (a−b)(a+b) algebraic relationship.

To obtain this expression, factor e− d2
1
2 Ee−r(T −t) out of the bracket to leave behind

(
S

Ee−r(T −t)
− e

d2
1 −d2

2
2

)
=

(
S

Ee−r(T −t)
− e

(d1+d2)(d1−d2)

2

)
. (7.9)

Further help comes from Equations 6.5, 6.6, 6.9, which establishes that

d1 − d2 = σ
√

T − t

d1 + d2 = 2
ln

(
S

Ee−r(T −t)

)

σ
√

T −t
,

or, with a fortuitous cancelation,

d2
1 − d2

2 = (d1 − d2)(d1 + d2) = 2 ln

(
S

Ee−r(T −t)

)
.

Consequently,

e
(d1+d2)(d1−d2)

2 = e
ln

(
S

Ee−r(T −t)

)

= S

Ee−r(T −t)
. (7.10)

This familiar term, comparing the spot price with the present value of E, means
that the bracket on the right-hand side of Equation 7.9 vanishes! This, in turn,
forces the ugly Equation 7.8 bracket to disappear. All that remains is the desired
Equation 7.6! It is correct!

Similarly, the δP value (via the Put–Call Parity Equation) is

δP = ∂PE(S, t)

∂S
= ∂CE(S, t)

∂S
− 1 = N(d1) − 1 = −N(−d1), (7.11)

where the last equality reflects an on-going gift from Equation 7.1. Both expressions
are easy to remember by secretly embracing the Equation 7.6 approach, which,
while not correct, provides an accurate answer.1

It is of importance to interpret Equations 7.6 and 7.11. For CE(S, t), the hedge
ratio δC in CE(S, t) − δCS has the properties:

1Similarly, canceling the 6’s from 16
64 leads to the correct answer of 1

4 . Pure coincidence.
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• According to Equation 7.6, the δC values range from 0 < δC < 1. This makes
sense; with the negative sign of the −δCS term, a positive δC reflects going short.
Going short is a tactic embraced to handle a decline in the price of S while a Call
is a bet for an increase in S. Betting on both sides creates a hedge.
The positive value of δC with Equation 7.4 means that an increase in S should
increase the value of CE(S, t); similarly, a drop in S would decrease the value of
CE(S, t).

For an intuition break, ignore this mathematical argument and devise an explanation
based on the properties of CE(S, t).

• The hedge essentially disappears should δC ≈ 0, which requires d1 ≈ −∞. It is
interesting to explore how this can arise. One possibility is the S → 0 calamity.
A more temperate choice is for S to be smaller than the present value of E and
for σ

√
T − t ≈ 0. That is, a combination of a flat market near expiration date

would suffice; as discussed earlier, this scenario forces the ugly CE(S, t) → 0
setting.

For an intuition break, δC = 0 is a collapse of the CE(S, t)−δCS hedge. In the specified
situations, explain whether and why this makes sense.

• The other extreme of δC ≈ 1 requires d1 ≈ ∞. An associated circumstance
could represent a volatile market (large σ value) with an incredibly large S value
(so, from the previous chapter, CE(S, t) ≈ S). More realistically, it could be a
small σ

√
T − t value combined with S larger than the present value of E.

For an intuition break, why should these situations support a CE(S, t)−S hedge? If δC ≈
1 along with an increasing S, what is the expected increase in the value of CE(S, t)?
Does this make sense?

For PE(S, t), the hedge ratio δP from the PE(S, t) − δP S hedging relationship
has opposite properties reflecting the change in sign to δP = −N(−d1).

• The hedge ratio δP values range from −1 < δP < 0, where the negative
value requires the hedge, −δP S, to go long. This makes sense; PE(S, t) pays off
with decreasing prices, so the hedge must include something giving an improved
payoff with increased prices; going long is a choice.

• While the hedge is called off when δP ≈ 0, the circumstances are opposite of
that for a call by requiring −d1 ≈ −∞, or d1 ≈ ∞. This behavior could reflect
a volatile market (large σ value) or a small σ

√
T − t value combined with S >

Ee−r(T −t).

For an intuition break, what do these conditions mean about the corresponding value of
PE(S, t).

• The other extreme of δP ≈ −1 requires −d1 ≈ ∞, or d1 ≈ −∞. One scenario
is for S to be less than the present value of E and σ

√
T − t ≈ 0. Thus, a flat

market near expiration date would suffice.

For an intuition break, what do these conditions mean about the associated PE(S, t)

value? If S should increase, what happens to the value of PE(S, t)? What is the
accompanying intuition to justify this comment?
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7.2.2 Changing δ; the Gamma Greek �

The Section 7.2.1 material is intended to develop intuition about what to expect with
changes in the market. The approach is to use a partial derivative to determine how
the value of V changes with changes in S. Because the δ value was central to the
discussion, it becomes of interest to examine what it takes to change δ values.

What a can of worms! Answers can crawl into different directions depending
on what variables are emphasized: Is the interest in the ∂δ

∂σ
expression, which

determines how the volatility of the marker affects the hedge ratio? How about
the interest rate r , which would call for computing ∂δ

∂r
? All of these terms are of

interest, but the choice used here is how δ changes with changes in S. This leads to
the “Gamma” Greek value of

� = ∂δ

∂S
= ∂

∂S

[
∂V (S, t)

∂S

]
= ∂2V (S, t)

∂S2 . (7.12)

According to this expression, � is the second derivative, or the “acceleration” of
changes in V . With V (S, t) = CE(S, t), Equation 7.12 becomes

� = ∂δC

∂S
= ∂2CE(S,t)

∂S2 = ∂N(d1)
∂S

= 1√
2π

e− d2
1
2 ∂d1

∂S

= 1
Sσ

√
2π(T −t)

e− d2
1
2 .

(7.13)

Notice what seems to be a conflict of notation. Rather than citing �C = ∂δC

∂S
,

where the � subscript acknowledges the δC source, there is no Equation 7.13
subscript—the reason, it is not necessary. (Why? Hint: See Equation 7.5.)

And so, �δ ≈ ��S. Further highlighting these terms by returning to the ever
useful Taylor series where S is the only changing variable,

�CE(S, t) ≈ ∂CE(S, t)

∂S
�S + 1

2

∂2CE(S, t)

∂S2 [�S]2 = δC�S + 1

2
�[�S]2.

Knowing the δC and � values leads to sharper �CE(S, t) estimates.
Immediate observations about � include:

1. An increasing S value requires δC to increase (because the sign of � is positive),
but its rate of growth (Equation 7.13) flattens out.

2. With high volatility (a large σ value), � tends to be stable.

3. The e− d2
1
2 value is influenced by how S differs from the present value of E. And

so, with low volatility (small σ value) and the stock price near the present value
of E, expect � to have a larger impact.
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7.2.3 The Fake Greek—vega ν

Even a glance at the market exposes a changing volatility. This supports the
importance of appreciating how changes in σ affect an option’s value. In the
introductory comments of Section 7.2, it was asked whether the value of a Call
will go up or down with a change in σ ; answers follow.

