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Preface

The Monte Carlo method is a technique for analyzing phenomena by
means of computer algorithms that employ, in an essential way, the
generation of random numbers.

A solution by Monte Carlo methods was one of the very first uses
made of the newly invented digital computer. In a very real sense the
method was “born” with the computer. From the start, Monte Carlo
methods have been used to solve difficult problems for which no other
solution method was available at the time. This is still the case. In some
cases better methods arose and displaced Monte Carlo; as it should be.
Yet, in many applications Monte Carlo is unsurpassed. It still enjoys
almost exclusive dominion over its original application, simulating com-
plex interactions in any area where quantitative models are possible.
In the meantime Monte Carlo has moved ahead as well, finding new
areas of application and enjoying new resurgence in former areas as a
result of increased computer power. Today Monte Carlo methods are
more widespread than ever.

Monte Carlo methods originated in their modern form with, and
were named by, Stanislaw Ulam and John von Neumann. Later Ulam
went on to expand on the method and champion its use. He inspired
many subsequent adherent’s who themselves developed and extended
the method. To “Stan,” as he was known to his friends, Monte Carlo
was just one technique for performing mathematical experiments on
the computer, an idea in which he fervently believed.

In this book we show how Monte Carlo can be used to solve prob-
lems in science, engineering, business, and industry. But most of all,
we intend to have fun. We will use the computer to explore the hidden
and sometimes surprising nature of quantitative systems. From throw-
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ing needles on cracks to playing blackjack, from following sea birds
searching for food to using computer creatures to solve optimization
problems, we will explore what Monte Carlo can do.

Along the way we will learn and improve skills in probability, statis-
tics, programming, mathematics, and even Monte Carlo methods. For
example, the central limit theorem plays a central role in many parts
of the book. And we will learn that computer random numbers are not
random at all; nevertheless, a source of good “pseudorandom” numbers
is essential to the method.

The initial mathematical skills the student should have are calculus
through integration and matrix arithmetic. A familiarity with program-
ming is helpful, but the programming in this text starts at an elemen-
tary level and proceeds gradually in scope. A “computer inclined” mind
is probably more important. Our demonstration programs are amply
commented.

Programming is at the heart of Monte Carlo methods and will be the
primary activity of our work in this text. All that we learn and discover
emerges in the display of the results of our programs. Toward that end
we provide a large number of problems for computer solution at the end
of each chapter. The statement of each problem is prefixed by a number
in parentheses indicating the relative difficulty or time requirement for
that problem. These are only estimates, however; your perception may
be different, but hopefully not by too much. Keep in mind that creating
and debugging code always takes more time than expected. Hofstadter’s
Law states: it always takes longer than you expect, even when you take
Hofstadter’s Law into account.

With regard to programming, quick, short, and simple solutions is
a major feature of Monte Carlo methods. For example the program on
page 4 for simulating the Buffon needle problem mentioned above is
just seven lines. Generally, programs in the earlier chapters tend to be
small and simple. Later on, they become a little more elaborate. Thus
the program for pricing options via simulation on page 178 is a bit
longer at 24 lines.

Besides the numerical computations, the results have to be graph-
ically displayed. Most convenient is a software package that can do
both. We have chosen to use Matlab for illustration purposes through-
out. Rather than using pseudocode for this purpose, Matlab is itself
easy to understand, and the code presented can be directly run within
Matlab. The included code produced many of the figures in the text.
However, while Matlab is good as a mathematics and graphics pack-
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age, it is not optimal as a programming language. We recommend that
for the serious implementation of a Monte Carlo solution, for example
in optimization, a richer programming language be used such as C or
Java.

As a note to any instructor using this book, we have found over the
years in teaching a course based on this material that an excellent way
to finish up is having students do a final project of their own choosing;
see Appendix C. Be prepared for some very impressive submissions.

Atlanta, Georgia Ronald Shonkwiler
Wolfville, Nova Scotia Franklin Mendivil
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1

Introduction to Monte Carlo Methods

1.1 How Can Random Numbers Solve Problems?

The Monte Carlo method is a technique for analyzing phenomena by
means of computer algorithms that employ, in an essential way, the
generation of random numbers. The Monte Carlo method was given its
name by Stanislaw Ulam and John von Neumann, who invented the
method to solve neutron diffusion problems at Los Alamos in the mid
1940s.

Monte Carlo methods are widely used in mathematics, science, in-
dustry, commerce, and entertainment. They are at the heart of algo-
rithms used to make predictions about stochastic processes, that is,
phenomena having some random component. This includes the motion
of microscopic particles in an environment, the generation and move-
ment of data packets through networks, the arrival and servicing of
vessels at a busy port, and hundreds of other processes about which
people need answers. Random numbers are used directly in the trans-
mission and security of data over the airwaves or along the Internet.
A radio transmitter and receiver could switch transmission frequencies
from moment to moment, seemingly at random, but nevertheless in
synchrony with each other. The Internet data could be credit-card in-
formation for a consumer purchase, or a stock or banking transaction

is an essential ingredient in games of all sorts, computer or otherwise,

1

to make for unexpected action and keen interest.

Undergraduate Texts in Mathematics, DOI 10.1007/978-0-387-87837-9_1,

secured by the clever application of random numbers. And randomness
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2 1 Introduction to Monte Carlo Methods

1.1.1 History of the Monte Carlo Method

However, the first application of the type of analysis that would later be
called the Monte Carlo method was employed by the French naturalist
Comte de Buffon (1707–1788) in 1733. He imagined an experiment for
estimating the value of π = 3.1415926 . . . by tossing a needle onto a
ruled surface such as that produced by hardwood flooring. Let us get
started in Monte Carlo methods by simulating his needle problem.

Buffon Needle Problem

Consider a needle of length L thrown at random onto a flat surface
ruled by parallel lines each a distance d apart. Let Hn be the random
variable counting the number of times the needle touches or crosses a
line in n throws, the number of “hits.”

L
2

sin Θ

X Θ

Fig. 1.1. Buffon needle on a crack.

Let X denote the distance the center of the needle lands from the
nearest line and Θ the acute angle the needle makes with respect to
the ruled lines; see Figure 1.1. Then 0 ≤ X ≤ d

2 and 0 ≤ Θ ≤ π
2 . The

needle touches or crosses a line if and only if

X ≤ L

2
sin Θ.

Graphically, the probability of a hit is equal to the area under the
curve y = L

2 sin Θ. If d ≥ L, then

Pr(needle crosses a line) =
area under the curve

area of rectangle (0, π/2) × (0, d/2)

=

∫ π/2
0

L
2 sin Θ dΘ

d
2

π
2

=
2L

πd
.
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0
x

0

0.5

1

x < (L/2)sin(θ)

L/2

d/2

Buffon Needle Success Region

0.5 1 1.5

Fig. 1.2. Buffon needle “dartboard.”

Take d = 2L, for example; then the probability of a hit is 1/π.
In performing the actual experiment, with a real needle and a hard-

wood floor, the value of π is not known in advance; rather, an estimate
for it emerges from the experiment. What was remarkable about Buf-
fon’s solution is that no one had previously dreamed that π could be
determined by a random experiment! Unfortunately, as we will see on
page 39, the accuracy of the estimate only improves in proportion to
1/
√

n, where n is the number of tosses of the needle, that is, trials of
the experiment. A very large number of trials is needed to get even
modest accuracy; see Figure 1.13. But this obstacle is ameliorated by
the digital computer and its ability to quickly simulate many trials.

Just as envisioned by Buffon, scientists at Los Alamos in 1943 sought
to solve their neutron flux problem by a statistical experiment. But
they could not perform the actual experiment; it had to be simulated.
They realized that they could produce the same statistical results of an
actual experiment through the use of a mathematical model. The only
real experiment needed was the generation of truly random numbers,
and a large number of them. From there, the model converted the
random numbers into the simulated physics.

Initially, the entire simulation was done manually by dozens of work-
ers using mechanical desktop calculators. But von Neumann, a con-
sultant on the Manhattan Project, was aware of and involved in the
development of the programmable digital computer. It was immediately
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realized that the computer was exactly the tool needed for these simu-
lations, thereby saving weeks of manual labor. Of course, there was still
the problem of generating the required random numbers. In fact, von
Neumann proposed solving this problem in an insightful way, by the
use of the digital computer itself, and created the first pseudorandom
number generator, the “middle-square” generator.

Following this lead, we will perform Buffon’s needle experiment by
computer simulation. A convenient choice for the parameters is d = 2
and L = 1. The program generates two random numbers, one to play
the role of X, 0 ≤ X < d/2, and the other of Θ, 0 ≤ Θ < π/2. Next we
calculate whether X ≤ L

2 sin Θ and record a hit if so. Repeating this n
times, π is estimated as n/Hn. For now, take n = 10,000.

Keep in mind that the purpose of this exercise is to get started
in Monte Carlo methods and not to determine π, a value we already
know. In fact, we need the value of π to generate the random values of Θ
needed in our Buffon needle simulation. For a Monte Carlo simulation
that estimates π ab initio, see Section 1.4.

Here is the program written in Matlab. We rely on Matlab for the
random number generation and the comparison. Matlab can also graph
the results in the form of a histogram. Histogramming is one of our main
analytical tools and we will discuss it shortly.

Matlab
> throws = 10000; % percent makes the rest of the line a comment
> x=rand(1,throws); % a vector of 10000 pseudorandom numbers in the range [0,1)
> theta=rand(1,throws); % semicolon supresses printing
> theta=0.5*pi*theta; % theta now 10000 random numbers between 0 and π/2
> hits= x<=0.5*sin(theta); % hits is a vector of 0’s where false and 1’s where true
> sum(hits) % no semicolon prints the number of hits out of the 10000 throws
> piEst=throws/sum(hits)

1.1.2 Histogramming Simulation Results

In running our Buffon needle simulation we obtain a single number,
an estimate for π. Is it too high, too low, close to the correct value,
how close? We don’t know (continuing our assumption that π is not
known in advance). But there is a way to answer these questions; it is
by running multiple experiments and histogramming the results.

A histogram is a special kind of bar chart for depicting a series of
values, v1, v2, . . ., vn, numbering, say, n in total. A convenient sub-
division of the x-axis is created containing the values, for example by
means of the points x0, x1, x2, . . ., xK . They establish intervals, or bins,
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[x0, x1), [x1, x2), . . ., [xK−1, xK). A count is made of how many of the
values lie in each bin and a bar of that height is depicted standing on
that bin. Technically this is called a frequency histogram. Dividing the
frequencies by n, the total number of values, calculates the relative fre-
quencies. Making the heights equal to these values generates a density
histogram. A density histogram is an approximation to the probabilistic
distribution of the process the values represent. We take up the idea of
probability distribution in the next section.

Let us modify our Buffon needle program to produce a histogram.
For technical reasons, this time we make an estimate of 1/π. The rea-
son has to do with the fact that we want the random variable to be
in the numerator rather than the denominator. Therefore we estimate
1/π = 0.318309 . . . using 100 trials of the basic experiment. But in ad-
dition, consider an experiment consisting of these basic experiments,
let’s call it the “super experiment.” We perform 2000 such super ex-
periments and histogram these data. Altogether we will be performing
two hundred thousand simulated needle tosses. The resulting histogram
can be used to provide probabilistic accuracy statements about the es-
timated value of π.

Figure 1.3 shows the resulting histogram produced by the Matlab
program below. We see that it has the bell shape of a normal distribu-
tion, a topic we take up in Section 2.6. The average of the 2000 super
experiments is an approximation of the mean of the distribution and
is likewise an approximation of 1/π. For the run shown in Figure 1.3
the average is p̄ = 0.3180.

The width of a normal distribution is determined by a parame-
ter called the standard deviation. The standard deviation for the run
shown is s = 0.0467. A property of the normal distribution is that the
probability that a sample drawn from it falls between two standard
deviations on either side of the mean is 0.954. Hence a single sample
usually lies between 0.3180−2·0.0467 and 0.3180+2·0.0467. For the av-
erage of 2000 samples, the interval shrinks to 2·0.0467/

√
2000 = 0.0021

on either side of the mean. Finally, since an interval centered on the
true mean will contain a sample mean if and only if the same interval
centered on the sample mean contains the true mean, we can say

probability that (0.3180 − 0.0021 < 1/π < 0.3180 + 0.0021) = 0.954.

In other words, only about 5% of the time will this experiment produce
an interval of width 0.0042 = 2 · 0.0021 that fails to contain 1/π.

For π itself, just reciprocate the inequalities,
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probability that (1/0.3201 < π < 1/0.3159) = 0.954.

In the example at hand, the interval falls between 3.124 and 3.165. For
more on all this see Section 2.6.3.

Matlab
> throws = 100; % 100 trials
> replications=2000;

> for i=1:replications
x=rand(1,throws);
theta=0.5*pi*rand(1,throws);
hits= x<=0.5*sin(theta);
y(i)=sum(hits)/throws; % y= result vector

> end
> hist(y) % let hist pick the bins
> recipEst=sum(y)/replications
> vVec=(y-recipEst).*(y-recipEst); % vector of sqr deviations
> v=sum(vVec)/(replications-1); % sample variance
> stddev=sqrt(v) % sample standard deviation
> piEst=1/recipEst
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Fig. 1.3. Buffon needle histogram for 1/π.

Histogramming Is an Important Analytical Tool

Histogramming is the main technique we use to understand the results
of a Monte Carlo experiment. For example, consider the experiment of
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rolling a pair of dice. By conducting the experiment one time we get
an instance of the experiment, that is, one of the possible outcomes.
Running the experiment one time is called a trial of the experiment.
The first step in creating a histogram is performing a large number of
such trials and recording the frequency counts of the resulting data.
In such a dice-rolling experiment one would naturally keep a count of
the number of times the outcome was 2 and 3 and 4 and so on up to
12. Then dividing the frequency counts by the total number of trials,
one gets an estimate of the probabilities of the outcome for each of
those values. Histogramming this dice-rolling experiment is done by
plotting the frequency counts as bars of width equal to 1 centered on
the possible outcomes, that is, on 2, 3, . . . , 12; see Figure 1.4. Alterna-
tively, the frequency counts divided by the number of trials may be
plotted instead; producing a density histogram. Then the area under
the sequence of bars will sum to 1.
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Fig. 1.4. Dice-rolling histograms.
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In the upper left and right of Figure 1.4 are plotted the histograms
of 1,000 simulated rolls of a “red” and a “green” die. One sees that the
outcomes are about evenly distributed among the numbers 1 through
6. The histogram of their sum is plotted in the lower left. As one can
see, even for 1,00 trials, the results can be far from the expected prob-
abilities. The histogram for 10,000 trials is plotted in the lower right.
These are much closer to the expected results.

Sometimes the outcomes of an experiment do not fall on nice integer
values; for example, consider measuring the circumference of hen’s eggs
produced by the chickens on a farm. In such a case, we must artificially
create a subdivision of the range of possible outcomes, the bins. Now for
each instance of the experiment we must determine into which bin the
outcome falls and add 1 to the frequency count for that bin. Looking
back on the dice-rolling experiment, we see that we did exactly the same
thing, only the bins were naturally arranged by the discrete nature of
the outcomes.

After conducting a large number of trials and recording the bin
frequencies, we depict the results as before by plotting bars lying over
each bin of height equal to its frequency. This time the width of the
bar will be that of the bin. To obtain a density histogram, the total
area under the bars must sum to 1. Therefore the frequencies must be
scaled, each multiplied by a constant c, to satisfy the equation

1 =

K∑

i=1

cfi(∆ix),

where K is the total number of bins, fi is the frequency count of the
ith bin, and ∆ix is the ith bin width. Solving for c, the frequencies
must be scaled by

c =
1

∑K
1 fi(∆ix)

.

1.1.3 Sample Paths

Another method of portraying the results of a run of an experiment
is to plot its sample path. Suppose the outcome on the ith trial of the
experiment is Ri. The sample path is a plot of the pairs (i, Ri) for
i = 1, 2, . . . , n, where n is the number of trials.

To illustrate, consider a gambling experiment in which a gambler
makes $1 bets against the house. Suppose the winning chances are
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even, that is, the gambler has a 50% chance of winning each bet versus
a 50% chance of losing, but the house has much more money than the
gambler, say 20 times as much. The gambler starts with $100 and the
house with $2,000, and they play until one or the other is bankrupt.
We could ask many questions about this experiment, such as; What is
the chance the gambler will bankrupt the house? How long will play
last until one or the other is bankrupt? and so on.

The following code simulates the experiment. Again we use the built-
in random number generator, which returns numbers in the range [0, 1)
uniformly. The gambler wins if the random number is less than 0.5; oth-
erwise, the gambler loses. The built-in plotting tools are used to create
a sample path of the gambler’s fortune for the first trial; Figure 1.5a.
Then 20 further trials are run and the playing time T is histogrammed;
Figure 1.5b. Note: there is no upper bound to the playing time length;
as can be seen from the histogram, a run can take a very long time, e.g.,
1,500,000 plays. It may be prudent to add an upper bound to the while
loop but unfortunately this will also skew the results (see Problem 9 at
the end of this chapter for some more discussion of this).

Matlab
> R=zeros(1,2000000); % vector of 2,000,000 zeros
> i=1; R(i)=100; % gambler’s initial fortune
> while( R(i)>0 &R(i)<2100 )

i=i+1;
W = (rand <0.5); % random value of 0 or 1
W = 2*W - 1; % random value of +/-1
R(i)= R(i-1)+W; % gamblers new fortune

end
> plot(1:length(R),R) % plot R against its index
> %%% run for investigating running time
> for j=1:20
> i=1; R(i)=100;
> while( R(i)>0 &R(i)<2100 )

i=i+1;
W = 2*(rand <0.5)-1;
R(i)= R(i-1)+W;

end
> T(j)=i
> end
> hist(T)
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Fig. 1.5. a. Sample path of a gambler’s ruin experiment. b. Histogram of the
number of plays until bankruptcy in 20 trials.

1.2 Some Basic Probability

1.2.1 Events and Random Variables

By an event E in a probabilistic experiment, we mean some designated
set of outcomes. The number of outcomes, or cardinality, of E is de-
noted by |E|. The set Ω of all the possible outcomes of the experiment
is the universe. The probability of E, written Pr(E), is, in spirit, the
fraction of times E occurs in an infinitely long sequence of trials of
the experiment. More exactly, Pr(E) is the limit of this fraction for a
finite number of trials as the number of trials increases unboundedly. A
random variable is a mapping of the outcomes of an experiment, that
is, Ω, to the real numbers.

For example, let the probabilistic experiment be tossing a fair coin
twice. The outcome of each toss is heads (H) or tails (T ); so the out-
comes of the experiment are Ω = {(H,H), (H,T ), (T,H), (T, T )}. Some
possible events are “both results are heads,” “at least one head occurs,”
and so on. One possible random variable could be the number of heads
that occur in a trial of the experiment. Let X denote this random
variable; then X can be only 0, 1, or 2. Because each outcome in Ω is
equally likely, the probabilities for X amount to just counting successful
outcomes for the corresponding event. Thus Pr(X = 0) = 1/4 because
only (T, T ) gives this outcome, Pr(X = 1) = 1/2 since two outcomes
give this event, and Pr(X = 2) = 1/4 since only (H,H) qualifies here.
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Suppose the outcomes of E are divided into two subsets such that
E = E1 ∪ E2 and E1 and E2 have no outcomes in common, that is,
E1 and E2 are disjoint events, or E1 ∩ E2 = ∅. Then the probability
of occurrence of some outcome of E is just the sum of the probability
that some outcome of E1 might occur plus the probability that some
outcome of E2 might occur. Therefore

Pr(E1 ∪ E2) = Pr(E1) + Pr(E2) if E1 ∩ E2 = ∅. (1.1)

For two general (not necessarily disjoint) events E1, E2, we have

Pr(E1 ∪ E2) = Pr(E1) + Pr(E2) − Pr(E1 ∩ E2). (1.2)

The intersection must be subtracted as shown here because those events
are counted twice in the first two terms on the right-hand side. More
formally, the equation follows by writing both E1 and E2 as the disjoint
union Ei = (Ei \ Ej) ∪ (Ei ∩ Ej).

1.2.2 Discrete and Continuous Random Variables

Random variables can be discrete or continuous (or mixed). A discrete
random variable is one that can assume only finitely many or count-
ably infinitely many outcomes (but only one at a time of course). The
coin-tossing experiment above has only finitely many outcomes, in fact
just four. Therefore the random variable for the number of heads is a
discrete random variable.

As an example of an experiment with a countably infinite number
of outcomes, let X be the number of tosses of a coin until the first head
appears. In principle, it could take any number of coin flips for this to
happen, so X is a discrete random variable but is not finitely valued.

A continuous random variable X is one for which Pr(X = x) = 0
for every real value x. There are many phenomena that can be consid-
ered continuous, and it is advantageous to do so from the standpoint of
mathematical simplification. These include the passage of time, most
biological dimensions, distance, speeds, and so on. Even though mea-
suring such a variable is necessarily limited to finite resolutions, the
measurements are nonetheless taken to be examples of continuous ran-
dom variables.

Let X be a random variable, either discrete or continuous. The
cumulative distribution function, or cdf, of X is defined as

cdf(x) = Pr(X ≤ x).



12 1 Introduction to Monte Carlo Methods

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

CDF for the Number of Heads in Two Coin Tosses.

Fig. 1.6. Cdf for the number of heads in two coin tosses.

For example, consider the double coin-tossing experiment and ran-
dom variable X from above. If x < 0 then cdf(x) = 0, since there are
no outcomes for which X < 0. At x = 0 the cdf jumps up to 1/4, since
Pr(X = 0) = 1/4. Then at x = 1 the cdf again makes a jump, this time
by 1/2. Altogether cdf(1) = 3/4, since the event X ≤ 1 consists of the
outcomes {(T, T ), (H,T ), (T,H)}; see Figure 1.6.

Between x = 0 and x = 1 the cdf is unchanged and so remains at
the value 1/4 over this interval. Similarly, between x = 1 and x = 2
the cdf has the constant value of 3/4.

Finally, at x = 2 the cdf jumps by 1/4 up to 1; cdf(2) = 1 and
remains there, since all possible outcomes are now included.

In general, as x tends to minus infinity, more and more outcomes of
the experiment are omitted, and so the cdf must tend to 0,

lim
x→−∞

cdf(x) = 0.

Similarly, as x tends to plus infinity, more and more outcomes are
included, with the result that the cdf tends to 1,

lim
x→∞

cdf(x) = 1.

Also it is true in general that as x increases the cdf either remains
constant or increases as more and more outcomes satisfy the condition
that X ≤ x. That is, the cdf satisfies the condition that if x1 ≤ x2 then
cdf(x1) ≤ cdf(x2).
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For a discrete random variable, the cdf will jump in value at the
discrete points corresponding to those values of x for which one or more
outcomes satisfy X = x. Otherwise, the cdf is constant. To illustrate
this, Figure 1.7 shows the cdf for the experiment of rolling a pair of
dice.

Matlab
> red = floor(6*rand(1,1000))+1;% vector of 1000 random values 1,2,...,6
> green = floor(6*rand(1,1000))+1;% ditto for 2nd die
> dice = red+green;
> x=0:0.1:13; % vector of values from 0 to 13 incrementing by 0.1
> for i=1:length(x)
> cdf(i)=sum(dice <= x(i));
> end
> plot(x,cdf)
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Fig. 1.7. Cdf for rolling a pair of dice.

For a continuous random variable the cdf either remains constant or
increases continuously. For example, Figure 1.8 shows the cumulative
distribution function for the radioactivity of a sample of carbon-14. The
figure is based on the assumption that this material emits radioactive
particles in any infinitesimally small amount of time with a probability
proportional to the amount of carbon-14 remaining. Thus the figure
shows the fraction of carbon-14 that has been converted to carbon-12
over the lifetime of the sample. The difference 1− cdf(x) is the fraction
of carbon-14 remaining. It is shown in the figure as the distance from
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the curve up to the horizontal asymptote cdf = 1. This measurement
is used to date organic materials, since we know that the half-life of
carbon-14 is about 5,700 years.
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Fig. 1.8. Cdf for the amount of 14C converted to 12C.

1.2.3 The Probability Density Function

For a discrete random variable, the probability density function, or pdf,
is the function pdf(x) = Pr(X = x). Equivalently,

pdf(x) = lim
ǫ→0

(cdf(x) − cdf(x − ǫ)).

Hence the probability that an outcome is (strictly) bigger than x = a
and less than or equal to x = b is given by

Pr(a < X ≤ b) =
∑

a<x≤b

pdf(x) = cdf(b) − cdf(a).

For a continuous random variable, the probability density function
is the derivative of the cdf,
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pdf(x) =
d

dx
cdf(x). (1.3)

In this case the probability that an outcome lies between a and b is
given by the integral

Pr(a < X ≤ b) =

∫ b

a
pdf(x)dx = cdf(b) − cdf(a). (1.4)

In particular, the cdf is given by

cdf(x) =

∫ x

−∞

pdf(t)dt. (1.5)

We illustrate this with the uniform distribution.

The Uniform Distribution

The most important distribution of Monte Carlo methods is the uni-
form distribution, because it is from this one that samples from all
others are derived. The uniform distribution is a continuous distribu-
tion and gets its name because the value of the probability density
function is the same for every point of Ω. That is, the pdf is constant
on Ω.

One example is the uniformly distributed random variable X defined
on the interval Ω = [0, 6] = {x : 0 ≤ x ≤ 6}. For every x ∈ [0, 6], the
density is 1/6, pdf(x) = 1/6, while pdf(x) = 0 for x /∈ [0, 6]. This is so
because once again, Pr(Ω) = 1. Here

cdf(x) =

∫ x

−∞

pdf(x)dt =

∫ x

0

1

6
dt =

x

6
, 0 ≤ x ≤ 6.

Then limx→∞ cdf(x) = cdf(6) = 1. This density and cumulative distri-
bution are shown in Figures 1.9(a) and 1.9(b) respectively.

For convenience, denote by U(a, b) the continuous uniform distribu-
tion on the interval [a, b]. Its density function is

f(x) =

{ 1
b−a , a ≤ x ≤ b,

0, otherwise.
(1.6)

And the distribution function is

F (x) =

∫ x

−∞

1

b − a
dt =

∫ x

a

1

b − a
dt =

x − a

b − a
. (1.7)
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Fig. 1.9. Uniform distribution on [0, 6].

We use the notation U ∼ U(0, 1) to mean a random variable U sam-
pled from the distribution U(0, 1); thus U is a uniform random sample
from the unit interval 0 ≤ U ≤ 1.1 Note that any single real number x
has 0 probability of selection from a continuous density because

Pr(X = x) = lim
ǫ→0

Pr(x − ǫ < X ≤ x)

= lim
ǫ→0

∫ x

x−ǫ
pdf(t)dt = 0.

Hence U [a, b] and U [a, b) and U(a, b) are effectively all the same, and
so we use the notation U(a, b).

A (discrete) equally likely random variable is a random variable
X defined on a finite set Ω and such that the pdf is constant. For
example, if the cardinality of Ω is |Ω| = N , then for every x ∈ Ω,
Pr(X = x) = 1/N . This is so because the probability of some outcome
occurring must be 1, that is, Pr(Ω) = 1. Said another way, at every
value of the random variable X, the cdf takes a jump of 1/N , and in
the limit, limx→∞ cdf(x) = 1.

1.2.4 Expected Values

Let r be a function defined on a random variable X, that is, on the
outcomes of an experiment. If X is discrete then the expected value, or
expectation, of r is the sum of its possible values v = r(x) weighted by
the probability of that value,

1 More generally, if G is the name of some distribution, then X ∼ G will mean that
X is a sample drawn from the distribution G.
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∑

v=r(x)

vPr(X = x).

Alternatively, this can be written as

E(r(X)) =
∑

x∈Ω

r(x) pdf(x). (1.8)

The expected value is denoted by E(r). Sometimes it is also called the
mean or weighted average of r.

In the continuous case the sum becomes an integral, so this is

E(r(X)) =

∫ ∞

−∞

r(x) pdf(x)dx. (1.9)

The expectation value E(r) has a very simple interpretation. If an ex-
periment is run many times, the expected value is the value we expect
for the average of the values of the r’s for all these trials of the ex-
periment. That is, draw many independent samples from the random
variable X, compute the values r(X) for each of these samples, and av-
erage these values of r(X); the value we expect for the average is E(r).
This simple fact is the underlying basis for all Monte Carlo methods.
The expected value is also useful as a measure of the “center” of the
distribution of the values of r; that is, the histogram of these values
tends to cluster around E(r).

For example, in the double coin-tossing experiment above, the ex-
pected number of heads in a trial of the experiment is given by

2 · 1

4
+ 1 · 1

2
+ 0 · 1

4
= 1,

since there is a one-fourth chance that two heads occur and a one-half
chance that one head occurs. So in many runs of a double coin-tossing
experiment, one expects on average 1 head per trial (two coins flipped).

Frequently occurring expectations are the mean, usually denoted by
µ and defined as the expectation of the random variable itself,

µ = E(X) =

{∑
Ω xpdf(x) if X is discrete,

∫∞
−∞

xpdf(x)dx if X is continuous,
(1.10)

and the variance, usually denoted by var and defined as the expectation
of the square of the difference between the random variable and the
mean,

var(X) = E((X − µ)2). (1.11)
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Note that var(X) ≥ 0, since (X − µ)2 ≥ 0. An alternative formula for
the variance is

var(X) = E(X2) − µ2.

This is easily derived by noting that (X − µ)2 = X2 − 2µX + µ2.
Therefore

E((X − µ)2) =
∑

x∈Ω

(
X2 − 2µX + µ2

)
pdf(x)

=
∑

x∈Ω

X2 pdf(x) − 2µ
∑

x∈Ω

X pdf(x) + µ2
∑

x∈Ω

pdf(x)

= E(X2) − 2µ2 + µ2 = E(X2) − µ2.

The variance is a useful measure of the spread of a distribution about
the mean. This is because the smaller the variance, the more the dis-
tribution is concentrated at the mean.

The derivation above highlights an important property of expecta-
tion, namely that it is linear. This is to say, if a and b are constants,
and f(X) and g(X) are any functions of X, then

E(af(X) + bg(X)) = a E(f(X)) + b E(g(X)). (1.12)

One says that the expectation of a sum equals the sum of the individual
expectations.

The variance is not, in general, linear. However, we do have

var(aX) = a2var(X) (1.13)

for any constant value a.
As an example, we calculate the mean and variance of the roll of a

pair of dice. We have

µ = 2
1

36
+ 3

2

36
+ 4

3

36
+ 5

4

36
+ 6

5

36
+ 7

6

36
+ 8

5

36
+ 9

4

36

+ 10
3

36
+ 11

2

36
+ 12

1

36

=
1

36
(2 + 6 + 12 + 20 + 30 + 42 + 40 + 36 + 30 + 22 + 12)

=
126

18
= 7.

The variance is
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var = (2 − 7)2
1

36
+ (3 − 7)2

2

36
+ (4 − 7)2

3

36
+ (5 − 7)2

4

36
+

. . . + (10 − 7)2
3

36
+ (11 − 7)2

2

36
+ (12 − 7)2

1

36

= 2
25 + 32 + 27 + 16 + 5 + 0

36
=

105

18
= 5

5

6
.

As an example of this calculation for a continuous random variable,
we calculate the mean and variance of the uniform distribution U(a, b).
Since the density of U(a, b) is f(x) = 1/(b − a), we have

µ =

∫ b

a
x

1

b − a
dx =

1

b − a

x2

2

∣∣∣∣
b

a

=
b2 − a2

2(b − a)
=

b + a

2
. (1.14)

To get the variance, use the change of variable y = x − (b + a)/2,

var =

∫ b

a

(
x − b + a

2

)2 1

b − a
dx =

1

b − a

∫ b−a
2

− b−a
2

y2dy.

Thus

var =
1

b − a

y3

3

∣∣∣∣

b−a
2

− b−a
2

=
1/3

b − a

[(
b − a

2

)3

−
(
−b − a

2

)3
]

=
1

12
(b − a)2 .

(1.15)
Closely related to variance is the standard deviation, denoted by σ.

It is defined as the square root of the variance,

σ(X) =
√

var(X). (1.16)

Like variance, the standard deviation is also a measure of the spread of
a distribution. However, the standard deviation has the same units as
X. That is, if X is measured in meters, var(X) has as units meters2,
while σ(X) has as units meters.

Expectations can be estimated empirically. If X1, X2, . . ., Xn is a
sequence of samples from the distribution, then

E(r) ≈ 1

n

n∑

i=1

r(Xi). (1.17)

This is seen (in the discrete case) as follows. Let n trials be carried out
and suppose n1 outcomes were x1, n2 outcomes were x2, and so on for
the k = |Ω| possible outcomes. Then
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1

n

n∑

i=1

r(Xi) = r(x1)
n1

n
+ r(x2)

n2

n
+ · · · + r(xk)

nk

n

≈
∑

x∈Ω

r(x)Pr(X = x).

The last follows since Pr(X = xi) ≈ ni/n. Notice that this estimate of
E(r) improves as n increases.

Chebyshev’s Inequality

As mentioned above, the variance of a random variable X, var(X),
is one measure of the spread of the distribution of X. Chebyshev’s
inequality is one precise way of saying this. Taking a > 0, the inequality
says that

Pr(|X − µ| ≥ a) ≤ var(X)

a2
, (1.18)

where µ = E(X) is the mean of X.
In the case of simple distributions, like a uniform random variable

X ∼ U(a, b), this inequality does not really give that much informa-
tion. However, its real power comes in its generality: it applies to any
distribution with finite mean and variance. For a proof see Figure 1.10.

Proof of Chebyshev’s inequality for a discrete random variable X.
First assume that the random variable Z is greater than or equal to 0.
Compute

Pr(Z ≥ a) =
∑

z≥a

Pr(Z = z) ≤
∑

z≥a

z

a
Pr(Z = z) ≤ 1

a

∑

z

zPr(Z = z)

=
1

a
E(Z).

Now notice that Z = (X − µ)2 ≥ 0 and that E(Z) = var(X).

Fig. 1.10. Proof of Chebyshev’s inequality.

1.2.5 Conditional Probabilities

It often happens in a probabilistic experiment that additional knowl-
edge makes some of the original outcomes impossible. For example, 5
cards are dealt from a randomized deck of 52 cards, but suppose the
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first 4 are known to be hearts. This information allows an improved
calculation of the probability that all five cards will be hearts, a hand
known as a flush.

In general, let A and B be events in Ω and suppose we want to
calculate the probability of A given that the outcome must be restricted
to B. This is referred to as the conditional probability of A given B and
is written Pr(A|B). It may be calculated as

Pr(A|B) =
Pr(A and B)

Pr(B)
, (1.19)

that is to say, B is acting as the universe here.
In the card deal example above (regarding order as important),

Pr(5 cards out of 5 dealt are hearts) =
13

52
· 12

51
· 11

50
· 10

49
· 9

48

and

Pr(first 4 are hearts (any 5th card)) =
13 · 12 · 11 · 10 · 48
52 · 51 · 50 · 49 · 48 .

Hence Pr(heart flush|first 4 cards are hearts) = 9/48.
In another example, suppose we know that the sum of a dice roll is

8; what is the probability that one die was 3? The event B here is the
set of 5 possible rolls; {6 + 2, 5 + 3, 4 + 4, 3 + 5, 2 + 6}. Since the
event of rolling a 3 on one die and an 8 on the pair of dice consists of
2 of these rolls, we have

Pr(A|B) =
Pr(A and B)

Pr(B)
=

2
36
5
36

=
2

5
.

Were it not for the additional information, the probability that (at
least) one die of dice roll is 3 would be 11/36 (seen by directly counting
them among the 36 possible rolls, do not count the 3, 3 outcome twice).

A very important use of conditioning is in the calculation of prob-
abilities by decomposition. Suppose events B1, B2, . . ., Bn form a de-
composition of the universe; that is, they have no events in common
and together they include all the possible outcomes; symbolically,

Ω =

n⋃

i=1

Bi and Bi ∩ Bj = ∅, i 
= j.

Then for any event A, it follows that
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Pr(A) = Pr(A|B1)Pr(B1) + Pr(A|B2)Pr(B2) + · · · + Pr(A|Bn)Pr(Bn).
(1.20)

Here is an example. AAA Auto Repair wants to know whether an
alternator it ordered will arrive in two days. The parts house uses two
delivery companies depending on availability. B-1 Delivery is available
30% of the time and has an 80% track record for two-day deliveries.
Otherwise, hence 70% of the time, B-2 Package Service is used, but
their two-day delivery record is only 40%. Let A denote the event the
alternator arrives in two days, let B1 be the event B-1 Delivery is used
and B2 the event B-2 Package Service is used. Then

Pr(A) = Pr(A|B1)Pr(B1) + Pr(A|B2)Pr(B2)

= (0.8)(0.3) + (0.4)(0.7) = 0.52.

Independent Events and Independent Random Variables

Two events are independent if the outcome of either one of them has
no effect on the other. For example, in a coin toss of two coins, the
outcome of one of the tosses has no effect on the other. If events A and
B are independent, then

Pr(A and B) = Pr(A)Pr(B). (1.21)

This is because Pr(A|B) = Pr(A), since B has no effect on A and
therefore

Pr(A) = Pr(A|B) =
Pr(A and B)

Pr(B)
,

from which the equation follows.
Two random variables X1 and X2 are independent if for any two

subsets of real numbers A,B ⊂ R, the events E1 = {X1 ∈ A} and E2 =
{X2 ∈ B} are independent events. Again this means that knowledge of
X1 gives no knowledge about X2.

Bayes’s Formula and the Monty Hall Problem

Sometimes it is easy to confuse Pr(A|B) with Pr(B|A). For example,
suppose an expert testifies in court that there is only a 1 in 2 million
chance that the DNA evidence left at the crime scene will match the
DNA of a random person from the population. Since the accused’s
DNA matched, the prosecution claims the probability that the accused
is innocent is 1 in 2 million. In other words

Pr(innocent|DNA match) =
1

2,000,000
.
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But what the DNA evidence actually says is

Pr(DNA match|innocent) =
1

2,000,000
.

So can the order of a conditional ever be reversed? Bayes’s formula
answers this question. Since Pr(A and B) is symmetric in A and B,
from (1.19) we can write

Pr(A|B)Pr(B) = Pr(A and B) = Pr(B|A)Pr(A).

Therefore one form of Bayes’s formula is

Pr(B|A) =
Pr(A|B)Pr(B)

Pr(A)
. (1.22)

Taking this one step further, the event A may be decomposed by
the event B and its complement, which we write Bc; thus Pr(A) =
Pr(A|B)Pr(B) + Pr(A|Bc)Pr(Bc). Hence Bayes’s formula takes the
form

Pr(B|A) =
Pr(A|B)Pr(B)

Pr(A|B)Pr(B) + Pr(A|Bc)Pr(Bc)
. (1.23)

Of course other decompositions of A are also possible, leading to other
forms of this formula.

Returning to the DNA evidence problem above, if we want to reverse
the conditional, we need the additional information as to an initial or a
priori estimate of Pr(B), the innocence of the accused. Unfortunately
this is not known. However, here is another situation, with a court
backdrop, in which there is adequate information. This example is due
to Kahneman and Tversky [KT73].

A hit-and-run incident after dark involves a taxicab. A witness says
the cab was blue. In this town there are only two colors of taxis, 15% are
blue and 85% are green. Under similar lighting and distance conditions
it has been shown that a witness can make the correct color distinction
between these two only 80% of the time. So what is the probability the
cab was blue?

Since tests show that the color can be correctly identified 80% of
the time, it would seem to be 80%. But this does not take into ac-
count the preponderance of green taxis. Using Bayes’s formula we
can do so. Let the event A = {witness says the cab was blue} and
event B = {the cab was in fact blue}. The alternative Bc is G =
{the cab was green}. Then by Bayes,
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Pr(B|A) =
Pr(A|B)Pr(B)

Pr(A|B)Pr(B) + Pr(A|G)Pr(G)

=
(0.8)(0.15)

(0.8)(0.15) + (0.2)(0.85)
= 0.4138,

less than 50%.
As another simple application of Bayes’s formula, we now look at

the (in)famous Monty Hall problem, named after the television game
show host of the same name. This particular problem has stirred a bit
of controversy, primarily because there are subtle differences in the way
the problem can be posed that lead to different solutions. The problem
reads as follows [G92]:

A TV host shows you three numbered doors, one hiding a car (all
three equally likely) and the other two hiding goats. You get to pick
a door, winning whatever is behind it. You choose door #1, say. The
host, who knows where the car is, then opens one of the other two doors
to reveal a goat, and invites you to switch your choice if you so wish.
Assume he opens door #3. Should you switch to door #2?

To obtain a mathematical description, let Ci be the event that the
car is behind door i (for i = 1, 2, 3) and Hi be the event that the host
opens door i. The question is asking for the conditional probability
P (C2|H3). By Bayes’s formula this is

P (C2|H3) =
P (H3|C2)P (C2)

P (H3|C1)P (C1) + P (H3|C2)P (C2) + P (H3|C3)P (C3)
.

The crucial probability is P (H3|C1). Questions 24 through 26 outline
a more complete investigation of the Monty Hall problem.

1.2.6 Variance for a Sum of Random Variables–
Joint Probability Densities

If X1 and X2 are two random variables with means µ1 and µ2, then

var(X1 + X2) = E((X1 + X2 − µ1 − µ2)
2)

= E( [(X1 − µ1) + (X2 − µ2)]
2 )

= E((X1 − µ1)
2) + E((X2 − µ2)

2)
+2E((X1 − µ1)(X2 − µ2)).

In general, the term E((X1 − µ1)(X2 − µ2)) does not have to equal
zero. In fact, this term is called the covariance of the two random
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variables X1 and X2 and is a measure of how much they vary together.
The covariance is denoted by cov(X1,X2),

cov(X1,X2) = E((X1 − µ1)(X2 − µ2)). (1.24)

If X1 and X2 are independent, then cov(X1,X2) = 0 and we get the
following theorem.

Theorem 1.1. If X1 and X2 are independent random variables, then

var(X1 + X2) = var(X1) + var(X2). (1.25)

Joint Probability Distributions

To see this, it is necessary to first discuss the joint distribution of the
two random variables X1 and X2. If X1 and X2 are discrete, their joint
pdf is the function

fX1,X2(x1, x2) = Pr(X1 = x1 and X2 = x2).

This is a function defined on discrete points in the x1, x2 plane; these
points make up Ω. As before, an event A is some subset of Ω, and

Pr(X1,X2 ∈ A) =
∑

(x1,x2)∈A

fX1,X2(x1, x2).

