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Preface

The fundamental purpose of this book is to teach you to understand mathematical
thinking. We have tried to do that in a way that is clear, engaging and emphasizes
the beauty of mathematics. You may be reading this book on your own or as a text
for a course you are enrolled in. Regardless of your reason for reading this book, we
hope that you will find it understandable and interesting.

Mathematics is a huge and growing body of knowledge; no one can learn more
than a fraction of it. But the essence of mathematics is thinking mathematically.
It is our experience that mathematical thinking can be learned by almost anyone
who is willing to make a serious attempt. We invite you to make such an attempt
by reading this book. It is important not to let yourself be discouraged if you can’t
easily understand something. Everyone learning mathematics finds some concepts
baffling at first, but usually, with enough effort, the ideas become clear.

One way in which mathematics gets very complex is by building on itself; some
mathematical concepts are built on a foundation of many other concepts and thus
require a great deal of background to understand. That is not the case for the topics
discussed in this book. Reading this book does not require any background other
than basic high school algebra and, for parts of Chapters 9 and 12, some high school
trigonometry.

A few questions, among the many, that you will easily be able to answer after
reading this book are the following: Is 13217 � 3792 � 4115 D 19111 � 29145 � 4312 � 475
(see Chapter 4)? Is there a largest prime number (i.e., a largest whole number
whose only factors are 1 and itself) (Theorem 1.1.2)? If a store sells one kind of
product for 9 dollars each and another kind for 16 dollars each and receives 143
dollars for the total sale of both, how many products did the store sell at each
price (Example 7.2.7)? How do computers send secret messages to each other
(Chapter 6)? Are there more fractions than there are whole numbers? Are there
more real numbers than there are fractions? Is there a smallest infinity? Is there
a largest infinity (Chapter 10)? What are complex numbers and what are they good
for (Chapter 9)?

The hardest theorem we will prove concerns construction of angles using a
compass and a straightedge. (A straightedge is a ruler-like device but without
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viii Preface

measurements marked on it.) If you are given any angle, it is easy to bisect it (i.e.,
divide it into two equal subangles) by using a compass and a straightedge (we will
show you how to do that). This and many similar results were discovered by the
Ancient Greeks. The Ancient Greeks wondered whether angles could be “trisected”
in the sense of being divided into three equal subangles using only a straightedge
and a compass. A great deal of mathematics beyond that conceived of by the Ancient
Greeks was required to solve this problem; it was not solved until the 19th century.
It can be proven that many angles, including angles of 60 degrees, cannot be so
trisected. We present a complete proof of this as an illustration of complicated but
beautiful mathematical reasoning.

The most important question you’ll be able to answer after reading this book,
although you would have difficulty formulating the answer in words, is: what is
mathematical thinking really like? If you read and understand most of this book and
do a fair number of the problems that are provided, you will certainly have a real
feeling for mathematical thinking.

We hope that you read this book carefully. Reading mathematics is not like
reading a novel, a newspaper, or anything else. As you go along, you have to
really reflect on the mathematical reasoning that we are presenting. After reading a
description of an idea, think about it. When reading mathematics you should always
have a pencil and paper at hand and rework what you read.

Mathematics consists of theorems, which are statements proven to be true. We
will prove a number of theorems. When you begin reading about a theorem, think
about why it may be true before you read our proof. In fact, at some points you
may be able to prove the theorem we state without looking at our proof at all. In
any event, you should make at least a small attempt before reading the proof in the
book. It is often useful to continue such attempts while in the middle of reading the
proof that we present; once we have gotten you a certain way towards the result, see
if you can continue on your own.

If you adopt such an approach and are patient, we believe that you will learn
to think mathematically. We are also convinced that you will feel that much of the
mathematics that you learn is beautiful, in the sense that you will find that the logical
argument that establishes the theorem is what mathematicians call “elegant.”

We chose the material for this book based on the following criteria: the mathe-
matics is beautiful, it is “real” in the sense that it is useful in many mathematical
contexts and it is accessible without a great deal of mathematical background. The
theorems that we prove have applications to mathematics and to problems in other
subjects. Some of these applications will be presented in what follows.

Each chapter ends with a section entitled “Problems.” The problems sections are
divided into three subsections. The first, “Basic Exercises,” consists of problems
whose solution you should do to assure yourself that you have an understanding of
the fundamentals of the material. The subsections entitled “Interesting Problems”
contain problems whose solutions depend upon the material of the chapter and
seem to have mathematical or other interest. The subsections labeled “Challenging
Problems” contain problems that we expect you will, indeed, find to be quite
challenging. You should not be discouraged if you cannot solve some of the
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problems. However, if you do solve problems that you find difficult at first,
especially those that we have labeled “challenging,” we hope and expect that
you will feel some of the pleasure and satisfaction that mathematicians feel upon
discovering new mathematics.

Each chapter is divided into sections. Important items, such as definitions and
theorems, are numbered in a way that locates them within a chapter and a section
of that chapter. We put the chapter number, then the section number, and then the
number of the item within that section. For example, 7.2.4 refers to the fourth item
in section two of chapter seven.

Since the only prerequisite for understanding this book is high school algebra, it
is suitable as a textbook for a wide variety of courses. In particular, it is our view
that it would be appropriate for courses for general arts and sciences students who
want to get an appreciation of mathematics, for courses for prospective teachers,
and for an introductory course for mathematics majors. Instructors can vary the
level of the course by the pace at which they proceed, the difficulty of the problems
that they assign, and the material they omit. The book is also written so as to be
useable for independent study by anyone who is interested in learning mathematics.
In particular, high school students who like mathematics might be directed to this
book.

Instructors and readers who wish to omit some of the material (perhaps only at
first) should be aware of the following. Chapters 1 through 7 each depend, at least to
some extent, on their predecessors. Chapter 8 uses some of the material in Chapter 4.
Chapters 9–11 are essentially independent of each other and of all other chapters.
Chapter 12 depends basically only on Chapter 11 and on the concepts of rational
and irrational numbers as discussed in Chapter 8.

This book was developed from lecture notes for a course that was given at the
University of Toronto over a period of 15 years. It has been greatly improved by
suggestions from students and colleagues. We are particularly grateful to Professor
Heydar Radjavi of the University of Waterloo for his assistance and to two
anonymous reviewers for their comments. In spite of all the suggestions, we are sure
that further improvements could be made. We would appreciate your sending any
comments, corrections, or suggestions to any of the authors at their e-mail addresses
given below.

Daniel Rosenthal: danielkitairosenthal@gmail.com
David Rosenthal: rosenthd@stjohns.edu
Peter Rosenthal: rosent@math.toronto.edu

Toronto, ON, Canada Daniel Rosenthal
Queens, NY, USA David Rosenthal
Toronto, ON, Canada Peter Rosenthal
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mailto:rosenthd@stjohns.edu
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Chapter 1
Introduction to the Natural Numbers

We assume basic knowledge about the numbers that we count with; that is, the
numbers 1, 2, 3, 4, 5, 6, and so on. These are called the natural numbers, and the set
consisting of all of them is usually denoted by N. They do seem to be very natural,
in the sense that they arose very early on in virtually all societies. There are many
other names for these numbers, such as the positive integers and the positive whole
numbers. Although the natural numbers are very familiar, we will see that they have
many interesting properties beyond the obvious ones. Moreover, there are many
questions about the natural numbers to which nobody knows the answer. Some of
these questions can be stated very simply, as we shall see, although their solution
has eluded the thousands of mathematicians who have attempted to solve them.

We assume familiarity with the two basic operations on the natural numbers,
addition and multiplication. The sum of two numbers will be indicated using the
plus sign “C.” Multiplication will be indicated by putting a dot in the middle of the
line between the numbers, or by simply writing the symbols for the numbers next to
each other, or sometimes by enclosing them in parentheses. For example, the product
of 3 and 2 could be denoted 3 � 2 or .3/.2/. The product of the natural numbers
represented by the symbols m and n could be denoted mn, or m � n, or .m/.n/.

We also, of course, need the number 0. Moreover, we require the negative
whole numbers as well. For each natural number n there is a corresponding
negative number �n such that n C .�n/ D 0. Altogether, the collection of
positive and negative numbers and 0 is called the integers. It is often denoted by Z.

We assume that you know how to add two negative integers and also how to
add a negative integer to a positive integer. Multiplication appears to be a bit
more mysterious. Most people feel comfortable with the fact that, for m and n

natural numbers, the product of m and .�n/ is �mn. What some people find more
mysterious is the fact that .�m/.�n/ D mn for natural numbers m and n; that is,
the product of two negative integers is a positive integer. There are various possible
explanations that can be provided for this, one of which is the following. Using the
usual rules of arithmetic:

D. Rosenthal et al., A Readable Introduction to Real Mathematics,
Undergraduate Texts in Mathematics, DOI 10.1007/978-3-319-05654-8__1,
© Springer International Publishing Switzerland 2014
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2 1 Introduction to the Natural Numbers

.�m/.�n/ C .�m/.n/ D .�m/.�n C n/ D .�m/.0/ D 0

Adding mn to both sides of this equation gives

.�m/.�n/ C .�m/.n/ C mn D 0 C mn

or

.�m/.�n/ C �
.�m/ C m

� � n D mn

Thus,

.�m/.�n/ C 0 � n D mn

so,

.�m/.�n/ D mn

Therefore, the fact that .�m/.�n/ D mn is implied by the other standard rules of
arithmetic.

1.1 Prime Numbers

One of the important concepts we will study is divisibility. For example, 12 is
divisible by 3, which means that there is a natural number (in this case, 4) such
that the product of 3 and that natural number is 12. That is, 12 D 3 � 4. In general,
we say that the integer m is divisible by the integer n if there is an integer q such that
m D nq. There are many other terms that are used to describe such a relationship.
For example, if m D nq, we may say that n and q are divisors of m and that each
of n and q divides m. The terminology “q is the quotient when m is divided by n”
is also used when n is different from 0. In this situation, n and q are also sometimes
called factors of m; the process of writing an integer as a product of two or more
integers is called factoring the integer.

The number 1 is a divisor of every natural number since, for each natural number
m, m D 1 � m. Also, every natural number m is a divisor of itself, since m D m � 1.

The number 1 is the only natural number that has only one natural number
divisor, namely itself. Every other natural number has at least two divisors, itself
and 1. The natural numbers that have exactly two natural number divisors are called
prime numbers. That is, a prime number is a natural number greater than 1 whose
only natural number divisors are 1 and the number itself. We do not consider the
number 1 to be a prime; the first prime number is 2. The primes continue: 3, 5, 7,
11, 13, 17, 19, 23, 29, 31, and so on.



1.1 Prime Numbers 3

And so on? Is there a largest prime? Or does the sequence of primes continue
without end? There is, of course, no largest natural number. For if n is any natural
number, then n C 1 is a natural number and n C 1 is bigger than n. It is not so easy
to determine if there is a largest prime number or not. If p is a prime, then p C 1 is
almost never a prime. Of course, if p D 2, then p C 1 D 3 and p and p C 1 are
both primes. However, 2 is the only prime number p for which p C 1 is prime. This
can be proven as follows. First note that, since every even number is divisible by 2,
2 itself is the only even prime number. Therefore, if p is a prime other than 2, then
p is odd and p C 1 is an even number larger than 2 and is thus not prime.

Is it nonetheless true that, given any prime number p, there is a prime number
larger than p? Although we cannot get a larger prime by simply adding 1 to a given
prime, there may be some other way of producing a prime larger than any given one.
We will answer this question after learning a little more about primes.

A natural number, other than 1, that is not prime is said to be composite.
(The number 1 is special and is neither prime nor composite.) For example, 4, 68,
129, and 2010 are composites. Thus, a composite number is a natural number other
than 1 that has a divisor in addition to itself and 1.

To determine if a number is prime, what potential factors must be checked to
eliminate the possibility that there are factors other than the number and 1? If
m D n � q, it is not possible that n and q are both larger than the square root of
m, for if two natural numbers are both larger than the square root of m, then their
product is larger than m. It follows that a natural number (other than 1) that is not
prime has at least one divisor that is larger than 1 and is no larger than the square
root of that natural number. Thus, to check whether or not a natural number m is
prime, you need not check whether every natural number less than m divides m.
It suffices to check if m has a divisor that is larger than 1 and no larger than the
square root of m. If it has such a divisor, it is composite; if it has no such divisor, it
is prime.

For example, we can conclude that 101 is prime since none of the numbers 2, 3,
4, 5, 6, 7, 8, 9, 10 are divisors of 101.

Using refinements of this idea and powerful computers, many very large
numbers have been shown to be prime. For example, 100,000,559 is prime, as is
22,801,763,489.

The fact that very large natural numbers have been shown to be prime does not
answer the question of whether there is a largest prime. The theorem that there is
always a prime larger than p for every prime number p cannot be established by
computing any number of specific primes, no matter how large.

Over the centuries, mathematicians have discovered many proofs that there is
no largest prime. We shall present one of the simplest and most beautiful proofs,
discovered by the Ancient Greeks.

We begin by establishing a preliminary fact that is required for the proof.
A statement that is proven for the purpose of being used to prove something else
is called a “lemma.” We need a lemma. The lemma that we require states that every
composite number has a divisor that is a prime number. (The proof that we present
of the lemma is quite convincing, but we shall subsequently present a more precise
proof.)



4 1 Introduction to the Natural Numbers

Lemma 1.1.1. Every natural number greater than 1 has a prime divisor.

Proof. If the number is prime, it is a divisor of itself. If the number, say m, is
composite, then m has at least one factorization m D n � q, where neither n nor
q is m or 1. If either of n or q is a prime number, then the lemma is established
for m. If n is not prime, then it has a factorization n D s � t , where s and t are natural
numbers other than 1 and n. It is clear that s and t are also divisors of m. Thus, if
either of s and t is a prime number, the lemma is established. If s is not prime, then
it can be factored into a product where neither factor is s or 1 and so on. Continued
factoring must get down to a factor that cannot itself be factored, i.e., to a prime.
That prime number is a divisor of m, so the lemma is established. ut

The following is the ingenious proof of the infinitude of the primes discovered
by the Ancient Greeks.

Theorem 1.1.2. There is no largest prime number.

Proof. Let p be any prime number. We must prove that there is some prime larger
than p. To do this, we will construct a number that we will show is either a prime
larger than p or has a prime divisor larger than p. In both cases we will conclude
that there is a prime number larger than p.

Here is how we construct the large number. Let M be the number obtained by
taking the product of all the prime numbers up to and including the given prime p

and then adding 1 to that product. That is,

M D .2 � 3 � 5 � 7 � 11 � 13 � 17 � 19 � � �p/ C 1

It is possible that M is a prime number. If that is so, then there is a prime number
larger than p, since M is obviously larger than p. If M is not prime, then it is
composite. We must show that there is a prime larger than p in this case as well.

Suppose, then, that M is composite. By Lemma 1.1.1, it follows that M has a
prime divisor. Let q be any prime divisor of M . We will show that q is larger than
p and thus that there is a prime larger than p in this case as well.

Consider possible values of q, a prime divisor of M . Surely q is not 2, for

2 � 3 � 5 � 7 � 11 � 13 � 17 � 19 � � �p
is an even number, and thus adding 1 to that number to get M produces an odd
number. That is, M is odd and is therefore not divisible by 2. Since q does divide
M , q cannot be equal to 2.

Similar reasoning shows that q cannot be 3. For

2 � 3 � 5 � 7 � 11 � 13 � 17 � 19 � � �p
is a multiple of 3, so the number obtained by adding 1, namely M , leaves a
remainder of 1 when it is divided by 3. That is, 3 is not a divisor of M . Since q

is a divisor of M , q is not 3.
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Exactly the same proof shows that q is not 5, since 5 is a divisor of

2 � 3 � 5 � 7 � 11 � 13 � 17 � 19 � � �p
and thus cannot be a divisor of M . In fact, the same proof establishes that q cannot
be any of the factors 2; 3; 5; : : : ; p of the product

2 � 3 � 5 � 7 � 11 � 13 � 17 � 19 � � �p
Since every prime number up to and including p is a factor of that product, q cannot
be any of those prime numbers. Therefore q is a prime number that is not any of the
prime numbers up to and includingp. It follows that q is a prime number larger than
p, and we have proven that there is a prime number larger than p in the case where
M is composite. Therefore, in both cases, the case where M is prime and the case
where M is composite, we have shown that there is a prime number larger than p.
This proves the theorem. ut

Every mathematician would agree that the above proof is “elegant.” If you find
the proof interesting, then you are likely to appreciate many of the other ideas that
we will discuss (and much mathematics that we do not cover as well).

1.2 Unanswered Questions

There are many questions concerning prime numbers that no one has been able
to answer. One famous question concerns what are called twin primes. Since 2
is the only even prime number, the only consecutive integers that are prime are
2 and 3. There are, however, many pairs of primes that are two apart, such as
f3; 5g, f29; 31g, f101; 103g, f1931; 1933g, and f104471; 104473g. Such pairs are
called twin primes. One question that remains unanswered, in spite of the efforts of
thousands of mathematicians over hundreds of years, is the question of whether
there is a largest pair of twin primes. Some very large pairs are known (e.g.,
f1000000007; 1000000009g and many pairs that are even much bigger), but no one
knows if there is a largest such.

Another very famous unsolved problem is whether or not the Goldbach Con-
jecture is true. Several hundred years ago, Goldbach Conjectured (that is, said
that he thought that it was probably true) that every even natural number larger
than 2 is the sum of two prime numbers (e.g., 6 D 3 C 3, 20 D 7 C 13,
and 22;901;764;048 D 22;801;763;489 C 100;000;559). Goldbach’s Conjecture
is known to be true for many very large even natural numbers, but no one has been
able to prove it in general (or to show that there is an even number that cannot be
written as the sum of two primes).

If you are able to solve the Twin Primes Problem or determine the truth or falsity
of Goldbach’s Conjecture, you will immediately become famous throughout the
world and your name will remain famous as long as civilization endures. On the
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other hand, it will almost undoubtedly prove to be extremely difficult to answer
either of those questions. On the other “other hand,” there is a very slight possibility
that one or both of those questions have a fairly simple answer that has been
overlooked by the many great and not-so-great mathematicians who have thought
about them. In spite of the small possibility of success you might find it interesting
to think about these problems.

1.3 Problems

Basic Exercises

1. Show that the following are composite numbers:

(a) 68
(b) 129
(c) 20,101,116

2. Which of the following are prime numbers?

(a) 79
(b) 153
(c) 537
(d) 851,486

3. Write each of the following numbers as a sum of two primes.

(a) 100
(b) 112

Interesting Problems

4. Verify that the Goldbach Conjecture holds for all even numbers up to 100.
5. Find a pair of twin primes such that each prime is greater than 1000.

Challenging Problems

6. Find a prime number p such that the number .2 � 3 � 5 � 7 � � �p/C 1 is not prime.
7. Suppose that p, p C 2, and p C 4 are prime numbers. Prove that p D 3.

[Hint: Why can’t p be 5 or 7?]
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8. Prove that, for every natural number n > 2, there is a prime number between n

and nŠ. (Recall that nŠ is defined to be n.n � 1/.n � 2/ � � �2 � 1.)
[Hint: There is a prime number that divides nŠ � 1.]
Note that this gives an alternate proof that there are infinitely many prime
numbers.

9. Prove that, for every natural number n, there are n consecutive composite
numbers.
[Hint: .n C 1/Š C 2 is a composite number.]

10. Show that a natural number has an odd number of different factors if and only
if it is a perfect square (i.e., it is the square of another natural number).
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Chapter 2
Mathematical Induction

There is a method for proving certain theorems that is called mathematical
induction. We will give a number of examples of proofs that use this method.
The basis for mathematical induction, however, is a statement about sets of
natural numbers. Recall that the set of all natural numbers is the set f1; 2; 3; : : : g.
Mathematical induction provides an alternate description of that set.

2.1 The Principle of Mathematical Induction

Suppose S is a set of natural numbers that has the following two properties:

A. The number 1 is in S .
B. Whenever a natural number is in S , the next natural number is also in S .

The second property can be stated a little more formally: If k is a natural number
and k is in S , then k C 1 is in S .

What can we say about a set S that has those two properties? Since 1 is in S (by
property A), it follows from property B that 2 is in S . Since 2 is in S , it follows
from property B that 3 is in S . Since 3 is in S , 4 is in S . Then 5 is in S , 6 is in S , 7
is in S , and so on. It seems clear that S must contain every natural number. That is,
the only set of natural numbers with the above two properties is the set of all natural
numbers. We state this formally:

The Principle of Mathematical Induction 2.1.1. If S is any set of natural num-
bers with the properties that

A. 1 is in S , and
B. k C 1 is in S whenever k is any number in S ,

then S is the set of all natural numbers.

D. Rosenthal et al., A Readable Introduction to Real Mathematics,
Undergraduate Texts in Mathematics, DOI 10.1007/978-3-319-05654-8__2,
© Springer International Publishing Switzerland 2014

9
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We gave an indication above of why the Principle of Mathematical Induction is
true. A more formal proof can be based on the following more obvious fact, which
we assume as an axiom.

The Well-Ordering Principle 2.1.2. Every set of natural numbers that contains at
least one element has a smallest element in it.

We can establish the Principle of Mathematical Induction from the Well-Ordering
Principle as follows. Suppose that the Well-Ordering Principle holds for all sets
of natural numbers. Let S be any set of natural numbers and suppose that S

has properties A and B of the Principle of Mathematical Induction. To prove the
Principle of Mathematical Induction, we must prove that the only such set S is the
set of all natural numbers. We will do this by showing that it is impossible that there
is any natural number that is not in S . To see this, suppose that S does not contain all
natural numbers. Then let T denote the set of all natural numbers that are not in S .
Assuming that S is not the set of all natural numbers is equivalent to assuming that
T has at least one element. If this were the case, then well-ordering would imply
that T has a smallest element. We will show that this is impossible.

Suppose that t was the smallest element of T . Since 1 is in S , 1 is not in T .
Therefore, t is larger than 1, so t � 1 is a natural number. Since t � 1 is less than
the smallest number t in T , t � 1 cannot be in T . Since T contains all the natural
numbers that are not in S , it follows that t � 1 is in S . This, however, leads to the
following contradiction. Since S has property B, .t � 1/ C 1 must also be in S .
But this is t , which is in T and therefore not in S . This shows that the assumption
that there is a smallest element of T is not consistent with the properties of S . Thus,
there is no smallest element of T and, by well-ordering, there is therefore no element
in T . This proves that S is the set of all natural numbers.

The way mathematical induction is usually explained can be illustrated by
considering the following example. Suppose that we wish to prove, for every natural
number n, the validity of the following formula for the sum of the first n natural
numbers:

1 C 2 C 3 C � � � C .n � 1/ C n D n.n C 1/

2

One way to prove that this formula holds for every n is the following. First, the
formula does hold for n D 1, for in this case the left-hand side is just 1 and the
right-hand side is 1�.1C1/

2
, which is equal to 1. To prove that the formula holds for all

n, we will establish the fact that whenever the formula holds for any given natural
number, the formula will also hold for the next natural number. That is, we will
prove that the formula holds for n D k C 1 whenever it holds for n D k. (This
passage from k to k C 1 is often called “the inductive step.”) If we prove this fact,
then, since we know that the formula does hold for n D 1, it would follow from this
fact that it holds for the next natural number, 2. Then, since it holds for n D 2, it
holds for the natural number that follows 2, which is 3. Since it holds for 3, it holds
for 4, and then for 5, and 6, and so on. Thus, we will conclude that the formula holds
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for every natural number. (This is really just the Principle of Mathematical Induction
as we formally stated it above. If S is the set of all n for which the formula for the
sum is true, showing that S has properties A and B leads to the conclusion that S is
the set of all natural numbers.)

To prove the formula in general, then, we must show that the formula holds for
n D k C 1 whenever it holds for n D k. Assume that the formula does hold for
n D k, where k is any fixed natural number. That is, we assume the formula

1 C 2 C 3 C � � � C .k � 1/ C k D k.k C 1/

2

We want to derive the formula for n D k C 1 from the above equation. That is easy
to do, as follows. Assuming the above formula, add k C 1 to both sides, getting

1 C 2 C 3 C � � � C .k � 1/ C k C .k C 1/ D k.k C 1/

2
C .k C 1/

We shall see that a little algebraic manipulation of the right-hand side of the above
will produce the formula for n D k C 1. To see this, simply note that

k.k C 1/

2
C .k C 1/ D k.k C 1/

2
C 2.k C 1/

2

D k.k C 1/ C 2.k C 1/

2

D .k C 2/.k C 1/

2

D .k C 1/.k C 2/

2

D .k C 1/
�
.k C 1/ C 1

�

2

Thus,

1 C 2 C 3 C � � � C .k � 1/ C k C .k C 1/ D .k C 1/
�
.k C 1/ C 1

�

2

This equation is the same as that obtained from the formula by substituting k C 1

for n. Therefore we have established the inductive step, so we conclude that the
formula does hold for all n.

There are many very similar proofs of similar formulas.

Theorem 2.1.3. For every natural number n,

12 C 22 C 32 C � � � C n2 D n.n C 1/.2n C 1/

6
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Proof. Let S be the set of all natural numbers for which the theorem is true. We
want to show that S contains all of the natural numbers. We do this by showing that
S has properties A and B.

For property A, we need to check that 12 D 1.1C1/.2�1C1/

6
. This is true, so S

satisfies property A. To verify property B, let k be in S . We must show that k C 1 is
in S . Since k is in S , the theorem holds for k. That is,

12 C 22 C 32 C � � � C k2 D k.k C 1/.2k C 1/

6

Using this formula, we can prove the corresponding formula for k C 1 as follows.
Adding .k C 1/2 to both sides of the above equation, we get

12 C 22 C 32 C � � � C k2 C .k C 1/2 D k.k C 1/.2k C 1/

6
C .k C 1/2

Now we do some algebraic manipulations to the right-hand side to see that it is what
we want:

k.k C 1/.2k C 1/

6
C .k C 1/2 D k.k C 1/.2k C 1/ C 6.k C 1/2

6

D
.k C 1/

�
k.2k C 1/ C 6.k C 1/

�

6

D
.k C 1/

�
.2k2 C k/ C .6k C 6/

�

6

D .k C 1/.2k2 C 7k C 6/

6

D .k C 1/.k C 2/.2k C 3/

6

The last equation is the formula in the case when n D k C 1, so k C 1 is
in S . Therefore, S is the set of natural numbers by the Principle of Mathematical
Induction. ut

Sometimes one wants to prove something by induction that is not true for all
natural numbers, but only for those bigger than a given natural number. A slightly
more general principle that we can use in such situations is the following.

The Generalized Principle of Mathematical Induction 2.1.4. Let m be a natural
number. If S is a set of natural numbers with the properties that

A. m is in S , and
B. k C 1 is in S whenever k is in S and is greater than or equal to m,

then S contains every natural number greater than or equal to m.
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The Principle of Mathematical Induction is the special case of the generalized
principle when m D 1. The generalized principle states that we can use induction
starting at any natural number, not just at 1.

For example, consider the question: which is larger, nŠ or 2n? Recall that nŠ D
n � .n � 1/ � .n � 2/ � � � 3 � 2 � 1. For n D 1, 2, and 3, we see that

1Š D 1 < 21 D 2

2Š D 2 � 1 D 2 < 22 D 2 � 2 D 4

3Š D 3 � 2 � 1 D 6 < 23 D 2 � 2 � 2 D 8

But when n D 4, the inequality is reversed, since

4Š D 4 � 3 � 2 � 1 D 24 > 24 D 2 � 2 � 2 � 2 D 16

When n D 5,

5Š D 5 � 4 � 3 � 2 � 1 D 120 > 25 D 2 � 2 � 2 � 2 � 2 D 32

If you think about it a bit, it is clear why eventually nŠ is much bigger than 2n.
In both expressions we are multiplying n numbers together, but for 2n we are always
multiplying by 2, whereas the numbers we multiply to build nŠ get larger and larger.
While it is not true that nŠ > 2n for every natural number (since it is not true for n D
1, 2, and 3), we can, as we now show, use the more general form of mathematical
induction to prove that it is true for all natural numbers greater than or equal to 4.

Theorem 2.1.5. nŠ > 2n for n � 4.

Proof. We use the Generalized Principle of Mathematical Induction with m D 4.
Let S be the set of natural numbers for which the theorem is true. As we saw above,
4Š > 24. Therefore, 4 is in S . Thus, property A is satisfied. For property B, assume
that k � 4 and that k is in S ; i.e., kŠ > 2k . We must show that .k C 1/Š > 2kC1.
Multiplying both sides of the inequality for k (which we have assumed to be true)
by k C 1 gives

.k C 1/.kŠ/ > .k C 1/ � 2k

The left-hand side is just .k C 1/Š; therefore we have the inequality

.k C 1/Š > .k C 1/ � 2k

Since k � 4, kC1 > 2. Therefore, the right-hand side of the inequality, .kC1/ �2k ,
is greater than 2 � 2k D 2kC1. Combining this with the above inequality, we get

.k C 1/Š > .k C 1/ � 2k > 2kC1
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Thus, k C 1 is in S , which verifies property B. By the Generalized Principle of
Mathematical Induction, S contains all natural numbers greater than or equal to 4.

ut
The following is an example where mathematical induction is useful in establish-

ing a geometric result. We will use the word “tromino” to denote an L-shaped object
consisting of three squares of the same size. That is, a tromino looks like this:

Another way to think of a tromino is that it is the geometric figure obtained by taking
a square that is composed of four smaller squares and removing one of the smaller
squares.

We are going to consider what geometric regions can be covered by trominos, all
of which have the same size and that do not overlap each other. As a first example,
start with a square made up of 16 smaller squares (i.e., a square that is “4 by 4”) and
remove one small square from a corner of the square:

Can the region that is left be covered by trominos (each made up of three small
squares of the same size as the small squares in the region) that do not overlap each
other? It can:

We can use mathematical induction to prove the following.

Theorem 2.1.6. For each natural number n, consider a square consisting of 22n

smaller squares. (That is, a 2n �2n square.) If one of the smaller squares is removed
from a corner of the large square, then the resulting region can be completely
covered by trominos (each made up of three small squares of the same size as the
small squares in the region) in such a way that the trominos do not overlap.

Proof. To begin a proof by mathematical induction, first note that the theorem is
certainly true for n D 1; the region obtained after removing a small corner square is
a tromino, so it can be covered by one tromino.

Suppose that the theorem is true for n D k. That is, we are supposing that if a
small corner square is removed from any 2k � 2k square consisting of 22k smaller
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squares, then the resulting region can be covered by trominos. The proof will be
established by the Principle of Mathematical Induction if we can show that the same
result holds for n D k C 1. Consider, then, any 2kC1 � 2kC1 square consisting of
smaller squares. Remove one corner square to get a region that looks like this:

The region can be divided into four “medium-sized” squares that are each 2k�2k ,
like this:
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Now place a tromino in the middle of the region, as illustrated below.

The four “medium-sized” squares of the region are each 2k � 2k and, because
of the tromino in the middle, the “medium-sized” squares remaining to be covered
each have one corner covered or missing.

By the inductive hypothesis, trominos can be used to cover the rest of each of
the four “medium-sized” squares. This leads to a covering of the entire 2kC1 � 2kC1

square, thus finishing the proof by mathematical induction. ut

2.2 The Principle of Complete Mathematical Induction

There is a variant of the Principle of Mathematical Induction that is sometimes very
useful. The basis for this variant is a slightly different characterization of the set of
all natural numbers.

The Principle of Complete Mathematical Induction 2.2.1. (Sometimes called
“the Principle of Strong Mathematical Induction.”) If S is any set of natural
numbers with the properties that

A. 1 is in S , and
B. kC1 is in S whenever k is a natural number and all of the natural numbers from

1 through k are in S ,

then S is the set of all natural numbers.



2.2 The Principle of Complete Mathematical Induction 17

The informal and formal proofs of the Principle of Complete Mathematical
Induction are virtually the same as the proofs of the Principle of (ordinary)
Mathematical Induction. First consider the informal proof. If S is any set of natural
numbers with properties A and B of the Principle of Complete Mathematical
Induction, then, in particular, 1 is in S . Since 1 is in S , it follows from property
B that 2 is in S . Since 1 and 2 are in S , it follows from property B that 3 is in S .
Since 1, 2, and 3 are in S , 4 is in S and so on. It is suggested that you write out the
details of the formal proof of the Principle of Complete Mathematical Induction as
a consequence of the Well-Ordering Principle.

Just as for ordinary induction, the Principle of Complete Mathematical Induction
can be generalized to begin at any natural number, not just 1.

The Generalized Principle of Complete Mathematical Induction 2.2.2. If S is
any set of natural numbers with the properties that

A. m is in S , and
B. k C 1 is in S whenever k is a natural number greater than or equal to m and all

of the natural numbers from m through k are in S ,

then S contains all natural numbers greater than or equal to m.

There are many situations in which it is difficult to directly apply the Principle of
Mathematical Induction but easy to apply the Principle of Complete Mathematical
Induction. One example of such a situation is a very precise proof of the lemma
(Lemma 1.1.1) that was required to prove that there is no largest prime number.

Lemma 2.2.3. Every natural number greater than 1 has a prime divisor.

The following is a statement that clearly implies the above lemma. Note that we
employ the convention that a single prime number is a “product of primes” where
the product has only one factor.

Theorem 2.2.4. Every natural number other than 1 is a product of prime numbers.

Proof. We prove this theorem using the Generalized Principle of Complete Mathe-
matical Induction starting at 2. Let S be the set of all n that are products of primes.
It is clear that 2 is in S , since 2 is a prime. Suppose that every natural number from
2 up to k is in S . We must show, in order to apply the Generalized Principle of
Complete Mathematical Induction, that k C 1 is in S .

The number kC1 cannot be 1. We must therefore show that either it is prime or is
a product of primes. If kC1 is prime, we are done. If kC1 is not prime, then kC1 D
xy where each of x and y is a natural number strictly between 1 and k C 1. Thus x
and y are each at most k, so, by the inductive hypothesis, x and y are both in S . That
is, x and y are each either primes or the product of primes. Therefore, xy can be
written as a product of primes by writing the product of the primes comprising x (or
x itself if x is prime) times the product of the primes comprising y (or y itself if y
is prime). Thus, by the Generalized Principle of Complete Mathematical Induction
starting at 2, S contains all natural numbers greater than or equal to 2. ut
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We now describe an interesting theorem whose statement is a little more difficult
to understand. (If you find this theorem too difficult, you need not consider it; it
won’t be used in anything that follows. You might wish to return to it at some later
time.)

We begin by describing the case where n D 5. Suppose there is a pile of 5
stones. We are going to consider the sum of certain sequences of numbers obtained
as follows. Begin one such sequence by dividing the pile into two smaller piles, a
pile of 3 stones and a pile of 2 stones. Let the first term in the sum be 3 � 2 D 6.
Repeat this process with the pile of 3 stones: divide it into a pile of 2 stones and a
pile consisting of 1 stone. Add 2 � 1 D 2 to the sum. The pile with 2 stones can be
divided into 2 piles of 1 stone each. Add 1 � 1 D 1 to the sum. Now go back to the
pile of 2 stones created by the first division. That pile can be divided into 2 piles of
1 stone each. Add 1 � 1 D 1 to the sum. The total sum that we have is 10.

Let’s create another sum in a similar manner but starting a different way. Divide
the original pile of 5 stones into a pile of 4 stones and a pile of 1 stone. Begin this
sum with 4 � 1 D 4. Divide the pile of 4 stones into two piles of 2 stones each and
add 2 � 2 D 4 to the sum. The first pile of 2 stones can be divided into two piles of
1 stone each, so add 1 � 1 D 1 to the sum. Similarly, divide the second pile of 2 into
two piles of 1 each and add 1 � 1 D 1 to the sum. The sum we get proceeding in this
way is also 10.

Is it a coincidence that we got the same result, 10, for the sums we obtained in
quite different ways?

Theorem 2.2.5. For any natural number n greater than 1, consider a pile of n
stones. Create a sum as follows:divide the given pile of stones into two smaller
piles. Let the product of the number of elements in one smaller pile and the number
of elements in the other smaller pile be the first term in the sum. Then consider
one of the smaller piles and (unless it consists of only one stone) divide that pile
into two smaller piles and let the product of the number of stones in those piles
be the second term in the sum. Do the same for the other smaller pile. Continue
dividing, multiplying, and adding terms to the sum in all possible ways. No matter
what sequence of divisions into subpiles is used, the total sum is n.n � 1/=2.

Proof. We prove this theorem using Generalized Complete Mathematical Induction
beginning with n D 2. Given any pile of 2 stones, there is only one way to divide
it: into two piles of 1 each. Since 1 � 1 D 1, the sum is 1 in this case. Notice that
1 D 2.2 � 1/=2, so the formula holds for the case n D 2.

Suppose now that the formula holds for all of n D 2; 3; 4; : : : ; k. Consider any
pile of kC1 stones. Note that kC1 is at least 3. We must show that for any sequence
of divisions, the resulting sum is .k C 1/.k C 1 � 1/=2 D k.k C 1/=2.

Begin with any division of the pile into two subpiles. Call the number of stones
in the subpiles x and y respectively. Consider first the situation where x D 1. Then
the first term in the sum is 1 �y D y. Since x D 1 and x Cy D k C1, we know that
y D k. The process is continued by dividing the pile of y stones. By the inductive
hypothesis (since y D k, which is greater than or equal to 2), the sum obtained by
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completing the process on a pile of y stones is y.y � 1/=2. Thus, the total sum for
the original pile of k C 1 stones in this case is

y C y.y � 1/

2
D 2y C .y2 � y/

2
D y2 C y

2
D y.y C 1/

2
D k.k C 1/

2

If y D 1, the same proof can be given by simply interchanging the roles of x and y

in the previous paragraph.
The last, and most interesting, case is when neither x nor y is 1. In this case,

both x and y are greater than or equal to 2 and less than k. The first term in the
sum is then xy. Continuing the process will give a total sum that is equal to xy

plus the sum for the pile of x stones added to the sum for the pile of y stones.
Therefore, using the inductive hypothesis, the sum for the original pile of k C 1

stones is xyCx.x�1/=2Cy.y�1/=2. We must show that this sum is k.kC1/=2.
Recall that k C 1 D x C y, so x D k C 1 � y. Using this, we see that

xy C x.x � 1/

2
C y.y � 1/

2

D 2.k C 1 � y/y

2
C .k C 1 � y/.k � y/

2
C y.y � 1/

2

D 2ky C 2y � 2y2

2
C k2 C k � ky � ky � y C y2

2
C y2 � y

2

D k2 C k

2

D k.k C 1/

2

This completes the proof. ut
Mathematics is the most precise of subjects. However, human beings are not

always so precise; they must be careful not to make mistakes. See if you can figure
out what is wrong with the “proof” of the following obviously false statement.

False Statement. All human beings are the same age.

“Proof”. We will present what, at first glance at least, appears to be a proof of the
above statement. We begin by reformulating it as follows: For every natural number
n, every set of n people consists of people the same age. The assertion that “all
human beings are the same age” would clearly follow as the case where n is the
present population of the earth. We proceed by mathematical induction. The case
n D 1 is certainly true; a set containing 1 person consists of people the same age.
For the inductive step, suppose that every set of k people consists of people the same
age. Let S be any set containing k C 1 people. We must show that all the people in
S are the same age as each other.

List the people in S as follows:

S D fP1; P2; : : : ; Pk; PkC1g
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Consider the subset L of S consisting of the first k people in S ; that is,

L D fP1; P2; : : : ; Pkg

Similarly, let R denote the subset consisting of the last k elements of S ; that is,

R D fP2; : : : ; Pk; PkC1g

The sets L and R each contain k people, and so by the inductive hypothesis each
consists of people who are the same age as each other. In particular, all the people in
L are the same age as P2. Also, all the people in R are the same age as P2. But every
person in the original set S is in either L or R, so all the people in S are the same
age as P2. Therefore, S consists of people the same age, and the assertion follows
by the Principle of Mathematical Induction.

What is going on? Is it really true that all people are the same age? Not likely. Is
the Principle of Mathematical Induction flawed? Or is there something wrong with
the above “proof”?

Clearly there must be something wrong with the “proof.” Please do not read
further for at least a few minutes while you try to find the mistake.

Wait a minute. Before you read further, please try for a little bit longer to see if
you can find the mistake.