This change is measured by “vega” defined as

ν = ∂V

∂σ
. (7.14)

There is a slight snag: ν is the Greek symbol for “nu;” not vega. In fact, nothing in
the Greek alphabet is called vega; vega is a fake Greek. On the other hand, it might
be possible to argue that ν strongly resembles the shape of the nonexistent vega, so
that is what it will be called!

It remains to determine how the value of an option changes with changes in
volatility. Computing with V (S, t) = CE(S, t), it follows that

ν = ∂CE(S, t)

∂σ
= S

∂N(d1)

∂σ
− Ee−r(T −t) ∂N(d2)

∂σ
,

where

∂N(d)

∂σ
= 1√

2π
e− d2

2
∂d

∂σ

and

∂d1

∂σ
= −

ln
(

S

Ee−r(T −t)

)

σ 2
√

T − t
+

√
T − t

2
,

∂d2

∂σ
= −

ln
(

S

Ee−r(T −t)

)

σ 2
√

T − t
−

√
T − t

2
.

Another mess! The value of vega is

ν = ∂CE(S,t)
∂σ

= − C
σ 2

[
ln

(
S

Ee−r(T −t)

)]
{Se

−d2
1

2 − Ee−r(T −t)e
−d2

2
2 }

+
√

T −t
2π

[
Se

−d2
1

2 +Ee−r(T −t)e

−d2
2

2

2

] (7.15)

with positive constant C = 1√
2π(T −t)

. Significant help in cleaning up this jumble

of terms comes from the derivation of δC = N(d1); recall, there it was shown
that the bracketed term of Equation 7.8 equals zero. The same term appears in
Equation 7.15, so
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ν =
√

T − t

2π

⎡

⎢⎣
Se

−d2
1

2 + Ee−r(T −t)e
−d2

2
2

2

⎤

⎥⎦ .

Using the same approach to obtain the a2 − b2 = (a − b)(a + b) exponent and
then the Equation 7.10 expression,

ν =
√

T −t
2π

Ee−r(T −t)e− d2
1
2

[
S

2Ee−r(T −t) + e

d2
1 −d2

2
2

2

]

=
√

T −t
2π

Ee−r(T −t)e− d2
1
2

[
S

2Ee−r(T −t) + S

2Ee−r(T −t)

]

= S

√
T −t
2π

e− d2
1
2 ,

(7.16)

with a sharply simpler expression!
The significance of this fake Greek for finance makes it worth highlighting the

expression by repeating it.

ν = ∂CE(S, t)

∂σ
= S

√
T − t

2π
e− d2

1
2 . (7.17)

Even though vega captures how CE(S, t) (and PE(S, t)) vary with volatility, the
explicit role played by σ is hidden in the d2

1 term. Yet, with an analysis similar to
the above, the manner in which vega changes with S and σ values can be extracted.
Anyway, should interest be restricted to σ changes,

�CE(S, t) = ν�σ. (7.18)

A sample of lessons learned from Equation 7.18 include:

1. An increase in the volatility causes the option price to increase.
2. The amount of increase depends on the magnitude of ν. As an example, the

longer away it is to expiration date (i.e., the larger the T − t value), the larger the
increase in the option’s price. Similarly, ν depends on S, so larger S values lead
to larger ν values.

7.2.4 More Members of the Greek Party

The approach is clear: To determine how an option’s value changes (locally) with
market changes, take its partial derivatives with respect to the relevant variable.
The derivations involve standard terms, which ensures that the computations are
elementary but occasionally messy. The value added comes from analyzing the
expressions to extract what they explain about changes in the value of options.

Some of the other Greeks follow:
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• As it must be expected, as expiration date draws nearer, opportunities for an
option to change in a desired direction fade away. This behavior is captured
with the Greek Theta, 
, which measures changes in an option as time to the
expiration date, τ = T − t , decreases. It is


 = ∂V

∂t
= −∂V

∂τ
. (7.19)

Thus, 
 measures how fast an option loses value as expiration date approaches.
The units are usually in terms of days.

• The derivation of the Black–Scholes Equation compares advantages of a given
stock with other opportunities. As this argument revolves about the interest rate,
effects of r are to be watched. The Greeks assign this responsibility to Rho, ρ,
which measures how an option’s value changes with changes in the interest rate:

ρ = ∂V

∂r
. (7.20)

• Vanna is another fake Greek; it captures settings that “vanna” be Greek by
measuring how δ changes with volatility, perhaps with hopes of identifying a
wheel of fortune. Thus, for V ,

Vanna = ∂δ

∂σ
= ∂

∂σ

[
∂V (S, t)

∂S

]
= ∂2V (S, t)

∂σ∂S
(7.21)

In other words, while Vanna is computed as a partial derivative of δ, it is the

mixed partial ∂2V (S,t)
∂σ∂S

.

• Reaching beyond Vanna, it is of interest to learn how δ changes with respect to
other variables.

It is very easy to go on and on. How does ρ vary with price changes? How does
Vanna change with the interest rate? (This leads to a third order derivative of V .)
What to explore depends on what you need to accomplish.

As an illustration, suppose both S and σ are varying, where, for purposes of
forecasting, you need a more refined estimate of �CE(S, t) than what follows from
the above. The natural approach is to appeal to the power of Taylor series to have

�CE ≈ ∂CE

∂S
�S + ∂CE

∂σ
�σ + 1

2

∂2CE

∂S2 (�S)2 + ∂2CE

∂S∂σ
�S�σ + 1

2

∂2CE

∂σ 2 (�σ)2.

Thanks to the Greeks, this becomes

�CE ≈ δC�S + ν�σ + 1

2
�(�S)2 + V anna�S�σ + 1

2
T BD(�σ)2,
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where T BD (To Be Determined) equals ∂2CE

∂σ 2 . Because ∂2CE

∂σ 2 = ∂
∂σ

[
∂CE

∂σ

]
= ∂ν

∂σ
,

the answer is T BD = ∂ν
∂σ

, which is not difficult to compute.
Whatever the need, the tools for achieving information are as described here:

Take the appropriate partial derivatives.

7.3 Exercises

1. The first exercise is to find the various partials of CE(S, t) in order to obtain a
better sense of how changes in variable affect its value.

(a) Find ∂CE(S,t)
∂r

. What does this partial mean should r increase? Should r

decrease?
(b) Find ∂CE(S,t)

∂σ
. What does this partial mean should the value of σ increase?

(The market is more volatile.) Should σ decrease? (The market calms down.)
(c) Find ∂CE(S,t)

∂t
.

2. This exercise does the same, but now for PE(S, t).

(a) Find ∂PE(S,t)
∂S

. What does this partial mean if S increases in value? If it
decreases in value?