We illustrate these constructions by two examples. First, a joint
probability density can be made up from any two univariate densities
simply by multiplying them together. Let X have density fX(x) and Y
have density fY (y); then

fXY (x, y) = fX(x)fY (y)

is a joint density. A concrete example of this is the joint pdf of rolling
two dice, where

Pr(Dice1 = i and Dice2 = j) = Pr(Dice1 = i) Pr(Dice2 = j).

For the other example, let a probability experiment consist in select-
ing two cards from a deck of 8 cards made up of 2 clubs, 2 diamonds, 2
hearts, and 2 spades. Let X1 be the first card drawn and X2 the second,
and let f(x1, x2) denote the joint density. It is easy to see that

f(x1, x2) =

{
2
8 · 2

7 = 1
14 , if x1 
= x2,

2
8 · 1

7 = 1
28 , if x1 = x2.
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Getting a flush in this game is the event A = {(C,C), (D,D), (H,H),
(S, S)} and Pr(flush) = 4 · 1

28 = 1
7 .

For continuous random variables X1 and X2, the joint cdf is

FX1,X2(x1, x2) = Pr(X1 < x1,X2 < x2).

The pdf is the derivative of the cdf,

fX1,X2(x1, x2) =
∂2FX1,X2

∂x1∂x2
.

For a subset A of the x1, x2 plane,

Pr(A) =

∫∫

(x,y)∈A
fX1,X2(x, y) dxdy.

Just as in the single-variate case, expectations are defined as the
sum or integral over Ω. For example,

E(r(X1,X2)) =
∑

(x1,x2)∈Ω

r(x1, x2)fX1,X2(x1, x2).

Thus the covariance of (1.24) is defined in terms of the joint density of
X1 and X2.

Marginal Distributions

Let f(x1, x2) be a joint density function and define f1(x1) and f2(x2)
by

f1(x1) =
∑

x2

f(x1, x2), f2(x2) =
∑

x1

f(x1, x2), (1.26)

in the discrete case and

f1(x1) =

∫ ∞

−∞

f(x1, x2) dx2, f2(x2) =

∫ ∞

−∞

f(x1, x2) dx1, (1.27)

in the continuous case. These are called the marginals. To get the
marginal of the first variable, we sum or integrate out the second vari-
able, and to get the marginal of the second variable, we do the same
to the first variable. The marginals are univariate probability density
functions and represent the distributions of each variable separately,
regardless of the value of the other. That is, f1(x1) represents the prob-
ability (density) of observing a given value of x1 over all possible values
of x2.
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It is easy to see that if the joint density is the product of two uni-
variate densities as in our first example, fX1,X2 = fX1fX2, then fX1

and fX2 will be the marginals.
Continuing the eight card deck example above, the marginals are

f1(x1) = f(x1, C) + f(x1,D) + f(x1,H) + f(x1, S) = 3
1

14
+

1

28
=

1

4

for any x1. This says that the probability of any specific first card is
one-fourth. Similarly, the x2 marginal is

f2(x2) = f(C, x2) + f(D,x2) + f(H,x2) + f(S, x2) = 3
1

14
+

1

28
=

1

4

for all x2. Notice that f(H,H) = 1/28 but f1(H)f2(H) = 1/16. There-
fore this joint distribution does not arise as the product of its marginals.

Now let fX1,X2 be the joint density of X1 and X2 and suppose these
random variables are independent. It then follows that

fX1,X2(x1, x2) = Pr(X1 = x1 and X2 = x2)

= Pr(X1 = x1)Pr(X2 = x2) = fX1(x1)fX2(x2).

In other words, the joint density is made up of the product of two
univariate densities just as in our first example.

Now finally we can see why the theorem about the sum of variances
holds for independent random variables. In the discrete case we have

E((X1 −µ1)(X2 − µ2))

=
∑

x1

∑

x2

(x1 − µ1)(x2 − µ2)Pr(X1 = x1,X2 = x2)

=
∑

x1

∑

x2

(x1 − µ1)Pr(X1 = x1)(x2 − µ2)Pr(X2 = x2)

=

(
∑

x1

(x1 − µ1)Pr(X1 = x1)

)(
∑

x2

(x2 − µ2)Pr(X2 = x2)

)

= E((X1 − µ1))E((X2 − µ2)).

A similar argument works for continuous random variables.
The same definitions can be made for the joint distribution of more

than two random variables, or even infinitely many random variables.
In a similar way, the variance of a sum of independent random variables
is always equal to the sum of the variances of the individual random
variables.
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1.3 Random Number Generation

In this section we take a first look at the problems and basic principles
of random number generation. Since the computer is a deterministic
device, it might seem impossible that it could be used to generate
random numbers. This is correct: the numbers generated are algorith-
mically computed and are quite deterministic. However, they appear
to be random and must pass stringent tests designed to ensure that
they can provide the same results that truly random numbers would
produce for the given problem. Consequently, computer-generated ran-
dom numbers are sometimes termed “pseudorandom.”

1.3.1 Requirements for a Random Number Generator
(RNG)

The problem is to coax random-looking numbers out of a deterministic
device. The desired qualities of a random number generator are these:
It should

1. be fast–applications use millions of random numbers,
2. be repeatable–to make debugging possible,
3. be amenable to analysis–to ensure their distributional properties,
4. have a long period–all RNGs eventually repeat,
5. and be apparently random to the intended application–the quality

of primary importance.

One class of techniques that have been tried are analog/digital hy-
brids, for instance, electronic circuits generating “white noise” or cir-
cuits listening for the clicks of a Geiger counter measuring radioactive
decay. However, these methods have many drawbacks: they are too
slow, not repeatable, tend to become biased, and require specialized
equipment. Today, virtually all random number generators are algo-
rithmic.

In Knuth’s book Seminumerical Algorithms, §3.1 (see [Knu81]), the
author describes an early attempt on his part at constructing a random
number generator. Despite being very complex, it nonetheless quickly
converged to a fixed point! We describe Knuth’s algorithm in order to
illustrate that “. . . random numbers should not be generated with a
method chosen at random.”

The algorithm acts on 10-digit decimal numbers, changing the cur-
rent number X into a new number in the sequence. The algorithm is
given in the following steps:
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1. Take N to be the most significant digit of X. Steps 2–13 are re-
peated exactly N + 1 times.

2. Let M be the second most significant digit of X. Jump to step
3 + M .

3. If X < 5 × 109, set X = X + 5 × 109.
4. Replace X by ⌊X2/105⌋ mod 1010. (The notation ⌊x⌋ means the

largest integer n with n ≤ x.)
5. Replace X by (1001001001 × X) mod 1010.
6. If X < 108 then set X to be X + 9814055677; otherwise, set X to

be 1010 − X.
7. Interchange the lower-order five digits of X with the higher-order

five digits of X.
8. Replace X by (1001001001 × X) mod 1010.
9. For each digit d of X, decrease d by 1 if d > 0.

10. If X < 105, set X to be X2 + 99999; otherwise, set X to be X −
99999.

11. If X < 109, set X to be 10 × X and repeat this step.
12. Replace X by the middle 10 digits of X(X − 1).
13. If N > 0, decrease N by one and return to step 2. If N = 0, the

algorithm terminates with the current value of X as the next value
in the sequence.

Unfortunately, the first time Knuth ran this algorithm it almost
immediately converged to the value 6065038420 (which, amazingly
enough, is converted to itself by this complicated algorithm). After
this, when he ran it with a different starting value, it converged to a
cycle having length 3178!

The lesson to be learned is that complexity is not a substitute for
randomness, and in fact, sometimes apparent complexity hides simple
behavior.

Generators Using One Stored Value

Ultimately a random number generator will be of the form

output sample = f(variables,parameters)

for some function f . On each request for a random number, the al-
gorithm calculates the prescribed function using the parameters and
current values of its variables and outputs a “sample” from some hy-
pothetical random process. As one request is made after another, the
generator produces a sequence of samples, R1, R2, . . . . The parameters
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of the function are values fixed over the run of samples; what changes
from sample to sample are the variables. Variables could be time or
other quantities external to the algorithm, or one or more internally
stored values that change from iteration to iteration. Internally stored
variables are sometimes called seeds.

In this section we consider generators having only a single seed. If
its value were assigned by some external process at any time during
the production of samples, then it would be impossible to generate the
same exact sequence of samples should the program need to be de-
bugged. (Otherwise, the external process would be part of the function
f .) It would also be hard to ensure the sequence’s distributional prop-
erties. For this reason, the variable must be internally generated by
the random number generator itself. An exception to this rule is in the
assignment of the first value. Typically, a generator is “seeded” by the
computer’s clock. The initial seed should be saved by the application
for debugging purposes if that becomes necessary.

As stated above, after its initial seeding, subsequent seeds are com-
puted by the function f itself while it is simultaneously calculating the
output sample. Matters are greatly simplified if the output sample and
the next seed are the same thing! There is no loss in generality in this,
since the application using the random numbers will adjust the samples
to its own purpose anyway.

In any case, if the seed repeats at any time during the generation
of the sequence R1, R2, . . ., then from that point on, the sequence will
repeat as well. Hence, as we said in the introduction, an RNG will
repeat or cycle, and it is desirable to have as long a period as possible.
Obviously, the period of a single-seed RNG can be no longer than the
number of different possible seeds.

As a result of the foregoing, we see that a number generator is
effectively like a book containing a long list of numbers. The initial seed
selects the starting point for reading numbers from the list, and from
then on, the numbers follow in predetermined order. Using a different
starting seed simply begins reading from the list starting at a different
place. If the same initial seed is used as on some previous occasion,
then the sequence of “random” numbers generated is also the same.
When one reaches the end of the list, the next number will come from
back within the book somewhere (not necessarily from the beginning,
see Problem 22 at the end of this chapter).
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1.3.2 Middle-Square and Other Middle-Digit Techniques

The idea here is that after the first several digits in the calculation of
most mathematical functions, such as sin() or log(), the digits are then
essentially “random.” To illustrate, the following code generates the
digits of the sin() function after the fifth as the pseudorandom sequence.
Generating a sequence of one hundred thousand of them might take
half a second. This is a long time. By comparison, Matlab’s built-in
generator constructs the same number of samples in about 0.02 seconds.
The reason is that computing the sin() function is a relatively time-
consuming operation.

See Problem 17 for an investigation of the properties of this RNG.

Matlab
> tenpow5 = 100000;
> x=0.5;
> for i=1:10

x=tenpow5*sin(x);
w = floor(x); % first 5 digits
x = x-w % digits after the 5th

> end
> % now do some timing
> tic
> for i=1:100000

x=tenpow5*sin(x);
w = floor(x);
x = x-w;

> end
> toc %0.5314

> % compare with Matlab’s built-in generator
> tic;
> x=rand(1,100000);
> toc; %0.0193

In the early days of computing, calculating a transcendental func-
tion, such as sin(), was much more time-consuming than today, relative
to the time for a multiplication for example. Hence in place of sin(x),
von Neumann used simple multiplication, x2, squaring the seed. Then,
in the same spirit as above, he assumed that the middle digits of the
result were random-like. Here is example code. A 7-digit integer is
squared, resulting in a 13 or 14-digit result. The lowest 3 significant
digits are dropped, then the next 7 digits are saved, and the remaining
most significant digits are dropped. This then becomes the next seed.
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Matlab
> tenpow7 = 1000000;
> x = 0.1234567; % initial seed
> for i=1:10

x = x*tenpow7; % x now an integer
w = x*x; % square
w = floor(w/1000); % drop last three digits
w = w/tenpow7; % 7 decimal digits
x = w - floor(w) % drop the integer digits

> end

Unfortunately, the middle-square generator suffers from several
problems, one of which is a short period and rapid cycling for most
initial seeds. The search was on for a better generator.

1.3.3 Linear Congruential Random Number Generators

The linear congruential random number generator is one of the most
widely used but simple random number generators around. It depends
on a simple recurrence to compute the next term in the sequence from
the previous term. Before describing this generator, it is necessary to
review the basics of modular arithmetic.

Modular Arithmetic

All the numbers in this section are integers. We use the notation m | x
to mean that m divides x (exactly, with no remainder). For example,
8 | 16, the quotient being 2, or 8 | −24 with quotient −3. One says that
a is congruent to b modulo m, and writes

a ≡ b mod m, if m | (a − b).

For example 21 ≡ 5 mod 8 since 8 | (21 − 5) or equally −19 ≡ 5 mod 8
since 8 | (−19 − 5).

Of course modulo m makes no sense if m = 0. And moreover, with-
out loss of generality, we may, and do, take m positive in the rest of
this section.

It is easy to see that congruence modulo m is:

reflexive: a ≡ a mod m,
symmetric: if a ≡ b mod m then b ≡ a mod m, and
transitive: if a ≡ b mod m and b ≡ c mod m, then a ≡ c mod m.

For transitivity, if a ≡ b mod m then a − b = pm for some integer p.
Similarly, if b ≡ c mod m then b− c = qm for some integer q. Therefore
a − c = b + pm − b + qm = (p + q)m, and so m | (a − c).
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Any relation that is reflexive, symmetric, and transitive supports
equivalence classes. Fixing m, the equivalence class of the integer a,
denoted by [a]m or just [a] if m is understood, is the set

[a] = {b : b ≡ a mod m}.

For example, the equivalence class of 5 modulo 8 contains 5 itself, 21,
−19 and an infinity of other integers. In fact, it contains all integers of
the form 5 + 8p, where p is any integer. Thus, to write all the numbers
that are congruent to 5 modulo 8, just add or subtract multiples of 8:

· · · −8 −8 −8 +8 +8 · · ·
· · · = −19 = −11 = −3 = 5 = 13 = 21 = · · · .

Note that the equivalence class of 21 modulo 8 is the same as the
equivalence class of 5 modulo 8. In general, if two equivalence classes
have any member in common, then they are in fact equal. Hence the
equivalence classes are mutually exclusive, or disjoint. This is a conse-
quence of transitivity. Therefore writing [a] = [b] is the same as saying
a ≡ b mod m.

An important fact about integers useful in working with modular
arithmetic is the division algorithm (actually a theorem).

Theorem 1.2. (Division Algorithm) Given two integers a and m, with
m > 0, there exist unique integers q and r, the quotient and remainder,
such that

a = qm + r and 0 ≤ r < m.

The division algorithm shows that for any m > 0, the equivalence
classes [0], [1], . . ., [m − 1] together contain all the integers, since any
integer a = qm + r is thus equivalent to r. Therefore the equivalence
classes are exhaustive as well as exclusive.

In the following we will be interested in the member of the equiv-
alence class given by the r of the theorem. To emphasize this, we use
the notation r = a mod m to mean r ≡ a mod m and 0 ≤ r < m.

Given m, an arithmetic can be defined for expressions of the form
(ax+ by) mod m. It is just ordinary arithmetic with a modulo m oper-
ation applied to the result. This is sometimes called clock arithmetic.
Think of a clock whose dial is marked with the numbers 0, 1, . . . ,m−1.
It is easy to see that

(x mod m ± y mod m) mod m = (x ± y) mod m

((x mod m) · (y mod m)) mod m = (x · y) mod m.
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For example, (14 mod 11 + 31 mod 11) mod 11 = (3 + 9) mod 11 = 1,
but also (14 + 31) mod 11 = 1 These simple facts make implementing
modular arithmetic quite easy.

Furthermore, if a is relatively prime to m (that is, a and m have
no common factors other than 1), then we can even divide by a in
arithmetic modulo m. That is, we can always solve equations of the
form ax mod m = b mod m for any b. This turns out to be quite useful
and important.

The Linear Congruential RNG

We are now ready to define the linear congruential random number
generator (LCRNG). Fix a, c, and m (the parameters) and take f as

f(x) = (ax + c) mod m, x an integer.

For example, let a = 5, c = 1, and m = 8 and let the generator
be seeded with x = 0. When called, the output sample generated is
(5× 0+1) mod 8 = 1, and 1 becomes the next seed. Now continue; the
sequence of samples will be

0, 1, 6, 7, 4, 5, 2, 3, 0,

whereupon the list cycles.
Of course, this sequence of numbers is not random, since it is gen-

erated by a rather simple formula; but with more realistic values of m
and a, the values appear to be random.

It is immediately seen that the maximum possible number of differ-
ent return values for a linear congruential generator is equal to m, the
modulus. For this reason, in any real application, m is taken as large
as possible, for instance 232. In fact, a choice for m of the form 2k,
where k is the wordlength of the computer, can be implemented very
efficiently. This is because then, the modulo operation is free (takes no
time and happens automatically, since there is no room for the higher-
order bits). In this case, the LCRNG needs only one multiplication and
one addition per result, and so is very fast. If floating-point numbers
in the range 0 to 1 are desired, then a division by m must also be done
for each number to be output.

By taking c = 0 even the addition can be avoided. In this case the
sample sequence is given by xn+1 = axn mod m. Now the maximal
period cannot be m, because xn = 0 must be avoided, since then all
subsequent samples would also be 0. But the period m − 1 can be
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achieved if m is a prime number. Of course in this case, m is not a
power of 2, and so the modulo operation is no longer automatic on
the binary computer as above. However, if one is willing to have a
shorter period, it is still possible to get a period of m/4 and still use
m = 2wordsize and thus still have automatic modulo operations.

More generally, when c = 0 (and m not prime), if xn is a multiple of
a divisor d of m then all subsequent values of x will also be multiples
of d. For we will have xn = pd for some integer p, and if d divides m,
then m = qd for some integer q. So xn+1 = axn mod m = apd mod m
means xn+1−apd = rm for some integer r. But then xn+1 = (ap+rq)d
as stated. Therefore when c = 0, the x’s should ideally run through
all the integers relatively prime to m. With the right choice of a, it is
possible for this to happen.

Notice that if 1 is in the sequence and c = 0, then the sequence
is 1, a, a2, . . . , aj , . . . and thus will consist of all powers of a. If such a
sequence comprises all nonzero equivalence classes modulo m (i.e. the
entire set {1, 2, . . . ,m − 1}), then a is said to be a primitive element
modulo m.

Geometric View of the LCRNG

Why does the sequence of samples from the generator appear to be
random? Have a glance at Figure 1.11, which shows f and the identity
function y = x (as continuous functions of the real variable x). At
first f increases linearly with slope a and quickly reaches m. But then
by the modulo operation, further increases are reduced by m, so the
y values start again from 0. This continues, producing the sawtooth-
shaped graph. Now the sequence of samples xn is in reality a fixed-point
iteration sequence

xn+1 = f(xn)

on this graph. Starting with xn on the x-axis, move vertically up to the
sawtooth graph, this is y = f(xn). Now move horizontally at this value
of y until you reach the identity function y = x, drop vertically down to
the x-axis, and this is xn+1. It is known that a fixed point iteration will
converge to a fixed-point x∗, that is, a point satisfying x∗ = f(x∗), when
the slope of the iteration function f is less than 1 in absolute value.
But that is not the case here; the slope is a > 1. Far from converging,
the iteration values bounce around trying to chase whichever sawtooth
contains the current value of y. The fact that a > 1 makes the iteration
have this “chaotic” behavior, which is what makes the LCRNG a good
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random number generator. Setting a > 1 also ensures that if you run
the LCRNG twice with two slightly different initial seed values, even
though the first few terms might be similar, the two sequences will
quickly diverge.

f(x)=(5x+1) mod 32
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Fig. 1.11. Fixed-point iteration on a sawtooth.

Choice of Multiplier a

The following theorem shows how to obtain the maximal period of the
LCRNG (see [BH62, Mar72]).

Theorem 1.3. The linear congruential random number generator

f(x) = (ax + c) mod m

has period m if and only if

1. c is relatively prime to m (c and m have no common divisor other
than 1) and

2. a − 1 is a multiple of p for every prime p dividing m, and
3. a − 1 is a multiple of 4 if m is a multiple of 4.

As an example, for the modulus m = 232, the choices c = 1 and
a = 4ℓ + 1 work for any integer ℓ > 0.

The Distribution of the Sample Sequence
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Recall that we must be able to predict the distributional properties
of the generator. This is easy to do for the single-seeded LCRNG. Over
any period, the samples are all distinct, and at that point, they repeat.
Hence the samples over the entire period are uniformly distributed over
their range. Furthermore, because of the linear nature of the recurrence,
they are also approximately uniformly distributed over segments of the
period.

As we have seen, a generator engineered to have maximal period
will likewise have as its range 0, 1, 2, . . ., m− 1 (if c 
= 0). Hence these
integers are sampled one after another, in “random” order, without
repetition until all have been returned. Then the samples repeat in
exact sequence. If the output values are divided by m, as is usually
done, then the generator approximates uniformly distributed samples
on [0, 1); approximates because only a discrete subset of m floating-
point fractions are in fact returned. But then, m is often on the order
of 232, so this is not so bad.

Improving the LCRNG

Many built-in pseudorandom number generators are linear congruen-
tial. This was especially so until recently. However, now better genera-
tors are available.

There is much room for improvement in the LCRNG. For one thing,
the period is limited to at most m − 1. Further, if the integers 0, 1, 2,
. . ., m − 1 were truly sampled randomly, repeats would be possible
(although unlikely for large values of m), but this is not possible for
linear congruential random number generators. And further analysis
of the pseudorandom sequence turns up certain types of predictability,
very undesirable for a good random number generator (see the exercises
for examples of this). The single-seeded LCRNG is just too simple.

Improvements to the LCRNG include multivariate generators of the
congruential type and generators using a different mathematical basis.
We take up this topic again in Appendix A.

1.4 Some Applications

Hit-or-Miss

One of the first uses of the Monte Carlo method was in the evaluation of
integrals. For example, let θ =

∫ b
a f(x)dx, the area under the function

f between x = a and x = b. We assume f(x) ≥ 0 on [a, b]. A natural
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idea for estimating this area is hit-or-miss. By analogy, it is like throw-
ing darts, blindfolded, at a target. Let M ≥ maxa≤x≤b f(x); then the
rectangle [a, b]× [0,M ] encloses the target area (see Figure 1.12). Now
proceed to select points at random in the rectangle. The probability
that a point will fall within the target area is equal to the ratio of that
area to the area of the rectangle; that is, the probability of a “hit” is
θ/M(b−a). Therefore, if n, the number of points selected, is large, and
h is the number of hits, then

h

n
≈ θ

M(b − a)
.

In other words,

θ ≈
(

h

n

)
M(b − a). (1.28)

Note that this is exactly the technique used to estimate π in the Buffon
needle problem.

f(x)
π/4

Fig. 1.12. Hit-or-miss integration.

The greatest use of Monte Carlo for evaluating integrals is in mul-
tiple integration over complicated regions in high-dimensional space.
The same idea works there; the target region is enclosed in an easy-
to-calculate “container,” and points are selected at random in the con-
tainer and tested to see whether they also hit the target region. The
ratio of hits to throws equals the ratio of the target “volume” to that
of the container.

Let us illustrate the idea by estimating π de novo. The curve y =√
1 − x2, 0 ≤ x ≤ 1, is the first-quadrant portion of a unit circle.

The area under it is π/4. The target area is contained in the square
[0, 1]× [0, 1], which has container area equal to 1. Hence by hit-or-miss,
an estimate of π is given by
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π ≈ 4
h

n
.

The following code implements this strategy; it produced the es-
timate π ≈ 3.1316 using n = 10,000 trials. As explained above, by
dividing the 10,000 trials into batches one can obtain a normal dis-
tribution for the estimates in addition to the mean, and thus get an
estimate of the error, which doesn’t depend on a previous knowledge
of the value of π.

Matlab
> nTrials = 10000;
> x=rand(1,nTrials);
> y=rand(1,nTrials);

> hits=sum(x.2 + y.2 < 1)
> piEst = 4*hits/nTrials

Clearly the estimate of π improves as the number of trials, n, in-
creases. In general, usually the best one can hope for is that the error
decays at a rate bounded by 1/

√
n. In Figure 1.13 we show the con-

vergence of the estimate of π and the decay of the logarithm of the
absolute error as we double n starting from n = 22 = 4 on the left to
n = 220 = 1,048,576. This figure is consistent with the error decaying
at a rate of approximately 1/

√
n, since the slope of a least-squares line

would be somewhere around −1/2.
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Fig. 1.13. (a) Convergence of estimate of π and (b) decay of absolute error.
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Coupon Collecting

Retail companies often conduct a game in which the object is to collect
all the letters in some word, for example their name. One of the letters
is provided in each instance of their product. The question is, How
many products does one expect to have to purchase in order to collect
all the letters?

Usually in the commercial version of the game, one of the letters
is rare; and the game degenerates into being lucky enough to get one
of the instances having that letter. But in our game we will assume
that each letter is equally likely to be acquired. With that, how many
products will have to be purchased to spell, let us say, the nine-letter
word ANGELFISH.

The following code will make the calculation. The results are shown
in Figure 1.14. It shows that even though the letters occur equally
likely, collecting all 9 letters could take 100 purchases or more. More
interestingly, the number of products required peaks shortly after the
minimum of 9 and then exponentially decreases.

Matlab
> nLetters = 9; %ANGELFISH
> nTrials = 10000;
> for i=1:nTrials
> success = 0;
> nTries(i) = 0;
> for j=1:nLetters
> ANGELFISH(j)=0; %reset letter not achieved
> end
> while success == 0
> nTries(i) = nTries(i)+1; %inc. count
> buy = 1+floor(nLetters*rand); %letter obtained
> ANGELFISH(buy) = 1;
> if sum(ANGELFISH)==nLetters
> success = 1;
> end
> end
> end
> hist(nTries)

For the coupon-collecting problem, it is possible to find an analytical
solution. Thus, this is an example in which we can use Monte Carlo
to make a probability calculation to suggest the way for an analytical
solution. (See Problem 6 at the end of this chapter for another question
related to the coupon collecting problem.)
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Fig. 1.14. Collecting the letters of ANGELFISH.

Shuffling Cards

In most card games the randomness in the game arises as a result of
the initial randomization, or shuffling, of the cards. A shuffle may be
viewed as a permutation of some fixed “home” order of the cards. The
standard 52-card deck consists of 13 cards within a suit and 4 suits.
Within a suit a canonical order could be ace, two, three, . . ., ten, jack,
queen, and king. Then the suits could be ordered, for example as in the
card game bridge: clubs, diamonds, hearts, and spades. This identifies
each card with a number from 1 to 52; in this case 1 is the ace of clubs,
14 the ace of diamonds, 27 the ace of hearts, and 40 the ace of spades.
Generating a permutation of the integers 1 to 52 likewise produces a
shuffle of the deck.

An investigation into the nature of a particular game would call
for shuffles uniformly distributed over the space of permutations, that
is, every permutation equally likely. Of course if one is after the nu-
ances produced by human shuffling, then equally likely permutations
are probably not desired and one may want to simulate the mechanical
process of shuffling itself. See the problems about elementary shuffle
operations at the end of Chapter 3.

Here we want to find an algorithm for generating equally likely per-
mutations. To achieve this, it should be the case that having chosen
some initial set of cards, the next card to be selected should be equally
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likely among the remaining cards. Of course the identity permutation,
namely the order 1, 2, 3, . . . , 52, should also be generated with the same
likelihood as any other permutation. And as always, the algorithm
should be efficient, since thousands of shuffles may be required in an
experiment.

Another desirable feature of a card shuffler is that it be able to gen-
erate only a partial shuffle if necessary. This saves time. For example,
it may only be necessary to know the first m cards of the deck; then
the cards are reshuffled.

The following algorithm fulfills all the criteria stated above. Fur-
ther, it is accomplished within the original array; a second array is not
needed. A card from the remaining deck is selected for position k as k
runs from 1 to m. The selected card is exchanged with the card already
in position k and selection continues.

Matlab
> n = 4; % a permutation of 4 objects
> m = n; % do the whole deck
> perm = 1:n %identity permutation
> for i=1:m % if m=n the last is superfluous
> j = i+floor((1+n-i)*rand); % from the remaining

> swap = perm(i);
> perm(i) = perm(j);
> perm(j) = swap;
> end
> perm

Notes

The book [Ross05] is a classic textbook for basic probability theory. For a
very enjoyable series of excursions in various topics in probability, see the
book [ISAC95].

Appendix A has more information about generating random numbers and
statistical tests of an RNG to ensure uniformity. Strong RNGs are absolutely
necessary for cryptographic applications, and this has led to a renewed inter-
est in both algorithmic and nonalgorithmic methods for generating random
numbers. If “true” randomness is required, then hybrid methods involving
physical sources of randomness are used.

Any algorithmic source of random numbers will have some structure, no
matter how subtle, and hence there is likely to be some application for which
this structure will be a problem. Thus it is prudent to try several different
RNGs on a problem and compare the results. If there is some version of the
problem for which the answer is known, this version can be used as a test case
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for the RNG. On the other hand, for some applications truly random numbers
are worse than a sequence with some special type of structure. “Quasi-Monte
Carlo” methods exploit this fact.

The “frequentist” interpretation of Pr(A) (for some event A) is as the
percentage of the time that an experiment would yield a result in the set A.
This interpretation (or definition, if you will) of probabilities then immedi-
ately leads to Monte Carlo methods of estimating probabilities, and hence
expectations. There is another and very popular view, the Bayesian view,
which interprets probabilities as some measure of your knowledge of the sys-
tem. This is not just a philosophical distinction, however, since the Bayesian
view often leads to different approaches to a problem. The advent of power-
ful computers has spurred the growth of Monte Carlo for Bayesian statistical
methods, in particular Markov chain Monte Carlo methods (see [GH05]).

Problems: Chapter 1

1. (3) Perform a large number of trials of Buffon’s needle problem and esti-
mate the value of π. Plot the error as a function of the number of trials.

2. (4) Perform 2,000,000 trials of Buffon’s needle problem for 1/π: (a) by
partitioning the trials into 10,000 “super experiments” of 200 trials each;
(b) by partitioning the trials into 1000 “super experiments” of 2000 trials
each; (c) by partitioning the trials into 100 “super experiments” of 20,000
trials each. Compare the results you obtain and comment.

3. (4) Simulate 1000 rolls of a pair of dice and histogram the results as (a)
the sum of the dice and (b) the individual pairs, e.g. (1, 1) and (1, 2) and
. . . through (6, 6). (c) Do the part (a) for the roll of 6 dice; histogram 4000
rolls.

4. (3) Suppose a “reward” r(x) is given upon the roll of a pair of dice as
follows: r(x) = 1/x, x = 2, 3, . . . , 12. Estimate the expectation of r by
simulation
( 1
36

[
1
2 + 2

3 + 3
4 + 4

5 + 5
6 + 6

7 + 5
8 + 4

9 + 3
10 + 2

11 + 1
12

]
= 0.1678).

5. (3) (Coupon collecting) (a) In boxes of cereal the manufacturer puts
coupons bearing one of the letters of the word “milk.” If all four letters
are collected, the maker will send a coupon for a free carton of milk. As-
sume that the letters are distributed uniformly at random to cereal boxes.
Simulate buying cereal boxes until all four letters have been assembled;
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histogram the number of cereal boxes bought to achieve this. (b) Same
question but now assume that “k” has 1/10 the probability of the others of
occurring (i.e., Pr(“m”) = Pr(“i”) = Pr(“l”) = 10/31, Pr(“k”) = 1/31).
(c) Same question as (a) but now collect the letters of “BattleCreek.”

6. (4) (Modified coupon collectors) Generate a sequence of characters from
the alphabet {a, b, c, d} with each new character chosen with equal prob-
ability and independently of the previous character chosen. Now, slide a
“window” of length 4 along this string and record the words that you
get. How many characters do you expect to have to generate before you
will have seen all possible 44 = 256 different words? Use a simulation to
answer this question. Run the simulation for alphabet sizes of 5, 6, and 7.
Use “window” lengths of 4 and 5. Compare the results with those of the
coupon-collectors problem.

7. (5) Simulate 1000 coin tosses. Record (a) the histogram, (b) the his-
togram for nonoverlapping pairs (xn, xn+1) then (xn+2, xn+3), etc., (c)
the histogram for triplets (xn, xn+1, xn+2), and (d) the histogram of runs
(streaks), that is, a run of k for “heads” is k occurrences of heads in suc-
cession (and the next trial is “tails”).

8. (5) (Random walk with drift) Use a biased coin to simulate a random
walk of 30 steps on the line. If the coin falls heads (H), take one step to
the right, if it lands tails (T ), take one step left. After 30 steps, note the
final position. Take Pr(H) = 0.6 and Pr(T ) = 0.4. (a) Plot a sample path.
(b) Make a histogram for 200 such random walks. (c) Report the sample
mean. (d) Report the sample variance. (What should these be exactly?)

9. (4) (Gambler’s ruin with time limits) Modify the simulation code in Sec-
tion 1.1.3 starting on page 8 for the gambler’s ruin problem, but with
various upper bounds on the iteration count. How does this bias the av-
erage duration of the game? How does this bias the sample variance?

10. (4) By simulation, estimate the chance of being dealt a “pair” in poker.
(Exact:

(
13
(
4
2

) (
12
(
4
1

)
11
(
4
1

)
10
(
4
1

)
/3!
))

/
(
52
5

)
= 0.422).

11. (4) Same question as Problem 10 but instead for “two pair.”

12. (5) Simulate the game of “craps.” To start, a pair of dice are rolled. If the
total is 7 or 11 on the first roll, then record a WIN and stop. If the total
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is a 2, 3, or 12 on the first roll, then record a LOSE and stop. Otherwise,
the total becomes the POINT (fixed for the rest of the game). Continue
rolling until either a 7 occurs, and record LOSE, or POINT occurs (again)
and record a WIN. Histogram WIN and LOSE for 1000 trials of the game.

13. (4) (Bayesian probability) An early detection test for HIV is 98% accu-
rate. In a certain community, 3% of the population has HIV. What is the
probability that a person with a positive test for HIV actually has the
disease? Simulate this by selecting a person at random from the commu-
nity and deciding whether the person has HIV. Then administer the test
and decide whether it was positive. Keep a counter for the times the test
is positive and for the times the test is positive and the person has HIV.

14. (4) Use the built-in random number generator on your system and sample
from it to do the following. (a) Find the time per random (floating-point)
number generation; i.e., how long does it take to generate 1,000,000 ran-
dom numbers? (Representative times are between 0.2 µsec and 10 µsec
per number.) Plot the following: (b) a sample path, i.e., if ri is the ith
random value generated, plot ri vs i, (c) a cdf, (d) correlation plot, i.e.,
plot (xn, xn+1). Let δ = 1 × 10−7; in 100,000,000 trials, how many times
does the outcome lie in [0, δ), and how many times in [1 − δ, 1)?

15. (4) Make up a linear congruential random number generator (LCRNG)
and do the same as in Problem 14.

16. (4) Invent a non-LCRNG and do the same as in Problem 14.

17. Investigate the RNG using sin() given in Section 1.3.2. Use the same
methodology as in Problem 14, above.

18. (4) (Difference between randomness and chaos) Answer the same questions
as in Problem 14 for the random number generator xn+1 = λxn(1 − xn),
0 < λ < 4, 0 ≤ xi ≤ 1. Take λ to be 3.95. Here, the x’s are floating-point
numbers, not integers.

19. (4) Answer the same questions as in Problem 14 but for the random
number generator given by the sequences xn+1 = 7 × xn mod 1 (mod 1
means fractional part of). Again, the x’s are floating point numbers, not
integers.
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20. (4) (Experiment with the multiplier a) Make up an LCRNG using, say,
m = 216; sample it 100 times and find the length of the runs-up and the
runs-down. For example, in the sequence

1, 6, 31, 156, 781, 3906, 847, 12, 67, 319, 1582

the first six numbers form a run-up, then comes a three-term run-down
followed by a four-term run-up. Hence the runs-up total 10 in length and
the runs-down total 3 in length. What should one expect from truly ran-
dom numbers?

21. (4) Sample an RNG of your choosing and histogram the event xn−1 <
xn+1 < xn, i.e., histogram true/false or 0/1. What should be the proba-
bility of this event?

22. (3) For the LCRNG

xn+1 = 1 + 2xn mod 232

show that there exist starting points x0 that are never in a cycle (that is,
the sequence generated by the LCRNG does not loop back to the starting
point).

23. (3) Does the following algorithm produce equally likely permutations p of
the integers p1 = 1, p2 = 2, . . ., pn = n: for each i from 1 to n, let k be a
randomly generated index, 1 ≤ k ≤ n, swap pk with pi?

24. (3) (Monty Hall problem) The “standard” interpretation of the prob-
lem goes as follows: A car is randomly placed behind one of the three
doors. The contestant randomly chooses one of the doors. If the contes-
tant chooses the door with the car, the host randomly chooses one of the
remaining doors to open and then gives the contestant a chance to either
stick with the original choice or switch. On the other hand, if the contes-
tant chooses a door with a goat, the host opens the other door with a goat
and again gives the contestant a chance to either stick with the original
choice or switch. Simulate this version of the game to obtain an estimate
of the winning probability if the contestant sticks with the original choice
and also if the contestant switches.

25. (3) (Monty Hall problem) Consider the following version of the Monty
Hall problem. A car is randomly placed behind one of the three doors.
The contestant chooses door #1. If the car is behind door #1, the host
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chooses door #2 or #3 with equal probability to open. If the car is not
behind door #1, then the host opens whichever of doors #2 or #3 that
the car is NOT behind. Use simulations to estimate the probability of
winning if the contestant switches or does not switch.

26. (3) (Monty Hall problem) The same as the previous problem, but if the
car is behind door #1, the host chooses door #2 with probability q and
chooses door #3 with probability 1 − q.

27. (4) This exercise gives an example of a subtle problem that can occur
using RNGs. Test the Matlab generator with the following program. To
get the baseline result, first run the program with the two indicated lines
commented out. Since the branch is executed one-tenth of the time, low
should be about 1/10 of 10,000,000. Now restore the commented-out lines
and rerun.

Matlab
> low=0; high=0;
> for i=1:10000000

x=rand;
if x<0.1

low = low + 1;
y=rand; % for baseline comment this out

else
high = high + 1;
y=rand; z=rand; %for baseline comment out

end
end

> low
> high

28. (5) (Monopoly) The following “Miniopoly” is a very rough approximation
to the game of Monopoly. The round board has 40 “squares,” or landing
places. Squares 0 and 40 are the same; and this square is called “Go.”
A player starts with $200 on Go, and on each turn, rolls a pair of dice
to determine a move, which will be equal to the sum rolled. Squares 2,
7, 17, 22, 33, and 36 are “follow instructions on card” squares. The in-
structions are receive $50, or $100, or $200 or pay $100 or $150 and are
equally likely. Squares 0, 10, and 20 are “free”: nothing happens there.
Square 30 is “Go to jail.” Passing or landing on Go pays $200. Being in
jail means that on one’s turn, if a roll is “doubles” (i.e., two 1’s or two
2’s or . . . or two 6’s) then the player ”gets out of jail” and moves the
value of the doubles from square 10; otherwise, the player pays $10, stays
in jail and doesn’t move. On any other square, like 29 for instance, pay
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$29 (to the “bank,” an infinite source or sink of money). If at any time
a player’s money falls to $0 or below, that player loses (and the game is
over for that player). To be done: simulate a game of Miniopoly for 20
rolls, or bankruptcy, and observe the amount of money, the fortune, of
the player at that time. Bankruptcy means fortune equal to $0. Simulate
many games and histogram the fortune.

29. (6) (Random probability distribution) The N points Xi are selected uni-
formly at random in [0, 1] and are then sorted so that X1 ≤ X2 ≤ X3 ≤
· · · ≤ XN . Set pi = Xi − Xi−1 for i = 2, . . . , N and p1 = 1 + X1 − XN .
Notice that pi ≥ 0 and p1 + p2 + · · · + pN = 1. To start, set N = 4
and experimentally investigate both the individual distribution of the pi’s
and the joint distribution of the vector (p1, p2, . . . , pN ). Then you can try
N ≥ 4. Do all the pi’s have the same distribution (one way to test this
is to do a histogram of each pi separately and compare)? If so, what is
this distribution? What about the distribution of the random vector? One
way to explore the distribution of the random vector is to plot a density
plot, as a surface, of two components at a time. A density plot here means
that a region in R

2 is partitioned into rectangular bins, counts are made
of how many samples fall into each bin, and then a histogram is plotted
as a surface.

Another option goes as follows. For each sample p = (p1, p2, p3, p4), com-
pute the point

y = p1(1, 0) + p2(0, 1) + p3(−1, 0) + p4(0,−1) = (p1 − p3, p2 − p4)

and do a density plot of these points. What should this plot look like if
the distribution of p vectors is uniform? (It should be a simplicial spline
function; see [BHR93].)

30. (5) (Random probability distribution) This problem tries another ap-
proach (other than that in Problem 29) to generate a set of probabilities
on N points (p1, p2, . . . , pN ) uniformly at random. The suggested method
is to choose Xi ∼ U(0, 1) for i = 1, 2, . . . , N r and then set

pi =
Xi∑
i Xi

.

Does this make all possible N -tuples (p1, p2, . . . , pN) have equal proba-
bility? Simulate this method and test for a uniform distribution. Plotting
the distribution of each pi separately should show that they all have the
same distribution. Thus their joint distribution needs to be investigated.
One possible method is to plot a joint pdf of two components at a time
(like the density plot in Problem 29).



Problems: Chapter 1 49

31. (3) (Batching needle tosses) What’s wrong with batching the estimator
#throws/#hits? Write a program to estimate π directly using just 100
throws. (For example, put throws = 100 in the program at the end of
Section 1.1.1.) Replicate this experiment 2000 times and compute the av-

erage. (Hint: the exact value is
∑100

i=1(100/i) ·
(
100
i

)
piq100−i = 3.21 where

p = 1/π and q = 1 − p. See Section 2.3. The estimator #throws/#hits is
biased , only approximating π as #throws → ∞.)





2

Some Probability Distributions and Their Uses

The range of all possible probability experiments covers a lot of ground,
from the outcome of a weighted coin toss to next month’s price of a
given stock, from the arrival time of the next phone call at a switch-
board to the birth weight of a mother’s first child. To simulate these
and other probability experiments we need to know how to convert
uniformly distributed random numbers into a sample from whatever
distribution underlies the experiment.

In this chapter we introduce some of the major probability distribu-
tions and show how to use the computer to draw a random sample from
each of them. This means converting samples U drawn from the uni-
form [0, 1) distribution U(0, 1) into samples from the required density.
We will present the probability density and cumulative distribution
functions for each distribution along with their means and variances.
We will show how the random samples can be used to calculate prob-
abilities and solve problems.