If you haven’t been able to find the error yourself, perhaps a hint will help. The
proof of the case n D 1 is surely valid; a set with one person in it contains a person
with whatever age that person is. What about the inductive step, going from k to
k C 1? For it to be valid, it must apply for every natural number k. To conclude that
an assertion holds for all natural numbers given that it holds for n D 1 requires that
its truth for n D k C 1 is implied by its truth for n D k, for every natural number k.
In fact, there is a k for which the above derivation of the case n D k C 1 from the
case n D k is not valid. Can you figure out the value of that k?

Okay, here is the mistake. Consider the inductive step when k D 1; that is, going
from 1 to 2. In this case, the set S would have the form

S D fP1; P2g

Then, L D fP1g and R D fP2g.
The set L does consist of people the same age as each other, as does the set R.

But there is no person who is in both sets. Thus, we cannot conclude that everyone
in S is the same age. This shows that the above “proof” of the inductive step does
not hold when k D 1. In fact, the following is true.

True Statement. If every pair of people in a given set of people consists of people
the same age, then all the people in the set are the same age.

Proof. Let S be the given set of people; suppose S D fP1; P2; : : : ; Png. For each i

from 2 to n, the pair fP1; Pig consists of people the same age, by hypothesis. Thus,
Pi and P1 are the same age for every i , so every person in S is the same age as P1.
Hence, everyone in S is the same age. ut



2.3 Problems 21

2.3 Problems

Basic Exercises

1. Prove, using induction, that for every natural number n:

1 � 2 C 2 � 3 C 3 � 4 C � � � C n � .n C 1/ D n.n C 1/.n C 2/

3

2. Prove, using induction, that for every natural number n:

1

1 � 2 C 1

2 � 3 C � � � C 1

n � .n C 1/
D n

n C 1

3. Prove, using induction, that for every natural number n:

2 C 22 C 23 C � � � C 2n D 2nC1 � 2

4. Prove, using induction, that for every natural number n:

1

2
C 2

22
C 3

23
C � � � C n

2n
D 2 � n C 2

2n

Interesting Problems

5. Prove the following statement by induction: For every natural number n, every
set with n elements has 2n subsets. (Note that the empty set is a subset of
every set.)

6. Prove, using induction, that for every natural number n:

1 C 1p
2

C 1p
3

C � � � C 1p
n
< 2

p
n

7. Prove by induction that 3 divides n3 C 2n, for every natural number n.
8. Show that 3n > n2 for every natural number n.
9. Use induction to prove that 2n > n2, for every n > 4.

10. Show that for every natural number n > 1 and every real number r different
from 1:

1 C r C r2 C � � � C rn�1 D rn � 1

r � 1
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Challenging Problems

11. Prove the Principle of Complete Mathematical Induction using the Well-
Ordering Principle.

12. Prove the Well-Ordering Principle using the Principle of Complete Mathemati-
cal Induction.

13. One version of a game called Nim is played as follows. There are two players
and two piles consisting of the same natural number of objects; for this example,
suppose the objects are nickels. At each turn, a player removes some number of
nickels from either one of the piles. Then the other player removes some number
of nickels from either of the piles. The players continue playing alternately until
the last nickel is removed. The winner is the player who removes the last nickel.

Prove: If the second player always removes the same number of nickels that
the first player last removed and does so from the other pile (thus making the
piles equal in number after the second player’s turn), then the second player will
win.

14. Define the nth Fermat number, Fn, by Fn D 22
n C 1 for n D 0; 1; 2; 3; : : : . The

first few Fermat numbers are F0 D 3, F1 D 5, F2 D 17, F3 D 257.

(a) Prove by induction that F0 � F1 � � �Fn�1 C 2 D Fn, for n � 1.
(b) Use the formula in part (a) to prove that there are an infinite number of

primes, by showing that no two Fermat numbers have any prime factors in
common.
[Hint: For each Fn, let pn be a prime divisor of Fn and show that pn1 6D pn2

if n1 6D n2.]

15. The sequence of Fibonacci numbers is defined as follows: x1 D 1, x2 D 1, and,
for n > 2, xn D xn�1 C xn�2. Prove that

xn D 1p
5

" 
1 C p

5

2

!n

�
 
1 � p

5

2

!n#

for every natural number n.

[Hint: Use the fact that x D 1Cp
5

2
and x D 1�p

5
2

both satisfy 1 C x D x2.]
16. Prove the following generalization of Theorem 2.1.6:

Theorem. For each natural number n, consider a square consisting of 22n

smaller squares (i.e., a 2n � 2n square). If any one of the smaller squares
is removed from the large square (not necessarily from the corner), then the
resulting region can be completely covered by trominos (each made up of three
small squares of the same size as the small squares in the region) in such a way
that the trominos do not overlap.



Chapter 3
Modular Arithmetic

Consider the number obtained by adding 3 to the number consisting of 2 to the
power 3,000,005; that is, consider the number 3 C 23;000;005. This is a very big
number. No computer that presently exists, or is even conceivable, would have
sufficient capacity to display all the digits in that number.

When that huge number is divided by 7, what remainder is left? You can’t use
your calculator, or any computer, because they can’t count that high. However, this
and similar questions are easily answered using a kind of “calculus” of divisibility
and remainders that is called modular arithmetic. Another application of this study
will be to prove that a natural number is divisible by 9 if and only if the sum of
its digits is divisible by 9. The mathematics that we develop in this chapter has
numerous other applications, including, for example, providing the basis for an
extremely powerful method for sending coded messages (see Chapter 6).

3.1 The Basics

Recall that we say that the integer n is divisible by the integer m if there exists an
integer q such that n D mq. In this situation, we also say that m is a divisor of n, or
m is a factor of n.

The fundamental definition for modular arithmetic is the following.

Definition 3.1.1. For any fixed natural number m greater than 1, we say that the
integer a is congruent to the integer b modulo m if a � b is divisible by m. We use
the notation a � b .mod m/ to denote this relationship. The number m in this
notation is called the modulus.

Here are a few examples:

14 � 8 .mod 3/, since 14 � 8 D 6 is divisible by 3.
252 � 127 .mod 5/, since 252 � 127 D 125 is divisible by 5.
3 � �11 .mod 7/, since 3 � .�11/ D 14 is divisible by 7.

D. Rosenthal et al., A Readable Introduction to Real Mathematics,
Undergraduate Texts in Mathematics, DOI 10.1007/978-3-319-05654-8__3,
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Congruence shares an important property with equality.

Theorem 3.1.2. If a � b .mod m/ and b � c .mod m/, then a � c .mod m/.

Proof. The hypothesis states that a � b and b � c are both divisible by m; that is,
there are integers t and s such that a � b D tm and b � c D sm. Thus, a � c D
a � b C b � c D tm C sm D .t C s/m. In other words, a � c is divisible by m. By
definition, then, a � c .mod m/. ut

The theorem just proven shows that we can replace numbers in a congruence
modulo m by any numbers congruent to them modulo m.

Although the modulus m must be bigger than 1, there is no such restriction on the
integers a and b; they could even be negative. In the case where a and b are positive
integers, the relationship a � b .mod m/ can be expressed in more familiar terms.

Theorem 3.1.3. When a and b are nonnegative integers, the relationship a � b

.mod m/ is equivalent to a and b leaving equal remainders upon division by m.

Proof. Consider dividing m into a; if it “goes in evenly,” then m is a divisor of a and
the remainder r is 0. In any case, there are nonnegative integers q and r such that
a D qm C r ; q is the quotient and r is the remainder. The nonnegative number r is
less than m, since it is the remainder. Similarly, divide b by m, getting b D q0mCr0.
This yields

a � b D .qm C r/ � .q0m C r0/ D m.q � q0/ C .r � r0/

If r D r0, then a � b is obviously divisible by m, so a � b .mod m/. Conversely,
if r is not equal to r0, note that r � r0 cannot be a multiple of m. (This follows from
the fact that r and r0 are both nonnegative numbers which are strictly less than m.)
Thus, a�b is a multiple of m plus a number that is not a multiple of m, and therefore
a � b is not a multiple of m. That is, it is not the case that a � b .mod m/. ut

A special case of the above theorem is that a positive number is congruent modulo
m to the remainder it leaves upon division by m. The possible remainders upon
division by a given natural number m are 0; 1; 2; : : : ; m � 1.

Theorem 3.1.4. For a given modulus m, each integer is congruent to exactly one
of the numbers in the set f0; 1; 2; : : : ; m � 1g.

Proof. Let a be an integer. If a is positive, the result follows from the fact, discussed
above, that a is congruent to the remainder it leaves upon division by m. If a is not
positive, choosing t big enough would make tm C a positive. For such a t , tm C a

is congruent to the remainder it leaves upon division by m. But also tm C a � a

.mod m/. It follows from Theorem 3.1.2 that a is congruent to the remainder that
tm C a leaves upon division by m. An integer cannot be congruent to two different
numbers in the given set f0; 1; 2; : : : ; m � 1g, since no two numbers in the set are
congruent to each other. ut
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For a fixed modulus, congruences have some properties that are similar to those
for equations.

Theorem 3.1.5. If a � b .mod m/ and c � d .mod m/, then

(i) .a C c/ � .b C d/ .mod m/, and
(ii) ac � bd .mod m/.

Proof. To prove (i), note that a � b .mod m/ means that a � b D sm for some
integer s. Similarly, c �d D tm for some integer t . The conclusion we are trying to
establish is equivalent to the assertion that .aC c/� .b Cd/ is a multiple of m. But
.a C c/ � .b C d/ D .a � b/ C .c � d/, which is equal to sm C tm D .s C t /m,
so the result follows.

To prove (ii), note that from a � b D sm and c � d D tm, we get a D b C sm

and c D d C tm, so

ac D .b C sm/.d C tm/ D bd C btm C smd C stm2

It follows that ac � bd D m.bt C sd C stm/, so ac � bd is a multiple of m and
the result is established. ut

Theorem 3.1.5 tells us that congruences are similar to equations in that you can
add congruent numbers to both sides of a congruence or multiply both sides of a
congruence by congruent numbers and preserve the congruence, as long as all the
congruences are with respect to the same fixed modulus.

For example, since 3 � 28 .mod 5/ and 17 � 2 .mod 5/, it follows that 20 �
30 .mod 5/ and 51 � 56 .mod 5/.

Here is another example: 8 � 1 .mod 7/, so 82 � 12 .mod 7/, or 82 � 1

.mod 7/. It follows that 82 � 8 � 1 � 1 .mod 7/, or 83 � 1 .mod 7/. In fact, all
positive integer powers of 8 are congruent to 1 modulo 7. This is a special case of
the next result.

Theorem 3.1.6. If a � b .mod m/, then, for every natural number n, an � bn

.mod m/.

Proof. We use mathematical induction. The case n D 1 is the hypothesis. Assume
that the result is true for n � 1; that is, an � bn .mod m/. Since a � b .mod m/,
using part (ii) of Theorem 3.1.5 gives a � an � b � bn .mod m/, or anC1 � bnC1

.mod m/. ut

3.2 Some Applications

We can use the above to easily solve the problem that we mentioned at the beginning
of this chapter: what is the remainder left when 3 C 23;000;005 is divided by 7?

First note that 23 D 8 is congruent to 1 modulo 7. Therefore, by Theorem 3.1.6,
.23/1;000;000 is congruent to 11;000;000, which is 1 modulo 7. Thus 23;000;000 � 1

.mod 7/. Since 25 � 4 .mod 7/ and 23;000;005 D 23;000;000 � 25, it follows that
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23;000;005 � 4 .mod 7/. Thus, 3 C 23;000;005 � .3 C 4/ .mod 7/ � 0 .mod 7/.
Therefore, 7 is a divisor of 3 C 23;000;005. In other words, the remainder that is left
when 3 C 23;000;005 is divided by 7 is 0.

Let’s look at the next question we mentioned at the beginning of this chapter, the
relationship between divisibility by 9 of a number and divisibility by 9 of the sum of
the digits of the number. To illustrate, we begin with a particular example. Consider
the number 73,486. What that really means is

7 � 104 C 3 � 103 C 4 � 102 C 8 � 10 C 6

Note that 10 is congruent to 1 modulo 9, so 10n is congruent to 1 modulo 9 for every
natural number n. Thus, a �10n � a .mod 9/ for every a and every n. It follows that
7 �104C3 �103C4 �102C8 �10C6 is congruent to .7C3C4C8C6/ modulo 9. Thus,
the number 73,486 and the sum of its digits are congruent to each other modulo 9
and therefore leave the same remainders upon division by 9. The general theorem is
the following.

Theorem 3.2.1. Every natural number is congruent to the sum of its digits mod-
ulo 9. In particular, a natural number is divisible by 9 if and only if the sum of its
digits is divisible by 9.

Proof. If n is a natural number, then we can write it in terms of its digits in the form
akak�1ak�2 : : : a1a0 (note that this is a listing of digits, not a product of digits),
where each ai is one of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (with ak 6D 0). That is, a0 is the
digit in the “1’s place,” a1 is the digit in the “10’s place,” a2 is the digit in the “100’s
place,” and so on. (In the previous example, n was the number 73,486, so in that
case a4 D 7, a3 D 3, a2 D 4, a1 D 8, and a0 D 6.) This really means that

n D ak � 10k C ak�1 � 10k�1 C ak�2 � 10k�2 C � � � C a2 � 102 C a1 � 10 C a0

As shown above, 10 � 1 .mod 9/ implies 10i � 1 .mod 9/, for every positive
integer i . Therefore, n is congruent to .ak Cak�1 Cak�2 C� � �Ca1 Ca0/ modulo 9.
Thus, n and the sum of its digits leave the same remainders upon division by 9. In
particular, n is divisible by 9 if and only if the sum of its digits is divisible by 9. ut

Congruence equations with small moduli can easily be solved by just trying all
possibilities.

Example 3.2.2. Find a solution to the congruence 5x � 11 .mod 19/.

Solution. If there is a solution, then there is a solution within the set {0, 1, 2, . . . ,
18} (by Theorem 3.1.4). If x D 0, then 5x D 0, so 0 is not a solution. Similarly, for
x D 1, 5x D 5; for x D 2, 5x D 10; for x D 3, 5x D 15; and for x D 4, 5x D 20.
None of these are congruent to 11 .mod 19/, so we have not yet found a solution.
However, when x D 6, 5x D 30, which is congruent to 11 .mod 19/. Thus, x � 6

.mod 19/ is a solution of the congruence.
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Example 3.2.3. Show that there is no solution to the congruence x2 � 3 .mod 5/.

Proof. If x D 0, then x2 D 0; if x D 1, then x2 D 1; if x D 2, then x2 D 4; if
x D 3, then x2 D 9, which is congruent to 4 .mod 5/; and if x D 4, then x2 D 16

which is congruent to 1 .mod 5/. If there was any solution, it would be congruent
to one of f0; 1; : : : ; 4g by Theorem 3.1.4. Thus, the congruence has no solution. ut

3.3 Problems

Basic Exercises

1. Find a solution x to each of the following congruences. (“Solution” means
integer solution.)

(a) 2x � 7 .mod 11/

(b) 7x � 4 .mod 11/

(c) x5 � 3 .mod 4/

2. For each of the following congruences, either find a solution or prove that no
solution exists.

(a) 39x � 13 .mod 5/

(b) 95x � 13 .mod 5/

(c) x2 � 3 .mod 6/

(d) 5x2 � 12 .mod 8/

(e) 4x3 C 2x � 7 .mod 5/

Interesting Problems

3. Find the remainder when:

(a) 32463 is divided by 8.
(b) 2923 is divided by 15.
(c) 243101 is divided by 8.
(d) 52001 C .27/Š is divided by 8.
(e) .�8/4124 C 63101 C 75 is divided by 3.
(f) 7103 C 65409 is divided by 3.
(g) 5Š � 181 � 866 � 332 is divided by 6.

4. Is 2598 C 3 divisible by 15?
5. Find a digit b such that the number 2794b2 is divisible by 8.
6. Determine whether or not 172492 C 25376 C 5782 is divisible by 3.
7. Suppose that 722 is written out in the ordinary way. What is its last digit?
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8. Determine whether or not the following congruence has a natural number
solution:

5x C 3 � 5 .mod 100/

9. Prove that n2 � 1 is divisible by 8, for every odd integer n.
10. Prove that a natural number is divisible by 3 if and only if the sum of its digits

is divisible by 3.
11. Prove that x5 � x .mod 10/, for every integer x. (This shows that x5 and x

have the same units’ digit for every integer x.)
12. Suppose a number is written in decimal notation as abba, where a and b are

integers between 1 and 9. Prove that this number is divisible by 11.
13. Find the units’ digit of 274936782.
14. Show that if m is a natural number and a is a negative integer, then there exists

an r with 0 � r � m� 1 and an integer q such that a D qmC r . (Cf. the proof
of Theorem 3.1.3.)

15. Prove that for every pair of natural numbers m and n, m2 is congruent to n2

modulo .m C n/.

Challenging Problems

16. Prove that 5 divides 32nC1 C 22nC1, for every natural number n.
17. Prove that 7 divides 82nC1 C 62nC1, for every natural number n.
18. Prove that a natural number that is congruent to 2 modulo 3 has a prime factor

that is congruent to 2 modulo 3.
19. If m is a natural number greater than 1 and is not prime, then we know that

m D ab, where 1 < a < m and 1 < b < m. Show that there is no integer x
such that ax � 1 .mod m/. (That is, a has no multiplicative inverse modulo m.
The situation is different if m is prime: see Problem 7 in Chapter 4.)

20. Prove that 133 divides 11nC1 C 122n�1, for every natural number n.
21. A natural number r less than or equal to m � 1 is called a quadratic residue

modulo m if there is an integer x such that x2 � r .mod m/. Determine all the
quadratic residues modulo 11.

22. Show that there do not exist natural numbers x and y such that x2Cy2 D 4003.
[Hint: Begin by determining which of the numbers f0; 1; 2; 3g can be congruent
to x2 .mod 4/.]

23. Discover and prove a theorem determining whether a natural number is divisible
by 11, in terms of its digits.

24. Prove that there are an infinite number of primes of the form 4k C 3 with k a
natural number.
[Hint: If p1; p2; : : : ; pn are n such primes, show that .4 � p1 � p2 � � �pn/ � 1 has
at least one prime divisor of the given form.]
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25. Prove that there are an infinite number of primes of the form 6k C 5 with k a
natural number.

26. Prove that every prime number greater than 3 differs by 1 from a multiple of 6.
27. Show that, if x, y, and z are integers such that x2 Cy2 D z2, then at least one of

fx; y; zg is divisible by 2, at least one of fx; y; zg is divisible by 3, and at least
one of fx; y; zg is divisible by 5.

28. Let f .x/ be a non-constant polynomial with integer coefficients. (That is, there
exists a natural number n and integers ai such that f .x/ D anx

n Can�1x
n�1 C

� � �Ca1xCa0.) Let a, k, and m be integers with m > 1. Suppose that f .a/ � k

.mod m/. Prove that f .a C m/ � k .mod m/.
29. Show that the polynomial p.x/ D x2 � x C 41 takes prime values for x in the

set f0; 1; 2; : : : ; 40g.
30. Show that there does not exist any non-constant polynomial p.x/ with integer

coefficients such that p.x/ is a prime number for all natural numbers x.
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Chapter 4
The Fundamental Theorem of Arithmetic

Is 13217 � 3792 � 4115 D 19111 � 29145 � 4312 � 475?
We have seen that every natural number greater than 1 is either a prime or a

product of primes. The above equation, if it was an equation, would express a
number in two different ways as a product of primes. Does the representation of
a natural number as a product of primes have to be unique? The answer is obviously
“no” in one sense. For example, 6 D 3 � 2 D 2 � 3. Thus, the same number can
be written in two different ways as a product of primes if we consider different
orders as “different ways.” But suppose that we don’t consider the ordering; must
the factorization of a natural number into a product of primes be unique except for
the order? For example, could the above equation hold?

In fact, every natural number other than 1 has a factorization into a product
of primes and the factorization is unique except for the order. This result is so
important that it is called the Fundamental Theorem of Arithmetic. We will give
two proofs. The second proof requires a little more development and will be given
later (Theorem 7.2.4). The first proof is short but tricky.

4.1 Proof of the Fundamental Theorem of Arithmetic

In order to simplify the statement of the Fundamental Theorem of Arithmetic, we
use the expression “a product of primes” to include the case of a single prime
number (as we did in Theorem 2.2.4).

The Fundamental Theorem of Arithmetic 4.1.1. Every natural number greater
than 1 can be written as a product of primes, and the expression of a number as
a product of primes is unique except for the order of the factors.

Proof. We have already established that every natural number greater than 1 can be
written as a product of primes (see Theorem 2.2.4). That was the easy part of the
Fundamental Theorem of Arithmetic; the harder part is the uniqueness. The proof

D. Rosenthal et al., A Readable Introduction to Real Mathematics,
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32 4 The Fundamental Theorem of Arithmetic

of uniqueness that we present below is a proof by contradiction. That is, we will
assume that there is a natural number with more than one representation as a product
of primes and derive a contradiction from this assumption, thereby showing that this
assumption is incorrect.

Suppose, then, that there is at least one natural number with at least two different
representations as a product of primes. By the Well-Ordering Principle (2.1.2), there
would then be a smallest natural number with that property (i.e., the smallest natural
number that has at least two different such representations). Let N be that smallest
such number. Write out two different factorizations of N :

N D p1p2 � � �pr D q1q2 � � � qs
where each of the pi and the qj are primes (there can be repetitions of the same
prime). We first claim that no pi could be equal to any qj . This follows from the
fact that N is the smallest number with a non-unique representation, for if pi D qj
for some i and j , that common factor could be divided from both of the two different
factorizations for n, producing a smaller number that has at least two different
factorizations. Thus, no pi is equal to any qj .

Since p1 is different from q1, one of p1 and q1 is less than the other; suppose that
p1 is less than q1. (If q1 is less than p1, the same proof could be repeated by simply
interchanging the p’s and q’s.) Define M by

M D N � .p1q2 � � � qs/

Then M is a natural number that is less than N . Substituting the product p1p2 � � �pr

for N gives

M D .p1p2 � � �pr/ � .p1q2 � � � qs/ D p1

�
.p2 � � �pr/ � .q2 � � � qs/

�

from which it follows that p1 divides M . In particular, M is not 1. Since M is less
than N , M has a unique factorization into primes.

Substituting the product q1q2 � � � qs for N in the definition of M gives a different
expression:

M D .q1q2 � � � qs/ � .p1q2 � � � qs/ D .q1 � p1/.q2 � � � qs/

The unique factorization of M into primes can thus be obtained by writing the
unique factorization of q1 �p1 followed by the product q2 � � � qs . On the other hand,
the fact that p1 is a divisor of M implies that p1 must appear in the factorization of
M into primes. Since p1 is distinct from each of fq2; : : : ; qsg, it follows that p1 must
occur in the factorization of q1 � p1 into primes. Thus, q1 � p1 D p1k, for some
natural number k. It follows that q1 D p1 Cp1k D p1.1C k/, which shows that q1
is divisible by p1. Since p1 and q1 are distinct primes, this is impossible. Hence, the
assumption that there is a natural number with two distinct factorizations leads to a
contradiction, so factorizations into primes are unique. ut
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The Fundamental Theorem of Arithmetic gives a so-called “canonical form” for
expressing each natural number greater than 1.

Corollary 4.1.2. Every natural number n greater than 1 has a canonical fac-
torization into primes; that is, n has a unique representation of the form n D
p
˛1
1 p

˛2
2 � � �p˛n

n , where each pi is a prime, pi is less than piC1 for each i , and each
˛i is a natural number.

Proof. To see this, simply factor the given number as a product of primes and then
collect all occurrences of the smallest prime together, then all the occurrences of the
next smallest prime, and so on. ut

For example, the canonical form of 60; 368 is 24 � 73 � 11. The canonical form of
19 is simply 19.

As we will see, the following corollary of the Fundamental Theorem of Arith-
metic is very useful. (If the corollary below is independently established, then it
is easy to derive the Fundamental Theorem of Arithmetic from it. In fact, most
presentations of the proof of the Fundamental Theorem of Arithmetic use this
approach rather than the shorter but trickier proof that we gave above. We will
present such a proof later (Theorem 7.2.4).)

Corollary 4.1.3. If p is a prime number and a and b are natural numbers such that
p divides ab, then p divides at least one of a and b. (That is, if a prime divides a
product, then it divides at least one of the factors.)

Proof. Since p divides ab, there is some natural number d such that ab D pd . The
unique factorization of ab into primes therefore contains the prime p and all the
primes that divide d . On the other hand, a and b each have unique factorizations
into primes. Let the canonical factorization of a be q

˛1
1 q

˛2
2 � � � q˛mm and of b be

r
ˇ1
1 r

ˇ2
2 � � � rˇnn . Then,

ab D .q
˛1
1 q

˛2
2 � � � q˛mm /.r

ˇ1
1 r

ˇ2
2 � � � rˇnn /

Since the factorization of ab into primes is unique, p must occur either as one of
the qi ’s, in which case p divides a, or as one of the rj ’s, in which case p divides b.
Thus, p divides at least one of a and b, and the corollary is established. ut

It should be noted that this corollary is not generally true for divisors that are
not prime. For example, 18 divides 3 � 12, but 18 does not divide 3 and 18 does not
divide 12.

4.2 Problems

Basic Exercises

1. Find the canonical factorization into primes of each of the following:
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(a) 52
(b) 72
(c) 47
(d) 625

(e) 122 � 54
(f) 112
(g) 224
(h) 112 C 224

2. Find natural numbers x, y, and z such that

(a) 3x � 100 � 5y D 9 � 10z � 5
(b) 50 � 2y � 7z D 5x � 23 � 14

3. Show that if p is a prime number and a1; a2; : : : ; an are natural numbers such
that p divides the product a1a2 � � � an, then p divides ai for at least one ai .

4. Show that if p is a prime number and a and n are natural numbers such that p
divides an, then p divides a.

Interesting Problems

5. Find the smallest natural numbers x and y such that

(a) 72x D 53y

(b) 25x D 102y

(c) 127x D 54y

6. Find nonnegative integers w; x; y, and z such that

1722522z D 10x34y7w

Challenging Problems

7. Suppose that p is a prime number and p does not divide a. Prove that
the congruence ax � 1 .mod p/ has a solution. (This proves that a has a
multiplicative inverse modulo p.)

8. Prove that a natural number m greater than 1 is prime if m has the property that
it divides at least one of a and b whenever it divides ab.

9. Prove that x2 � 1 .mod p/ implies x � 1 .mod p/ or x � .p � 1/ .mod p/,
for every prime p.

10. Suppose that a and b are natural numbers whose prime factorizations have
no primes in common (the pair a; b is then said to be relatively prime; see
Definition 7.2.1). Show that for any natural number m, the product ab divides
m if each of a and b divides m.

11. Using the result of Problem 10:

(a) Prove that 42 divides n7 � n, for every natural number n.
(b) Prove that 21 divides 3n7 C 7n3 C 11n, for every natural number n.



Chapter 5
Fermat’s Theorem and Wilson’s Theorem

We’ve seen that we can add or multiply “both sides” of a congruence by congruent
numbers and the result will be a congruence (Theorem 3.1.5). What about dividing
both sides of a congruence by the same natural number? For the result to have a
chance of being a congruence, the divisor must divide evenly into both sides of the
congruence so that the result involves only integers, not fractions (congruences are
only defined for integers). On the other hand, even that condition is not sufficient to
ensure that the result will be a congruence. For example, 6 � 2 is congruent to 6 � 1
modulo 3, but 2 is not congruent to 1 modulo 3. This is not a surprising example,
since 6 is congruent to 0 modulo 3, so “dividing both sides” of the above congruence
by 6 is like dividing by 0, which gives wrong results for equations as well. However,
there are also examples where dividing both sides of a congruence by a number that
is not congruent to 0 leads to results that are not congruent. For example, 12 � 3 is
congruent to 24 � 3 modulo 9, but 12 is not congruent to 24 modulo 9, in spite of the
fact that 3 is not congruent to 0 modulo 9.

5.1 Fermat’s Theorem

There are important cases in which we can divide both sides of a congruence and be
assured that the result is a congruence.

Theorem 5.1.1. If p is a prime and a is not divisible by p, and if ab � ac

.mod p/, then b � c .mod p/. (That is, we can divide both sides of a congruence
modulo a prime by any natural number that divides both sides of the congruence
and is not divisible by the prime.)

Proof. We are given that p divides ab�ac. This is the same as saying that p divides
a.b � c/. Corollary 4.1.3 shows that since p divides a.b � c/, p must also divide
either a or b� c. Since the hypothesis states that a is not divisible by p, this implies
that b � c must be divisible by p. That is the same as saying b � c .mod p/. ut
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Consider any given prime number p. The possible remainders when a natural
number is divided by p are the numbers f0; 1; : : : ; p � 1g. By Theorem 3.1.4, no
two of these numbers are congruent to each other and every natural number (in
fact, every integer) is congruent modulo p to one of those numbers. An integer
is divisible by p if and only if it is congruent to 0 modulo p. Thus, each integer
that is not divisible by p is congruent to exactly one of the numbers in the set
f1; 2; : : : ; p � 1g. This is the basis for the proof of the following beautiful, and very
useful, theorem.

Fermat’s Theorem 5.1.2. If p is a prime number and a is any natural number that
is not divisible by p, then ap�1 � 1 .mod p/.

Proof. Let p be any prime number and let a be any natural number that is not
divisible by p. Consider the set of numbers fa � 1; a � 2; : : : ; a � .p � 1/g. First
note that no two of those numbers are congruent to each other, for if am � an

.mod p/, then, by Theorem 5.1.1, m � n .mod p/. Since no two of the numbers
in the set f1; 2; : : : ; p � 1g are congruent to each other, this shows that the same
is true of numbers in the set fa � 1; a � 2; : : : ; a � .p � 1/g. Also note that each
of the numbers in the set fa � 1; a � 2; : : : ; a � .p � 1/g is congruent to one of the
numbers in f1; 2; : : : ; p � 1g since no number in either set is divisible by p. Thus,
the numbers in the set fa � 1; a � 2; : : : ; a � .p � 1/g are congruent, in some order,
to the numbers in the set f1; 2; : : : ; p � 1g. This implies that the product of all of
the numbers in the set fa � 1; a � 2; : : : ; a � .p � 1/g is congruent modulo p to the
product of all the numbers in f1; 2; : : : ; p � 1g. Thus, a � 1 � a � 2 � � � a � .p � 1/ is
congruent to 1 � 2 � 3 � � � .p � 1/ modulo p. Since the number a occurs p � 1 times
in this congruence, this yields ap�1.1 � 2 � 3 � � � .p � 1// � .1 � 2 � 3 � � � .p � 1//

.mod p/. Clearly, p does not divide 1 � 2 � 3 � � � .p � 1/ (by repeated application of
Corollary 4.1.3). Thus, by Theorem 5.1.1, we can “divide” both sides of the above
congruence by 1 � 2 � 3 � � � .p � 1/, yielding ap�1 � 1 .mod p/. ut

As we shall see, Fermat’s Theorem has important applications, including in
establishing a method for sending coded messages. It is also sometimes useful to
apply Fermat’s Theorem to specific cases. For example, 88100 � 1 is divisible by
101. (Don’t try to verify this on your calculator!)

The following corollary of Fermat’s Theorem is sometimes useful since it doesn’t
require that a not be divisible by p.

Corollary 5.1.3. If p is a prime number and a is any natural number, then ap � a

.mod p/.

Proof. If p does not divide a, then Fermat’s Theorem states that ap�1�1 .mod p/.
Multiplying both sides of this congruence by a gives the result in this case. On the
other hand, if p does divide a, then p also divides ap , so ap and a are both congruent
to 0 mod p. ut
Definition 5.1.4. A multiplicative inverse modulo p for a natural number a is a
natural number b such that ab � 1 .mod p/.
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Fermat’s Theorem is one way of showing that all natural numbers that are not
multiples of a given prime p have multiplicative inverses modulo p.

Corollary 5.1.5. If p is a prime and a is a natural number that is not divisible by p,
then there exists a natural number x such that ax � 1 .mod p/.

Proof. In the case where p is the prime 2, each such a must be congruent to 1
modulo 2, so we can take x D 1. If p is greater than 2, then, for each given a, let
x D ap�2. Then ax D a � ap�2 D ap�1 and, by Fermat’s Theorem, ap�1 � 1

.mod p/. ut
The following lemma is needed in the proof of Wilson’s Theorem (5.2.1).

Lemma 5.1.6. If a and c have the same multiplicative inverse modulo p, then a is
congruent to c modulo p.

Proof. Suppose ab � 1 .mod p/ and cb � 1 .mod p/. Then multiplying the
second congruence on the right by a yields cba � a .mod p/ and, since ba � 1

.mod p/, this gives c � a .mod p/. ut
It turns out to be interesting and useful to know which natural numbers are

congruent to their own inverses modulo p. If x is such a number, then x � x � 1

.mod p/. In other words, such an x is a solution to the congruence x2 � 1 .mod p/,
or x2 � 1 � 0 .mod p/. The solutions of the equations x2 � 1 D 0 are x D 1 and
x D �1. The solutions of the congruence are similar.

Theorem 5.1.7. If p is a prime number and x is an integer satisfying x2 � 1

.mod p/, then either x � 1 .mod p/ or x � p�1 .mod p/. (Note that p�1 � �1

.mod p/).

Proof. If x2 � 1 .mod p/, then, by definition, p divides x2 � 1. But x2 � 1 D
.x � 1/.x C 1/. Since p divides x2 � 1, Corollary 4.1.3 implies that p divides at
least one of x � 1 and x C 1. If p divides x � 1, then x � 1 .mod p/. If p divides
x C 1, then x � �1 .mod p/, or x � p � 1 .mod p/. ut

5.2 Wilson’s Theorem

As we now show, these considerations lead to a proof of Wilson’s Theorem, a
theorem that is very beautiful although it is considerably less famous and much
less useful than Fermat’s Theorem.

Wilson’s Theorem 5.2.1. If p is a prime number, then .p � 1/ŠC 1 � 0 .mod p/.
(In other words, if p is prime, then p divides .p � 1/Š C 1.)

Proof. First note that the theorem is obviously true when pD2; in this case, it states
.1 C 1/ � 0 .mod 2/. As we indicated above, a multiplicative inverse of an integer
x modulo p is an integer y such that xy � 1 .mod p/. As we have seen, every
number in the set f1; 2; : : : ; p � 1g is distinct modulo p, and, by Corollary 5.1.5,
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each has a multiplicative inverse modulo p. Since no multiplicative inverse can
be divisible by p, the multiplicative inverse of each number in f1; 2; : : : ; p �
1g is congruent to one of the numbers in f1; 2; : : : ; p � 1g. By the previous
theorem (5.1.7), the only numbers in the set f1; 2; : : : ; p � 1g that are congruent
to their own multiplicative inverses are the numbers 1 and p � 1. Leave those two
numbers aside for the moment. Note that if y is a multiplicative inverse of x, then x

is a multiplicative inverse of y. Thus, the numbers in the set f2; 3; : : : ; p � 2g each
have multiplicative inverses in that same set, and each number in that set differs from
its multiplicative inverse. By Lemma 5.1.6, no two numbers in the set can have the
same inverse. Therefore, we can arrange the numbers in the set f2; 3; : : : ; p � 2g
in pairs consisting of a number and its multiplicative inverse. Since the product of
a number and its multiplicative inverse is congruent to 1 modulo p, the product
of all the numbers in the set f2; 3; : : : ; p � 2g is congruent to 1 modulo p. Thus,
2�3 � � � .p�2/ � 1 .mod p/. Multiplying both sides by 1 gives 1�2�3 � � � .p�2/ � 1

.mod p/. Now p�1 � �1 .mod p/, so 1�2 � � � .p�2/�.p�1/ � 1�.�1/ .mod p/.
In other words, .p � 1/Š � �1 .mod p/, which yields .p � 1/Š C 1 � 0 .mod p/.

ut
Theorem 5.2.2. If m is a composite number larger than 4, then .m � 1/Š � 0

.mod m/ (so that .m � 1/Š C 1 � 1 .mod m/).

Proof. Let m be any composite number larger than 4. We must show that .m � 1/Š

is divisible by m. If m D ab, with a different from b and both less than m, then
a and b each occur as distinct factors in .m � 1/Š. Thus, m D ab is a factor of
.m � 1/Š, so .m � 1/Š is congruent to 0 modulo m. The only composite numbers
less than m that cannot be written as a product of two distinct natural numbers less
than m are those numbers that are squares of primes. (To see this, use the fact that
every composite can be written as a product of primes.) Thus, the only remaining
case to prove is when m D p2 for some prime p. In this case, if m is larger than 4,
then p is a prime bigger than 2. In that case, p2 is greater than 2p. Thus, p2 � 1 is
greater than or equal to 2p, so .p2 � 1/Š contains the factor 2p as well as the factor
p. Thus, .p2 � 1/Š contains the product 2p2. In particular, .m � 1/Š is divisible by
m D p2. ut

The following combines Wilson’s Theorem and its converse.

Theorem 5.2.3. If m is a natural number other than 1, then .m � 1/Š C 1 � 0

.mod m/ if and only if m is a prime number.

Proof. This follows immediately from Wilson’s Theorem when m is prime and from
the previous theorem for composite m in all cases except for m D 4. If m D 4, then
.m � 1/Š C 1 D 3Š C 1 D 7, which is not congruent to 0 modulo 4, so the theorem
holds for all m. ut

It might be thought that Wilson’s Theorem would provide a good way to check
whether or not a given number m is prime: simply see whether m divides .m �
1/Š C 1. However, the fact that .m � 1/Š is so much larger than m makes this a very
impractical way of testing primality for large values of m.
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5.3 Problems

Basic Exercises

1. Find the remainder when 24103 is divided by 103.
2. Find a solution x to each of the following congruences:

(a) 2x � 1 .mod 103/

(b) 16Š � x � 5 .mod 17/

3. Find the remainder when 99100 � 1 is divided by 101.

Interesting Problems

4. Suppose that p is a prime greater than 2 and a � b2 .mod p/ for some natural

number b that is not divisible by p. Prove that a
p�1
2 � 1 .mod p/.

5. Find three different prime factors of 1012 � 1.
6. Let p be a prime number. Prove that 12 � 22 � 32 � � � .p� 1/2 � 1 is divisible by p.
7. For each of the following congruences, either find a solution or prove that no

solution exists.

(a) 102Š � x C x � 4 .mod 103/

(b) x16 � 2 � 0 .mod 17/

8. Find the remainder when:

(a) .9Š � 16 C 4311/8603 is divided by 11.
(b) 42Š C 728 C 66 is divided by 29.

9. If a is a natural number and p is a prime number, show that ap C a � .p � 1/Š is
divisible by p.

10. Find the remainder that 100 C 233 C 16Š C 29Š leaves upon division by 19.

Challenging Problems

11. Show that a natural number n > 1 is prime if and only if n divides .n� 2/Š� 1.
12. Show that if p is a prime number and a and b are natural numbers, then

.a C b/p � ap C bp .mod p/

13. For which prime numbers p is .p � 2/Š � 1 .mod p/?
14. Prove that for all primes p > 3, 2 � .p � 3/Š � �1 .mod p/.
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15. Is there a prime number p such that .p � 1/Š C 6 is divisible by p?
16. Find all prime numbers p such that p divides .p � 2/Š C 6.
17. Suppose 2k C 1 is a prime number. Prove that k has no prime divisors other

than 2.
[Hint: If k D ab with b odd, consider 2k C 1 modulo 2a C 1.]

18. Prove that aq�1 � 1 .mod pq/ if p and q are distinct primes such that p � 1

divides q � 1 and neither p nor q divides a.



Chapter 6
Sending and Receiving Secret Messages

As early as ancient times people have devised ways of sending secret messages to
each other. Much of the original interest was for military purposes: commanders of
one section of an army wanted to send messages to commanders of other sections
of their army in such a way that the message could not be understood by enemy
soldiers who might intercept it.

Some of the current interest in secret messages is still for military and similarly
horrible purposes. However, there are also many other kinds of situations in which
it is important to be able to send secret messages. For example, a huge amount
of information is communicated via the internet. It is important that some of that
information remain private, known only to the sender and recipient. One common
situation is making withdrawals from bank accounts over the internet. If someone
else was able to intercept the information being sent, that interceptor could transfer
funds from the sender’s bank account to the interceptor’s bank account. There are
many other commercial and personal communications that are sent electronically
that people wish to keep secret.