(b) Find ∂PE(S,t)
∂r

. What does this partial mean should r increase? Should r

decrease?
(c) Find ∂PE(S,t)

∂σ
. What does this partial mean should the value of σ increase?

(The market is more volatile.) Should σ decrease? (The market calms down.)
(d) Find ∂PE(S,t)

∂t
.

3. Rather than a direct computation, a quick way to find the partials of PE(S, t) is
to use the workhorse of the Put–Call Parity Equation. Using this approach, find
the relationships between all of the described partial derivatives of CE(S, t) and
PE(S, t).

4. Suppose δP has a value close to −1. What can be said about the δC value?
5. In Equation 7.15, vega is computed in terms of CE(S, t). What would be the

value had PE(S, t) been used?
6. Let �C equal ∂δC

∂S
. What would be the �P value? How would Equation 7.5 help

in this computation?
7. Suppose δC = 0.6 and � = 2, where �S = 1

2 . Find an estimate for �CE(S, t).

8. Assume that the only two variables of interest are S and σ . Write down
the second order Taylor series approximation for �CE(S, t). For the various
partials, substitute the appropriate Greek name. One term needs a name and a
computation, what is it and what is its value? (The purpose of this exercise is to
answer the comments of the concluding paragraphs of the chapter.)

9. For a fixed S = 100 value, sketch the graph of δC for a small value of T − t , and
then a large value of T − t as the strike price E varies from 50 to 150.



Chapter 8
Sketching and the American Options

Although CE(S, t) and PE(S, t) have been analyzed and described in various ways,
something is missing. Similar to where a description of the moon shining over a
lake nested in the snow-capped mountains is a poor substitute for an actual picture,
what is needed is a portrait of these options. And so, we now give an outline how
to sketch the graphs. Of added value, the method can be adopted to sketch our new
acquaintances, the Greeks, to better understand where they exercise power.1

As one might hope, the graphs lead to surprises; surprises that help to understand
a new class of options. But first, the pictures.

8.1 Using δC and δP to Sketch CE(S, t) and PE(S, t)

Assistance in drawing the y = V (S, t) curves comes from the curve’s slope as given
by δ = ∂V (S,t)

∂S
. In this way, the earlier discussion of δ’s properties helps to describe

the curves of y = CE(S, t) and y = PE(S, t). The approach follows standard
calculus lessons: Find appropriate asymptotes.

8.1.1 Sketching CE(S, t)

To sketch y = CE(S, t), start with the reference curve CE(S, T ) = max(S − E, 0)

that describes CE’s behavior at expiration date. In Figure 8.1a, this curve lies on
the S-axis up to S = E, and then it moves off to infinity on the solid line with

1With a blink of an eye, sketching programs yield these drawings. But, in order to appreciate
properties and opportunities of options, we need to go beyond the graphs to understand why they
possess certain features. This is achieved though finding how to carry out the sketchs.
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Ee−r(T−t) E

a. Graph: y = max(0, S Ee−r(T−t)) b. y = CE(S, t)

Fig. 8.1 Sketching CE(S, t)

slope of unity. The main difference between this line and second reference curve
y = max(S − Ee−r(T −t), 0) is that the S-axis intercept for the second curve is at
the smaller Ee−r(T −t) value. This second curve is on the S-axis up to this intercept,
and then it becomes the dashed line with slope unity.

Following lessons learned in calculus, key aspects of the y = CE(S, t) curve
come from its asymptotic properties as S → 0 and S → ∞. For the first, earlier
computations show that if S → 0, then CE(S, t) → 0 and d1, d2 → −∞. The d1
values require δC = N(d1) → 0, so as S → 0 (which requires CE(S, t) → 0), its
slope flattens to approach zero.

Similarly, as S → ∞, then d1, d2 → ∞, which force N(d1), N(d2) → 1.

According to Equations 6.5, 6.6, CE(S, t) approaches the dashed reference line y =
S − Ee−r(T −t), but it never quite hits it. (Remember, δC < 1.) The closer CE(S, t)

approaches the dashed line, the closer the slope δC = N(d1) is to unity.
Between the two extremes, δC > 0, which prohibits the curve from experiencing

any dips or swanning movements. It remains to find an intermediate point; a natural
choice is where the spot price hits the present value of E, or S = Ee−r(T −t).

A reason for this choice is that it is conveniently located right where the dashed
line hits the S axis. A second reason is mathematical ease; with this choice
ln(S/Ee−r(T −t)) = 0, so Equation 6.9 becomes

d∗
1 = σ

2

√
T − t, d∗

2 = −σ

2

√
T − t, (8.1)

where N(d∗
1 ) = N(σ

2

√
T − t) > 1

2 and because −d∗
1 = d∗

2 , N(d∗
2 ) = 1 −N(d∗

1 ) <
1
2 . Consequently, the height of the curve at this point is

CE(Ee−r(T −t), t) = Ee−r(T −t)(N(d∗
1 ) − N(d∗

2 ))

= Ee−r(T −t)(2N(d∗
1 ) − 1)

(8.2)

with slope δC = N(d∗
1 ).

The height of the curve and size of the slope at this intermediate point depend
on the σ

2

√
T − t value; smaller values (e.g., near expiration date and/or a flat

market) place N(d1) ≈ 1
2 , while larger values (e.g., a volatile market) force a larger

N(d1) value. With this information, the curve y = CE(S, t) can be sketched, as in
Figure 8.1b.
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8.1.2 Sketching PE(S, t)

A similar approach holds to sketch

y = PE(S, t) = Ee−r(T −t)N(−d2) − SN(−d1).

Namely, find the two reference lines, the two asymptotic behaviors, an intermediate
point, and then draw a curve connecting all elements.

The first reference line describes what happens at expiration date, where
PE(S, T ) = max(E − S, 0). In Figure 8.2a, this is the positive part of solid line
y = E − S with intercept at S = E and slope −1. The second reference line,
depicted by the Figure 8.2a dashed line, is the y = max(Ee−r(T −t) − S, 0) curve.
As true with Figure 8.1a, the intercept of the dashed line on the S-axis is Ee−r(T −t),
which is smaller than E. As the line’s slope is −1, the dashed line meets the y-axis
at y = Ee−r(T −t).

For the first of the two asymptotes, as S → ∞, d1, d2 → ∞, which forces
PE(S, t) → 0. The slope of the curve is δ = −N(−d1), which approaches zero
for large S values. So, as S → ∞, the y = PE(S, t) curve flattens out while
approaching the S-axis.

The other direction has S → 0, so d1, d2 → −∞, or −d1,−d2 → ∞ and
N(−d1), N(−d2) → 1. Consequently,

as S → 0, PE(S, t) → Ee−r(T −t).