The main techniques used for sampling are cdf inversion, simulation,
composition, mapping, and rejection. Our objective is to introduce these
sampling methodologies and to illustrate them. In many cases, better,
but more involved, methods are available for sampling these distribu-
tions more efficiently should timing be a critical issue. See for example
[Rip87, BFS83, Rub81].

2.1 CDF Inversion–Discrete Case: Bernoulli Trials

Suppose an experiment has just two outcomes, say “failure” and “suc-
cess” (or off and on, or 0 and 1, etc.). Such an experiment is called a
Bernoulli trial. A coin flip is an example of a Bernoulli trial, and so
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is a roulette wheel with just two sectors. Let p be the probability of
a success and q = 1 − p the probability of failure. Then the pdf of a
Bernoulli trial is (using 0 for failure and 1 for success)

f(x) =
{

1 − p, if x = 0,
p, if x = 1,

= px(1 − p)1−x, x = 0, 1.

The cdf is

F (x) =

{
0, if x < 0,
1 − p, if 0 ≤ x < 1,
1, if 1 ≤ x.

Consequently, using (1.10) and (1.11), the mean of a Bernoulli trial
is

µ = 0 · (1 − p) + 1 · p = p

and the variance is

var = (0 − p)2(1 − p) + (1 − p)2p = p(1 − p) (p + 1 − p) = pq.

2.1.1 Two-Outcome CDF Inversion

Drawing a Bernoulli trial sample T using U ∼ U(0, 1) is very easy. If
U < p then declare that a “success” has occurred; otherwise, declare
a “failure.” This works because the U(0, 1) density is pdf(t) = 1 for
0 ≤ t ≤ 1, and so

Pr(T = success) = Pr(U < p) =

∫ p

0
pdf(t) dt = p.

For example, suppose we want to simulate the spin of a casino
roulette wheel and see whether the outcome is red. There are 18 red and
18 black sectors in a casino roulette wheel and two green sectors, 0 and
00. Therefore the success probability is p = 18/38 = 0.4736 . . . . Using
the random number generator we generate U uniformly at random in
[0, 1) and declare that “red” occurred if U < 0.4736 . . .; otherwise, “not
red” occurred.

Alternatively, since q = 1 − p = 0.5263 . . ., we could test whether
U < q. In this case our sample is “not red” if so and “red” if U ≥
0.5263 . . . . This is not a better method than before, but it is consistent
with the cumulative distribution function that is shown in Figure 2.1.
The interpretation is that U will lie between 0 and 1 on the y-axis. If
U is less than q = 1 − p return 0, meaning “not red” here, and if U
equals or exceeds 1 − p, return 1, meaning “red.”
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Fig. 2.1. Sampling for red.

2.1.2 Multiple-Outcome Distributions

The two-outcome Bernoulli trial is the simplest discrete distribution.
More generally, discrete distributions have several possible outcomes. If
their number is not too large, we can use the cdf graph to draw samples
with the correct frequencies as hinted at above. Some examples will
make this clear.

Suppose we want to simulate the number of eggs laid by a shorebird
during breeding season. These birds have X = 2, 3, 4, or rarely 5
eggs per clutch. Suppose the observed frequencies of these sizes are
p2 = 0.15, p3 = 0.20, p4 = 0.60, and p5 = 0.05 respectively. The cdf of
X is shown in Figure 2.2.

Let U ∼ U(0, 1) be a uniform [0, 1) sample. Starting from the point
(0, U) (on the y-axis), proceed to the right until you encounter a jump
in the cdf, a vertical dashed line segment. Now proceed down to the
x-axis, and return this value as the selection. As indicated along the
y-axis, “2” is selected with 0.15 probability, since its interval occupies
this fraction of the unit interval. Similarly, “3” is selected with 0.2
probability, since its interval occupies this fraction of the unit interval,
and so on.

This technique is called inverting the cdf. For a discrete distribution
it can be implemented on the computer in several ways.

The most general method sets up breakpoints in the interval [0, 1]
and then determines into which subinterval U ∼ U(0, 1) falls. The
following code will generate one sample from X:
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Fig. 2.2. Cdf for shorebird clutch size.

Matlab
> % set up the outcomes
> oc(1)=2; oc(2)=3; oc(3)=4; oc(4)=5;
> % set up the breakpoints
> bp(1)=.15; bp(2)=bp(1)+.2; bp(3)=bp(2)+.60; bp(4)=1;
> % end of set up, go here to get samples
> U=rand; k=1;
> while( U>= bp(k))

k=k+1;
end % k is selected

> selected = oc(k)

A downside of this method is that the program must step through
the while loop for each point returned. The search can be sped up
by reordering the outcomes according to decreasing probability; this
reduces the expected time in the while loop. For example, put the first
breakpoint at 0.6 mapping to 4 eggs, then 0.6 + 0.2 = 0.8 for 3 eggs
and so on. In the first ordering, the expected number of times through
the loop is

(1)(0.15) + (2)(0.2) + (3)(0.6) + (4)(0.05) = 2.55,

while in the second ordering the expected number of times through the
loop is

(1)(0.6) + (2)(0.2) + (3)(0.15) + (4)(0.05) = 1.65.

While this may not seem like a great advantage, if thousands or millions
of selections are needed it adds up.

As a much faster alternative, if the probabilities are simple two-
place decimal fractions (as in this example), we can segment an array



2.2 Walker’s Alias Method: Roulette Wheel Selection 55

of length 100 into all the alternatives and then sample uniformly from
this array. Here is the program.

Matlab
> i=1;
> for j=1:15

oc(i)=2; i=i+1;

end;
> for j=1:20

oc(i)=3; i=i+1;
end;

> for j=1:60
oc(i)=4; i=i+1;

end;
> for j=1:5

oc(i)=5; i=i+1;
end;

> % end of setup, go here to get samples
> k=floor(100*rand)+1;
> selected = oc(k)

Finally, the fastest way to generate a large number of samples is the
vector method. The following code will generate 10,000 samples from
U(0, 1).

Matlab
> b(1)=.15; b(2)=b(1)+.2; b(3)=b(2)+.6;
> U=rand(1,10000); %10000 U(0,1) samples
> w2 = (U<b(1))*2;
> w3 = (U>=b(1) &U<b(2))*3;
> w4 = (U>=b(2) &U<b(3))*4;
> w5 = (U>=b(3))*5;
> w=w2+w3+w4+w5; % w a random 10000
> % vector with the right frequencies

2.2 Walker’s Alias Method: Roulette Wheel Selection

Multiple outcome distributions with arbitrary assignments of probabil-
ities are like a (generalized) roulette wheel. It is no loss of generality
to assume that the finite outcomes are labeled 1,2, . . ., n. Assume that
their corresponding probabilities are p1, p2, . . ., pn. Selecting an out-
come is like spinning a roulette wheel with sectors having central angle
p12π for outcome 1, p22π for outcome 2, . . ., and pn2π for outcome n.

The alias method takes more time to set up than cdf inversion, but
runs faster because there is no search loop. The method uses two arrays,
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an array of probability adjustments Q(·) and an array of aliases A(·).
Again we demonstrate the method by means of an example.

In some species the female can affect the fraction of males versus
females among her offspring depending on various factors. For example,
the rufous vanga female produces more male offspring if she mates with
a large male but produces more female offspring if she mates with a
small male (see [Asa05]). The rationale is that a large male will beget
larger offspring, and large males mate more often and more widely than
small males. So if she mates with a large male, she can more effectively
propagate her genes by having males. Since females will always be able
to mate, if she has small offspring, it is better to have females.

Suppose we want to sample the number X of female offspring in a
clutch of size 8 given the statistics shown in Table 2.1. Since there are
M = 9 possible outcomes, letting Y = int[UM ], the integer part of the
product UM , where U ∼ U(0, 1), selects 0, 1, 2, . . . , 8, equally likely, at
about 11%. Therefore we use the Q array to adjust this down for those
probabilities that need to be lower. Meanwhile, the excess probability
is sent to some index A(Y ) whose selection probability exceeds 11%.

# female offspring 0 1 2 3 4 5 6 7 8

probability 0.02 0.04 0.08 0.15 0.2 0.21 0.16 0.09 0.05

Table 2.1. Probability for female offspring in a clutch of 8.

The method works like this.

Alias Algorithm

1. let U ∼ U(0, 1) and put Y = int[UM ] and Z = frac(UM), where
frac(x) = x − int[x] is the fractional part of x.

2. if Q(Y )/M < Z return X = Y , else return X = A(Y ).

Arrays that work for our example problem are shown below:

Q 0.18 0.36 0.72 1.0 0.97 0.43 0.68 0.81 0.45

A 5 5 4 - 3 6 3 6 4

To see why this works, first note that Y is an equally likely random
variable on 0, 1, 2, . . . ,M−1, and Z is independent of Y and distributed
as U(0, 1) (the argument that Y and Z are independent is that [0, 1) is
partitioned into M equal parts, with Y selecting one of these parts and
Z indicating where in this subinterval U is located). Therefore the if
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clause in Step 2 of the algorithm succeeds with probability Q(Y )/M and
selects Y . Otherwise, A(Y ) is selected with probability (1−Q(Y ))/M .

Since the roulette wheel for X = 0 is smallest, being 0.02, we start
with it. Solving Q(0)/M = 0.02 gives Q(0) = 0.18, making index 0 oc-
cur with the correct frequency. We send the excess probability, amount-
ing to (1 − Q(0))/M = 0.091, to the index with maximum roulette
wheel sector, namely 5, so A(0) = 5. Now 9.1% of index 5’s probability
is taken care of, so it needs only 0.21−0.091 = 0.209 more. We continue
in this way using Q to adjust the uniform probability 1/M downward
as needed and sending the excess probability to whatever index still
needs more than 1/M = 0.11. If we send too much to some index, that
causes no problem, since it too gets reduced by Q when that index’s Q
is calculated.

The alias algorithm is an ingenious implementation of the compo-
sition method of sampling. We have decomposed the original roulette
wheel density f into two components: the first, f1, is Q(·)/M with sup-
port on 0, 1, . . . , 8 and the second, f2, has support on the range of A,
here 3, 4, 5, 6. The fraction of the time that Q decides the outcome is
the sum

∑8
i=0 Q(i)/9 = 0.622, and the remaining fraction of the time,

namely 0.377, the outcome is decided by A.
The composition method is a very general method and will be elab-

orated on shortly, in Section 2.8.

2.3 Probability Simulation: The Binomial Distribution

Often an entire series of independent Bernoulli trials is performed, and
we are interested in the outcomes of all of them. Let the probability
of a success be p and let q = 1 − p. Let X stand for the number
of successes in a series of n such trials. Then X is one of the values
Ω = {0, 1, . . . , n}, but they are not equally likely. Even in our simple
experiment of tossing two coins, recall that the probability of obtaining
1 head is 1/2, while the probability of 0 or 2 heads is 1/4 each. This is
because the outcome 1 Head can occur in two different ways, (H, T) or
(T, H).

The number of ways in which there can be x successes in n trials is
given by the quotient

n(n − 1)(n − 2) · · · (n − x + 1)

x(x − 1) · · · 2 · 1 , (2.1)
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in which there are x factors in both the numerator and denominator.
This is seen as follows. Suppose first that the successes are distinguished
from each other by subscripts, S1, S2, . . ., Sx. Among the n trials there
are n choices for where success S1 occurs. To place S2, one possibility
has been taken (by S1), so there are n− 1 choices for where S2 occurs.
Continuing, we see that there are

n(n − 1) · · · (n − x + 1) (2.2)

ways of selecting on which trials the distinguished successes occur.
As an illustration of this, suppose the three symbols S, s, and F

are used to make 4-letters words (we use upper- and lower-case S here
instead of S1 and S2). The rule is that one and only one S must be
used and the same for s. According to (2.2), there should be 4 · 3 = 12
such words. They are (S in first place) SsFF, SFsF, SFFs, (S in second
place) sSFF, FSsF, FSFs, (S in third place) sFSF, FsSF, FFSs, and (S
in fourth place) sFFS, FsFS, FFsS.

Returning to the general case, in reality the success are not dis-
tinguished, so if we pick one of the possible choices (of distinguished
placements), how many other choices are merely rearrangements of the
successes? But this is just counting the number of different orders of
the subscripted S’s, that is the permutations of x symbols. Using the
same logic as above,

number of permutations of x symbols =

x(x − 1)(x − 2) · · · 2 · 1 = x!.
(2.3)

As indicated, the notation for this product is x!, read x factorial. Hence
the number of ways to obtain x successes in n trials is the quotient as
predicted by (2.1). This ratio is denoted by

(n
x

)
, read n choose x, or

sometimes by C(n, x),

C(n, x) =

(
n

x

)
=

n(n − 1)(n − 2) · · · (n − x + 1)

x(x − 1) · · · 2 · 1 =
n!

x!(n − x)!
. (2.4)

It is easy to verify that the last member of this equation is an equivalent
expression.

The quantity defined in equation (2.4) is also called a binomial coef-
ficient, primarily because of its connection with the binomial theorem
(given in equation (2.6)).

In our example, one of the words is SsFF, but there are 2! = 2
ways of ordering S and s, so this word pairs off with sSFF. Likewise,
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SFsF pairs off with sFSF and so on. Hence, regarding S and s as not
different, i.e., replacing s by S, there are six different possible words:
SSFF, SFSF, SFFS, FSSF, FSFS, and FFSS. Similarly there are six
different ways in which there can be two successes and two failures in
four Bernoulli trials.

Now return to the problem of calculating the probability of x suc-
cesses in n trials. We know that this can happen is

(n
x

)
ways; pick any

one of them, for example all successes in the first x trials and all failures
in the last n−x trials. What is the probability of that? Since the trials
are independent, it is the product pxqn−x (recall that p is the proba-
bility of success and q = 1− p is the probability of failure). This is also
the probability of each of the other possibilities. Hence the probability
that there are x successes is given by

pdf(x) = Pr(X = x) =

(
n

x

)
pxqn−x, x = 0, 1, . . . , n. (2.5)

For the discrete random variable X, this is also its density function.
This is the binomial distribution, often denoted by b(n, p), n indepen-
dent Bernoulli trials with probability p of success on each trial.

Equation (2.5) is closely related to the binomial theorem for the
expansion of the binomial (a + b)n,

(a + b)n =
n∑

k=0

(
n

k

)
akbn−k. (2.6)

In fact, summing (2.5) over x gives

n∑

x=0

(
n

x

)
pxqn−x = (p + q)n = 1,

as expected, since Pr(Ω) = 1.

Mean and Variance

According to (1.10), the mean of the binomial distribution b(n, p) is

µ =

n∑

x=0

x

(
n

x

)
pxqn−x =

n∑

x=1

n!

(x − 1)!(n − x)!
pxqn−x

= np
n∑

x=1

(n − 1)!

(x − 1)!(n − x)!
px−1qn−x.
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Change variables by putting y = x − 1 and m = n − 1. Then n − x =
m − y, and we have

n∑

x=1

(n − 1)!

(x − 1)!(n − x)!
px−1qn−x =

m∑

y=0

(
m

y

)
pyqm−y = (p + q)m = 1.

Therefore
µ = np. (2.7)

As we have already seen, expectation is linear ; recall (1.12). Since
the binomial random variable is the sum of n independent Bernoulli
trials, it follows that the mean of the binomial distribution is the n-
fold sum of the mean of a Bernoulli trial, just as asserted by (2.7).

Likewise, by Theorem 1.1 of Section 1.2.6, the variance of the bino-
mial random variable is the sum of the variances of the n independent
Bernoulli trials,

var = npq. (2.8)

2.3.1 Sampling from the Binomial

If n is “small,” we could sample X using cdf inversion or the aliasing
technique of the last section. Alternatively, and simpler to implement, a
b(n, p) sample may be generated by simulation, that is, by n repetitions
of the underlying Bernoulli trial.

For example, suppose we are interested in how many times red oc-
curs in 20 consecutive plays of the casino roulette wheel. Find out
by repeating the Bernoulli trial 20 times: sample U ∼ U(0, 1), check
whether U < 18/38, and add 1 to the count if so.

If n is quite large, simulation is less desirable. Such is the case in
the following problem. A mutation occurs to one of the daughter cells
during cell division with probability p = 10−7. In one million cell divi-
sions of a laboratory culture, how many mutations occur? In the next
section we will see how to do this without drawing one million Bernoulli
samples.

2.4 Another Simulation: The Poisson Distribution

Consider a problem in which the number of Bernoulli trials is very large
indeed. This is the problem of counting the number of “successes” of a
phenomenon when the successes occur at a known rate λ. For example,



2.4 Another Simulation: The Poisson Distribution 61

suppose telephone calls come into a 911 emergency switchboard ran-
domly, but on the average, 1 every 10 minutes. How many calls will
arrive between 10 and 10:30 A.M.?

In each second of time there is a very slight probability that there
will be an incoming call, so the arrival or nonarrival of an incoming call
in any given second is a Bernoulli trial. Thus in 30 minutes there are
1800 such Bernoulli trials.

To analyze this, we make four assumptions about the events of the
phenomenon: the event rate λ must be positive and

(a) The number of events occurring in nonoverlapping intervals are
independent.

(b) The probability of exactly one event in a sufficiently short interval
of length h is approximately λh.

(c) The probability of two or more events in a sufficiently short interval
is negligible.

Let the random variable Xt denote the number of events that occur
in an interval of length t. Partition the interval into n subintervals of
equal length t/n, where n is large enough that conditions (b) and (c)
hold. Then whether an event occurs in a given interval is a Bernoulli
trial with success probability λt/n, and therefore the probability of x
events in the n subintervals is

(
n

x

)(
λt

n

)x(
1 − λt

n

)n−x

.

Let n → ∞ in this expression. Group the x! in the denominator of(n
x

)
with (λt)x, since x is fixed. On the other hand, group 1/nx with

the remaining factors of the
(n
x

)
to get

n!

nx(n − x)!
=

n(n − 1) · · · (n − x + 1)

nx
→n→∞ 1.

The remaining factor, (1 − λt/n)n−x, tends to e−λt as follows

lim
n→∞

(
1 − λt

n

)n−x

= lim
n→∞

(
1 − λt

n

)n(
1 − λt

n

)−x

= e−λt1.

Therefore

Pr(Xt = x) =
(λt)xe−λt

x!
. (2.9)
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This is the density for the Poisson distribution. Note that λt is a pure
(dimensionless) number. If the event rate is λ = 1/10 min and we want
answers about a 30-minute period, then λt = 3.

The Poisson density also applies to “events” distributed in space as
well as time. For example, suppose that knots occur in a certain batch
of lumber as a Poisson process with a rate of 2 knots per eight foot
stud on average. What is the probability of finding a stud having no
knots? By (2.9), since λt = (2/8) × 8 here, it is

Pr(X8 = 0) =
(2)0 e−2

0!
= e−2 = 0.135.

Note that 0! is 1 (by definition).
Since the mean of the binomial b(n, λt

n ) is nλt
n = λt and is indepen-

dent of n, it is natural to believe that the mean of the corresponding
Poisson process is λt. This is indeed the case. Figure 2.3 gives the de-
tails.

Recall the mutation problem of the previous section. The Bernoulli
trial probability p of a Poisson process is λt/n, hence λt = np. Therefore
the Poisson approximation of this binomial is

Pr(X = x) =
(np)xe−np

x!
=

(0.1)xe−0.1

x!

for n = 106 and p = 10−7. Compare this with (2.5). For x = 0 the exact
probability is (1− p)n = 0.904837331 to nine decimal places, while the
approximation is e−0.1 = 0.904837418.

Although the Poisson distribution can be used as an approximation
to the binomial, we still have the problem of drawing samples from it.
As we will see next, the technique for sampling from a Poisson dis-
tribution exactly is by simulation. But both the Poisson and binomial
distributions for large n can be sampled to a good approximation us-
ing the central limit theorem and the normal distribution covered below
(see Section 2.6).

2.4.1 Sampling from the Poisson Distribution by Simulation

The following method will be explained in the exponential section to
be taken up next. It is essentially a simulation technique, and is exact.

Let U0 = 1 and Ui be U(0, 1) samples for i = 1, 2, . . . . Return the
greatest integer x such that
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The calculation of the mean and variance of the Poisson distribution.

µ = E(X(t)) =

∞∑

k=0

k
(λt)k

k!
e−λt

= e−λt

[
λt

0!
+

(λt)2

1!
+

(λt)2

2!
+ · · ·

]

= λte−λteλt = λt.

And the variance of a Poisson random variable is var = λt:

var = E((X(t) − µ)2) =
∞∑

k=0

(k − λt)2
(λt)k

k!
e−λt

= e−λt
∞∑

0

(
k2 − 2kλt + (λt)2

) (λt)k

k!

= e−λt
∞∑

0

(
k2

k!
(λt)k − 2

k

k!
(λt)k+1 +

(λt)k+2

k!

)

= e−λt

[
(λt)

(
1 +

2

1!
(λt) +

3

2!
(λt)2 + · · ·

)

− 2

(
(λt)2

0!
+

(λt)3

1!
+ · · ·

)
+

(
(λt)2

0!
+

(λt)3

1!
+ · · ·

)]

= e−λt

[
(λt)

d

d(λt)

(
λt +

(λt)2

1!
+

(λt)3

2!
+ · · ·

)
− 2(λt)2eλt + (λt)2eλt

]

= (λt)e−λt d

d(λt)

(
λteλt

)
− (λt)2

= (λt)e−λt
(
eλt + λteλt

)
− (λt)2 = λt.

Fig. 2.3. Derivation of mean and variance of the Poisson distribution.

x∏

i=0

Ui > e−λt.

This will be a sample from the Poisson distribution with parameter λ.
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2.5 CDF Inversion, Continuous Case: The Exponential

Distribution

The exponential distribution is used to model the random waiting time
for “events” to occur. Examples of what we mean by events are cus-
tomers arriving at a queue, the failure of mechanical components, and
biological births or deaths. The assumptions about these events are the
same as those made for the Poisson distribution. In fact, there is an
intimate connection between the two.

The exponential random variable is the waiting time (or distance)
for the first Poisson event to occur. Since the probability that a Poisson
event will not occur in the interval [0, t) is e−λt, as seen by taking x = 0
events in (2.9), we have

Pr(an event occurs in [0, t)) = 1 − Pr(no event occurs in [0, t))

= 1 − e−λt.
(2.10)

This is the cdf of the exponential distribution,

cdf(t) = F (t) = 1 − e−λt.

The exponential distribution has a single parameter λ, the event
rate; we denote the distribution by E(λ). By its nature as the time
at which an event occurs, the exponential is a continuous distribution.
Therefore the exponential density is the derivative of its cdf,

pdf(t) = F ′(t) = λe−λt.

Likewise, probabilities are given by integrals. Let W be the random
waiting time before an exponential event occurs. Then the probability
that W occurs in some subset S of the real numbers is

Pr(W ∈ S) =

∫

S
λe−λt dt.

Properties of the Exponential Distribution

The exponential distribution is “memoryless” (also called Markovian).
For example, if an event has not yet occurred by time a, then the
probability that it occurs in the interval a to a + b is the same as that
of its occurring in 0 to b,

Pr(W < a + b |W ≥ a) = Pr(W < b).
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This is so because in terms of the cdf, the left-hand side is exactly

F (a + b) − F (a)

1 − F (a)
=

(1 − e−λ(a+b)) − (1 − e−λa)

1 − (1 − e−λa)

=
e−λa − e−λae−λb

e−λa
= 1 − e−λb.

The mean of the exponential is µ = 1/λ, because using integration
by parts with u = t and dv = λe−λt, we have

µ = E(W ) =

∫ ∞

0
tλe−λtdt = −te−λt

∣∣∣∣
∞

0

−
∫ ∞

0
−e−λtdt

= 0 +
e−λt

−λ

∣∣∣∣
∞

0

=
1

λ
.

(2.11)

A similar calculation shows that the variance is

var = 1/λ2; (2.12)

see Figure 2.4.

Calculating the variance of the exponential distribution is done using inte-
gration by parts twice,

var = E((W − µ)2) =

∫ ∞

0

(t − 1

λ
)2λe−λtdt

= −(t − 1

λ
)2e−λt

∣∣∣∣
∞

0

+

∫ ∞

0

2(t − 1

λ
)e−λtdt

=
1

λ2
+ 2

[
− 1

λ
(t − 1

λ
)e−λt

∣∣∣∣
∞

0

+
1

λ

∫ ∞

0

e−λtdt

]

=
1

λ2
+ 2

[
− 1

λ2
+

−1

λ2
e−λt

∣∣∣∣
∞

0

]
=

1

λ2
.

Fig. 2.4. Derivation of the variance of the exponential distribution.
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2.5.1 Inverting the CDF—The Canonical Method for the
Exponential

The method for obtaining a sample from E(λ) is simple. Let U ∼
U(0, 1) and solve U = 1 − e−λW for W . This will give

W =
−1

λ
ln(1 − U),

and W is the desired sample. Note that most computer random number
generators return values strictly less than 1, in which case the argument
of the logarithm will not be 0. This is a general-purpose method, and
its explanation is given by the following theorem.

Theorem 2.1. (Inverting the cumulative distribution function, contin-
uous case.) Let F (x) be the cdf for the random variable X, suppose that
F is continuous, and let U = F (X). Then U is uniformly distributed
on [0, 1).

Proof. We need to show that Pr(U ≤ u) = u for 0 ≤ u < 1. Since F is
continuous and increasing, F−1 exists. If x = F−1(u) then

Pr(U ≤ u) = Pr(F (X) ≤ u) = Pr(X ≤ F−1(u)) = Pr(X ≤ x) = F (x)

= u,

as claimed. So if U is a sample from U(0, 1), then X = F−1(U) is a
sample from cdf F .

Inverting the cdf also works for a distribution that is a mixture of
discrete and continuous components.

Inverting the cumulative distribution, general case.
Sample U ∼ U(0, 1); return

X = inf F−1([U, 1]) = inf{ξ : F (ξ) ≥ U}.

For a proof of this, refer to Figure 2.5.
The main drawback to the method of inverting the cdf is that this

usually requires an explicit formula for the cdf, which is often not avail-
able. However, in the cases in which it is available it is a very powerful
technique.
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If F is continuous, this becomes the same as in Theorem 2.1. Where F has
jumps, note that F has to be right continuous, since

lim
ǫ→0+

Pr(X ≤ x + ǫ) = Pr(X ≤ x).

Now assume for the moment the statement X ≤ x if and only if U ≤ F (x).
Then we have

Pr(X ≤ x) = Pr(U ≤ F (x)) = F (x),

which was to be shown. As to the assumption, if U ≤ F (x) then
x ∈ {ξ : F (ξ) ≥ U}, so x ≥ X , which is the infimum of this set. On the
other hand, if X ≤ x, then by monotonicity, F (X) ≤ F (x), so U ≤ F (x).

Fig. 2.5. Proof of the inverting the cdf technique in the general case.

Sampling from the Poisson Distribution

Since the Poisson random variable is the number of exponential events
that occur in the interval [0, t), we may simulate the Poisson distribu-
tion by sampling exponentials until time t is exceeded. We give here
three methods to do this.

Method 1. Let Wi be E(λ) and let K be the greatest integer such that∑K
i=1 Wi < t.

Method 2. Let Yi be E(1) and let K be the greatest integer such that∑K
i=1 Yi < λt. This works because if Y is E(1), then X = (1/λ)Y is

E(λ) (see below) and
∑K Yi < λt if and only if

∑K Xi < t. This
method is an improvement, since one does not have to divide by λ on
each sample.

Method 3. (From Method 2 taking logs.) Let U0 = 1 and Ui ∼ U(0, 1)
for i = 1, 2, . . . . Let K be the greatest integer such that

K∏

i=0

Ui > e−λt.

This works because

−
K∑

Yi > −λt if and only if
K∏

i=0

Ui > e−λt,

and Yi is E(1) if and only if e−Yi is U(0, 1).
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Multiple Independent Waiting Times

Suppose process A has waiting time WA given by an exponential distri-
bution with parameter λA, and process B has waiting time WB given
by an exponential distribution with parameter λB. The question is,
What is the distribution for the process consisting of the first of A or
B to occur? We assume that processes A and B are independent.

One can see that

Pr(A or B occurs in [t, t + ∆t)|not before) ≈ λA∆t + λB∆t,

with the approximation becoming exact as ∆t → 0. Hence the event
time for the combined process is exponential with parameter λA + λB.

Alternatively, we can argue from the cdfs thus:

Pr(WA or WB < t) = Pr(WA < t) + Pr(WB < t) −Pr(WA and WB < t)

= (1−e−λAt) + (1−e−λBt) − (1−e−λAt)(1−e−λB t)

= 1−e−(λA+λB)t,

giving the same result.

2.5.2 Discrete Event Simulation

There are many situations in business and industry in which it is nec-
essary to analyze processes that involve stochastic waiting times. This
is the field of queuing theory. If one wishes to have an exact analysis of
such a process, it is necessary for the waiting times to be exponentially
distributed. This is so because the exponential is the only distribution
that is “memoryless.” That is, the future depends only on the present
and not on how the present was arrived at.

Even so, anything beyond the simplest setup is too hard to analyze
directly, so one turns to Monte Carlo simulation; it is known as discrete
event simulation in this field. Among its many benefits, simulation
allows any waiting time distribution to be used as easily as any other.

Due to its importance, there are several mature software solutions
dedicated to providing answers for the most intricate of queuing situ-
ations. Much has been written about the area including the important
mathematical problem of analyzing simulation results. In this section
we give a necessarily brief description of one of the main approaches to
discrete event simulation, that of event scheduling.
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Event Scheduling Simulation

A software simulation is managed by a “simulation executive” that is
responsible for stepping time through the simulation and invoking the
other modules as necessary. These include modules for processing the
entities of the simulation, implementing their interdependencies, and
data display and logging modules.

A timetable of events is maintained, always in chronological order,
and the simulation proceeds from one event to the next event in the
schedule. Each event has a tag describing when it occurs in absolute
time and its nature. When an event is handled, it may generate new
events each of which is scheduled by sampling from the appropriate
waiting time distribution and merging it into the master schedule at
the appointed time.

Consider the example of simulating cell tissue growth, say starting
with one cell at time 0 and carrying the simulation through for 8 hours.
Assume that cell maturation times are exponentially distributed with
parameter λ = 0.5 per hour. The master schedule needs to contain
event times only, since all the events are the same, namely binary fission
of identical cells. A more ambitious simulation could invoke crowding
and other effects between the cells as desired. Drawing a sample from
E(0.5), we might get W = 3 hours, say. So our original cell divides at
time t = 3 and our master schedule is S[1] = 3.

Now move time forward to t = 3 and handle the cell division of the
first cell. Sample E(0.5) again to get W = 4, say, for the first daughter
cell, so now S[2] = 7 (the present time is t = 3 and the cell division
time is 4, so the event is at absolute time 7). And again for the second
daughter cell, get W = 1, say. Now we must shift the S[2] = 7 down to
keep the schedule in time-sorted order, so S[2] = 4 and S[3] = 7.

The next event on the schedule is at time t = 4, the division of a
first-generation daughter cell. Sample from E(0.5) to get W = 2, say,
and again to get W = 5. For the W = 2 event, its absolute time will
be 4 + 2 = 6, so the master schedule becomes S[3] = 6 and S[4] = 7.

The W = 5 event occurs at absolute time t = 9, which is beyond our
study, so we need not include it in the master schedule. (But it would
have to be accounted for if cell interactions were being monitored.)

Continuing in this fashion, we finally reach the point where all sub-
sequent events occur beyond absolute time t = 8 and the simulation is
over. At this point the statistics of the run are tabulated and presented.
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2.5.3 Transforming Random Variables: The Cauchy
Distribution

In the foregoing it was stated that if Y is E(1), then X = (1/λ)Y
is E(λ). Transforming or mapping random variables like this occurs
frequently and is quite useful. In complete generality, a transformation
of Y to X is given by X = g(Y ) for some one-to-one function g. To find
the distribution of X (or to verify that it has some stated distribution)
one can examine either the pdf or the cdf of X.

In our specific example we know that cdfY (y) = Pr(Y ≤ y) =
1 − e−y, since Y is E(1). Therefore we have the following chain of
equalities:

cdfX(x) = Pr(X ≤ x) = Pr

(
1

λ
Y ≤ x

)
= Pr(Y ≤ λx)

= 1 − e−(λx).

Thus the cdf of X is 1 − e−λx, so X is E(λ).
Alternatively, the pdf can be matched. In order to carry this out

we have to recall the change of variables technique in integration. Let
t = g(τ) and A = [a, b] be an interval. Put B = g−1(A) (recall g is
one-to-one). Then

∫

A
f(t) dt =

∫

B
f(g(τ))g′(τ) dτ. (2.13)

The application to densities goes like this. With X = g(Y ),

Pr(X ∈ A) = Pr(g(Y ) ∈ A) = Pr(Y ∈ g−1(A)) =

∫

g−1(A)
fY (τ) dτ,

where fY is the pdf for Y . But by a change of variable,

Pr(X ∈ A) =

∫

A
fX(t) dt =

∫

g−1(A)
fX(g(τ))g′(τ) dτ,

where fX is the pdf of X. Equating the two end members yields

fY (τ) = fX(g(τ))g′(τ). (2.14)

For our exponential mapping, fY (τ) = e−τ , g(τ) = τ/λ, and, we
anticipate, fX(τ) = λe−λτ . Substitution into (2.14) gives

e−τ = λe−λ(τ/λ) 1

λ
,
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which is an identity, and thus we have verified the pdf of X.
Unfortunately, (2.14) is implicit for fX . To get an explicit expression,

we have to apply the change of variable to g−1 instead of to g. Doing
so gives

fX(x) = fY (g−1(x))
(
g−1
)′

(x). (2.15)

As a further example we work out the Cauchy density fX(t). Let
Y ∼ U(−π/2, π/2) and X = tan(Y ). Then we can compute that

fX(t) =
1

π

1

1 + t2
. (2.16)

To see this, we notice that g(t) = tan(t), so that g−1(t) = arctan(t)
and thus

fX(t) =
1

π

d

dt
(arctan(t)) =

1

π

1

1 + t2
,

as desired.
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Fig. 2.6. The Cauchy probability density function.

The Cauchy density is symmetric about t = 0, and so its mean µX is
0; see Figure 2.6. But the variance of the Cauchy distribution is infinite,
since the integral

1

π

∫ ∞

−∞

t2

1 + t2
dt
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is unbounded. Before Gauss’s work, the Cauchy distribution was thought
to be a candidate for the normal distribution, i.e., the distribution of
the central limit theorem. Although the pdfs of the two distributions
have a similar appearance, the tails of the Cauchy distribution are too
“fat,” as evidenced by the fact that the normal distribution has finite
variance but the Cauchy distribution does not.

2.6 The Central Limit Theorem and the Normal

Distribution

In many of the histograms generated by the problems we have worked
on up to now, the figure that has emerged is that of a bell-shaped curve.
This is not by accident; it is the consequence predicted by the central
limit theorem, which we now consider.

The graph of the function f(x) = e−x2/2 (see Figure 2.7) is symmet-
ric about the origin, everywhere positive, bell-shaped, and tends to 0
as x → ±∞. Further, the integral of f over the whole real line is

√
2π,1

and therefore

f(x) =
1√
2π

e−x2/2

is a probability density function.
Replacing x by x/σ, where σ is a parameter, has the effect of rescal-

ing the x-axis in terms of σ; that is, the rescaled function at x = 2σ
has the same value as the original function at x = 2. As a side effect,
to maintain a unit integral, f must be divided by σ as well.

Finally, replacing x by x − µ has the effect of shifting the function;
the shifted function at x = µ has the same value as the original at
x = 0.

With these changes, the normal probability density function is

f(x) =
1

σ
√

2π
e−

1
2(

x−µ
σ )

2

. (2.17)

Denote this distribution by N(µ, σ2). By the transformation principles
for random variables (from the last section), it is easy to see that if X is
distributed as N(µ, σ2), then Y = (X − µ)/σ is distributed as N(0, 1).

The mean and variance of the N(µ, σ2) distribution are, appropri-
ately enough, µ and σ2 respectively. The calculation is given in Fig-
ure 2.8.

1 This can be seen by calculating
∫

∞

−∞
e−x2/2dx

∫
∞

−∞
e−y2/2dy in polar coordinates.
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Fig. 2.7. The standard normal density function.

Obtaining the cumulative distribution function for the normal dis-
tribution is harder to come by. There is no antiderivative for e−x2

in
terms of elementary functions and so there is no simple form for the
normal cumulative distribution function. However, approximate values
may be computed by the technique of rational approximation, that is,
the cdf of N(0, 1) is approximated by a rational function. Table 2.2 was
computed using the code below, which uses this technique. Amazingly,
the rational approximation produces values correct to three decimal
places for all values of x, as in the table.

Matlab
> function w = normalCDF(x)
> a1 = 0.31938153; a2 = -0.356563782;
> a3 = 1.781477937; a4 = -1.821255978;
> a5 = 1.330274429; b=0.2316410; c=1/sqrt(2*pi);
> L=abs(x); K=1./(1+b.*L);
> w = 1-c*exp(-L.*L/2).*...
> (a1.*K+a2.*K.ˆ2+a3.*K.ˆ3+a4.*K.ˆ4+a5.*K.ˆ5);
> msign = -(x<0); mfact = 2*msign+1;
> w = mfact.*(w+msign);

Theorem 2.2. (Central limit theorem) Let X1, X2, . . . , Xn be inde-
pendent random samples from a distribution with mean µ and finite
variance σ2. Then
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Let u = (x − µ)/σ; then x = σu + µ and du = dx/σ and we have

E(X) =

∫ ∞

−∞

x

σ
√

2π
e−

1
2 (

x−µ

σ )2

du =

∫ ∞

−∞

σu + µ√
2π

e−
1
2
u2

du

=
σ√
2π

∫ ∞

−∞
ue−

1
2
u2

du + µ

∫ ∞

−∞

1√
2π

e−
1
2

u2

du

= µ,

since the first integral is 0 by symmetry and the second integral is 1 since f
is a pdf. To calculate the variance we must add integration by parts to the
substitution used above,

E(X2) =

∫ ∞

−∞

x2

σ
√

2π
e−

1
2 (

x−µ

σ )2

du

=

∫ ∞

−∞

σ2u2 + 2σµu + µ2

√
2π

e−
1
2
u2

du

=
σ2

√
2π

∫ ∞

−∞
u2e−

1
2
u2

du +
2σµ√

2π

∫ ∞

−∞
ue−

1
2
u2

du

+ µ2

∫ ∞

−∞

1√
2π

e−
1
2
u2

du.

The second member on the last line is zero by symmetry, and the third
integrates to µ2. For the first member, use integration by parts and get

σ2

√
2π

∫ ∞

−∞
u2e−

1
2

u2

du =
σ2

√
2π

[
ue−

1
2
u2

∣∣∣∣
∞

−∞
+

∫ ∞

−∞
e−

u2

2 du

]

=
σ2

√
2π

(0) + σ2

∫ ∞

−∞

1√
2π

e−
u2

2 du

= σ2.

Therefore the variance is σ2, since

E
(
(X − µ)2

)
= E(X2) − µ2 = σ2.

Fig. 2.8. Mean and variance calculation for the normal distribution.
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x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F (x) 0.500 0.540 0.579 0.618 0.655 0.691 0.726 0.758 0.788 0.816

x 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

F (x) 0.841 0.864 0.885 0.903 0.919 0.933 0.945 0.955 0.964 0.971

x 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9

F (x) 0.977 0.982 0.986 0.989 0.992 0.994 0.995 0.997 0.997 0.998

Table 2.2. Computed approximate normal cdf.

Y =

∑n
i=1 Xi − nµ√

nσ2

has a limiting distribution as n → ∞ and it is N(0, 1), normal with
mean 0 and variance 1.

Exercise 29 gives empirical evidence for the central limit theorem.

2.6.1 Sampling from the Normal Distribution

We discuss three methods for sampling from the normal distribution.
For a comparison of these methods, see Problem 26 at the end of this
chapter.

Our first method takes advantage of the central limit theorem and
is only crudely approximate. Its advantage is that it is quick and easy
to program.

Central Limit Algorithm

Sample n copies of U(0, 1) random variables, U1, U2, . . ., Un, and return

X =

∑n
i=1 Ui − n

2√
n/12

.

By the central limit theorem, X is approximately normal with param-
eters µ = 0 and σ = 1, that is, N(0, 1). Recall from equations (1.14)
and (1.15) that the mean and variance of a U(0, 1) random variable
are 1/2 and 1/12 respectively. Often n is taken to be 12 to avoid the
square root and division.

Box–Muller Algorithm

This method gives an exact sample. Sample random variables U1, U2 ∼
U(0, 1) and put



76 2 Some Probability Distributions and Their Uses

X1 = cos(2πU1)
√

−2 ln U2,

X2 = sin(2πU1)
√

−2 ln U2.
(2.18)

Then X1 and X2 are independent normally distributed random vari-
ables with mean 0 and variance 1. The proof of this is given in
Figure 2.10.

Although it might seem that knowing X1 imparts some information
about X2, this is not so; X2 can still be any real value at all. An example
is shown in Figure 2.9. The graph labeled “X1 = 0.7” graphs the points
(U1, U2) in the plane satisfying the first of equations (2.18) for a given
value of X1, in this case 0.7. The graph labeled “X2 = 2.0” shows the
points satisfying the second of equations (2.18) for the given value of
X2. As shown, there is a unique pair (U1, U2) giving these choices.

X1 = 0.7X2 = 2.0
X1 = 0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

U2

0.2 0.4 0.6 0.8 1

U1

Box-Muller plot of X1=0.7, X2=2.0

Fig. 2.9. Solving for (U1, U2) for a given (X1, X2).

Marsaglia–Bray Algorithm

This method also gives two exact samples, similar to the Box–Muller
algorithm.

1. Sample random variables U1, U2 ∼ U(0, 1) and put V1 = 2U1 − 1,
V2 = 2U2 − 1, and S = V 2

1 + V 2
2 .
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2. if S ≥ 1 go to 1, else return

X1 = V1

(−2

S
ln S

)1/2

,

X2 = V2

(−2

S
ln S

)1/2

.

Then X1 and X2 are independent normally distributed random vari-
ables with mean 0 and variance 1.

The Marsaglia–Bray algorithm was derived as an improvement in
speed over the Box–Muller algorithm, since it uses only one transcen-
dental function evaluation, while the Box–Muller uses three. This is
offset somewhat by the fact that a fraction of the time Step 1 is re-
jected and must be repeated. (What is this fraction?) Today the speed
of the computer and the efficiency of transcendental function evaluation
has made these issues moot in most cases.