“Cryptography” refers to techniques for reconfiguring messages so that they
cannot be understood except by the intended recipient. Encrypting a message is
the process of reconfiguring it; decrypting is the process of obtaining the original
message from the encrypted one. For a method of cryptography to be useful, it must
be the case that it would be virtually impossible (or at least extremely difficult) for
anyone other than the intended recipient to be able to decrypt the messages.

A fundamental problem is that the intended recipient must have the information
that is needed to decrypt encrypted messages. If the sender has to send the
decrypting information to the recipient, unintended interceptors (e.g., someone who
wants to transfer your money to his or her bank account) might get access to
the method of decrypting, since that method is being transmitted to the intended
recipient.

In most procedures for sending encrypted messages, anyone who understands
the procedure for encrypting messages would also understand how to decrypt them.
When such a method is employed, it is crucial that only the intended recipient of
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messages obtains the knowledge of how to decrypt the messages. It can be very
difficult to get the method of decrypting to the intended recipient.

The techniques of encrypting and decrypting messages for a given procedure are
called the “keys” for that procedure. There must be a “key” for encrypting messages
and a “key” for decrypting them.

Beginning in the 1940s, many people wondered whether there could be public key
cryptography. That means, a method of doing cryptography that has the property
that everyone in the world (the “public”) is told how to send the recipient an
encrypted message. On the other hand, the recipient must be the only one who
can decrypt messages sent using that procedure. That is, public key cryptography
refers to methods of sending messages that allow the person who wishes to receive
messages to publicly announce the way messages should be encrypted in such a way
that only the person making the announcement can decrypt a message. This seems
to be impossible. If people know how to encrypt messages, won’t they necessarily
also be able to figure out how to decrypt them, just by reversing the encrypting
procedure?

6.1 The RSA Method

It was only in the 1970s that a method for public key cryptography was discovered.
To actually use this method requires employing very large numbers. Thus, this
method would not be feasible without computers. On the other hand, the only
mathematics that is required to establish that the method works is Fermat’s
Theorem (5.1.2). This method is called “RSA” after three of the people who played
important roles in discovering it, Ron Rivest, Adi Shamir, and Leonard Adleman.

Here is an outline of the method. The recipient announces to the entire world the
following way to send messages. If you want to send a message, the first thing that
you must do is to convert the message into a natural number. There are many ways
of doing that; here is a rough description of one possibility. Write your message out
as sentences in, say, the English language. Then convert the sentences into a natural
number as follows. Let a D 11, b D 12, c D 13, : : : ; z D 36. Let 37 represent
a space. Let 38 represent a period, 39 a comma, 40 a semicolon, 41 a full colon,
42 an exclamation point, and 43 an apostrophe. If desired, other symbols could
be represented by other two-digit natural numbers. Convert your English language
message into a number by replacing each of the elements of your sentences by their
corresponding numbers in the order that they appear. For any substantial message,
this will result in a large natural number. Everyone would be able to reconstruct the
English language message from that number if this procedure was known to them.
For example, the sentence

Public key cryptography is neat.
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would be represented by the number

2631122219133721153537132835263025172811261835371929372415113038

Furthermore, if you read the rest of this chapter

35253143222237212425333733183537193037332528212938

The RSA technique is a method for encrypting and decrypting numbers. Both the
recipient and those who send messages must use computers to do the computations
that are required; the numbers involved in any application of the technique that could
realistically protect messages are much too large for the computations to be done by
hand.

RSA encryption proceeds as follows. The person who wishes to receive mes-
sages, the recipient, chooses two very large prime numbers p and q that are different
from each other, and then defines N to be pq. The recipient publicly announces
the number N . However, the recipient keeps p and q secret. If p and q are large
enough, there is no way that anyone other than the recipient could find p or q simply
from knowing N ; factoring very large numbers is beyond the capacity of even the
most powerful computers. There are some very large known prime numbers; such
can easily be chosen so that the resulting N D pq is impossible to factor in any
reasonable amount of time. The recipient announces another natural number E,
which we will call the encryptor, in addition to N . Below we will explain ways of
choosing suitable E’s.

The recipient then instructs all those who wish to send messages to do the
following. Write your message as a natural number as described above. Let’s say
that M is the number representing your message. For this method to work, M must
be less than N . If M is greater than or equal to N , you could divide your message
into several smaller messages, each of which correspond to natural numbers less
than N . The method we shall describe only works when M is less than N .

“To send me messages,” the recipient announces to the world, “take your message
M and compute the remainder that M E (i.e., M raised to the power E) leaves upon
division by N , and send me that remainder.”

In other words, to send a message M , the sender computes the R between 0 and
N such that M E � R .mod N /. The sender then sends R to the recipient.

How can the message be decrypted? That is, how can the recipient recover the
original message M from R? This will require finding a decryptor, which will
be possible for anyone who knows the factorization of N as the product pq, but
virtually impossible for anyone else. We shall see that, if E is chosen properly,
there is a decryptor D such that for every integer L between 0 and N , LED � L

.mod N /. For such a D, since R � M E .mod N /, it follows that RD � M ED

.mod N /, and therefore, since M ED � M .mod N /, RD � M .mod N /. Thus,
the recipient decrypts the message by finding the remainder that RD leaves upon
division by N .
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Before explaining further how to find encryptors E and decryptors D and why
this method works, let’s look at a simple example. In this example the numbers are
so small that anyone could figure out what p and q are, so this example could not
realistically be used to encrypt messages. However, it illustrates the method.

Example 6.1.1. Let p D 7 and q D 11 be the primes; then N D pq D 77. Suppose
that E D 13; as we shall see, there are always many possible values for E. Below
we will discuss the properties that E must have. There is a technique for finding D,
based on knowing p and q, that we shall describe later; that technique will produce
D D 37 in this particular example.

In this example, the recipient announces N D 77 and E D 13 to the general
public; the recipient keeps the values of p, q, and D secret.

The recipient invites the world to send messages. Suppose you want to send the
message M D 71. Following the encryption rule, you must compute the remainder
that M E D 7113 leaves upon division by 77. Let’s compute that as follows, using
some of the facts about modular arithmetic that we learned in the previous chapters.
First, 71 � �6 .mod 77/, so M E � .�6/13 .mod 77/. Now 63 D 216 and 216 �
�15 .mod 77/, so 66 D .63/2 � .�15/2 � 225 .mod 77/, which is congruent
to �6 .mod 77/. Therefore, 612 � .�6/2 � 36 .mod 77/, so 613 � 6 � 612 �
6 � 36 � 216 � �15 .mod 77/. Therefore, .�6/13 � �.6/13 � 15 .mod 77/.
Thus, M E D 7113 � 15 .mod 77/. It follows that the remainder upon dividing
7113 by 77 is 15.

Thus, the encrypted version of your message is 15. Anyone who sees that the
encrypted version is 15 would be able to discover your original message if they
knew the decryptor. But the recipient is the only one who knows the decryptor.

In this special, easy, example, the recipient receives 15 and proceeds to decrypt
it, using the decryptor 37, as follows. Your original message will be the remainder
that 1537 leaves upon division by 77. Compute: 152 � �6 .mod 77/. Therefore,
1526 � .�6/13 .mod 77/, which (as we saw above) is congruent to 15 .mod 77/.
Also, from 152 � �6 .mod 77/, we obtain 154 � 36 .mod 77/. Thus, 158 �
36 � 6 � 6 � 216 � 6 � .�15/ � 6 � �90 � 64 .mod 77/. Now 1537 � 1526 � 158 � 153

.mod 77/, which is congruent to 15�64�153 .mod 77/, which is congruent to 64�154

.mod 77/. Since 152 � �6 .mod 77/, this is congruent to 64 � 36 .mod 77/, which
is congruent to .�13/�36, which equals �468. Of course, �468 is congruent to �468

plus any multiple of 77. Now 7 � .77/ D 539. Hence 1537 � �468 � �468C539 �
71 .mod 77/. Therefore, we have decrypted the received message, 15, and obtained
the original message, 71. (The number 71 must be the original message, since it is
the only natural number less than N that is congruent to 71.)

The above looks somewhat complicated. We now proceed to explain and analyze
the method in more detail.

For p and q distinct primes and N D pq, we use the notation �.N / to denote
.p � 1/.q � 1/. (This is a particular case of a more general concept, known as
the Euler � function, that we will introduce in the next chapter.) The theorem that
underlies the RSA technique is an easy consequence of Fermat’s Theorem (5.1.2).
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Theorem 6.1.2. Let N D pq, where p and q are distinct prime numbers, and let
�.N / D .p � 1/.q � 1/. If k and a are any natural numbers, then a � ak�.N / � a

.mod N /.

Proof. The conclusion of the theorem is equivalent to the assertion that N divides
the product of a and ak.p�1/.q�1/ � 1. Since N is the product of the distinct primes
p and q, this is equivalent to the product being divisible by both p and q. (For if
any natural number l is divisible by both p and q, then l D pr for some natural
number r . Since q divides l and q does not divide p, it follows from Corollary 4.1.3
that q divides r . Thus, l D pqs for some s.)

Consider p (obviously the same proof works for q). There are two cases. First,
if p divides a, then p certainly divides a � .ak.p�1/.q�1/ � 1/. If p does not divide
a, then, by Fermat’s Theorem (5.1.2), ap�1 � 1 .mod p/. Raising both sides of
this congruence to the power k.q � 1/ shows that ak.p�1/.q�1/ � 1 .mod p/. Thus,
p divides ak.p�1/.q�1/ � 1, so it also divides a � �

ak.p�1/.q�1/ � 1
�
. This establishes

the result in the case that p does not divide a. Thus, in both cases, p divides .a �
ak.p�1/.q�1/ � a/. Therefore, a � ak�.N / � a .mod N /. ut

How does this theorem apply to the RSA method? We pick as an encryptor, E,
any natural number that does not have any factor in common with �.N /. As we
shall see in the next chapter, this implies that there is a natural number D such that
ED is equal to the sum of 1 and a multiple of �.N /; that is, there is a D such that
ED D 1 C k�.N / for some natural number k. The theorem we have just proven
shows that D is a decryptor, as follows. Suppose that M is the original message, so
that R � M E .mod N / is its encryption. Since R is congruent to M E modulo N ,
RD is congruent to M ED modulo N . But ED D 1 C k�.N /, so RD is congruent
to M 1Ck�.N / modulo N . This is congruent to the product of M and M k.p�1/.q�1/,
which is congruent to M by the above theorem. (Of course, M is a natural number
less than N , which uniquely determines it.)

The explanation of how to find decryptors requires some additional mathematical
tools that we develop in the next chapter. If n is very small, decryptors can be found
simply by trial and error.

A complete description of the RSA technique, including choosing encryptors
and finding decryptors, is given in the next chapter (see The RSA Procedure for
Encrypting Messages 7.2.5).

6.2 Problems

Basic Exercises

1. You are to receive a message using the RSA system. You choose p D 5, q D 7,
and E D 5. Verify that D D 5 is a decryptor. The encrypted message you receive
is 17. What is the actual (decrypted) message?

2. Use the RSA system with N D 21 and the encryptor E D 5.
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(a) Encrypt the message M D 7.
(b) Verify that D D 5 is a decryptor.
(c) Decrypt the encrypted form of the message.

3. A person tries to receive messages without you being able to decrypt them. The
person announces N D 15 and E D 7 to the world; the person uses such low
numbers assuming that you don’t understand RSA. An encrypted message R D 8

is sent. By trial and error, find a decryptor, D, and use it to find the original
message.



Chapter 7
The Euclidean Algorithm and Applications

Each pair of natural numbers has a greatest common divisor; i.e., a largest natural
number that is a factor of both of the numbers in the pair. For example, the greatest
common divisor of 27 and 15 is 3, the greatest common divisor of 36 and 48 is 12,
the greatest common divisor of 257 and 101 is 1, the greatest common divisor of 4
and 20 is 4, the greatest common divisor of 7 and 7 is 7, and so on.

Notation 7.0.1. The greatest common divisor of the natural numbers m and n is
denoted gcd.m; n/.

Thus, gcd.27; 15/ D 3, gcd.36; 48/ D 12, gcd.7; 21/ D 7, and so on. One way
to find the greatest common divisor of a pair of natural numbers is by factoring
the numbers into primes. Then the greatest common divisor of the two numbers
is obtained in the following way: for each prime that occurs as a factor of both
numbers, find the highest power of that prime that is a common factor of both
numbers and then multiply all those primes to all those powers together to get
the greatest common divisor. For example, since 48 D 24 � 3 and 56 D 23 � 7,
gcd.24; 56/ D 23 D 8. As another example, note that gcd.1292; 14440/ D 76,
since 1292 D 22 � 17 � 19 and 14440 D 23 � 5 � 192 and 22 � 19 D 76.

Another way of finding the greatest common divisor of two natural numbers is
by using what is called the Euclidean Algorithm. One advantage of this method is
that it provides a way of expressing the greatest common divisor as a combination
of the two original numbers in a way that can be extremely useful. In particular,
this technique will allow us to compute a decryptor for each encryptor chosen
for RSA coding. As we shall see, other applications of the Euclidean Algorithm
include a method for finding integer solutions of linear equations in two variables
(Diophantine equations) and a different proof of the Fundamental Theorem of
Arithmetic.

D. Rosenthal et al., A Readable Introduction to Real Mathematics,
Undergraduate Texts in Mathematics, DOI 10.1007/978-3-319-05654-8__7,
© Springer International Publishing Switzerland 2014
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7.1 The Euclidean Algorithm

The Euclidean Algorithm is based on the ordinary operation of division of natural
numbers, allowing for a remainder. We can express that concept of division as
follows (the term “nonnegative integer” refers to either a natural number or 0): if
a and b are any natural numbers, then there exist nonnegative integers q and r such
that a D bq C r and 0 � r < b. (The number q is called the quotient and the
number r is called the remainder in this equation.) If b divides a, then, of course,
r D 0.

Let a and b be natural numbers. The Euclidean Algorithm for finding the greatest
common divisor of a and b is the following technique. If b D a, then clearly the
greatest common divisor is a. Suppose that b is less than a. (If b is greater than a,
interchange the roles of a and b in the following proof.) Divide a by b as described
above to get q and r satisfying a D bq C r with 0 � r < b. If r D 0, then clearly
the greatest common divisor of a and b is b itself. If r is not 0, divide r into b, to
get b D rq1 C r1, where 0 � r1 < r . If r1 D 0, stop here. If r1 is different from 0,
divide r1 into r to get r D r1q2 C r2, where 0 � r2 < r1. Continue this process until
there is the remainder 0. (That will have to occur eventually since the remainders
are all nonnegative integers and each one is less than the preceding one.) Thus, there
is a sequence of equations as follows:

a D bq C r

b D rq1 C r1

r D r1q2 C r2

r1 D r2q3 C r3

:::

rk�3 D rk�2qk�1 C rk�1

rk�2 D rk�1qk C rk

rk�1 D rkqkC1

It follows that rk is the greatest common divisor of the original a and b. To see
this, note first that rk is a common divisor of a and b. This can be seen by “working
your way up” the equations. Replacing rk�1 by rkqkC1 in the next to last equation
gives rk�2 D rkqkC1qk C rk D rk.qkC1qk C1/. Thus, rk divides rk�2. The equation
for rk�3 can then be rewritten:

rk�3 D rk.qkC1qk C 1/qk�1 C rkqkC1 D rk

�
.qkC1qk C 1/qk�1 C qkC1

�

Thus, rk�3 is also divisible by rk . Continuing to work upwards eventually shows
that rk divides r , then b, and then a. Therefore, rk is a common divisor of a and b.

To show that rk is the greatest common divisor of a and b, we show that every
other common divisor of a and b divides rk . Suppose, then, that d is a natural
number that divides both a and b. The equation a D bq C r shows that d also
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divides r . Since d divides both b and r , it divides r1; since it divides r and r1,
it divides r2; and so on. Eventually, we see that d also divides rk . Hence, every
common divisor of a and b divides rk , so rk is the greatest common divisor of a

and b.
Let’s look at an example. Suppose we want to use the Euclidean Algorithm to

find the greatest common divisor of 33 and 24. We begin with 33 D 24 �1C9. Then,
24 D 9 � 2 C 6. Then, 9 D 6 � 1 C 3. Then, 6 D 3 � 2. Thus, the greatest common
divisor of 33 and 24 is 3.

Definition 7.1.1. We say that the integer d is a linear combination of the integers
a and b if there exist integers x and y such that ax C by D d .

Obtaining the greatest common divisor by the Euclidean Algorithm allows us to
express the greatest common divisor as a linear combination of the original numbers,
as follows. First consider the above example. From the next to last equation, we get
3 D 9 � 6 � 1. Substituting the expression for 6 obtained from the previous equation
into this one gives

3 D 9 � .24 � 9 � 2/ � 1 D 9 � 24 C 9 � 2 D 9 � 3 � 24

Then solve for 9 in the first equation 9 D 33 � 24 � 1 and substitute this into the
above equation to get 3 D .33 � 24 � 1/ � 3 � 24 D 33 � 3 � 24 � 4. Therefore,
3 D 33 � 3 C 24.�4/. The greatest common divisor of the numbers 33 and 24, 3, is
expressed in the last equation as a linear combination of 33 and 24.

In general, a linear combination of the integers a and b is an expression of the
form ax C by, where x and y are integers. The Euclidean Algorithm can always
be used, as in the above example, to write the greatest common divisor of two
natural numbers as a linear combination of those numbers. That is, given natural
numbers a and b with greatest common divisor d , there exist integers x and y

such that d D ax C by. This can be seen by working upwards in the sequence
of equations that constitute the Euclidean Algorithm, as in the above example.
The next to last equation can be used to write the greatest common divisor, rk ,
as a linear combination of rk�1 and rk�2; simply solve the next to last equation
for rk . Solving for rk�1 in the previous equation and substituting represents rk

as a linear combination of rk�2 and rk�3. By continuing to work our way up the
ladder of equations in the Euclidean Algorithm, we eventually obtain rk as a linear
combination of the given numbers a and b.

7.2 Applications

Definition 7.2.1. The integers m and n are said to be relatively prime if their only
common divisor is 1; that is, if gcd.m; n/ D 1.
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By the above-described consequence of the Euclidean Algorithm, gcd.m; n/ D 1

implies that there exist integers s and t such that sm C tn D 1. This fact forms the
basis for a different proof of the Fundamental Theorem of Arithmetic (4.1.1). We
begin by using this fact to prove the following lemma. (You will notice that this is a
restatement of Corollary 4.1.3; however, it is presented with a new and independent
proof.)

Lemma 7.2.2. If a prime number divides the product of two natural numbers, then
it divides at least one of the numbers.

Proof. Suppose that p is prime and p divides ab. If p divides a, then we are done.
So suppose that p does not divide a; we show that in this case p divides b. Since p

is prime, the only possible factors that a could have in common with p are 1 and p.
Therefore, a and p are relatively prime and so there exist integers x and y such that
ax C py D 1. Multiply through by b, getting bax C bpy D b. Since p divides ab,
it divides the left side of this equation, so it must divide b. ut

We need a slightly stronger lemma which follows easily.

Lemma 7.2.3. For any natural number n, if a prime divides the product of n natural
numbers, then it divides at least one of the numbers.

Proof. This is a simple consequence of the previous lemma and mathematical
induction. The previous lemma is the case n D 2. Suppose that the result is true
for n factors, where n is greater than 2. Suppose that p is prime and p divides
a1a2 � � � anC1. If p does not divide a1, then by the case n D 2, p divides a2 � � � anC1.
Hence, by the inductive hypothesis, p divides at least one of a2; a3; : : : ; anC1. ut

We are now able to present another proof of the Fundamental Theorem of
Arithmetic.

Theorem 7.2.4. The factorization of a natural number greater than 1 into primes
is unique except for the order of the primes.

Proof. If there were natural numbers with two distinct factorizations, then, by the
Well-Ordering Principle (2.1.2), there would exist a smallest such natural number,
say N . Then N D p

˛1

1 p
˛2

2 � � � p˛k

k D q
ˇ1

1 q
ˇ2

2 � � � qˇl

l . Since p1 divides N , it divides

q
ˇ1

1 q
ˇ2

2 � � � qˇl

l . By Lemma 7.2.3, p1 divides some qj . Since p1 and qj are prime,
p1 D qj . Dividing both expressions for N by this common factor would then
yield a smaller natural number with two distinct factorizations. This contradiction
establishes the result. ut

By the consequence of the Euclidean Algorithm noted above, gcd.m; n/ D 1

implies that there exist integers s and t such that sm C tn D 1. It follows that
sm D 1 � tn. If m, n, and s are all positive, this equation clearly implies that t

is negative. These facts are exactly what we need in order to find decryptors in the
RSA system.

Before explaining this in general, let’s illustrate it in the case of Example 6.1.1
from the previous chapter. In that example, we started with p D 7 and q D 11, so
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that N D 77 and �.N / D 6 � 10 D 60. We took the encryptor E D 13. The crucial
property of the encryptor is that it is relatively prime to �.N /. That is true in this
case; clearly the only common factor of 13 and 60 is 1. Since gcd.13; 60/ D 1, the
consequence of the Euclidean Algorithm discussed above implies that there exist
integers s and t such that 1 D 13s C 60t , or 13s D 1 � 60t . Note that if s and
t satisfy this equation, then, for every m, 13.s C 60m/ D 1 � 60.t � 13m/, since
this latter equation is obtained from the previous one by simply adding 13 � 60m

to both sides of the equation. Thus, if the original s was negative, we could choose
a positive m large enough so that s C 60m is positive. Therefore, without loss of
generality, we can assume that s is positive, which forces t to be negative in the
equation 13s D 1 � 60t . Replace �t by u; then 13s D 1 C 60u, with s and u
both positive integers. We will find such s and u using the Euclidean Algorithm.
First, however, note that any such s is a decryptor. To see this, first note that, as
in Example 6.1.1, M 13 is congruent to the encrypted version of the message M .
Thus, the encrypted version of the message to the power s is congruent modulo 77
to .M 13/s D M 13s D M 1C60u D M � M 60u, which is congruent modulo 77 to M

by Theorem 6.1.2.
To obtain a decryptor for this example, we begin by using the Euclidean

Algorithm to find gcd.13; 60/:

60 D 13 � 4 C 8

13 D 8 � 1 C 5

8 D 5 � 1 C 3

5 D 3 � 1 C 2

3 D 2 � 1 C 1

2 D 1 � 2

Thus, the greatest common divisor of 13 and 60 is 1. Of course, we knew that
already; we chose 13 to be relatively prime to 60. The point of using the Euclidean
Algorithm is that it allows us to express 1 as a linear combination of 13 and 60, as
follows. From the above equation 3 D 2 �1C1 we get 1 D 3�2. Since 5 D 3 �1C2,
we have 1 D 3 � 2 D 3 � .5 � 3/ D 2 � 3 � 5.

Continuing by working our way up and collecting coefficients gives the
following:

1 D 2 � 3 � 5

D 2 � .8 � 5/ � 5

D 2 � 8 � 3 � 5

D 2 � 8 � 3 � .13 � 8/

D 5 � 8 � 3 � 13

D 5 � .60 � 4 � 13/ � 3 � 13

D 5 � 60 � 23 � 13

Equivalently, 1�5 �60 D �.23 �13/. We are not done. We must find positive integers
k and D such that 1 C k � 60 D 13D. For any integer m, adding �13 � 60m to both
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sides of the above equation gives 1 � .5 C 13m/ � 60 D .�23 � 60m/ � 13. Taking
m D �1 in this equation gives 1 C 8 � 60 D 37 � 13. Thus, 37 is a decryptor.

We have illustrated and proven the RSA technique. The following is a statement
of what we have established.

The RSA Procedure for Encrypting Messages 7.2.5. The recipient chooses
(very large) distinct prime numbers p and q and lets N = pq and �.N / D
.p�1/.q�1/. The recipient then chooses a natural number E (which we are calling
the “encryptor” and is often called the “public exponent”) greater than 1 that is
relatively prime to �.N /. The pair of numbers .N; E/ is called the “public key.”
The recipient announces the public key and states that any message M consisting of
a natural number less than N can be sent as follows: Compute the natural number
R less than N such that M E � R .mod N /. The encrypted message that is sent is
the natural number R. The recipient decrypts the message by using the Euclidean
Algorithm to find natural numbers D (which we are calling the “decryptor” and
is often called the “private exponent”) and k such that 1 C k�.N / D ED. The
pair of numbers .N; D/ is called the “private key”; the recipient keeps D secret.
The recipient then recovers the original message M as the natural number less than
N that is congruent to M ED .mod N /.

The technique that we used to find decryptors can be used to solve many other
practical problems.

Definition 7.2.6. A linear Diophantine equation is an equation of the form ax C
by D c, where a, b, and c are integers, and for which we seek solutions .x; y/,
where x and y are integers.

Example 7.2.7. A store sells two different kinds of boxes of candies. One kind sells
for 9 dollars a box and the other kind for 16 dollars a box. At the end of the day, the
store has received 143 dollars from the sale of boxes of candy. How many boxes did
the store sell at each price?

How can we approach this problem? If x is the number of the less expensive
boxes sold and y is the number of the more expensive boxes sold, then the
information we are given is

9x C 16y D 143

There are obviously an infinite number of pairs .x; y/ of real numbers that satisfy
this equation; the graph in the plane of the set of solutions is a straight line. However,
we know more about x and y than simply that they satisfy that equation. We also
know that they must both be nonnegative integers. Are there nonnegative integral
solutions? Are there any integral solutions at all? Since 9 and 16 are relatively prime,
the Euclidean Algorithm tells us that there exist integers s and t (possibly negative)
satisfying 9s C 16t D 1. Multiplying through by 143 gives 9.143s/ C 16.143t/ D
143. Therefore, there are integral solutions. However, it is not immediately clear
whether there are nonnegative integral solutions, which the actual problem requires.
Let’s investigate.
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We will use the Euclidean Algorithm to find integral solutions to the equation
9s C 16t D 1. We first use the Euclidean Algorithm to find the greatest common
divisor (even though we know it already):

16 D 9 � 1 C 7

9 D 7 � 1 C 2

7 D 2 � 3 C 1

2 D 1 � 2

Working our way back upwards to express 1 as a linear combination of 9 and 16
gives

1 D 7 � 3 � 2

D 7 � 3 � .9 � 7/

D 4 � 7 � 3 � 9

D 4 � .16 � 9/ � 3 � 9

D 16 � 4 � 9 � 7

Therefore, 9.�7/C16 �4 D 1. Multiplying by 143 yields 9.�7 �143/C16.4 �143/ D
143. Note that 7 � 143 D 1001 and 4 � 143 D 572. For any integer m, we can add and
subtract 16 � 9m; thus, for every integer m,

9.�1001 � 16m/ C 16.572 C 9m/ D 143

This gives infinitely many integer solutions; what about nonnegative solutions?
We require that �1001 � 16m be at least 0. That is equivalent to 16m � �1001,

or m � �1001
16

. Thus, m � �62:5625. The largest m satisfying this inequality is
m D �63. When m D �63, �1001 � 16m D 7 and 572 C 9m D 5. Thus, one
pair of nonnegative solutions to the original equation is x D 7 and y D 5. Are there
other nonnegative solutions? We will show that all the solutions of this equation
are of the form x D �1001 � 16m and y D 572 C 9m, for some integer m (see
Example 7.2.11 below). To show that the only nonnegative solution is .7; 5/ we
reason as follows. If we take the next largest m, m D �64, then the y we get is
572 � 9 � 64 D �4. Obviously, if m is even smaller, 572 C 9m will be even more
negative. Therefore, the only pair of nonnegative solutions to the original equation
is .7; 5/. Thus, the store sold 7 of the cheaper boxes and 5 of the more expensive
boxes of candy.

The basic theorem about solutions of linear Diophantine equations is the
following.

Theorem 7.2.8. The Diophantine equation ax Cby D c, with a, b, and c integers,
has integral solutions if and only if gcd.a; b/ divides c.
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Proof. Let d D gcd.a; b/. If there is a pair of integers .x; y/ satisfying the equation,
then ax C by D c and, since d divides both of a and b, it follows that d divides c.
This proves the easy part of the theorem.

The converse is also easy, but only because of what we learned about the
Euclidean Algorithm. We used the Euclidean Algorithm to prove that there exists
a pair .s; t/ of integers satisfying as C bt D d . If d divides c, then there is a k

satisfying c D dk. Let x D sk and y D tk. Then clearly ax C by D c. ut
As we’ve seen in the example where we determined the number of boxes of

each kind of candy sold (Example 7.2.7), it is sometimes important to be able to
determine all the solutions of a Diophantine equation. In both the decryptor and
the candy examples above, we use the very easy fact that .x C bm; y � am/ is a
solution of ax C by D c whenever .x; y/ is a solution. (This follows since a.x C
bm/ C b.y � am/ D ax C abm C by � abm D ax C by.) This shows that a
Diophantine equation has an infinite number of solutions if it has any solution at all.
In finding decryptors, we don’t care if the decryptor that we find is only one of a
number of possible decryptors. However, in other situations, such as the problem
about determining the number of different kinds of boxes of candy that were sold,
it is important to have a unique solution that satisfies some other condition of the
problem (such as requiring that both of x and y be nonnegative). Theorem 7.2.10
below precisely describes all the solutions of a given linear Diophantine equation.

We require a lemma that generalizes the fact that if a prime divides a product,
then it divides at least one of the factors (Lemma 7.2.2).

Lemma 7.2.9. If s divides tu and s is relatively prime to u, then s divides t .

Proof. The hypothesis implies that there exists an r such that tu D rs. Write the
canonical factorization of u into primes, u D p

˛1

1 p
˛2

2 � � � p˛k

k . Then,

tp
˛1

1 p
˛2

2 � � � p˛k

k D rs

Imagine factoring both sides of this equation into a product of primes. By the
Fundamental Theorem of Arithmetic (see 4.1.1 or 7.2.4), the factorization of the
left-hand side into primes has to be the same as the factorization of the right-hand
side. Since s is relatively prime to u, none of the primes comprising s are among the
pi . Thus, all the primes in s occur to at least the same power in the factorization of
t , and thus, s divides t . This proves the lemma. ut
Theorem 7.2.10. Let gcd.a; b/ D d . The linear Diophantine equation axC
by D c has a solution if and only if d divides c. If d does divide c and .x0; y0/

is a solution, then the integral solutions of the equation consist of all the pairs�
x0 C m � b

d
; y0 � m � a

d

�
, where m assumes all integral values.

Proof. We already established the first assertion, the criterion for the existence of a
solution (Theorem 7.2.8). If .x0; y0/ is a solution, it is easy to see that each of the
other pairs is also a solution, for
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a

�
x0 C m � b

d

�
Cb

�
y0 � m � a

d

�
D ax0Cm� ab

d
Cby0�m� ab

d
D ax0Cby0 D c

All that remains to be proven is that there are no solutions other than those
described in the theorem. To see this, suppose that .x0; y0/ is a solution and that
.x; y/ is any other solution of ax C by D c. Since ax0 C by0 D c, we can subtract
the first equation from the second to conclude that

a.x � x0/ C b.y � y0/ D 0

Bring one of the terms to the other side and divide both sides of this equation by d

to get

a

d
.x � x0/ D b

d
.y0 � y/

Note that a
d

and b
d

are relatively prime. (For if e was a common factor greater than
1, then d � e would be a common divisor of a and b greater than d .) Hence, by
Lemma 7.2.9, a

d
divides .y0 � y/ and b

d
divides .x � x0/. That is, there are integers

k and l such that y0 � y D k � a
d

and x � x0 D l � b
d

. Equivalently, y D y0 � k � a
d

and x D x0 C l � b
d

. For .x; y/ to be a solution, we must have

a

�
x0 C l � b

d

�
C b

�
y0 � k � a

d

�
D c

Thus,

ax0 C l � ab

d
C by0 � k � ba

d
D c

Since ax0 C by0 D c, we get l � ab
d

� k � ba
d

D 0. Thus, l D k. Call this common
value m. Then,

x D x0 C m � b

d

y D y0 � m � a

d

This proves the theorem. ut
Example 7.2.11. The uniqueness of the solution to the “candy boxes problem”
(Example 7.2.7) follows from this theorem. In that example, gcd.9; 16/ D 1, so
all the solutions are indeed of the form .�1001 � 16m; 572 C 9m/.
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There are many other interesting applications of the theorem concerning
solutions of linear Diophantine equations (see, for example, the problems at the
end of this chapter).

Recall that we used the notation �.N / to denote .p � 1/.q � 1/ when we were
describing the RSA technique with N = pq, where p and q were distinct prime
numbers. This is a special case of notation for a useful general concept.

Definition 7.2.12. For any natural number m, the Euler � function, �.m/, is
defined to be the number of numbers in {1; 2; : : : ; m � 1} that are relatively prime
to m.

Example 7.2.13. To compute �.8/, we consider the set f1; 2; 3; 4; 5; 6; 7g. We get
�.8/ D 4, since 1, 3, 5, and 7 are the numbers in the set that are relatively prime
to 8. Similarly, �.7/ D 6, and �.12/ D 4.

Theorem 7.2.14. If p is prime, then �.p/ D p � 1.

Proof. Since p is prime, every number in f1; 2; : : : ; p � 1g is relatively prime to p,
so �.p/ D p � 1. ut

In discussing the RSA technique, we used the notation �.pq/ D .p � 1/.q � 1/

when p and q were distinct primes. This is consistent with the definition of � we
are now using.

Theorem 7.2.15. If p and q are distinct primes, then �.pq/ D .p � 1/.q � 1/.

Proof. Suppose that p and q are primes with p less than q (since they are different,
one of them is less than the other), and let N D pq. Consider the set S D
f1; 2; 3; : : : ; p; : : : ; q; : : : ; pq � 1g. To find �.N /, we must determine how many
numbers in this set are relatively prime to N . If a number is not relatively prime to
N , then it must be divisible by either p or q or both. However, an element k of S

cannot be divisible by both p and q. For if k is divisible by p, then k D pl for
some natural number l . If k is also divisible by q, then q divides l , since q and p

are distinct primes (by Lemma 7.2.2). Thus, k D pqm for some natural number m.
It follows that k is at least as big as pq.

There are a total of pq � 1 numbers in S; how many multiples of p are there in
S? There is p, 2p, 3p, and so on, up to .q �1/p, since qp is not in S. Thus, there are
q � 1 multiples of p in S. Similarly, there are p � 1 multiples of q in S. Therefore,
there is a total of .q � 1/ C .p � 1/ D p C q � 2 numbers in S that are not relatively
prime to N . Since there are pq � 1 numbers in S, the number of numbers in S that
are relatively prime to N is

�.N / D pq � 1 � .p C q � 2/ D pq � p � q C 1

But pq � p � q C 1 D .p � 1/.q � 1/. Therefore, �.N / D .p � 1/.q � 1/. ut
There is a formula for �.m/ for any natural number m greater than 1, in terms of

the canonical factorization of m into a product of primes (see Problem 27 at the end
of this chapter).
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Fermat’s beautiful theorem that ap�1 � 1 .mod p/ (5.1.2) (for primes p and
natural numbers a that are not divisible by p) can be generalized to composite
moduli. We require the following lemma that generalizes Theorem 5.1.1.

Lemma 7.2.16. If a is relatively prime to m and ax � ay .mod m/, then x � y

.mod m/.

Proof. We are given that m divides ax � ay. That is, m divides a.x � y/. By
Lemma 7.2.9, m divides x � y. Thus, x � y .mod m/. ut
Euler’s Theorem 7.2.17. If m is a natural number greater than 1 and a is a natural
number that is relatively prime to m, then a�.m/ � 1 .mod m/.

Proof. The proof is very similar to the proof of Fermat’s Theorem (5.1.2). Let S D
fr1; r2; : : : ; r�.m/g be the set of numbers in f1; 2; : : : ; m�1g that are relatively prime
to m. Then let T D far1; ar2; : : : ; ar�.m/g. Clearly, no two of the numbers in S are
congruent to each other, since they are distinct numbers which are all less than m.
Note also that no two of the numbers in T are congruent to each other, since ari �
arj .mod m/ would imply, by Lemma 7.2.16, that ri � rj .mod m/. Moreover,
each ari is relatively prime to m and therefore so is any number that ari is congruent
to. Thus, the numbers in far1; ar2; : : : ; ar�.m/g are congruent, in some order, to the
numbers in fr1; r2; : : : ; r�.m/g. It follows, as in the proof of Fermat’s Theorem, that
the product of all the numbers in T is congruent to the product of all the numbers in
S. That is,

a � r1 � a � r2 � � � a � r�.m/ � r1r2 � � � r�.m/ .mod m/

Since r1r2 � � � r�.m/ is relatively prime to m, we can divide both sides of this
congruence by that product (see Lemma 7.2.16), to get a�.m/ � 1 .mod m/. ut

Fermat’s Theorem is a special case of Euler’s.

Corollary 7.2.18 (Fermat’s Theorem). If p is a prime and p does not divide a,
then ap�1 � 1 .mod p/.

Proof. Since p is prime, the fact that p does not divide a means that a and p are
relatively prime. Also, �.p/ D p�1. Thus, Fermat’s Theorem follows from Euler’s
Theorem (7.2.17). ut



58 7 The Euclidean Algorithm and Applications

7.3 Problems

Basic Exercises

1. Find the greatest common divisor of each of the following pairs of integers in two
different ways, by using the Euclidean Algorithm and by factoring both numbers
into primes:

(a) 252 and 198
(b) 291 and 573
(c) 1800 and 240
(d) 52 and 135

2. For each of the pairs in Problem 1 above, write the greatest common divisor as a
linear combination of the given numbers.

3. Find integers x and y such that 3x � 98y D 12.
4. (a) Find a formula for all integer solutions of the Diophantine equation

3x C 4y D 14.
(b) Find all pairs of natural numbers that solve the above equation.

5. Let � be Euler’s � function. Find:

(a) �.12/

(b) �.26/

(c) �.21/

(d) �.36/

(e) �.97/

(f) �.73/

(g) �.101 � 37/

(h) �.3100/

6. Use the Euclidean Algorithm to find the decryptors in Problems 1, 2, and 3 in
Chapter 6.

Interesting Problems

7. Use the Euclidean Algorithm (and a calculator) to find the greatest common
divisor of each of the following pairs of natural numbers:

(a) 47,295 and 297
(b) 77,777 and 2,891

8. Find the smallest natural number x such that 24x leaves a remainder of 2 upon
division by 59.

9. A small theater has a student rate of $3 per ticket and a regular rate of $10 per
ticket. Last night $243 was collected from the sale of tickets. There were more
than 50 but less than 60 tickets sold. How many student tickets were sold?

10. A liquid comes in 17 liter and 13 liter cans. Someone needs exactly 287 liters of
the liquid. How many cans of each size should the person buy?
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11. Let a, b, and n be natural numbers. Prove that if an and bn are relatively prime,
then a and b are relatively prime.

12. Let a, b, m, and n be natural numbers with m and n greater than 1. Assume
that m and n are relatively prime. Prove that if a � b .mod m/ and a � b

.mod n/, then a � b .mod mn/.
13. Let a and b be natural numbers.

(a) Suppose there exist integers m and n such that am C bn D 1. Prove that a

and b are relatively prime.
(b) Prove that 5aC2 and 7aC3 are relatively prime for every natural number a.

14. Let p be a prime number. Prove that �.p2/ D p2 � p.
15. The public key N D 55 and E D 7 is announced. The encrypted message 5 is

received.

(a) Find a decryptor, D, and prove that D is a decryptor.
(b) Decrypt 5 to find the original message.

16. Find a multiplicative inverse of 229 modulo 9.
17. Prove that a has a multiplicative inverse modulo m if and only if a and m are

relatively prime.

Challenging Problems

18. Suppose that a and b are relatively prime natural numbers such that ab is a
perfect square. Show that a and b are each perfect squares.

19. Show that if m and n are relatively prime and a and b are any integers, then
there is an integer x that simultaneously satisfies the two congruences x � a

.mod m/ and x � b .mod n/.
20. Generalize the previous problem as follows (this result is called the Chinese

Remainder Theorem):
If fm1; m2; : : : ; mkg is a collection of natural numbers greater than 1, each pair
of which is relatively prime, and if fa1; a2; : : : ; akg is any collection of integers,
then there is an integer x that simultaneously satisfies all of the congruences
x � aj .mod mj /. Moreover, if x1 and x2 are both simultaneous solutions of
all of those congruences, then x1 � x2 .mod m1m2 � � � mk/.

21. Let p be an odd prime and let m D 2p. Prove that am�1 � a .mod m/ for all
natural numbers a.

22. Let a and b be relatively prime natural numbers greater than or equal to 2. Prove
that a�.b/ C b�.a/ � 1 .mod ab/.

23. Suppose that a; b, and c are each natural numbers. Prove that there are at most
a finite number of pairs of natural numbers (x; y) that satisfy ax C by D c.