The left limit of the curve is the point (0, Ee−r(T −t)), which is where the dashed
line meets the y-axis. Away from the limit point, the slope (given by δ = −N(−d1))
satisfies δ > −1, so, although the y = PE(S, t) curve approaches the y =
max(Ee−r(T −t) − S) reference line as S → 0, it is always a bit to the right; it
never touches the dashed boundary.

For the same reasons S = Ee−r(T −t) was used as an intermediate point in
Figure 8.1b, it used here—with an added bonus that the d∗

1 , d∗
2 values already

are computed (Equation 8.1)! Thus the height of the curve at this point is
PE(Ee−r(T −t), t) = Ee−r(T −t)

[
N(−d∗

2 ) − N(−d∗
1 )

]
. But −d∗

1 = d∗
2 , so

Ee−r(T−t) E

a. Graph: y = max(0, Ee−r(T−t) S) b. PE(S, t)

Fig. 8.2 Sketching PE(S, t)
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PE(Ee−r(T −t), t) = Ee−r(T −t)
[
N(d∗

1 ) − N(d∗
2 )

]

has the same Ee−r(T −t)(2N(d∗
1 ) − 1) value of Equation 8.2. The slope differs;

according to the Put–Call Parity Equation, it is ∂PE(Ee−r(T −t),t)
∂S

= −N(−d∗
1 ) =

∂CE(Ee−r(T −t),t)
∂S

− 1 = N(d∗
1 ) − 1. This information leads to the Figure 8.2b sketch.

8.1.3 Comparing Curves

Some observations from the above computations:

1. The structure of the two curves, where yC = CE(S, t) moves from zero on the
S axis to infinity while yP = PE(S, t) moves from (0, Ee−r(T −t)) to the S axis
ensures that they intersect in a unique point. As computed above, the curves
CE(S, t) and PE(S, t) intersect precisely where S = Ee−r(T −t); it is where S

equals the present value of E.
2. The Figure 8.1b sketch of yC = CE(S, t) proves that the curve remains separated

from the reference line y = max(S − E, 0).
3. In contrast, if t < T , then the curve yP = PE(S, t) must cross the y = max(E −

S, 0) line. As shown in the next section, this difference makes a difference.
4. According to the Put–Call Parity Equation, at each S value, the slopes of the two

curves are related in that they satisfy ∂PE(S,t)
∂S

= ∂CE(S,t)
∂S

− 1. This expression
reflects the useful equality −N(−d) = N(d) − 1.

8.2 Arbitrage and the American Option

Here is a question that always should be asked: Are there any profit opportunities
hiding in these curves? To explore this issue, let’s jazz up the discussion by adding
flexibility in the use of an option. For an intuition break, what should this mean
concerning the value of an option, such as a Put or Call?

It is reasonable to expect that an added feature would be considered only if it
provides an advantage. In turn, this suggests:

1. An added feature is advantageous if the option gains value.
2. A way to identify added value is to determine whether the shift in rules provides

arbitrage opportunities.

To be specific, consider the American option; this is where the option can be
exercised at any time prior, or equal to the expiration date. There are stipulations;
it would be uncivilized to awaken someone at 3:25 am on a Sunday morning, when
a person may be recovering from adult beverages, to exercise a Put within the next
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five minutes. But even with reasonable restrictions, the American Put appears to
have more flexibility than the described properties of a European Put.

Does it? Is an American Put really more valuable? The added advantages sound
fabulous, but could they be fanciful, such as a guarantee for doubled earnings should
a unicorn stumble into your home? What needs to be determined is whether, when,
and why the new rules provide advantage. To sharpen the arbitrage sensor, check
Figure 8.2b to determine whether any opportunities are waiting to be exploited if a
European Put is suddenly converted into an American Put.

8.2.1 Simple Geometry for Puts

Before answering the posed question, consider some elementary geometry associ-
ated with a line with slope −1 as depicted in Figure 8.3a. Of interest is that isosceles
triangle with sides of length p1 and its hypotenuse with slope −1 that hits the x axis
at x = e1. If s1 is the distance from the origin to the right-angle vertex of the triangle,
then, trivially as displayed on the x-axis, s1 + p1 = e1.

Taking advantage of the triangle, another way to express the s1+p1 = e1 equality
is to traverse the x-axis to x = s1, and then take a sharp left turn to move p1 units
in the y direction to hit the slanted line. This line has the expression y = e1 − x, so
at x = s1, it is p1 = e1 − s1, which is the earlier e1 = s1 + p1. Another obvious
comment is that replacing p1 with p∗

1 < p1 (so in the y direction, p∗
1 is lower than

p1) means that s1 + p∗
1 < e1.

A strong clue that these comments have something to do with finance is that,
well, they are included in a book on finance. To see where this fits in, notice from
Figure 8.3b that the cost of a European Put must eventually fall below the y =
max(E − S, 0) line! To detect possible actions, consider a stock where its current
price is S1, as in Figure 8.3b. At this price, the value of the Put is PE(S1, t), which
is below the y = E − S curve. For precisely the same reason s1 + p∗

1 < e1, it
follows that

s1

p1

p1 e1
a. Curve y = max(e1 x, 0)

e1 − s1 = p1

p∗
1

b. y = PE(S, t)
S1 E

PE(S1, t)

Fig. 8.3 American Put
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S1 + PE(S1, t) < E. (8.3)

Any inequality that crops up in finance must be examined to determine whether
it has some arbitrage grease. Remember, key to arbitrage is

buy low, sell high!

The “sell high” phrase calls attention to the role of a Put; it permits selling the object
for the specified strike price of $E.

To check whether there are “buy low” opportunities, in order to exercise the
American Put, two items are needed:

1. a Put, PE(S, t), to exercise and
2. the stock to sell.

To assemble everything requires buying the Put for $PE(S1, t) and buying the stock
for $S1. The sum of expenditures is on the left-hand side of Equation 8.3. Because
the “buy low” cost is lower than the $E rewards, immediately exercise the Put, which
means selling the stock for $E. The Equation 8.3 difference of E −[S1 +PE(S1, t)]
is the arbitrage profit! Stated more precisely,

whenever the cost of an American PE(S, t) falls below the line y = E − S, arbitrage
opportunities exist!

To illustrate with numbers, suppose Katrina has an American Put with the value
P100(60, t) = 30. This means that the strike price is $100, the current value of the
asset is S = $60, and the cost of the Put is $30. The cost of buying a Put and the
stock, which is the left-hand side of Equation 8.3, is 30 + 60 = 90. The strike price,
which is the right-hand side of Equation 8.3, is 100. Because 90 < 100, Katrina has
a “buy low, sell high” opportunity, which means that

• Katrina should buy P100(60, t) for $30.
• She should buy the asset for $60. So far, the Put and the asset have been acquired

for a total cost of $90.
• Exercise the Put; that is, Katrina should sell the asset for the strike price of $100.
• She now can enjoy the guaranteed arbitrage profit of $100 − $90 = $10.