The proof that the Marsaglia–Bray algorithm gives exact samples
from N(0, 1) is similar to that of the Box–Muller algorithm and we
omit it.

2.6.2 Approximate Sampling via the Central Limit Theorem

Suppose we want a sample of the outcome of 1000 Bernoulli trials with
probability of success p = 0.995. This might correspond to the number
of acceptable light bulbs to come out of a manufacturing process in
one hour. Of course we could simulate the 1000 trials. Or we could
instead exploit the CLT as follows. Let R1000 be the random variable
for the number of successes, and let µ and σ2 refer to the Bernoulli
trial random variable; µ = p and σ2 = pq. Then N defined by

N =
R1000 − 1000µ√

1000σ2
=

R1000 − 995

2.2305

is approximately N(0, 1). Now let n be a sample from N(0, 1), say
n = 0.68. Then

r = 2.2305n + 995 = 996.52 → 997, rounded to an integer,

is the corresponding sample for R1000.
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Proof for the Box–Muller algorithm. Let fX1,X2
(x1, x2) be the joint density

of X1 and X2 and let fU1,U2
(u1, u2) be the joint density of U1 and U2. Then

fU1,U2
(u1, u2) = fU1

(u1)fU2
(u2) = 1, if 0 ≤ u1, u2 < 1,

and 0 otherwise. Let τ be the change of variable

(
x1
x2

)
= τ(u1, u2) =

(
cos(2πu1)

√
−2 lnu2

sin(2πu1)
√
−2 lnu2

)
.

Squaring x1 and x2 and adding gives

x2
1 + x2

2 = −2(lnu2) cos2(2πu1) − 2(lnu2) sin2(2πu1) = −2 lnu2.

So
u2 = e−

1
2
(x2

1+x2
2). (∗)

This shows that 0 < u2 ≤ 1. The variable u1 may be similarly restricted
due to the periodicity of sine and cosine. Similar to the 1-variable change
of variable formulas derived previously, the relationship between the two
densities may be written either as

fX1,X2
(τ(u1, u2)) det τ ′ = fU1,U2

(u1, u2)

or equivalently as

fX1,X2
(x1, x2) = fU1,U2

(τ−1(x1, x2)) det(τ−1)′.

Since fU1,U2
is identically 1, and remembering that det(τ−1)′ = 1/ det τ ′,

the latter gives

fX1,X2
(x1, x2) = det(τ−1)′ = 1/ det τ ′.

Now

det τ ′ = det

(
∂x1

∂u1

∂x1

∂u2

∂x2

∂u1

∂x2

∂u2

)

= det

⎛

⎝−2π sin(2πu1)
√
−2 lnu2

−(1/u2)√
−2 ln u2

cos(2πu1)

2π cos(2πu1)
√−2 lnu2

−(1/u2)√
−2 ln u2

sin(2πu1)

⎞

⎠

=
2π

u2
sin2(2πu1) +

2π

u2
cos2(2πu1) =

2π

u2
.

From equation (∗), u2 = e−
1
2
(x2

1+x2
2). Therefore

det(τ−1)′ =
u2

2π
=

1

2π
e−

1
2
(x2

1+x2
2)

and

fX1,X2
(x1, x2) = 1 · 1

2π
e−

1
2
(x2

1+x2
2) =

1√
2π

e−
1
2
x2
1

1√
2π

e−
1
2
x2
2 .

QED.

Fig. 2.10. Proof for the Box–Muller algorithm.
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2.6.3 Error Estimates for Monte Carlo Simulations

Suppose we are trying to use Monte Carlo to estimate some value, call
it θ. It could be the waiting time of a discrete event simulation or the
neutron flux through a thickness of shielding or any scalar value that
results from an instance of a simulation.

Let X1, X2, . . ., Xn be n estimates of θ as derived from the outcome
of the simulation. If the Xi are independent and identically distributed
with mean θ, then by the central limit theorem their sample average
X̄ is approximately normally distributed with mean equal to θ and
variance equal to σ2

X/n, where σ2
X is the (unknown) variance of the Xi.

In this case

Y =
X̄ − θ√
σ2

X/n

is approximately N(0, 1) distributed. From a N(0, 1) table we notice
that among other things, with probability 0.954 a normal sample lies
within two standard deviations of the mean; hence

Pr

⎛

⎝−2 <
X̄ − θ√
σ2

X/n
< 2

⎞

⎠ = 0.954.

In other words, with probability 0.954, θ lies in the interval

X̄ − 2
√

σ2
X/n < θ < X̄ + 2

√
σ2

X/n.

Now, given a value for σ2
X , we may calculate probabilistic error bounds

for θ, or confidence intervals as they are called.
In practice there are three problems with this program. First, usually

σ2
X must itself be estimated from the data. In that case Y above will

not be normal. Second, the Xi may not be identically distributed; the
simulation may suffer start-up effects, for example. And third, the Xi

may be correlated. Both of these issues are, in fact, a common difficulty
in queuing simulations.

An attempt to deal with the second and third issues is by batching .
Divide the n trials into m batches each of size J :

X1 . . . XJ | XJ+1 . . . X2J | . . . | X(m−1)J+1 . . . XmJ .

Thus there are m = n/J batches. The batch random variables
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Bi =
1

J

iJ∑

j=(i−1)J+1

Xj , i = 1, . . . ,m,

tend to be independent and identically distributed. Now we may apply
the development above to the Bi in place of the Xi. Thus

θ̂ = B̄ =
1

m

m∑

i=1

Bi

is an estimator θ̂ for θ. And the random variable

Y =
θ̂ − θ√
σ2

B/m

is approximately N(0, 1).
If we knew the variance σ2

B of the batch random variables, then we
could use the normal distribution itself to make error bounds as was
done above. However, σ2

B is generally not known and must itself be
estimated from the Bi data. The sample variance for σ2

B is given by

s2
B =

1

m − 1

m∑

i=1

(Bi − θ̂)2 (2.19)

and is itself a random variable (known to be gamma distributed; see
Section 2.8).

Thus in place of Y we have

t =
θ̂ − θ

(sB/
√

m)
, (2.20)

the quotient of a normal random variable by a gamma random variable;
see [HT01]. Such a combination is a Student-t random variable. The
Student-t is well known and has one parameter, its degrees-of-freedom
or DOF. Tables giving ordinates of the Student-t are included in the
appendix of most statistics books. We provide an abbreviated one as
well, Table 2.4. So we must use the t-statistic to obtain the confidence
intervals we seek.

For example, given α, tα is defined by

Pr(−tα < t < tα) = α.
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These values tα can be looked up in or derived from a t-table. If the
table gives cumulative values instead of two-sided values, as does the
table below, a conversion is required. Since the t distribution is sym-
metric, Pr(−tα < t < tα) = α is equivalent to

Pr(t < tα) = α +
1 − α

2
=

1 + α

2
.

Thus if one wants, say, a 95% confidence interval for t, use the cumu-
lative table with β = (1 + 0.95)/2 = 0.975.

The Student-t distribution table gives tβ vs DOF,
where tβ is defined by Pr(t < tβ) = β.

DOF 1 2 3 4 5 6 8 10 15 20 30 40 60 120 ∞
tβ 6.31 2.92 2.35 2.13 2.02 1.94 1.86 1.81 1.75 1.73 1.70 1.68 1.67 1.66 1.65

Table 2.3. Cumulative t values for β = 0.95.

DOF 1 2 3 4 5 6 8 10 15 20 30 40 60 120 ∞
tβ 12.71 4.30 3.18 2.78 2.57 2.45 2.31 2.23 2.13 2.09 2.04 2.02 2.00 1.98 1.96

Table 2.4. Cumulative t values for β = 0.975.

A problem that arises with batching is deciding how to divide up
the n samples between the number of batch replications m versus the
number of repetitions per batch J . We want m as large as possible,
since a larger m reduces the size of the confidence interval. This argues
for a small value of J . But J must be large enough that the batch
random variables tend to be independent and uncorrelated.

2.7 Rejection Sampling Example: The Beta Distribution

The Marsaglia–Bray algorithm for the normal distribution introduces
a new idea into sampling, namely a test imposed on candidate values
in order to proceed. This idea can be expanded upon to form the basis
of a powerful and completely general sampling method, called rejection
sampling.

Consider the problem of sampling a Bernoulli trial with probability
p = 1/3 using coin flips. Here is one solution: flip the coin twice; if the
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outcome is HH, return “success,” if HT or TH, return “failure,” and
if TT, reject the trial and go again. This gives the right probabilities
because

Pr(return is success) = Pr(return is success|there is a return)

=
Pr(there is a return and it is success)

Pr(there is a return)

=
1/4

3/4
=

1

3
.

By adding the acceptance/rejection discipline, only the relative values
of the target probabilities matter. That is, they could have been 1/7,
1/7, 1/7 and “success” will still be returned 1/3 of the time.

Consider a second example. Using three coin tosses, we want to
select “1” with probability 2/5, and “2,” “3,” and “4” each with prob-
ability 1/5. Since tossing a coin twice gives probabilities of 1/4 and this
is less than 2/5, we divide the target probabilities by M = 8/5 (to bring
2/5 down to 1/4), recalling that only their relative values matter. The
modified target probabilities are then 1/4, and 1/8, 1/8, 1/8. To find
the acceptance discipline, reason as follows. If the result HH occurs, we

accept this all the time and return “1” because 1/4
1/4 = 1. If the result

HT occurs, we accept this one-half of the time and map its return to

“2”; this gives the correct probability because 1/8
1/4 = 1/2. Similarly we

accept TH and TT one-half of the time and map these outcomes to “3”
and “4” respectively. If a value is rejected, we start over and toss the
two coins again.

The probability of accepting a value is this: all the time for HH, and
1/2 of the time for the others; hence

1

4
· 1 +

1

4
· 1

2
+

1

4
· 1

2
+

1

4
· 1

2
=

5

8
,

or 62.5% of the time; so 37.5% of the time we must start again. When
a value is returned, the probability that it is a “1” is given by

Pr(returned value is “1”) =
Pr(“1” is selected and returned)

Pr(some value is returned)
=

1
4 · 1

5
8

=
2

5
.

In the same manner, for “2” we have
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Pr(returned value is “2”) =
Pr(“2” is selected and returned)

Pr(some value is returned)
=

1
4 · 1

2
5
8

=
1

5
,

and the other target probabilities are likewise seen to have the proper
frequencies.

To actually carry out the method, toss a coin twice; if the outcome
is HH, then return “1”; if the outcome is HT or TH or TT, then we
must do a side experiment to decide whether to accept the outcome
and return its mapped value or reject the outcome and start again.
Since the side experiment is a 50-50 decision, it could itself be a coin
toss; say an H means accept and a T means reject. For example, if the
third toss is H then return “2” in the HT case, “3” in the TH case, and
“4” in the TT case. If it is T, then start all over.

Figure 2.11 illustrates the situation in the example. For each possible
outcome from the first two coin tosses, we must scale the resulting
probability to obtain the correct value.

Mg

f

1 2 3 4

Fig. 2.11. Target f and proposal Mg densities for the example in the Text.

The density actually sampled from, the two coin tosses in the above
examples, is called the proposal density g. It can be any convenient
density that is nonzero where the target density f is nonzero. Let h(·)
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refer to the acceptance discipline. The generalized rejection sampling
method consists of two simple steps.

Rejection Sampling

1. Let Y be a sample from pdf g.
2. With probability h(Y ) return X = Y ; otherwise go to (1).

As in the example, step 2 is a Bernoulli trial with success probability
h(Y ) and is carried out through a side experiment.

Referring again to Figure 2.11, we see that M = 8/5 and we must
scale the proposal g (in the example, a uniform distribution given by
two coin tosses) by 8/5 in order to have f ≤ Mg. Then for each outcome
drawn from g, the proportion of f that lies under this part of g gives
the acceptance probability. For the first outcome of “1” we see that
f = 2g, so this one is always accepted. For the rest, f = (1/2)2g (the
shaded part represents only 1/2 of the vertical bar at these positions),
and so we accept only with probability 1/2.

Rejection sampling is a completely general method for sampling
from both discrete and continuous distributions. To see that it works
in the continuous case, calculate the infinitesimal probability that the
returned value X equals x as follows:

Pr(X = x) dx =
Pr(Y = x and x is returned )

Pr(some value is returned)

=
g(x) dxh(x)∫∞

−∞
g(z)h(z) dz

.

Hence the probability density function of returned values is

pdfX(x) =
g(x)h(x)∫∞

−∞
g(z)h(z) dz

.

To construct a sampling algorithm, let f be the target pdf, let g be
the proposal pdf, and let the constant M be such that f(x) ≤ Mg(x)
for all x. The acceptance/rejection discipline is

h(x) = f(x)/(Mg(x)). (2.21)

With this, the pdf of accepted values is

g(x)h(x)∫
gh

=
f(x)/M∫
f(z)/M dz

= f(x).
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As above, the probability of an acceptance is

Pr(Y is accepted) =

∫ ∞

−∞

g(z)h(z) dz = 1/M.

This is the efficiency of the generator, so keep M as small as possible.
Figure 2.12 illustrates the situation for continuous f and g.

Mg(x)

f(x)

x

Fig. 2.12. Rejection method in the continuous case.

Notice that it is not a problem if g(x) = 0 for some x, since we
only use (2.21) to compute h(x) for values of x that are sampled from
a distribution with pdf g. The probability of obtaining an x such that
g(x) = 0 is zero, and thus the situation will never occur.

2.7.1 Sampling from the Beta Distribution

The beta distribution, Be(α, β), is defined as the density given by

f(x) = cxα−1(1 − x)β−1, 0 ≤ x ≤ 1, (2.22)

where the constant c is chosen to make
∫ 1
0 f(x) dx = 1. The parameters

α and β can be any positive real values. If either α or β is less than
1, the density is unbounded but the integral is nonetheless finite. The
mean of the beta distribution is

µ =
α

α + β

and the variance is

var =
αβ

(α + β + 1)(α + β)2
.
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Suppose we want to draw samples from Be(2, 3) whose density is
f(x) = 12x(1 − x)2, 0 ≤ x ≤ 1; see Figure 2.13. We will use the
uniform U(0, 1) as the proposal; thus g(x) = 1, 0 ≤ x ≤ 1. Since
f(x) ≤ 16/9 (from the figure), we may take M = 16/9. Then the
acceptance discipline is

h(x) = f/Mg =
27

4
x(1 − x)2. (2.23)

The rejection sampling algorithm becomes (1) sample U ∼ U(0, 1), and
(2) with probability h(U) return X = U ; otherwise go to (1).

A run might go as follows, U ∼ U(0, 1) = 0.8213, say, so h(U) =
0.0786 as given by (2.23). Now, sampling R ∼ U(0, 1) as the side ex-
periment gives, say, R = 0.616. This is not less than or equal to 0.0786
so U = 0.8213 is rejected. Retrying, this time U ∼ U(0, 1) = 0.384,
say, and h(U) = 0.4371. Another call to U(0, 1) produces R = 0.00506,
which is less than or equal to 0.4371, so the side experiment succeeds.
This time U = 0.384 is accepted and is returned.

probability=f(x)/M

x

M=16/9

0

0.5

1

1.5

2

–0.2 0.2 0.4 0.6 0.8 1.21

Fig. 2.13. The β-distribution 12x(1 − x)2.

This example shows that one can view rejection sampling as an
example of hit-or-miss. Note that the chosen value U is accepted if
16
9 R < f(U) and rejected if 16

9 R ≥ f(U). Plot the point (U, 16
9 R) in

Figure 2.13, and we see that U is accepted if it lies below the graph of
f and rejected if above (or on) the graph.
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2.7.2 Sampling from an Unbounded Beta Distribution

We take up one more example of rejection sampling. This time we
seek samples from an unbounded beta distribution. For simplicity take
α = β with α < 1 (so that the density is unbounded at x = 0, 1), but
the same idea works more generally. The density is

f(x) = cxα−1(1 − x)α−1, 0 ≤ x ≤ 1,

where c is the normalizing factor. Recall that only relative values of f
are needed, so it is not necessary to find c. This is an important feature
of the rejection sampling method.

As the proposal distribution we introduce a composition dividing
the domain into the subintervals [0, 1/2) and [1/2, 1). We will have
more to say about compositions in the next section. By symmetry of
this f(x) we need only sample X from the interval [0, 1/2) and, with
probability 1/2, return either X or 1 − X. Therefore as the proposal
density we use

g(x) = c′xα−1, 0 ≤ x ≤ 1/2.

The cdf is the integral

G(x) =

∫ x

0
c′tα−1 dt = c′

xα

α
.

Since G(1/2) = 1, we get c′ = α/(1/2)α .
To sample from g by cdf inversion entails solving

U =
c′

α
Y α

for Y . We get

Y =
(α

c′
U
)1/α

=
1

2
U1/α,

where we have substituted for c′ from above.
Since α < 1, the largest value of (1 − x)α−1 for 0 ≤ x ≤ 1/2 occurs

when x = 1/2. Therefore we may take M = (1/2)α−1c/c′, and with
this choice we have

Mg(x) = (1/2)α−1 c

c′
c′xα−1 = (1/2)α−1cxα−1

≥ (1 − x)α−1cxα−1 = f(x), 0 ≤ x ≤ 1/2.

Finally, the acceptance discipline is given by
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h(x) =
f(x)

Mg(x)
=

cxα−1(1 − x)α−1

(1/2)α−1cxα−1
= (2(1 − x))α−1 .

As predicted, c drops out and its value is not needed.
The algorithm for Be(α,α) is then:

1. generate U ∼ U(0, 1) and put Y = (1/2)U1/α;
2. as the side experiment, if R ∼ U(0, 1) < h(Y ) then accept Y and

go to step 3; else return to step 1;
3. again sample U ∼ U(0, 1); if U < 1/2 return X = Y ; otherwise

return X = 1 − Y .

2.8 Composition Example: The Gamma Distribution

A density f may be constructed from others, say f1, f2, . . ., fn, by
forming the sum

f(x) = p1f1(x) + p2f2(x) + · · · + pnfn(x). (2.24)

The weights p1, p2, . . ., pn are positive and sum to 1. The mean of a
composition density is

µ = p1µ1 + p2µ2 + · · · + pnµn, (2.25)

and the variance is given by

var = p2
1 var1 + p2

2 var2 + · · · + p2
n varn, (2.26)

since we take the constituent distributions fi to be independent. In this
µi and vari are the mean and variance of the ith distribution.

To sample from a composite distribution, pick index i as in roulette
wheel selection with probability pi, for example via discrete cdf in-
version or the alias method. Having chosen i, sample from fi by an
appropriate method for that density and return the sampled value.

Composition can give rise to a great variety of probability distribu-
tions. One class of examples is the sum of piecewise constant functions
such as a histogram. In this case the fi are just uniform densities and
are easily sampled. Any density can be approximated in this way. A
better approximation is to use piecewise trapezoidal regions. In this
case the fi are appropriately scaled linear functions and these too are
easily sampled.
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Another way in which composition can be exploited for sampling
purposes is by tailoring a piecewise envelope or proposal density g
for use in the rejection method. This gives rise to an exact sampling
method. The combination of composition and rejection provides a pow-
erful tool for many distributions that cannot be treated in any other
way.

We already saw a restricted example of this approach in the last
section, restricted in the sense that by symmetry the two components
were essentially the same distribution. Here we show how the composi-
tion/rejection technique can provide a solution for treating the gamma
distribution. This is another important distribution that arises in con-
junction with the Poisson process.

2.8.1 The Gamma Distribution

In the Poisson process with event rate λ we saw that the exponential
distribution is the waiting time until the first event. By way of general-
ization, the gamma distribution with parameter α is the waiting time
W until the αth event occurs. Using (2.9) we obtain the gamma cdf as
follows:

F (w) = Pr(W ≤ w) = 1 − Pr(W > w)

= 1 − Pr(fewer than α events occur in [0, w])

= 1 −
α−1∑

k=0

(λw)ke−λw

k!
. (2.27)

Differentiating this with respect to w, we obtain the gamma density
function

f(w) =
λ

(α − 1)!
(λw)α−1e−λw. (2.28)

Denote this distribution by G(α, λ).
To begin our treatment of the gamma distribution we first simplify it

by means of a transformation inspired by our work with the exponential
distribution. It is easy to see that if W ∼ G(α, λ), then Y = λW
is distributed as G(α, 1). Therefore we will restrict our attention to
G(α, 1) and use the inverse transformation, W = (1/λ)Y , to get back
to the more general version if necessary.

One of the most important properties of the gamma distribution is
the reproductive property :
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if W1 ∼ G(α1, λ) and W2 ∼ G(α2, λ) are independent, then W1 + W2

is distributed as G(α1 + α2, λ). (See Figure 2.14 for a proof in the
integer case.)

This property is to be expected. The waiting time for α events to occur
is just the α-fold sum of the waiting time for the events to occur one by
one. By the reproductive property it follows that the mean and variance
of the gamma are just the α-fold sums of the mean and variance of the
exponential; hence

µ =
α

λ
, var =

α

λ2
.

As we will see shortly, the reproductive property will also allow us to
generate samples from the gamma distribution by sampling exponen-
tials.

The gamma distribution with α an integer is also known as the
Erlang distribution. The gamma distribution extends the Erlang to the
case that α is any positive real number. For nonintegral α the factorial
is replaced by the gamma function

Γ (t) =

∫ ∞

0
yt−1e−y dy, 0 < t. (2.29)

For integer arguments n = 1, 2, . . .,

Γ (n) = (n − 1)!.

For noninteger arguments the value is given by the integral directly
(2.29). In particular, it can be shown that

Γ

(
1

2

)
=

√
π.

2.8.2 Sampling from G(α, 1)

First let 0 < α < 1. For purposes of rejection, the target density is

f(x) =
1

Γ (α)
xα−1e−x.

Since only relative values count, we can ignore the constant 1/Γ (α).
We will create a proposal density g by composition by splitting the
domain at x = 1. Notice that the value of e−x at x = 1 is 1/e, but
the value of xα−1 at x = 1 is 1, which is e times as big. We need this
observation to stitch together the components of g.
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If W1 is distributed as G(α1, 1) and W2 as G(α2, 1) and they are independent,
then W1 + W2 is distributed as G(α1 + α2, 1).
Decompose the event W1 + W2 = w according to W1; in infinitesimals we
have

Pr(W1 + W2 = w) =
∑

0<x<w

Pr(W1 + W2 = w |W1 = x)Pr(W1 = x)

=
∑

0<x<w

Pr(W2 = w − x)Pr(W1 = x)

=

∫ w

0

(w − x)α2−1

(α2 − 1)!
e−(w−x) xα1−1

(α1 − 1)!
e−x dx

=
e−w

(α2 − 1)!(α1 − 1)!

∫ w

0

(w − x)α2−1xα1−1 dx.

Suppose α1 is an integer; then use integration by parts, letting u = xα1−1

and dv = (w − x)α2−1 dx. The integral becomes

∫ w

0

(w − x)α2−1+1(α1 − 1)xα1−1−1

(α2 − 1 + 1)
dx.

Continue performing integration by parts, a total of n times, until α1 − 1−
n = 0, i.e., n = α1 − 1 times. Then we will have

Pr(W1 + W2 = w) =
e−w

(α2 − 1 + n)!

∫ w

0

(w − x)α2−1+n dx

=
wα2+ne−w

(α2 + n)!
=

wα1+α2−1e−w

(α1 + α2 − 1)!.

Fig. 2.14. Derivation of mean and variance of the Poisson distribution.

Let f1 be the distribution on [0, 1) defined by

f1(x) = αxα−1, cdf1(x) = xα.

And let f2 be the distribution on [1,∞) defined by

f2(x) = e1−x, cdf2(x) = 1 − e1−x.

Let g be the composite density

g(x) = pf1(x) + (1 − p)f2(x).

It will be convenient to define χ1(x) as the characteristic function of
[0, 1),



92 2 Some Probability Distributions and Their Uses

χ1(x) =
{

1 if 0 ≤ x < 1,
0 otherwise,

and χ2(x) as the characteristic function of [1,∞),

χ2(x) =
{

1 if 1 ≤ x,
0 otherwise.

Then g may be written

g(x) = pαxα−1χ1(x) + (1 − p)e1−xχ2(x),

where 0 < p < 1 is our choice.
For reasons that will be clear in a moment, choose p such that

limx↑1 g(x) = e limx↓1 g(x). This gives

pα = e(1 − p), so p = e
e+α and 1 − p = α

e+α .

With this, g becomes

g(x) =
eα

e + α

(
xα−1χ1(x) + e−xχ2(x)

)
.

Now we must find M such that Mg ≥ f .
For 0 ≤ x ≤ 1 the maximum value of e−x is 1; hence choose M such

that
M

eα

e + α
xα−1 = xα−1 ≥ xα−1e−x.

This gives

M =
e + α

eα
.

This value of M works for x ≥ 1 as well; thus

Mg = M
eα

e + α
e−x = e−x ≥ xα−1e−x,

where we note that the maximum value of xα−1 is 1 for x ≥ 1.
The acceptance discipline is

f(Y )

Mg(Y )
=

{
e−Y on [0, 1),
Y α−1 on [1,∞).

Altogether, the algorithm is:

1. let U1, U2 ∼ U(0, 1),

2. if U1 < e
e+α , case A, put Y = U

1/α
2 ; otherwise, case B, put Y =

1 − ln U2;
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3. as the side experiment, let R ∼ U(0, 1); in case A, return X = Y
if R < e−Y ; in case B, return X = Y if R < Y α−1; otherwise go to
step 1.

The efficiency of the algorithm is

1/M =
eα

e + α
.

Now let α > 0 be arbitrary and let m = int[α] and δ = frac(α).
By the reproductive property, if Y ∼ G(m, 1) and Z ∼ G(δ, 1), then
X = Y + Z ∼ G(α, 1). So it remains to show how to generate samples
from the Erlang distribution G(m, 1). But this is easily accomplished by
simulation. In Section 2.5.1 we saw that W = − ln U , where U ∼ U(0, 1)
is a sample from E(1); therefore −∑m

1 ln(Ui), Ui ∼ U(0, 1), is a sample
from G(m, 1). This may be simplified slightly:

1. for i = 1, 2, . . . ,m let Ui ∼ U(0, 1);
2. return Y = − ln(

∏m
i=1 Ui).

The returned value Y is distributed like G(m, 1).

Notes

The problem of devising algorithms for sampling from various distributions
has attracted considerable interest. The book [Rub81] has a wealth of algo-
rithms for many distributions. Probably the biggest effort in this regard is the
two-volume treatise published by the Los Alamos National Laboratory based
on work done at the lab shortly after the Monte Carlo method was invented.

There is also a large interest in obtaining random samples of various types
of combinatorial objects such as graphs, permutations, partitions, and tilings.
The Markov chain Monte Carlo method (see Chapter 3) has both been greatly
influenced by and been very useful in this search.

Multivariate distributions are very common, and thus it is a common prob-
lem to try to extract structure from data derived from a multivariate distri-
bution. This is the central problem in the area of data mining, and many
different ways have been devised to graphically investigate high-dimensional
data sets. Clearly there is no one correct way of doing this.

Problems: Chapter 2

1. (4) (St. Petersburg problem) (a) Player A pays house B $5 and flips a
coin. If it falls tails, the game ends. If it falls heads, B gives A $1 and
A flips the coin again. This continues until the coin lands tails, with B’s
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payoff to A doubling for each successive head. Simulate this game 100
times, then 1000 times, then 10,000 times and histogram A’s winnings.
(b) Keep track of A’s fortune during the play of the series of games. What
observations can you make about this situation?

2. (5) (Paris Salon problem) (a) Let X be the random variable for the first
time a 6 is obtained on the roll of a fair die. This should take 6 rolls on
average, should it not? Simulate this experiment (many times) to obtain
a histogram and to estimate the expectation of X . (b) Given the results
of (a) would you bet $1 to make $1 that a 6 will not be obtained in 4 rolls
of a fair die? Simulate this experiment and report.

3. (3) Let g be the piecewise constant density

g(x) =

{
c, 0 ≤ x < 0.1,
2c, 0.1 ≤ x < 0.7,
c/3, 0.7 ≤ x < 1.0,

and 0 elsewhere. Find c such that this is a probability density function.
Show how to sample from g by inverting the cdf.

4. (4) (Composite density) Let f be the piecewise linear function given by

f(x) =

⎧
⎪⎨

⎪⎩

x/4, 0 ≤ x < 1,
1/4, 1 ≤ x < 3,
(x − 3)/60 − (x − 6)/12, 3 ≤ x < 6,
1/20 6 ≤ x < 15,

and 0 elsewhere. Find the constant c such that g(x) = cf(x) is a probabil-
ity density. What are the respective probabilities that a sample falls within
the regions A [0, 1), B [1, 3), C [3, 6), and D [6, 15)? Devise a method for
sampling from g and implement it.

5. (4) Let g be the function on [−2, 2] given by

g(x) =
8

7
+

118

63
x2 − 74

63
x4 +

10

63
x6.

Find the constant c such that f(x) = cg(x) is the pdf for a distribution.
Show how to sample from this density.

6. (5) (Points in a box) N points are placed uniformly at random in the unit
square. What is the expected minimum distance between them? Simulate
the problem for different values of N and graph the distance versus N .

7. (4) (Sampling from a multivariate normal) If X1, X2 ∼ N(0, 1), argue
that the vector X = (X1, X2) has a distribution whose pdf has circu-
lar symmetry. In fact, the pdf is the function (where C is a normalizing
constant)
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f(x1, x2) = Ce−(x2
1+x2

2)/2.

This is an example of a bivariate normal distribution. Now, given a 2 × 2
matrix A and a vector µ = (µ1, µ2), let

(Y1, Y2) = Y = AX + µ

and investigate the distribution of Y.

8. (4) (Random point from a sphere) The objective of this problem is to
devise a way to find a random sample from the sphere

S = {(x1, x2, . . . , xn) : x2
1 + x2

2 + · · · + x2
n = 1}

in R
n. The hint to do this is to find a multivariate distribution in R

n

whose pdf f has spherical symmetry (that is, f(x) = f(y) if x and y are
the same distance from the origin; see Problem 7). Then sample a point
(X1, X2, . . . , Xn) from f , and the required sample should be

(X1, X2, X3, . . . , Xn)

(X2
1 + X2

2 + · · · + X2
n)1/2

.

Try out your solution in R
2 (obtaining points on the unit circle) and his-

togram them along the line segment [0, 2π].

9. (4) (Distribution of the minimum) Fix N = 10, for the moment. Choose
independently Xi ∼ U(0, 1) for i = 1, 2, . . . , 10; the goal is to find the
distribution of minXi. That is, we want to know Pr(min Xi ≤ t) for each
t ∈ [0, 1). Do this by simulation, that is, generate multiple trials of this
experiment and histogram the random variable minXi. How do the re-
sults depend on N? To see this, change N and repeat.

10. (4) (Distribution of the minimum) Assuming that the Xi are independent,
argue that

Pr(min Xi > t) =
∏

i

Pr(Xi > t)

to compute the pdf and cdf of the distribution of minXi, where Xi ∼
U(0, 1).

11. (4) Show that if X and Y are independently distributed with cdfs FX and
FY respectively, then Z = max{X, Y } has cdf

FZ(z) = FX(z)FY (z).

Use this to find an algorithm to sample from

Z = max{U1, U2, . . . , Un},
where each Uj ∼ U(0, 1).
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12. (3) Obtain samples from a Poisson random variable with parameter
λ = 0.1 per minute for t = 30 minutes by sampling from (a) b(20, λt

20 ),

(b) b(60, λt
60 ), and (c) b(100, λt

100 ). Histogram the results of all three and
compare. Keep track of run times.

13. (3) Obtain samples from a Poisson random variable with parameter
λ = 0.1 by “Method 2” from Section 2.5.1 and histogram the results.
Compare with the results from the previous problem.

14. (4) (Sampling bias for bus waiting times) Suppose the interarrival time
for a city bus has an exponential distribution with parameter 1/λ. A pas-
senger arrives at a uniformly random time and records the time until the
next bus arrives. What is the expected waiting time? Use a simulation to
get an answer. Is the answer surprising? Now suppose instead that the
interarrival time is U(0, 2λ). How does this change the situation? (Notice
that the expected interarrival time is λ in both cases.)

15. (2) Devise an algorithm to obtain samples from the distribution on [0, 1]
with pdf f(x) = nxn−1 for any fixed natural number n.

16. (5) (Difference between equally likely and conditional equally likely; see
[Ross96] page 67) This problem examines a situation in which exponential
waiting times yield an “equally likely” distribution. Consider an exponen-
tial distribution with parameter λ and a situation in which exactly n = 50
events occurred in the interval [0, 1]. Compare this situation to one ob-
tained by choosing 50 samples Ui from U(0, 1) as the events.
For one side of the comparison, let Ui be 50 samples from U(0, 1). For
example, suppose the random numbers are

0.48, 0.36, 0.66, 0.12, 0.82, 0.57, 0.28, 0.11, 0.18, 0.71.

Now sort them to get

0.11, 0.12, 0.18, 0.28, 0.36, 0.48, 0.57, 0.66, 0.71, 0.82,

and histogram the interpoint distances

(0.12 − 0.11 =)0.01, (0.18 − 0.12 =)0.06, (0.28 − 0.18 =)0.10,

(0.36 − 0.28 =)0.08, (0.48 − 0.36 =)0.08, (0.57 − 0.66 =)0.11,

(0.66 − 0.71 =)0.04, (0.82 − 0.71 =)0.11.

To get an estimate of the distribution, this needs to be done many times.
For the other side of the comparison it is necessary to generate E(λ) wait-
ing times that yield exactly 50 events in the interval [0, 1]. The parameter
λ should be set so that the expected number of events is n = 50. The
simplest (but certainly not the most efficient) method to do this is by
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rejection, that is, generate samples from E(λ) and check whether exactly
50 fit in the interval [0, 1]. How inefficient is this? That is, how many
rejections does one get per acceptance? Can you come up with another
method?

17. (3) Show that the following “zombie gap” algorithm approximately simu-
lates exponential arrivals. Find the exponential parameter. (From Scien-
tific American Computer Recreations, April 1985.) Let the “gap” be from
0 to w, w < 1.

loop:

count = 0
loop:

increment count

choose U ∼ U(0, 1)
if( U < w ) break out of loop

endloop

report count as next arrival time

endloop

Here is a sample run: 2, 4, 1, 1, 3, 1, 2, 5, . . ., meaning that the first event
occurred at time 2, the next at time 6 (interarrival time of 4), etc. Show
that the interarrival times are approximately exponentially distributed,
especially for small w. What is the exponential parameter?

18. (3) Suppose a species of bacteria reproduce with exponentially distributed
waiting times having parameter λ = 2. Further suppose there is a “sur-
vival reward” associated with a birth at time t given by r(t) = te−t. By
simulation, estimate the expectation of r. What is the exact value? (Hint,∫∞
0 te−tλe−λtdt = (λ/(λ + 1)2) = 2/9.)

19. (6) (Pure birth process.) Suppose a newly born bacterium waits an ex-
ponentially distributed period of time T with rate parameter λ, in short
T ∼ E(λ), and then divides, replacing itself with two newly born bacteria.
Simulate the growth of such a colony starting from a single bacterium for
60 minutes assuming λ = 0.05 per minute. What is the (empirical) dou-
bling time for such a colony? What is the average number of generations
in this period of time (60 minutes)? (Note: one can derive the differential
equations for a birth process exactly as in the Poisson derivation, the only
difference being that at the time there are k cells, then the event rate pa-
rameter is kλ instead of just λ; hence the system of differential equations
becomes dPk(t)/dt = −λkPk(t) + λ(k − 1)Pk−1(t), and their solution is
Pk(t) = e−λt(1− e−λt)k−1, k = 1, 2, . . ., where Pk(t) = Pr(X(t) = k). The
expectation is E(X(t)) = eλt, i.e., exponential growth. Hence the dou-
bling time for a colony of bacteria is the solution to ln(2) = λt, while for a
single bacterium, it is the solution to 1 = λt via the Poisson expectation
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E(X(t)) = λt.)

20. (5) If Tλ ∼ E(λ) and, independently, Tµ ∼ E(µ), what is the probability
that Tλ < Tµ? (Hint, the joint pdf is λµe−λre−µs.)

21. (7) (Birth and death process.) When a cell is “born,” draw a sample
Tb ∼ E(λ) and a sample Td ∼ E(µ). If Tb ≤ Td, then the simulated cell
divides at time Tb into two new cells as above (and Td is discarded). If
Td < Tb, then the cell dies (and Tb is discarded). Simulate this process for
20 minutes starting from a single cell with µ = 1 per minute and (a) λ = 1,
(b) λ = 1.05, and (c) λ = 1.10 all in units of per minute. Compute the
empirical mean and variance of the number of cells at the end of the study.

22. (7) (Single-server queue.) People join a queue according to the exponen-
tial distribution E(λ). The service time for the person at the front of the
queue is exponential E(µ). Simulate the process for 30 minutes for several
runs. Experiment with different values of λ and µ; note that if µ is not
close to λ, then the queue grows exponentially. Graph the length as a
function of time for one of the runs. Find the mean and variance of the
waiting time in the queue.

23. (7) (Lanchester battlefield model.) Let B denote the number of blue sol-
diers and R the number of red soldiers. Blue soldiers have killing effec-
tiveness parameter µB and red soldiers have effectiveness µR. The Blue
army starts with B0 soldiers and the Red army with R0. The waiting
time for the next death of a Blue soldier is exponential E(RµR), where R
is the number of Red soldiers at that time and the waiting time for the
death of a Red soldier is similarly exponential E(BµB). To start, sample
TB ∼ E(R0µR) and TR ∼ E(B0µB). Move time forward to each event,
handle it, and schedule the next. Thus, if TB < TR, move time forward
to TB, decrement B by one, and resample TB ∼ E(RµR). And continue
until one army or the other is wiped out. Fix µR = 1 and R0 = 100 and
experiment with values of µB and B0. In each case find the (mean) time of
the battle and each side’s expectation of winning. Plot the battle strength
vs time for both armies for a typical run.

24. (5) (Retirement benefit projection) At age 50 Fannie Mae has $150,000
invested and will be investing another $10,000 per year until age 70. Each
year the investment grows according to an interest rate that is normally
distributed with mean 8% and standard deviation 9%. At age 70, Fannie
Mae then retires and withdraws $65,000 per year until death. Below is
given a conditional death probability table. Thus if Fannie Mae lives until
age 70, then the probability of dying before age 71 is 0.04979. Simulate
this process 1000 times and histogram the amount of money Fannie Mae
has at death.
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Mortality table, probability of dying during the year by age∗

50 0.00832 64 0.02904 78 0.09306 92 0.26593
51 0.00911 65 0.03175 79 0.10119 93 0.28930
52 0.00996 66 0.03474 80 0.10998 94 0.31666
53 0.01089 67 0.03804 81 0.11935 95 0.35124
54 0.01190 68 0.04168 82 0.12917 96 0.40056
55 0.01300 69 0.04561 83 0.13938 97 0.48842
56 0.01421 70 0.04979 84 0.15001 98 0.66815
57 0.01554 71 0.05415 85 0.16114 99 0.72000
58 0.01700 72 0.05865 86 0.17282 100 0.76000
59 0.01859 73 0.06326 87 0.18513 101 0.80000
60 0.02034 74 0.06812 88 0.19825 102 0.85000
61 0.02224 75 0.07337 89 0.21246 103 0.90000
62 0.02431 76 0.07918 90 0.22814 104 0.96000
63 0.02657 77 0.08570 91 0.24577 105 1.0000

∗ Source: Society of Actuaries, Life Contingencies.

25. (4) (Median of exponential vs mean) Suppose the lifetime of lightbulbs
is exponential with mean 1000 hours. Given a randomly selected light-
bulb, what is the probability that it will still be burning after 1000 hours?
Perform this experiment 100 times and histogram the event “less than
693 hours” versus “more than 693 hours.” (The median m is the point
where Pr(T ≤ m) = Pr(T > m), so m = cdf−1(1/2). For the exponential,
m = ln(2)/λ = µ ln 2.)

26. (4) Implement all three of the normal sampling routines (via the central
limit theorem, Box–Muller algorithm, Marsaglia–Bray algorithm). Test
them for (a) speed, (b) accuracy (make a pdf and cdf for all three). Com-
pare the results and give some conclusions.

27. (3) One way to check an RNG is to make a correlation plot. This is a
plot of sequential pairs (Xn, Xn+1) generated by the RNG. Ideally, there
should be no structure to this plot. Make a correlation plot for a se-
quence of normal pseudorandom variables using either the Box–Muller or
Marsaglia–Bray algorithm.

28. (4) Test the central limit theorem by sampling (a) 10 times, (b) 100 times
from an exponential distribution; form the normalized random variable;
and plot a pdf and cdf. Compare with table values for the cdf, see Ta-
ble 2.2. Repeat with several different values of the parameter λ. How does
λ influence the outcome?

29. (6) Repeat the previous problem except use several exponential, gamma,
uniform, Poisson, and beta distributions. How does the choice of distri-
bution affect the outcome? How does the choice of parameter for the
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distribution effect the outcome? Does it make much difference whether
the distribution is symmetric or not?

30. (3) Show that if X ∼ N(0, 1), then Y = σX + µ is distributed as normal
with mean µ and variance σ2.

31. (5) (Lognormal distribution.) Let X be normally distributed with mean
α and variance β and let X = ln Y (that is, Y = eX). (a) Find the
probability density function of Y . (b) Devise a way to sample from this
distribution, i.e., to produce random variables Y with the correct distri-
bution.

32. (4) Let g be the density g(x) = (x − 2)/12 − (x − 6)/24, 2 ≤ x < 6,
and 0 elsewhere. Sample from g by (a) inverting the cdf and (b) rejection.
Histogram and compare the speed of drawing N samples for a convenient
N (100,000 or 1,000,000 perhaps).

33. (3) Adapt the rejection method to sample from a beta distribution whose
pdf is f(x) = cxα−1(1−x)β−1, α > 0, β > 0, and 0 ≤ x ≤ 1. The constant

c is chosen so that
∫ 1

0
f(x)dx = 1. Use α = 5 and β = 2, for example.

Notice that the value of c is not needed (except to compute the optimal
value for M). Make a histogram.