24. Show that m is prime if there is an integer a such that am�1 � 1 .mod m/ and
ak 6� 1 .mod m/ for every natural number k < m � 1.
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25. Suppose that a and m are relatively prime and that k is the smallest natural
number such that ak is congruent to 1 modulo m. Prove that k divides �.m/.

26. For p a prime and k a natural number, show that �.pk/ D pk � pk�1.
27. If the canonical factorization of the natural number n into primes is n D p

k1

1 �
p

k2

2 � � � pkm
m , prove that

�.n/ D
�
p

k1

1 � p
k1�1
1

�
�
�
p

k2

2 � p
k2�1
2

�
� � �

�
pkm

m � pkm�1
m

�



Chapter 8
Rational Numbers and Irrational Numbers

So far, the only numbers that we have been discussing are the “whole numbers;”
that is, the integers. There are many other interesting things that can be said about
the integers, but, for now, we will move on to consider other numbers, the rational
numbers, also known as “fractions,” and then the real numbers.

8.1 Rational Numbers

Definition 8.1.1. A rational number is a number of the form m
n

, where m and n are
integers and n 6D 0.

Some examples of rational numbers are 3
4
, �7

23
, 12

�36
, 1

2
, and 2

4
.

Wait a minute. Are 1
2

and 2
4

different rational numbers? They are not; they are two
different expressions representing the same number. Similarly 12

48
D 1

4
, �7

3
D 7

�3
,

16
2

D 8
1
, and so on. The condition under which two different expressions as quotients

of integers represent the same rational number is the following.

Definition 8.1.2. The rational number m1

n1
is equal to the rational number m2

n2
when

m1n2 D m2n1.

Thus, when we use the representation 1
2
, we recognize that we are representing a

number that could also be denoted 2
4
, �3

�6
, and so on.

Why don’t we allow 0 denominators in the expressions for rational numbers? If
we did allow 0 denominators, the arithmetic would be very peculiar. For example, 7

0

would equal �12
0

, since 7 �0 D �12 �0. In fact, we would have a
0

D b
0

for all integers
a and b. It is not at all useful to have such peculiarities as part of our arithmetic, so
we do not allow 0 to be a denominator of any rational number.

Notation 8.1.3. The set of all rational numbers is denoted by Q.

D. Rosenthal et al., A Readable Introduction to Real Mathematics,
Undergraduate Texts in Mathematics, DOI 10.1007/978-3-319-05654-8__8,
© Springer International Publishing Switzerland 2014

61



62 8 Rational Numbers and Irrational Numbers

The operations of multiplication and addition of rational numbers can be defined
in terms of the operations on integers.

Definition 8.1.4. The product of the rational numbers m1

n1
and m2

n2
, denoted m1

n1
� m2

n2

or simply m1

n1

m2

n2
, is the rational number

m1m2

n1n2

The sum of the rational numbers m1

n1
and m2

n2
is the rational number

m1

n1

C m2

n2

D m1n2 C m2n1

n1n2

We can think of the integers as the rational numbers whose denominator is 1; we
invariably write them without the denominator. For example, we write �17 for �17

1

(and also, of course, for �34
2

, and so on). In particular, we write 0 for 0
1

and 1 for 1
1
.

Note that from Definition 8.1.4, 0 and 1 are, respectively, additive and multiplicative
identities for the rational numbers, as they are for the integers. That is, m

n
C 0 D m

n

and m
n

� 1 D m
n

, for every rational number m
n

. Also note that, as is the case with the
set of integers, every rational number has an additive inverse: m

n
C �m

n
D 0

n
D 0.

Definition 8.1.5. A multiplicative inverse for the number x is a number y such that
xy D 1.

Of course, 0 has no multiplicative inverse, since 0 times any number is 0. If x

and y are both integers and xy D 1, then x and y must both be 1, or �1. Hence,
the only integers that have multiplicative inverses within the set of integers are the
numbers 1 and �1. In the set of rational numbers, the situation is very different.

Theorem 8.1.6. If m
n

is a rational number other than 0, then m
n

has a multiplicative
inverse.

Proof. If m
n

6D 0, then m 6D 0. Therefore, n
m

is also a rational number and m
n

n
m

D
mn
nm

D 1
1

D 1. Therefore, n
m

is a multiplicative inverse for m
n

. ut
Definition 8.1.7. A polynomial with integer coefficients is an expression of the
form

anxn C an�1xn�1 C � � � C a1x C a0

where n is a nonnegative integer and the ai are integers with an different from 0 (we
also include the case where n D 0 and a0 D 0). The number x0 is a root (or zero)
of a polynomial if the value of the polynomial obtained by replacing x by x0 is 0.

Example 8.1.8. The polynomial x5 C x � 1 has no rational roots.
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Proof. Suppose that m
n

was a rational root. Without loss of generality we can
assume that m and n are relatively prime (if m and n had a common factor, that
common factor could be divided out from m and n, getting an equivalent fraction).
Substituting m

n
in the polynomial would yield . m

n
/5 C m

n
� 1 D 0. Multiplying both

sides by n5 gives m5 Cmn4 �n5 D 0, or m.m4 Cn4/ D n5. It follows that any prime
divisor of m is a divisor of n5 and, hence, also of n. Since m and n are relatively
prime, m has no prime divisors. Thus, m is either 1 or �1. Similarly, the above
equation yields m5 D n.n4 � mn3/ from which it follows that any prime divisor of
m would divide n. Thus, n does not have any prime divisors, so n is either 1 or �1.
Therefore, the only possible values of m

n
are 1 or �1. That is, the only possible

rational roots of the polynomial are 1 and �1. However, it is clear that neither 1
nor �1 is a root. Thus, the polynomial does not have any rational roots. ut

There is a general theorem, whose proof is similar to the above example, that is
often useful in determining whether or not polynomials have rational roots and may
also be used to find such roots.

The Rational Roots Theorem 8.1.9. If m
n

is a rational root of the polynomial
akxk C ak�1x

k�1 C � � � C a1x C a0, where the aj are integers and m and n are
relatively prime, then m divides a0 and n divides ak .

Proof. Assuming that m
n

is a root gives

ak

�m

n

�k C ak�1

�m

n

�k�1 C � � � C a1

�m

n

�
C a0 D 0

Multiplying both sides of this equation by nk produces the equation

akmk C ak�1m
k�1n C � � � C a1mnk�1 C a0nk D 0

It follows that

m.akmk�1 C ak�1mk�2n C � � � C a1nk�1/ D �a0nk

Since m and n are relatively prime, m and nk are also relatively prime. On the
other hand, m divides �a0nk . Thus, by Lemma 7.2.9, m divides a0. Similarly,

akmk D �.ak�1mk�1n C � � � C a1mnk�1 C a0nk/

so,

akmk D �n.ak�1mk�1 C � � � C a1mnk�2 C a0nk�1/

Since n is relatively prime to m and n divides akmk, it follows (by Lemma 7.2.9)
that n divides ak . This proves the theorem. ut
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Example 8.1.10. Find all the rational roots of the polynomial 2x3 � x2 C x � 6.

Proof. By the Rational Roots Theorem (8.1.9), any rational root m
n

in low-
est terms has the property that n divides 2 and m divides 6. Thus, the only
possible values of n are 1; �1; 2; �2, and the only possible values of m are
6; �6; 3; �3; 2; �2; 1; �1. The possible values of the quotient m

n
are therefore

6; �6; 3; �3; 2; �2; 3
2
; � 3

2
; 1; �1; 1

2
; � 1

2
. We can determine which of these possible

roots actually are roots by simply substituting them for x and seeing if the result is
0. In this example, the only rational root is 3

2
. ut

8.2 Irrational Numbers

In a sense, all actual computations, by human or electronic computers, are done with
rational numbers. However, it is important, within mathematics itself and in using
mathematics to understand the world, to have other numbers as well.

Example 8.2.1. Suppose that you walk one mile due east and then one mile due
north. How far are you from your starting point? The straight line from your starting
point to your final position is the hypotenuse of a right triangle whose legs are each
one mile long. The length of the hypotenuse is the distance that you are from your
starting point. If x denotes that distance, then the Pythagorean Theorem (11.3.7)
tells us that x2 D 2.

It is obviously useful to have some number that denotes that distance. Is there
a rational number x such that x2 D 2? This question can be rephrased: are there
integers m and n with n 6D 0 such that . m

n
/2 D 2? This, of course, is equivalent

to the question of whether there are integers m and n different from 0 that satisfy
the equation m2 D 2n2. This is a very concrete question about integers; what is the
answer?

Theorem 8.2.2. There do not exist integers m and n with n 6D 0 such that
. m

n
/2 D 2.

Proof. Suppose that there did exist such m and n. We will show that this assumption
leads to a contradiction. From . m

n
/2 D 2 it would follow that m2 D 2n2. The

equation m2 D 2n2 implies that m2 is an even number, since it is the product of 2
and another number. What about m itself? If m was odd, then m � 1 would have to
be even, so m � 1 D 2k for some integer k, or m D 2k C 1. It would follow from
this that m2 D .2k C 1/2 D 4k2 C 4k C 1 D 2.2k2 C 2k/ C 1, which is an odd
number (since it is 1 more than a multiple of 2). Thus, if m was odd, m2 would have
to be odd. Since m2 is even, we conclude that m is even. Therefore, m D 2s for
some integer s, from which it follows that m2 D 4s2. Substituting 4s2 for m2 into
the equation m2 D 2n2 gives 4s2 D 2n2, or 2s2 D n2. Thus, n2 is an even number
and, reasoning as we did above for m, it follows that n itself is an even number.
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What have we proven so far? We have proven that m2 D 2n2 implies that both
m and n are even. But if m

n
is any rational number with m and n both even integers,

then the common factor of 2 can be “divided out” from both m and n, which
gives an expression of the number with numerator and denominator each half of
the corresponding part of the original representation of the number. This process of
dividing out 2’s can be repeated until at least one of the numerator and denominator
is odd. That is, there exists m0 and n0 different from 0 such that at least one of m0

and n0 is odd, and m
n

D m0

n0
. Then, . m0

n0
/2 D 2, so the above reasoning would imply

that both of m0 and n0 are even, which contradicts the fact that at least one of them
is odd. ut

We have proven that there is no rational number that satisfies the equation
x2 D 2. Is there any number that satisfies this equation? It would obviously be
useful to have such a number, for the purpose of specifying how far a person
in Example 8.2.1 is from their starting point and for many other purposes.
Mathematicians have developed what are called the real numbers; the real numbers
include numbers for every possible distance. The real numbers can be put into
correspondence with the points on a line by labeling one point “0” and marking
points to the right of 0 with the distances that they are from 0 (using any fixed
units). Points on the line to the left of 0 are labeled with corresponding negative real
numbers. The resulting real number line looks like

-3 -2 -1 0 1 2 3

The set of real numbers and the arithmetical operations on them can be precisely
constructed in terms of rational numbers. In fact, there are several ways to do that.
None of the ways of constructing the real numbers in terms of the rational numbers
are easy; they all require substantial development. There are two main approaches,
one using Cauchy sequences and the other using Dedekind cuts. The Dedekind cuts
approach is outlined in Problem 15 at the end of this chapter. For the present, we
will simply assume that the real numbers exist and that the arithmetical operations
on them have the usual properties.

Notation 8.2.3. The set of all real numbers is denoted by R.

It can be shown that there is a positive real number x such that x2 D 2. This
number is denoted

p
2 or 2

1
2 .

Definition 8.2.4. A real number that is not a rational number is said to be irrational.

Theorem 8.2.2 shows that
p

2 is not a rational number and thus can be rephrased
as follows.

Theorem 8.2.5. The number
p

2 is irrational.

The symbol
p

3 represents the positive real number satisfying .
p

3/2 D 3; is
p

3

irrational too?
We can establish a more general result.
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Theorem 8.2.6. If p is a prime number, then
p

p is irrational.

Proof. The proof will be similar to that of the special case p D 2. Suppose that
n 6D 0 and m and n are integers satisfying . m

n
/2 D p. Then m2 D pn2. Since

m2 D pn2, p divides m2. Thus, p divides the product m � m, from which it follows
that p divides at least one of the factors (see Corollary 4.1.3); that is, p divides
m. Therefore, there is an integer s such that m D ps, which gives .ps/2 D pn2.
Dividing both sides of this equation by p gives ps2 D n2. Thus, p divides the
product n � n and we conclude that p divides n. This shows that whenever m

n
is a

rational number with . m
n

/2 D p, both m and n are divisible by p. As in the case
where p D 2 (see Theorem 8.2.2), the fact that common factors of numerators and
denominators of fractions can be “divided out” leads to a contradiction. ut

Of course, some natural numbers do have rational square roots. For example,p
1 D 1,

p
4 D 2, and

p
289 D 17. What about

p
6? More generally is there a

natural number m such that
p

m is rational but
p

m is not an integer? To answer this
question it is useful to begin with the following.

Lemma 8.2.7. A natural number other than 1 is a perfect square (i.e., the square of
a natural number) if and only if every prime number in its canonical factorization
occurs to an even power.

Proof. Let n be a natural number. If the canonical factorization of n (see Corol-
lary 4.1.2) is n D p

˛1

1 p
˛2

2 � � � p˛k

k , then n2 D p
2˛1

1 p
2˛2

2 � � � p2˛k

k . The uniqueness
of the factorization into primes implies that this expression is the canonical
factorization of n2. All the exponents are obviously even. This proves that the
square of every natural number has the property that every exponent in its canonical
factorization is even. The converse is even easier. For if m D p

2˛1

1 p
2˛2

2 � � � p2˛k

k , then
obviously m D n2, where n D p

˛1

1 p
˛2

2 � � � p˛k

k . ut
Theorem 8.2.8. If the square root of a natural number is rational, then the square
root is an integer.

Proof. Suppose that N is a natural number and that the square root of N is rational.
The case N D 1 poses no difficulties. If N is greater than 1, let its canonical
factorization be p

˛1

1 p
˛2

2 � � � p˛t
t . Since

p
N is rational, there exist natural numbers m

and n such that
p

N D m
n

. Let the canonical factorizations of m and n, respectively,

be m D q
ˇ1

1 q
ˇ2

2 � � � qˇu
u and n D r

�1

1 r
�2

2 � � � r�v
v . Since N D m2

n2 , it follows that
n2N D m2. In terms of the canonical factorizations of N , n, and m, this yields

.r
�1

1 r
�2

2 � � � r�v
v /2p

˛1

1 p
˛2

2 � � � p˛t
t D

�
q

ˇ1

1 q
ˇ2

2 � � � qˇu
u

�2

It follows that

r
2�1

1 r
2�2

2 � � � r2�v
v p

˛1

1 p
˛2

2 � � � p˛t
t D q

2ˇ1

1 q
2ˇ2

2 � � � q2ˇu
u
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We want to prove that each of the ˛i is even. By the uniqueness of the
factorization into primes, each pi is one of the qj , for some j . Since 2ˇj is even, pi

occurs to an even power on both sides of the equation. Of course, pi could be one of
the r’s. If so, since the powers of all the r’s are even, the total power that pi occurs
to on the left-hand side of the equation is the sum of ˛i and an even number. Since
this sum must be the even number 2ˇj , it follows that ˛i is even. Thus, every ˛i is
even and the above lemma (8.2.7) implies that N is the square of an integer. ut
Example 8.2.9. The number 3

p
4 is irrational.

Proof. If 3
p

4 D m
n

with m and n integers, then 4n3 D m3. Write this equation in
terms of the canonical factorizations of m and n, getting

4
�
p

˛1

1 p
˛2

2 � � � p˛r
r

�3 D
�
q

ˇ1

1 q
ˇ2

2 � � � qˇs
s

�3

So,

22 � p
3˛1

1 p
3˛2

2 � � � p3˛r
r D q

3ˇ1

1 q
3ˇ2

2 � � � q3ˇs
s

The prime 2 must occur to a power that is a multiple of 3, since every prime on the
right-hand side of this equation occurs to such a power. On the other hand, 2 occurs
on the left-hand side of the equation to a power that is two more than a multiple
of 3. The uniqueness of the factorization into primes implies that no such equation
is possible. ut

Example 8.2.10. The number
p

3 C p
5 is irrational.

Proof. Suppose that
p

3 C p
5 D r , with r a rational number. Then

p
3 D r � p

5.
Squaring both sides of this equation gives

3 D .r � p
5/2 D r2 � 2

p
5r C 5

From this it would follow that 2
p

5r D r2 C 2 or
p

5 D r2C2
2r

. But r rational

implies that r2C2
2r

is rational, which contradicts the fact that
p

5 is irrational
(Theorem 8.2.6). ut

The following is a question with an interesting answer: Do there exist two
irrational numbers such that one of them to the power of the other is rational? That
is, can xy be rational if x and y are both irrational? A case that appears to be simple
is that of .

p
3/

p
2. In fact, however, it is not at all easy to determine whether or

not .
p

3/
p

2 is rational. Nonetheless, this example can still be used to prove that the
general question has an affirmative answer, as follows. Either .

p
3/

p
2 is rational or

it is irrational. If it is rational, it provides an example showing that the answer to the
question is affirmative. If .

p
3/

p
2 is irrational, let x D .

p
3/

p
2 and y D p

2. Then
xy is an irrational number to an irrational power. But
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xy D
�
.
p

3/
p

2
�p

2 D .
p

3/
p

2�p2 D .
p

3/2 D 3

This gives an affirmative answer in this case as well. In other words, .
p

3/
p

2

answers our original question, whether it itself is rational or irrational. In fact,
.
p

3/
p

2 is irrational, as follows from the Gelfond–Schneider Theorem, a theorem
that is very difficult to prove.

8.3 Problems

Basic Exercises

1. Use the Rational Roots Theorem (8.1.9) to find all rational roots of each of the
following polynomials (some may not have any rational roots at all):

(a) x2 C 5x C 2

(b) 2x3 � 5x2 C 14x � 35

(c) x10 � x C 1

2. Show that 3
p

5 is irrational.

3. Show that
q

1
2

is irrational.
4. Must the sum of an irrational number and a rational number be irrational?
5. Must an irrational number to a rational power be irrational?
6. Must the sum of two irrational numbers be irrational?
7. Is

3
pp

49 C 1 irrational?
8. If y is irrational and x is any rational number other than 0, show that xy is

irrational.

Interesting Problems

9. Determine whether each of the following numbers is rational or irrational and
prove that your answer is correct:

(a) 32
2
3

(b) 28
2
5

(c)
p

7p
5

(d)
p

7
3
p

15

(e)
p

63p
28

(f)
q

3
8

(g) 7

q
8
9

10. Prove that
3
p

3 C p
11 is irrational.
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Challenging Problems

11. Prove that the following numbers are irrational:

(a)
p

5 C p
7

(b) 3
p

4 C p
10

(c) 3
p

5 C p
3

(d)
p

3 C p
5 C p

7

(e)
p

3 �
p

5
17

12. Suppose that a and b are odd natural numbers and a2 C b2 D c2. Prove that c

is irrational.
13. Let k be a natural number. Prove that the kth root of a natural number is rational

if and only if the kth root is a natural number.
14. Prove that if a and b are natural numbers and n is a natural number such that

n
a
b is rational, then n

a
b is a natural number.

15. (Very challenging.) In this problem, we outline the Dedekind cuts approach to
constructing the real numbers. In this approach, real numbers are defined as
certain kinds of subsets of the set of rational numbers. The definition is the
following. A real number is a nonempty proper subset of the set of rational
numbers that does not have a greatest element and has the property that if a
rational number t is in the set and a rational number s is less than t , then s is in
the set. (A “proper subset” is a subset which is not the whole set.)

(a) If r is a rational number, the representation of r as a real number is as the set
of all rational numbers that are less than r . Prove that such a representation
is a real number according to the definition given above.

(b) If S and T are real numbers as defined above, then S C T is defined to be
the set of all s C t with s 2 S and t 2 T . Prove that S CT is a real number
(i.e., has the above properties).

(c) Prove that addition of real numbers as defined above is commutative; that
is, S C T D T C S for all real numbers S and T .

(d) Prove that addition of real numbers as defined above is associative; that is,
.S1 C S2/ C S3 D S1 C .S2 C S3/ for all real numbers S1, S2, and S3.

(e) If S is a real number, define �S to be the set of all rational numbers t such
that �t is not in S and �t is not the smallest rational number that is not in
S. Prove that �S is a real number whenever S is a real number.

(f) Let O denote the real number corresponding to the rational number 0 (i.e.,
the set of all x in Q such that x is less than 0). Prove that S C O D S, for
every real number S.

(g) Prove that S C .�S/ D O, for every real number S.
(h) We say that the real number S is positive if S contains a rational number

that is greater than 0. If S and T are positive real numbers, then the product
ST is defined to be the union of the set of all rational numbers that are less
than or equal to 0 together with the set of all rational numbers of the form
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st , where s is a positive number in S and t is a positive number in T . Prove
that the product of two positive real numbers is a real number (i.e., satisfies
the properties of a real number listed above).

(i) If S is a real number, define jSj to be S if S is a positive real number and
�S otherwise. Say that a real number is negative if it is not positive and is
not O. Prove that jSj is positive for all S not equal to O.

(j) If S and T are real numbers, define the productST to be �.jSjjT j/ if one is
negative and the other is positive, to be jSjjT j if both are negative, and to be
O if either is O. Prove that multiplication of real numbers is commutative;
that is, ST D T S, for all real numbers S and T .

(k) Let I denote the real number corresponding to the rational number 1 (i.e.,
the set of all x in Q such that x is less than 1). Prove that the product of I
and S is S, for every real number S.

(l) For a positive real number S, define 1
S to be the union of the set of rational

numbers that are less than or equal to 0 and the set of rational numbers t

such that 1
t

is not in S and 1
t

is not the smallest rational number not in S.
Prove that 1

S is a real number whenever S is a positive real number.
(m) For S a negative real number, define 1

S to be � 1
jSj . For S any real number

other than O, prove that the product of S and 1
S is I.

(n) Prove that multiplication of real numbers as defined above is associative;
that is, .S1S2/S3 D S1.S2S3/ for all real numbers S1, S2, and S3.

(o) Prove that multiplication of real numbers is distributive over addition; that
is, S1.S2 C S3/ D S1S2 C S1S3 for all real numbers S1, S2, and S3.

(p) (Existence of the square root of 2.) Let U denote the union of the set of
negative rational numbers and the set of all rational numbers x such that x2

is less than 2. Prove that U is a real number and that the product UU is the
real number corresponding to the rational number 2.

A very nice and complete exposition of the Dedekind cuts construction of the
real numbers can be found in “Calculus” by Michael Spivak (Publish or Perish,
Inc., Houston, Texas), which also contains a beautiful treatment of the principles
of calculus.



Chapter 9
The Complex Numbers

The set of real numbers is rich enough to be useful in a wide variety of situations.
In particular, it provides a number for every distance. There are, however, some
situations where additional numbers are required.

9.1 What is a Complex Number?

Let’s consider the problem of finding roots for polynomial equations. Recall that
polynomials are expressions such as 7x2 C5x �3, and

p
2x3 C 5

7
x, and x7 �1. The

general definition is the following.

Definition 9.1.1. A polynomial is an expression of the form

anxn C an�1xn�1 C � � � C a1x C a0

where n is a natural number and the ai are numbers with an 6D 0, or simply a
number a0 (which we call a constant polynomial). The ai are called the coefficients
of the polynomial. The natural number n, the highest power to which x occurs in the
polynomial, is called the degree of the polynomial. A constant polynomial is said to
have degree 0.

Note that in the definition of polynomial we used x as the variable; this is very
standard. However, it is often the case that other variables are used as well. For
example, z3 � 4z C 3 would be a polynomial in the variable z.

A polynomial defines a function; whenever any specific number is substituted
for x, the resulting expression is a number. The values of x for which the polynomial
is 0 have special significance.

Definition 9.1.2. A root or zero of the polynomial anxnCan�1xn�1C� � �Ca1xCa0

is a number that when substituted for x makes

anxn C an�1xn�1 C � � � C a1x C a0 D 0

D. Rosenthal et al., A Readable Introduction to Real Mathematics,
Undergraduate Texts in Mathematics, DOI 10.1007/978-3-319-05654-8__9,
© Springer International Publishing Switzerland 2014
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For example, 2 is a root of the polynomial x2 � 4, 3 is a root of the polynomial
5x2 � 2x � 39, � 7

5
is a root of the polynomial 5x C 7, and so on.

A very natural question is: Which polynomials have roots? All polynomials
of degree 1 have roots: the polynomial a1x C a0 has the root � a0

a1
. What about

polynomials of degree 2? A simple example is the polynomial x2 C 1. No real
number is a root of that polynomial, since x2 is nonnegative for every real number
x, and therefore x2 C 1 is strictly greater than 0 for every real x. If the polynomial
x2 C 1 is to have a root, it would have to be in a larger number system than that
of the real numbers. Such a system was invented by mathematicians hundreds of
years ago.

We use the symbol i to denote a root of the polynomial x2 C1. That is, we define
i 2 to be equal to �1. We then combine this symbol i with real numbers, using
standard manipulations of algebra in the usual ways, to get the complex numbers.
The definition is the following.

Definition 9.1.3. A complex number is an expression of the form a C bi where a

and b are real numbers. The real number a is called the real part of a C bi and
the real number b is called the imaginary part of a C bi . We sometimes use the
notation Re.z/ and Im.z/ to denote the real and imaginary parts of the complex
number z, respectively. Addition of complex numbers is defined by

.a C bi/ C .c C di/ D .a C c/ C .b C d/i

Multiplication of complex numbers is defined by

.a C bi/.c C di/ D ac C adi C bic C bdi2 D ac C bdi2 C .ad C bc/i

D .ac � bd/ C .ad C bc/i

where we replaced i 2 by �1 to get the last equation.

Example 9.1.4.

.6 C 2i/ C .�4 C 5i/ D 2 C 7i

.�p
12 C p

6i/ C .4 C �i/ D .�p
12 C 4/ C .

p
6 C �/i

.7C2i/.3�4i/ D 21C6i�28i�8i2 D 21�22i�8.�1/ D 21C8�22i D 29�22i

Notation 9.1.5. The set of all complex numbers is denoted by C.

We use the symbol 0 as an abbreviation for the complex number 0 C 0i . More
generally, we use a as an abbreviation for the complex number a C0i . Similarly we
use bi as an abbreviation for the complex number 0 C bi . When r is a real number,
then r.a C bi/ is simply ra C rbi .
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Note that every complex number has an additive inverse (i.e., a complex number
that gives 0 when added to the given number). For example, the additive inverse of
�7 C p

2i is 7 � p
2i . In general, the additive inverse of a C bi is �a C .�b/i .

Definition 9.1.6. The number a �bi is called the complex conjugate of the number
a C bi ; the complex conjugate of a complex number is often denoted by placing a
horizontal bar over the complex number:

a C bi D a � bi

Example 9.1.7. The complex conjugate of 2 C 3i is 2 � 3i , or 2 C 3i D 2 � 3i .

Similarly, �p
3 � 5i D �p

3 C 5i , and 9 D 9.

The product of a complex number and its conjugate is important.

Theorem 9.1.8. For any complex number a C bi , .a C bi/.a � bi/ D a2 C b2.

Proof. Simply multiplying gives the result; we invite you to verify this in Problem 5
at the end of this chapter. ut
Definition 9.1.9. The modulus of the complex number a C bi is

p
a2 C b2; it is

often denoted ja C bi j.
Thus, .a C bi/.a C bi/ D ja C bi j2.
Do complex numbers have multiplicative inverses? That is, given aCbi , is there

a complex number c C di such that .a C bi/.c C di/ D 1? Of course, the complex
number 0 cannot have a multiplicative inverse, since its product with any complex
number is 0. What about other complex numbers?

Given a complex number a C bi , let’s try to compute a multiplicative inverse
c C di for it. Suppose that .a C bi/.c C di/ D 1. Multiplying both sides of this
equation by a C bi and using the fact that .a C bi/.a C bi/ D a2 C b2 yields
.a2 C b2/.c C di/ D a � bi . Since a2 C b2 is a real number, this implies (unless
a2 C b2 D 0) that c C di D a

a2Cb2 � b
a2Cb2 i . Note that if a2 C b2 D 0, then

a D b D 0, so the number a C bi is 0. Thus, if a C bi has a multiplicative inverse,
that multiplicative inverse must be a

a2Cb2 � b
a2Cb2 i . In fact, as we now show, that

expression is a multiplicative inverse for a C bi .

Theorem 9.1.10. If a C bi 6D 0, then a
a2Cb2 � b

a2Cb2 i is a multiplicative inverse for
a C bi .

Proof. We verify this by simply multiplying

.a C bi/ �
�

a

a2 C b2
� b

a2 C b2
i

�
D a2

a2 C b2
C b2

a2 C b2
� ab

a2 C b2
i C ab

a2 C b2
i

which simplifies to a2Cb2

a2Cb2 D 1. ut
As with real numbers, the multiplicative inverse of the complex number a C bi

is often denoted 1
aCbi

.
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9.2 The Complex Plane

It is very useful to represent complex numbers in a coordinatized plane. We let the
complex number a C bi correspond to the point .a; b/ in the ordinary xy-plane.
Note that the modulus ja C bi j is the distance from .a; b/ to the origin.

Definition 9.2.1. For a complex number a C bi other than 0, the angle that the
line from .0; 0/ to .a; b/ makes (in a counterclockwise direction) with the positive
x-axis is called the argument of a C bi .

In day to day life, angles are usually measured in degrees: a right angle is
90ı, a straight angle is 180ı, and an angle of 37ı is 37

180
of a straight angle. For

doing mathematics, however, it is almost always more convenient to measure angles
differently.

Definition 9.2.2. The radian measure of the angle � is the length of the arc of
a circle of radius 1 that is cut off by an angle � at the center of the circle. (See
Figure 9.1 below.)

1

�

�

Fig. 9.1 The radian measure of an angle

Thus, since a circle of radius 1 has circumference 2� , the radian measure of a
right angle is �

2
, of a straight angle is � , of an angle of 60ı is �

3
, and so on. Note

that 2� is a full revolution. Therefore, for any natural number k, the angle � C 2�k

measured from the positive x-axis ends up at the same position as � . We will use
the radian measure of angles for the rest of this chapter.

We require the basic properties of the trigonometric functions sine, cosine, and
tangent.

If the complex number a C bi has modulus r and argument � , then a D r cos � ,
and b D r sin � . To see this, first consider the case where both a and b are greater
than or equal to 0, which is equivalent to � being an angle between 0 and �

2
. Then

the situation is as in Figure 9.2 below. The fact that the cosine of an angle in a
right triangle is its adjacent side divided by its hypotenuse gives cos � D a

r
, or

a D r cos � . Similarly, the fact that the sine of � is the opposite side divided by
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x

y

r

a

b
a C bi

�

Fig. 9.2 Representations of a complex number

the hypotenuse gives sin � D b
r
, or b D r sin � . Similar analysis yields the same

equations when one or more of a and b is negative, and thus the conclusion holds
for any � . Each complex number is determined by its modulus r and its argument � ;
that is, a C bi D r.cos � C i sin �/. (The only complex number whose modulus is 0
is the number 0, and 0 is the only complex number whose argument is not defined.)

Definition 9.2.3. The polar form of the complex number with modulus r and
argument � is r.cos � C i sin �/.

One reason that the polar form is important is because there is a neat description
of multiplication of complex numbers in terms of their moduli and arguments.

Theorem 9.2.4. The modulus of the product of two complex numbers is the product
of their moduli. The argument of the product of two complex numbers is the sum of
their arguments.

Proof. Simply multiplying the two complex numbers r1.cos �1 C i sin �1/ and
r2.cos �2 C i sin �2/ and collecting terms yields

r1r2

�
.cos �1 cos �2 � sin �1 sin �2/ C i.cos �1 sin �2 C sin �1 cos �2/

�

Recall the addition formulae for cosine and sine:

cos .�1 C �2/ D cos �1 cos �2 � sin �1 sin �2
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and

sin .�1 C �2/ D sin �1 cos �2 C sin �2 cos �1

Using these addition formulae in the above equation shows that the product is
equal to

r1r2

�
cos .�1 C �2/ C i sin .�1 C �2/

�

This proves the theorem. ut
Thus, to multiply two complex numbers, we can simply multiply their moduli

and add their arguments. In particular, the case where the two complex numbers
are equal shows that the square of a complex number is obtained by squaring its
modulus and doubling its argument. One application of this fact is the following.

Theorem 9.2.5. Every complex number has a complex square root.

Proof. To show that any given complex number has a square root, write the number
in polar form, say z D r.cos � C i sin �/. Let w equal

p
r.cos �

2
C i sin �

2
/. By the

previous theorem, w2 D z. ut
It is also easy to compute powers higher than 2.

De Moivre’s Theorem 9.2.6. For every natural number n

�
r.cos � C i sin �/

�n D rn.cos n� C i sin n�/

Proof. This is easily established by induction on n. The case n D 1 is clear. Suppose
that the formula holds for n D k, that is, suppose

�
r.cos � C i sin �/

�k D rk.cos k� C i sin k�/

Multiplying both sides of this equation by r.cos �Ci sin �/ and using Theorem 9.2.4
gives

�
r.cos � C i sin �/

�kC1 D rk.cos k� C i sin k�/ � r.cos � C i sin �/

D r � rk.cos .k� C �/ C i sin .k� C �//

D rkC1
�

cos ..k C 1/�/ C i sin ..k C 1/�/
�

This is the formula for n D k C 1, so the theorem is established by mathematical
induction. ut

De Moivre’s Theorem leads to some very nice computations, such as the
following.
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Example 9.2.7. We can compute .1 C i/8 as follows. First, j1 C i j D p
2. Plotting

1Ci as the point .1; 1/ in the plane makes it apparent that the argument of 1Ci is �
4

.
Thus, by De Moivre’s Theorem (9.2.6), the modulus of .1Ci/8 is .

p
2/8 D 24 D 16

and the argument is 8 � �
4

D 2� . It follows that

.1 C i/8 D 16.cos 2� C i sin 2�/ D 16

Therefore, .1 C i/8 D 16.

The following is a very similar computation.

Example 9.2.8.

.1 C i/100 D
�p

2
�

cos
�

4
C i sin

�

4

��100 D 250.cos 25� C i sin 25�/

Since the angle with the positive x-axis of 25� radians is in the same position as the
angle of � radians, it follows that

.1 C i/100 D 250.cos � C i sin �/ D 250.�1 C 0/ D �250

It is interesting to compute the roots of the complex number 1. The number 1 is
sometimes called unity in this context.

Example 9.2.9 (Square Roots of Unity). Obviously, 12 D 1 and .�1/2 D 1. Are
there any other complex square roots of 1? To compute the square roots of 1 we can
proceed as follows. Let z D r.cos � C i sin �/. Then z2 D r2.cos 2� C i sin 2�/. If
z2 D 1, then r2 must be the modulus of 1; i.e., r2 D 1. Since r is nonnegative, it
follows that r D 1. Also, cos 2� Ci sin 2� D 1. Therefore, cos 2� D 1 and sin 2� D
0. What are the possible values of �? Clearly, � D 0 is one solution, as is � D � ; the
corresponding values of z are z D cos 0C i sin 0 D 1 and z D cos � C i sin � D �1.
Are there any other possible values of �? Of course there are: � could be 2� or 3�

or 4� or 5� . If � is any multiple of � , then cos 2� D 1 and sin 2� D 0. However,
we do not get any new values of z by using those other values of � . We only get
z D 1 or z D �1 depending upon whether we have an even or an odd multiple of � .
It is easily seen that only the multiples of � simultaneously satisfy the equations
cos 2� D 1 and sin 2� D 0. This follows from the fact that cos � D 1 only when �

is a multiple of 2� , so cos 2� D 1 only when � is a multiple of � . Thus, the only
complex square roots of 1 are 1 and �1.

Cube roots of unity are more interesting. The only real number z satisfying z3 D 1

is z D 1. However, there are other complex numbers satisfying this equation.

Example 9.2.10 (Cube Roots of Unity). Suppose that z D r.cos � C i sin �/ and
z3 D 1. Then clearly r D 1. By De Moivre’s Theorem (9.2.6), z3 D cos 3� C
i sin 3� . From z3 D 1 we get cos 3� D 1 and sin 3� D 0. These equations are,
of course, satisfied by � D 0, which gives z D cos 0 C i sin 0 D 1, the obvious
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cube root of 1. But also cos 3� D 1 and sin 3� D 0 when 3� D 2� . That is, when
� D 2�

3
. Thus, z D cos 2�

3
C i sin 2�

3
D � 1

2
C

p
3

2
i is another cube root of 1.

(Once it is conjectured that � 1
2

C
p

3
2

i is a cube root of 1, that could be verified by

simply computing
�� 1

2
C

p
3

2
i
�3

.) There is another cube root of 1. If 3� D 4� , then

cos 3� D 1 and sin 3� D 0. Thus, z D cos 4�
3

C i sin 4�
3

D � 1
2

�
p

3
2

i is another

cube root of 1. Therefore, we have found three cube roots of 1: 1, � 1
2

C
p

3
2

i and

� 1
2

�
p

3
2

i . Are there any other cube roots of 1? If 3� D 6� , then cos 3� D 1 and
sin 3� D 0. When 3� D 6� , � D 2� . Thus, cos � Ci sin � is simply 1, so we are not
getting an additional cube root. More generally, for every integer k, cos 2k� D 1

and sin 2k� D 0. However, if 3� D 2k� , then there are only the three different
values given above for cos � C i sin � , since all the values of � obtained from other
values of k differ from one of 0, 4�

3
and 2�

3
by a multiple of 2� .

It is interesting to plot the three cube roots of unity in the plane.
The three cube roots of unity are obtained by starting at the point 1 on the circle

of radius 1 and then moving in a counterclockwise direction 2�
3

to get the next cube
root and then moving an additional 2�

3
to get the third cube root (Figure 9.3).

x

y

1
2�
3

Fig. 9.3 The cube roots of 1

For each natural number n, the complex nth roots of 1 can be obtained by starting
at 1 and successively moving around the unit circle in a counterclockwise direction
through angles of 2�

n
.

Example 9.2.11 (nth Roots of Unity). For each natural number n, the complex nth

roots of 1 are the numbers 1, cos 2�
n

C i sin 2�
n

, cos 4�
n

C i sin 4�
n

, cos 6�
n

C i sin 6�
n

,

cos 8�
n

C i sin 8�
n

, . . . , cos 2�.n�1/

n
C i sin 2�.n�1/

n
.
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To see this, first note that, for any natural number k,

�
cos

2�k

n
C i sin

2�k

n

�n

D cos 2�k C i sin 2�k

by De Moivre’s Theorem (9.2.6). Since cos 2�k C i sin 2�k D 1, this shows that
each of cos 2�k

n
C i sin 2�k

n
is an nth root of unity. To show that these are the only nth

roots of unity we proceed as follows. Suppose that z D cos � C i sin � and zn D 1.
Then cos n� C i sin n� D 1, so cos n� D 1 and sin n� D 0. Thus, n� D 2�k for
some integer k. It follows that � D 2�k

n
. Taking k D 0; 1; : : : ; n � 1 gives the nth

roots that we have listed. Taking other values of k gives different values for 2�k
n

, but
each of them differs from one of the listed values by a multiple of 2� and therefore
gives a value for cos � C i sin � that we already have. Thus, the n roots that we listed
are all of the nth roots of unity.

Roots of other complex numbers can also be computed.

Example 9.2.12. All of the solutions of the equation z3 D 1 C i can be found as
follows. First note that j1 C i j D p

2 and the argument of 1 C i is �
4

. That is,
1 C i D p

2
�
cos �

4
C i sin �

4

�
. Suppose that z D r.cos � C i sin �/ and z3 D 1 C i .

Then z3 D r3.cos 3� C i sin 3�/. Therefore r3 D p
2, so r D 2

1
6 , and 3� is �

4
or

�
4

C 2� or �
4

C 4� . Therefore, � itself can be �
12

, 3�
4

, or 17�
12

. This gives the three

solutions of the equation z3 D 1 C i : 2
1
6

�
cos �

12
C i sin �

12

�
, 2

1
6

�
cos 3�

4
C i sin 3�

4

�
,

and 2
1
6

�
cos 17�

12
C i sin 17�

12

�
.