Intuition break. Whenever the cost of an American PE(S, t) falls below the line y = E −S,
arbitrage opportunities exist! Are there any opportunities should PE(S, t) be above, or on
the line, y = E − S? A Figure 8.3a type analysis, or a “buy high, sell low” story, will give
the answer.

8.2.2 Arbitrage with a Call

What about a Call? To sell-high, buy-low, the first step is to determine what needs
to be bought and what can be sold. To do anything, the American Call can be
purchased at the cost of $CE(S, t). Exercising the Call requires buying the stock at
the cost of $E.
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These are the purchases: Something needs to be sold, and it is the newly
purchased commodity with the current price of $S. If there is a buy-low, sell-high
opportunity, the arbitrage maxim is expressed as

CE(S, t) + E < S,

which is the same as

CE(S, t) < S − E (8.4)

For arbitrage opportunities, Equation 8.4 requires the cost $CE(S, t) of the Call to
be below the y = S − E line.

Describing this story in a different manner, convert the Figure 8.3a geometry into
a Figure 8.4a setting with the line y = max(x − e2, 0). In this figure, e2 is the first
segment on the x-axis, while c2 is the segment from e2 to s2. Again, the construction
shows that e2 + c2 = s2.

To translate this equality into the properties of the y = x − e2 line, at s2 take a
sharp left turn and move c2 units upwards. This construction hits the y = x − e2
at c2 = s2 − e2, which is the same s2 = c2 + e2 expression. Replacing c2 with
the smaller c∗

2 < c2, which is below the y = x − e2 line at x = s2, shows it is
insufficient: e2 + c∗

2 < s2. The “s2 − (e2 + c∗
2) difference is illustrated with the

Figure 8.4a gap on the x-axis between e2 and c∗
2 .

Transferring this discussion to Calls, if the graph of an American CE(S, t) ever
dips below the y = S − E line, then, as illustrated in Figure 8.4b (and computed
with Equation 8.4), the Figure 8.4a geometry applies.

Here is a problem: As computed in Figure 8.2b, it is impossible (should t <

T ) for a Call to even meet the y = S − E line, so it cannot dip below it. Thus,
this discussion has the flavor of “Here come the unicorns!”–fanciful but not of real
value. Actually, this is not the case. What provides value to the argument is that, as
shown in the next chapter, by including embellishments such as dividends and other
features, it is possible for the inequality of Equation 8.4 to arise and allow arbitrage!

s2

c2

c2e2
a. Curve y = max(x− e2, 0)

s2 − e2 = c2
c∗
2

b. y = CE(S, t)
S1E

CE(S1, t)

Fig. 8.4 American Call
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As an illustration with numbers, suppose C60(80, t) = 10 where the strike price
is $60, the current value of the asset is $80, and the current price of the Call is $10.
This issue is to determine whether this “American option” setting, where the Call
can be exercised at any time, provides personal opportunities.

The “buy low, sell high” arbitrage expression is as follows:

• Buy C60(80, t) for $10.
• Immediately exercise the contract in order to buy the asset for the strike price of

$60. So far, the total cost of purchases—the Call and the asset—is $70.
• Immediately sell the asset for the current price of $80.
• Enjoy the guaranteed arbitrage profit of $80 − $70 = $10.

How to Lose Money

To appreciate the general behavior of an American option, suppose P100(60, t) =
$45. To explore whether there are any arbitrage opportunities, consider what
happens should the above approach be mimicked:

• Buy the option for $45.
• Buy the asset for $60; the asset and Put have been purchased for $105.
• Exercise the Put to sell asset at the strike price of $100.
• Suffer the guaranteed loss!! of $100 - $105 = -$5.

The problem, of course, is that

P100(60, t) = 45 > E − S = 100 − 60.

More generally, if PE(S, t) is above or on the line y = E − S, forget trying to find
arbitrage openings.

Similarly, if C60(80, t) = 25, a failed attempt at arbitrage would be to:

• Buy C60(80, t) for $25.
• Immediately exercise the contract to buy the asset for the strike price of $60. So

far, the Call and the asset have been acquired for a total cost of $85.
• Immediately sell the asset for the current price of $80.
• Suffer the guaranteed loss of $80 − $85 = −$5.

The problem is that

C60(80, t) = 25 > S − E = 80 − 60 = 20.

Consequently, if CE(S, t) is above or on the line y = S − E, the arbitrage
opportunities have dried up.
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8.2.3 New Rules; the American Option

This American option differs from the European option by introducing flexibility
in when the option is exercised; it need not be at t = T . By providing added
opportunities, it is reasonable to expect that the value, the cost, of such an American
option is greater than that of a European one. This is the case.

The increase in value follows from the arbitrage examples: With the Call
example, a reasonable individual would not price C60(80, t) < 80−60 = 20; doing
so is an invitation to be exploited by providing an arbitrage opportunity. Arbitrage,
then, is the market pressure that can be expected to increase the price to at least
C60(80, t) = 20. More generally, for an American Call,

CE(S, t) ≥ S − E. (8.5)

A similar argument holds for the Put arbitrage example. To assign the price of
P100(60, t) < 100−60 = 40 is to welcome investors to exploit you. This means that
the price of the American P100(60, t) is at least $100 − $60 = $40. More generally,
for an American Put,

PE(S, t) ≥ E − S. (8.6)

The emphasis of above two examples is that the market pressure of arbitrage is
not available if PE(S, t) ≥ E − S for Puts, or if CE(S, t) ≤ S − E for Calls. In
these settings, expect the usual market pressures to apply.

To sketch the American Put, modify the sketch for the European Put in the
following way:

• If the sketch for the European Put is above the E−S line, that is the sketch for the
American Put. This reflects the fact that in this region, both the American and the
European Puts are subject to market pressures as reflected by the Black–Scholes
Equation.

• Once the sketch for the European Put hits the E − S line and seeks to go below,
alter the the American Put sketch to slide along the E − S line as S decreases in
value.

• This sketch has a sharp corner caused by bending the sketch of the European Put
to be on the E − S line. In fact, it has a smooth bend, which again is caused
by arbitrage (here the anticipation of the above scenarios play a role). All of
this can be made mathematically precise by modeling the American option with
variational equations, but, while interesting, this extends beyond the scope of
these notes.

A similar description holds for the sketch of the American Call; that is left for
the reader.



130 8 Sketching and the American Options

8.3 Exercises

1. This exercise involves a straddle with European options � = PE(S, t) +
CE(S, t) for t < T .

(a) Find the S value that is a critical point of �.
(b) Show that the slop of � is increasing for S larger than this critical point,

and the slope is decreasing for S smaller than this critical point. That is, the
critical point is a minimum.

(c) Sketch �.
(d) Suppose these are American options; find the sketch of �.