34. (5) Devise an envelope function g to use in the rejection method to sample
from the distribution whose pdf is f(x) = cx2e−x, 0 ≤ x < ∞, where c is
chosen so that

∫∞
0

f(x)dx = 1. Test your samples for accuracy with the
pdf by histogramming, check for correlation (by graphing (xn, xn+1)), and
test for efficiency (i.e., rate of generation) and the effect of the starting
point (by doing a pdf starting from different points).

35. (6) Do a pure birth model, see Exercise 19 above, using a gamma distri-
bution in place of the exponential distribution for waiting times.

36. (7) Do a birth and death model, see Exercise 21 above, using a gamma
distribution in place of the exponential distribution for waiting times.

37. (4) Can you think of an alternate way of obtaining a probability p = 1/3
Bernoulli trial random variable (or any other for 0 < p < 1) using coin
flips? (Hint: (thanks to Michael Lacy) express p in binary.)



3

Markov Chain Monte Carlo

3.1 Discrete Markov Chains

A Markov chain extends the idea of a single probabilistic experiment
on the outcome space Ω to a sequence of experiments on Ω, one for
every t = 0, 1, . . .L̇etting Xt denote the tth outcome, we say that the
process moves from state Xt−1 to state Xt on the tth iteration. The
other major novelty here is that the probabilities governing the next
move can depend on the present state. In fact, it is usually the case
that from any given state x it is possible to move to only a small subset
of Ω, called the neighborhood of x.

It turns out that this setup of a recurring probabilistic process has
wide applicability. Some examples are the changes from moment to
moment of a thermodynamic system, the changes in a species’ DNA
sequence wrought by mutations, the step-by-step folding of a protein
molecule, the day-to-day price of a stock, a gambler’s fortune from
gamble to gamble, and many others. The crucial aspect of a Markov
chain is that the system must evolve from one moment to the next in
a random way, but depending only on the state of the system at the
given moment and not on the entire history.

As the process is performed repeatedly, what conclusions can be
drawn about it?

3.1.1 Random Walk on a Graph

A Markov chain can be illustrated by a kind of graph as follows. The
states are depicted as the vertices of the graph. A directed edge extends
from one vertex, x say, to another, y, if a transition from x to y is
possible in one iteration. See Figure 3.1. The set of all states that can
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be reached from x in one iteration is the neighborhood of x, denoted
by Nx. Each such directed edge has a probability pxy associated with
it. This is the probability that the edge will be chosen on the next
iteration when the chain currently is in the state x.

x1

x2

x3

x4

p12

p21

p23
p31

p43

p14

p11

p44 p34

Fig. 3.1. The graph representation of a four-state Markov chain. Its corre-
sponding transition matrix is

⎡
⎢⎣

p11 p12 0 p14
p21 0 p23 0
p31 0 0 p34
0 0 p43 p44

⎤
⎥⎦ .

The chain starts in some state, say X0, which may be chosen ran-
domly according to a starting distribution or just assigned. From then
on, the chain moves from state to state on each iteration according to
the neighborhood transition probabilities. Given that the chain is in
state x on some iteration, the next state is chosen according to the
discrete density given by {pxy : y ∈ Nx}. Notice that the sum of the
outgoing probabilities from each vertex x must be 1 to cover all the
possible transitions from x,

∑

y∈Nx

pxy = 1, for all x ∈ Ω. (3.1)

The selection is implemented using any of the roulette wheel selection
methods. In the graph, the chain moves along the chosen edge to the
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next chosen vertex (or stays put if the edge joins the vertex to itself),
and the process is ready for the next iteration. In this way, a Markov
chain can be envisioned as a random walk on a graph (we will have
much more to say about random walks in Chapter 5).

To illustrate, consider the following hypothetical model for the stock
market: relative to yesterday, today the market can be up, down, or
unchanged as follows (see Figure 3.2):

• if yesterday was up, then the probabilities for today are up 0.3,
unchanged 0.2, down 0.5;

• if yesterday was unchanged, then the probabilities for today are up
0.4, unchanged 0.2, down 0.4;

• if yesterday was down, then the probabilities for today are up 0.4,
unchanged 0.3, down 0.3.

0.4

0.4
0.4

0.30.3

0.5

0.2

0.2

0.3

down same

up

Fig. 3.2. The stock market Markov chain example.

Simulating a Small Chain

To simulate the stock market chain, we first decide on a starting state.
We could make the selection randomly or just assume some state de-
terministically. For our example let us say that yesterday was “up”
and we want to simulate today’s market. To do so we must make a
roulette wheel style selection among “up,” “unchanged,” and “down”
with probabilities 0.3, 0.2, and 0.5 respectively. For this we may use
the methods of Section 2.1, inverting the cdf, or Section 2.2, the alias
method. For cdf inversion the cumulative break points are 0.3, 0.5, and
1.0; make a side experiment for U ∼ U(0, 1). If U < 0.3 we stay in
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“up,” if 0.3 ≤ U < 0.5 move to state “unchanged,” and if U ≥ 0.5
move to state “down.”

To carry this out in software, it is helpful to construct a cumulative
distribution matrix C for the chain by rows:

C =

⎡

⎣

up same down

up 0.3 0.5 1.0
same 0.4 0.6 1.0
down 0.4 0.7 1.0

⎤

⎦. (3.2)

Then for the simulation loop, take the following:

select i // get the chain started in state i
Loop over repetitions t = 1, 2, . . .

U ∼ U(0, 1) // a random value in [0, 1)
j = 1
while( cij ≤ U)

j = j + 1
end while

// j becomes the next state, histogram it
i = j // update for the next iteration

end Loop

As the algorithm runs it reports an instance of the chain, namely
the sequence of states Xt, t = 1, 2, . . ., that occurred as a result of the
particular random numbers that were chosen.

Alternatively, we could histogram a run. In this way we get the
fraction of time the chain spends in each state. If the histogram is re-
plotted after every repetition t, we will see that it changes considerably
at first but eventually settles down and becomes nearly constant. This
demonstrates one of the fundamental properties of a regular Markov
chain, the existence of an invariant distribution. If two simple regular-
ity conditions are satisfied (see the next section), a Markov chain will,
asymptotically, visit all its states, at random to be sure, but neverthe-
less each with a specific frequency.

Thus in our market model, if we knew these frequencies, we would
know whether “up” occurred more often than “down” and be able to
predict the drift of the market.

For the most part we are not interested in particular instances of a
chain; rather we are interested in its general properties, properties valid
over all instances. Since the chain is a random process, these properties
will naturally be probabilistic.



3.1 Discrete Markov Chains 105

For this we need to histogram in a different way. Suppose we start
our stock market chain in the “up” state and perform exactly one
repetition, that is, sample the random variable X1. Do this many times
and histogram the result; it is a histogram of the distribution of X1.
If we could do this infinitely many times, the histogram would show
“up” at 0.3, “unchanged” at 0.2, and “down” at 0.5 because these are
the transition probabilities out of the “up” state, and thus will be the
corresponding proportions.

Similarly, we can do the same thing for Xt for any t > 0. We are led
to an important tool in understanding Markov chains, the state proba-
bility vector, or in brief, the probability vector pt. It is the probability
distribution of Xt. Understanding the behavior of pt is a major goal in
understanding a Markov chain; in particular, the long-term behavior
of pt is of interest. By convention we take pt to be a row vector.

If we let X0 represent the random variable for the starting state, then
p0 is the starting distribution. For example, it could be p0 = [ 1 0 0 ],
meaning a deterministic start in the “up” state.

3.1.2 Matrix Representation of a Chain

As an alternative to the graph representation, a Markov chain can be
defined by the matrix P = (pxy) of the probabilities pxy of transitioning
from state x to state y in one repetition of the chain. This is called the
probability transition matrix or just transition matrix in brief. By (3.1),
each row of P must sum to 1.

But this matrix formulation is much more than a tabular description
of the chain; it is also a calculation tool. Let pt be the probability vector
of the random variable Xt. Then we can calculate pt+1 as the matrix
product

pt+1 = ptP, t = 1, 2, . . . . (3.3)

For example, the transition matrix of our stock market example is

P =

⎡

⎣

up same down

up 0.3 0.2 0.5
same 0.4 0.3 0.3
down 0.3 0.4 0.3

⎤

⎦.

Starting the chain in the “up” state, we may calculate p1,

p1 = [ 1 0 0 ]

[
0.3 0.2 0.5
0.4 0.3 0.3
0.3 0.4 0.3

]
= [ 0.3 0.2 0.5 ] ,
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which is the same as we got for the distribution of X1 above. Continu-
ing,

p2 = p1P = [ 0.3 0.2 0.5 ]

[
0.3 0.2 0.5
0.4 0.3 0.3
0.3 0.4 0.3

]
= [ 0.32 0.32 0.36 ] ,

and so on for any value of t recursively. It is clear by recursion that

pt = p0P
t. (3.4)

Continuing with the example above, the next few distributions pt are

p3 = [ 0.332 0.304 0.364 ] ,

p4 = [ 0.3304 0.303 0.3664 ] ,

p5 = [ 0.33032 0.3036 0.36608 ] ,

. . . . . .

p10 = [ 0.330357 0.303571 0.366072 ] .

Notice how the distribution quickly settles down and tends to a limit,
the invariant distribution. This is a general feature of Markov chains.

Invariant Distribution

For regular Markov chains, the probability vectors pt tend toward the
invariant distribution π in the limit. This distribution earns its name
because

πP = π. (3.5)

In other words, if at any time the probability vector becomes the in-
variant distribution, then it remains so from then on out.

The proof of the existence of and convergence to the invariant distri-
bution is outlined in Appendix B, and is given by the Perron–Frobenius
theorem. The conditions on P we have been calling regular are these:

1. irreducible: this means, in the graph representation, that there is a
directed path leading from every vertex to every other vertex.

2. aperiodic: this means that there is no integer d > 1 such that the
number of iterations between the return from any state to itself
must be a multiple of d; see Figure 3.3 for an example of a chain
that is periodic.
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The first condition is a type of mixing condition on the chain, imply-
ing that the only (nontrivial) invariant region is the entire state space.
Clearly, if this condition is not satisfied (as when the corresponding
graph is disconnected into several components), there can be no unique
invariant distribution that is always the limit of the probability vector
pt.

If the second condition is violated (as in Figure 3.3), then pt will
oscillate and thus won’t converge.

In the small stock market example above, it is not hard to solve the
equation πP = π to find that (exactly)

π =
[

37
112

34
112

41
112

]
≈ [ 0.33035714 0.30357143 0.36607143 ] ,

as we saw above.

2 31

1 1

1/2 1/2

Fig. 3.3. A periodic chain of period d = 2. For any state x, the number of
iterations between returns to x is a multiple of 2.

3.2 Markov Chain Monte Carlo Sampling—The

Metropolis Algorithm

The idea for Markov chain Monte Carlo (MCMC) sampling goes back
to 1953, when N. Metropolis et al. published the paper “Equations of
state calculations by fast computing machines” [MRRTT]. The authors
were trying to solve problems in physics that arise due to the random
kinetic motions of atoms and molecules. The measurable quantities of
the system are expectations over the distribution of the locations, orien-
tations, and velocities of the atoms or molecules. The paper introduced
to the world the incredibly useful Metropolis simulation algorithm. In
fact, this algorithm has been cited as among the top ten algorithms
having the greatest influence on the development of science and engi-
neering.
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The Metropolis algorithm is at the heart of most MCMC sampling
methods. The basic idea behind MCMC is to construct a Markov chain
whose invariant distribution is the desired sampling distribution. While
this might seem quite complicated, the flexibility inherent in choosing
the transition probabilities makes this simpler than it appears.

Our description and motivation of the Metropolis algorithm start
with the rejection sampling method. Recall that in the rejection sam-
pling method we have a target density f , a proposal density g, and an
acceptance discipline h. Assume, for convenience, that f is a discrete
probability density with outcome space Ω. Samples from f will be ap-
proximated by the sequence of states X1, X2, . . . of a Markov chain over
Ω. As in the rejection method, generating the next state is a two-part
process: a proposal followed by acceptance or rejection. By regarding
the process as a chain, transitions from state to state may depend on
the value of the current state. Thus, both the proposal process and the
acceptance process can depend on the current state.

This means that gx(·) must be defined for every x ∈ Ω, but in fact,
this is often easy to do, and is guided by the particular application (or
distribution) in question. In the simplest case, gx = g of the rejection
method for all x, but then we get nothing new (and the associated
Markov chain will be very simple, with each iteration independent of
the previous one).

The ability to use a different proposal for each point x ∈ Ω gives a
new range of possibilities over rejection sampling and is the source of
the power of the Metropolis algorithm. The one restriction imposed on
gx by the Metropolis algorithm is that it should be symmetric, that is,
that

gx(y) = gy(x). (3.6)

While this condition seems restrictive, in most cases it is natural. It is
possible to get by with the slightly less restrictive condition that

gx(y) > 0 if and only if gy(x) > 0.

This requires some simple modifications of the acceptance discipline
that is presented here.

The increased flexibility of using a different proposal for each x
comes at a cost, however, since the samples which are generated may
now be correlated.

The other difference compared to the rejection method is that the
acceptance discipline also depends (in general) on the current state x
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as well as the proposed state y. In fact, the acceptance discipline for
the Metropolis algorithm is

h(x, y) = min

(
1,

f(y)

f(x)

)
. (3.7)

This says that if the proposed state y has greater probability than the
current state x, f(y) ≥ f(x), then accept it with certainty. If not, then
accept it with probability equal to the ratio f(y)/f(x). As before with
the rejection method, only the relative values of f are needed.

Here is the Metropolis algorithm:

select x // get the chain started in state x
Loop over repetitions t = 1, 2, . . .

select y from Nx using density gx // propose y
put h = min(1, f(y)/f(x)) // acceptance probability
if U ∼ U(0, 1) < h then x ← y // else x unchanged
// histogram x

end Loop

Recall that the proposal process g has to satisfy the symmetry re-
quirements given in (3.6).

While this may seem simple, it is incredibly powerful and has been
generalized and used in a multitude of applications.

3.2.1 Some Examples

To start with something familiar, our first example is simulating dice
rolls. Here the state space is Ω = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. To con-
trast the effect of allowing proposals to be state-dependent, we solve the
problem twice, once using the smallest possible neighborhood system
and then again using the largest.

Minimal Neighborhoods

Here the neighborhood for each state is just one or two other states.
For each 3 ≤ x ≤ 11 let

gx(y) =

{
1/2, if y = x − 1,
1/2, if y = x + 1,
0, otherwise,

and let g2(3) = g2(2) = 1/2 and g12(11) = g12(12) = 1/2. This com-
pletes the definition of the proposal functions. Evidently it too may be
codified by a matrix, the proposal matrix
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G =

⎡
⎢⎢⎢⎣

1/2 1/2 0 0 0 0 0 0 0 0 0
1/2 0 1/2 0 0 0 0 0 0 0 0
0 1/2 0 1/2 0 0 0 0 0 0 0
...

. . .
. . .

. . . · · ·
0 0 0 0 0 0 0 0 0 1/2 1/2

⎤
⎥⎥⎥⎦ . (3.8)

The first row says that if the current state is X = 2, then the proposed
next state is 2 or 3, with both equally likely. Thus the first row repre-
sents g2(·). Similarly for the other rows. Notice that we have made the
proposal matrix symmetric.

The return values will obviously be correlated; for example, if the
present state is 5, the next state will be either 4 or 6, since only these
are even proposed. The value of MCMC sampling lies in its ability to
generate the correct statistics, provided that a sufficiently large number
of repetitions are performed.

Figure 3.4 represents 20,000 repetitions of the MCMC sampling al-
gorithm using this proposal scheme. The figure was generated by the
Matlab code given below.

1 2 3 4 5 6 7 8 9 10 11 12
0
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1500
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2500
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3500

Fig. 3.4. MCMC dice rolls, 20,000 samples.
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Matlab
> f=[0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1];
> d=zeros(1,20000); % for histogramming
> x=5;
> for i = 1:20000

U = rand;
if x == 2

if U < 0.5
y = 3;

else
y = 2;

end
elseif x == 12

if U < 0.5
y = 11;

else
y = 12;

end

continued...
else

if U < 0.5
y = x-1;

else
y = x+1;

end
end
h = min(1,f(y)/f(x));
U = rand;
if U < h

x = y;
end
d(i) = x; % record the state

end
> a = 1:1:12;
> hist(d,a)
> [N,h] = hist(d,a)

Maximal Neighborhoods

The maximal neighborhood is the one for which Nx = Ω for all x. That
is, from any state x, any other state may be proposed, for example, all
with equally likelihood. Such a proposal matrix for dice-rolling is given
by

G =

⎡
⎢⎢⎣

1/11 1/11 · · · 1/11
1/11 1/11 · · · 1/11

...
...

. . .
...

1/11 1/11 · · · 1/11

⎤
⎥⎥⎦ .

With this neighborhood choice the proposal distribution, gx(·), is con-
stant with respect to x. However, the acceptance discipline as given by
(3.7) is still bivariate. Notice that this choice of neighborhood corre-
sponds to generating independent samples.

Markov Chain Monte Carlo for Continuous Chains

In this next example we show how the method can be applied to sample
from a continuous distribution, namely the gamma distribution. The
underlying Markov chain is continuous with state space Ω = [0,∞).

To implement the sampling algorithm, note that we have an end-
effect problem at the origin. Namely, points y < 0 cannot be accepted,
but at the same time, the proposal density must be symmetric, gx(y) =
gy(x). We handle this by adopting as the proposal density, for all x, the
uniform density over the interval of length 2 centered at x and simply
not accepting any proposed point less than 0. Since gx() is a uniform
density of length 2 centered at x, if y belongs to this interval, then x
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belongs to the interval of length 2 centered at y and is proposed just as
likely as y is from gx(). Any asymmetry is pushed off to the acceptance
discipline. The situation is similar to that in the discrete case above,
where the end effect was solved by a self-loop at x = 2 and x = 12 of
probability 1/2.

With that background, the algorithm is simply

select x > 0 // get the chain started in state x
Loop over repetitions t = 1, 2, . . .

select y from U(x − 1, x + 1) // propose y
if y < 0 then y ← x // stay at x
h = min(1, f(y)/f(x)) // acceptance probability
if U ∼ U(0, 1) < h then x ← y // else x unchanged
// histogram x

end Loop

The resulting frequency diagram is shown in Figure 3.5.
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Fig. 3.5. MCMC sampling for f = 0.5x2e−x, 20,000 samples.

3.2.2 Why Does the Metropolis Algorithm Work?

Why does the Metropolis algorithm constitute a Markov chain whose
invariant distribution is f?
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We have already seen that a regular Markov chain has a unique
invariant distribution π and that the probability vector pt converges to
it asymptotically. A good analogy for this is to imagine that there is 1
unit of “probability mass,” something like sand, and on each repetition
of the chain some of the probability mass of a state flows out along
the directed edges of its graph representation and some flows in. The
amount that flows out is calculated as the amount of probability mass
pt(x) in x at time t times the fraction that goes to y from x, summed
over all y:

“mass” out of state x on repetition t =
∑

y∈Ω

pt(x)pxy.

And the amount that flows in from other states is

“mass” into state x on repetition t =
∑

y∈Ω

pt(y)pyx.

For the invariant distribution these are equal for all states x:

π(1)p1x + π(2)p2x + · · · + π(N)pNx

= π(x)px1 + π(x)px2 + · · · + π(x)pxN

= π(x) (px1 + px2 + · · · + pxN )

= π(x). (3.9)

Of course, this is no more than restating πP = π for the xth row.
But suppose each pair of states exchanges probability mass in bal-

ance with each other, this condition is called detailed balance,

π(x)pxy = π(y)pyx, x, y ∈ Ω. (3.10)

Then (3.9) will follow. In fact, for the Metropolis algorithm, the tran-
sition probability is given by

pxy = gx(y)h(x, y),

because to make the transition from x to y, y must be proposed and
then accepted. Assume that the target distribution f is the invariant
distribution and check whether detailed balance holds,

f(x)gx(y)h(x, y) = f(y)gy(x)h(y, x).

Assuming without loss of generality that f(y) > f(x), this becomes
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f(x)gx(y)1 = f(y)gy(x)
f(x)

f(y)
.

Since we assumed that g is symmetric, these are the same, and thus
detailed balance (3.10) holds for the Metropolis chain with respect to
f . Since there is always at least one state at which it is possible to stay
(any y where f(y) ≥ f(x) for all x), the chain cannot be periodic. To
ensure that the chain is irreducible, it is only necessary to assume that
the proposal process governed by g is irreducible.

Under these conditions, the Metropolis algorithm asymptotically
tends to the target density f as the number of repetitions increases.

3.3 MCMC Sampling and the Ergodic Theorem

Just knowing that the distribution of a chain converges to the invariant
distribution is not quite enough to justify the use of MCMC sampling.
This fact alone says only that we can draw a sample from the invariant
distribution by waiting long enough and then sampling the position
of the chain. However, MCMC sampling computes expectation values
(in general), and so requires many samples from the invariant distri-
bution. By the construction of a Markov chain, the samples are not
independent, but are correlated. Is this sufficient to be able to compute
expectation values? Clearly arbitrary correlated samples are not suf-
ficient (they could all be identical), but those generated by a Markov
chain are not arbitrary.

Under the same conditions (irreducibility and aperiodicity) given
previously, a Markov chain will have the ergodic property given in the
next theorem.

Theorem 3.1. Let (Xn) be an irreducible aperiodic Markov chain with
finite state space Ω and stationary distribution π. Let r : Ω → R be
any function. Then

lim
N→∞

1

N

N∑

i=1

r(Xi) = Eπ(r),

where by Eπ we mean the expectation with respect to the distribution π.

This theorem justifies the use of MCMC in computing expectation
values, which is the standard use of MCMC.
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3.4 Statistical Mechanics

In this section we give a basic introduction to the principles of statis-
tical mechanics. Our purpose is to provide the foundation for the Ising
model, which we take up in the next section, and to explain the origin
of the Boltzmann factor in the Metropolis algorithm (whose presence is
not evident in the algorithm as we presented it in the previous section).
In fact, the original derivation of the Metropolis algorithm stems from
the need to produce samples from the Boltzmann distribution for the
purpose of solving statistical mechanics problems. Readers with limited
time may safely skip this section with no loss of continuity.

Statistical mechanics, or statistical physics, is the study of the
macroscopic properties of systems having an astronomical number of
states of existence. The prototypical example is a gas in a confined re-
gion of space. An accurate model must keep track of each gas molecule
in all its minute detail: its position, momentum (velocity), quantum
state, spin, and so on. Even an approximate model, called particles-
in-a-box, noting only position and momentum, requires six coordinates
per molecule. A cubic meter of air might contain 1025 molecules, and
thus the state of this system is described by a vector x with 6 × 1025

coordinates.
Such a microstate x is a complete specification of the system. Every

property of the system can be determined from it. The phase space Ω of
a system is the space of all possible microstates x. For the particles-in-a-
box it encompasses all possible positions and velocities of the particles
and is thus astronomically large indeed, albeit finite owing to quantum
mechanics.

One of the simplest possible systems is a lattice of N points arrayed
in space with each point existing in one of two configurations. Such
a system is called the Ising model. The configuration of each point
is termed its spin, and it is either “up” or “down.” Mathematically,
spin is taken to be +1 or −1. The Ising model actually approximates
certain real physical systems, magnetic materials for example. Every
electron can be considered as a small magnet with either a spin up or
a spin down. Electrons within an atom that are up/down paired cancel
each other’s magnetism. However, a material composed of atoms having
unpaired electrons can exhibit magnetism at ordinary scales. The points
of the Ising model play the role of atoms with unpaired electrons.
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Macroscopic Observables

In aggregate, the entities of the system determine physical properties
that can be measured at ordinary scales, the macroscopic observables
of the system. For the particles-in-a-box, pressure and temperature are
examples. In the Ising model, an observable is the magnetic moment of
the system defined as the net number of up spins over down spins.

Due to its thermal energy, the microstate of any system is con-
stantly changing in a random manner. As a result, the sequence of mi-
crostates executes a random walk through phase space. But the range
of macroscopic properties represented by phase space is vast and quite
pronounced. For example, it is possible for the particles-in-a-box to be
located entirely in one corner of the box occupying a volume 1/10 that
of the whole. In the Ising model all of the spins could be up.

These specific states may be just as likely or even more likely than
any other specific states, so why don’t we ever find all the air in a room
packing itself into one corner, or iron spontaneously magnetizing?

Macroscopic Partitions of Phase Space

To answer this question, imagine the states of the phase space parti-
tioned into regions corresponding to the macroscopic property of inter-
est. With regard to particles-in-a-box, one partition region could be for
microstates having molecules distributed throughout the box, that is,
in every 1/10 subvolume of the box, and another for those microstates
putting molecules only in one specific corner, Ωcorner, of the box (and
many other partition sets as well).

Now we must count the number of microstates in each partition set.
If the box has only one particle, and if we ignore velocity, then the size
of Ωcorner is one-tenth the size of Ω. If there are two particles, then
|Ωcorner| is approximately 1/100th that of |Ω| (approximate because
both particles cannot occupy the exact same location). And if there
are 1025 particles, then the relative size of Ωcorner is approximately

p =

(
1

10

)1025

= 10−1025
.

This is also the chance that all 1025 particles will at some time be in
the corner of the box. The expected number of samples of Ω in order
to get a “hit” in Ωcorner is 1/p, or

101025
.
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If states are sampled at the rate of one billion per second, that is 109

every second, then in the entire age of the universe, thought to be about
1018 seconds, only 1027 points of the phase space have been sampled at
most. This is insignificant by comparison.

The situation is similar in the Ising model. The number of states
having all spins in the same direction is 2, all up or all down, while the
size of the phase space is 2N . For a 100 × 100 lattice of spins, a toy
system in comparison to any magnetic material, the size of phase space
is 210,000 = (210)1000 ≈ (103)1000 (exactly 1.995×103010 to four decimal
places). This is far larger than 1080, the estimated number of protons
in the universe.

By contrast, the number of microstates having a net spin of 0, thus
a magnetic moment of 0, is

(
N

N/2

)
=

N !

(N/2)!(N/2)!

when N is even. For a 100×100 lattice, this amounts to some 1.59179×
103008 (compare this to the total number of states given above).

As an aside, we work out an approximation to combinatorial num-
bers such as this; an approximation we will also need later on. It can be
derived from the central limit theorem approximation to the binomial
random variable B equal to the number of up-spins in the lattice. Take
p = q = 1/2; then µ = np = n/2 and var = npq = n/4, and

(
n

x

)
1

2n
=

(
n

x

)
1

2

x 1

2

n−x

= Pr(B = x)

= Pr

(
x − 1

2
< B < x +

1

2

)
.

But by the central limit theorem, approximately B ∼ N(n
2 , n

4 ). Com-
bining these, we get

(
n

x

)
1

2n
≈
∫ x+ 1

2

x− 1
2

1√
2π

1√
n/4

e
− 1

2
(t−n/2)2

n/4 dt

≈
√

2

πn
e−

2
n

(x−n/2)2 · 1,

in which it is assumed that the integrand is approximately constant
over the interval of length 1. Hence

(
n

x

)
≈ 2n

√
2

πn
e−

2
n

(x−n/2)2 , (3.11)
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and so (
N

N/2

)
≈ 2N

√
2

πN
.

For N = 100 the approximation is 1.59183×103008 . The relative chance
of observing all spins up or down to observing an equal number of up
and down spins is approximately

2

2N
√

2
πN

,

a very small number even for modest N .

Entropy

The considerations above show that one of the key properties of thermal
systems is the size of the partitions of phase space. Since these numbers
are so big, the logarithm, to base e, of size is used in place of the raw
count. Entropy is defined as

S = kB log n, (3.12)

where kB is a constant that depends on the units being used and n is
the number of states in the partition being counted. Summarizing the
above,

thermal systems tend to be in the macrostates having maximal
entropy.

An energy E is always associated with the microstates of a thermal
system. For particles-in-a-box, the sum of the kinetic energies 1

2mv2 of
its particles is a component of the energy of the system. There may be
others. In the Ising model, the sum of the interaction energy −Jxixj

between every pair of neighboring spins i and j is one component of
the system’s energy. In this expression, the constant J measures the
strength of the interaction. And recall that xk is either +1 or −1 for
all components of x. If the system is in an external magnetic field
of strength H, then the sum of each spin’s interaction with the field,
−Hxi, is another other component of the energy.
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Systems in Contact

Now consider two systems brought into contact in such a way that they
can exchange energy only (not particles). This situation vastly increases
the number of microstates available to the combined system. If Ni

denotes the number of microstates of system i = 1, 2, then N = N1N2

is the number of microstates N of the combined system. In terms of
entropy this is

S = kB log(N1N2) = kB(log N1 + log N2) = S1 + S2. (3.13)

So entropy is conveniently additive. Energy is additive as well: the
combined energy is the sum of the energies of the individual systems,

E = E1 + E2. (3.14)

What changes can be predicted for the combined system? The an-
swer is that energy will be exchanged in such a way that the entropy of
the combined system is maximized. By (3.14), E2 = E − E1, showing
that as energy flows into system 1, the same amount flows out of sys-
tem 2, so the entropy of the combined system is a function of E1 only
(or E2 only if we prefer). Maximizing this with respect to E1 gives

0 =
dS

dE1
=

dS1

dE1
+

dS2

dE2

dE2

dE1
=

dS1

dE1
− dS2

dE2
.

Therefore we see that in the final state, the quantity that is equilibrated
between the two is dSi/dEi. Define the temperature T of a system
according to the equation

dS

dE
=

1

T
. (3.15)

Thus in the final state, T1 = T2. Temperature is taken as the reciprocal
of the derivative, so the direction of energy flow will be from the system
with high temperature to the system with low temperature.

It is clear that the entropy of the final state of the combined system
will be greater than or equal to that of the sum of entropies of the
separate systems. This is because the separate systems were constrained
to have the energies E1 and E2 respectively (for a total of E), but the
combined system is constrained only by E and can have any values of
E1 and E2 (so long as their sum is E).
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Boltzmann Factor

Suppose a system under study, system 1, is in contact with a heat
bath, a much larger system, denoted by 2, tending to keep the smaller
one at a constant temperature. We are interested in the probability
that the smaller system will be in a given macrostate M as a function
of the energy of that macrostate. We know that this is proportional
to the number of microstates N1 + N2 of the combined system for
that macrostate. But the heat bath is so much larger that changes
to N2 dominate, while those of the smaller system are negligible in
comparison. By expanding the dependence of S2(E2) on E2 in a Taylor
series, and using (3.14), we have

S2(E − E1) = S2(E) − dS2

dE2
E1 + higher-order terms in E1

≈ S2(E) − 1

T
E1.

Since S2 = kB log N2, or equivalently, N2 = e
1

kB
S2 , we have

Pr(M) ∝ N2 = e
1

kB
S2 = e

1
kB

S2(E)
e
−

E1
kBT (3.16)

(the notation a ∝ x means that a = cx for some c). The term e−E1/(kBT )

is the Boltzmann factor. It shows that low-energy configurations are
more likely than high-energy ones and exactly how this is related to
temperature.

The Partition Function

The probability distribution of microstates over Ω can now be given.
Its density is

f(x) =
e−E(x)/kBT

Z
, (3.17)

where Z is the normalizing factor. It is called the Boltzmann distribu-
tion. The normalizing factor is of course

Z =
∑

x∈Ω

e−E/kBT . (3.18)

But Z, called the partition function, is more than just a normalizing
factor. It plays a central role in the derivation of the thermodynamic
properties of the system. A discussion of these matters leads beyond
the scope of this text. Our interest lies with simulating thermal systems
and estimating the values of macro observables. For that we need the
following definition and the Metropolis algorithm.
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Thermal Averages

The value of a macro observable can be predicted by forming its expec-
tation over Ω using the Boltzmann density. Denoting an expectation
by the notation 〈·〉 (a standard notation in statistical mechanics), the
expectation of macro observable M is given by

〈M〉 =
∑

x∈Ω

M(x)e
−E(x)
kBT /Z. (3.19)

3.5 Ising Model and the Metropolis Algorithm

In this section we carry out an Ising model simulation. Its central
feature is the use of the Metropolis algorithm for ensuring that the
configurations are sampled from the Boltzmann distribution, at least
asymptotically.

Often the purpose of such a simulation is to calculate some macro-
scopic observable. In this case we will be calculating the magnetic mo-
ment M of the system at various temperatures. This is the average of
the net up-spin of a configuration averaged over phase space Ω under
the Boltzmann distribution, equation (3.17),

〈M〉 =
1

Z

∑

x∈Ω

M(x)e
−

E(x)
kB T . (3.20)

To describe the phase space, imagine a lattice Λ with a spin at each
node. In the Ising model, the spin can take one of two values, ±1, at each
node. A choice of a spin for each node in the lattice is a configuration
or microstate x ∈ Ω. For x ∈ Ω, M(x) is defined to be the sum of
the spins in this particular configuration. Thus, if there are about as
many positive as negative spins in x, we would have M(x) close to 0. In
(3.20), the number kB is Boltzmann’s constant, T is the temperature,
and Z is the normalization factor for the Boltzmann distribution. For
notational simplicity, often we use

β = 1/(kBT ). (3.21)

In general, the energy function E is given by an expression of the
form

E(x) = −1

2

∑

i∈Λ

∑

j∈neighbors of i

xixj. (3.22)
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Thus, having many nodes with spins similar to its neighbors makes the
energy decrease.

We will implement a 2-dimensional model, so on a 2D regular grid,
with periodic boundary condition, meaning that spins in the last column
of the domain are neighbors of those in the first column and those in
the bottom row of the domain are neighbors of those in the first row.
Topologically this forces the lattice onto the surface of a torus (or a
doughnut).

An alternative to the periodic boundary condition is the free bound-
ary condition, in which the spins along the left boundary of the lattice
have only three neighbors, above, below and on the right; those on the
right boundary have only those above, below, and on their left, and so
on. The corner spins have only two neighbors.

Given a lattice point (i, j), not a boundary point, its neighbors are
the four points: (i − 1, j), (i, j − 1), (i, j + 1), and (i + 1, j).

The acceptance discipline for the algorithm specializes to the form
originally given by Metropolis. From (3.17) for the Boltzmann density,

f(y)

f(x)
=

e−Ey/kBT /Z

e−Ex/kBT /Z
= e−(Ey−Ex)/kBT ,

and from (3.7),
h = min(1, e−(Ey−Ex)/kBT ). (3.23)

Note that the normalizing factor Z has dropped out.
The spins are initialized in some fashion to begin the run. This dis-

tribution is unlikely to be a sample from the Boltzmann distribution.
The Metropolis algorithm will asymptotically approximate the Boltz-
mann distribution as the run proceeds. Therefore statistics should not
be kept from the first block of repetitions, but only from some point
onward. It is not known how long this block is; the length must be
experimentally determined.

Algorithm:

initialize β; // a run at fixed temperature
initialize x; // L × L lattice of spins
calculate Ex; // Energy for x
M = 0; // initialize magnetic moment to 0
loop over repetitions t = 1, 2, . . . startup+nTrials

select (i, j) ∈ L × L equally likely; // a spin to flip
y ← x; //copy x into y
yij = −xij; // perturbation of x; y is proposed
calculate Ey; //Energy for y

h = min(1, e−β(Ey−Ex)) // acceptance probability
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if U ∼ U(0, 1) < h then x ← y // x becomes y
// else x unchanged

if t > startup then
calculate Mx // magnetic moment of x
M ← M + Mx // update the running sum

endif
endloop
〈M〉 per spin = (M/nTrials)/L2

In order to illustrate and clarify these points we do the 2×2 example
with free boundary conditions in detail. We assume “natural units,” so
that kB = 1. If the temperature is high, say T = 100, then β is small,
β = 1/(kBT ) = 0.01. Consequently, for all energies the Boltzmann
factor is nearly 1. As a result, every microstate is just about as probable
as any other. See columns 5 and 6 of the following table.

The picture changes markedly when the temperature is low, say
T = 1. Then β is much bigger, with the result that the Boltzmann
factor ranges through three orders of magnitude from a low of 0.018
up to a high of 54.6. In this case the low-energy microstates, with all
spins parallel, are highly probable, at about 90%, while the high-energy
microstates, with neighboring spins antiparallel, have vanishingly small
chance of occurring.

In Figure 3.6 we show the histogram of the magnetic moment dis-
tribution for the two cases. At high temperature the distribution is
somewhat bell-shaped with an equal mix of up and down spins most
probable.
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(a) High temperature, T = 100 (b) Low temperature, T = 1

Fig. 3.6. Magnetic moment distribution for the 2 × 2 Ising model.
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Ising Model, 2 × 2 example High Temperature vs Low Temperature

magnetic T = 100 (β = 0.01) T = 1 (β = 1)

index microstate moment E e−0.01E Pr e−E Pr

1
++
++

4 −4 1.04 0.065 54.6 0.45

2
++
+− 2 0 1 0.062 1 0.008

3
++
−+

2 0 1 0.062 1 0.008

4
++
−− 0 0 1 0.062 1 0.008

5
+−
++

2 0 1 0.062 1 0.008

6
+−
+− 0 0 1 0.062 1 0.008

7
+−
−+

0 4 0.96 0.060 0.018 0.0001

8
+−
−− −2 0 1 0.062 1 0.008

9
−+
++

2 0 1 0.062 1 0.008

10
−+
+− 0 4 0.96 0.060 0.018 0.0001

11
−+
−+

0 0 1 0.062 1 0.008

12
−+
−− −2 0 1 0.062 1 0.008

13
−−
++

0 0 1 0.062 1 0.008

14
−−
+− −2 0 1 0.062 1 0.008

15
−−
−+

−2 0 1 0.062 1 0.008

16
−−
−− −4 −4 1.04 0.065 54.6 0.45

Z 16.004 121.22

Microstate probabilities for a 2 × 2 Ising model.

However, at low temperature the distribution becomes bimodal. The
most probable arrangements are all spins up or all spins down. We say
that the system has undergone a phase change. And there is a critical
temperature, called the Curie point , at which this takes place. One of
the very interesting features of the Ising model is that it is a rather
simple model but still undergoes these phase changes. This is a large
part of the theoretical interest in this model.

If the temperature of the system is maintained above the Curie
point, the spins lose all memory and randomize. If the temperature is
then lowered too quickly, the system will lock into a pattern of islands
of spin-up and spin-down domains; see Figure 3.7. These are called
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metastable suboptimal states. If, however, the temperature is lowered
sufficiently slowly, the domains grow until one of the two globally mini-
mum energy states emerges, all spins up or all spins down. This process
is called annealing .

− − + + + + + − + + + + − + + +
+ + + + + − − + − − − − + − − +
+ − − − − + + + + + − + − − − +
− + + + − − + − − + − − − + + −
+ − + + − − + − + − + + + + + −
+ − − − + + + − + − + − − + − −
+ − + + − + + − + + + − + − − +
+ − + − − − + + + − + + − + + +
− − − + − − + + + − − − − + + +
+ − − − − − − − + − − − − − + +
+ + + + − − − + − + + − + + − −
+ − + + − − + + − − − + + + + +
+ + − + + − − + − + − + + + + −
+ − − + − + + − − − + − + + + −
+ + − − − − − − − + + − − − − −
+ + − + − − − − + − + + + + + −

Fig. 3.7. Metastable spin domains for a 16 × 16 Ising model.

Matlab
> nTrials=2000; startup=3000;

> d=zeros(1,nTrials); %to histogram
> beta=.01; M=0;
> x=2*round(rand(1,4))-1; %random 4-vector of +/-1
> Hx = -(x(1)*x(2)+x(3)*x(4)+x(1)*x(3)+x(2)*x(4));
> for t = 1:startup+nTrials
> k = fix(1+4*rand); %index to flip
> y = x; y(k)= -x(k);
> Hy = -(y(1)*y(2)+y(3)*y(4)+y(1)*y(3)+y(2)*y(4));
> h = min(1,exp(-beta*(Hy-Hx)));
> if rand <h
> x = y;
> end
> if t >startup
> Mx = x(1)+x(2)+x(3)+x(4);

M = M + Mx; % to obtain avg mag. mom.
> d(t-startup) = Mx;
> end
> end
> r = -4:1:4;
> hist(d,r)
> % compute avg moment per spin
> M = (M/nTrials)/4;
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3.6 Counting

The problem of counting the size of a state space Ω is closely related
to the problem of sampling the space. From the computational point
of view, algorithms such as we have studied for random sampling can
be used with only minor modification for counting.

The link between the two is what might be called the sheep-counting
paradigm. In earlier times, a shepherd could estimate the size of a flock
by counting the number of its black sheep and applying a little arith-
metic. This worked because the fraction of black sheep to white sheep
remained fairly constant among flocks in a given region, and its em-
pirical value was common knowledge among shepherds. Supposing the
ratio to be w : b white sheep to black sheep, then the fraction of black
sheep in a flock is s = b/(w + b). For example, if the ratio is 9:1, then
s = 1/10 of the flock consists of black sheep. From this an estimate of
flock size is given by

flock size ≈ 1

s
× number of black sheep.

In this section we will use this principle to estimate the number of
combinatorial objects of a specified nature; results difficult to obtain
in any other way.

The Monomer-Dimer Problem

Consider a material made up of atoms arranged in a regular pattern or
lattice in two or three dimensions with the property that some of the
atoms are chemically bonded to one of their nearest neighbors. These
bonded pairs are called dimers; the atoms that are not bonded are
the monomers. For a given lattice, there are many different possible
arrangements of monomers and dimers that cover the lattice, called a
dimer covering.

Most thermodynamic properties of the system can be deduced from
knowledge of the number of ways of covering the lattice with given
numbers of monomers and dimers. Assume that the lattice has 2m
sites. If the covering uses s dimers, the dimer density is the ratio s/m.
The problem is to compute the number of coverings with a fixed dimer
density as the lattice size increases.

More generally, recall that in statistical mechanics, the number of
possible states in a given system is given by the partition function Z.
One of the features of Markov chain Monte Carlo is that the stationary
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distribution of the system can be approximated without knowledge of
Z. But what if we want to know Z? The partition function Z gives
information about the number of states with any given energy. This is
a counting problem.

Generally speaking, a good strategy for solving a problem is to strip
away unnecessary structure until the bare essence of the problem is
revealed. With regard to combinatorial problems, the underlying nature
can often be couched in graph-theoretic terms. This is the case for the
monomer-dimer problem.