9.3 The Fundamental Theorem of Algebra

One reason for introducing complex numbers was to provide a root for the
polynomial x2 C 1. There are many other polynomials that do not have any real
roots. For example, if p.x/ is any polynomial, then the polynomial obtained by
writing out

�
p.x/

�2 C 1 has no real roots, since its value is at least 1 for every value
of x.

Does every such polynomial have a complex root? More generally, does every
polynomial have a complex root? There is a trivial sense in which the answer to
this question is “no,” since constant polynomials other than 0 clearly do not have
any roots of any kind. For other polynomials, the answer is not so simple. It is
a remarkable and very useful fact that every non-constant polynomial with real
coefficients, or even with complex coefficients, has a complex root.

The Fundamental Theorem of Algebra 9.3.1. Every non-constant polynomial
with complex coefficients has a complex root.
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There are a number of different proofs of the Fundamental Theorem of Algebra.
They all rely on mathematical concepts that we do not develop in this book. We will
therefore simply discuss implications of this theorem without proving it.

How many roots does a polynomial have?

Example 9.3.2. The only root of the polynomial p.z/ D z2 � 6z C 9 is z D 3. This
follows from the fact that p.z/ D .z � 3/.z � 3/. Since the product of two complex
numbers is 0 only if at least one of the numbers is 0, the only solution to p.z/ D 0

is z D 3. In some sense, however, this polynomial has 3 as a “double root”; we’ll
discuss this a little more below.

To explore the question of the number of roots that a polynomial can have, we
need to use the concept of the division of one polynomial by another. This concept
of division is very similar to “long division” of one natural number into another.
Actually, we only need a special case of this concept, the case where the polynomial
divisor is linear (i.e., has degree 1). We begin with an example.

Example 9.3.3. To divide z � 3 into z4 C 5z3 � 2z C 1 we proceed as follows:

z3 C8z2 C24z C70

z � 3
�

z4 C5z3 �2z C1

z4 �3z3

8z3 �2z C1

8z3 �24z2

24z2 �2z C1

24z2 �72z

70z C1

70z �210

211

What this tabulation shows, like with long division of numbers, is that

z4 C 5z3 � 2z C 1 D .z � 3/.z3 C 8z2 C 24z C 70/ C 211

The only consequence of the division of one polynomial by another that we need
for present purposes is the following.

Theorem 9.3.4. If r is a complex number and p.z/ is a non-constant polynomial
with complex coefficients, then there exists a polynomial q.z/ and a constant c such
that

p.z/ D .z � r/q.z/ C c
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Proof. We will proceed by using the Principle of Complete Mathematical Induction
(2.2.1) on the degree of the polynomial p.z/. Since p.z/ is non-constant, the base
case of our induction proof is when the degree of p.z/ is 1. In other words, p.z/ D
azCb, where a and b are complex numbers and a ¤ 0. Let r be a complex number.
As in Example 9.3.3, we will use long division to divide z � r into p.z/:

a

z � r
�

az Cb

az �ar

ar C b

This shows that p.z/ D az C b D .z � r/ � a C .ar C b/. So setting q.z/ D a and
c D ar C b gives us the desired result when the degree of p.z/ is 1. Thus, the base
case of the induction is complete.

Now assume that the theorem is true for all polynomials of degree less than or
equal to n � 1. Using this assumption we will show that the theorem holds for
any polynomial of degree equal to n C 1. Let p.z/ be a polynomial with complex
coefficients with degree n C 1. That is,

p.z/ D anC1znC1 C anzn C an�1zn�1 C � � � C a1z C a0

where each ai is a complex number and anC1 is nonzero. Let r be a complex number.
Once again we use long division to divide z � r into p.z/:

anC1zn

z � r
�

anC1znC1 C anzn C an�1zn�1 C � � � C a1z C a0

anC1znC1 �ranC1zn

.an C ranC1/zn C an�1zn�1 C � � � C a1z C a0

To simplify the notation, let pn.z/ D .anCranC1/znCan�1zn�1C� � �Ca1zCa0. Then
the above long division tells us that p.z/ D .z � r/.anC1zn/ C pn.z/. Since pn.z/ is
a polynomial of degree less than or equal to n, the induction hypothesis tells us that
there exists a polynomial qn.z/ and a constant c such that pn.z/ D .z � r/qn.z/ C c.
Thus,

p.z/ D .z � r/.anC1zn/ C pn.z/ D .z � r/.anC1zn/ C .z � r/qn.z/ C c

D .z � r/
�
anC1zn C qn.z/

� C c

Therefore, setting q.z/ D anC1zn Cqn.z/ gives us the desired result when the degree
of p.z/ is n C 1. This completes the proof by induction. ut
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Definition 9.3.5. The polynomial f .z/ is a factor of the polynomial p.z/ if there
exists a polynomial q.z/ such that p.z/ D f .z/q.z/.

The Factor Theorem 9.3.6. The complex number r is a root of a polynomial p.z/
if and only if z � r is a factor of p.z/.

Proof. If .z � r/ is a factor of p.z/, then p.z/ D .z � r/q.z/ implies that p.r/ D
.r � r/q.r/ D 0 � q.r/ D 0. Conversely, suppose that r is a root of p.z/. By
Theorem 9.3.4, p.z/ D .z � r/q.z/ C c for some constant c. Substituting r for z and
using the fact that r is a root gives 0 D .r � r/q.r/ C c, so 0 D 0 C c, from which
it follows that c D 0. Hence, p.z/ D .z � r/q.z/ and z � r is a factor of p.z/. ut
Example 9.3.7. The complex number 2i is a root of the polynomial iz3 C z2 � 4

(as can be seen by simply substituting 2i for z in the expression for the polynomial
and noting that the result is 0). It follows from the Factor Theorem that z � 2i

is a factor of the given polynomial. Doing “long division” gives iz3 C z2 � 4 D
.z � 2i/.iz2 � z � 2i/.

We can use the Factor Theorem to determine the maximum number of roots that
a polynomial may have.

Theorem 9.3.8. A polynomial of degree n has at most n complex roots; if “multi-
plicities” are counted, it has exactly n roots.

Proof. Let p.z/ be a polynomial of degree n. If n is at least 1, then p.z/ has
a root, say r1, by the Fundamental Theorem of Algebra (9.3.1). By the Factor
Theorem (9.3.6), there exists a polynomial q1.z/ such that p.z/ D .z�r1/q1.z/. The
degree of q1 is clearly n�1. If n�1 > 0, then q1.z/ has a root, say r2. It follows from
the Factor Theorem that there is a polynomial q2.z/ such that q1.z/ D .z � r2/q2.z/.
The degree of q2.z/ is n � 2, and

p.z/ D .z � r1/.z � r2/q2.z/

This process can continue (a formal proof can be given using mathematical
induction) until a quotient is simply a constant, say k. Then,

p.z/ D k.z � r1/.z � r2/ � � � .z � rn/

If the ri are all different, the polynomial will have n roots. If some of the ri

coincide, collecting all the terms where ri is equal to a given r produces a factor of
the form .z � r/m, where m is the number of times that r occurs in the factorization.
In this situation, we say that r is a root of multiplicity m of the polynomial. Thus,
a polynomial of degree n has at most n distinct roots. If the roots are counted
according to their multiplicities, then a polynomial of degree n has exactly n

roots. ut
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9.4 Problems

Basic Exercises

1. Write the following complex numbers in a C bi form, where a and b are real
numbers:

(a)
�

1p
2

C ip
2

�10

(b)
�

1p
2

C ip
2

�106

(c)
�
�

p
3

2
C i

2

�11

(d) 3C2i
�1�i

(e) 3p
2Ci

(f) i 574

(g) i 575

(h) 1
i9

2. Show that the real part of .1 C i/10 is 0.
3. Find both square roots of the following numbers:

(a) �i

(b) �15 � 8i

4. Find the cube roots of the following numbers:

(a) 2
(b) 8

p
3 C 8i

5. Prove Theorem 9.1.8; that is, prove that for any complex number a C bi ,

.a C bi/.a � bi/ D a2 C b2

Interesting Problems

6. Prove the Quadratic Formula; i.e., prove that the polynomial az2 C bz C c,
where a; b and c are any complex numbers and a is different from 0, has roots

z D �b˙p
b2�4ac

2a
.

[Hint: Rewrite the equation as z2C b
a

zC c
a

D 0, and use the fact that
�
z C b

2a

�2 D
z2 C b

a
z C b2

4a2 .]
7. Find all solutions to the equation iz2 C 2z C i D 0.

8. Find a polynomial p with integer coefficients such that p
�
3 C i

p
7
�

D 0.

9. Find all the complex roots of the polynomial z6 C z3 C 1.
10. Find all the complex roots of the polynomial z7 � z.
11. Find a polynomial whose complex roots are 2 � i; 2 C i; 7.
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Challenging Problems

12. Find all the complex solutions of
z3 C 1

z3 � 1
D i .

13. Let p be a polynomial with real coefficients. Prove that the complex conjugate
of each root of p is also a root of p.
[Hint: First show that for any two complex numbers the sum of the conjugates
is the conjugate of the sum, and the product of the conjugates is the conjugate
of the product.]

14. Show that every non-constant polynomial with real coefficients can be factored
into a product of linear (i.e., of degree 1) and quadratic (i.e., of degree 2)
polynomials, each of which also has real coefficients.

15. Extend De Moivre’s Theorem (9.2.6) to prove that

�
r.cos � C i sin �/

�n D rn.cos n� C i sin n�/

for negative integers n.



Chapter 10
Sizes of Infinite Sets

How many natural numbers are there? How many even natural numbers
are there? How many odd natural numbers are there? How many rational numbers
are there? How many real numbers are there? How many points are there in the
plane? How many sets of natural numbers are there? How many different circles
are there in the plane? One answer to all the above questions would be: there are an
infinite number of them. But there are more precise answers that can be given; there
are, in a sense that we will explain, an infinite number of different size infinities.

10.1 Cardinality

Definition 10.1.1. By a set we simply mean any collection of things; the things are
called elements of the set. (As will be discussed at the end of this chapter, such a
general definition of set is problematic in certain senses.)

For example, the collection of all words on this page is a set. The collection
containing the letters a, b, and c is a set: it could be denoted S D fa; b; cg. The set
of all real numbers greater than 4 could be written:

fx W x > 4g

The fact that something is an element of a set is often denoted with the Greek letter
epsilon, 2. We write x 2 S to represent the fact that x is an element of the set S.

Definition 10.1.2. If S is a set, a subset of S is a set all of whose elements are
elements of the set S. The notation T � S is used to signify that T is a subset of S.
The empty set is the set that has no elements at all. It is denoted ;. The empty set
is, by definition, a subset of every set. That is, ; � S for every set S. The union
of a collection of sets is the set consisting of all elements that occur in any of the
given sets. The union of sets S and T is denoted S [ T and similar notation is
used for the union of more than two sets. The intersection of a collection of sets

D. Rosenthal et al., A Readable Introduction to Real Mathematics,
Undergraduate Texts in Mathematics, DOI 10.1007/978-3-319-05654-8__10,
© Springer International Publishing Switzerland 2014
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is the set consisting of all elements that are in every set in the given collection.
The intersection of the sets S and T is denoted S \ T and similar notation is used
for the intersection of more than two sets. If the intersection of two sets is the empty
set, the sets are said to be disjoint.

How should we define the concept that two sets have the same number of
elements? For finite sets, we count the number of elements in each set. When we
count the number of elements in a set, we assign the number 1 to one of the elements
of the set, then assign the number 2 to another element of the set, then 3 to another
element of the set, and so on, until we have counted every element in the set. If
the set has n elements, when we finish counting we will have assigned a number
in the set f1; 2; 3; : : : ; ng to each element of the set and will not have assigned two
different numbers to the same element in the set. That is, counting that a set has
n elements produces a pairing of the elements of the set f1; 2; 3; : : : ; ng with the
elements of the set that we are counting. A set whose elements can be paired with
the elements of the set f1; 2; 3; : : : ; ng is said to have n elements.

More generally, we can say that two sets have the same number of elements if
the elements of those two sets can be paired with each other.

Example 10.1.3. Pairs of running shoes are manufactured in a given factory. Each
day, some number of pairs is manufactured. Even without knowing how many pairs
were manufactured in a given day, we can still conclude that the same number of
left shoes was manufactured as the number of right shoes that was manufactured,
since they are manufactured in pairs. If, for example, the number of left shoes was
determined to be 1012, then it could be concluded that the number of right shoes was
also 1012. This could be established as follows: since the set f1; 2; 3; : : : ; 1012g can
be paired with the set of left shoes, it could also be paired with the set of right shoes,
simply by pairing each right shoe to the number assigned to the corresponding left
shoe in the pair.

The above discussion suggests the general definition that we shall use. In the
following, the phrase “have the same cardinality” is the standard mathematical
terminology for what might colloquially be expressed “have the same size.”

Definition 10.1.4 (Rough Definition). The sets S and T are said to have the same
cardinality if their elements can be paired with each other’s.

We need to be able to precisely define what we mean by a “pairing” of the
elements of two sets. This can be specified in terms of functions. A function from
a set S into a set T is simply an assignment of one element of T to each element
of S. For example, if S D fa; b; d; eg and T D fC; �g, then one particular function
taking S to T is the function f defined by f .a/ D � , f .b/ D � , f .d/ D C, and
f .e/ D � .

Definition 10.1.5. The notation f W S ! T is used to denote a function f taking
the set S into the set T ; that is, a mapping of each element of S to an element of T .
The set S is called the domain of the function. The range of a function is the set of
all its values; that is, the range of f W S ! T is ff .s/ W s 2 Sg.
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Definition 10.1.6. A function f W S ! T is one-to-one (or injective) if f .s1/ 6D
f .s2/ whenever s1 6D s2. That is, a function is one-to-one if it does not send two
different elements to the same element.

We also require another property that functions may have.

Definition 10.1.7. A function f W S ! T is onto (or surjective) if for every t 2 T
there is an s 2 S such that f .s/ D t ; that is, the range of f is all of T .

Note that a one-to-one, onto function from a set S onto a set T gives a pairing of
the elements of S with those of T .

The formal definition of when sets are to be considered to have the same size can
be stated as follows.

Definition 10.1.8. The sets S and T have the same cardinality if there is a function
f W S ! T that is one-to-one and onto all of T .

We require the concept of the inverse of a function. If f is a one-to-one function
mapping a set S onto a set T , then there is a function mapping T onto S that “sends
elements back to where they came from,” via f .

Definition 10.1.9. If f is a one-to-one function mapping S onto T , then the inverse
of f , often denoted f �1, is the function mapping T onto S defined by f �1.t/ D s

when f .s/ D t .

With respect to the definition above, note that f must be onto for f �1 to be
defined on all of T . Also, f must be one-to-one; otherwise for some t there will be
more than one s for which f .s/ D t and therefore f �1.t/ will not be determined.
If f is a one-to-one function mapping S onto T , then f �1 is a one-to-one function
mapping T onto S.

Let’s consider some examples.

Example 10.1.10. The set of even natural numbers and the set of odd natural
numbers have the same cardinality.

Proof. Write the set of even natural numbers as E D f2; 4; : : : ; 2n; : : :g and the set
of odd natural numbers as O D f1; 3; : : : ; 2n C 1; : : :g. We can define a function
f taking E ! O by letting f .k/ D k � 1, for each k in E . To see that this f is
one-to-one, simply note that k1 � 1 D k2 � 1 implies k1 D k2. Also, f is clearly
onto. Thus, the sets E and O have the same cardinality. ut

It is not very surprising that the set of even natural numbers and the set of odd
natural numbers have the same cardinalities. The following example is a little more
unexpected.

Example 10.1.11. The set of even natural numbers has the same cardinality as the
set of all natural numbers.

Proof. This is surprising at first because it seems that the set of even numbers should
have half as many elements as the set of all natural numbers. However, it is easy to
prove that these sets, E and N, do have the same cardinality. Simply define the
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function f W N ! E by f .n/ D 2n. It is easily seen that f is one-to-one: if
f .n1/ D f .n2/, then 2n1 D 2n2, so n1 D n2. The function f is onto since every
even number is of the form 2k, for some natural number k. Therefore, N and E have
the same cardinality. ut

Thus, in the sense of the definition we are using, the subset E of N has the
same size as the entire set N. This shows that, with respect to cardinality, it is not
necessarily the case that “the whole is greater than any of its parts.”

Another example showing that “the whole” can have the same cardinality as “one
of its parts” is the following.

Example 10.1.12. The set of natural numbers and the set of nonnegative integers
have the same cardinality.

Proof. The set of natural numbers is N D f1; 2; 3; : : :g. Let S denote the set
f0; 1; 2; 3; : : :g of nonnegative integers. We want to construct a one-to-one function
f taking S onto N. We can simply define f by f .n/ D n C 1, for each n in S.
Clearly f maps S onto N. Also, f .n1/ D f .n2/ implies n1 C 1 D n2 C 1, which
gives n1 D n2. That is, f does not send two different integers to the same natural
number, so f is one-to-one. Therefore, N and S have the same cardinality. ut

The following notation is useful.

Notation 10.1.13. We use the notation jSj D jT j to mean that S and T have the
same cardinality.

Therefore, as shown above, jOj D jE j D jNj.
How does the size of the set of all positive rational numbers, which we will

denote by Q
C, compare to the size of the set of natural numbers? The subset of QC

consisting of those rational numbers with numerator 1 can obviously be paired with
N: simply pair 1

n
with n, for each n in N. But then there are all the rational numbers

with numerator 2, and with numerator 3, and so on. It seems that there are many
more positive rational numbers than there are natural numbers. However, we now
prove that jNj D jQCj.
Theorem 10.1.14. The set of natural numbers and the set of positive rational
numbers have the same cardinality.

Proof. To prove this theorem, we first describe a way of displaying all the positive
rational numbers. We imagine writing all the rational numbers with numerator 1 in
one line, and then, underneath that, the rational numbers with numerator 2 in a line,
and under that the rational numbers with numerator 3 in a line, and so on. That is,
we consider the following array:
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1
1

1
2

1
3

1
4

1
5

1
6

1
7

� � �
2
1

2
2

2
3

2
4

2
5

2
6

2
7

� � �
3
1

3
2

3
3

3
4

3
5

3
6

3
7

� � �
4
1

4
2

4
3

4
4

4
5

4
6

4
7

� � �
:::

:::
:::

:::
:::

:::
:::

Imagining the positive rational numbers arranged as above, we can show that the
natural numbers can be paired with them. That is, we will define a one-to-one
function f taking N onto Q

C. As we define the function, you should keep looking
back at the array to see the pattern that we are using.

Define f .1/ D 1
1

and f .2/ D 1
2
. (We can’t continue by f .3/ D 1

3
, f .4/ D 1

4
,

. . . , for then f would only map onto those rational numbers with numerator 1.)
Define f .3/ D 2

1
and f .4/ D 3

1
. We can’t just keep going down in our array; we

must include the numbers above as well. We need not include 2
2

however, since
2
2

D 1
1
, which is already paired with 1. Thus, we let f .5/ D 1

3
, f .6/ D 1

4
,

f .7/ D 2
3
, f .8/ D 3

2
, f .9/ D 4

1
, and f .10/ D 5

1
. We need not consider 4

2
, since

4
2

D 2
1
, and we need not consider 3

3
D 1

1
or 2

4
D 1

2
. Thus, f .11/ is defined to

be 1
5

and f .12/ D 1
6
. It is apparent that a pairing of the natural numbers and the

positive rational numbers is indicated by continuing to label rational numbers with
natural numbers in this manner, “zigzagging,” you might say, through the above
array. Therefore, jQCj D jNj. ut

10.2 Countable Sets and Uncountable Sets

You may be wondering whether or not every infinite set can be paired with the set
of natural numbers. If the elements of a set can be paired with the natural numbers,
then the elements can be listed in a sequence. For example, if we let s1 be the
element of the set corresponding to the natural number 1, s2 be the element of the
set corresponding to the natural number 2, s3 to 3, and so on, then the set could
be displayed:

fs1; s2; s3; : : :g

Pairing the elements of a set with the set of natural numbers is, in a sense, “counting
the elements of the set.”
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Definition 10.2.1. A set is countable (sometimes called denumerable, or
enumerable) if it is either finite or has the same cardinality as the set of natural
numbers. A set is said to be uncountable if it is not countable.

One example of an uncountable set is the following.

Theorem 10.2.2. The set of all real numbers between 0 and 1 is uncountable.

Proof. We must show that there is no way of pairing the set of natural numbers
with the set of real numbers between 0 and 1. Let S denote the set of real numbers
between 0 and 1: S D fx W 0 � x � 1g. We will show that every pairing of natural
numbers with elements of S fails to include some members of S. In other words,
we will show that there does not exist any function that maps N onto S.

Note that the elements of S can be written as infinite decimals; that is, in the
form :c1c2c3 : : :, where each ci is a digit between 0 and 9. Some numbers have
two different such representations. For example, :9999 : : : is the same number as
1:0000 : : :, and :19999 : : : is the same number as :20000 : : :. For the rest of this
proof, let us agree that we choose the representation involving an infinite string of
9’s rather than the representation involving an infinite string of 0’s for all numbers
that have two different representations.

Suppose, then, that f is any function taking N to S. To show that f cannot be
onto, we imagine writing out all the values of f in a list, as follows:

f .1/ D :a11a12a13a14a15 : : :

f .2/ D :a21a22a23a24a25 : : :

f .3/ D :a31a32a33a34a35 : : :

f .4/ D :a41a42a43a44a45 : : :

f .5/ D :a51a52a53a54a55 : : :

:::

We now construct a number in S that is not in the range of the function f . We do
that by showing how to choose digits bj so that the number x D :b1b2b3b4 : : : is not
in the range of f . Begin by choosing b1 D 3 if a11 6D 3 and b1 D 4 if a11 D 3. No
matter what digits we choose for the bj for j � 2, the number x will be different
from f .1/ since its first digit is different from the first digit of f .1/. Then choose
b2 D 3 if a22 6D 3 and b2 D 4 if a22 D 3. This insures that x 6D f .2/. We continue
in this manner, choosing bj D 3 if ajj 6D 3 and bj D 4 if ajj D 3, for every
natural number j . The number x that is so constructed differs from f .j / in its j th

digit. Therefore, f .j / 6D x for all j , so x is not in the range of f . Thus, we have
proven that there is no function (one-to-one or otherwise) taking N onto S, so we
conclude that S has cardinality different from that of N. ut
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Of course, any given function f in the above proof could be modified so as
to produce a function whose range does include the specific number x that we
constructed in the course of the proof. For example, given any f , define the function
g W N ! S by defining g.1/ D x and g.n/ D f .n � 1/, for n � 2. The range of g

includes x and also includes the range of f . However, g does not map N onto S, for
the above proof could be used to produce a different x that is not in the range of g.

Definition 10.2.3. For a and b real numbers with a � b, the closed interval from a

to b is the set of all real numbers between a and b, including a and b. It is denoted
Œa; b�. That is, Œa; b� D fx W a � x � bg.

The theorem we have just proven asserts that the closed unit interval, Œ0; 1�, is
uncountable. How does the cardinality of other closed intervals compare to that of
Œ0; 1�?

Theorem 10.2.4. If a and b are real numbers and a < b, then Œa; b� and Œ0; 1� have
the same cardinality.

Proof. The theorem will be established if we can construct a function f W Œ0; 1� !
Œa; b� that is one-to-one and onto. That is easy to do. Simply define f by f .x/ D
a C .b � a/x. Then f .0/ D a and f .1/ D b. Moreover, the function f increases
from a to b as x increases from 0 to 1. If y 2 Œa; b�, let x D y�a

b�a
. Then x 2 Œ0; 1�

and f .x/ D y. This shows that f is onto. To show that f is one-to-one, assume
that a C .b � a/x1 D a C .b � a/x2. Subtracting a from both sides of this equation
and then dividing both sides by b � a yields x1 D x2. This shows that f is one-
to-one. Thus, f is a pairing of the elements of Œ0; 1� with the elements of Œa; b�, soˇˇŒ0; 1�

ˇˇ D ˇˇŒa; b�
ˇˇ. ut

There are other intervals that frequently arise in mathematics.

Definition 10.2.5. If a and b are real numbers and a < b, then the open interval
between a and b, denoted .a; b/, is defined by

.a; b/ D fx W a < x < bg
The half-open intervals are defined by

.a; b� D fx W a < x � bg and Œa; b/ D fx W a � x < bg

How does the size of a half-open interval compare to the size of the correspond-
ing closed interval?

Theorem 10.2.6. The intervals Œ0; 1� and .0; 1� have the same cardinality.

Proof. We want to construct a one-to-one function f taking Œ0; 1� onto .0; 1�. We
will define f .x/ D x for most x in Œ0; 1�, but we need to make a place for 0 to
go to in the half-open interval. For each natural number n, the rational number 1

n

is in both intervals. Define f on those numbers by f
�

1
n

� D 1
nC1

, for n 2 N. In
particular, f .1/ D 1

2
. Note that the number 1, which is in .0; 1�, is not in the range
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of f as defined so far. We define f .0/ to be 1. We define f on the rest of Œ0; 1� by
f .x/ D x. That is, f .x/ D x for those x other than 0 that are not of the form 1

n

with n a natural number. It is straightforward to check that we have constructed a
one-to-one function mapping Œ0; 1� onto .0; 1�. ut

Suppose that jSj D jT j and jT j D jU j; must jSj D jU j? If this was not the case,
we would be using the “equals” sign in a very peculiar way.

Theorem 10.2.7. If jSj D jT j and jT j D jU j, then jSj D jU j.
Proof. By hypothesis, there exist one-to-one functions f and g mapping S onto T
and T onto U , respectively. That is, f W S ! T and g W T ! U . Let h D g ı f

be the composition of g and f . In other words, h is the function defined on S by
h.s/ D g.f .s//. We must show that h is a one-to-one function taking S onto U . Let
u be any element of U . Since g is onto, there exists a t in T such that g.t/ D u. Since
f is onto, there is an s in S such that f .s/ D t . Then h.s/ D g.f .s// D g.t/ D u.
Thus, h is onto.

To see that h is one-to-one, suppose that h.s1/ D h.s2/; we must show that
s1 D s2. Now g.f .s1// D g.f .s2//, so f .s1/ D f .s2/ since g is one-to-one. But
f is also one-to-one, and so s1 D s2. We have shown that h is one-to-one and onto,
from which it follows that jSj D jU j. ut
Theorem 10.2.8. If a, b, c, and d are real numbers with a < b and c < d , then
the half-open intervals .a; b� and .c; d � have the same cardinality.

Proof. The function f defined by f .x/ D a C .b � a/x is a one-to-one function
mapping .0; 1� onto .a; b�, as can be seen by a proof almost exactly the same as
that in Theorem 10.2.4. Hence,

ˇˇ.0; 1�
ˇˇ D ˇˇ.a; b�

ˇˇ. Similarly the function g defined
by g.x/ D c C .d � c/x is a one-to-one function mapping .0; 1� onto .c; d �, soˇˇ.0; 1�

ˇˇ D ˇˇ.c; d �
ˇˇ. It follows from Theorem 10.2.7 that

ˇˇ.a; b�
ˇˇ D ˇˇ.c; d �

ˇ
ˇ. ut

Are there more positive real numbers than there are numbers in Œ0; 1�? The,
perhaps surprising, answer is “no.”

Theorem 10.2.9. The cardinality of the set of nonnegative real numbers is the same
as the cardinality of the unit interval Œ0; 1�.

Proof. We begin by showing that the set S D fx W x � 1g has the same cardinality
as .0; 1�. Note that the function f defined by f .x/ D 1

x
maps S into .0; 1�. For if

x � 1, then 1
x

� 1. Also, f maps S onto .0; 1�. For if y 2 .0; 1�, then 1
y

� 1 and

f
�

1
y

�
D y. To see that f is one-to-one, suppose that f .x1/ D f .x2/. Then 1

x1
D

1
x2

, so x1 D x2. Hence, f is one-to-one and onto, and it follows that jSj D ˇ̌
.0; 1�

ˇ̌
.

Now let T D fx W x � 0g. Define the function g by g.x/ D x � 1. Then g is
obviously a one-to-one function mapping S onto T . Hence jT j D jSj. Therefore,
by Theorem 10.2.7, jT j D ˇ̌

.0; 1�
ˇ̌
. But, by Theorem 10.2.6,

ˇ̌
Œ0; 1�

ˇ̌ D ˇ̌
.0; 1�

ˇ̌
. It

follows that jT j D ˇ
ˇŒ0; 1�

ˇ
ˇ. ut

Must the union of two countable sets be countable? A much stronger result
is true.
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Theorem 10.2.10. The union of a countable number of countable sets is countable.

Proof. This can be proven using ideas similar to those used in the proof of the fact
that the set of positive rational numbers is countable (see Theorem 10.1.14). Recall
that “countable” means either finite or having the same cardinality as N. We will
prove this theorem for the cases where all the sets are infinite; you should be able to
see how to modify the proof if some or all of the cardinalities are finite.

Suppose, then, that we have a countable collection fS1;S2;S3; : : :g of sets, each
of which is itself countably infinite. We can label the elements of Si so that Si D
fai1; ai2; ai3; : : :g. We can imagine displaying the sets in the following array:

S1 D fa11; a12; a13; a14; a15; a16; a17; : : :g
S2 D fa21; a22; a23; a24; a25; a26; a27; : : :g
S3 D fa31; a32; a33; a34; a35; a36; a37; : : :g
S4 D fa41; a42; a43; a44; a45; a46; a47; : : :g

:::

Let S denote the union of the Si ’s. To show that S is countable, we show that
we can list all of its elements. Proceed as follows. First, list a11 and then a12. Then
look at a21. It is possible that a21 is one of a11 or a12, in which case we do not,
of course, list it again. If, however, a21 is neither a11 nor a12, we list it next. Then
look at a31; if it is not yet listed, list it next. Then go back up to a22, then a13, and
so on. In this way, we “zigzag” through the entire array (as we did in the proof of
Theorem 10.1.14) and list all the elements of S. It follows that S is countable. ut

10.3 Comparing Cardinalities

When two sets have different cardinalities, the question arises of whether we can
say that one set has cardinality that is less than the cardinality of the other set.
What should we mean by saying that the cardinality of one set is less than that of
another set? It is easiest to begin with a definition of “less than or equal to” for
cardinalities.

Definition 10.3.1. If S and T are sets, we say that S has cardinality less than or
equal to the cardinality of T , and write jSj � jT j, if there is a subset T0 of T such
that jSj D jT0j.

This is equivalent to saying that there is a one-to-one function mapping S into
(not necessarily onto) T . For if f is a one-to-one function mapping S onto T0, we
can regard f as a function taking S into T . Conversely, if f is a one-to-one function
mapping S into T , and if T0 is the range of f , then f gives a pairing of S and T0.
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Example 10.3.2. The function f W N ! Œ0; 1� defined by f .n/ D 1
n

establishes that
jNj � ˇ

ˇŒ0; 1�
ˇ
ˇ, since f is one-to-one.

Note that jS0j � jSj whenever S0 is a subset of S, since the function f W S0 ! S
defined by f .s/ D s, for each s in S0, is clearly one-to-one.

We have defined “�” for cardinalities; how should we define “<”? The following
definition is very natural.

Definition 10.3.3. We say that S has cardinality less than that of T , and write
jSj < jT j, if jSj � jT j and jSj 6D jT j.
Example 10.3.4. If N is the set of natural numbers and Œ0; 1� is the unit interval,
then jNj <

ˇ
ˇŒ0; 1�

ˇ
ˇ.

Proof. By Example 10.3.2, jNj � ˇ
ˇŒ0; 1�

ˇ
ˇ, and, by Theorem 10.2.2, jNj 6D ˇ

ˇŒ0; 1�
ˇ
ˇ,

so the result follows. ut
Thus, in the sense of the definitions we are using, there are more real numbers in

the interval Œ0; 1� than there are natural numbers.
There is a question that immediately arises from the definition of “less than or

equal to” for cardinalities: If S and T are sets such that jSj � jT j and jT j � jSj,
must jSj D jT j? The language suggests that this question should have an affirmative
answer, but that language doesn’t prove anything. What does this question come
down to? We are given the fact that jSj � jT j. That is equivalent to the existence of
a one-to-one function f W S ! T . Similarly, jT j � jSj gives a one-to-one function
g W T ! S. To say that jSj D jT j is equivalent to saying that there exists a function
h W S ! T that is both one-to-one and onto. The question, therefore, is whether we
can show the existence of such a function h from the existence of the functions f

and g.
In addition to being important in justifying the above terminology, the following

theorem is often very useful in proving that given sets have the same cardinalities.

The Cantor-Bernstein Theorem 10.3.5. If S and T are sets such that jSj � jT j
and jT j � jSj, then jSj D jT j.
Proof. The hypotheses imply that there exist one-to-one functions f W S ! T and
g W T ! S. We must construct a one-to-one function h that takes S onto T . To do
this we will break S up into three subsets and then define h to be the function f on
two of those subsets and the function g�1 on the third subset.

Consider any element s of S. Such an s may or may not be in the range of g. If it is
in the range of g, then there is exactly one element t0 in T such that g.t0/ D s, since
g is one-to-one. Call such an element t0 the “immediate ancestor” of s. Similarly, if
t is in T and f .s0/ D t for some s0 in S, we say that s0 is the “immediate ancestor”
of t . Thus, elements of S have immediate ancestors in T if they are in the range of
g, and elements of T have immediate ancestors in S if they are in the range of f .
It is possible that some elements do not have any immediate ancestors.

We will say that an immediate ancestor of an immediate ancestor of an element s

in S is an “ancestor” of the element s. That is, if s in S has an immediate ancestor t0
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in T and t0 has an immediate ancestor s0 in S, then s0 is an ancestor of s. Similarly,
if t1 in T has an immediate ancestor s1 in S and s1 has an immediate ancestor t2 in
T , we say that t2 is an ancestor of t1. We continue backwards whenever possible.
That is, we start with a given element and then keep on finding immediate ancestors
unless and until we reach an element that does not have an immediate ancestor. All
the ancestors in such a chain of ancestors are called ancestors of the original element
of S or T .

For each given element that we start with, there are three possibilities. One
possibility is that there is no element in the chain of ancestors which itself does
not have any ancestor. That is, it could be that we can keep on going back and back
and back indefinitely in the ancestry of a given element. Let S1 denote the set of all
those elements s in S for which we can keep on finding ancestors without stopping.
Similarly, let T1 denote the set of all t in T for which we can keep on finding
ancestors without stopping. (It might be noted that it is possible that we can keep
on finding ancestors indefinitely, but nonetheless there are only a finite number of
distinct ancestors. For example, it would be possible that, for some s in S and t

in T , f .s/ D t and g.t/ D s. Then the immediate ancestor of s would be t , the
immediate ancestor of t would be s, the immediate ancestor of s would be t , and
so on. Thus, there would be no stopping the process of finding ancestors, in spite of
the fact that each of s and t has only two distinct ancestors, s and t . In this situation,
s 2 S1 and t 2 T1.)

Those elements of S and T that are not in either of S1 or T1 have what might
be called “ultimate ancestors.” That is, since the chain of ancestors comes to a stop,
there is a most distant ancestor. Of course, one possibility is that the element has
no ancestors at all, in which case we say that it itself is its ultimate ancestor. The
ultimate ancestor of any given element is either in S or in T . Let SS denote the set
of all elements of S whose ultimate ancestor is in S and let ST denote the set of all
elements of S whose ultimate ancestor is in T . Similarly, let TS and TT denote the
sets of elements of T whose ultimate ancestors are in S and T , respectively.

Thus, we have divided S into three subsets: S1, SS , and ST . Every element of
S is in exactly one of those subsets. Similarly, every element of T is in exactly one
of the subsets T1, TS , or TT . (Of course, some of the subsets may be empty.)

We can now define the function h. For s in S, we define h.s/ to be f .s/ if s is in
either S1 or SS , and we define h.s/ to be g�1.s/ if s is in ST . Note that g�1.s/ is
defined for all s 2 ST since all the elements of ST have immediate ancestors in T .
We will show that h is a one-to-one function taking S onto T .

Let’s first show that h is one-to-one. Suppose that h.s1/ D h.s2/ for s1 and s2

in S. We must show that s1 D s2. If both of s1 and s2 are in the union of S1 and
SS , then h.s1/ D f .s1/ and h.s2/ D f .s2/. Therefore, f .s1/ D f .s2/. Since f is
one-to-one, it follows that s1 D s2 in this case. Similarly, if both of s1 and s2 are
in ST , then h.s1/ D g�1.s1/ and h.s2/ D g�1.s2/. Therefore, g�1.s1/ D g�1.s2/.
Applying g to both sides of this equation gives s1 D s2 in this case.

One case remains: the case where one of s1 and s2 is in the union of SS and S1
and the other is in ST . Suppose that s1 2 S1 [ SS and s2 2 ST . Then h.s1/ D
f .s1/ and h.s2/ D g�1.s2/. Therefore, f .s1/ D g�1.s2/. We show that this case
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cannot arise. If f .s1/ D g�1.s2/, then s1 is an immediate ancestor of g�1.s2/. Thus,
s1 is an ancestor of s2. But s2 is in ST so it has an ultimate ancestor in T . Since s1

is an ancestor of s2, the ultimate ancestor of s2 is the ultimate ancestor of s1. But s1

being in S1 [ SS implies that s1 either has no ultimate ancestor or has an ultimate
ancestor in S. This is inconsistent with having an ultimate ancestor in T , so this
case does not arise.

We have proven that the function h that we constructed is one-to-one. We must
now show that h maps S onto T .

Each t in T is in one of TS , T1, or TT . We must show that, wherever t lies, there
is an s in S such that h.s/ D t . Suppose first that t 2 TS . Since t has an ultimate
ancestor in S, in particular we know that t is in the range of f , so we can consider
f �1.t/. The ancestors of f �1.t/ are also ancestors of t , from which it follows that
the ultimate ancestor of f �1.t/ is in S. That is, f �1.t/ is in SS . The function h is
defined to be f on SS , so h.f �1.t// D f .f �1.t// D t . This shows that the range
of h contains every element of TS .

Now consider any t in T1. Such a t has an immediate ancestor in S, f �1.t/.
Since the ancestors of f �1.t/ are also ancestors of t , f �1.t/ has no ultimate
ancestor. That is, f �1.t/ is in S1. The function h was defined to be the function
f on S1, so h.f �1.t// D f .f �1.t// D t . This proves that the range of h

contains T1.
All that remains to be shown is that the range of h includes TT . Suppose, then,

that t is in TT . Let s D g.t/. Then t is the immediate ancestor of s. Thus, the
ultimate ancestor of t is the ultimate ancestor of s. Since the ultimate ancestor of t

is in T , the ultimate ancestor of s is in T . In other words, s is in ST . On elements
of ST h is defined to be g�1. Thus, h.s/ D g�1.s/ and, since s D g.t/, h.s/ D
g�1.g.t// D t . This establishes that the range of h includes TT .

We have therefore shown that, for every t in T , whatever subset of T t lies in,
there is an s in S such that h.s/ D t . This proves that h is onto.

Therefore, h is a one-to-one function mapping S onto T , and we conclude that
jSj D jT j. ut
Corollary 10.3.6. If S is a subset of T and there exists a function f W T ! S that
is one-to-one, then S and T have the same cardinality.

Proof. Since S is a subset of T , jSj � jT j. Since there is a one-to-one function map-
ping T into S, it follows that jT j � jSj. By the Cantor–Bernstein Theorem (10.3.5),
jSj D jT j. ut

The Cantor–Bernstein Theorem can often be used to simplify proofs that given
sets have the same cardinalities.

Theorem 10.3.7. If a < b, then
ˇ̌
Œa; b�

ˇ̌ D ˇ̌
.a; b/

ˇ̌ D ˇ̌
.a; b�

ˇ̌ D ˇ̌
Œa; b/

ˇ̌
.

Proof. Clearly,
ˇ
ˇ.a; b/

ˇ
ˇ � ˇ

ˇŒa; b�
ˇ
ˇ. Note that

�
a C b�a

3
; b � b�a

3

�
is contained in

.a; b/, so
ˇ̌
ˇ
�
a C b�a

3
; b � b�a

3

� ˇˇ̌ � ˇ
ˇ.a; b/

ˇ
ˇ. But by Theorem 10.2.4,

ˇ
ˇŒa; b�

ˇ
ˇ D

ˇ
ˇ̌ �

a C b�a
3

; b � b�a
3

� ˇˇ̌. Therefore,
ˇ
ˇŒa; b�

ˇ
ˇ � ˇ

ˇ.a; b/
ˇ
ˇ. So, by the Cantor–Bernstein

Theorem (10.3.5),
ˇ̌
Œa; b�

ˇ̌ D ˇ̌
.a; b/

ˇ̌
.
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The proofs for the half-open intervals are almost exactly the same as the above
proof for the open interval. ut

What is the cardinality of the set of all real numbers?