2. When sketching y = CE(S, t) and y = PE(S, t), it was discovered that CE

and PE have the same value at S = E−r(T −t). Derive this result by using the
Put–Call Pariety Equation.

3. Sketch both the European options C50(S, t) and P50(S, t) for t < T . Explain
the graph.

4. With European options, sketch the strangle P90(S, t) + C110(S, t).

5. Suppose the European P40(20) = 10 suddenly becomes an American option.
Are there arbitrage opportunities? Explain by carrying out computations.

6. Suppose the European P40(20) = 30 suddenly becomes an American option.
Are there arbitrage opportunities? Give an explanation.

7. Suppose the European C80(100) = 10 suddenly becomes an American option.
Are there arbitrage opportunities? Give an answer in terms of money earned or
lost.

8. Suppose the European C80(100) = 30 suddenly becomes an American option.
Are there arbitrage opportunities? Again, explain in terms of money lost or
gained.

9. Sketch both the American options C50(S, t) and P50(S, t) for t < T . Explain
what is happening with each graph.

10. Should all variables other than S remain fixed, sketch δC and δP . In doing so
and as with the sketches of CE(S, t), first compute the asymptotic behavior as
S → 0 and as S → ∞. Then use the sign of � as given in Equation 7.13. Also
notice from Equation 7.13 how the value of � (or the d1 value near the present
value of E) allows a more rapid jump near S = E as t → T . What does this
mean about the graph?

11. Important to the market is the effects of volatility. Find a crude sketch of ν

(Equation 7.12) with respect to S.



Chapter 9
Embellishments

A delight of this topic is that it is possible to go on and on and on. But closure
is needed somewhere, and it is with this chapter. The farewell message is to stress
that the powerful tools derived in this book can be used elsewhere: This concluding
chapter suggests how and where. At this stage, for instance, the reader probably can
develop at least a partial explanation for other topics encountered on the market. It
may take some imagination to find a surrogate for inflation, or pollution, or . . . , but
being able to do so is what offers a personal advantage.

Who knows, the reader might encounter an opportunity to invest in an option
involving the weather (they exist; for instance [4, 7]!), or pollution, or . . . The
problem is to understand how to hedge and where arbitrage opportunities arise. In
earlier chapters, a crucial form of hedging involved the form CE(S, t) − δS, where
the Call was balanced by going short on the asset. With pollution, or weather, or
. . . it is difficult to go short on these objects. Thus, a surrogate is needed.

9.1 Bonds

To be more precise, consider bonds. But first, recall that a bond is a debt obligation.
A local school may want to build a swimming school; a corporation may need a
new factory. To support these expensive projects, the amount of borrowed money
may exceed what can be obtained from a bank. So, to secure appropriate amounts of
money, the organization issues a bond. A person who buys a bond is loaning money
to the organization—bonds represent debt to the organization. At a “maturity date”
T , the amount borrowed—the face value—must be paid off.

Similar to how money in the bank receives interest, or mortgage payments on a
new home include interest charges, the organization, in repaying the bond, makes
interest payments on a regular basis. One version is a “fixed rate” where the interest
rate remains, well, fixed. Another possibility, the “variable rate,” is just that; the
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interest rate changes. Here the value of the bond is B(r, t) where r is the interest
rate, t is the current date.

Bonds, as true with options and stock, are traded on the market. This means it
is of value to determine what should be the current value of a bond B1(r, t). A first
approach would be to mimic the Black–Scholes approach by hedging both within
the bond market and between markets. Here is a problem: Earlier hedges had a
V (S, t) − δS form, but it is nonsense to try to hedge with

B1(r, t) − δr. (9.1)

How are you going to go short on 2% of interest? It resembles trying to go short
on “February 2,” which cannot be done in spite of fantasy movie’s claim that this
“Groundhog day” can repeat again and again.

A way to circumvent this puzzle is with a surrogate. In terms of bonds, find
something else that is affected by the same interest rates. The choice can be almost
anything, such as another bond, B2(r, t), with a different maturity date. With this
choice, the hedging (the analysis to find how B1(r, t) is affected by changes in the r

value) is

f (r, t) = B1(r, t) − δB2(r, t). (9.2)

Another complexity involves changes in the interest rate. While it is reasonable
to speculate that

�r = μr�t + σr�X, �X ∼ N(0,�t),

a moment’s reflection shows that this is silly. Why should the interest rate, or its
random fluctuations, be proportional to the current r value? Estimates on current
changes are based on careful research that is not described here. Instead, assume
that the change in the interest is given by

�r = g(r, t)�t + h(r, t)�X, �X ∼ N(0,�t). (9.3)

With this choice, Itô’s Lemma becomes (and this is an exercise)

�f = ∂f

∂r
�r + ∂f

∂t
�t + h2(r, t)

2

∂f 2

∂r2
�t. (9.4)

Returning to Bonds

With the help of Equation 9.4, the Equation 9.2 expression can be handled. Namely,

�f =
[
∂B1

∂r
− δ

∂B2

∂r

]
�r +

[
∂B1

∂t
− δ

∂B2

∂t

]
�t + h2(r, t)

2

[
∂2B1

∂r2 − δ
∂2B2

∂r2

]

(9.5)
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A first step is to eliminate explicit risk. The only place in Equation 9.5 where
unchecked randomness and risk arise is with the �X component of the �r term.
Setting this component equal to zero, or

δ = ∂B1

∂r
/
∂B2

∂r
(9.6)

captures the hedge ratio between the two bonds, which can be viewed as between
changes of the specified bond and a proxy for interest rates.

While Equation 9.6 suffices for many purposes, a natural next step is to determine
how the value of the bond compares with the general market. This can be done by
determining what would happen should the B1 − δB2 portfolio be invested in some
other market measure. What measure? That is up to the reader; perhaps the B1−δB2
portfolio could be invested in a bank that has a different interest rate, or in options,
or . . . Ah, what fun!!

9.2 Dividends, or Other Embellishments

Other issues with respect to the value of a Call or Put include the effect of
added payments, such as dividends. (A dividend is money that a company pays
stockholders as their share of company profits.) Although dividends can be paid in
sums at specified times, the simpler case considered here is where dividends are
paid on a continual basis.

To carry out the analysis, let d∗S�t represent the rate of the dividend being
offered as calibrated with respect to the value of the stock. A notational comment is
that the star in d∗ is included to ensure that d∗S is viewed as a value—a number—
rather than the differential of S.

Clearly, this added influx of money affects the �t coefficient in

�S = μS�t + σS�X.