Consider a graph G = (V,E) with vertex set V and edge set E. A set
of edges M ⊂ E is a matching if the edges of M are pairwise disjoint,
that is, no two edges of M have a vertex in common. The vertices that
occur as endpoints of the edges of M are said to be covered by M ;
the remaining vertices are uncovered. An edge e of M along with its
endpoints constitute an abstract dimer. The uncovered vertices are the
monomers. Such a matching M is one of the objects we want to count.

a 1

2

3

4

5

6

b

c

d

e

f

Fig. 3.8. A (bipartite) graph G with 14 edges.

An example is given by the graph with 14 edges shown in Figure 3.8.
Let M denote the collection of matchings of G, and let Mk denote the
collection of matchings having exactly k edges for k = 0, 1, . . ., 6. This
is a decomposition of M,

M =

6⋃

k=0

Mk.
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The matching M0 has only 1 element, the empty set. We also know
the size of M1, 14 since G has 14 edges; M1 will play the role of the
black sheep in the sheep-counting paradigm.

It remains to devise an MCMC algorithm for generating samples
from M uniformly. For this we need a suitable Metropolis genera-
tion/acceptance scheme, so consider the following. Let M be a given
matching, and let e, with endpoints u, v, be a randomly selected edge
of G. If e ∈ M , then put M ′ = M \ {e}, in other words, remove e from
the current match set. If neither u nor v is an endpoint of any edge in
M , then put M ′ = M ∪{e}. If exactly one of u and v is already covered
in M , then delete the edge, say e′, containing it, and again add e to the
result; hence put M ′ = (M \ {e′}) ∪ {e}. Finally, if both u and v are
covered in M (by distinct edges), then do nothing, i.e., put M ′ = M .
Now proceed as usual.

We first notice that since we desire the uniform distribution, we set
f = 1; this explains why we always accept a proposed move. Secondly,
notice that the above proposal scheme is symmetric, as is required.

Here is an outline of the algorithm. We will use a matrix E to define
the edges of the graph and keep track of the current match set. The
matrix E has a column for each edge and three rows. The first two rows
are set to the end vertices of the edge; the third row is 1 or 0 depending
on whether that edge is in the current match set or not.

Matlab
> % initialize the first two rows of E to the given graph, a 3x14 matrix
> % initialize third row to 0, start with an empty match set
> E=zeros(3,14);
> E(1,1)=1; E(2,1)=7; E(1,2)=1; E(2,2)=9;
> E(1,3)=1; E(2,3)=11; E(1,4)=2; E(2,4)=8;
> E(1,5)=2; E(2,5)=11; E(1,6)=3; E(2,6)=10;
> E(1,7)=3; E(2,7)=12; E(1,8)=4; E(2,8)=7;
> E(1,9)=4; E(2,9)=9; E(1,10)=4; E(2,10)=12;
> E(1,11)=5; E(2,11)=11; E(1,12)=5; E(2,12)=12;
> E(1,13)=6; E(2,13)=8; E(1,14)=6; E(2,14)=10;
> s=zeros(1,14); % array to count # matches of size k
> s0=0; % need to get size 0 too
> k=0; % the initial match set is empty
> for t=1:990000 % 990000 trials

i=1+floor(14*rand); % select edge unif. at random
if E(3,i) == 1 %check if i is in the current match set

E(3,i)=0; % remove it
k=k - 1; % decrement matching size

else
l=E(1,i); r=E(2,i); % left, right ends of i
kl=0; kr=0; %search current match set for l and r
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continued...
for j=1:14 % loop over all edges

if E(3,j) == 1 %this edge is in the match set

if l == E(1,j) | l == E(2,j) % l is covered
kl=j;

end
if r == E(1,j) | r == E(2,j) % r is covered

kr == j;

end
end % if j in match set

end %loop over edges
if kl == 0 & kr == 0 % neither l or r covered

E(3,i)=1; %add edge i to match
k=k+1; % increment match set size

elseif kl ∼= 0 & kr == 0 % only left end covered
E(3,kl)=0; E(3,i)=1; % swap edges

elseif kl == 0 & kr ∼= 0 % only right end covered
E(3,kr)=0; E(3,i)=1; % swap edges

end
end % check i in current match set

> % increment the count for the current size
> if k == 0

s0=s0+1;
> else

s(k)=s(k)+1;
> end

end % loop over trials
> s0 % print results
> s

Table 3.1 shows the results. Out of 990,000 trials the algorithm was
in match state 0 a total of 2066 times, in match state 1 for 29,603 times,
and so on. Since match state 0 has exactly one member, the estimate
for the number of members in match state 1 is the ratio of their hits,
29,603/2066, or 14.33. In the case of match state 1 we know that the
exact count is 14; so this estimate is slightly high.

To estimate the number of members in match state 2 we can use
match state 0 data; this gives 152,273/2066 = 73.70. Or we can use
match state 1 data and calculate (152,273/29603) × 14 = 72.01. Con-
tinue in this way to fill out the rest of the table.

3.7 Applications

3.7.1 Shuffling with Constraints

Consider having to decide how best to play a card game such as
bridge or hearts. (Knowledge of any card game will not be needed to
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MCMC est. est. est. est. est. est.
match hits actual using using using using using using
size (990000) matches 0 (1) 1 (14) 2 (73) 3 (164) 4 (161) 5 (57)

0 2066 1
1 29603 14 14.33
2 152273 73.70 72.01
3 342728 165.89 162.08 164.3
4 335755 162.51 158.78 160.96 160.66
5 119004 57.60 56.28 57.05 56.96 57.06
6 8571 4.15 4.05 4.11 4.10 4.11 4.11

Table 3.1. MCMC hits and resulting match size estimates.

understand the problem in this application.) The difficulty is in not
knowing what cards the other players have. However, as play continues,
partial information is revealed about those cards. Thus one reasonable
plan is to generate a strategy that is stochastically good. That is, one
that performs well given a random allocation of the unknown cards to
the other players.

To pose a very specific problem, assume that there are four players,
counting the hand we play, and at a certain point in the game, the
disposition of all cards is known except for these 18:

club: 3, 4; diamond: 7, 8; heart: 2, 3, 5, 6, 7, 8, 9;

and spade: 2, 3, 4, 5, 6, 9, queen.

(3.24)

Referring to the other three players as hands 1, 2, and 3, each of them
has six of these cards, but it is not known which six. However, there is
additional information: it is also known that hand 1 has no clubs and
hand 2 has neither clubs nor diamonds.

The problem is to generate a random allocation of the unknown
cards consistent with the suit constraints. In other words, we want
to generate random shuffles subject to constraints. Given such a legal
allocation, the game would be one of perfect information, like chess or
checkers, and allow the computation of the best move at any time. Since
any given legal allocation is not necessarily the actual allocation (that
remains unknown), the strategies devised have to be of a minimax or
stochastically optimal nature.

One legal allocation of the mystery cards above is the following:
hand 1: heart 2, 3, 4, 5, 6, 7; hand 2: spade 2, 3, 4, 5, 6, 9; and hand 3 has
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the rest. This seems hardly random, but it can be used as the starting
point for an MCMC solution. Since we want a uniform distribution over
all legal permutations x of the mystery cards, our desired Metropolis
density is f(x) = 1 for all x; hence the acceptance discipline is to accept
with certainty, that is, always accept.

It remains to create a symmetric proposal function fostering an ir-
reducible chain. The algorithm is:

1. Start with a legal allocation of the unseen cards.
2. Select a card, say A, from hand 1, a card B from hand 2, and a card

C from hand 3.
3. Attempt to swap A and B, or A and C, or B and C, or A to B to

C, or A to C to B (in random order).
4. For the first of these to produce a legal allocation, accept it and

continue; if none do, keep the original allocation and continue.

This scheme is able to convert any legal shuffle to any other. The
invariant distribution of this chain is the uniform distribution over all
legal allocations. As with any Markov chain simulation, enough itera-
tions must be performed in order for the invariant distribution to be
approximated.

3.7.2 Coupling from the Past

If a Markov chain could be run for infinite time, then the state random
variable Xt would be an exact sample from the invariant distribution.
What amounts to the same thing, if the chain was started in the infi-
nite past, then the state X0 at time 0 is a sample from the invariant
distribution exactly. Remarkably, it is possible to achieve this. Here is
how.

First select a finite set of random numbers just as you would to
simulate the chain, say 10 such numbers, call them {r−1, r−2, . . . , r−10}.
Now start at t = −1, and for each state of the chain, take one step
forward in time using the same “random number” r−1. If taking one
step forward in time from each state results in one and only one state at
time t = 0, then stop and report that state. Otherwise, repeat this from
time t = −2 but always using the originally selected random numbers.

As a specific example, here is how it would go using the stock market
chain (from Section 3.1). Recall the states are U for up, N for no change,
and D for down, and the transition matrix is
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P =

[
0.3 0.2 0.5
0.4 0.2 0.4
0.4 0.3 0.3

]
.

The corresponding cumulative matrix is

C =

[
0.3 0.5 1.0
0.4 0.6 1.0
0.4 0.7 1.0

]
.

Assume that the starting random numbers are {0.31, 0.57, 0.97, 0.85}.
Beginning with t = −1 and the random number 0.31, if the state is U,
then the transition is to N; if the state is N, the transition is to U; and
if the state is D, the transition is to U as well; see Figure 3.9. This
leaves the chain in two possible states, U and N, and so the chain has
not “coupled”; we must go back to t = −2 and use the random number
0.57.

For a random number 0.57, the transition from U is to D, from N
to N and from D to N. Now the states have coupled at t = 0. Coming
from the infinite past up to time t = −2 could put the chain in any of
U, N, or D for all we know. But the next transition leaves the chain in
either N or D at t = −1. Then in the next transition these two states
move to U. So the chain is in only one state at t = 0, namely U. This
instance of the random numbers r−1, r−2, . . . leaves the chain in state
U at t = 0.

N

t = –4 t = –3

0.85 0.97 0.57 0.31

t = –2 t = –1 t = 0

U

D

Fig. 3.9. Coupling from the past for the stock market chain.

To produce another sample from the invariant distribution, the pro-
cedure is started all over again by making another selection of random
numbers r−1, r−2, . . . .

Programming coupling from the past is somewhat tricky, because if
the chain does not couple using the initial selection of random numbers
r−1, r−2, . . ., r−10, then one must go back further, select r−11, r−12, . . .,
r−20, and see whether coupling occurs from 20 steps back. Meanwhile,
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the initial selection of random numbers must be saved, since they will
be needed to follow the chain from repetition −10 to 0.

The following example shows that one cannot stop as soon as cou-
pling occurs, as in this case this would always result in the same value
being returned. Consider the chain with transition matrix

P ′ =

[
0 1 0

1/3 1/3 1/3
0 1 0

]
.

The invariant distribution is [ 1/5 3/5 1/5 ]. Note that the only cou-
pling possible is in state 2; see Figure 3.10. Suppose the initial set of
random numbers is {0.86, 0.39, 0.85, 0.06, 0.20}. Using 0.86 at time −1
to time 0, we get

1 → 2

2 → 3

3 → 2

so 1 and 3 have coupled but 2 has not. Starting from time −2 and using
the random value 0.39 to transition to time −1 we get

1 → 2

2 → 2

3 → 2

so all have coupled in state 2. Now using the random value 0.86 as
before to go to time 0, we have that 2 → 3 as before, so 3 is the result
of this trial and is a sample from the invariant distribution.

2

t = –4 t = –3

0.20 0.06 0.39 0.86

t = –2 t = –1 t = 0

1

3

Fig. 3.10. Coupling always happens in state 2 for chain P ′.

The following example shows that one cannot stop after a fixed
number of iterations and try again if coupling has not yet occurred.
Consider the transition matrix
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P ′′ =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0
1/2 0 0 1/2 0 0 0
0 1/2 0 1/2 0 0 0
0 0 1/3 1/3 1/3 0 0
0 0 0 1/2 0 1/2 0
0 0 0 1/2 0 0 1/2
0 0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

. (3.25)

Again it is possible to couple only in state 4 because states 1 and 7 go
only to state 4. Further, once coupling has taken place, it requires at
least three iterations to reach either state 1 or 7, usually more. Now
assume that we go back in time a fixed number of iterations, for example
6, and restart if coupling has not taken place by then. The consequence
is that one will not observe states 1 and 7 as frequently as they should
appear.

Notes

A good source for more information on Markov chains is the book [Bre99].
The theory presented here concentrates on finite-state-space Markov chains.
This is sufficient for practical computations, since any system implemented
on a computer will necessarily be finite. However, for modeling this is not
enough. Much of the theory can be extended to countable state spaces with
little change. Continuous state spaces are more difficult, as are continuous-
time Markov processes.

The basic Metropolis algorithm was greatly generalized by Hastings [Has70],
so it is often called the Metropolis–Hastings algorithm. There is a wide range
of MCMC algorithms suited to many different applications (for a place to
start, see [GH05, HH64, KW86, Liu01, Rub81, Yak77]). In particular, statis-
tics has recently become a very large user of MCMC.

It is often important to have some idea of the convergence rate of a Markov
chain to its stationary distribution. Similarly, some idea of the decay of the
error in an MCMC estimation is also very useful, or statistical estimates such
as confidence intervals might be needed. In general, estimating the finite-time
behavior of a Markov chain is a difficult task. Most of the references above
contain some discussion on these topics.

The technique of exact sampling using couping from the past is particu-
larly useful for special types of chains. One case is when there is a natural
partial order on the state space and the Markov chain evolution preserves this
order (see [PW96]). In this case, all that is necessary is to check whether the
“top” and “bottom” states couple since then all the in-between states will
have coupled as well. Some versions of the Ising model satisfy this monotone
property and thus the coupling from the past technique may be used on them.
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Problems: Chapter 3

1. (4) Suppose the state space for a system of particles is Ω = {1, . . . , 8} and
their allocation among these states is determined by the Boltzmann dis-
tribution. Let the energy of state x be E(x) = (x−3)2. Use the Metropolis
algorithm, with β = 1 (see (3.21)), to estimate the expected “blackbody
radiation” of the system if the radiation r is equal to the fourth power of
energy, that is, take r(E) = E4. (Exact: 6.166.)

2. (5) With the setup as in the problem above, take the neighborhood system
to be uniform over the space of eight states. (Or pick some other if you
like.) Now compute the transition matrix P for Metropolis sampling. Find
the second-largest eigenvalue µ of P . The “spectral gap” is defined to be
1 − |µ|. It gives the geometric rate for how fast the starting distribution
p0 converges to the stationary distribution π (the Boltzmann distribution).

3. (3) In this problem we compute the probability distribution pt for the
stock market example, but using various starting distributions p0. The
case p0 = [ 1 0 0 ] is already done in the text. For this problem, do the
case p0 = [ 0 0 1 ]. Compute pt for t = 1, 2, . . . , 10 for both choices
of p0. Using these computations, compute pt starting with a general
p0 = [ a b 1 − a − b ] where a, b ≥ 0 and a + b ≤ 1 (use the fact that
matrix multiplication is linear). Observe that for any starting p0, the dis-
tributions pt seem to converge to the invariant distribution.

4. (4) Sample from the distribution on Ω = {2, 3, . . . , 12} that one obtains by
rolling two fair six-sided dice by using the Metropolis algorithm. First, use
the uniform distribution over Ω as the neighborhood system. Next use the
random walk neighborhood system given by the matrix in equation (3.8).
Record the computation time and make a histogram and correlation plot.
Comment on your observations.

5. (5) This problem experimentally examines the rate of convergence of an
MCMC scheme. Sample from the distribution obtained by rolling two
fair six-sided dice using the Metropolis algorithm with neighborhood sys-
tem as given by the matrix in (3.8). Letting the sequence of samples be
X1, X2, . . . , XN , compute

avgN =
1

N

∑

i

Xi.

Run 100 instances of N = 100, histogram the values of avg100, and com-
pute the variance. Repeat with 100 instances of N = 200 and again with
100 instances of N = 1000. This should give an indication of how the
estimates of the average converge as the number of iterations increases.
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Now do this all again except with the maximal neighborhood system in
which all states are chosen with equally likelihood. Compare the two differ-
ent neighborhood systems in terms of their convergence properties (spread
of histogram and variance).

6. (4) Use Metropolis to sample from the pdf f(x) = cx2e−x, 0 ≤ x < ∞. As
the neighborhood of x, take the interval [x−δ, x+δ] for some δ > 0. (Near
x = 0 reject negative proposals; see the text.) Check pdf, correlation, ef-
ficiency, effect of start point (by doing a pdf starting from different points).

7. (5) Obtain a shuffle of a 52-card deck by the repetition of an elementary
shuffle operation (ESO). Create your own ESO. Some examples are “di-
vide the cards into two equal piles and interleave,” “a random two-card
swap,” and “slide the top card into a randomly selected location.” Re-
peat the ESO enough times until the cards are completely randomized
and return the result. That is to say, obtain the uniform distribution over
all permutations of the cards so all permutations are equally likely. This
idea would be an instance of Markov chain Monte Carlo, each ESO being
the “generation” step; since the target distribution is the uniform one,
all proposals are accepted. Test the resultant shuffles in some way. For
instance, for runs up or streaks of even numbers or correlation or quartile
mixing. How many ESOs are needed to randomize the cards? (Plot your
test as a function of the number of ESOs.)

8. (7) (Shuffle under constraints.) Obtain random shuffles of the cards: club
2, 3, 4, 5, 6; diamond 2, 3, 4, 5, 6; heart 2, 3, 4, 5, 6; and spade 2, 3, 4; in such
a way that no clubs or spades appear in positions 1, 4, 7, . . ., no hearts
appear in positions 2, 5, 8, . . ., and no diamonds or spades appear in posi-
tions 3, 6, 9, . . . .

9. (3) (Coupling from the past) Use the coupling from the past method to
obtain samples from the invariant distribution of the stock market chain.

Compare with the actual distribution
[

37
112 , 34

112 , 41
112

]
.

10. (4) (Coupling from the past) Use the coupling from the past method
to obtain samples from the invariant distribution for the chain defined
by P ′′, equation (3.25) on page 134. What happens if you restart after
some fixed number, N , of iterations if coupling hasn’t occurred? Try with
N = 6, 7, 8 and see how this introduces a bias in the computed “invari-
ant distribution”. For this matrix P ′′, the actual invariant distribution is[

1
26 , 1

13 , 2
13 , 6

13 , 2
13 , 1

13 , 1
26

]
.

11. (5) (Noncomputational) Let P be the transition probability matrix of a
chain for which detailed balance holds. Show that all the eigenvalues of P
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are real. (Hint: letting π denote the invariant distribution and Π the di-
agonal matrix whose diagonal is π, show that Π1/2PΠ−1/2 is symmetric.)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Fig. 3.11. Monomer-dimer problem.

12. (4) (Monomer-dimer problem) In Figure 3.11 we show a 4×4 square two-
dimensional lattice as a graph. (a) Find the number of dimer coverings
of different sizes for this lattice. (b) Do the same for a 3 × 3 and a 5 × 5
lattice. Plot the number of dimer covers for various dimer densities as a
function of the lattice size.

13. (5) Simulate the Markov chain with transition matrix

P =

⎡
⎢⎢⎣

c0
1
2e−3 0 0

1
2 0 1

2 0

0 1
2e−1 c2

1
2

0 0 1
2e−1 c3

⎤
⎥⎥⎦ ,

where the ci’s are the complementary probabilities (so the rows sum to
1) for a few hundred iterations to obtain the invariant distribution and
show the histogram. Calculate the invariant distribution by hand. Com-
pare with the following calculation: wi = e−fi/Z where Z =

∑3
i=0 e−fi

and f0 = −1, f1 = 2, f2 = 1, f3 = 0.

14. (6) In this problem, we investigate exit times from a set of states. With
P as in the problem above, let N be the set of states corresponding to
the last three rows of P . Then the matrix P̂ consisting of the lower right
3 × 3 block,

P̂ =

⎡

⎣
0 1

2 0
1
2e−1 c2

1
2

0 1
2e−1 c3

⎤

⎦ ,

is the transition matrix among those states. (a) By starting the chain in N ,
estimate the expected number T of iterations to exit N and the probability
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pN that the chain exits N per iteration. What is the relationship between
T and pN?
(b) Calculate the largest eigenvalue λ of P̂ . What is the relationship be-
tween λ and pN?

15. (8) (Particles in a 2D box) Assume that three particles are in the box
0 ≤ x ≤ 1, 0 ≤ y ≤ 1. The state x ∈ Ω is the vector of positions and
velocities of each particle,

x =
[
x1 y1 v1

x v1
y x2 y2 v2

x v2
y x3 y3 v3

x v3
y

]
,

where (xi, yi) is the position of the ith particle and (vi
x, vi

y) is its velocity
vector. The energy E(x) of the system equals

E =
1

2

3∑

i=1

mi
(
(vi

x)2 + (vi
y)2
)

+
∑

i<j

Φ(rij),

where mi is the mass of the ith particle (take mi to be 1 for all i), |vi| is
its speed, rij is the distance between the ith and jth particles and Φ(·) is
the Lenard-Jones potential

Φ(r) = 4ǫ

[(σ

r

)12

−
(σ

r

)6
]

.

Here ǫ and σ are physical constants; take ǫ = 1, and since σ acts like the
radius of a particle, take it to be 0.1.
For the proposal, or perturbation, scheme, select a particle equally likely
and perturb its x and y components of velocity, ∆vx and ∆vy , according
to a Gaussian with mean 0 and variance 1. Move all particles according
to their velocities for an increment in time of ∆t = 0.05 second (reflect off
the walls if necessary). This is the proposed new state to be decided for ac-
ceptance or not according to the Metropolis algorithm for the Boltzmann
distribution; see (3.23). Try to find a temperature T such that around
80% of the perturbations are accepted. Histogram the average speeds of
the particles over the course of the simulation.
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Optimization by Monte Carlo Methods

It may be that the problem of optimization entails more time and
effort by mankind than any other mathematical problem. For example,
it permeates nearly all design and engineering projects.

When formalized, the problem consists of a given function f called
the objective function together with a domain Ω of its arguments x. It
is required to find a value of x ∈ Ω that minimizes or maximizes f(x).
The problem may also impose certain constraints on the admissible
or feasible x’s. In the formalization above, Ω would (usually) exclude
infeasible states. However, it is often better to leave infeasible states in
the domain, since they can be useful in searching for a feasible solution.
In fact, one method of attacking a constrained optimization problem
is to penalize infeasible states, and to an increasing degree as the run
progresses.

Among the more difficult optimization problems are those of a com-
binatorial nature. Some of these are quite famous, such as the trav-
eling salesman problem (TSP). There are ongoing attempts to solve
such problems by deterministic methods. A solution would produce a
provably global minimizer (or maximizer) in a reasonable amount of
time. The traveling salesman problem has seen the most effort along
these lines. Unfortunately, as of the present date no general solution is
yet available. Deterministic algorithms that do exist for combinatorial
problems must leverage deep insights into whatever theory underlies
the problem, for example Euclidean geometry. As a result, these algo-
rithms are quite complex.

A second category of especially problematical optimization problems
consists of those having numerous local minima (maxima), possibly
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numbering in the millions. Even given an efficient method for finding
local optima, how can that be used to find global optima?

As a result of these difficulties, a Monte Carlo method is often the
method of choice for attacking an optimization problem. Monte Carlo
methods are usually very simple to program, and they locate good,
if not the absolute best, solutions in reasonable time. The two most
widely known and used Monte Carlo optimization methods are simu-
lated annealing (SA) and genetic algorithms (GA).

4.1 Simulated Annealing

One of the most successful techniques for solving such problems is the
adaptation of ideas from statistical mechanics. As we have seen in Sec-
tion 3.5, thermal systems can be annealed to achieve minimal internal
energy states. This is brought about by raising the system to a high
temperature and then cooling it slowly. Since thermal systems can be
computationally simulated, it is natural to imagine that a similar type
of annealing could be performed on a more general optimization prob-
lem, leading to the determination of the global minimum of the objec-
tive function. The method is called simulated annealing (SA) and was
first proposed in 1983 (see [KGV83]).

Just as in the simulation of thermal systems, the central component
of simulated annealing is the Metropolis algorithm; see Section 3.3.
The domain Ω serves as the system’s phase space, and the objective
function serves as its energy. As such, the optimization problem must
be cast as a minimization problem. To this end, using the objective
function as the energy, the probability of accepting a proposed move
from x to y is given as

h = min(1, e−(f(y)−f(x))/kB T ). (4.1)

In the same way as in a statistical mechanics simulation, the Metropo-
lis algorithm imposes a Boltzmann distribution on the sampled mi-
crostates x (which we now refer to as solutions) so that the probability
density is

e−f(x)/kBT

Z
. (4.2)

From (4.2) it is clear that for T close to zero, the points that minimize
f will dominate the probability distribution.
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The remaining ingredient is a proposal mechanism to induce a shuf-
fling through Ω, the space of solutions. As before, the proposal mech-
anism can be thought of as an |Ω| × |Ω| matrix g where gxy is the
probability of proposing y from x. Again g should fulfill two require-
ments, the same two as for the Metropolis algorithm. The first is that
it be irreducible, meaning that for any x and y in Ω, there is a finite
sequence x0 = x, x1, . . ., xn = y such that gxi−1xi > 0 for i = 1, . . ., n.
Secondly, g should be symmetric: gxy = gyx for any two solutions x and
y, which is to say that x is proposed from y with the same probability
that y is proposed from x.

Cooling schedules

The other central feature of simulated annealing for global optimization
is the imposition of an abstract temperature. The temperature must be
lowered in some fashion over the course of a run. The exact prescrip-
tion for how this is done is called the cooling schedule. The choice of
cooling schedule is critical to the performance of a simulated annealing
algorithm. As can be seen from (4.2), at low temperatures, solutions
with high energy have very low probability under the Boltzmann dis-
tribution. Because of the form of the acceptance (given in (4.1)), at low
temperatures the system tends to move “downhill” only (in terms of
objective function values). This is good for finding the local minimum
of the current basin; however, the system also tends to lodge at the lo-
cal minimum. At high temperatures energy differences hardly matter,
and the system can easily escape shallow basins in order to explore the
energy landscape more widely, but it is almost as likely to find high-
energy states as it is to find low-energy states. The rough idea behind
cooling is to start with high temperatures to identify “good regions”
of the state space and then to explore these regions fully in the lower
temperature phase. It is important to cool slowly enough so that it is
always possible to reverse any “mistakes” made at higher temperatures.

It should be noted that because the temperature is changing at each
iteration, the acceptance scheme (4.1) will cause the Markov chain to
have time-varying transition probabilities. Such a chain is called an
inhomogeneous Markov chain. The analysis of inhomogeneous chains is
much more difficult than that for time-invariant chains.

Exactly how to cool has been worked out and is specified by Hajek’s
theorem [Haj88]. Let G denote the set of global minimizers in Ω. Among
other assertions, the theorem provides the following.
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Theorem 1 Under an irreducible and symmetric proposal, the proba-
bility that the Markov chain Xt will be in a globally minimal state tends
to certainty as t → ∞,

lim
t→∞

Pr(Xt ∈ G) = 1,

if temperature as a function of iteration t is taken as

Tt =
c

ln(1 + t)
, t = 1, 2, 3, . . . , (4.3)

provided the constant c is sufficiently large.

Cooling as specified by (4.3) is called inverse log cooling (or some-
times log cooling). The constant c should exceed the maximum of the
depth of all basins containing only local minima. The precise definition
of the depth of a basin is somewhat involved, and in almost all cases
these depths cannot be known or computed in advance, only estimated.
For our purposes, therefore, the intuitive notion will suffice.

Another shortcoming of the theorem with respect to applications is
the requirement that t tend to infinity. Since an actual anneal cannot
run for infinite time, the choice of starting temperature is of some
importance. Furthermore, under these conditions, inverse log cooling
may not be the best choice. Rather geometric cooling, namely

Tt = abt, a > 0, 0 < b < 1, (4.4)

for some parameters a and b, can be a better choice. It is often necessary
to do some preliminary runs to decide between inverse log and geomet-
ric cooling, the starting temperature, and the cooling parameters a, b,
and c.

As in real thermal systems, a simulated anneal often experiences a
phase change. This is characterized by the system’s energy decreasing
rapidly at some temperature. After this, the system makes improve-
ments much more slowly. The choice of cooling schedule should bracket
any phase-change temperatures for the problem, if at all possible, for
best performance.

The best way to get a feeling for simulated annealing is to see it in
action.
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4.2 Application of SA to the Traveling Salesman

Problem

Given n cities in terms of their geographical coordinates Ci, i =
1, . . . , n, a tour of the cities is a path starting at C1 and leading from
one city to the next in some order and finally back to C1. Each city is
to be visited exactly once (other than C1). Evidently a tour is uniquely
identified by a permutation x of the set {2, 3, . . . , n}. For example, if
x = (i1, i2, . . . , in−1) is such a permutation, and we let i0 = 1, the
corresponding tour is

Ci0 , Ci1 , . . . , Cin−1 , Ci0 .

Let Ω be the set of all such tours.
The length of a tour is the length of its path. For the tour above,

this is

E(x) =

n−1∑

k=1

d(Cik−1
, Cik) + d(Cin−1 , Ci0),

where d(Ci, Cj) is the distance from city Ci to Cj. Take this length as
the “energy” or objective E(x) of x ∈ Ω.

The traveling salesman problem (TSP) is that of finding the tour
having the smallest length. Of course, the reverse of a given tour has
the same length and for our purposes, can count as the same tour.

For n cities there are (n − 1)! permutations of the set {2, 3, . . . , n},
and half that when accounting for reverse tours; this can be a large
number for even small values of n. Hence finding the minimal tour is a
very hard problem.

The TSP exhibits several features that make it a good problem to
use as a testbed for an optimization method. In particular, the fact
that the problem becomes exponentially harder as the number of cities
increases is particularly useful, as is the fact that there are many vari-
ations for each problem size (number of cities).

Partial Path Reversal

To attempt a solution by simulated annealing, a proposal scheme must
be defined, that is, a perturbation for any given tour. One such proposal
scheme is partial path reversal (PPR). Let x = (ik : k = 2, . . . , n) be
a tour and randomly select two terms of the sequence, say ik1 and ik2.
Now reverse the part of the tour between and including these two cities.
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For example, suppose 3, 5, 2, 8, 4, 6, 7 is a tour for an 8-city
TSP and suppose the terms ik1 = 5 and ik2 = 4 are selected. Then the
resulting PPR tour is 3, 4, 8, 2, 5, 6, 7. A visual representation of
this is

3,4,2,8,5, 6, 7

changes to

3,5,8,2,4, 6, 7.

A Simulated Annealing Algorithm for the TSP
In the following algorithm we save the best energy B encountered during the
run.

generate a random permutation x of {2, . . . , n} and calculate E(x).
T = T0, B = E(x)
loop t = 1, 2, . . .

generate a random PPR x′ of x and calculate E(x′).
∆E = E(x′) − E(x), if ∆E ≤ 0 replace x by x′ (and E(x) by E(x′))
otherwise put h = e−∆E/T and generate a

uniformly distributed random number 0 ≤ U < 1
if U < h replace x by x′ (and E(x) by E(x′))
put B = min(B, E(x))
update the temperature T=T(t)

end loop

Fig. 4.1. Traveling salesman problem annealer using partial path reversal.

The general outline of a simulated anneal for the TSP is given in
Figure 4.1. It incorporates Metropolis acceptance/rejection and PPR.
This algorithm was run on the Bays29 problem consisting of 29 Bavar-
ian cities, see Figure 4.2 and the notes at the end of this chapter.

It remains only to specify the cooling schedule. The cooling schedule
as spelled out in Hajek’s theorem pertains when the number of itera-
tions is unbounded. But setting the schedule in an actual problem is
more of an art. As mentioned above, it is often observed while monitor-
ing the progress of a run that the algorithm makes especially dramatic
improvement at some point during the run. This is known as a “phase
change” in analogy to real annealing. A cooling schedule should ensure
that the phase change temperature is bracketed.

We consider a heuristic for setting the cooling schedule. Start by
deciding the number of iterations to be run; we will take that to be
105 for Bays29. Next estimate the average absolute value of ∆E for the
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Fig. 4.2. Spatial location of the cities of the Bays29 problem.

random perturbation operation chosen, for example, PPR in the travel-
ing salesman problem. This is easy to do by performing a small number
of preliminary iterations of the algorithm and just noting the changes
in energy. This came out to be about 1000 for Bays29. Finally, decide
on the form of the cooling schedule; we will take inverse logarithmic
cooling according to the equation

T =
c

a + log t

with c and a parameters to be determined.
Now arrange it so that the probability of accepting an average uphill

∆E at the beginning of the run is near 1 and at the end of the run is near
0. We chose 0.99 and 10−5 respectively. Thus the ending temperature
T∞ is given by

10−5 = e−1000/T∞ , so T∞ = 86.86,
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and therefore c is given by

86.86 =
c

log 105
, c ≈ 1000.

Note that a will be very small compared to log 105 and can be neglected
here. With c in hand, a can be determined. The starting temperature
is given by

0.99 = e−1000/T0 , T0 ≈ 99, 500.

Since log(1) = 0, we get a from

99500 =
1000

a
, a ≈ 0.01.

In Figure 4.3 we show the progress of the above algorithm for the
Bays29 problem. The envelope of best and worst of 10 runs is shown,
that is, at each iteration count, the best and the worst out of the 10 runs
are plotted. Notice how most of the progress is made in the first part
of the run, with very little improvement after the first 25,000 iterations
or so. This behavior is quite typical for SA.
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Fig. 4.3. Envelope of the best and worst of 10 runs of the anneal to solve
Bays29.
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4.3 Genetic Algorithms

The method of genetic algorithms is an optimization method based on
the paradigm of biological adaptation (see [Gol89]). The essential ingre-
dients of the method are mechanisms for recombination, mutation, and
selective reproduction working on a population of potential solutions.
Fitness for a solution is directly related to the objective function being
optimized and is greater for solutions closer to its global maximum (or
minimum). The idea is that by repeated application of the genetic and
selection operations, the population will tend toward increased fitness.
Using a population of potential solutions, rather than a single poten-
tial solution as in SA, allows a genetic algorithm search to recover from
incorrect moves.

A Genetic Algorithm Is a Markov Chain

A genetic algorithm generates a Markov chain Xt on populations over
Ω under the action of the three stochastic operators mutation, recom-
bination, and selection defined on Ω. Although implementation details
may vary, mutation is a unary operator, recombination or crossover
is a binary operator, and selection is a multiargument operator. Un-
der any reasonable definition of the three operations, the chain Xt is
always irreducible and aperiodic and so converges to a (unique) sta-
tionary distribution. Two example algorithms are given in Figures 4.4
and 4.5. In addition, an implementation of Algorithm 1 in Matlab is
given in Section 5.5.

GA Algorithm 1

initialize population C0
initialize B to the best fitness of C0
loop t = 1, 2, . . . , N

use roulette-wheel selection to create population C1
crossover chromosomes 1 with 2, 3 with 4, . . .

with each pair of offspring replacing their parents
loop over every chromosome c in C1

with probability pm, mutate c
end loop over chromosomes
C0 becomes C1 for the next iteration
update the best fitness B

end loop over generation t

Fig. 4.4. A complete population turnover style GA.
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The implementation of a genetic algorithm begins with the com-
puter representation, or encoding, of the points x of the solution space
Ω. Frequently this takes the form of fixed-length binary strings, which
are called chromosomes. A natural mutation of such a string is to re-
verse, or flip, one or more of its randomly selected bits. Likewise, a
natural recombination of two bit strings, called parents, is to construct
a new binary string from the bits of the parents in some random way.
The most widely used technique for this is one-point crossover, in which
the initial sequence of k bits of one parent is concatenated with the bits
beyond the kth position of the second parent to produce an offspring.
Here k is randomly chosen. A visual representation of this is:

parent 1
︷ ︸︸ ︷
10110101 010100

parent 2 10111010 110010︸ ︷︷ ︸
offspring 10110101 110010

Of course, a fitness evaluation must be done for each new chromosome
produced.

GA Algorithm 2

allocate popSize times 3 space for the population
initialize a popSize population C of chromosomes (ch.)
sort the population according to fitness (best to worst)
initialize B to the best fitness of C (the first ch.)
loop t = 1, 2, . . . , N

loop i = 1, . . ., popSize/4
select a random ch., copy it, mutate the copy and merge
the copy into the population according to its fitness

end loop
loop i = 1, . . ., popSize/2

crossover ch. of rank i with a randomly selected ch.
in the population and merge the offspring(s) into the pop.

end loop
Comment: the pop. is now about doubled in size and in sorted order
update the best fitness B
loop until the population is down to popSize

discard one member of the population by Russian
roulette with probability 1/6, starting with
the worst and working toward the best,

end loop
end loop over generations t

Fig. 4.5. A sorted rank style GA.

Finally, the chromosomes selected to constitute the population in
the next generation might, for example, be chosen by lottery with the
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probability of selection weighted according to the chromosome’s fitness.
This widely used method is termed roulette wheel selection.

Most genetic algorithms do not vary the parameters of their three
operators over the course of a run, and therefore, in contrast to sim-
ulated annealing, the transition probabilities are constant throughout.
Such a Markov chain is said to be homogeneous. One consequence is
that the algorithm is unlikely to be in the globally optimal state at
the end of a run, since the chain is irreducible and will visit all states
recurrently. Therefore it is important to save the best value discovered
by the algorithm, and the corresponding structure, from iteration to
iteration.

Niching and Remedial Measures

As the run of a genetic algorithm progresses, improvements in fitness
begin to occur more and more slowly. Eventually the algorithm fixates
or niches at a local maximum (a global maximum perhaps?). This nich-
ing typically occurs when all or most of the current population becomes
copies (or near copies) of one individual. But by construction, the al-
gorithm is an irreducible Markov chain, and therefore, given enough
time, the process will move on and find another local maximum. This
is even true of the global maximum.

It could take a very long time for a transition to occur, and so it
can be better to stop the run manually and restart the process afresh.
In this way, a different part of the landscape will be searched with the
possibility that the new local maximum uncovered will be also global.

A modification of the algorithms, called wrong-side-of-the-tracks
crossover, induces a much greater chance of transition out of niched
states. After the algorithm makes no improvement for a period of time,
crossover is modified to take place between one member of the current
population and another member chosen at random from the entire state
space Ω. This induces a tempered as opposed to a hard restart.

4.4 An Application of GA to Function Maximization

For our first illustration of genetic algorithms, we try to find the max-
imum of a given function f defined on an interval of real numbers. A
Shekel function has the form

f(x) =

n∑

i=1

1

ai(x − bi)2 + ci
, aici > 0. (4.5)
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If the ai and ci are positive, then f(x) > 0 for all x. The ith term of
the sum achieves a maximum value of 1/ci when x = bi. Otherwise,
the term decays to zero more rapidly the larger the value of ai. Thus f
is a series of peaks located approximately at the bi, since each peak is
affected to a greater or lesser extent by the others depending on their
proximities and decay rates.

By taking the ai and ci all negative, f is reflected across the x-axis.
The peaks now become pits, and a search for minima is in order.

The Shekel functions may easily be extended to Euclidean spaces of
any dimension, for example in two dimensions they take the form

f(x, y) =
n∑

i=1

1

ai1(x − bi1)2 + ai2(y − bi2)2 + ci
.

Now the peaks are at the points (bi1, bi2), i = 1, . . . , n, and the x-
directed decay rate is ai1, while the y-directed rate is ai2.

a b c a b c

10.295 7.382 0.1613 6.163 9.517 0.2204
4.722 1.972 0.2327 13.860 8.571 0.0838
10.928 8.111 0.2047 5.310 6.918 0.0665
11.052 2.714 0.1579 4.047 1.618 0.1719
3.820 4.022 0.1268 8.085 7.771 0.1040
12.911 5.480 0.0519 7.974 8.316 0.1340

Table 4.1. Parameters for a 12-term Shekel Function.

The function we will try to maximize is the 12-term Shekel function
with parameters as in Table 4.1 over the interval 0 ≤ x ≤ 10. Its graph
is shown in Figure 4.6. We will illustrate with two somewhat different
algorithms, given previously in Figures 4.4 and 4.5. In both, points x
in the interval are coded as 10-bit binary numbers; denote such a 10-
bit string by c. Thus c is an integer from 0 to 210 − 1 = 1023. The
corresponding x is given by x = 10c/1023. We use a population size of
12 in each algorithm.

Figure 4.7 shows the solution history of six runs of each algorithm. In
each run, the algorithm initially makes rapid improvement. After this,
improvement begins to take more time, and eventually the algorithm
fixates or niches on a local optimum.
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Fig. 4.6. The Shekel function specified by Table 4.1.
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Fig. 4.7. Progress toward the Shekel problem solution using GAs.

Using Real Numbers Instead of Bit Strings

If the function f(x) being maximized is defined on several variables,
that is, x is a vector, x = (x1, x2, . . . , xd), then the natural bit string
to take as the chromosome is just the concatenation of the bit repre-
sentations of each component.

However, it may be preferable to treat the components of x directly
as real numbers. For example, the d-dimensional vector itself can serve
as the chromosome. Crossover is then an operation that exchanges com-
ponents. But if the components xi are real numbers, what can mutation
be?
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Actually, we have already seen the canonical mutation operation for
real numbers in Chapter 3 when we were sampling continuous distribu-
tions. Namely, select the perturbation of xi uniformly at random from
a small interval (xi − δ, xi + δ) around xi.

Continuing in this vein, it is also possible to define a crossover opera-
tion between two real numbers and thereby avoid bit strings altogether.
A reason to do so is to avoid programming bit operations, which may
be difficult to do in some computer languages (such as Matlab) and to
avoid translation between bit strings and the real numbers they rep-
resent. A simple operation between positive floating-point numbers x
and y that is similar to one-point crossover is this:

select gainsize g ∼ U(0, 1)

put x′ = (1 − g)x + gy and y′ = (1 − g)y + gx.

It is easy to see that if y < x, then y < x′ < x and y < y′ < x.
An operation even closer to one-point crossover is the following:

select grainsize g ∼ U(0, 1)

put tx = g∗frac(x/g) and ty = g∗frac(y/g)

put x′ = (x − tx) + ty and y′ = (y − ty) + tx.

In this operation, the tx are the “tailbits” of x defined by g, and the ty
are the same for y. Then x − tx are the “leading bits” of x, and y − ty
are the same for y.

4.5 An Application of GA to the Permanent Problem

Given a square matrix C = (cij) of size n, its determinant is defined as

detC =
∑

σ

sign(σ)

n∏

i=1

ci,σ(i).