Theorem 10.3.8. The cardinality of the set of all real numbers is the same as the
cardinality of the unit interval Œ0; 1�.

Proof. Let R denote the set of all real numbers. We will “patch together” some of
the results that we have already proven to show that jRj � ˇ

ˇŒ0; 1�
ˇ
ˇ.

As we have seen, the set of nonnegative real numbers has the same cardinality
as Œ0; 1� (see Theorem 10.2.9). Thus, there exists a one-to-one function f mapping
the set of nonnegative real numbers onto Œ0; 1�. The set of negative real numbers
obviously has the same cardinality as the set of positive real numbers, as can be
seen by using the mapping that takes x to �x. The positive real numbers can be
mapped in a one-to-one way into Œ0; 1�. Since

ˇ
ˇŒ0; 1�

ˇ
ˇ D ˇ

ˇŒ3; 4�
ˇ
ˇ (Theorem 10.2.4),

it follows that the positive numbers can be mapped in a one-to-one way into�
3; 4

�
. Then, using the equivalence of the positive and negative real numbers, we

conclude that there is a function g mapping the negative real numbers into Œ3; 4�.
We now define a function h mapping R into Œ0; 1� [ Œ3; 4� by letting h be f

on the nonnegative numbers and g on the negative numbers. Then h is a one-
to-one function mapping R into a subset of Œ0; 1� [ Œ3; 4�, which is a subset of
Œ0; 4�. It follows that jRj � ˇˇŒ0; 4�

ˇ
ˇ. On the other hand, Œ0; 4� is a subset of R, soˇ

ˇŒ0; 4�
ˇ
ˇ � jRj, and by the Cantor–Bernstein Theorem (10.3.5), jRj D ˇ

ˇŒ0; 4�
ˇ
ˇ. SinceˇˇŒ0; 4�

ˇˇD ˇˇŒ0; 1�
ˇˇ (Theorem 10.2.4), the theorem follows. ut

There is a theorem that can often be used to give very easy proofs that sets are
countable. The next several results form the basis for that theorem.

Theorem 10.3.9. A subset of a countable set is countable.

Proof. Let S be a countable set. If S is finite, then the result is clear. If
S is infinite, then there exists a one-to-one function, f , mapping the set of
natural numbers onto S. Thus, the elements of S can be listed in a sequence,�
f .1/; f .2/; f .3/; f .4/; : : :

�
. If S0 is a subset of S , then the elements of S0 corre-

spond to some of the elements in the sequence. Therefore, the elements of S0 can
be listed as well, and hence S0 is either finite or has the same cardinality as N. ut
Corollary 10.3.10. If S is any set and there exists a one-to-one function mapping
S into the set of natural numbers, then S is countable.

Proof. Let f be a one-to-one function taking S into N. The range of f is some
subset T of N. Since f is a one-to-one function taking S onto T , it follows that
jSj D jT j. By the previous theorem, T is countable, and therefore so is S. ut
Definition 10.3.11. A finite sequence of elements of a set S is an ordered collection
of elements of S of the form .s1; s2; s3; : : : ; sk/.

For example, one finite sequence of rational numbers is
�� 1

2
; �7; 22

7
; 0
�
.
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Theorem 10.3.12. The set of all finite sequences of natural numbers is countable.

Proof. Let N denote the set of natural numbers and let S denote the set of all finite
sequences of natural numbers. By the above corollary (10.3.10), it suffices to show
that there is a one-to-one function g mapping S into N. Here is a description of
one such function. We define the value of g at each given finite sequence of natural
numbers to be the number whose digits are 1’s and 0’s, determined as follows: begin
with the number of 1’s equal to the first number in the given finite sequence, follow
that by a 0, then follow that by the number of 1’s equal to the second number in the
sequence, then another 0, then the number of 1’s corresponding to the third number
in the sequence, then a 0, and so on, ending with the number of 1’s corresponding
to the last number in the sequence. For example,

g
�
.2; 3; 7/

� D 11011101111111

and

g
�
.5; 1/

� D 1111101

The function g is one-to-one since you can recover the unique sequence correspond-
ing to any number in the range of g by using the definition of g. For example, the
number 1111010111111011111111 corresponds to the sequence .4; 1; 6; 8/. Since
g is one-to-one and maps S into N, S is countable. ut
Corollary 10.3.13. If L is any countable set, then the set of all finite sequences of
elements of L is countable.

Proof. This follows easily from the above theorem. By hypothesis, there exists a
one-to-one function f mapping L into N. Then, a one-to-one function F mapping
sequences of elements of L into sequences of elements of N can be obtained by
defining

F.a1; a2; a3; : : : ; ak/ D �
f .a1/; f .a2/; f .a3/; : : : ; f .ak/

�

Thus, the previous theorem implies the corollary. ut
The following definition will be useful.

Definition 10.3.14. Let S and T be any sets. We will say that T can be labeled by
the set S if there is a way of assigning a finite sequence of elements of S to each
element of T so that each finite sequence corresponds to at most one element of T .

Example 10.3.15. The set Q of rational numbers can be labeled by the set

L D ˚
0; 1; 2; 3; 4; 5; 6; 7; 8; 9; �; =

�

To label a given rational number, use the representation of that rational number in
lowest terms and simply write it in the usual way using symbols from the set L.



10.3 Comparing Cardinalities 99

The following theorem is useful in many situations. It is a slight variant of the
“Typewriter Principle” that was developed by Bjorn Poonen.

The Enumeration Principle 10.3.16. Every set that can be labeled by a countable
set is countable.

Proof. Let T be a set that is labeled by a countable set L. The fact that no two
elements of T have the same label implies that there is a one-to-one function f

mapping T into the set of labels. Thus, there is a one-to-one function mapping
T into the set of finite sequences of elements of L, which is a countable set by
Corollary 10.3.13. It follows from Corollary 10.3.10 that T is countable. ut

Any set that is proven to be countable by the Enumeration Principle could, of
course, also be proven to be countable without using this principle. However, the
Enumeration Principle often leads to very simple proofs.

Theorem 10.3.17. The set of all rational numbers is countable.

Proof. As indicated above (Example 10.3.15), the set of rational numbers can be
labeled by the set L D ˚

0; 1; 2; 3; 4; 5; 6; 7; 8; 9; �; =
�
. The Enumeration Princi-

ple (10.3.16) gives the result. ut
Corollary 10.3.18. The set of integers is countable.

Proof. A subset of a countable set is countable (Theorem 10.3.9), so this follows
from the previous theorem (10.3.17). ut

You may have heard the assertion that � is a transcendental number; what does
that mean?

Definition 10.3.19. The real number x0 is said to be algebraic if it is the root of a
polynomial with integer coefficients. The real number x0 is said to be transcendental
if there is no polynomial with integer coefficients that has x0 as a root.

For example, the number � 3
4

is algebraic, since it is a root of the polynomial
4x C 3. More generally, every rational number m

n
is algebraic since it is a root of

the polynomial nx � m. There are also many irrational numbers that are algebraic,
such as

p
2 which is a root of the polynomial x2 � 2 and . 3

4
/

1
5 which is a root of the

polynomial 4x5 � 3.
It is not so easy to prove the existence of transcendental numbers. It is true that �

is transcendental, but it is very difficult to prove that fact. It is somewhat easier, but
still quite difficult, to prove that e, the base for natural logarithms, is transcendental.
It is a very surprising and beautiful fact that it is much easier to prove that most
real numbers are transcendental than it is to prove that any specific real number is
transcendental. This is a corollary of the following.

Theorem 10.3.20. The set of algebraic numbers is countable.

Proof. We show that the set of algebraic numbers can be labeled by the set of
integers and a comma; the Enumeration Principle (10.3.16) then gives the result.
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Let x0 be an algebraic number. We can label x0 as follows. Specify the degree, n,
of a polynomial of least degree with integer coefficients that has x0 as a root. Then
put a comma. If a polynomial of degree n has x0 as a root, divide the polynomial
by the coefficient of xn to get a polynomial with leading coefficient 1 that has x0

as a root. Choose one such polynomial. (In fact, there is only one such polynomial;
see Problem 35 at the end of this chapter.) Then specify the coefficients of that
polynomial in the order corresponding to descending powers of x, each separated
by commas. Then put the integer 1, 2, or 3, and so on, to indicate that the algebraic
number is the smallest, next to smallest, third from smallest, and so on, of the roots
of that polynomial. In this manner, we label every algebraic number by a finite
sequence of integers. Since the set of integers is countable (Corollary 10.3.18),
it follows from the Enumeration Principle that the set of algebraic numbers is
countable. ut

The above easily establishes the existence of transcendental numbers.

Corollary 10.3.21. There exist transcendental numbers.

Proof. Since the set of algebraic numbers is countable (Theorem 10.3.20) and the
set of all real numbers is uncountable (Theorem 10.3.8 and Theorem 10.2.2), there
are some real numbers that are not algebraic and are therefore transcendental. ut

The cardinality of a finite set consisting of n elements is said to be n. We now
introduce some standard notation for the sizes of some of the most common infinite
sets.

Definition 10.3.22. We say that the set S has cardinality @0 (which we read “aleph
nought”) if the cardinality of S is the same as that of the natural numbers, in which
case we write jSj D @0.

For example, jQj D @0.
There is also a standard notation for the cardinality of the set of real numbers.

Definition 10.3.23. We say that the set S has cardinality c if the cardinality of S is
the same as the cardinality of the set of real numbers; c is sometimes said to be the
cardinality of the continuum.

For example,
ˇˇŒ3; 9�

ˇˇ D c.
Note that @0 < c, in the sense that every set with cardinality @0 has cardinality

less than every set with cardinality c.
It is important to note that @0 is the smallest infinite cardinality in the following

sense.

Theorem 10.3.24. If S is an infinite set, then @0 � jSj.
Proof. To establish this, we must show that S has a subset S0 of cardinality @0.
We proceed as follows. Since S is infinite, it surely contains some element, say s1.
Similarly, S n fs1g (i.e., the set obtained from S by removing s1) contains some
element, say s2. Similarly, S n fs1; s2g contains some element s3. Proceeding in
this manner creates an infinite sequence .s1; s2; s3; : : :/ of elements of S. Let S0 D
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fs1; s2; s3; : : :g. Then clearly jS0j D jNj D @0. Since S0 is a subset of S, it follows
that @0 � jSj. ut

Thus, @0 is the smallest infinite cardinality. Is there a largest cardinality?

Definition 10.3.25. If S is any set, then the set of all subsets of S is called the
power set of S and is denoted P.S/.

The terminology “power set of S” comes from the following theorem. (This was
stated as Problem 5 in Chapter 2.)

Theorem 10.3.26. If S is a finite set with n elements, then the cardinality of P.S/

is 2n.

Proof. First note that this is true for n D 0. For the only set with 0 elements is ;, the
empty set. The empty set has one subset, namely itself. Since 20 D 1, the theorem
holds for n D 0.

We proceed by mathematical induction. Suppose that every set with k elements
has 2k subsets and let S be a set with k C1 elements. Suppose that s0 is any element
of S and let S0 be the subset S n fs0g of S obtained by removing s0. Then S0 has
k elements and, by the inductive hypothesis, jP.S0/j D 2k . Suppose that T is any
subset of S0. Then T is also a subset of S. The set T [ fs0g is a different subset
of S. Thus, for each subset T of S0, there are two subsets of S, T and T [ fs0g.
It follows that there are twice as many subsets of S as there are of S0. That is,

jP.S/j D 2 � jP.S0/j D 2 � 2k D 2kC1

The theorem follows by mathematical induction. ut
What is the relationship between jSj and jP.S/j when S is an infinite set?

Theorem 10.3.27. For every set S, jSj < jP.S/j.
Proof. It is easy to see that jSj � jP.S/j. Among the subsets of S are the “singleton
sets;” i.e., sets of the form fsg, for each s 2 S. The collection P0 of all singleton
subsets of S is a subset of P.S/. A one-to-one function f mapping S into P.S/

can be defined by f .s/ D fsg, for all s in S. Thus, jSj D jP0j, so jSj � jP.S/j.
To show that jSj < jP.S/j, we must show that there is no one-to-one function f

taking S onto P.S/. The proof will use a “diagonal argument” similar to the proof
we gave that Œ0; 1� is uncountable (Theorem 10.2.2).

Suppose, then, that f is any function taking S into P.S/. We will show that f

cannot be onto; that is, that there is an element of P.S/ (i.e., a subset of S) that is
not in the range of f .

For each s 2 S, f .s/ is a subset of S. Define the subset S0 of S by

S0 D ˚
s 2 S W s 62 f .s/

�

That is, the subset S0 of S is defined to consist of all of those elements s of S that
are not in the subset of S that f assigns to s.
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The set S0 is an element of P.S/. We will show that it is not in the range of f .
To prove this by contradiction, suppose that there was some s0 2 S such that
f .s0/ D S0. We show that this is impossible by asking the question: is s0 in S0?
We will see that this question does not have an answer. Suppose that s0 62 S0. The
definition of S0 is that it contains those elements of S that are not in the subsets they
are sent to by f . Thus, if s0 is not in f .s0/, s0 is in S0. In other words, s0 62 S0

implies s0 2 S0, which is a contradiction.
On the other hand, if s0 is in S0, then the definition of S0 implies that s0 is not in

f .s0/, but since f .s0/ D S0, s0 62 S0. Thus, s0 2 S0 implies s0 62 S0, which is also
a contradiction. But if there was an s0 satisfying f .s0/ D S0, then s0 would either
be in S0 or not be in S0. Therefore, there is no s0 satisfying f .s0/ D S0, and the
theorem is proven. ut

One of the consequences of the theorem we have just established is that there is
no largest cardinal number. For if S is any set, there is a set whose cardinality is
bigger than that of S, namely P.S/.

In particular, for the set of real numbers R, the cardinality of P.R/, the set of all
sets of real numbers, is greater than c. Because of the analogy to the case of finite
sets, it is standard to write jP.R/j D 2c .

Similarly, 2@0 denotes the cardinality of P.N/. By the above, @0 < 2@0 . Also, as
we have seen, @0 < c. What is the relationship between 2@0 and c?

Theorem 10.3.28. The cardinality of the set of all sets of natural numbers is the
same as the cardinality of the set of real numbers. That is, jP.N/j D c, or 2@0 D c.

Proof. Since
ˇˇŒ0; 1�

ˇˇ D jRj (Theorem 10.3.8), it suffices to prove that
ˇˇŒ0; 1�

ˇˇ D
jP.N/j. It will be convenient to introduce another set. Let S denote the set of all
infinite sequences of 0’s and 1’s (typical elements of S are f1; 0; 1; 0; 1; 0; : : :g,
f1; 1; 0; 1; 1; 1; : : :g, and so on). We begin by showing that jSj D jP.N/j. For this,
we define a function f taking S into P.N/ by

f
�fa1; a2; a3; : : :g� D fi W ai D 1g

That is, f takes a sequence of 0’s and 1’s to the set of those natural numbers
consisting of the places where the sequence has 1’s. It is clear that f is one-to-
one, for two different sequences would have at least one place where one has a 0
and the other has a 1, and the number corresponding to that place would be in the
subset corresponding to the second sequence, but not the first. The function f is
also onto, for if T is any subset of N, define a sequence fai g by letting ai D 1 if i

is in T and ai D 0 if i is not in T . Then f
�fai g

� D T . Thus, jSj D jP.N/j and the
theorem will be proven if we establish that jSj D ˇ̌

Œ0; 1�
ˇ̌
.

We define the function g mapping S into Œ0; 1� by

g
�fa1; a2; a3; : : :g� D :a1a2a3 : : :
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Since the ai ’s are 0’s and 1’s, the range of g is contained in Œ0; 1�. Since two different
sequences of 0’s and 1’s are sent by g to two different numbers, g is one-to-one.
Thus, jSj � ˇ̌

Œ0; 1�
ˇ̌
.

For the reverse inequality, we must produce a one-to-one function h that takes
Œ0; 1� into S. To do that, we represent the elements of Œ0; 1� as “binary decimals.”
That is, every element of Œ0; 1� can be written as an infinite sum:

a1

2
C a2

22
C a3

23
C a4

24
C � � �

where each ai is 0 or 1. (Of course, as with ordinary decimal representation, some
elements of Œ0; 1� have more than one such representation. For example, 1

2
C 0

22 C
0
23 C 0

24 � � � represents the same number as 0
2

C 1
22 C 1

23 C 1
24 � � � . In such ambiguous

cases, choose either representation.)
After representing the elements of Œ0; 1� as binary decimals as above, define the

mapping h taking Œ0; 1� into S by

h
�a1

2
C a2

22
C a3

23
C a4

24
C � � �

�
D fa1; a2; a3; a4; : : :g

The function h is a one-to-one mapping of Œ0; 1� into S, so
ˇˇŒ0; 1�

ˇˇ � jSj. By the
Cantor–Bernstein Theorem (10.3.5),

ˇˇŒ0; 1�
ˇˇ D jSj, proving the theorem. ut

Definition 10.3.29. The unit square in the plane is the subset of the plane consisting
of all points whose x and y coordinates are both between 0 and 1. That is, the unit
square is the set S defined by

S D ˚
.x; y/ W 0 � x � 1; 0 � y � 1

�

Theorem 10.3.30. The cardinality of the unit square in the plane is c.

Proof. Let S denote the unit square. It is clear that jSj � c, since S contains the
subset

S0 D ˚
.x; 0/ W 0 � x � 1

�

and there is an obvious pairing of S0 with Œ0; 1�.
To establish the reverse inequality, we will construct a one-to-one function f

mapping S into Œ0; 1�. We represent the coordinates of points in the unit square as
infinite decimals. In ambiguous cases (i.e., where a representation of a number could
end in either a string of 0’s or a string of 9’s), we choose the representation ending
in a string of 9’s. We then define the function f by

f
�
.:a1a2a3 : : : ; :b1b2b3 : : :/

� D :a1b1a2b2a3b3 : : :
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We claim that f is one-to-one. This follows since f
�
.x; y/

� D :c1c2c3 : : : implies
that x D :c1c3c5 : : : and y D :c2c4c6 : : :. Thus, jSj � ˇ̌

Œ0; 1�
ˇ̌
, so the Cantor–

Bernstein Theorem (10.3.5) gives jSj D ˇ̌
Œ0; 1�

ˇ̌
. ut

It can be interesting to determine the cardinality of various sets of functions.
We present one example now; many other examples are given in the problems. The
following definition will be useful.

Definition 10.3.31. If S is a set and S0 is a subset of S, then the characteristic
function of S0 as a subset of S is the function f , with domain S, defined by
f .s/ D 1 if s 2 S0 and f .s/ D 0 if s 62 S0.

The following is a very easy, but very useful, fact.

Theorem 10.3.32. For any set S, the set of all characteristic functions with domain
S has the same cardinality as P.S/.

Proof. As indicated in the definition above of characteristic function, each subset
does have a characteristic function. On the other hand, if two characteristic functions
are equal as functions, they must be characteristic functions of the same subset
(the subset consisting of all elements of the set on which the functions have
value 1). Thus, the correspondence between the set of subsets of S and characteristic
functions with domain S is one-to-one and onto. ut
Theorem 10.3.33. The cardinality of the set of all functions mapping Œ0; 1� into
Œ0; 1� is 2c .

Proof. Among the functions are those that take on values contained in f0; 1g; i.e.,
the characteristic functions with domain Œ0; 1�. By the previous theorem (10.3.32),
this set of characteristic functions has cardinality 2c . Thus, the set of all functions
mapping Œ0; 1� into Œ0; 1� has cardinality at least 2c .

To prove the reverse inequality, recall that every function is determined by its
graph. The graph of a function f from Œ0; 1� to Œ0; 1� is

˚
.x; f .x// W x 2 Œ0; 1�

�
,

which is a subset of the unit square. Thus, the set of functions we are considering
corresponds to a collection of some of the subsets of the unit square and hence
has cardinality at most equal to that of the set of all subsets of the unit square.
We have seen (Theorem 10.3.30) that the cardinality of the unit square is c. It follows
that the cardinality of the set of all subsets of the unit square is 2c . Therefore, the
cardinality of the set of graphs of functions is at most 2c . By the Cantor–Bernstein
Theorem (10.3.5), the cardinality of the set of functions is 2c . ut

There are some serious deficiencies in the general approach to set theory that we
have been describing. The following illustrates some of the problems.

Cantor’s Paradox 10.3.34. Let S denote the set of all sets. Then every subset of
S is an element of S, since each subset is a set. That is, P.S/ is a subset of S.
Hence, jP.S/j � jSj. On the other hand, jSj < jP.S/j (by Theorem 10.3.27). The
Cantor–Bernstein Theorem (10.3.5) proves that this is a contradiction.
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What does this contradiction mean? If there is a contradiction, then something
is false; but what? The only assumption that we have made is that there is a set
consisting of the set of all sets. This contradiction shows that there cannot be such a
set. To avoid Cantor’s Paradox, the definition of set has to be more restrictive.

There is another paradox similar to Cantor’s.

Russell’s Paradox 10.3.35. Define a set to be ordinary if it is not an element of
itself. (That is, S 62 S.) All of the sets that we have discussed so far except for the
set of all sets are ordinary sets. Each set is, of course, a subset of itself, but that
is very different from being a member of itself. (For example, the set of natural
numbers is not a natural number.)

Let T denote the set of all ordinary sets. We now ask the question: is T an
ordinary set? If T was an ordinary set, then, since T is the set of all ordinary sets,
T 2 T . But then T would not be an ordinary set, since it would be an element of
itself. On the other hand, if T is not an ordinary set, then T 2 T . But every element
of T is an ordinary set, so it would follow that T is ordinary. That is, if T is ordinary,
it is not ordinary; if T is not ordinary, it is ordinary. There cannot be such a set.

Note that the Cantor and Russell paradoxes are related in the following sense:
the set of all sets, if it existed, would be a set that is not an ordinary set.

When mathematicians first encountered the Cantor and Russell paradoxes, over
a hundred years ago, they were very concerned. Why aren’t “the set of all sets” and
“the set of all ordinary sets” themselves sets? What other “sets” are not really sets?

The above and related paradoxes do not arise when considering the sets that
naturally arise in doing mathematics. Mathematicians have developed several
different “axiomatic set theories” in which the concept of “set” is restricted so that
the Cantor and Russell paradoxes do not arise. In these set theories, there are no
sets that are elements of themselves. The most popular of the axiomatic set theories
is called Zermelo–Fraenkel Set Theory. The development of axiomatic set theories
is fairly complicated and we will not discuss it here. However, the theorems that
we presented in this chapter are also theorems in Zermelo–Fraenkel Set Theory
although the formal proofs are slightly different.

The following is a very natural question: is there any set S whose cardinality is
greater than @0 and less than c? If there is such a set, it could be mapped into R. That
is, if there is any such set, there is a subset of R with that property. The question can
therefore be reformulated: if S is an uncountable subset of R, must the cardinality
of S be c? This appears to be a very concrete question. It can be made even more
concrete, as follows: if S is a subset of R and there is no one-to-one function taking
S into N, must there exist a one-to-one function taking S onto R?

The Continuum Hypothesis 10.3.36. There is no set with cardinality strictly
between @0 and c.

It is very surprising that it is not known whether the Continuum Hypothesis is
true or false. It is even more surprising that it has been proven that the Continuum
Hypothesis is an undecidable proposition in the following sense: it has been
established that the Continuum Hypothesis can neither be proven nor disproven
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within standard set theories, such as Zermelo–Fraenkel Set Theory. Mathematicians
disagree about the full implications of this. It is our view that it is possible that
someone will prove the Continuum Hypothesis in a way that would convince all
mathematicians, in spite of its being undecidable within Zermelo–Fraenkel Set
Theory. That is, someone might begin a proof as follows: “Let S be an uncountable
subset of R. We construct a one-to-one function f mapping S onto R by first : : :.”
Any such proof would have to use something that was not part of Zermelo–Fraenkel
Set Theory, since it has been proven that the Continuum Hypothesis cannot be
decided within Zermelo–Fraenkel Set Theory. On the other hand, it is our opinion
that it is possible that a proof could be found that would be based on properties of
the set of real numbers that virtually every mathematician would agree are true, in
spite of the fact that at least one of them would not be part of Zermelo–Fraenkel Set
Theory. However, many mathematicians believe that Zermelo–Fraenkel Set Theory
captures all the reasonable properties of the real numbers and therefore conclude that
no such proof is possible. We invite you to try to prove that those mathematicians
are wrong by proving (or disproving) the Continuum Hypothesis.

10.4 Problems

Basic Exercises

1. Show that the set of all polynomials with rational coefficients is countable.
2. Suppose that the sets S, T , and U satisfy S � T � U and that jSj D jU j. Show

that T has the same cardinality as S.
3. Let A and B be countable sets. Prove that the Cartesian product of A and B ,

A � B D ˚
.a; b/ W a 2 A; b 2 B

�
, is countable.

4. Assume that jA1j D jB1j and jA2j D jB2j. Prove:

(a) jA1 � A2j D jB1 � B2j.
(b) If A1 is disjoint from A2 and B1 is disjoint from B2, then jA1 [ A2j D

jB1 [ B2j.
5. Prove that the half-open intervals Œ0; 1/ and .0; 1� have the same cardinality.

(This was stated but not proven in Theorem 10.3.7.)
6. What is the cardinality of the set of all functions from N to f1; 2g?
7. What is the cardinality of the set of all numbers in the interval Œ0; 1� which have

decimal expansions with a finite number of nonzero digits?
8. Let Q.

p
2/ be the set of real numbers of the form a C b

p
2, where a and b are

rational numbers. Find the cardinality of Q.
p

2/.



10.4 Problems 107

Interesting Problems

9. Suppose that S and T each have cardinality c. Show that S [ T also has
cardinality c.

10. What is the cardinality of R2 D ˚
.x; y/ W x; y 2 R

�
(the Euclidean plane)?

11. What is the cardinality of the set of all complex numbers?
12. Prove that the set of all finite subsets of Q is countable.
13. Let S and T be finite sets and let C D ff W S ! T g be the set of all functions

from S to T . Show that if jT j > 1, then jCj � 2jSj.
14. What is the cardinality of the unit cube, where the unit cube is

˚
.x; y; z/ W

x; y; z 2 Œ0; 1�
�
?

15. What is the cardinality of R3 D ˚
.x; y; z/ W x; y; z 2 R

�
?

16. What is the cardinality of the set of all functions from f1; 2g to N?
17. Find the cardinality of the set of all points in R

3 all of whose coordinates are
rational.

18. Let S be the set of all functions mapping the set fp2;
p

3;
p

5;
p

7g into Q.
What is the cardinality of S?

19. Find the cardinality of the set
˚
.x; y/ W x 2 R; y 2 Q

�
.

20. What is the cardinality of the set of all numbers in the interval Œ0; 1� that have
decimal expansions that end with an infinite sequence of 7’s?

21. Let t be a transcendental number. Prove that t 4 C 7t C 2 is also transcendental.
22. Suppose that T is an infinite set and S is a countable set. Show that S [ T has

the same cardinality as T .
23. Let S be the set of real numbers t such that cos t is algebraic. Prove that S is

countably infinite.
24. Let a, b, and c be distinct real numbers. Find the cardinality of the set of all

functions mapping fa; b; cg into the set of real numbers.
25. What is the cardinality of

n
n

1
k W n; k 2 N

o

i.e., the set of all roots of all natural numbers?
26. Prove that there does not exist a set with a countably infinite power set.
27. (This problem requires some basic facts about trigonometric functions.) Find a

one-to-one function mapping the interval .� �
2
; �

2
/ onto R.

Challenging Problems

28.(a) Prove directly that the cardinality of the closed interval Œ0; 1� is equal to the
cardinality of the open interval .0; 1/ by constructing a function f W Œ0; 1� !
.0; 1/ that is one-to-one and onto.



108 10 Sizes of Infinite Sets

(b) More generally, show that if S is an infinite set and fa; bg � S , then jSj Dˇ̌
S n fa; bgˇ̌. (The notation S n fa; bg is used to denote the set of all s in S

such that s is not in fa; bg.)
[Hint: Use the fact that S has a countably infinite subset containing a and b.]

29. Prove that a set is infinite if and only if it has the same cardinality as a proper
subset (i.e. a subset other than the set itself) of itself.

30. Call a complex number complex-algebraic if it is a root of a polynomial with
integer coefficients. Prove that the set of all complex–algebraic numbers is
countable.

31. What is the cardinality of the set of all finite subsets of R?
32. What is the cardinality of the set of all countable sets of real numbers?
33. Find the cardinality of the set of all lines in the plane.
34. Show that the set of all functions mapping R � R into Q has cardinality 2c .
35. Prove the following: If n is the smallest natural number such that a polynomial

of degree n with integer coefficients has x0 as a root, and if p and q are
polynomials of degree n with integer coefficients that have the same leading
coefficients (i.e., coefficients of xn) and each have x0 as a root, then p D q.

36. Let S be the set of all real numbers that have a decimal representation using
only the digits 2 and 6. Show that the cardinality of S is c.

37. Let S denote the collection of all circles in the plane. Is the cardinality of S
equal to c or 2c?

38. Prove that if S is uncountable and T is a countable subset of S, then the
cardinality of S n T (where S n T denotes the set of all elements of S that
are not in T ) is the same as the cardinality of S.

39. Find the cardinality of the set of all polynomials with real coefficients; that is,
of the set of all expressions of the form

anxn C an�1xn�1 C � � � C a1x C a0

where n is a nonnegative integer (that depends on the expression) and
a0; a1; : : : ; an are real numbers.

40. Prove that the union of c sets that each have cardinality c has cardinality c.
41. Prove that the set of all sequences of real numbers has cardinality c.



Chapter 11
Fundamentals of Euclidean Plane Geometry

In this chapter we describe the fundamentals of Euclidean geometry of the plane in
a way that relies on some intuitively apparent properties of geometric figures.
In particular, some of our proofs are based on what is apparent from looking at
diagrams. Of course, we also assume various axioms, such as between any two
points there exists a unique line that extends infinitely in two directions. Later
on in the chapter we will need to make an additional, very important, assumption
known as the Parallel Postulate. More rigorous axiomatic approaches to Euclidean
geometry are possible.

11.1 Triangles

One basic concept is that of a triangle, by which we mean a geometric figure
consisting of three points (called its vertices) that do not all lie on one line and
the line segments joining those vertices (which are called the sides of the triangle).
Thus, a typical triangle is pictured in Figure 11.1, where its vertices are labeled
with capital letters. We often refer to the sides of the triangle as AB (or BA), BC ,
and AC .

B C

A

Fig. 11.1 A typical triangle
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The triangle in Figure 11.1 might be denoted 4ABC . One of the angles might
be denoted either †A or †BAC . When we say that two line segments are equal
we mean that they have the same length. When we say that two angles are equal
we mean that they have the same measure (i.e., one could be placed on top of the
other so that they coincide).

Definition 11.1.1. Two triangles are congruent, denoted Š, if their vertices can be
paired so that the corresponding angles and sides are equal to each other. That is,
4ABC Š 4DEF if †A D †D, †B D †E, and †C D †F and AB D DE,
BC D EF , and AC D DF .

If two triangles are congruent, then one can be placed on top of the other so
that they completely coincide. More generally, two geometric figures are said to
be congruent to each other if they can be so placed. It is important to note that
congruence of triangles can be established without verifying that all of the pairs
of corresponding angles and all the pairs of corresponding sides are equal to each
other; as we shall see, equality of certain collections of those pairs implies equality
of all of them.

For example, suppose that we fix a side of a triangle and an angle with vertex one
of the endpoints of that side and the length of the next side. That is, for example,
suppose in Figure 11.2, we fix the angle B and lengths AB and BC . It seems
intuitively clear that any two triangles with the specified sides AB and BC and the
angle B between them are congruent to each other; the only way to complete the
given data to form a triangle is by joining A to C by a line segment. Thus, it appears
that any two triangles that have two pairs of equal sides and have equal angles
formed by those sides are congruent to each other. We state this as a fundamental
axiom.

B C

A

Fig. 11.2 Illustrating side-angle-side

The Congruence Axiom 11.1.2 (Side-Angle-Side). If two triangles have two
pairs of corresponding sides equal and also have equal angles between those two
sides, then the triangles are congruent to each other.

We speak of this axiom as stating that triangles are congruent if they have
“side-angle-side” in common.
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Definition 11.1.3. A triangle is said to be isosceles if two of its sides have the same
length. The angles opposite the equal sides of an isosceles triangle are called the
base angles of the triangle.

Theorem 11.1.4. The base angles of an isosceles triangle are equal.

Proof. Let the given triangle be 4ABC with AB D AC . Turn the triangle over
and denote the corresponding triangle as 4A0C 0B 0, as shown in Figure 11.3. Then
4ABC Š 4A0C 0B 0, since †A D †A0 and AB D A0C 0 D AC D A0B 0. Thus,
they have side-angle-side in common. In this congruence, †B corresponds to †C 0
and †C to †B 0, so †B D †C 0 and †C D †B 0. On the other hand, †C 0 was
obtained by turning †C over, and so †C 0 D †C . It follows that †B D †C , as
was to be proven. ut

B C

A

C 0 B 0

A0

Fig. 11.3 Proving that the base angles of an isosceles triangle are equal

Definition 11.1.5. A triangle is equilateral if all three of its sides have the same
length.

Corollary 11.1.6. All three angles of an equilateral triangle are equal to each
other.

Proof. Any two angles of an equilateral triangle are the base angles of an isosceles
triangle and are therefore equal to each other by the previous theorem. It follows
that all three angles are equal. ut

It is sometimes convenient to establish congruence of triangles by correspon-
dences other than side-angle-side.

Theorem 11.1.7 (Angle-Side-Angle). If two triangles have “angle-side-angle” in
common, then they are congruent.

Proof. Suppose that triangles ABC and DEF are given with †A D †D, AB D
DE, and †E D †B . If AC D DF , then the triangles are congruent by side-angle-
side. If this is not the case, then one of them is longer; suppose, without loss of
generality, that AC is shorter than DF . We will show that is impossible.
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A C P

B

D F

E

Fig. 11.4 Proving angle-side-angle

Mark the length DF along AC beginning with the point A and ending at a point
P , as shown in Figure 11.4. Then draw the line connecting B to P . It would follow
that 4ABP has side-angle-side in common with 4DEF , and this would imply
that †ABP D †E. But we are assuming that †ABC D †E. This would give
†ABC D †ABP , from which we conclude that †PBC D 0. Therefore, PB lies
on BC and hence AP D AC . ut

If two triangles have equal sides, then they automatically also have equal angles.

Theorem 11.1.8 (Side-Side-Side). If two triangles have corresponding sides equal
to each other, then they are congruent.

Proof. Let triangles ABC and DEF be given with AB D DE, BC D EF , and
AC D DF . At least one of the sides is greater than or equal to each of the other
two; suppose, for example, that AB is greater than or equal to each of AC and CB

(the other cases would be proven in exactly the same way). Then place the triangle
DEF under 4ABC so that DE coincides with AB as in Figure 11.5. Connect the

C

A

D

B

E

F

Fig. 11.5 Proving side-side-side

points C and F by a straight line. Since AC D DF , triangle AF C is isosceles
and the base angles ACF and AF C are equal to each other (by Theorem 11.1.4).
Similarly, 4BCF is isosceles, so †BCF D †BF C . Adding the angles shows that
†ACB D †DFE. It follows that triangles ABC and DEF agree in side-angle-
side and are therefore congruent to each other. ut

Definition 11.1.9. A straight angle is an angle that is a straight line. That is, the
angle ABC is a straight angle if the points A, B , and C all lie on a straight line
and B is in between A and C . A right angle is an angle that is half the size of a
straight angle.



11.1 Triangles 113

Definition 11.1.10. Vertical angles are pairs of angles that occur opposite each
other when two lines intersect. In Figure 11.6, the angles BEA and CED are a
pair of vertical angles, and the angles BED and CEA are a pair of vertical angles.

E

A

B

C

D

Fig. 11.6 Illustrating vertical angles

Theorem 11.1.11. Vertical angles are equal.

Proof. In Figure 11.6, we show that †BEA D †CED, as follows. Angle BEA and
angle AEC add up to a straight angle. Angle AEC and angle CED also add up to
a straight angle. Therefore, †BEA C †AEC D †AEC C †CED. Hence, angle
BEA equals angle CED. ut

One customary way of denoting the size of angles is in terms of degrees.

Definition 11.1.12. The measure of an angle in degrees is defined so that a straight
angle is 180ı and other angles are the number of degrees determined by the
proportion that they are of straight angles. In particular, a right angle is 90ı.

We will prove that the sum of the angles of a triangle is a straight angle. In the
approach that we follow, the following partial result is essential.

Theorem 11.1.13. The sum of any two angles of a triangle is less than 180ı.

Proof. Consider an arbitrary triangle ABC as depicted in Figure 11.7 (on the next
page) and extend the side AB beyond A as shown. We will show that the sum of
angles CAB and ACB is less than a straight angle.

Let M be the midpoint of the side AC . Draw the line from B through M and
extend it to the other side of M to a point D such that DM D MB . Draw the
line from D to A. Then †DMA D †CMB , since they are a pair of vertical
angles (Theorem 11.1.11). By construction, AM D MC and DM D MB . Thus,
4CMB Š 4AMD by side-angle-side (11.1.2). It follows that †DAM is equal to
†BCM . Therefore, the sum that we are interested in, †BCM C †MAB , is equal
to the sum of †DAM C †MAB . But this latter sum is less than a straight angle,
since it together with †DAF sums to a straight angle. ut
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AF B

M

CD

Fig. 11.7 The sum of two angles of a triangle is less than 180 degrees

11.2 The Parallel Postulate

By a line we mean a straight line extending infinitely in both directions; by a line
segment, we mean a finite part of a line between two given points. Two lines in the
plane are parallel if they do not intersect.

For hundreds of years, mathematicians tried to prove the following as a theorem
that followed from the other basic assumptions about Euclidean geometry. Finally,
in the 1880s, this was shown to be impossible when different geometries were
constructed that satisfied the other basic assumptions but not the following (they
are now called “non-Euclidean geometries”). Since it cannot be proven, we assume
it as an axiom.

The Parallel Postulate 11.2.1. Given a line and a point that is not on the line, there
is one and only one line through the given point that is parallel to the given line.

We will develop necessary and sufficient conditions that two lines be parallel.
Given two lines, a third line that intersects both of the first two is said be a
transversal of the two lines. Given a transversal of two lines, a pair of angles created
by the intersections of the transversal with the lines are said to be corresponding
angles if they lie on the same sides of the given lines. In Figure 11.8, T is a

L1

L2

T

b

c

f

e

d

Fig. 11.8 Corresponding angles and alternate interior angles
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transversal of the lines L1 and L2. The angles b and d are a pair of corresponding
angles. The four angles between the lines are called interior angles. If two interior
angles lie on opposite sides of the transversal, they are called alternate interior
angles. In Figure 11.8, the angles b and e are a pair of alternate interior angles, as
are the angles c and f:

Theorem 11.2.2. If the angles in a pair of corresponding angles created by a
transversal of two lines are equal to each other, then the given lines are parallel.

Proof. If the theorem was not true, then there would be a situation as depicted in
Figure 11.9, where †a D †c and lines L1 and L2 intersect in some point P .

T

L1

L2

a

b

c

P

Fig. 11.9 Equal corresponding angles imply that lines are parallel

Now †a C †b is clearly a straight angle. Then, since †a D †c, it would follow
that that the sum of angles b and c is a straight angle, contradicting Theorem 11.1.13.
Hence, the lines L1 and L2 cannot intersect. ut

The converse of this theorem is also true.

L
L1

L2

T

Q

b0

d

Fig. 11.10 If lines are parallel, corresponding angles are equal

Theorem 11.2.3. If two lines are parallel, then any pair of corresponding angles
are equal to each other.
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Proof. Suppose that two lines are parallel and that two corresponding angles
differ from each other. Then there would be a situation, such as that depicted in
Figure 11.8, with two parallel lines L1 and L2 and angle b different from angle
d . Suppose that angle b is bigger than angle d (the proof where this inequality is
reversed would be virtually identical). Then, as depicted above in Figure 11.10, we
could draw a line L through Q, the intersection point of L1 and T such that angle
b0 is equal to angle d .