For intuition as to why this is so, consider the change of value in any item, such
as your bank account with interest determined by �M = rM�t . This expression
must be modified if money is being added (perhaps grandmother Lillian is sending in
extra money) or subtracted (such as money removed for payment of college loans).
For our purposes, however, this term can be safely ignored. The reason is that when
computing �market� = �market (CE(S, t) − δS), the explicit �S term is dropped
(e.g., Equation 5.5, Exercise 1, Chapter 5) when defining the appropriate hedge ratio
choice of δ = ∂CE(S,t)

∂S
. Recall, this is done to avoid the explicit risk resulting from

�X.
This dividend term cannot be ignored when computing �market� =

�market [CE(S, t) − δS] because the dividend revenue is money coming in, so
it must be included. This leads to �market [CE(S, t) − δS] − δd∗S. To explain, the
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sign of −δ determines whether you are going long or short. By going long, −δd∗S
is dividend money to be enjoyed. By going short, −δd∗S is dividend money that is
lost. After determining the hedge ratio δ (to drop the �X term), we obtain

�market� =
[
∂CE

∂t
+ 1

2
σ 2S2 ∂2CE

∂S2
− d∗S ∂CE

∂S

]
�t.

The hedge with the market, as captured by putting all of � into a bank,
remains the same. Thus the new Black–Scholes Equation, which reflects continuous
dividends (or any continual payment based on the value and number of assets), is

∂CE

∂t
+ 1

2
σ 2S2 ∂2CE

∂S2 + (r − d∗)S ∂CE

∂S
− rCE = 0 (9.7)

This expression resembles the standard Black–Scholes Equation.

9.2.1 A New Problem

The difference between Equation 9.7 and the standard Black–Scholes equation is
that in one place the (r − d∗) coefficient replaces the r term. A first reaction is to
seek some mathematical trickery to convert Equation 9.7 into an expression where
the Equations 6.4, 6.9 solutions apply. Doing so requires finding some approach that
will convert the −rCE term of Equation 9.7 into −(r − d∗)CE.

If this is to be done, somehow an extra coefficient needs to be inserted into
Equation 9.7. One mathematical trickery approach is to exploit the properties of
exponentials and the product rule by defining

CE = eg(T −t)C∗
E (9.8)

where g is an unknown constant; its value will be selected to accomplish what is
desired. Using the product rule with CE = eg(T −t)C∗

E leads to

∂CE

∂t
= ∂eg(T −t)C∗

E

∂t
= −geg(T −t)C∗

E+eg(T −t) ∂C∗
E

∂t
= eg(T −t)

[
−gC∗

E + ∂C∗
E

∂t

]
.

All other Equation 9.7 partials are with respect to S, not t , so they treat this
eg(T −t) multiple as a constant that can be factored out of the partial derivative.
Thus, only the first partial (thanks to the product rule) introduces an extra term
that includes the sought after extra coefficient g. All terms have the same eg(T −t)

multiple, so Equation 9.7 becomes
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eg(T −t)

[
∂C∗

E

∂t
+ 1

2
σ 2 ∂2C∗

E

∂S2 + (r − d∗)S
∂C∗

E

∂S
− (r + g)C∗

E

]
= 0.

After dividing both sides of this equation by eg(T −t), what remain has the
appearance of the Black–Scholes equation if g = −d∗. So, define g = −d∗, which
means that Equation 9.7 becomes

∂C∗
E

∂t
+ 1

2
σ 2S2 ∂2C∗

E

∂S2
+ (r − d∗)S

∂C∗
E

∂S
− (r − d∗)C∗

E = 0 (9.9)

where the solution can be written down immediately by replacing the original
interest rate r in the d1 and d2 expressions with “pretend” interest rate (r − d∗).

Namely,

C∗
E(S, t) = SN(d∗

1 ) − Ee−(r−d∗)(T −t)N(d∗
2 ) (9.10)

where

d∗
1 = ln( S

Ee−(r−d∗)(T −t)
)

σ
√

T − t
+ 1

2
σ
√

T − t, d∗
2 = ln( S

Ee−(r−d∗)(T −t)
)

σ
√

T − t
− 1

2
σ
√

T − t .

(9.11)

9.2.2 Here Comes the Solution

The solution for a Call with dividends is given by the above along with Equation 9.8
to be

CE(S, t) = {e−d∗(T −t)N(d∗
1 )}S − Ee−r(T −t)N(d∗

2 ), (9.12)

where d∗
1 , d∗

2 are defined above.
An interesting feature is associated with the American Call. Namely, when

sketching the European Call (Section 8.1.1), it was discovered that CE(S, t),
without embellishments, never crosses the y = max(S − E, 0) graph. In part, this
is because the N(d1) coefficient for S approached unity for large S values. This
feature meant there were no arbitrage opportunities with a European Call suddenly
becoming American.

But the S coefficient for Equation 9.12 approaches e−d∗(T −t) < 1 for large S

values. The fact this slope is less than unity means that, eventually, the graph of
Equation 9.12 must cross the y = max(S−E, 0) graph. When this is so, it unleashes
arbitrage opportunities with the American option. In turn, this means that the graph
of the American option follows that of the European option (Equation 9.12) until
the graph hits the y = max(S − E, 0) line, when it then follows the S − E line.



136 9 Embellishments

a. y = CE(S, t) with dividends b. American CE(S, t)

Fig. 9.1 Dividends

(Arbitrage arguments of anticipation can be developed to assert that the curve does
not have the Figure 9.1b kink, but that subtlety is ignored here.)

9.3 Numerical Integration

Another topic is based on the reality that, more often than not, finding an analytical
solution for a partial differential equation is not possible. A substitute is a numerical
solution. While a full course in numerical integration is required to fully appreciate
what can be done, the spirit of the basic notions follows. A purpose of the following
(woefully incomplete) description is to reflect the power of Taylor series and
to hopefully encourage the reader to explore the fascinating topic of numerical
computations.

9.3.1 The Heat Equation

Suppose the problem is to find a solution for

∂u(x, t)

∂t
= ∂2u

∂x2
(9.13)

with given boundary conditions. To invent conditions, let u(x, 0) = x2 for 0 ≤ x ≤
1, u(0, t) = 0, and u(1, t) = 100.

Stated in words, the temperature along the bar at time zero is specified by
u(x, 0) = x2. For all future time, a block of ice is placed on one end of the bar
to create the boundary condition u(0, t) = 0 Celsius, while at the bar’s other end,
boiling water is placed to create the u(1, t) = 100 condition. The meaning of these
boundary conditions is not important for our purposes, but they are required to solve
the problem.
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The idea is to replace Equation 9.13 with a discrete approximation by using the
definition of a derivative and Taylor Series. Namely,

∂u(x, t)

∂t
= u(x, t + k) − u(x, t)

k
+ o(k) (9.14)

where the o(k) expression represents error terms much smaller than k. This just
means that the smaller the value of k, the more accurate the approximation obtained
after dropping o(k).