In this formula, σ is a permutation of the first n integers, {1, 2, . . . , n},
and the sum extends over all such permutations. Furthermore, sign(σ)
is defined to be +1 if σ is an even permutation and −1 if σ is an odd
permutation (a permutation is even/odd if it can be expressed as an
even/odd number of transpositions, or two-point exchanges). One sees
that the product part of the formula proceeds down the rows of the
matrix, i = 1, 2, . . ., n, choosing one term in each row from whatever
column is dictated by the permutation σ(i) so that each column is
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represented once and only once. This permutation definition leads to
the familiar expansion-by-minors formula for determinants. And thanks
to the sign(σ) factor, it also leads to a Gaussian elimination expansion
technique. In this form, the computational complexity can be shown to
be O(n3) (that is, the number of computations is bounded by Kn3 for
some constant K).

Related to the determinant of a matrix is the permanent of a matrix.
It is defined in the same way, except that the sign(σ) factor is omitted:

perm(C) =
∑

σ

n∏

i=1

ci,σ(i).

For example, since the permutations of {1, 2, 3} are 123, 132, 213, 231,
312, and 321, we have

perm

[
1 1 1
1 1 1
1 1 1

]
= c11c22c33 + c11c23c32 + c12c21c33

+ c12c23c31 + c13c21c32 + c13c22c31 = 3!.

The permanent is mainly used in combinatorics.1

Unfortunately, there is no short-cut method known for computing
the permanent, and its computational complexity is O(n!).

Now consider the space of n × n matrices whose terms are only 0
or 1. These are much easier to compute than unrestricted matrices,
because as soon as a 0 is encountered in a product corresponding to
some permutation, 0 may immediately be written for that product and
calculation may proceed to the next permutation. For example, one
immediately sees that

perm

[
1 0 1
1 1 0
0 0 0

]
= 0

because the last row has all 0’s.

1 For example, it gives the number of perfect matchings in a bipartite graph. This
is a graph for which the vertices can be partitioned into two sets A and B such
that every edge has one incidence in A and one in B. Figure 3.8 is bipartite. A
perfect matching is a matching that covers all vertices of the graph. That is, every
vertex of the graph is incident to exactly one edge of the matching. If E is the
edge matrix of the graph, with eij equal to 1 if there is an edge joining vertex
i to vertex j and 0 otherwise, then perm(E) is equal to the number of perfect
matchings in the graph.
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Matlab
> % mat is an nxn 0/1 matrix
> % used is an n-dim. array
> function y=permrecurse(level,n,used,mat,v)
> if level == n+1

y=v+1;

else
for i=1:n

if used(i) == 0 & mat(level,i) ∼= 0
used(i)=1;
v = permrecurse(level+1,n,used,mat,v);
used(i)=0;
end

end
y=v;

end

Typical call to permrecurse
> n=3;
> used=zeros(1,n);
> a=[[1,0,1];[0,1,1];[1,1,1]]
> permrecurse(1,n,used,a,0)

Fig. 4.8. Recursive Matlab algorithm for computing a 0/1 permanent.

In Figure 4.8 we give a remarkably short, recursive program for
calculating the permanent of a 0/1 matrix. In Figure 4.9 we give a
nonrecursive algorithm for calculating the permanent as an example
for languages in which recursion is not possible.

The optimization problem is this: among the set of n × n matrices
with 0/1 entries and having exactly m 1’s, what is the largest possible
permanent and what matrix gives the maximum value? We shall refer
to this as the n : m permanent problem. For example, for the 3 : 5
permanent problem, the maximum permanent is 2 and it is given by

perm

[
1 1 0
1 1 0
0 0 1

]
= 2.

Several rearrangements of this matrix also give 2; thus

perm

[
0 0 1
1 1 0
1 1 0

]
= perm

[
1 0 1
0 1 0
1 0 1

]
= 2.

Like the TSP, the m : n permanent problem is also well-suited for
testing optimization algorithms. In this case, not only does the solu-
tion space grow exponentially, but also the “fitness landscape” defined
by the permanent becomes more deceptive. That is, states with high
permanent value are surrounded by states with much lower perma-
nent value. The “fitness landscape” is characterized by extremely small
peaks surrounded by huge flat plains.
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Permanent Calculator for 0/1 Matrices (f77)

c23456789
PROGRAM PERMNR

C
INTEGER N,A(15,15)
INTEGER PER, PERM(15), OD(15)
COMMON A,PERM,OD,PER

C
N=3
DATA A(1,1),A(1,2),A(1,3)/1,0,1/
DATA A(2,1),A(2,2),A(2,3)/0,1,1/
DATA A(3,1),A(3,2),A(3,3)/1,1,1/

C
DO 10, I=1,N

10 PERM(I)=I
CALL ODOMETER(N)

C the permanent of A is now in PER
print *,’PER= ’,PER
STOP
END

C
SUBROUTINE CP(N)
INTEGER N,A(15,15)
INTEGER PER, PERM(15), OD(15)
COMMON A,PERM,OD,PER
DO 10, I=1,N

IF (A(I,PERM(I)).EQ.0) RETURN
10 CONTINUE

PER = PER+1
RETURN
END

C
SUBROUTINE ODOMETER(N)
INTEGER N,A(15,15)
INTEGER PER, PERM(15), OD(15)
COMMON A,PERM,OD,PER
DO 10, I=1,N

10 OD(I) = 0
I = N-1

20 CONTINUE
IF (OD(I) .GT. N-I) THEN

OD(I) = 0
I=I-1
IF (I .LT. 1) GOTO 100

ELSE
K=PERM(I)
PERM(I)=PERM(I+1)
PERM(I+1)=K
IF (OD(I) .EQ. N-I) THEN
DO 30, J=I+1,N-I
K=PERM(J)
PERM(J) = PERM(J+1)

30 PERM(J+1) = K
END IF
CALL CP(N)
I=N-1

END IF
OD(I)=OD(I)+1
GOTO 20

100 RETURN
END

Fig. 4.9. Fortran 77 program for evaluating a permanent.
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GA Solution

To construct a genetic algorithm, we must (1) define the chromosomes,
(2) define the fitness function, (3) and define the genetic operators:
mutation and crossover. As chromosomes we take n × n 0/1 matrices
having exactly m 1’s. The population will consist of 12 such chromo-
somes. Let the permanent of a matrix be its fitness. By maximizing
fitness we will be maximizing the permanent.

For mutation we take “north, south, east, west (NSEW) neighbor
swap with wraparound.” This means that in the matrix C to undergo
mutation:

1. select an entry uniformly at random in C, say cij ,
2. choose a direction N, S, E, W uniformly at random and interchange

the element in that direction with cij .

For example, if north is chosen, then interchange ci−1,j with cij .
Wraparound means that if i = 1, then take as the north neighbor
the element cn,j. Or if j = n, take as the east neighbor ci1, and so on.
If the chosen neighbor and cij are the same, both 0’s or both 1’s, then
make another choice of direction. If all neighbors are the same, skip the
mutation operation. Figure 4.10 illustrates the neighbors (labeled with
circles in the figure) of the darkened squares. The one on the upper
right corner of the matrix has its “north” neighbor on the bottom row
and its “east” neighbor in the first column.

Note that this operation preserves the number of 1’s in the matrix
C.

For the crossover operation we take “templated global swap.” Let
the matrices A and B be selected for mating. String out their matrix
elements, row by row, into two long 1-dimensional arrays. Do this with
wraparound meaning that the end of each string is joined to the be-
ginning, so that the next element after ann is a11 and similarly for B.
Now choose the same starting point in each string at random. Move
term by term along each string until the first time the elements differ;
string A is a 0, say, and string B is a 1. Swap these elements.

Continuing from there, move along the strings until you first en-
counter a difference in the elements the other way around: string A is
a 1 and string B is a 0. Again swap. In effect, two terms of A (B) have
been globally interchanged based on the template of B (A).

As before, the count of 1’s in the matrices mated has been preserved.
These specific operations may now be programmed into either of

the GA prototype algorithms. The results of six runs of GA Algorithm
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Fig. 4.10. Illustration of mutation neighborhood for permanent problem.

2 working on the 14:40 permanent problem are shown in Figure 4.11.
It is known that the maximum possible permanent for this problem is
2592.
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Fig. 4.11. Solution history of GA 2 on the 14:40 permanent problem.
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Notes

Simulated annealing and genetic algorithms are just two examples of Monte
Carlo optimization methods. Many other methods exist under the general
name of evolutionary algorithms (see [Ash06, BFM97]).

Most optimization algorithms are plagued with the problem of niching.
Adding a random component to a deterministic optimization algorithm is
one way of dealing with niching, for example some form of restarting. Monte
Carlo optimization methods have a built-in method for dealing with niching.
However, this sometimes comes at a cost, since the expected time to find the
optimum can be infinite (see Problem 1).

A good source of information on the TSP is the TSPBIB, currently located
at the URL

http : //www.densis.fee.unicamp.br/ moscato/TSPBIB home.html.

For many TSP problem instances see the TSPLIB resource at the URL

http : //www.iwr.uni− heidelberg.de/groups/comopt/software/

TSPLIB95/.

Both simulated annealing and genetic algorithms can be modified to handle
constrained optimization problems in a natural way. The time-varying aspect
of SA makes a dynamic penalty method a natural choice. A very nice analysis
of an algorithm called “Compressed Annealing” can be found in [OBH04].

Problems: Chapter 4
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1

2
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–2

Fig. 4.12. Three-bit Sandia Mountain problem (defined only on the integers).
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1. (5) (a) The n-bit Sandia Mountain problem is to find the minimum value
of the function f defined as follows on {0, 1, 2, . . . , N}:

f(x) =

{
2x − 1, if x = 0 or 1,
N−x
N−1 , if x = 1, 2, . . . , N ,

where N = 2n − 1; see Figure 4.12. Consider the 2-bit Sandia Mountain
problem (so the state space is {0, 1, 2, 3}, and f(0) = −1, f(1) = 1, f(2) =
1/2, and f(3) = 0). Verify that using SA with minimal neighborhoods and
inverse log cooling, T = 1/ log(t + 1), the transition probability matrix is

⎡
⎢⎢⎣

1 − 1
2e−2/T 1

2e−2/T 0 0
1/2 0 1/2 0
0 1

2e−1/2T 1
2 (1 − e−1/2T ) 1

2

0 0 1
2e−1/2T 1 − 1

2e−1/2T

⎤
⎥⎥⎦ .

(b) Write an annealer for this problem. Starting from x = 3, run it to
find the globally minimum value, −1 at x = 0; histogram the number of
iterations until the minimum is found. If the solution is not found in 1000
trials, stop and add 1000 to the histogram. Now repeat this, except allow
10,000 trials before stopping.
(c) What is the expected number of iterations to find the solution starting
from x = 3?
Note: this should be like the St. Petersburg problem.

2. (3) Write an annealer to solve the 4-bit Sandia Mountain problem (see
Problem 1 above for a definition). Try various neighborhood structures
including an all-connected (maximal) one. Which one seems to work best?
Why?

3. (4) Consider the n-bit Sandia Mountain problem where n is quite large
(so that 2n, the number of states is very large). Explore the benefits
and drawbacks of a minimal neighborhood system versus an all-connected
(maximal) neighborhood system.

item 1 2 3 4 5 6 7 8 9
value 189 149 177 158 140 192 155 165 160
cost 920 1021 1065 1038 1041 1089 1016 1081 920

item 10 11 12 13 14 15 16 17 18
value 102 134 100 174 188 102 166 135 101
cost 1035 977 1039 976 979 926 1085 931 917

Table 4.2. Table of values and costs for the knapsack problem.
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4. (6) (Knapsack problem) Let x = (x1, x2, . . . , xn) be a 0/1 vector (xi = 0
or 1 for all i). Given the data in Table 4.2, use a genetic algorithm to
maximize

n∑

i=1

valuei · xi,

provided that
n∑

i=1

costi · xi ≤ 10,000.

Notice that to do this, it is necessary somehow to ensure that the GA
operations preserve the constraint.

5. (5) Use a genetic algorithm to solve the same knapsack problem as above,
but this time allow solutions to violate the constraint, and apply a penalty
to the infeasible solutions. Explore various penalty methods, including a
dynamic penalty that increases the penalty over the course of the run of
the algorithm.

6. (6) Anneal four particles on the line confined to the segment between
−1 and 1. The state of the system is the vector of their positions, x =
[ x1 x2 x3 x4 ]. Take energy to be

E(x) =
∑

i<j

Φ(rij) rij = |xi − xj |

and Φ(r) = 4000
[
(0.1/r)12 − (0.1/r)6

]
. For a perturbation, choose one

of the particles equally likely and move it according to a Gaussian with
mean 0 and standard deviation of 0.2 with reflection at −1 and +1. Take
temperature to be T = 0.04 in one run and 0.08 in another. Histogram
energies.

7. (5) Write a simulated anneal solver for the permanent 8:20 problem. (The
temperature range should include T = 2. Note: the size of the solution

space is
(
82

20

)
= 19,619,725,782,651,120, while the number of these points

that are optimal solutions is 2(8!/(3!)2)2 = 2,508,800, this is about 1 part
in 1010.)

8. (6) Write a genetic algorithm for solving the permanent 8:20 problem. Be
sure to indicate (a) what a chromosome is, (b) what fitness is, (c) what
the genetic operations are.

9. (5) Write an annealer for the TSP on the 16 cities defined below. (Note:
the solution space has (16 − 1)!/2 = 653,837,184,000 tours.)

city1 = (12,12), city2 = (18,23), city3 = (24,21),
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city4 = (29,25), city5 = (31,52), city6 = (36,43),
city7 = (37,14), city8 = (42,8), city9 = (51,47),
city10 = (62,53), city11 = (63,19), city12 = (69,39),
city13 = (81,7), city14 = (82,18), city15 = (83,40),
city16 = (88,30).

10. (7) Write a genetic algorithm for the 16 city TSP above. Be sure to indi-
cate (a) what a chromosome is, (b) what fitness is, (c) what the genetic
operations are. Note: there is no “natural” crossover operation for TSP
tours that the authors know of. Be creative and if you find a good one,
write us!

a b c a b c

11.380 7.928 0.1515 4.714 7.480 0.1339
7.692 3.739 0.0900 13.688 1.535 0.0715
11.687 2.389 0.2139 9.606 8.236 0.1788
12.746 3.003 0.1783 9.565 5.249 0.1780
9.786 2.132 0.0551 3.023 3.773 0.1395
13.985 0.620 0.1181 13.905 3.929 0.2164

Table 4.3. Parameters for a 12-term Shekel function.

11. (5) Write an annealer to find the maximum of the Shekel function whose
12-term parameters are given in Table 4.3.

12. (5) Write a genetic algorithm to find the maximum of the Shekel function
whose 12-term parameters are given in Table 4.3.

13. (6) The following is a table of the US population. Find the parameters A,
r, and K of the equation

y =
Aert

1 + A
K ert

that best fits the population data. Use least squares between the curve
and the population data as the measure of closeness.

U.S. Population Census∗

1790 3929214 1860 31433321 1930 122775046
1800 5308483 1870 39818449 1940 131669275
1810 7239881 1880 50155783 1950 151325798
1820 9638453 1890 62947714 1960 179323175
1830 12866020 1900 75994575 1970 203302031
1840 17069453 1910 91972266 1980 226545805
1850 23191876 1920 105710620 1990 248709873

∗ Source: Time Almanac Reference Edition, 1994.
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14. (6) (TSP with time windows – TSPTW) The TSP with time windows is a
variant of the TSP in which the salesman must visit a specific city during
a given window of time. Instances of the TPSTW can be found at

http : //myweb.uiowa.edu/bthoa/TSPTWBewnchmarkDataSets.htm.

Write an annealer to solve the TSPWT. Notice that the TSPTW is a con-
strained optimization problem, and thus your algorithm will need some
way of handling constraints, either by ensuring that the constraints are
always satisfied or by applying some penalty to the infeasible states.

15. (6) Figure 4.13 shows a 10 × 14 maze along with its definition. Write an
annealer to solve it (or some other maze of your choosing). The tasks are
encoding a solution, inventing a perturbation of a solution, and defining
an “energy” for a solution that improves as solutions get closer to the end.

16. (7) Write a genetic algorithm solver for the maze above. Indicate (a) what
a chromosome is, (b) what fitness is, (c) what the genetic operations are.
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rows= 10, columns= 14

e 0, s 1      e 1, s 0      e 0, s 1    e 0, s 0  e 0, s 0
e 1, s 0      e 1, s 0      e 0, s 1    e 0, s 1  e 0, s 1
e 0, s 0      e 0, s 0      e 0, s 1    e 0, s 1  e 0, s 1
e 0, s 1      e 1, s 1      e 0, s 1    e 1, s 0  e 0, s 1
e 0, s 1      e 1, s 0      e 1, s 0    e 0, s 0  e 1, s 0
e 0, s 1      e 1, s 0      e 1, s 0    e 1, s 0  e 0, s 0
e 0, s 0      e 0, s 0      e 1, s 0    e 1, s 0  e 0, s 1
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e 0, s 1      e 0, s 0      e 1, s 0    e 0, s 0  e 0, s 1
e 0, s 1      e 1, s 1      e 0, s 1    e 1, s 1  e 0, s 1
e 0, s 1      e 1, s 0      e 1, s 0    e 1, s 0  e 1, s 0
e 1, s 0      e 0, s 1      e 0, s 0    e 1, s 0  e 1, s 1
e 0, s 0      e 1, s 1      e 1, s 0    e 1, s 1  e 0, s 1
e 1, s 0      e 1, s 0      e 1, s 0    e 1, s 0  e 1, s 1

e 0, s 0      e 1, s 0      e 0, s 1    e 1, s 0  e 0, s 1
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e 1, s 1      e 0, s 1      e 0, s 1    e 0, s 1  e 0, s 1
e 0, s 0      e 0, s 1      e 0, s 1    e 0, s 1  e 1, s 1
e 0, s 1      e 1, s 1      e 0, s 1    e 1, s 1  e 0, s 1
e 1, s 0      e 1, s 0      e 1, s 1    e 0, s 1  e 0, s 1
e 0, s 1      e 1, s 0      e 1, s 0    e 1, s 1  e 0, s 1
e 0, s 1      e 1, s 0      e 1, s 0    e 0, s 1  e 0, s 1
e 0, s 1      e 0, s 1      e 0, s 1    e 0, s 1  e 0, s 1
e 1, s 0      e 1, s 0      e 1, s 0    e 0, s 1  e 1, s 1
e 1, s 0      e 0, s 1      e 1, s 0    e 1, s 1  e 0, s 1
e 1, s 0      e 0, s 1      e 1, s 0    e 0, s 0  e 0, s 1
e 1, s 0      e 1, s 0      e 1, s 0    e 1, s 0  e 0, s 1
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   0  1  2  3  4  5  6  7  8  9  0  1  2  3

0

1

2

3

4

5

6

8

9

7

Fig. 4.13. A 10 × 14 maze, start at (0, 0), end at (9, 13). Below the maze is
its computer definition. There are 140 “cells” to the maze, and each cell has
an east (e) wall, either open (0) or closed (1), and a south (s) wall. Read down
the columns left to right for the cells going across the maze top to bottom.
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Random Walks

While a Markov chain can be considered a random walk (on an ap-
propriate state space), a random walk is not always an instance of a
Markov chain. For example, a random walk’s next step could depend
on the entire history of the walk up to that time. This is the case
for self-avoiding walks, which have applications in the study of macro-
molecules.

Random walks arise in the motion of particles under collision (such
as Brownian motion), in gambling problems (the fortune of a (perhaps
unfortunate) gambler), and in mathematical models in finance (such as
the pricing of options).

5.1 Diffusion

In 1828, the botanist Robert Brown published a pamphlet entitled, “A
Brief Account of Microscopical Observations on the Particles Contained
in the Pollen of Plants.” He had observed, through a microscope, pollen
grains suspended in water and was amazed to see that they underwent a
constant and erratic motion. We now know that the grains move under
the unseen influence of their collisions with water molecules. The water
molecules themselves are under constant erratic motion due to collisions
with each other. Their average speed, and hence their kinetic energy,
increases with temperature. Energy is propagated through the medium
via these collisions.

The water molecules also move from place to place within the
medium as a result of the collisions. So do the pollen grains, but much
more slowly. This type of transport is called diffusion. The motion can
be described, and modeled, as a random walk.
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To keep things simple, consider the random walk on the lattice of
integers on the real line by a single particle. The particle starts at the
origin and takes one step to the right with probability p and one step
to the left with probability q = 1 − p. If p = q = 1/2, the choice could
be made by the flip of a fair coin. In Figure 5.1 we show the histogram
of the endpoints of 200,000 random walks each of 30 steps. The figure
uses the following code:

Matlab
> nSteps = 30;
> nTrials = 200000;
> H=zeros(1,nTrials);

for j=1:nTrials
% do all nSteps coin tosses
T = 2*(rand(1,nSteps) < 0.5 ) -1;
H(j) = sum(T);

> end
> hist(H)
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Fig. 5.1. Endpoints of 200,000 walks of 30 steps.

As we should expect by the central limit theorem, the histogram ap-
proximates the normal distribution. By increasing the number of steps
and making them smaller we can derive the equations of 1-dimensional
diffusion.
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Diffusion as the limit of a Random Walk

For simplicity, assume that time is divided into discrete periods ∆t and
in each such period a particle moves randomly along a line, one step
∆x to the right, with probability p, or one step ∆x to the left, with
probability q = 1− p. After n time periods the particle lies somewhere
in the interval from −n(∆x) to n(∆x) relative to its starting point,
taken as the origin 0.

Let p(m,n) denote the probability that the particle has been dis-
placed to position x = m(∆x), m steps right of the origin, after n time
periods, t = n(∆t). We wish to calculate p(m,n). It will help to rec-
ognize that our random walk with n steps is something like tossing n
weighted coins. For every coin that lands heads we step right, and for
tails we step left. Let r be the number of steps taken to the right and
l the number left. Then to be at position m(∆x) it must be that their
difference is m,

m = r − l, where n = r + l.

Thus r can be given in terms of m and n by adding these two equations,
and l is given by subtracting,

r =
1

2
(n + m) and l =

1

2
(n − m).

As in a coin-tossing experiment, the number of ways of selecting r
moves to the right out of n possibilities is given by

(
n

r

)
=

n!

r! (n − r)!
.

If the probabilities of going left and of going right are q and p as above,
then

p(m,n) = probability of r steps right =

(
n

r

)
prqn−r, r =

1

2
(n+m).

This is the binomial distribution (as discussed in Section 2.3).
If the random walk experiment with n = 100 steps were conducted

a large number of times, then a histogram of the resulting particle po-
sitions would closely approximate a normal distribution (by the central
limit theorem). Alternatively, the same result pertains to the fate of
a large number of particles randomly walking at the same time, each
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taking 100 steps, provided they may slide right past each other without
collisions.

We next determine which normal distribution is the limit, that is,
what are the mean and variance of the limiting normal distribution.
The expected displacement is given by

E(m) = E(2r − n) = 2E(r) − n = 2np − n = (2p − 1)n.

This is the drift of the random walk. The variance of the displacement
is

var(m) = var(2r − n) = 4var(r) = 4npq.

Hence the root mean square (rms) displacement, which quantifies the
dispersion, is √

var(m) =
√

4npq.

Notice that this is just the standard deviation of the displacement. In
the case where p = q = 1/2 we see that

rms displacement =
√

n.

Hence particles disperse in proportion to the square root of time. To
traverse a distance twice as far requires four times as much time.

To continue with the normal approximation, we now fix p = q = 1/2.
Recall that the probability that a normally distributed observation will
fall within an interval of width dm centered at m is, approximately,

1√
2πσ

e−
(m−µ)2

2σ2 dm,

where µ is the mean and σ is the standard deviation of the distribution.
On the other hand, p(m,n) is the probability that the walk will end
between m − 1 and m + 1, an interval of width 2, and from above, its
mean is 0 and standard deviation is

√
n. Hence

p(m,n) ≈ 1√
2πn

e−
m2

2n (2) ≈
√

2

πn
e−

m2

2n . (5.1)

Note that here we are using the continuous normal distribution to ap-
proximate the discrete random walk distribution. This is the reason we
set dm = 2, to concentrate the spread-out area of the normal distribu-
tion over an interval of 2 into a single central point.
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Jump to the Continuum

Our last refinement is to let ∆x and ∆t tend to 0 to obtain a continuous
version of p(m,n). Of course, without care, p(m,n) will approach zero
as well, because the probability will spread out over more and more
values of m. But since each value of m corresponds to a probability
over a width of 2∆x, we take the quotient of p(m,n) by this width.
Here we are doing the opposite of what we did above; we are spreading
out the discrete probability at the central point of an interval over the
entire interval, so we must divide. Let u(x, t) denote the probability
that the particle lies in an interval of width 2(∆x) centered at x at
time t. Then

u(x, t) =
p( x

∆x , t
∆t)

2(∆x)
=

1

2(∆x)

√
2

π( t
∆t)

e
−

(x/∆x)2

2(t/∆t) .

And upon simplification,

u(x, t) =
e−(x2/4(∆x2

2∆t
)t)√

4π
(

∆x2

2(∆t)

)
t

.

Now keeping the ratio

D =
∆x2

2(∆t)

fixed as ∆x and ∆t tend to 0, we obtain the Gaussian distribution

u(x, t) =
e−

x2

4Dt√
4πDt

.

The parameter D is called the diffusion coefficient or diffusivity and
has units of area divided by time. Diffusivity depends on the solute,
the solvent, and the temperature among other things. As to why the
ratio ∆x2/∆t should be kept fixed (and not ∆x/∆t for example), we
have noted above that under the process of diffusion, displacement is
proportional to the square root of time: in half the time, the process
can be expected to go only one-fourth the distance. In this way we
avoid infinite velocities as ∆t → 0.

This function u(x, t) satisfies the diffusion equation

∂u

∂t
= D

∂2u

∂x2
. (5.2)

Solutions to this partial differential equation are said to be harmonic
functions.
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Recurrence

We have already seen that a walk disperses at the rate of
√

n. It might
be supposed that particles wander away, never to return. But for the 1-
dimensional and 2-dimensional random walks, this is not so. In fact, it
can be shown that given any lattice point, with probability one the walk
will attain that point eventually as n → ∞. This means in particular
that the walk will reach any predetermined value M , for example M =
100 or M = 1,000,000 or M = −9,192,129 and so on. It also means
that the walk will return to any point and do so infinitely often, for
example the origin. This property is known as recurrence, and a walk
that satisfies this property is said to be recurrent. In Figure 5.2 we show
why this is so for a 1-dimensional lattice walk.

Let R be the probability that the walk starting from the origin will return.
We decompose on the first step; to the left or right. But we may assume that
it is to the right by symmetry: if it were to the left, we could just rotate the
line 180◦ and things would be the same. Now from x = 1, with probability
1/2 the next step is to the left and we are back at the origin. Otherwise,
with probability 1/2 the next step is to x = 2. But now, to get back to the
origin, we must get back to x = 1. Since the line is infinite, the probability
of that is exactly R. So we have the following:

R =
1

2
+

R

2
[times the prob. of reaching x = 0 from x = 1] . (5.3)

But the probability of reaching x = 0 from x = 1 is exactly the right-hand
side of this equation; therefore

R =
1

2
+

R

2

[
1

2
+

R

2

[
1

2
+

R

2
[· · ·]
]]

=
1

2
+

1

2

(
R

2

)
+

1

2

(
R

2

)2

+
1

2

(
R

2

)3

+ · · ·

=
1

2

[
1

1 − R/2

]
.

So 2R (1 − R/2) = 1, from which it follows that R = 1.

Fig. 5.2. Return to the origin is certain for a 1-dimensional walk.
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5.2 Brownian Motion

The 1-dimensional random walk on the lattice of integers studied in
the previous section is only a very crude approximation to Brownian
motion. It is somewhat remarkable that by allowing the step sizes to
become small and the steps to occur more frequently, we are able to
derive the law of diffusion, if not Brownian motion itself. But what
exactly is Brownian motion?

The mathematical theory of Brownian motion was put on firm
ground by Norbert Wiener. Consequently, Brownian motion is often
called a Wiener process. It is defined by three axioms; letting Wt be
the random variable of the location of the particle at time t (here t is
a continuous variable), then:

• W0 = 0,
• for t1 < t2 < · · · < tn, the differences

Wt2 − Wt1 , . . . ,Wtn − Wtn−1

are independent, and
• for s < t, Wt−Ws is normally distributed with mean 0 and variance

c(t − s), where c > 0 is a fixed constant.

For a start, we see that Brownian motion step sizes are normally
distributed with increasing variance over longer times. By the indepen-
dence assumption, we see that to obtain Brownian motion in higher di-
mension, for example two dimensions, we can simply make the steps of
the walk fall alternately in the x-direction and then in the y-direction.
We could also chose a direction at random and take a normally dis-
tributed step size in that direction. The upper left graph in Figure 5.3
is a simulated 2-dimensional Brownian motion obtained by this sec-
ond method. At every step, the new direction is randomly chosen and
the step size is chosen according to a normal distribution with fixed
standard deviation. This corresponds to observing the position of the
particle at fixed time intervals.

The graph in the lower right of the figure shows the endpoints of
400 of these walks. It is a visualization of the probability density of the
distance the particle achieves after 2000 steps. As noted above, this is
a 2-dimensional normal density distributed symmetrically around the
origin.
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Matlab
> sig=2; % step size std dev
> nSteps = 2000; % # steps in each walk
> nSteps = 2*fix(nSteps/2); % assure even
> % box-muller for N(0,1) random variables
> u1=rand(nSteps/2,1);

% U[0,1) vector nSteps/2 long
> u2=rand(nSteps/2,1);
> x1 = cos(2*pi*u1).*sqrt(-2*log(u2));

%N(0,1) vector
> x2 = sin(2*pi*u1).*sqrt(-2*log(u2));

> % concatenate x1 and x2 into h
> h(1:nSteps/2) = x1;
> h(1+nSteps/2:nSteps) = x2;
> x(1)=0; y(1)=0; %start at the origin
> for i=2:nSteps

theta = 2*pi*rand; % random direction
x(i)=x(i-1)+sig*h(i)*cos(theta);
y(i)=y(i-1)+sig*h(i)*sin(theta);

end
> %typical walk
> figure(1)
> subplot(2,2,1);
> plot(x,y);
> title(’Typical walk for nSteps steps’);
> xlabel(’X position’);
> ylabel(’Y position’);
> % do the walk from subStart to subEnd
> sub1Start = 500;
> sub1End = 1500;
> k = 1;

for i=sub1Start:sub1End
xsub1(k) = x(i);
ysub1(k) = y(i);
k = k+1;

end
> figure(1)
> subplot(2,2,2);
> plot(xsub1,ysub1);
> sub2Start = 1000;
> sub2End = 1300;

continued...
> k = 1;
> for i=sub2Start:sub2End

xsub2(k) = x(i);
ysub2(k) = y(i);
k = k+1;

end
> figure(1)
> subplot(2,2,3);
> plot(xsub2,ysub2);
> nWalks = 400; % # walks for density

> for j=1:nWalks
u1=rand(nSteps/2,1);
u2=rand(nSteps/2,1);
x1 = cos(2*pi*u1).*sqrt(-2*log(u2));
x2 = sin(2*pi*u1).*sqrt(-2*log(u2));
h(1:nSteps/2) = x1;
h(1+nSteps/2:nSteps) = x2;
x(1)=0; y(1)=0;
for i=2:nSteps

theta = 2*pi*rand;
x(i)=x(i-1)+sig*h(i)*cos(theta);
y(i)=y(i-1)+sig*h(i)*sin(theta);

end
Endx(j) = x(nSteps);
Endy(j) = y(nSteps);

end
> %density plot
> figure(1);
> subplot(2,2,4);
> scatter(Endx,Endy,3);
> title(’Density Plot for nSteps steps’);
> xlabel(’X end’);
> ylabel(’Y end’);

Self-Scaling of Brownian Motion

Notice that the path of the walk has the pattern of separated clusters.
Most of the time the step size is approximately equal to the standard
deviation. This forms the cluster. Occasionally there is a much larger
step, and sometimes more than one within a few steps of each other.
These form the tendrils of the walk that connect the clusters.

This pattern is repeated at all scales. The graphs in the upper right
and lower left are successive zooms on a portion of the walk. They show
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Fig. 5.3. Two-dimensional walk of 2000 steps.

that Brownian motion is scale-invariant, that is, the path of a particle
observed under magnification has exactly the same characteristics no
matter the magnification.

Specifically, scale invariance means that α−1Wα2t is also a Wiener
process for any α 
= 0. Since the steps sizes are normally distributed and
proportional to times between observations, it follows that by dividing
the step sizes by a fixed constant, say α, and simultaneously multiplying
the variance by α2, we will again have the same Wiener process.

Recurrence

As in one dimension, the 2-dimensional symmetric random walk on a
lattice is recurrent and will return to the origin with certainty. Hence
the walk will return to or hit the origin infinitely often. As a corollary of
this, the walk will hit any given lattice point in the plane, and do so in-
finitely often. This is because from the origin, reaching any given point
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has a positive probability. Hence given infinitely many steps, eventually
it will happen. The Markovian nature of the walk then ensures that it
will return again and again.

Likewise, 2-dimensional Brownian motion is recurrent, however, not
pointwise. In this case, this means that the particle will return to any
neighborhood of the origin with probability 1, not necessarily exactly
to the origin. For the same reason, the particle will eventually hit any
given neighborhood in the plane.

However, in three dimensions and higher, recurrence does not hold.
In these dimensions there is a positive probability that the walk, or the
particle, will wander off to infinity and thus never return.

5.3 Random Walk Applications I

The foregoing developments have found their way into many applica-
tions. In this section we consider two of them.

In his remarkable Ph.D. thesis of 1900, Louis Batchelier introduced
three of the fundamental concepts of modern finance: the invention
of options as a mechanism for ameliorating risk, the efficient market
hypothesis, and the use of Brownian motion to correctly price options.
Batchelier’s thesis was far ahead of its time and was forgotten until it
was rediscovered in 1954. Our first application shows how Batchelier’s
ideas have been resurrected and refined and how the random walk is at
the heart of option pricing, so important in today’s financial markets.

Next we offer a brief description of self-avoiding walks. A simple
requirement added to the standard random walk on a lattice leads to
some very difficult and as yet unsolved mathematical questions that
at the same time are important to modern chemistry and biology. The
requirement is that the walk must not intersect itself; that is, no lattice
point may be incorporated into the walk more than once. What makes
questions about self-avoiding walks so hard is that the walk is not
Markovian: the next step of the walk necessarily depends on the entire
history of the walk. We give a background to the open questions in this
area.

5.3.1 Options Pricing in Finance

A put option is a contract between the buyer or holder of the option
and the seller or maker that allows the holder to sell, or “put,” stock
to the maker for a certain fixed price on a certain date in the future.
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For example, suppose the price of General Electric stock is $32 per
share right now. A company holding GE stock might be ruined if the
price falls below $25 per share three months from now. So the company
might buy a put contract guaranteeing that they will be able to sell
their stock for $25 per share at that time; $25 is called the strike price.
The contract is like an insurance policy: if the market price stays the
same or increases, then the contract expires without being invoked.
Otherwise, if the market price falls below the strike price on the date
of expiration three months from now, then the company invokes the
contract and limits their loss.

Of course, the maker of the option is taking a risk; the maker may
have to buy the stock at $25 per share when the market price is less than
that, maybe $20 per share, maybe even less. In exchange for taking on
this risk, the maker charges a price called the premium for making the
contract. If the contract is not invoked, the maker keeps the premium
as a profit.

A call option is dual to the put option. The holder has the right to
buy or “call” stock from the maker at the strike price on the date of
expiration. For example, suppose Genentech trades for $79 per share
today, but they have been working on a new product that could win
FDA approval in the near future. If this happens, their stock price
will soar. To benefit from this possibility a speculator buys call options
guaranteeing the right to buy a certain number of shares of Genentech
four months from now at a price of $85 per share. If the approval
comes through and Genentech climbs to $92 per share at expiration,
the speculator makes a $7 profit per share. If things go wrong and
Genentech stays the same or declines, then the option contract expires
worthless.

In the case of this call option, the maker runs the risk of having to
buy stock at a market price above the strike price of $85, for example
at $92, but sell it at the strike in order to fulfill the call contract. In
consideration of this risk the maker charges a price for the option.

But what is a fair price for an option contract? This question, which
was “in the air” in the 1960s and early 1970s, was solved in the form
we see it today by Fischer Black and Myron Scholes in 1973 (and inde-
pendently by Robert Merton in a separate publication that same year).
The solution is based on the other two observations of Batchelier noted
above. What is today called the efficient market hypothesis was redis-
covered, developed, and put into clear form by Eugene Fama in his
PhD thesis in the early 1960s. In an efficient market, prices on traded
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assets, such as stocks, already reflect all known information, and there-
fore their price movement over a short interval of time is completely
random. To be sure, small price movements are more likely than large
ones. By assuming that the step sizes are normally distributed, we see
that the movement of a stock’s price is a one-dimensional Brownian
motion. The step size of the movement is small for stocks with a low
price and high for stocks with a high price, that is, the step size is
proportional to price. This refinement is called a geometric Brownian
motion to reflect that fact. Notice that it is not called geometric as a
result of it being a geometric phenomenon (that is, geometry as in lines
and planes and circles), but that the variance of the process scales in
a geometric fashion (proportional to the current value).

By exploiting Itō’s stochastic calculus for random variables, Black
and Scholes developed formulas for calculating fair option premiums
on the assumption of geometric Brownian motion of the underlying
stock. But we can calculate such premiums directly by simulating the
geometric random walk of the stock’s price.

Let S be the price of the stock on which the option contract is
made. Let dt be a small unit of time, for example one day, and let
dS be the change in price over that period of time. By the Brownian
motion assumption, the fundamental equation for the stock price is

dS

S
= µ dt + σ dW, (5.4)

where dW is the Brownian motion random variable and µ and σ are
parameters particular to the stock itself. If there were no randomness
in the stock’s price, dW = 0, then the stock price would grow expo-
nentially according to

dS

dt
= µS.

Hence we see that µ is the growth (or decline) rate of the stock’s price
as a result of the growth of the company itself. As we will see shortly,
µ plays no role in figuring option prices.

By contrast, the parameter σ is a very important constituent in
option pricing. It is called volatility and is a reflection of the fact that
some stocks’ prices fluctuate more rapidly and with greater swings than
others’. It is, in fact, the standard deviation of the prices of the par-
ticular stock underlying the option contract and can be approximated
from the stock’s price history.
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Simulating a Geometric Random Walk

In order to simulate solutions to (5.4), we draw samples from a normal
distribution for dW , use the equation to calculate dS, and carry the
price S one time step forward, Snew = Sold + dS. The mean of dW
is zero, but the variance must depend on the size of dt; in fact, Itō
showed that the variance of dW must be taken as dt. The equation can
therefore be rewritten as

dS

S
= µ dt + σ

√
dtN, (5.5)

where now N ∼ N(0, 1) is normally distribution with mean 0 and
variance 1.

As to dimensions, every term in (5.5) is dimensionless. Therefore if
dt is in days, µ is in per day and σ is in per square root day. But these
parameters are usually given per year; hence we take dt in years as well.
Then µ is in per year and volatility is in per square root year; however,
the latter term is never used in practice; instead, the term per year is
used for it as well.

Risk-Neutral Valuation

We said that the option price must be fair, but what does that mean? In
fact, the fairness principle has far-reaching implications. For example,
it means that no one can make “free” money. By investing one’s money
in a guaranteed bank account paying an interest rate, one is earning
riskless money. But this is not free money because the bank’s use of
money has value; the interest paid is compensation for its use over
time. Let r be the best riskless interest rate possible; this is usually on
government bonds.

An implication of the principle of fairness is that µ in (5.5) must
be taken equal to r in the computation of a fair option price. This is
known as risk-neutral evaluation. If µ were larger and this earning rate
guaranteed, then one would invest in this stock instead of government
bonds and µ would be considered as the risk-free rate. Hence a value
of µ > r is the result of risk and, if used in (5.5), would give rise to
an unfair option price. In particular, it would not be fair to discount
future money at the rate of r, see (5.6), while allowing a drift at the
rate of µ. For more on this see [Hul03].
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Calculating the Price of an Option

Here then is how to figure the price of an option by simulation. Select
the type of option, for example a call option, the desired time period,
for example 90 days, and from the underlying stock note its current
price, for example S0 = $20, and volatility, for example σ = 60% per
year. And as discussed above, note the current risk-free interest rate,
for example 3.10% per year, from www.federalreserve.gov.

Matlab
> nDays = 90;
> dt = 1/365.0; % use time in years
> T = nDays*dt; % expiry in years
> S0=20; % starting stock price
> X=25; % strike price
> r = .031; % risk-free rate
> sigma = .6; % volatility
> expTerm = r*dt;

> stddev = sigma*sqrt(dt);
> nTrials = 10000;
> value=0;
> for j=1:nTrials

n = randn(1,nDays); % vector of N(0,1) random numbers
S = S0;
for i=1:nDays

dS = S*(expTerm + stddev*n(i));
S = S + dS;

end
S90(j) = S; % to histogram
value = value + max(S-X,0);

end
> value = value/nTrials; % expected value
> Price = exp(-r*T)*value % discount back
> hist(S90,0:.5:65)

Each simulation of (5.5) is a possible future path of the stock’s price
over the 90 days. One cannot say which future will materialize, but we
can histogram a large number of them and know their distribution.
Figure 5.4 shows the histogram of nTrials = 10,000 such paths.

Notice that the final price, S90, ranges from $6 to over $60. This is
not a normal distribution because the random walk is geometric; the
price can never fall below zero. Instead, it is log S that is normal; S
itself is called lognormal ; an asymmetric distribution.

Next we must select the strike price X of our option, for example
X = $25. We then calculate the expected value of the option at expi-
ration. If the ending stock price is less than the strike price, the call
option expires worthless. If the ending stock price is $26, then the op-
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tion contract states that we can buy the stock at $25, so the value of
the option is $1. In general, the value of the option at expiration is

max(ST − X, 0),

where ST is the stock price at expiration. Hence an estimate of the
expected value of the option at expiration is given by

E =
1

nTrials

nTrials∑

i=1

max(S90(i) − X, 0).