But then, by the previous theorem (11.2.2), L would be parallel to L2. Thus, L

and L1 would be distinct lines through the point Q both of which are parallel to L2,
contradicting the uniqueness aspect of the Parallel Postulate (11.2.1). ut
Corollary 11.2.4. If two lines are parallel, then any pair of alternate interior
angles are equal to each other.

Proof. Consider the alternate interior angles b and e in Figure 11.8. From
Theorem 11.2.3, we know that angles b and d are equal, and by Theorem 11.1.11,
angle d is equal to angle e. Therefore, angles b and e are equal. ut

We can now establish the fundamental theorem on the angles of a triangle.

Theorem 11.2.5. The sum of the angles of a triangle is a straight angle.

Proof. Let a triangle ABC be given. Use the Parallel Postulate (11.2.1) to pass a
line through A that is parallel to BC and mark points D and E on that line, as
in Figure 11.11. By Corollary 11.2.4, †DAB D †ABC and †EAC D †ACB .
Clearly, the sum of the angles DAB , BAC , and EAC is a straight angle. Hence, the
sum of the angles ABC , BAC , and ACB is also a straight angle. ut

B C

D A E

Fig. 11.11 The sum of the angles of a triangle is a straight angle

The following is an obvious corollary.

Corollary 11.2.6. If two angles of one triangle are respectively equal to two angles
of another triangle, then the third angles of the triangles are also equal.

Corollary 11.2.7 (Angle-Angle-Side). If two triangles agree in angle-angle-side,
then they are congruent.
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Proof. By the previous corollary, the triangles have their third angles equal as well.
Thus, the triangles also agree in angle-side-angle, and by Theorem 11.1.7, they are
congruent. ut

11.3 Areas of Triangles

We require knowledge of the areas of some common geometric figures. We begin
with the following definition which forms the basis for the definition of areas of all
geometric figures.

Definition 11.3.1. The area of a rectangle is defined to be the product of its length
and its width.

The areas of other geometric figures can be obtained either by directly comparing
them to rectangles or by approximating them by rectangles.

Definition 11.3.2. Lines, or line segments, are said to be perpendicular (or orthog-
onal) if they intersect in a right angle.

Definition 11.3.3. A right triangle is a triangle one of whose angles is a right angle.
The side opposite the right angle in a right triangle is called the hypotenuse of the
triangle, and the other two sides are called the legs.

Theorem 11.3.4. The area of a right triangle is one-half the product of the legs of
the triangle.

Proof. Let the right triangle 4ABC be as pictured in Figure 11.12. By creating
perpendiculars to AC at A and to BC at B , complete the triangle to a rectangle as
shown. Since the sum of the angles of a triangle is 180ı (Theorem 11.2.5), the sum
of angles BAC and ABC is 90ı. Since AD is perpendicular to AC , the sum of the

C B

A D

Fig. 11.12 Area of a right triangle
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angles BAC and BAD is also 90ı. Hence, †ABC D †BAD. Since angle CBD

is a right angle, †CAB D †ABD, as they both sum with angle ABC to 90ı. It
follows that 4ABC Š 4BAD, since they agree in angle-side-angle (11.1.7). Thus,
those triangles have equal areas. Since their areas sum to the area of the rectangle
whose area is the product of the legs of the triangle ABC , it follows that the area of
the triangle ABC is one-half of that product. ut

Any one of the sides of a triangle may be regarded as a base of the triangle.

Definition 11.3.5. If a side of a triangle is designated as its base, then the height of
the triangle (relative to that base) is the length of the perpendicular from the base
to the vertex of the triangle not on the base. It may be necessary to extend the base
of the triangle in order to determine its height, as in the second triangle pictured in
Figure 11.13. (In both of the triangles depicted in Figure 11.13, h is the height of the
triangle to the base AC .)

A D C

B

h

D A C

B

h

Fig. 11.13 Heights of triangles

Theorem 11.3.6. The area of any triangle is one-half the product of a base of the
triangle and the height of the triangle to that base.

Proof. Suppose that the triangle ABC is as pictured in the first triangle in
Figure 11.13, where h is the height to the base AC . Then, by the previous
theorem (11.3.4), the area of the right triangle ABD is one-half the product of
h and AD, and the area of the right triangle DBC is one-half the product of h

and DC . The area of triangle ABC is the sum of those areas and is therefore
1
2
h � .AD/ C 1

2
h � .DC / D 1

2
h � .AD C DC / D 1

2
h � .AC /. This finishes the

proof in this case.
Suppose that 4ABC is as pictured in the second triangle in Figure 11.13. The

side AC had to be extended to the point D at the bottom of the height. In this case,
the area of 4ABC is the difference between the area of the right triangle BDC and
the area of the right triangle BDA. Hence, the area is 1

2
h � .DC / � 1

2
h � .DA/ D

1
2
h � .AC /. ut

One of the most famous theorems in mathematics is the Pythagorean Theorem.
The easiest way to prove it is by using areas.

The Pythagorean Theorem 11.3.7. For any right triangle, the square of the length
of the hypotenuse is equal to the sum of the squares of the lengths of the legs.
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G

F

E

D

a

b c

a

b

c

a

bc

a

b

c

Fig. 11.14 Proof of the Pythagorean Theorem

Proof. Let the right triangle have legs of length a and b and hypotenuse of length c.
This proof of the Pythagorean Theorem is obtained by placing four copies of the
given right triangle inside a square whose sides have length a C b, as shown in
Figure 11.14. We need to prove that the four-sided figure DEF G is a square; i.e.,
since each of its sides has length c, we must prove that each of its angles is a right
angle. But this follows immediately from the fact that each such angle sums with
the two non-right angles of the original triangle to a straight angle. Thus, DEF G

is a square, each of whose sides has length c. The area of the big square, each of
whose sides has length a C b, is the sum of the area of the square DEF G and four
times the area of the original right triangle. That is, .a C b/2 D 4. 1

2
ab/ C c2. Thus,

a2 C 2ab C b2 D 2ab C c2, or a2 C b2 D c2: ut
Definition 11.3.8. Two triangles are similar if their vertices can be paired so that
the corresponding angles are equal to each other. We use the notation 4ABC �
4DEF to denote similarity.

Of course (by Corollary 11.2.6), it follows that two triangles are similar if
they agree in two of their angles. It is an important, and nontrivial, fact that the
corresponding sides of similar triangles are proportional to each other. In other
words, if 4ABC � 4DEF , then AB

DE
D AC

DF
D BC

EF
. The ingenious proof that

we present goes back to Euclid.
We begin with a lemma.

Lemma 11.3.9. If two lines are parallel and two other lines are perpendicular to
the parallel lines, then the lengths of the perpendicular line segments between the
parallel lines are equal to each other.
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L2

L1

B D

A C

Fig. 11.15 Perpendiculars between parallel lines are equal

Proof. In Figure 11.15, we are assuming that L1 is parallel to L2 and that AB

and DC are perpendicular to both of L1 and L2. (By Theorem 11.2.3, if a line is
perpendicular to one of two parallel lines, it is perpendicular to the other as well.) We
must prove that AB D CD. Note that †ACB D †DBC and †ABC D †BCD,
by Corollary 11.2.4. Thus, the triangles ABC and BCD are congruent by angle-
side-angle, since they also share the side BC . Therefore, the corresponding sides
AB and CD are equal to each other. ut

Our basic approach to the proportionality theorem is based on the following
lemma.

Lemma 11.3.10. If a triangle with area S1 has the same height with respect to a
base b1 that a triangle with area S2 has with respect to its base b2, then S1

b1
D S2

b2
.

Proof. Let the common height of the two triangles with respect to the given bases
be h. Then, S1 D 1

2
hb1 and S2 D 1

2
hb2. It follows that S1

b1
D 1

2
h D S2

b2
. ut

Theorem 11.3.11. If two triangles are similar, then their corresponding sides are
proportional. That is, if 4ABC � 4DEF , then AB

DE
D AC

DF
D BC

EF
.

Proof. It suffices to prove that AB
DE

D AC
DF

; the other equation can be obtained as in
the proof below but placing the triangles so that the angle at B coincides with the
angle at E.

Place the triangles so that the angle of the first triangle at A coincides with the
angle of the second triangle at D. If the length of AB is the same as the length of
DE, then the two triangles are congruent and all the proportions are 1. Assume,
then, that the length of AB is less than the length of DE. (If the opposite is true,
the proof below can be accomplished by interchanging the roles of 4ABC and
4DEF .) The situation is depicted in Figure 11.16.

A

D

B

E

C F

Fig. 11.16 Corresponding sides of similar triangles are proportional
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We need to construct triangles to which we can apply the preceding lemma.
In Figure 11.16, connect B and F by a line and C and E by a line. Note that
by Theorem 11.2.2, †ABC D †DEF implies that the line BC is parallel to
the line EF . Regard the triangles BEC and BF C as having a common base
BC . Then the corresponding heights of the triangles are the perpendiculars from
E to (the extension of) BC and from F to (the extension of) BC , respectively.
By Lemma 11.3.9 those heights are equal to each other. Thus, triangles BEC and
BF C , having equal bases and heights, have equal areas. Adding those triangles to
4ABC establishes that triangles ACE and ABF have equal areas.

We can now use Lemma 11.3.10, as follows. Since 4ABC has the same
height with respect to its base AB as 4ACE has with respect to its base DE,
Lemma 11.3.10 implies that

area.4ABC /

AB
D area.4ACE/

DE
; or

AB

DE
D area.4ABC /

area.4ACE/

Similarly, 4ABC has the same height with respect to its base AC as 4ABF has
with respect to its base DF , so

area.4ABC /

AC
D area.4ABF /

DF
; or

AC

DF
D area.4ABC /

area.4ABF /

Since the triangles ABF and ACE have the same area, it follows that AB
DE

D AC
DF

.
ut

We will need the following result in Chapter 12.

Theorem 11.3.12. If an angle is inscribed in a circle and the arc that it cuts off is
a semicircle (see Figure 11.17), then the angle is a right angle.

O
A

B

C

DA

B

C

D

Fig. 11.17 An inscribed right angle

Proof. The angles that we are considering are those angles such as †BAC in
Figure 11.17, where BC is the diameter of the circle and O is the center of the
circle. Draw the diameter from A through O .
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Note that †OAB D †OBA, since OA D OB , and similarly †OAC D †OCA.
Moreover, the angles †AOC and †BOD are equal to each other, since they are
a pair of vertical angles (Theorem 11.1.11), as are the angles †AOB and †COD.
Thus, we can label the angles x; y; z; w as indicated in Figure 11.18.

O
A

B

C

D
x

x

y

w
y z

z

Fig. 11.18 Proving an inscribed angle is a right angle

Since 2x C w D 180ı and z C w D 180ı, it follows that z D 2x. Similarly,
w D 2y. Therefore, 2x C 2y D z C w D 180ı, so x C y D 90ı. This shows that
†BAC is 90ı. ut

11.4 Problems

Basic Exercises

1. Which of the following triples cannot be the lengths of the sides of a right
triangle?

(a) 3; 4; 5

(b) 1; 1; 1

(c) 2; 3; 4

(d) 1;
p

3; 2

2. In the diagram given below, lines L1 and L2 are parallel and line T is a
transversal. If the measure of †d is 55ı and the measure of †f is 130ı, find
the measures of †b, †e, and †c.
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L1

L2

T

b

c

f

e

d

3. In the diagram given below, the line segment BD is perpendicular to the line
segment AC , the length of AM is equal to the length of MC , the measure of
†C is 35ı, and the measure of †FAD is 111ı.

AF B

M

CD

(a) Prove that triangle ABM is congruent to triangle CBM .
(b) Find the measure of †CAB .
(c) Find the measure of †ABC .
(d) Find the measure of †ABD.
(e) Find the measure of †AMD.
(f) Find the measure of †D.
(g) Show that the line segments AD and BC are not parallel.

4. Prove that two right triangles are congruent if they have equal hypotenuses and
a pair of equal legs.

Interesting Problems

5. A quadrilateral is a four-sided figure in the plane. Prove that the sum of the
angles of a quadrilateral is 360ı.

6. For quadrilateral ABCD, as shown below, suppose that †ABC D †CDA and
†DAB D †BCD. Prove that AB D CD and BC D AD.
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A

B C

D

7. Prove that if two angles of a triangle are equal, then the sides opposite those
angles are equal.

8. With reference to the diagram below, prove that 4ABC is an isosceles triangle
if †DAB D †EAC and DE is parallel to BC .

B C

D A E

9. A parallelogram is a four-sided figure in the plane whose opposite sides are
parallel to each other. Prove the following:

(a) The opposite sides of a parallelogram have the same length.
(b) The area of a parallelogram is the product of the length of any side and the

length of a perpendicular to that side from a vertex not on that side.
(c) If one of the angles of a parallelogram is a right angle, then the parallelo-

gram is a rectangle.

10. A trapezoid is a four-sided figure in the plane two of whose sides are parallel to
each other. The height of a trapezoid is the length of a perpendicular from one
of the parallel sides to the other. Prove that the area of a trapezoid is its height
multiplied by the average of the lengths of the two parallel sides.

11. A square is a four-sided figure in the plane all of whose sides are equal to each
other and all of whose angles are right angles. The diagonals of the square
are the lines joining opposite vertices. Prove that the diagonals of a square are
perpendicular to each other.

12. Show that lines are parallel if there is a transversal such that the alternate
interior angles are equal to each other.

Challenging Problems

13. Give an example of two triangles that agree in “angle-side-side” but are not
congruent to each other.
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14. Find the length of line segment OA in the diagram below (line segment OD is
a radius of the circle centered at O , line segment AD has length 4, line segment
AC has length 10, and OABC is a rectangle).

O A

BC

D4

10

15. Prove the converse of the Pythagorean Theorem; i.e., show that if the lengths
of the sides of a triangle satisfy the equation a2 C b2 D c2, then the triangle is
a right triangle.

16. The following problem provides some basic results in trigonometry

(a) Let � be any angle between 0 and 90ı. Place � in a right triangle, as shown
in the diagram below, and label the sides as in the diagram. Define sin � to
be a

c
, cos � to be b

c
, and tan � to be a

b
. Using Theorem 11.3.11, show that

these definitions do not depend on which right triangle � is placed in.

�

b

a
c

(b) Label the angles of a triangle with A, B , and C and label the side opposite
†A with a, the side opposite †B with b, and the side opposite †C with c.
Prove that, in the case where the angles A, B and C are all less than 90
degrees, (although the results are true for all triangles):

(i)
a

sin A
D b

sin B
D c

sin C
(The Law of Sines)

(ii) c2 D a2 C b2 � 2ab cos C (The Law of Cosines)

17. (This problem generalizes the result of Theorem 11.3.12.) Prove that the
measure of an angle inscribed in a circle is one-half the measure of the arc
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cut off by the angle. That is, in the diagram below, the number of degrees of
†BAC is half the number of degrees in the arc BC . (The number of degrees
in a full circle is 360, and the number of degrees in any arc of a circle is the
product of 360 and the length of that arc divided by the circumference of the
circle.)
[Hint: One approach is by first proving the special case where AC is a diameter
of the circle.]

A

B

C

A

B

C



Chapter 12
Constructability

The Ancient Greeks were interested in many different kinds of mathematical
problems. One of the aspects of geometry that they investigated is the question
of what geometric figures can be constructed using a compass and a straightedge.
A compass is an instrument for drawing circles. The compass has two branches that
open up like a scissors. One of the branches has a sharp point at the end and the
other branch has a pen or pencil at the end. If the compass is opened so that the
distance between the two ends is r and the pointed end is placed on a piece of paper
and the compass is twirled about that point, the writing end traces out a circle of
radius r . The drawing made by any real compass will only approximate a circle of
radius r . But we are going to consider constructions theoretically; we will assume
that a compass opened up a distance r precisely makes a circle of radius r .

To do geometric constructions, we will also require (as the Ancient Greeks did)
another implement. By a straightedge we will mean a device for drawing lines
connecting two points and extending such lines as far as desired in either direction.
Sometimes people inaccurately speak of constructions with “ruler and compass.”
It is important to understand that the constructions investigated by the Ancient
Greeks do not allow use of a ruler in the sense of an instrument that has distances
marked on it. We can only use such an instrument to connect pairs of points by
straight lines; we cannot use it to measure distances.

In this chapter, when we say “construct” or “construction,” we always mean
“using only a compass and a straightedge.”

We will indicate how to do some basic constructions. But the most interesting
part of this chapter will be proving that certain geometric objects cannot be
constructed. In particular, we will prove that an angle of 20ı cannot be constructed.
This implies that an angle of 60ı cannot be trisected (i.e., divided into three equal
parts) with a straightedge and compass. The Ancient Greeks assumed that there must
be some way of trisecting every angle; they thought that they had simply not been
clever enough to find a method for doing so. It was only after mathematical advances
in the nineteenth century that it could be proven that there is no way to trisect an
angle of 60ı with a straightedge and compass. The highlight of this chapter will be

D. Rosenthal et al., A Readable Introduction to Real Mathematics,
Undergraduate Texts in Mathematics, DOI 10.1007/978-3-319-05654-8__12,
© Springer International Publishing Switzerland 2014
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a proof of that fact. Although it is hard to imagine how something like that could
be proved, we shall see that there is an indirect approach that also establishes many
other interesting results.

12.1 Constructions with Straightedge and Compass

Let’s start with some very basic constructions.

Definition 12.1.1. A perpendicular bisector of a line segment is a line that is
perpendicular to the line segment and goes through the middle of the line segment.

Theorem 12.1.2. Given any line segment, its perpendicular bisector can be con-
structed.

Proof. Given a line segment AB , as shown in Figure 12.1, put the point of the
compass at A and open the compass to radius the length of AB . Let r equal the
length of AB . Then draw the circle with center at A and radius r . Similarly, draw
the circle with center at B and radius r . The two circles will intersect at points, C

and D, as indicated in Figure 12.1. Take the straightedge and draw the line segment
from C to D. We claim that CD is a perpendicular bisector of AB .

A B
E

C

D

Fig. 12.1 Constructing the perpendicular bisector of a line segment

To prove this, label the point of intersection of CD and AB as E and then draw
the line segments AC , CB , BD, and DA. We must prove that AE D EB and that
†CEA (and/or any of the other three angles at E) is a right angle. First note that
AC , CB , BD, and DA all have the same length, r , since they are all radii of the two
circles of radius r . Thus, triangle ACD is congruent to triangle DCB , since the third
side of each is CD and they therefore agree by side-side-side (11.1.8). It follows
that †ACE D †BCE. Thus, triangle ACE is congruent to triangle BCE by side-
angle-side (11.1.2). Therefore, AE D EB . Moreover, †AEC D †BEC , so, since
those two angles sum to a straight angle, each of them is a right angle. ut

Definition 12.1.3. An angle bisector is a line from the vertex of the angle that
divides it into two equal subangles.

Theorem 12.1.4. Given any angle, its bisector can be constructed.
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A

B

C

E F

G

Fig. 12.2 Constructing the bisector of an angle

Proof. Consider an angle ABC , as pictured in Figure 12.2, and draw a circle
centered at B that intersects both BA and BC . Label the points of intersection
of the circle with AB and with BC as E and F , respectively. Let r be the distance
from E to F . Use the compass to draw a circle of radius r centered at E and a circle
of radius r centered at F . These two circles intersect in some point G within the
angle ABC , as shown in Figure 12.2. Use the straightedge to draw the line segment
connecting B to G. We claim that this line segment bisects the angle ABC .

Draw the lines EG and F G. We prove that triangle BEG is congruent to triangle
BF G. Note that BE D BF , since they are both radii of the original circle centered
at B . Note also that EG D F G, since they are each radii of circles with radius r .
Since triangle BEG and triangle BF G share side BG, it follows from side-side-
side (11.1.8) that the two triangles are congruent. Thus, †EBG D †FBG and BG

is a bisector of angle ABC . ut
Theorem 12.1.5. Any given line segment can be copied using only a straightedge
and compass.

A B C D

Fig. 12.3 Copying a line segment

Proof. Suppose a line segment AB is given, as pictured in Figure 12.3, and it is
desired to copy it on another line. Choose any point C on the other line, and then
open the compass to a radius the length of AB . Put the point of the compass at C

and draw any portion of the resulting circle that intersects the other line. Label the
point of intersection D. Then CD is copy of AB . ut

Theorem 12.1.6. Any given angle can be copied using only a straightedge and
compass.
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A

B C
G

D

E H

I

Fig. 12.4 Copying an angle

Proof. Let an angle ABC be given, as in Figure 12.4. We construct an angle equal
to †ABC with vertex G on any other line. To do this, draw any arc of any circle
(of radius, say, r) centered at B that intersects both BA and BC . Label the points
of intersection D and E. Draw the circle of radius r centered at G. Use H to label
the point where that circle intersects the line containing G. Then adjust the compass
to be able to make circles of radius DE. Put the point of the compass at H and
draw a portion of the circle that intersects the circle centered at G; call that point of
intersection I . Draw line segments connecting D to E and I to H .

Then IH D DE, since IH is a radius of a circle with radius DE. Also draw the
line segment GI . The lengths of BD, BE, GI , and GH are all equal to r . It follows
by side-side-side (11.1.8) that triangle BDE is congruent to triangle GIH . Thus,
†IGH is a copy of †ABC . ut
Corollary 12.1.7. If the angles ˛ and ˇ are constructed, then:

(i) the angle ˛ C ˇ can be constructed, and
(ii) for every natural number n, the angle n˛ can be constructed.

A

B α C

D

E
β

F

D

E
β

F

α

Fig. 12.5 Constructing the sum of two angles

Proof. (i) Let the angles ˛ and ˇ be given, as pictured in Figure 12.5. To construct
the angle ˛ C ˇ, simply copy the angle ˛ with one side DE and the other side
outside the original angle ˇ, as shown in the third diagram in Figure 12.5.

(ii) This clearly follows from repeated application of part (i), starting with angles
˛ and ˇ that are equal to each other. (This can be proven more formally using
mathematical induction.) ut
Theorem 12.1.8. Given any line segment and any natural number n, the line
segment can be divided into n equal parts using only a straightedge and compass.
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A B

C
D

P1

P2

P3

Pn−1

Q1 Q2 Q3 Qn−1

Fig. 12.6 Dividing a line segment into n equal parts

Proof. Fix a natural number n. Let a line segment AB be given, as shown in
Figure 12.6. Use the straightedge to draw any line segment emanating from A that is
at a positive angle with AB , and pick a point C on it as shown. Open the compass to
any radius s less than one nth of the length of AC . Beginning at A use the compass
to mark off n consecutive segments of AC of length s, as illustrated in Figure 12.6.
Label the points of intersection of the arcs and AC as P1; P2; P3; : : : ; Pn�1. Label
with D the point of intersection of the line and the last arc drawn. Use a straightedge
to connect D to B . We then construct lines parallel to DB through each point of
intersection of an arc with AD, after which we will show that the intersections of
those lines with AB divide AB into n equal segments.

To construct the parallel lines, copy the angle ADB (Theorem 12.1.6) at each
point of intersection of an arc with AD so that one side of the new angle lies
on AD and the other side points downwards and is extended to intersect the line
AB . These are the dotted lines in Figure 12.6. Label the points of intersection
of the dotted lines with AB as Q1; Q2; Q3; : : : ; Qn�1, as shown. We claim that
the points fQ1; Q2; Q3; : : : ; Qn�1g divide the segment AB into n equal parts. To
see this, note that for each j , the triangle APj Qj has two angles, †Pj AQj and
†APj Qj , equal to corresponding angles of 4ADB . Thus, 4APj Qj is similar
to 4ADB (Corollary 11.2.6). Therefore, the corresponding sides are proportional
(Theorem 11.3.11). The ratio of APj to AD is j

n
. Thus, the length of AQj divided

by the length of AB is also j

n
. ut

Even though a line segment can be divided into any number of equal parts, some
angles, such as those of 60 degrees, cannot be divided into three equal parts using
only a straightedge and compass. We now begin preparation for an indirect approach
to establishing that fact.

12.2 Constructible Numbers

We consider constructing numbers instead of constructing geometric objects,
although we will use geometric constructions to construct the numbers.

We begin by imagining a horizontal line on which a point is arbitrarily marked
as 0 and another point, to the right of it, is arbitrarily marked as 1. We consider the
question of what other numbers can be obtained by starting with the length 1 (that
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we take as the distance between the points marked 0 and 1) and doing geometric
constructions in the plane to obtain other lengths. By a geometric construction, we
mean using our straightedge to make lines joining any two points we have already
marked (i.e., constructed) or using our compass to construct a circle centered at a
constructed point using a radius that has been constructed.

Definition 12.2.1. A real number is constructible if the point corresponding to it
on the number line can be obtained from the marked points 0 and 1 by performing
a finite sequence of constructions using only a straightedge and compass.

Theorem 12.2.2. Every integer is constructible.

Proof. The numbers 0 and 1 are given as constructible. The number 2 can easily
be constructed: simply take a compass, open it up to radius 1 by placing one side
at the point 0 and the other side at the point 1, and then place the pointed side on
the point marked 1 and draw the circle of radius 1 with that point as center. The
point where that circle meets the number line to the right of 1 is the number 2, so
2 has been constructed. Then clearly 3 can be constructed by placing the compass
with radius 1 so as to make a circle centered at 2. Similarly, all the natural numbers
can be constructed. To construct the number �1, simply make the circle of radius 1
centered at 0 and mark the intersection to the left of 0 of that circle with the number
line. Then �2 can be constructed by marking the point where the circle centered at
�1 meets the number line to the left of the point �1. Every negative integer can be
constructed similarly. ut

What about the rational numbers?

Theorem 12.2.3. Every rational number is constructible.

Proof. To construct, for example, the number 1
3
, simply divide the interval between

0 and 1 into three equal parts (see Theorem 12.1.8) and mark the right-most point of
the first part as 1

3
. Similarly, for any natural number n, dividing the unit interval into

n equal parts shows that 1
n

is constructible. Then, for any natural number m, m
n

can
be constructed by placing m segments of length 1

n
next to each other on the number

line with the first of those segments beginning at 0.
We have therefore shown that all of the positive rational numbers are con-

structible. If x is a negative rational number, construct jxj and then make a circle
of radius jxj centered at 0; the point to the left of 0 where that circle intersects the
number line is x. Thus, every rational number is constructible. ut

We need to get information about the set of all constructible numbers. It is essen-
tial to the development of this approach that doing arithmetic with constructible
numbers produces constructible numbers.

Theorem 12.2.4. If a is constructible, then �a is constructible.

Proof. Place a compass on the number line with its point at 0 and the other end
opened to a. Then draw the circle. The number �a will be the point of intersection
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of the circle and the number line opposite to that of a. (If a is positive, then �a is
negative, but if a is negative, then �a is positive.) ut
Theorem 12.2.5. The sum of two constructible numbers is constructible.

Proof. Suppose that a and b are constructible. If b D 0, then clearly a C b D
a C 0 D a is constructible. So assume that b ¤ 0. Open the compass to radius jbj,
place the point of the compass on the number line at a, and draw the circle. If b is
positive, then a C b will be the point of intersection of the circle and the number
line to the right of a. If b is negative, then a C b will be the point of intersection of
the circle and the number line to the left of a. In both cases, this proves that a C b

is constructible. ut
We also need to construct products and quotients. These constructions are a little

more complicated; we begin with the following.

Theorem 12.2.6. If a and b are positive constructible numbers, then a
b

is
constructible.

Proof. We consider the two possible cases, where b is greater than 1 and b is less
than 1, respectively.

0 1 b

a

x

x

β β

Fig. 12.7 Constructing quotients (first case)

For the case where b is greater than 1, draw the numbers 0, 1, and b on the
number line. Use the straightedge to draw a line segment of length greater than
a starting from 0, making any angle greater than 0ı and less than 90ı with the
number line, as pictured in Figure 12.7. Since a is constructible, we can open the
compass to radius a. Place the point of the compass at 0 and mark a on the line
above the number line. Use the straightedge to connect the point a on the new line
to the point b on the number line. Copy the angle, ˇ, at b on the number line to
the point 1 on the number line so that the lower side of the angle is the number
line itself. Use the straightedge to extend the other side of the angle beyond the
new line. The intersection of the other side of the angle and the new line is a point
that we have thereby constructed. Let the distance from the origin to that point be
x. We can open the compass to radius x and thereby mark x on the number line.
So x is a constructible number. The relationship between x and a and b can be
determined by observing that the two triangles formed by the above construction
are similar to each other, and therefore the corresponding sides are in proportion
(Theorem 11.3.11). It follows that x

a
D 1

b
. Thus, x D a

b
, so we have constructed a

b
.
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0 1b

a

x

x

β β

Fig. 12.8 Constructing quotients (second case)

The case where b is less than 1 is very similar. In this case, 1 is to the right
of b on the number line. Use the straightedge to make a side of an angle starting
at 0 above the number line. Since a is constructible, we can open the compass to
radius a and mark a point on the new line that is distance a from the vertex of the
angle, as in Figure 12.8. Then use the straightedge to draw a straight line between
that point and the point b on the number line. Copy the angle, ˇ, at the point b on
the number line to the point 1 on the number line and extend the side of the angle
so that it intersects the other line. The compass can then be opened to radius equal
to the distance from that point of intersection to the origin. If x denotes that radius,
then the fact that the corresponding sides of similar triangles are proportional gives
a
x

D b
1
, so that x D a

b
. Thus, a

b
is constructible. ut

It is easy to extend the above to negative numbers.

Corollary 12.2.7. If a and b are constructible numbers, then ab is constructible
and, if b 6D 0, a

b
is constructible.

Proof. First suppose that a and b are both positive. Then a
b

is constructible by the
previous theorem. Let c D 1

b
; then c is constructible by the previous theorem using

a D 1. Since c is constructible, the previous theorem implies that a
c

is constructible.
But a

c
D a

. 1
b /

D ab, so ab is constructible.

If one or both of a and b is negative, the above can be applied to jaj and jbj. Then
ab D jaj � jbj if a and b are both negative, and ab D �jaj � jbj if exactly one of
them is negative. Similarly, a

b
is equal to one of jaj

jbj or � jaj
jbj . Since we can construct

the negative of any constructible number (Theorem 12.2.4), it follows that ab and a
b

are constructible in this case as well. ut
A “field” is an abstract mathematical concept. In this book we do not need to

consider general fields; we only need to consider subfields of R. The following
definition forms the basis for the rest of this chapter.

Definition 12.2.8. A subfield of R is a set F of real numbers satisfying the
following properties:

(i) The numbers 0 and 1 are both in F .
(ii) If x and y are in F , then x C y and xy are in F (i.e., F is “closed under

addition” and “closed under multiplication”).
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(iii) If x is in F , then �x is in F .
(iv) If x is in F and x 6D 0, then 1

x
is in F .

In this chapter, we use the word field to mean “subfield of R.” There are many
different subfields of R. Of course, R itself is a subfield of R. So is the set Q of
rational numbers. It is clear that R is the biggest subfield of R; it is almost as obvious
that Q is the smallest, in the following sense.

Theorem 12.2.9. If F is any subfield of R, then F contains all rational numbers.

Proof. To see this, first note that 0 and 1 are in F and property (ii) of a subfield of
R implies that 2 is in F , and 3 is in F , and so on. That is, F contains all the natural
numbers (this can be formally established by a very easy mathematical induction).
Property (iii) then implies that F contains all integers. By property (iv), F contains
the reciprocals of every integer other than 0, so by property (ii), F contains all
rational numbers. ut

The following is an important fact.

Theorem 12.2.10. The set of constructible numbers is a subfield of R.

Proof. This follows immediately from Theorems 12.2.4 and 12.2.5 and
Corollary 12.2.7. ut

One of the fundamental theorems in this chapter (Theorem 12.3.12) will provide
an alternative characterization of the field of constructible numbers.

Example 12.2.11. The set Q.
p

2/ defined by

Q.
p

2/ D
n
a C b

p
2 W a; b 2 Q

o

is a subfield of R.

Proof. It is clear that Q.
p

2/ contains 0 (since it equals 0 C 0 � p
2) and 1 (since it

equals 1 C 0 � p
2). Moreover,

.a1 C b1

p
2/ C .a2 C b2

p
2/ D .a1 C a2/ C .b1 C b2/

p
2

Hence, Q.
p

2/ is closed under addition. Also,

.a1 C b1

p
2/.a2 C b2

p
2/ D .a1a2 C 2b1b2/ C .a1b2 C a2b1/

p
2

so Q.
p

2/ is closed under multiplication. Furthermore, �.a C b
p

2/ D .�a/ C
.�b/

p
2.

It remains to be shown that 1

aCb
p

2
is in Q.

p
2/, whenever a and b are not both 0.

But,

1

a C b
p

2
D a � b

p
2

.a C b
p

2/.a � b
p

2/
D a � b

p
2

a2 � 2b2
D a

a2 � 2b2
C �b

a2 � 2b2

p
2
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which is the sum of a rational number and a number that is the product of rational
number and

p
2 and is therefore in Q.

p
2/. Of course, the above expression would

not make sense if a2�2b2 D 0. However, this cannot be the case, since a2�2b2 D 0

would imply
�

a
b

�2 D 2, and we know that
p

2 is irrational (Theorem 8.2.5). ut
The field Q.

p
2/ is the field obtained by starting with the field Q and “adjoiningp

2 ” to Q; it is called “the extension of Q by
p

2.” This is a special case of a much
more general situation.

Theorem 12.2.12. Let F be any subfield of R and suppose that r is a positive
number in F . If

p
r is not in F and

F.
p

r/ D ˚
a C b

p
r W a; b 2 F

�

then F.
p

r/ is a subfield of R.

Proof. The proof is very similar to the proof given above for the special case of
Q.

p
2/. It is very easily seen that 0 and 1 are in F.

p
r/ and that F.

p
r/ is closed

under addition. To see that it is closed under multiplication, note that

.a1 C b1

p
r/.a2 C b2

p
r/ D .a1a2 C rb1b2/ C .a1b2 C a2b1/

p
r

This is in F.
p

r/ since r is in F and F itself is a field. Also,

1

a C b
p

r
D a � b

p
r

.a C b
p

r/.a � b
p

r/
D a � b

p
r

a2 � rb2
D a

a2 � rb2
C �b

a2 � rb2

p
r

Note that a2 �rb2 6D 0 unless a and b are both 0, because
p

r 62 F . (If a2 �rb2 D 0

and b 6D 0, then
�

a
b

�2 D r , and it would follow that
p

r 2 F .) ut
Definition 12.2.13. If F is a subfield of R and r is a positive number that is in F
such that

p
r is not in F , then the field

F.
p

r/ D ˚
a C b

p
r W a; b 2 F

�

is the field obtained by adjoining
p

r to F and is called the extension of F by
p

r .

Example 12.2.14. Since
p

5 is not an element of Q.
p

2/, the extension of Q.
p

2/

by
p

5 is

˚
a C b

p
5 W a; b 2 Q.

p
2/

� D ˚
.c C d

p
2/ C .e C f

p
2/

p
5 W c; d; e; f 2 Q

�

For present purposes, we are interested in adjoining square roots to fields of real
numbers because that can be done in a “constructible” way.

Theorem 12.2.15. If r is a positive constructible number, then
p

r is constructible.

Proof. Mark the number 1 C r on the number line; label it A as in Figure 12.9. Let
M D rC1

2
; M is constructible. Make a circle with center M and radius M . The

circle then goes through the point A and also the point corresponding to 0, which
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O M D A

C

Fig. 12.9 Constructing square roots

we label O . Use D to denote the point corresponding to r on the number line. Erect
a perpendicular to the number line at D and let C be the point above the number
line at which that perpendicular intersects the circle.

The angle OCA is 90ı, since it is inscribed in a semicircle (Theorem 11.3.12).
Therefore, the sum of the angles OCD and DCA is 90ı, from which it follows
that the angle COD equals the angle DCA. Thus, triangle OCD is similar to
triangle DCA, so their corresponding sides are proportional (Theorem 11.3.11).
Let x denote the length of the perpendicular from C to D. Then x

1
D r

x
, so x2 D r .

Hence, x D p
r and

p
r is constructible. ut

It follows immediately from this theorem (12.2.15) and the fact that the con-
structible numbers form a field (Theorem 12.2.10) that every number in Q.

p
2/ is

constructible. More generally, every element of Q.
p

r/ is constructible, for every
positive rational number r such that

p
r is irrational. Even more generally, if F is a

field consisting of constructible numbers and r is a positive number in F such thatp
r is not in F , then F.

p
r/ consists of constructible numbers. Thus, if we start

with Q and keep on adjoining square roots, we get constructible numbers.

Definition 12.2.16. A tower of fields is a finite sequence F0;F1;F2; : : : ;Fn of
subfields of R such that F0 D Q and, for each i from 1 to n, there is a positive
number ri in Fi�1 such that

p
ri is not in Fi�1 and Fi D Fi�1.

p
ri /.

Note that a tower can be described as a sequence fFi g of fields of real numbers
such that

F0 � F1 � F2 � � � � � Fn

with F0 D Q and each Fi obtained from its predecessor Fi�1 by adjoining a square
root.

12.3 Surds

We will show that the constructible numbers are exactly those real numbers that are
in fields that are in towers. There is another name that is frequently used for such
numbers.
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Definition 12.3.1. A surd is a number that is in some field that is in a tower. That
is, x is a surd if there exists a tower:

F0 � F1 � F2 � � � � � Fn

such that x is in Fn.

Theorem 12.3.2. The set of all surds is a subfield of R. Moreover, if r is a positive
surd, then

p
r is a surd.

Proof. To show that the set of surds is a field, it must be shown that the arithmetic
operations applied to surds produce surds. This follows immediately if it is shown
that for any surds x and y there exists a field F containing both x and y that occurs
in some tower. If

˚p
r1;

p
r2; : : : ;

p
rm

�
are the numbers adjoined in making a

tower that contains x and
˚p

s1;
p

s2; : : : ;
p

sn

�
are the numbers adjoined in making

a tower containing y, then adjoining all of those numbers produces a field that
contains both x and y. Thus, the set of surds is a subfield of R.

To show that square roots of positive surds are surds, let r be a positive surd.
Then r is in some field F that is in a tower. If

p
r is in F , then

p
r is clearly a surd.

If
p

r is not in F , then
p

r is in F.
p

r/, which is clearly in a tower that has one
more field than the tower leading to F . ut
Theorem 12.3.3. Every surd is constructible.

Proof. This follows immediately from the results that the rational numbers are
constructible (Theorem 12.2.3), that the constructible numbers form a field
(Theorem 12.2.10), and that the square root of a positive constructible number
is constructible (Theorem 12.2.15). ut

The fundamental theorem that we will need is that the constructible numbers are
exactly the surds. To establish this, we must show that starting with the numbers 0
and 1 and performing constructions with straightedge and compass never produces
any numbers that are not surds. Since constructions take place in the plane, we will
have to investigate what points in the plane can be constructed.

Definition 12.3.4. We say that the point .x; y/ in the plane is constructible if that
point can be obtained from the points (0,0) and (1,0) by performing a finite sequence
of constructions with straightedge and compass.

Theorem 12.3.5. The point .x; y/ is constructible if and only if both of the
coordinates x and y are constructible numbers.

Proof. If x and y are constructible numbers, then the point .x; y/ can be constructed
by constructing the point x on the x-axis, erecting a perpendicular to the x-axis at
the point x and constructing y on that perpendicular.

Conversely, if the point .x; y/ has been constructed, then the number x can
be constructed by dropping a perpendicular from .x; y/ to the x-axis and the
number y can be constructed by dropping a perpendicular to the y-axis. (To drop
a perpendicular, make a circle with center at the point .x; y/ whose radius is large
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enough that it intersects the axis at two points. Draw the lines from each of the
points to the point .x; y/. Bisect the angle formed by the two lines just constructed.
The resulting triangles, one on either side of the angle bisector, are congruent to
each other since they agree in side-angle-side. This implies that the two angles the
angle bisector makes with the axis are equal to each other, and, since they sum to
a straight angle, they are therefore each 90 degrees. Hence, the angle bisector is a
perpendicular from the point .x; y/ to the axis.) ut
Definition 12.3.6. The surd plane is the set of all points .x; y/ in the xy-plane such
that the coordinates, x and y, are both surds.

By what we have shown above, every point in the surd plane is constructible. We
need to show that every constructible point is in the surd plane.

After we have constructed some points, how can we construct others? We can
use our straightedge to make lines joining any two points we have constructed, and
we can use our compass to construct a circle centered at a constructible point with a
radius that is constructible. New constructible points can then be obtained as points
of intersection of lines or circles that we have constructed.