To find a representation for ∂2u
∂x2 , use Taylor series. Here, there are the two

expressions

u(x + h, t) − u(x, t) = ∂u(x, t)

∂x
h + 1

2

∂2u(x, t)

∂x2 h2 + o(h2) (9.15)

and (replacing h with −h)

u(x − h, t) − u(x, t) = ∂u(x, t)

∂x
(−h) + 1

2

∂2u(x, t)

∂x2 (−h)2 + o(h2). (9.16)

Adding these two equations (which nicely cancels the ∂u
∂x

terms!) and dividing by
h2 yields

∂2u(x, t)

∂x2
= 1

h2
[u(x + h, t) − 2u(x, t) + u(x − h, t)] + o(1). (9.17)

(so the o(1) portion represents terms that go to zero as h goes to zero).
Using Equations 9.14, 9.17, Equation 9.13 can be approximated by

u(x, t + k) − u(x, t)

k
= 1

h2 [u(x + h, t) − 2u(x, t) + u(x − h, t)] + o(1) + o(k).

(9.18)
Remember, the purpose of solving Equation 9.13 is to determine the behavior

of u in the future. This goal suggests rewriting Equation 9.18 to emphasize future
behavior; solve for u(x, t +k) to provide the value of u at the future time t +k based
on what is happening now at time t .

Letting β = k
h2 and, for the moment, ignoring the error terms (the o(k) etc terms),

the desired expression is

u(x, t + k) ≈ u(x, t) + β[u(x + h, t) − 2u(x, t) + u(x − h, t)] (9.19)

where the error is o(k). This means that the value of u(x, t + k) at the future time is
dictated by the current u(x, t) value as modified by

β[u(x + h, t) − 2u(x, t) + u(x − h, t)].
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For Equation 9.19 to yield reasonable answers, h, β, and k must have small values
(required to ignore the error terms)—the smaller their values, the more accurate the
solution.

Equation 9.19 specifies future behavior at u(x, t + k) by what happens now at x

(given by u(x, t)) as modified by the β[u(x + h, t) − 2u(x, t) + u(x − h, t)] term.

Of delight is how this expression offers intuition about how the ∂2u
∂x2 term affects

the solution. This is because the Taylor series representation for ∂2u
∂x2 introduces

the β[u(x + h, t) − 2u(x, t) + u(x − h, t)] modifying expression, which shows
how this term mixes up and combines neighboring behavior! And so, by using
the information specifying the value of u(x, 0) with Equation 9.19, the equation
describes what happens at u(x, k) for all values of x. After deriving this information,
it can be used to find the value of u(x, k + k) for the different values of x. The next
step is to continue with other x values.

To compute answers create a grid, as in Figure 9.2, where the vertical lines are
k units apart and the horizontal lines are h units apart. All of the values (from
boundary conditions) along the extreme vertical line to the left, which represent
t = 0 are given by u(x, 0) = x2. The goal is to find the values of u(x, k), which are
the values along the next vertical line.

As an illustration, notice the star (�) on the line t = k. To find u’s value at this
point by using Equation 9.19, substitute the given values of u(x, 0) at the three bullet
points. For instance, suppose k = 0.01, h = 0.2, so β = k

h2 = 0.01
0.04 = 1

4 . To find

the u( 1
2 , 0.01) value, substitute the appropriate u(x, 0) values into Equation 9.19 to

have

u( 1
2 , 0.01) ≈ u( 1

2 , 0) + β[u(x + h, t) − 2u(x, t) + u(x − h, t)]
= (0.5)2 + 1

4 [(0.52)2 − 2(0.5)2 + (0.48)2].

To compute the u value of the point immediately below the star, move the three
bullets down one level and use them as above. In this manner, all u values along the
t = k vertical line can be obtained. (There are some problems along the horizontal
boundaries; just “double up” on them.)

Fig. 9.2 A numerical
approximation
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Once the values along the t = k vertical line are found, use the same approach
to find the values along the second, t = 2k, vertical line. In this manner, the
solution can be approximated. (This is something that can be programed on an Excel
program.)

9.4 What Is Next?

These notes provide an intuitive introduction for financial issues that are based on
Puts, Calls, bonds, and so forth. Objectives included introducing tools and a way of
thinking. As indicated in this chapter, once these tools are understood, they extend
to a variety of new settings.

There is so much more to explore and be done. Throughout, attention was paid to
the basic assumptions that are needed to create the tools and results. Most of these
assumptions are reasonable—but primarily in quiet nicely behaved settings. This
comment identifies one area which needs more research. From a mathematical per-
spective, for instance, those assumptions of independence, identically distributed,
and so forth should be replaced with more realistic conditions. The assumptions of
a constant μ and σ need to be replaced with more general representations.

Much of this has been done, which means that these notes serve as an intuitive
introduction. To go further, the reader is encouraged to improve her/his abilities in
statistics, computer science, and almost all areas of mathematics.

There are many excellent books on options. For instance, although it was
published a decade and half before the current millennium, the book by Cox and
Rubinstein [2] has several insightful arguments that are worth reviewing. A standard
choice is the textbook by Hull [6]; also check the references.

9.5 Exercises

1. Fill in the details for Equation 9.4.
2. Derive Equation 9.6.
3. After the δ value is determined (Equation 9.6), suppose Equation 9.5 is

compared with the market as given by investing it in a bank that has a different
interest rate of r∗. Find the associated Black–Scholes Equation.

4. Fill in the details to derive Equation 9.7.
5. Show how to obtain Equation 9.10.
6. Carry out the argument and details of the graph for an American Call with

continuous dividends.
7. Use Equation 9.12 and the Put–Call Parity Equation to find the solution for

PE(S, t).

8. Find the Equation 9.19 version for ∂u(x,t)
∂t

= 2 ∂2u
∂x2 .
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9. Do the same for ∂u(x,t)
∂t

= ∂2u
∂x2 + ∂u

∂x
. There are many answers for this question

depending on how you represent ∂u
∂x

. One way is to use the Equation 9.17
approach of Equations 9.15, 9.16, but now use only the first derivative terms.
Doing so leads to

∂u(x, t)

∂x
= u(x + h, t) − u(x − h, t)

2h
.

The rest of this problem should now be immediate.

10. Now try ∂u(x,t)
∂t

= 3 ∂2u
∂x2 + ∂u

∂x
− u.

11. Derive a version of Equation 9.19 for

∂C

∂τ
= σ 2

2

∂2C

∂x2
+ (r − σ 2

2
)
∂C

∂x
− rC. (9.20)

Notice, Equation 9.20 is precisely the Black–Scholes Equation after using the
change of variables t = −τ and eliminating the variable coefficients. While the
heat equation may not be of interest to many readers, Equation 9.20 most surely
is. Everything above applies to deriving numerical answers.

12. For the above system of the heat equation, find the value of u(0.52, 0.01).

13. For the same boundary conditions and the above derived approximation

(Problem 2) for ∂u(x,t)
∂t

= ∂2u
∂x2 + ∂u

∂x
, find the value of u( 1

2 , 0.01).
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