Any one line in the plane has many different equations, as does any one circle.
We need to know that there are equations with surd coefficients for all of the lines
and circles that arise in constructions.

Theorem 12.3.7. If a line goes through two points in the surd plane, then there is
an equation for that line with surd coefficients.

Proof. Suppose that .x1; y1/ and .x2; y2/ are distinct points in the surd plane. We
consider two cases. If x1 6D x2, then

y � y1 D y2 � y1

x2 � x1

.x � x1/

is an equation of the line through the points .x1; y1/ and .x2; y2/. Since the surds
form a field, the coefficients in this equation are all surds. If x1 D x2, then x D x1

is an equation of the line.
In both cases, we have shown that an equation for the line through the points

.x1; y1/ and .x2; y2/ can be expressed in the form ax C by D c, where a, b, and c

are all surds and a and b are not both 0. ut
Theorem 12.3.8. A circle whose center is in the surd plane and whose radius is a
surd has an equation in which the coefficients are all surds.

Proof. Let the center be .x1; y1/ and the radius be r . Then one equation of the circle
is .x � x1/2 C .y � y1/2 D r2. Expanding this equation and using the fact that the
set of surds is a field shows that this equation has surd coefficients. ut
Theorem 12.3.9. The point of intersection of two distinct nonparallel lines that
each go through two points in the surd plane is itself in the surd plane.
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Proof. By Theorem 12.3.7, each of the lines has an equation with surd coefficients.
Let such equations be a1x C b1y D c1 and a2x C b2y D c2. If a1 D 0, then a2 6D 0

(or else the two lines would be parallel). Then y D c1

b1
, so a2x C b2

c1

b1
D c2 from

which it follows that the intersection of the two lines has coordinates x D c2

a2
� b2

a2

c1

b1

and y D c1

b1
, both of which are surds.

If a1 6D 0, then x D � b1

a1
y C c1

a1
. Substituting this in the second equation yields

a2

�
� b1

a1
y C c1

a1

�
C b2y D c2. Since the coefficients are all surds, it is clear that y is

also a surd. Hence, so is x and the theorem is proven in this case as well. ut
We next consider the points of intersection of a line and a circle.

Theorem 12.3.10. The points of intersection of a line that has an equation with
surd coefficients and a circle that has an equation with surd coefficients lie in the
surd plane.

Proof. Consider a line with equation ax C by D c and a circle with equation
.x � f /2 C .y � g/2 D r2, where all of the coefficients are surds. Consider first the
case where a D 0. In this case, y D c

b
. Substituting this in the equation of the circle

yields .x � f /2 C . c
b

� g/2 D r2. This is a quadratic equation in x. It has 0, 1, or 2
real number solutions depending upon whether the line does not intersect the circle,
is tangent to the circle, or intersects the circle in two points. The quadratic formula
shows that solutions that exist are obtained from the coefficients by the ordinary
arithmetic operations and the extracting of a square root. All of these operations on
surds produce surds. Thus, any solutions x are surds, proving the theorem in this
case.

If a 6D 0, then x D � b
a
y C c

a
. Substituting this value in the equation of the circle

yields
�� b

a
y C c

a
� f

�2 C .y � g/2 D r2. As above, any solutions of this equation
are also surds. Therefore, the theorem holds in this case too. ut

The remaining case is the intersection of two circles.

Theorem 12.3.11. The points of intersection of two distinct circles that have
equations with surd coefficients lie in the surd plane.

Proof. In order for two distinct circles to intersect, they must have distinct centers.
Thus, the equations of the circles can be written in the form

.x � a1/2 C .y � b1/2 D r2
1

.x � a2/2 C .y � b2/2 D r2
2

or

x2 � 2a1x C a2
1 C y2 � 2b1y C b2

1 D r2
1

x2 � 2a2x C a2
2 C y2 � 2b2y C b2

2 D r2
2
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where .a1; b1/ and .a2; b2/ are distinct points. (This means that a1 ¤ a2 or b1 ¤ b2.)
Subtracting the second equation from the first shows that any point .x; y/ that lies
on both circles also lies on the line with equation

.�2a1 C 2a2/x C a2
1 � a2

2 C .�2b1 C 2b2/y C b2
1 � b2

2 D r2
1 � r2

2

Since this equation has surd coefficients, all points of intersection of this line with
either circle lie in the surd plane (Theorem 12.3.10). ut
Theorem 12.3.12. The field of constructible numbers is the same as the field of
surds.

Proof. We already showed that every surd is constructible (Theorem 12.3.3).
On the other hand, Theorems 12.3.9, 12.3.10, and 12.3.11 show that the only
constructible points in the plane are points with surd coordinates. Since every
constructible number is a coordinate of a constructible point in the plane
(Theorem 12.3.5), it follows that every constructible number is a surd. ut

This characterization of the constructible numbers is the key to the proof that
certain angles cannot be trisected. One of the relationships between constructible
angles and constructible numbers is the following; we restrict the discussion to acute
angles (i.e., angles less than a right angle) simply to avoid having to describe several
cases.

Theorem 12.3.13. The acute angle � is constructible with a straightedge and
compass if and only if cos � is a constructible number.

Proof. Suppose first that the angle � is constructible. Place the angle so that its
vertex lies at the point 0 on the number line, one of its sides is the positive part
of the number line and the other side is on top of it, as in Figure 12.10. Use the
compass to mark a point on the upper side of the angle that is one unit from the
point 0. Drop a perpendicular from that point to the number line (as in the proof of
Theorem 12.3.5). Then that perpendicular meets the number line at cos � , so cos �

is constructed.

0 cos θ

1

θ

Fig. 12.10 Constructing the cosine of an angle

Conversely, if cos � is constructed, erect a perpendicular upwards from the point
cos � on the number line. Construct the number a D p

1 � cos2 � and mark
the point on the perpendicular with that distance above the number line, as in
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Figure 12.11. Connecting the point 0 to that marked point by a straightedge produces
the angle � . ut

0 cos θ

a

Fig. 12.11 Constructing an angle from its cosine

With this background we can now determine exactly which angles with an
integral number of degrees are constructible. First note the following.

Theorem 12.3.14. An angle of 60ı is constructible.

Proof. This is an immediate consequence of Theorem 12.3.13, for the cosine of 60ı
equals 1

2
, and 1

2
is a constructible number.

There is also an easy direct proof: simply construct an equilateral triangle using
a straightedge and compass; each angle of the equilateral triangle is 60ı.

To construct an equilateral triangle, draw a circle of any radius, call it r , centered
at a point A. Draw a line through A that intersects the circle and label a point of
intersection B , as in Figure 12.12 below. Next draw a circle of radius r centered
at B and label a point of intersection of the two circles with C . Now draw the
segments AC and BC . Triangle ABC is an equilateral triangle (all of whose sides
have length r). ut

A B

C

Fig. 12.12 Constructing an equilateral triangle

Corollary 12.3.15. The following angles are all constructible: 30ı, 15ı, 45ı,
and 75ı.

Proof. We begin with the fact that an angle of 60ı is constructible (Theorem
12.3.14). An angle of 30ı can be constructed by bisecting an angle of 60ı, and
an angle of 15ı can be constructed by bisecting an angle of 30ı (Theorem 12.1.4).
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An angle of 45ı can be constructed by placing an angle of 15ı next to one of 30ı,
and an angle of 75ı can be constructed by placing an angle of 15ı next to an angle
of 60ı (Theorem 12.1.7). ut

The material about constructible numbers was developed primarily to prove that
some angles are not constructible. We need some additional preliminary results.

Theorem 12.3.16. For any angle � , cos.3�/ D 4 cos3 � � 3 cos � .

Proof. Recall the addition formulae for cosine and sine:

cos .�1 C �2/ D cos �1 cos �2 � sin �1 sin �2

and

sin .�1 C �2/ D sin �1 cos �2 C sin �2 cos �1

In particular, if � D �1 D �2, then

cos.2�/ D cos2 � � sin2 �

and

sin.2�/ D 2 sin � cos �

Therefore,

cos.3�/ D cos.2� C �/

D cos.2�/ cos � � sin.2�/ sin �

D .cos2 � � sin2 �/ cos � � 2 sin � cos � sin �

D cos3 � � sin2 � cos � � 2 sin2 � cos �

D cos3 � � 3 sin2 � cos �

The trigonometric identity sin2 � C cos2 � D 1 implies that sin2 � D 1 � cos2 � ,
which gives

cos.3�/ D cos3 � � 3.1 � cos2 �/ cos �

D cos3 � � 3 cos � C 3 cos3 �

D 4 cos3 � � 3 cos �

Therefore, cos.3�/ D 4 cos3 � � 3 cos � . ut



144 12 Constructability

The case where � equals 20ı is of particular interest.

Corollary 12.3.17. If x D 2 cos.20ı/, then x3 � 3x � 1 D 0.

Proof. Using the formula for cos.3�/ given above and the fact that the cosine of 60ı
equals 1

2
, we have 1

2
D 4 cos3.20ı/ � 3 cos.20ı/. This is equivalent to the equation

8 cos3.20ı/ � 6 cos.20ı/ � 1 D 0

Since x D 2 cos.20ı/, x3 � 3x � 1 D 0. ut
We will show that the cubic equation x3�3x�1 D 0 does not have a constructible

root.

Theorem 12.3.18. If the roots of the cubic equation x3 C bx2 C cx C d D 0 are
r1; r2; and r3, then b D �.r1 C r2 C r3/. (It is possible that two or even three of the
roots are the same as each other.)

Proof. By the Factor Theorem (9.3.6), and the fact that the coefficient of x3 is 1, the
cubic equation is the same as .x�r1/.x�r2/.x�r3/ D 0. Multiplying out these three
factors shows that the coefficient of x2 is �.r1Cr2Cr3/; hence, b D �.r1Cr2Cr3/.

ut
We need the concept of a conjugate for elements of F.

p
r/, analogous to the

conjugate of a complex number.

Definition 12.3.19. If a C b
p

r is an element of F.
p

r/, then the conjugate of
a C b

p
r , denoted by placing a bar on top of the number, is

a C b
p

r D a � b
p

r

Theorem 12.3.20. The conjugate of the sum of two elements of F.
p

r/ is the sum
of the conjugates, and the conjugate of the product of two elements of F.

p
r/ is the

product of the conjugates.

Proof. For the first assertion simply note that

.a C b
p

r/ C .c C d
p

r/ D .a C c/ C .b C d/
p

r

D .a C c/ � .b C d/.
p

r/

D .a � b
p

r/ C .c � d
p

r/

D .a C b
p

r/ C .c C d
p

r/

For products, note that

.a C b
p

r/.c C d
p

r/ D .ac C rbd/ C .ad C bc/
p

r

D .ac C rbd/ � .ad C bc/
p

r
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and

.a C b
p

r/ � .c C d
p

r/ D .a � b
p

r/.c � d
p

r/

D .ac C bdr/ � .ad C bc/
p

r

Therefore, .a C b
p

r/.c C d
p

r/ D .a C b
p

r/ � .c C d
p

r/. ut
Theorem 12.3.21. If a C b

p
r is in F.

p
r/ and is a root of a polynomial with

rational coefficients, then a � b
p

r is also a root of the polynomial.

Proof. Suppose that an.aCb
p

r/nCan�1.aCb
p

r/n�1C � � � Ca1.aCb
p

r/Ca0D0.
Then,

an.a C b
p

r/n C an�1.a C b
p

r/n�1 C � � � C a1.a C b
p

r/ C a0 D 0

Since each of the coefficients ak is rational, ak D ak , for every k. Using this fact and
Theorem 12.3.20 (the facts that the conjugate of a sum is the sum of the conjugates
and the conjugate of a product is the product of the conjugates), it follows that
an.a C b

p
r/n C an�1.a C b

p
r/n�1 C � � � C a1.a C b

p
r/ C a0 D 0. Thus, a �

b
p

r D a C b
p

r is also a root of the polynomial. ut
Theorem 12.3.22. If a cubic equation with rational coefficients has a constructible
root, then the equation has a rational root.

Proof. Dividing through by the leading coefficient if necessary, we can assume that
the coefficient of x3 is 1. Then, by Theorem 12.3.18, the sum of the three roots of
the cubic equation is rational.

We first show that if the equation has a root in any F.
p

r/, then it has a root in F .
To see this, suppose the equation has a root in F.

p
r/ of the form a C b

p
r with

b 6D 0. Then, by Theorem 12.3.21, the conjugate a � b
p

r is also a root. If r3 is the
third root and s is the sum of all three roots, then s D r3 C.aCb

p
r/C.a�b

p
r/ D

r3 C 2a. Thus, r3 D s � 2a. Since F contains all rational numbers and s is rational,
s is in F . Since a is also in F , it follows that the root r3 is in F itself.

The preliminary result obtained in the previous paragraph allows us to prove the
theorem as follows. If the polynomial has a constructible root, then, since every
constructible number is a surd (Theorem 12.3.12), the root is in a field that occurs
at the end of a tower. Consider the field at the end of the shortest tower that contains
any root of the given cubic equation. We claim that field must be Q. To see this,
simply note that if the root was in an F.

p
r/, the previous paragraph would imply

that the root was in F , which would be at the end of a shorter tower than F.
p

r/ is.
Hence, that root must be in Q. Thus, the equation has a rational root. ut

We can now prove that an angle of 20ı cannot be constructed.

Theorem 12.3.23. An angle of 20ı cannot be constructed with straightedge and
compass.
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Proof. If an angle of 20ı could be constructed with straightedge and compass,
then cos.20ı/ would be a constructible number (Theorem 12.3.13). Then 2 cos.20ı/

would also be a constructible number, and the polynomial x3 � 3x � 1 D 0 would
therefore have a constructible root (Corollary 12.3.17). It follows from the previous
theorem (12.3.22) that this polynomial would need to have a rational root. Thus, to
establish that an angle of 20ı is not constructible, all that remains to be shown is that
the polynomial x3 � 3x � 1 D 0 does not have a rational root. This can be proven as
an application of the Rational Roots Theorem (8.1.9). However, to make the present
result independent of that theorem, we present a direct proof.

Suppose that m and n are integers with n 6D 0 and that m
n

, written in lowest terms,

is a root of the equation x3 � 3x � 1 D 0. Then m3

n3 � 3
�

m
n

� � 1 D 0 implies that
m3 �3mn2 �n3 D 0. Since n3 D m.m2 �3n2/, every prime number dividing m also
divides n3 and hence also divides n (Corollary 4.1.3). Since m and n are relatively
prime, there are no primes that divide m. Thus, m is either 1 or �1. Similarly, since
m3 D n.3mn C n2/, any prime that divides n also divides m, from which it follows
that n is 1 or �1. Hence, m

n
is 1 or �1. Therefore, the only possible rational roots

of x3 � 3x � 1 D 0 are x D 1 or x D �1. Substituting those values for x in the
equation shows that neither of those is a root, so the theorem is proven. ut
Corollary 12.3.24. An angle of 60ı cannot be trisected with straightedge and
compass.

Proof. As we have seen, an angle of 60ı can be constructed with a straightedge and
compass (Theorem 12.3.14). If an angle of 60ı could be trisected with straightedge
and compass, then an angle of 20ı would be constructible. But an angle of 20ı is
not constructible, by the previous theorem (12.3.23). ut

12.4 Constructions of Geometric Figures

Another problem that the Ancients Greeks raised but could not solve was what they
called duplication of the cube. This was the question of whether or not a side of a
cube of volume 2 could be constructed by straightedge and compass.

Theorem 12.4.1. The side of a cube of volume 2 cannot be constructed with a
straightedge and compass.

Proof. If x is the length of the side of a cube of volume 2, then, of course, x3 D 2,
or x3 � 2 D 0. By Theorem 12.3.22, this equation has a constructible root if and
only if it has a rational root. Since the cube root of 2 is irrational (Problem 13 in
Chapter 8), there is no constructible solution, and the cube cannot be “duplicated”
using only a straightedge and compass. ut

The question of which regular polygons can be constructed is very interesting.

Definition 12.4.2. A polygon is a figure in the plane consisting of line segments
that bound a finite portion of the plane. A regular polygon is a polygon all of whose
angles are equal and all of whose sides are equal.
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An equilateral triangle is a regular polygon with three sides. Equilateral trian-
gles can easily be constructed with straightedge and compass (see the proof of
Theorem 12.3.14).

A square is a regular polygon with four sides. It is also very easy to construct
a square. Simply use the straightedge to draw any line segment, and erect perpen-
diculars at each end of the line segment. Then use the compass to “measure” the
length of the line segment and mark points which are that distance above the original
line segment on each of the perpendiculars. Using the straightedge to connect those
points yields a square.

For each natural number n bigger than or equal to 3, there exists a regular polygon
with n equal sides. This can be seen as follows. (Which of these regular polygons is
constructible is a more difficult question that we discuss in Theorem 12.4.5.)

Theorem 12.4.3. For each natural number n greater than or equal to 3 there is a
regular polygon with n sides inscribed in a circle.

Proof. Given a natural number n bigger than or equal to 3, take a circle and draw
successive adjacent angles of 360

n
degrees at the center, as shown in Figure 12.13.

Then draw the line segments connecting adjacent points determined by the sides of
the angles intersecting the circumference of the circle. We must show that those line
segments are all equal in length and that the angles formed by each pair of adjacent
line segments are equal to each other.

O

A

B

CD

360
n

Fig. 12.13 Existence of regular polygons

Consider, for example, the triangles OAB and OCD in Figure 12.13. The angles
AOB and COD are each equal to 360

n
degrees. The sides OA, OB , OC , and OD

are all radii of the given circle and are therefore equal to each other. It follows that
4OAB is congruent to 4OCD by side-angle-side (11.1.2). The same proof shows
that all of the triangles constructed are congruent to each other. It follows that all of
the sides of the polygon, which are the sides opposite the angles of 360

n
degrees in

the triangles, are equal to each other. The angles of the polygon are angles such as
†ABC and †BCD in the diagram. Each of them is the sum of two base angles of
the drawn triangles, and, therefore, the angles of the polygon are equal to each other
as well. ut
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Definition 12.4.4. A central angle of a regular polygon with n sides is the angle of
360
n

ı
that has a vertex at the center of the polygon, as in the above proof.

Theorem 12.4.5. A regular polygon is constructible if and only if its central angle
is a constructible angle.

Proof. Suppose that a regular polygon can be constructed with straightedge and
compass. Then its center (a point equidistant from all of its vertices) can be
constructed as the point of intersection of the perpendicular bisectors of two adjacent
sides of the polygon (see Problem 13 at the end of this chapter). Now the central
angle can be constructed as the angle formed by connecting the center to two
adjacent vertices of the polygon. All such angles are equal to each other, since the
corresponding triangles are congruent by side-side-side (11.1.8). There are n such
angles, the sum of which is 360 degrees, so each central angle is 360

n

ı
.

Conversely, suppose that an angle of 360
n

ı
is constructible, for some natural

number n � 3. Then a regular polygon with n sides can be constructed as follows.
Make a circle. Construct an angle of 360

n

ı
with vertex at the center of the circle.

Then construct another such angle adjacent to the first, and so on until n such angles
have been constructed. Connecting the adjacent points of intersection of the sides of
those angles with the circle constructs a regular polygon with n sides (as shown in
the proof of Theorem 12.4.3). ut
Corollary 12.4.6. A regular polygon with 18 sides cannot be constructed with a
straightedge and compass.

Proof. A regular polygon with 18 sides has a central angle of 360
18

D 20 degrees. We
proved in Theorem 12.3.23 that an angle of 20ı is not constructible, so the previous
theorem implies that a regular polygon with 18 sides is not constructible. ut
Theorem 12.4.7. If m is a natural number greater than 2, then a regular polygon
with 2m sides is constructible if and only if a regular polygon with m sides is
constructible.

Proof. Using Theorem 12.4.5, the result follows by either bisecting or doubling the
central angle of the already constructed polygon. (Alternatively, having constructed
a regular polygon with 2 m sides, use the straightedge to connect alternate vertices,
yielding a regular polygon with m sides, as can be established by using congruent
triangles. In the other direction, given a regular polygon with m sides, inscribe it
in a circle and then double the vertices by adding the points of intersections of the
perpendicular bisectors of the sides and the circle.) ut
Corollary 12.4.8. A regular polygon with 9 sides is not constructible.

Proof. This follows immediately from the fact that a regular polygon with 18 sides
is not constructible (Corollary 12.4.6) and the above theorem (12.4.7). ut

It is useful to make the following connection between constructible polygons and
constructible numbers.
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Theorem 12.4.9. A regular polygon with n sides is constructible if and only if the
length of the side of a regular polygon with n sides that is inscribed in a circle of
radius 1 is a constructible number.

Proof. In the first direction suppose that a regular polygon with n sides is con-
structible. Then such a polygon can be constructed so that it is inscribed in a
circle of radius 1 (for example, by putting its constructible central angle in a circle
of radius 1). The length of the side can be constructed by using the compass to
“measure” the side of the constructed polygon.

Conversely, if s is a constructible number and is the length of the side of a regular
polygon with n sides inscribed in a circle of radius 1, then the regular polygon can be
constructed simply by marking any point on the circle and then using the compass
to successively mark points that are at distance s from the last marked one. The
marked points will be vertices of a regular polygon with n sides. ut

Can a pentagon (a regular polygon with 5 sides) be constructed using only a
straightedge and compass? The answer is affirmative, but it is not at all easy to see
directly. We will approach this by considering a regular polygon with 10 sides.

Theorem 12.4.10. A regular polygon with 10 sides is constructible.

Proof. By Theorem 12.4.9, it suffices to show that the length of a side of such a
polygon inscribed in a circle of radius 1 is a constructible number. We determine
the length of such a side by using a little geometry. The central angle of a regular
polygon with 10 sides is 36ı. Consider such an angle with vertex O at the center of
a circle of radius 1, as shown in Figure 12.14. Label the points of intersection of the
sides of that central angle with the circle A and B . Let s denote the length of the line
segment from A to B , and let AC be the bisector of †OAB . Since †OAB is 72ı
(the sum of the degrees of the equal angles OAB and ABO must be 180ı � 36ı),
it follows that angles OAC and CAB are each 36ı. Also, †OBA is 72ı. Thus,
triangles OAB and CAB are similar to each other, so corresponding sides are in
proportion (Theorem 11.3.11). Therefore, triangle CAB is isosceles, and AC has
length s.

O

A

BC

36◦

1
s

Fig. 12.14 The side of a ten-sided regular polygon
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Since †AOB D 36ı D †OAC , 4OAC is also isosceles. Thus, OC has
length s, from which it follows that BC has length 1 � s. The side opposite the
36ı angle in 4OAB , with length s, is to the side opposite the 36ı angle of 4CAB ,
with length 1 � s, as the side opposite the 72ı angles of 4OAB , with length 1 (the
radius of the circle), is to the side opposite the 72ı angle of 4CAB , which has
length s. That is,

s

1 � s
D 1

s

Thus, the length we are interested in, s, satisfies the equation s2 D 1 � s, or s2 C
s � 1 D 0. The positive solution of this equation (s is a length) is �1Cp

5
2

. Thus, s

is a constructible number (Theorem 12.3.12), from which it follows that the regular
polygon with 10 sides is constructible. ut
Corollary 12.4.11. A regular pentagon is constructible.

Proof. This follows immediately from the above theorem and Theorem 12.4.7. ut
Which regular polygons are constructible? Those with 3, 4, and 5 sides are, and

thus, so are 6, 8, and 10 (Theorem 12.4.7). We proved that a regular polygon with 9
sides is not constructible (Corollary 12.4.8).

What about a polygon with 7 sides? We can approach this question using
some facts that we learned about complex numbers. As follows immediately from
a previous result (Example 9.2.11), for each natural number n greater than 2,
the complex solutions to the equation zn D 1 are the vertices of an n-sided
regular polygon inscribed in a circle of radius 1. We will approach the problem
by considering the solutions of z7 D 1.

Theorem 12.4.12. A regular polygon with 7 sides is not constructible.

Proof. If a regular polygon with 7 sides was constructible, then one could be
constructed inscribed in a circle of radius 1 centered at the origin, such that one
of the vertices lies on the x-axis at the point corresponding to the number 1. Then
the vertices are the 7th-roots of unity (Example 9.2.11); that is, they satisfy z7 D 1.

We will analyze the first vertex above the x-axis. Let that vertex lie at the complex
number z0. If the regular polygon was constructible, then z0 would be a constructible
point, and therefore the real part of z0 would be constructible (simply construct a
perpendicular from z0 to the x-axis, as described in the parenthetical remark at the
end of the proof of Theorem 12.3.5). It would follow that twice the real part is
constructible. Let x0 be twice that real part. We will show that x0 satisfies a cubic
equation that is not satisfied by any constructible number.

Begin by observing that x0 D z0 C z0. Since jz0j D 1, it follows that 1 D jz0j2 D
z0z0. Thus, z0 D 1

z0
, so x0 D z0 C 1

z0
. The cubic equation satisfied by x0 will be

obtained from the equation of degree 7 satisfied by z0, z7
0 D 1, and the fact that

z0 6D 1. Note that z7 � 1 D .z � 1/.z6 C z5 C z4 C z3 C z2 C z C 1/. Since z0 � 1 6D 0,
z6
0 C z5

0 C z4
0 C z3

0 C z2
0 C z0 C 1 D 0. Dividing through by z3

0 yields
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z3
0 C z2

0 C z0 C 1 C 1

z0

C 1

z2
0

C 1

z3
0

D 0

Note that
�
z0 C 1

z0

�3 D z3
0 C3z0 C 3

z0
C�

1
z0

�3
and also that

�
z0 C 1

z0

�2 D z2
0 C2C�

1
z0

�2
.

It follows that

z3
0 C z2

0 C z0 C 1 C 1

z0

C 1

z2
0

C 1

z3
0

D
�

z0 C 1

z0

�3

C
�

z0 C 1

z0

�2

� 2

�
z0 C 1

z0

�
� 1

Then, since x0 D z0 C 1
z0

, x0 satisfies the equation

x3
0 C x2

0 � 2x0 � 1 D 0

As indicated, to show that a regular polygon with 7 sides is not constructible, it
suffices to show that x0 is not a constructible number. Since x0 satisfies this cubic
equation with rational coefficients, the result will follow if it is shown that this cubic
equation has no rational root (Theorem 12.3.22). We could use the Rational Roots
Theorem (8.1.9). Alternatively, suppose that the rational number m

n
satisfied this

cubic equation. We can, and do, assume that m and n have no common integral
factor other than 1 and �1. Then . m

n
/3 C . m

n
/2 � 2. m

n
/ � 1 D 0, or m3 C m2n �

2mn2 � n3 D 0. Now if p was a prime number that divided m, it would follow
from the above that p would divide n3 and hence also divide n. Since m and n are
relatively prime there is no such prime number p, and we conclude that m is either
1 or �1. Similarly, n is equal to 1 or n is equal to �1. Thus, m

n
equals 1 or �1. But

13 C 12 � 2 � 1 is not 0, nor is .�1/3 C .�1/2 C 2 � 1. Hence, there is no rational
solution, and the theorem is proven. ut

It is known exactly which regular polygons are constructible. The Gauss-Wantzel
Theorem states that a regular polygon with n sides is constructible if and only if n

is 2k , where k > 1, or 2kF1 � � � Fl , where k � 0 and the Fj are distinct Fermat
primes. Recall (Problem 14 in Chapter 2) that a Fermat number is a number of the
form 22n C 1 for nonnegative integers n. A Fermat prime is a Fermat number that
is prime. The first few Fermat numbers are 3 (when n D 0), 5 (when n D 1), 17
(when n D 2), and 257 (when n D 3). Fermat thought that all Fermat numbers
might be prime, but Euler found that the fifth Fermat number is not prime. It is
a remarkable fact that it is unknown whether or not there are an infinite number
of Fermat primes. (It is equally remarkable that it is not known whether there are
infinitely many composite Fermat numbers.) It is therefore not known whether or not
there are an infinite number of constructible regular polygons with an odd number
of sides.

We can determine exactly which angles having a natural number of degrees are
constructible.

Theorem 12.4.13. If n is a natural number, then an angle of n degrees is con-
structible if and only if n is a multiple of 3.
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Proof. Recall that we proved that a regular polygon with 10 sides is
constructible (Theorem 12.4.10) and, hence, that an angle of 36ı is constructible
(Theorem 12.4.5). Since an angle of 30ı is constructible (Corollary 12.3.15), we
can “subtract” a 30ı angle from a 36ı angle by placing the 30ı angle with the vertex
and one of its sides coincident with the vertex and one of the sides of the 36ı angle
(Theorem 12.1.6). Then, bisecting the constructed angle of 6ı yields an angle of 3ı.
Once an angle of 3ı is constructed, an angle of 3k degrees can be constructed by
simply placing k angles of 3ı appropriately adjacent to each other.

To establish the converse, suppose that an angle of n degrees is constructible.
We must show that n is congruent to 0 .mod 3/. If n was congruent to either 1 or 2
modulo 3, then we could construct an angle of 1ı or 2ı accordingly by “subtracting”
an appropriate number of angles of 3ı from the angle of n degrees. If the resulting
angle is 2ı, bisecting it would yield an angle of 1ı. Thus, if an angle of n degrees was
constructible and n was not a multiple of 3, then an angle of 1ı could be constructed.
But an angle of 1ı is not constructible, for if it was, placing 20 of them together
would contradict the fact that an angle of 20ı is not constructible (12.3.23). ut

We have shown that some angles, such as an angle of 60ı, cannot be trisected
with a straightedge and compass. But what about the following?

Example 12.4.14 (Trisection of arbitrary acute angles). Let � be any acute angle.
Mark any two points on your straightedge and let the distance between them be r .
Draw the angle � and construct the circle with radius r whose center is at the vertex
of � . Label the center of the circle O . Extend one of the sides of � in both directions.
Move the marked straightedge so that the point marked to the left is on the extended
line, the point marked to the right stays on the circle, and the straightedge passes
through the intersection of the circle and the side of †� that was not extended; label
the points of intersection A; B; C , as shown in Figure 12.15. Draw the line BO .
Then the line segments AB , BO , and OC all have length r . Now let the equal base

O

C

B

A θ

r
r r

Fig. 12.15 On the way to trisecting an arbitrary angle

angles of 4ABO be x, the equal base angles of 4OBC be y, and let †BOC be
z, as shown in Figure 12.16. Then the sum of †ABO and 2x is 180ı, and the sum
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of †ABO and y is also 180ı; hence y D 2x. It is clear that x C z C � is 180ı.
On the other hand, z C 2y is 180ı. Since y D 2x, 4x C z is also 180ı. It follows
that 4x C z D x C � C z, or 3x D � . Thus, the angle x is one third of � , so � has
been trisected. ut

O

C

B

A θzx x

y

y

Fig. 12.16 Trisecting an arbitrary angle

What is going on here? You may think that the construction we have just done
contradicts our earlier proof that an angle of 60ı cannot be trisected. However, the
construction in the example above violated the classical rules of constructions that
we were adhering to before this example. Namely, we marked two points on the
straightedge. What we have shown is that it is possible to trisect arbitrary angles with
a compass and straightedge on which two (or more) points are marked. Therefore,
in particular, any angle can be trisected using a ruler and compass, but not with a
mere straightedge and compass.

12.5 Problems

Basic Exercises

1. Determine which of the following numbers are constructible:

(a) 1p
3Cp

2

(b) 6
p

79

(c) 3:146891

(d) 16
p

79

(e)
q

6 C 3
p

4
2

(f)
p

7 C p
5

(g)
p

3 C 4
p

2 C p
5

(h) 3

q
9
10

(i)
q

3792
1419

(j) cos 51ı
(k) cos 5ı
(l) cos 10ı

(m) 11
2
3

(n) 11
3
2

(o) 2
1
6

(p) 2
3
2

(q) 3

q p
2

4

(r)
p

7 cos 15ı
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2. Determine which of the following angles are constructible:

(a) 6ı
(b) 5ı
(c) 10ı
(d) 30ı
(e) 35ı

(f) 15ı
(g) 75ı
(h) 80ı
(i) 92:5ı

(j) 37:5ı
(k) 7:5ı
(l) 120ı

(m) 160ı

3. Determine which of the following angles can be trisected:

(a) 12ı
(b) 30ı

Interesting Applications

4. Determine which of the following polynomials have at least one constructible
root:

(a) x4 � 3

(b) x8 � 7

(c) x4 C p
7x2 � p

3 � 1

(d) x3 C 6x2 C 9x � 10

(e) x3 � 3x2 � 2x C 6

(f) x3 � 2x � 1

(g) x3 C 4x C 1

(h) x3 C 2x2 � x � 1

(i) x3 � x2 C x � 1

(j) 2x3 � 4x2 C 1

5. Determine which of the following regular polygons can be constructed with
straightedge and compass:

(a) A regular polygon with 14 sides
(b) A regular polygon with 20 sides
(c) A regular polygon with 36 sides
(d) A regular polygon with 240 sides

6. Explain how to construct a regular polygon with 24 sides using straightedge
and compass.

7. True or False:

(a) If the angle of � degrees is constructible and the number x is constructible,
then the angle of x � � degrees is constructible.

(b) xy is constructible if x and y are each constructible.
(c) If x

z is constructible, then x and z are each constructible.
(d) There is an angle � such that cos � is constructible, but sin � is not

constructible.

8. For an acute angle � , show that tan � is a constructible number if and only if �

is a constructible angle.
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9. Determine which of the following numbers are constructible:

(a) sin 20ı
(b) sin 75ı
(c) tan 2:5ı

10. Determine which of the following numbers are constructible (the angles below
are in radians):

(a) sin �
16

(b) cos �

(c) tan �
4

11. (a) Prove that the cube cannot be tripled, in the sense that, starting with an edge
of a cube of volume 1, an edge of a cube of volume 3 cannot be constructed
with straightedge and compass.

(b) More generally, prove that the side of a cube with volume a natural number
n is constructible if and only if n

1
3 is a natural number.

12. Using mathematical induction, prove that, for every integer n � 1, a regular
polygon with 3 � 2n sides can be constructed with straightedge and compass.

Challenging Problems

13. Prove that, given a regular polygon, its center can be constructed using only a
straightedge and compass.
[Hint: The center can be determined as the point of intersection of the
perpendicular bisectors of two adjacent sides of the polygon. To prove that
this point is indeed the center, prove that all the right triangles with one side
a perpendicular bisector of a side of the polygon, another side a half of a side of
the polygon, and the third side the line segment joining the “center” to a vertex
of the polygon are congruent to each other.]

14. Prove that an acute angle cannot be trisected with straightedge and compass if
its cosine is:

(a) 3
7

(b) 2
5

(c) 1
5

(d) 3
5

(e) 1
4

15. Can a polynomial of degree 4 with rational coefficients have a constructible
root without having a rational root?

16. Prove that the following equation has no constructible solutions:

x3 � 6x C 2
p

2 D 0

[Hint: You can use Theorem 12.3.22 if you make an appropriate substitution.]
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17. Let t be a transcendental number. Prove that
˚
.a C bt/ W a; b 2 Q

�
is not a

subfield of R.
18. Say that a complex number a C bi is constructible if the point .a; b/ is

constructible (equivalently, if a and b are both constructible real numbers).

Show that the cube roots of 1
2

C
p

3
2

i are not constructible.
19. Let F be the smallest subfield of R that contains � .

(a) Show that F consists of all numbers that can be written in the form p.�/

q.�/
,

where p and q are polynomials with rational coefficients and q is not the
zero polynomial.

(b) Show that F is countable.

20. Is
n
a
p

2 W a 2 Q

o
a subfield of R?

21. Is the set of all towers countable? (Recall that a tower is a finite sequence of
subfields of R, the first of which is Q, such that the other subfields are obtained
from their predecessors by adjoining square roots.)

22. Prove the following:

(a) If x0 is a root of a polynomial with coefficients in F.
p

r/, then x0 is a root
of a polynomial with coefficients in F .

(b) Every constructible number is algebraic.
(c) The set of constructible numbers is countable.
(d) There is a circle with center at the origin that is not constructible.

23. Let t be a transcendental number. Prove that t cannot be a root of any equation
of the form x2 C ax C b D 0, where a and b are constructible numbers.

24. Is there a line in the plane such that every point on it is constructible?
25. Find the cardinality of each of the following sets:

(a) The set of roots of polynomials with constructible coefficients
(b) The set of constructible angles
(c) The set of all points .x; y/ in the plane such that x is constructible and y is

irrational
(d) The set of all sets of constructible numbers

26. (Very challenging) Use a straightedge and compass to directly (without first
constructing its central angle or the length of the side of any polygon) construct
a regular pentagon.

27. Suppose that regular polygons with m sides and n sides can be constructed and
m and n are relatively prime. Prove that a regular polygon of mn sides can be
constructed.
[Hint: Use central angles and use the fact that a linear combination of m and n

is 1.]
28. Prove the following: For natural numbers m and n, if a given angle can be

divided into n equal parts using only a straightedge and compass, and if m is
a divisor of n, then the angle can be divided into m equal parts using only a
straightedge and compass.
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29. (Very challenging) Prove that you cannot trisect an angle by trisecting the side
opposite the angle in a triangle containing it. That is, prove that, if ABC is any
triangle, there do not exist two lines through A such that those lines trisect both
the side BC of the triangle and the angle BAC of the triangle.
[Hint: Suppose that there do exist two such lines. The lines then divide the
triangle into three sub-triangles. One approach uses the easily established fact
that all three sub-triangles have the same area.]
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Chinese Remainder Theorem, 59
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Congruence Axiom, 110
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constructible

angles, 141
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Fermat’s Theorem, 36, 57
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extension of —, 136
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domain of —, 86
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one-to-one —, 87
onto —, 87
range of —, 86

Fundamental Theorem of Algebra, 79
Fundamental Theorem of Arithmetic, 31, 50

G
Gauss-Wantzel Theorem, 151
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Goldbach Conjecture, 5
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I
induction, see Mathematical Induction
injective function, see function, one-to-one
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interior angles, 115

alternate —, 115
intersection of sets, 85
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closed —, 91
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L
Law of Cosines, 125
Law of Sines, 125
line, 114
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linear Diophantine equation, 52–54

M
Mathematical Induction
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Principle of Complete —, 16

modular arithmetic, 23
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modulo p, 28, 34, 36

N
natural numbers, N, 1
Nim, 22

O
orthogonal lines, see perpendicular lines

P
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Parallel Postulate, 114
parallelogram, 124
perfect square, 7, 66
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perpendicular lines, 117
plane, see Euclidean plane
polygon, 146

regular —, 146
polynomial, 62, 71

coefficients of —, 71
constant —, 71
degree of —, 71
long division, 80

Poonen, Bjorn, 99
power set, 101
prime number, 2
private exponent, 52
private key, 52
public exponent, 52
public key, 52
public key cryptography, 42
Pythagorean Theorem, 118, 125

Q
Quadratic Formula, 83
quadratic residue, 28
quadrilateral, 123
quotient, 2, 48

R
radians, 74
Radjavi, Heydar, ix
rational numbers, Q, 61
Rational Roots Theorem, 63
real numbers, R, 65



Index 161

relatively prime, 49
remainder, 24, 48
right angle, 112
right triangle, 117

hypotenuse of —, 117
legs of —, 117

root, 62, 71
of multiplicity m, 82

RSA, 42, 50
decryptor, 43, 51, 52
encryptor, 43, 51, 52
Procedure for Encrypting Messages, 52

ruler, 127, 153
Russell’s Paradox, 105

S
set, 85

element of —, 85
labeled by —, 98
ordinary —, 105

side-angle-side, see Congruence Axiom
side-side-side, 112
similar triangles, 119
sine, see trigonometric functions
Spivak, Michael, 70
square, 124

diagonals of —, 124
straight angle, 112
straightedge, 127
subfield of R, 134
subset, 85
surd, 138, 141

plane, 139
surjective function, see function, onto

T
tangent, see trigonometric functions
tower of fields, 137

transcendental number, 99
transversal, 114
trapezoid, 124

height of —, 124
triangle, 109

area of —, 118
base of —, 118
height of —, 118
sides of —, 109
vertices of —, 109

trigonometric functions, 74, 125
tromino, 14
twin primes, 5
Twin Primes Problem, 5
Typewriter Principle, see Enumeration

Principle

U
uncountable set, 90
union of sets, 85
unit square, 103
unity, 77

roots of —, 77, 78

V
vertical angles, 113

W
Well-Ordering Principle, 10
Wilson’s Theorem, 37

Z
Zermelo-Fraenkel Set Theory, 105
zero, see root