This is the option’s value at expiration, day 90. To find the value on
day 0 we must discount the 90-day value back 90 days at the risk-free
interest rate,

P = e−rT E. (5.6)

The exact value for this call option given by the Black–Scholes for-
mula is 0.9056. In running the simulation above six times, the outcomes
were 0.9388, 0.8581, 0.8943, 0.8699, and 0.9085. These runs have a mean
of 0.8898 and a standard deviation of 0.0276, so the result is within 0.6
standard deviation of the exact value. As usual, running more trials will
reduce the error at the rate of one over the square root of the number
of trials.
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5.3.2 Self-Avoiding Walks

A self-avoiding walk (SAW) is a random walk on a cubical (or hexag-
onal) lattice starting from the origin with the property that no site is
revisited by the walk. An SAW in one dimension is trivial; in 2 or 3
dimensions even the most basic questions about them are still open.
These include (1) how many different SAWs are there of a given num-
ber of steps? and (2) what is the average displacement of an n-step
SAW? Here displacement refers to the geometric straight-line distance
between the terminal point and the starting point of the walk.

Letting cn denote the number of n-step walks, for a 2-dimensional
cubical (i.e., square) lattice it is easy to count directly that c1 = 4,
c2 = 12, c3 = 36, and c4 = 100. It is conjectured that in general,

cn ≈ 2.64n.

As to the displacement of an n-step walk, for square lattices the con-
jecture is that the expected displacement squared is

E(displacement2) ≈ n3/2.

Besides a purely mathematical interest in SAWs, their study is very
important in the fields of industrial polymer chemistry and biological
macromolecules. For example, industrial polymers are made up of small
units called monomers chemically linked together, sometimes by the
thousands. Abstractly, the lattice points of an SAW play the role of
the monomers, while the edges play the role of the links. Of course no
two monomers can occupy the same location in space and hence the
need to impose the self-avoiding condition.

The two basic properties about SAWs mentioned above, cn and
displacement, imply physical properties of the polymers they model.

In coding an SAW, the history of the walk must be kept and con-
sulted for each new step. The most efficient way to obtain long walks
is to choose the next direction, north, south, east, west (in two dimen-
sions), from among those avoiding immediate intersection. If from the
current location of the walk, sites north and west are occupied, the
random choice is restricted to east and south. It is possible that the
walk can self-trap, in which case there are no available sites and the
walk must end. At this point, the statistical information of the walk is
recorded, the history is cleared out, and a new walk is started.

Problem 15 involves using simulation to estimate cn and walk dis-
placement for a self-avoiding walk on a square lattice in the plane.
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5.4 Gambler’s Ruin

The adaptation of the simple random walk to gambling is an endeavor
to understand the rise and fall of a gambler’s fortune over time. In fact,
probability owes its origins to gambling, stemming, as it were, from
letters exchanged by Pierre Fermat and Blaise Pascal about gambling
problems.

Suppose, as we did in the introduction, a gambler bets 1 unit, e.g.,
1 dollar, against the house with probability p of winning the bet and
probability q = 1 − p of losing it. Assume that the gambler starts
with x units of money. Let X(t) be the random variable equal to the
gambler’s fortune at time t; hence X(0) = x. After one play of the game,
the gambler’s fortune will have increased or decreased by one unit, so
X(1) = x + 1 with probability p and X(1) = x − 1 with probability q;
now continue. We see that this is a random walk just as in Section 5.1,
except that the walk starts at x instead of 0.

Well almost; the walk cannot go below 0 in this case, for then the
gambler will be ruined. Likewise, the house also has finite capital; as-
sume that it starts the game with h units. So all the money in the
game is the constant a = x+ h. At any time, the house’s fortune is the
difference between this and the gambler’s fortune, H(t) = a − X(t). If
X(t) = a, then the house is broken and again play stops.

Play continues so long as 0 < X(t) < a and stops the first time one of
these barriers is reached. An important question is whether play will go
on indefinitely. The answer is no; given enough time, either the gambler
will be ruined or the gambler will break the house. (At least, with
probability one this will happen; all such statements are necessarily
probabilistic statements.) We will show that this is so momentarily.

It is easy to see that if the game is fair, p = 1/2, then the expectation
on every play is the original gambler’s fortune. For example,

E(X(1)) =
1

2
(x + 1) +

1

2
(x − 1) = x

and

E(X(2)) =

(
1

2

)2

(x + 2) + 2
1

2
· 1

2
x +

(
1

2

)2

(x − 2) = x,

and so on. Processes having this expectation-preserving property are
called martingales. Further, we know from Section 5.1 that the walk
stochastically wanders away from the starting point in proportion to
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√
t. This gives an indication as to how long the game is expected to

last before the gambler is ruined or the house is broken.
Play will end at an absorbing barrier, but which one? Let rx be the

probability that the gambler will be ruined if his starting capital is x.
Similarly, let hx be the probability that the gambler breaks the house.
If we can show that rx + hx = 1, then it follows that the game cannot
go on indefinitely, as asserted above.

To determine rx and hx decompose on one play of the game. If the
gambler loses the first game, the chance of ruin is the same as if he
starts with x − 1 units. Similarly, if he wins the first game, the chance
of ruin is the same as if his starting capital is x + 1 units. Hence

rx = qrx−1 + prx+1, x = 2, 3, . . . , a − 2. (5.7)

The gambler starting with 1 unit, x = 1, or all the money except one
unit, x = a − 1, are special cases. In the first case, a loss gives ruin
immediately, so

r1 = q + pr2.

In the second case, a win breaks the house, so the subsequent chance
of ruin is 0. Thus

ra−1 = qra−2.

But by putting r0 = 1 and ra = 0, these special cases follow from (5.7).
Before going on, notice that the equations for hx are just the same

except at the boundary points, where we have instead h0 = 0 and
ha = 1.

Equation (5.7) is an example of a difference equation. The theory
of linear constant-coefficient difference equations closely tracks that of
linear constant-coefficient differential equations (for an introduction to
the theory of difference equations, see [Gri03]). One tries a solution of
the form rx = bx for some constant b. Substituting this into (5.7) yields

bx−1
(
−q + b − pb2

)
= 0.

Solving the quadratic for b, and remembering that q = 1 − p, gives

b =
1 ±√

1 − 4pq

2p
=

1 ± (1 − 2p)

2p
.

Hence if p 
= 1/2, the two distinct solutions are rx = 1 and rx = (q/p)x.
In this case the general solution is

rx = A + B(q/p)x
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for constants A and B such that r0 = 1 and ra = 0. Solving for these
gives

rx =
(q/p)a − (q/p)x

(q/p)a − 1
. (5.8)

In case p = q = 1/2, the repeated root is b = 1 and the two in-
dependent solutions are rx = 1 and rx = x. The general solution is
rx = A + Bx, and after satisfying the boundary conditions, we get

rx = 1 − x

a
. (5.9)

Repeating the above for hx, we find that

hx =
(q/p)x − 1

(q/p)a − 1
, p 
= 1/2. (5.10)

And in a fair game we get

hx =
x

a
, p = 1/2. (5.11)

Therefore rx + hx = 1 for all x, as expected. Recall that this means
that for any amount x that the gambler starts with, the probability
that either the gambler is ruined or that the house is broken is 1. Thus
one of these two events is sure to happen.

Martingale Solution

A stochastic process that can be interpreted as a player’s fortune in a
fair game is called a martingale. The random walk above with p = 1/2
is an example of a martingale.

If the random walk is a fair game and rx is the probability of ruin
as before, then a player’s final expected fortune is

rx · 0 + (1 − rx) · a.

Since the initial fortune is x, we equate these two to get the equation

x = (1 − rx)a,

or rx = 1 − x/a as before.
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Some Consequences of the Ruin Equations

Normally, a gambling casino has much more money than a gambler, and
therefore the probability of breaking the house, even in a fair game, is
very small. For example, suppose the player starts with $10,000 and
meanwhile the casino has $1,000,000. Then according to (5.11), the
chance of breaking the house is

10,000

1,000,000 + 10,000
= 0.0099,

about 1%. And so the chance of the gambler’s ruin is 1 − 0.0099 =
0.9901. But the games are never fair. Playing red in roulette with two
green slots on the wheel has a winning probability of p = 18/38 = 0.474.
Hence q = 1 − p = 0.526, and from (5.10) the chance of breaking the
house is

(q/p)x − 1

(q/p)a − 1
=

(0.526/0.474)10000 − 1

(0.526/0.474)1010000 − 1
≈ 3.96 × 10−45208,

none! But suppose there were a game for which p = 0.4999, within one
ten-thousandth of being fair. What is the chance of breaking the house
then? Again from (5.10) it is about 1.89× 10−174, tiny. As one can see,
even the most minute shift from a fair game has extreme consequences,
though of course, one usually doesn’t try to break the house!

Expected Duration of the Game

As noted above, the dispersion rate of
√

t gives an indication as to how
long a game can last on average. But the exact value is not hard to
derive. Let T (x) be the expected time until absorption from an initial
fortune of x and assume that this is a fair game. Just as above, by
decomposing on one play, we have

T (x) = 1 +
1

2
T (x + 1) +

1

2
T (x − 1), 0 < x < a.

Of course T (0) = T (a) = 0.
This time, the difference equation is inhomogeneous; rearranging

terms above gives

T (x) − 1

2
T (x + 1) − 1

2
T (x − 1) = 1.

Obtain the homogeneous solution, with right-hand side equal to 0, as
above, by trying T (x) = bx. The repeated roots b = 1 mean that T has
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the form T (x) = A + Bx for some constants A and B. The form of the
right-hand side cannot be constant or constant times x, since these are
homogeneous solutions. Hence the right-hand side must be of the form
T (x) = Cx2. Substitution gives

Cx2 − C

2
(x + 1)2 − C

2
(x − 1)2 = 1,

from which it follows that C = −1. Therefore the complete solution is

T (x) = A + Bx− x2.

Now knowing that T (0) = T (a) = 0 gives

T (x) = x(a − x) (5.12)

as the expected duration of the game.

5.4.1 Gambling Schemes

Let us suppose the gambler brings $x to the casino and decides to play
until either being ruined or winning a fixed amount, say $Q. To be
definite, assume that the gambler starts with $1023 and wants to win
just one dollar.

Moreover, suppose the gambler bets just $1 per play with probability
of winning equal to p. In this case we can use the ruin equations with
the assumption that the house has the amount h = Q = $1, so that
a = Q + x = $1024 in those equations.

Again using (5.10), the gambler succeeds with probability

(q/p)x − 1

(q/p)a − 1
=

(0.526/0.474)1023 − 1

(0.526/0.474)1024 − 1
= 0.90.

Of course with probability 0.10, or 10% of the time the gambler loses
all $1023. Hence the gambler’s expectation is

$1 × 0.90 − $1023 × 0.10 = −$101.40.

Perhaps a consolation is that it should take a long time before losing
everything, since from (5.12) we have

T (x) = x(a − x) = 1023(1) = 1023;

that is, 1023 plays before ruin or success on average, a few days’ worth,
one would think. It is interesting to note that since the gambler starts
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with $1023 and bets only $1 each play, it takes at least 1023 plays
before the gambler is ruined.

This is the outcome when the gambler uses the strategy of betting $1
each play. Maybe a different strategy is better. For example, consider
the “doubling-up” strategy. The gambler decides in advance to win
exactly 1 unit. If she wins on the first play, she goes home having
achieved her goal. If she loses on the first play, she plays again, this
time doubling her previous bet. Hence on the second play she bets 2
units. If she wins this time, the payoff is 2 units. This covers her 1-
unit loss on the first game and achieves the predetermined 1-unit goal.
So she now quits. Otherwise, she continues, doubling her bet, until
she wins the first time. If the gambler were able to play long enough,
eventually she would succeed. But two facts intervene: the gambler has
limited resources, for example $1023, and the house imposes betting
limits.

In the doubling-up strategy, the gambler bets $2n−1 on the nth play
if she has lost on the previous n − 1 plays. The amount bet in total
up to and including the nth bet is 1 + 2 + 4 + · · · + 2n−1 = 2n − 1.
Since 210 − 1 = 1023, the gambler can survive at most nine losses in a
row; the tenth will leave her broke. Since the probability of ten losses
in a row is 0.52610 = 0.0.00162, the expectation, or average rate of loss,
with this strategy is

$1 × (1 − 0.00162) − $1023 × 0.00162 = −$0.660,

a much better result. Furthermore, the probability of success is about
99.84%, much better than 90%. This shows dramatically that bold play
is much preferable.

If fortunes are bounded, then there can be no gambling scheme guar-
anteed to win. If the games are fair, then the expectation of the gam-
bler’s fortune at any time is equal to her starting fortune for any manner
of betting, and so again there are no guaranteed winning schemes!

5.5 Random Walk Applications II—Kelly’s Criterion in

Finance

Working at Bell Labs in the early 1950s, John Kelly considered the
problem of deciding how much money to risk on probabilistic outcomes
that are nonetheless in your favor (see [Kel56]). His motivation was
speculation about gambling tips over noisy communication channels,
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but his criterion has been much more widely interpreted. Among others,
it is the basis of a strategy for asset allocation in the stock market.

5.5.1 The Simple Kelly Game

As a simple example, what fraction f of one’s bankroll should be bet
on a coin flip that has p chance of winning if the gain per unit bet is
γ? The expected payoff of a game is

E = γp − q, (5.13)

where q = 1−p is the probability of losing. Since we are assuming that
the bet is in our favor, E > 0.

The other assumption Kelly made is that the game is to be played
over and over indefinitely. Hence the key insight: we should strive to
maximize our expected growth rate g. Let XN be our fortune after the
Nth play; X0 is our initial bankroll. The growth rate satisfies the equa-
tion egNX0 = XN , and therefore

g =
1

N
log

XN

X0
. (5.14)

Note that g is a random variable, since XN is. After one play we have

X1 =

{
if win X0 + γfX0 = (1 + γf)X0,
if lose X0 − fX0 = (1 − f)X0,

= Q1X0,

where Q1 is the random variable

Q1 =
{

1 + γf, with probability p,
1 − f, with probability q.

After two plays X2 = Q2Q1X0 = Q2X0, since Q2 = Q1 = Q, and
after n plays we have XN = QNX0, so

g =
1

N
log QN = log Q.

The expectation of g is

E(g) = E(log Q) = p log(1 + γf) + q log(1 − f).

Maximize with respect to f by setting the derivative to zero,

0 =
pγ

1 + γf
− q

1 − f
=

pγ(1 − f) − q(1 + γf)

(1 + γf)(1 − f)
,
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for a solution of

f =
γp − q

γ
=

E

γ
. (5.15)

Note the simple form of the answer, the expectation over the gain, or
sometimes referred to in brief as the edge over the odds. This is Kelly’s
criterion.

As an example, let the game be a weighted coin flip with probability
p = 0.6 of winning and even-money payoff; hence γ = 1. Then the
optimal betting fraction is f = 0.6 − 0.4 = 0.2. In Figure 5.5 we show
N = 300 plays of this game for various fractions f ; note that the y-
axis scales are different. The runs were obtained by simulation using
the following code, and therefore each is only a single possible fortune
history. However, some characteristics are general; for example, as f
increases from 0.05 to 0.25 the ending fortunes increase, but at the same
time the fortune is subject to wilder oscillations as well. In Figure 5.6
a long-term N = 20,000 comparison is shown between f = 0.2 and
f = 0.25.

Matlab
> function fitnesses = kellyEval(popSize,chromPop);
> popSize = 1; % remove for use in GA
> chromPop=0.05; % remove for use in GA
> F=linspace(1,1,popSize); % initial fortune
> N=1000; % iterations of the game
> h=linspace(1,1,N); % histogram, remove for GA
> for i=2:N
> w = F.*chromPop; %term-by-term wager
> % play 60/40 game
> r = (rand(1,popSize) < 0.6); % 1 if <0.6 else 0
> r = 2*r-1; % +1 if <0.6 else -1
> w = r.*w; % +bet if <0.6, else -bet
> h(i)=F; % remove for use in GA
> F = F+w; % new fortune
> end
> fitnesses = exp((1/N)*log(F));

5.5.2 The Simple Game with Catastrophic Loss

As a step closer to financial applications, we modify the simple game
to include the possibility of a large loss. Consider bets on the outcome
of tossing two coins. Let event O1 be the two coins are different, let
O2 be the event two heads, and O3 the event two tails. Then p1 = 1/2,
p2 = p3 = 1/4, and so fair payoff odds are 1 : 1 for O1 and 3 : 1 for O2

and O3. That is, if we bet $1 on O1 and win, then we get our $1 back
and $1 more as the gain.
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As in all Kelly examples, we play only if the payoff odds are in our
favor, so for the purposes of this example assume that for a $1 bet on
O1, we make $4 if it occurs, we lose the bet if O2 occurs, and we lose
our bet and $3 more if outcome O3 occurs. Let γ denote the amount we
gain upon a win per unit bet and let λ denote the amount we lose upon
a loss per unit bet. Thus γ1 = 4, λ2 = 1, and λ3 = 4. The expected
gain is

E = p1γ1 − p2λ2 − p3λ3 =

(
1

2

)
(4) −

(
1

4

)
(1) −

(
1

4

)
(4) =

3

4
.

Because of λ3, a bet of more than one-fourth our stake is prohibited,
since we cannot cover the loss in this case. Moreover, a bet equal to
one-fourth our stake loses everything eventually and therefore will not
lead to maximum growth, so this too is not the solution. Note that in
this example, although the bet is $1, the risk is as high as four times
the bet. This represents the catastrophic loss.

Again let f denote the fraction of our fortune bet per play. We have

X1 =

{
if O1 X0 + fX0γ1 = (1 + fγ1)X0,
if O2 X0 − fX0λ2 = (1 − fλ2)X0,
if O3 X0 − fX0λ3 = (1 − fλ3)X0,

= QX0,

where Q is the random variable

Q =

{
1 + fγ1, with probability p1,
1 − fλ2, with probability p2,
1 − fλ3, with probability p3.

As before, after n plays the expected growth rate is

E(g) = E(log Q) = p1 log(1 + fγ1) + p2 log(1 − fλ2) + p3 log(1 − fλ3).

The maximum is given by

0 = E′(g) =
p1γ1

1 + fγ1
− p2λ2

1 − fλ2
− p3λ3

1 − fλ3
.

Combining these fractions gives a numerator of

0 = E−f (p1γ1(λ2 + λ3) + p2λ2(γ1 − λ3) + p3λ3(γ1 − λ2))+γ1λ2λ3f
2.

(5.16)
Since f < 1

4 , assume that the last term is small and temporarily ignore
it; thus approximately,
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f =
E

p1γ1(λ2 + λ3) + p2λ2(γ1 − λ3) + p3λ3(γ1 − λ2)

=
3/4

13
= 0.0577.

By including the quadratic term, the exact solution is

f = 0.0625.

As one can see from this example, in more complicated asset allo-
cation problems, solving for the optimizing fraction or fractions leads
to nonlinear systems of equations that are difficult to solve. But since
these are results about stochastic situations, we should be able to find
the answers, no matter how complicated, by Monte Carlo simulation.
Let us now consider an actual stock market problem.

5.5.3 Option Trading Application I

In many types of option contracts, the contract either makes a certain
amount of money or it expires worthless and one’s premium, the cost
of the option, is lost. Further, the payoff is finalized on a specific date.
Hence this is a perfect setup for the application of Kelly’s criterion. In
the following, we apply the criterion to the reported trading experience
of a seasoned trader who kept careful records.

A certain option trader making credit spreads1 reports these statis-
tics over the last 75 trades: the number of trades that gained money,
66; 9 lost money; the average gain per trade, $659.12; the maximum
loss, $2837.00; the average loss excluding the maximum, $1669.32. Let’s
apply what we have learned above to figure the fraction of the trader’s

1 A credit spread is the option strategy of selling an option on a stock at one price
and buying a lower-priced option on the same stock with the same expiration
date. The cost of a call option goes down as the strike price goes up. By selling
the option with the lower strike and buying the one with the higher strike, the
trader brings in net income. For example, suppose IBM stock is at $114 per share.
A call option for IBM with a one-month expiration sells for $3.67 if the strike
price is $115 and $1.85 if it is $120. Selling the 115 option and buying the 120
earns a net credit of $3.67 − $1.85 = $1.82 per share. If IBM stays about the
same or retreats, the $1.82 is all profit. Why buy the 120 call? If IBM advances,
say to $125 (or more!), the trader must buy stock at this price per share and sell
at $115 to fulfill the 115 contract, a loss of $10 per share. Buying the 120 call is
insurance; invoking it to buy IBM at $120 limits the loss to $5 per share.

By duality, there is a comparable trade using put options in place of calls.
(What is it?)
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capital that should be invested in this type of trade to maximize ex-
pected growth.

The situation here is exactly like the two-coins game above. We
take each “bet” to be the average loss, $1,669.32; hence λ2 = 1. Then
γ1 = 659.12/1669.32 = 0.3948 and the maximum loss per dollar is
λ3 = 2837/1669.32 = 1.70. Finally, the probabilities are reported as
p1 = 66/75 = 0.880, p2 = 8/75 = 0.107, and p3 = 1/75 = 0.013. The
expected gain is

E = (0.88)(0.3948) − (0.107)(1) − (0.013)(1.70) = 0.2183.

To find the maximizing fraction, recall the quadratic (5.16)

0 = E −f(p1γ1(λ2 + λ3) + p2λ2(γ1 − λ3) + p3λ3(γ1 − λ2)) + γ1λ2λ3f
2.

Solving gives f = 0.455, or about 46%. (The linear approximation is
not good here, coming in at 0.28.)

5.5.4 Option Trading Application II

Suppose we want to allocate an investment fund among several possible
investments. To keep it simple, suppose there are just two: let option
play A be the credit spread considered above and let option play B
be a calendar spread2 having the following experience. Assume that
the statistics of the calendar spread are number of trades, 12; number
of winning trades, 10; average gain per trade, $555.20; maximum loss,
$124.00; average loss excluding the maximum, $90. We take this latter
figure to be the size of the bet. The γ’s and λ’s are

γ =
555.20

90
= 6.17, λavg = 1, λmax = 124/90 = 1.38.

The expected gain is then

E =

(
10

12

)
(6.17) −

(
1

12

)
(1) −

(
1

12

)
(1.38) = 4.943.

2 A trade in which a near-term expiration option is sold and a longer term option
on the same stock and for the same strike price is bought. For example, with
IBM at $114, the one-month call option with strike price $115 is $3.67, while the
two-month call with the same strike sells for $5.32. Selling the one-month call and
buying the two-month call is for a net debit of $5.32− $3.67 = $1.65. But if IBM
stays about the same over the next month, the one-month call will expire worthless
and entail zero obligation. Meanwhile, the two-month call (now one month from
expiration) should be worth about $3.67. Altogether, a net $3.67− $1.65 = $2.02
profit.
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Obviously this trader did unusually well!
If this were the only investment, we should risk the fraction given

by the smallest root of the quadratic equation (5.16) copied from the
two-coins game,

0 = E−f (p1γ1(λ2 + λ3) + p2λ2(γ1 − λ3) + p3λ3(γ1 − λ2))+γ1λ2λ3f
2,

whose root is f = 0.625.
But what if we make both investments? Thus allocate fA of our

capital for option play A and fB for B. In the following, let p denote
the success probability, q denote the average loss probability, and r the
maximum loss probability. We assume that the success or failure of each
option play is independent of the other. (This is probably unjustified;
in Problem 19 we show how correlation may be taken into account.)
Note that both A and B might suffer the maximum loss; hence we must
always ensure that

λAfA + λBfB < 1.

There are now nine possibilities, as listed in Table 5.1.

Outcome Probability Q

A wins, B wins pApB 1 + fAγA + fBγB
A wins, B loses pAqB 1 + fAγA − fB
A wins, B maxes pArB 1 + fAγA − fBλB
A loses, B wins qApB 1 − fA + fBγB
A loses, B loses qAqB 1 − fA − fB
A loses, B maxes qArB 1 − fA − fBλB

A maxes, B wins rApB 1 − fAλA + fBγB
A maxes, B loses rAqB 1 − fAλA − fB
A maxes, B maxes rArB 1 − fAλA − fBλB

Table 5.1. Parameters for the two-option allocation data.

Differentiate the expected growth rate equation first with respect to
fA,

0 =
pApBγA

(1 + γAfA + γBfB)
+

pAqBγA

(1 + γAfA − fB)
+

pArBγA

(1 + γAfA − λBfB)

− qApB

(1 − fA + γBfB)
− qAqB

(1 − fA − fB)
− qArB

(1 − fA − λBfB)

− rApBλA

(1 − λAfA + γBfB)
− rAqBλA

(1 − λAfA − fB)
− rArBλA

(1 − λAfA − λBfB)
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and then with respect to fB,

0 =
pApBγB

(1 + γAfA + γBfB)
− pAqB

(1 + γAfA − fB)
− pArBλB

(1 + γAfA − λBfB)

+
qApBγB

(1 − fA + γBfB)
− qAqB

(1 − fA − fB)
− qArBλB

(1 − fA − λBfB)

+
rApBγB

(1 − λAfA + γBfB)
− rAqB

(1 − λAfA − fB)
− rArBλB

(1 − λAfA − λBfB)
.

This is a difficult nonlinear system to solve by most methods. However,
it may readily be solved by genetic algorithms.

The fitness component of the GA is a random walk simulation of
each play using the probabilities pA, . . ., rB as in Table 5.1.

The solution obtained by the GA is

fA = 0.073 and fB = 0.619.

Note that the maximum loss amount is

λAfA + λBfB = 1.7 × 0.073 + 1.38 × 0.619 = 0.978,

or nearly the entire capital. The probability that this happens is
0.0133 × 0.083 = 0.0011.

Here is the GA Algorithm 1 code, page 147, adapted to this prob-
lem. Notice that it puts together many of the techniques that we have
seen earlier such as selecting with breakpoints and permutations. The
function kellyEval called here is given on page 188.
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Matlab
> % a ”chromosome” here is a fraction between 0 and 1
> % a population is a vector of chromosomes
> popSize=32;
> chromPop= rand(1,popSize); %initalize randomly
> % space for their fitnesses = exp(growth rate)
> fitnesses=linspace(0,0,popSize);
> newPop=linspace(0,0,popSize);
> upper = linspace(1,1,popSize); % keep fractions < 1
> lower = linspace(0,0,popSize); % keep fractions > 0
> bp = linspace(0,0,popSize); % roulette wheel breakpts

> pm = 0.1; % mutation probability
> orelax = 1.4; % over relaxation factor for mating
> epsilon=0.07 % mutation range
> bestFitness=0;
> %chromPop % for debugging
> for g=1:100 % 100 generations

% mutate each w/prob pm
m = (rand(1,popSize)<pm); % mutation indices
% mutate each chromoPop(i) within epsilon
a = max(lower,chromPop-epsilon);
b = min(upper,chromPop+epsilon);
r = m.*(a+(b-a).*rand(1,popSize)); % new value
chromPop = (1-m).*chromPop; %null out old value
chromPop = chromPop+r; %replace by new value
%chromPop % for debugging
% mate each chromosome via a permutation of chromPop
permPop = chromPop;
for i=1:popSize-1
k = i+floor((popSize+1-i)*rand); %random in remaining
swap = permPop(i);
permPop(i) = permPop(k);
permPop(k)=swap;

end
> %permPop % for debugging
> newPop = chromPop +· · ·

orelax*(permPop-chromPop).*rand(1,popSize);
> % stay within 0 and 1
> newPop = max(lower,newPop);
> newPop = min(upper,newPop);
> %newPop % for debugging
> % evaluate newPop
> fitnesses = kellyEval(popSize,newPop);
> oldBest = bestFitness;
> bestFitness = max(oldBest,max(fitnesses));
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continued
> if bestFitness > oldBest

m = fitnesses>=bestFitness; % where is it
solution = m.*newPop;

end
> % roulette wheel select, make up the wheel
> sum = 0;
> for i=1:popSize

sum = sum + fitnesses(i);
bp(i) = sum;

end

> %bp % for debugging
> % now pick popSize times
> for i=1:popSize

U=rand; k=1;
while( U>= bp(k))

k=k+1;
end; %k is selected
chromPop(i) = newPop(k);

end
> %chromPop % for debugging
> end
> bestFitness
> solution

5.6 Random Walks and Electrical Networks

Surprisingly, there are connections between random walks on a graph
and electrical networks on the same graph. The standard reference for
this connection is the very good book [DS84], on which most of this
section is based.

Return to the gambler’s ruin problem and recall that the recurrence
equations for the probability of breaking the house hx in a fair game
are

hx =
1

2
hx−1 +

1

2
hx+1,

h0 = 0, ha = 1,

where the gambler starts with x units of money and bets one unit
on each play. In this, a is all the money in the game, the sum of the
gambler’s fortune and the house’s fortune, and is constant.

0

υ = 0 υ = 1

1 2 a – 1 a

Fig. 5.7. One-dimensional electrical network.
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Now consider an electrical circuit consisting of a − 1 resistors of
resistance R connected in series across a 1-volt battery; see Figure 5.7.
Let v(x) be the voltage at node x as shown. Then v(0) = 0 and v(a) = 1.
By Kirchhoff’s law, the sum of the current i into each node must be
zero (since no current is stored in the node). And according to Ohm’s
law applied to the voltage v between two nodes, v = iR, so at node x
we have

v(x − 1) − v(x)

R
+

v(x + 1) − v(x)

R
= 0.

Solving for v(x) gives

v(x) =
1

2
v(x − 1) +

1

2
v(x + 1).

Thus h and v satisfy the same system of linear equations. Since the
solution of a nonsingular linear system is unique, we must have v(x) =
hx, x = 0, 1, . . . , a, or the voltages in this simple circuit are the same
as the probabilities of breaking the house!

Two-Dimensional Resistor Networks

Consider now a resistor network on integer-valued points, or nodes, in
a region of the plane, for example as in Figure 5.8. An interior point of
the network is linked by a resistor to four other nodes. For convenience
we assume that all the resistors of the network have resistance R = 1
ohm. The network is bounded by a set of nodes designated O having
voltage 1 and another set designated Z at voltage 0. As above, let
v(x, y) be the voltage at node (x, y).

For an interior point (x, y), by Kirchhoff’s and Ohm’s laws, we can
write

v(x + 1, y) − v(x, y)

R
+

v(x, y + 1) − v(x, y)

R
+

v(x − 1, y) − v(x, y)

R

+
v(x, y − 1) − v(x, y)

R
= 0,

since the sum of the currents into (x, y) is zero. Upon rearrangement
this becomes

v(x, y) =
1

4
(v(x + 1, y) + v(x − 1, y) + v(x, y + 1) + v(x, y − 1)) .

(5.17)
Of course, v is 1 on nodes O and 0 on nodes Z.



198 5 Random Walks

A function defined on a bounded lattice of nodes in a connected
region of the plane is called harmonic if it satisfies (5.17) at each interior
point of the lattice. So v is a harmonic function.

An important fact about harmonic functions is that since their value
at every interior point is the average of their values at the neighboring
points, the maximum and minimum of a harmonic function must occur
on the boundary.

4 5

2
0

O

Z

+1

1 3

Fig. 5.8. Two-dimensional electrical network.

Now consider a random walk on the network. Let hxy be the prob-
ability that starting from (x, y), the walk reaches a node of the set O
before reaching a node of Z. Then hxy = 1 if (x, y) ∈ O and hxy = 0 if
(x, y) ∈ Z. For an interior point we have

hxy =
1

4
hx+1,y +

1

4
hx−1,y +

1

4
hx,y+1 +

1

4
hx,y−1, (5.18)

since a step to the left, right, up, or down occurs with probability 1/4.
Thus once again we see that v(x, y) = hxy for all points of the lattice.
This shows that the voltages on the electrical network can be found by
conducting random walks on the network!

As before, we may ask whether the walk could continue indefinitely
or will end in the set O ∪ Z with certainty. Using the properties of
harmonic functions it is easy to see that with probability one the walk
will end. Let rxy be the probability of gambler’s ruin (in this case,
that the walk will end up at the boundary component Z) starting from
(x, y). It is a straightforward calculation to show that the sum rxy +hxy

is a harmonic function, since each is such a function individually. So
rxy +hxy must take its maximum and minimum values on the boundary
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of the region, that is, on either O or Z. But this sum is exactly 1 on
every point of O and Z. Therefore rxy+hxy = 1 for all (x, y) throughout
the region!

Following these principles, a simulation of 100,000 random walks on
the network of Figure 5.8 produced the results shown in Figure 5.9.

0

+1

0.605

0.803

0.229

0.776

0.427

Fig. 5.9. Solution of the 2D electrical network.

Although a random walk may be used for solving such an electrical
network, it is not the most efficient method for the task. On a very
large region with many nodes it will take a great deal of computational
time for the walk to reach a point of the boundary. Nevertheless, it can
be an effective method under some circumstances, for example when
the solution is required at only a small number of nodes. It should also
be noted that this Monte Carlo algorithm, like nearly all others, can be
easily and effectively parallelized. Furthermore, it is very interesting to
think about the connection and helps us to understand both random
walks on grids and electrical circuits.

The Dirichlet Problem

The Dirichlet problem is that of finding a function harmonic throughout
a bounded, connected (continuum) region and having prescribed values
on the boundary of the region. We have defined the term harmonic for
a function restricted to a lattice of points in the plane, but the term
can also be defined for functions on the continuum as well, that is, for
all real-valued points (x, y) in the region. In fact, this was done in the
section on diffusion as solutions to (5.2).

If a numerical solution is desired to the Dirichlet problem in the con-
tinuum, one technique of solution, that of finite elements, discretizes
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the region, forming a lattice, and solves for a solution there. The Monte
Carlo method could be used for solving this discretized problem. How-
ever, as noted above, there are more effective numerical methods for
solving the Dirichlet problem.

5.6.1 Markov Chain Solution for Voltages

Referring to Figure 5.8, consider the Markov chain defined over the
nodes of the network Ω = {O,Z, 1, . . . , 5}. Since we are interested in
the dynamics of reaching states O and Z, we regard them as absorbing
states, that is, the probability of a transition out of one of these states
is zero. With this consideration, the probability transition matrix is

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

O Z 1 2 3 4 5

O 1 0 0 0 0 0 0
Z 0 1 0 0 0 0 0

1 1
2

1
4 0 1

4 0 0 0

2 0 1
4

1
4 0 1

4
1
4 0

3 0 1
2 0 1

4 0 0 1
4

4 1
2 0 0 1

4 0 0 1
4

5 1
2 0 0 0 1

4
1
4 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.19)

As before, let hxy be the probability of reaching state O before state
Z starting from node (x, y), and recall (5.18). However, it is notationally
simpler to use the labels from Figure 5.8 instead; node (1, 1) is 1, (1, 2) is
2, and so on. With relabeling, the unknowns are h1, . . ., h5. Completing
the set of equations are the conditions on the boundaries O and Z,

hO = 1, hZ = 0. (5.20)

The relabeled interior equations (5.18) become

1

4
hO +

1

4
hO +

1

4
hZ +

1

4
h2 = h1,

1

4
hZ +

1

4
h1 +

1

4
h3 +

1

4
h4 = h2,

1

4
hZ +

1

4
hZ +

1

4
h2 +

1

4
h5 = h3,

1

4
hO +

1

4
hO +

1

4
h2 +

1

4
h5 = h4,

1

4
hO +

1

4
hO +

1

4
h3 +

1

4
h4 = h5.
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Add to this system the identities hO = hO and hZ = hZ , and we may
write the system in matrix form in terms of P ,

Ph = h. (5.21)

Here we are writing the vector on the right and taking h to be the col-
umn vector [ hO hZ h1 h2 h3 h4 h5 ]T . We see that h is a fixed
point of P (and a right eigenvector of P with corresponding eigenvalue
1). Note the similarity of this to the equation for an invariant distribu-
tion, equation (3.5). Therefore

P kh = h

for all k = 1, 2, . . . .
Now partition the states into the absorbing states versus the non-

absorbing states. The partition induced on h is

h =
[
hO hZ h1 h2 h3 h4 h5

]T
= [hB hD ]T ,

where hD = [h1 h2 h3 h4 h5 ] corresponds to the interior of the
domain and hB = [hO hZ ] to the boundary. Likewise, partition the
transition matrix P as shown in (5.19),

P =

[
I2 0
R P̂

]
. (5.22)

Here I2 is the 2 × 2 identity matrix, 0 is a 2 × 5 zero matrix, R is a
5 × 2 nonabsorbing to absorbing transition matrix, and P̂ is the 5 × 5
transition matrix for the nonabsorbing states,

P̂ =

⎡
⎢⎢⎢⎢⎢⎣

0 1
4 0 0 0

1
4 0 1

4
1
4 0

0 1
4 0 0 1

4

0 1
4 0 0 1

4

0 0 1
4

1
4 0

⎤
⎥⎥⎥⎥⎥⎦

.

We are now ready to solve for hD. Note that

P 2 =

[
I2 0

R + P̂R P̂ 2

]

and

P 3 =

[
I2 0

R + P̂R + P̂ 2R P̂ 3

]
,
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and so on for the powers of P . Let

B = R + P̂R + P̂ 2R + P̂ 3R + · · · = (I + P̂ + P̂ 2 + . . .)R.

Just as with ordinary geometric series for numbers, the geometric series
of matrices in this equation sums to (I − P̂ )−1, where I is the identity
matrix of the same size as P̂ (it is interesting to think about why this
is the case). Hence

B = (I − P̂ )−1R. (5.23)

Further, since P̂ is a nonnegative matrix with row sums less than 1,
from the Perron–Frobenius theorem we can say that P̂ k → 0 as k → ∞.
So in the limit we can write

[
hB

hD

]
= h = lim

k→∞
P kh =

[
I2 0
B 0

] [
hB

hD

]
.

From this we get

hD = BhB = (I − P̂ )−1RhB.

Let N = (I − P̂ )−1. This matrix is called the fundamental matrix ;
and from Matlab we calculate

B = NR =

⎡
⎢⎢⎣

0.6067 0.3933
0.4270 0.5730
0.3006 0.6994
0.8006 0.1994
0.7753 0.2247

⎤
⎥⎥⎦ .

By (5.20), hO = 1 and hZ = 0, so

hD =

⎡
⎢⎢⎣

0.6067 0.3933
0.4270 0.5730
0.3006 0.6994
0.8006 0.1994
0.7753 0.2247

⎤
⎥⎥⎦

[
1
0

]
=

⎡
⎢⎢⎣

0.6067
0.4270
0.3006
0.8006
0.7753

⎤
⎥⎥⎦ .

Thus the solutions to the Dirichlet problem for this case are 0.6067
at (1, 1), 0.4270 at (1, 2), 0.3006 at (1, 3), 0.8006 at (2, 2), and 0.7753
at (2, 3). That is, these values represent both the voltages at these
locations (given a voltage of 0 at the boundary Z and a voltage of 1
at the boundary O) and the probability that a random walk started at
the given location will arrive at the boundary O before arriving at the
boundary Z. Compare these values with those obtained from simulating
many random walks and given in Figure 5.9.
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Matlab
> Ph = [0 1/4 0 0 0; 1/4 0 1/4 1/4 0;...

0 1/4 0 0 1/4; 0 1/4 0 0 1/4; 0 0 1/4 1/4 0]
> N = (eye(5)-Ph)ˆ-1
> R = [1/2 1/4; 0 1/4; 0 1/2; 1/2 0; 1/2 0]
> N*R

5.6.2 The Fundamental Matrix and Expected Hitting Times

Label the nonabsorbing states of a Markov chain as 1, 2, . . . , n and
let Ek be the expected number of iterations for the chain to reach an
absorbing state if the chain is started in state k. Let A denote the set
of absorbing states and pkA the probability of transition from k to an
absorbing state in one iteration; thus

pkA =
∑

a∈A

pka.

By decomposing the chain on one iteration we get the following
equation for Ek:

Ek = pkA + pk1(1 + E1) + pk2(1 + E2) + · · · + pkn(1 + En). (5.24)

This is because with probability pk1 this transition will be to state 1,
and if so, the number of iterations to be absorbed is 1 for this transition
plus the expected number needed from state 1, and so on for the other
possible transitions. Letting E be the column vector of the Ek’s, then
(5.24) may be rewritten in matrix form as

⎡
⎢⎣

E1
E2
...

En

⎤
⎥⎦ =

⎡
⎢⎣

p1A + p11 + . . . + p1n
p2A + p21 + . . . + p2n

. . .
pnA + pn1 + . . . + pnn

⎤
⎥⎦+

⎡
⎢⎢⎣

p11 p12 . . . p1n
p21 p22 . . . p2n
...

... . . .
...

pn1 pn2 . . . pnn

⎤
⎥⎥⎦

⎡
⎢⎣

E1
E2
...

En

⎤
⎥⎦ .

Note that the sums pjA + pj1 + pj2 + · · · + pjn equal 1 for each j. As
before, denoting the transition matrix among the transient states by
P̂ , this becomes

(I − P̂ )E =

⎡
⎢⎣

1
1
...
1

⎤
⎥⎦ ,

or
E = (I − P̂ )−111 = N11, (5.25)
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where 11 is the column matrix of 1’s. This gives a simple expression for
the expected hitting times from any starting state to the set of absorb-
ing states. Notice that equation (5.25) depends only on the transitions
between nonabsorbing (or transient) states. This makes perfect sense,
since the higher the probability for transitions between transient states,
the longer one expects it to take to reach the absorbing states.

Equation (5.25) can also be used to compute an expected hitting time
to an arbitrary collection of states for a general Markov chain (either
with or without absorbing states). Say that some subset of states G ⊂ Ω
is singled out as being important (such as the set of global minima for
an optimization problem, for example). Modify the transition matrix
P by making each g ∈ G into an absorbing state. Using the above
technique, one can theoretically calculate the expected hitting time to
reach the subset G.

Application to Genetic Algorithms

The matrix partition (5.19) between absorbing and nonabsorbing states
has a very important application to Monte Carlo optimization. We il-
lustrate this for genetic algorithms. Regard the goal states of an op-
timization as the absorbing states. Then the nongoal states are the
nonabsorbing or transition states. As in (5.19), let P be the transition
matrix of the GA and partition it so that P̂ is the transition matrix
among the nongoal states.

Let the invariant vector π be likewise partitioned π = [ α β ]. From
πP = π we get βP̂ = β.

Invoking the Perron–Frobenius theorem, let λ be the principal eigen-
vector of P̂ and let ω be the corresponding positive (left) eigenvector
normalized to sum to 1. Since the row sums of P̂ are less than or equal
to 1, and some are strictly less than 1, then by the Perron–Frobenius
theorem, λ < 1. We then have

ωP̂ = λω.

In terms of probability mass, this says that starting with 1 unit of
probability mass, after one iteration of the chain only λ fraction of it
remains. Therefore 1 − λ is the rate at which probability mass leaves
the nongoal states, that is, the probability that the chain will find a
goal state per iteration once startup transients have dissipated away.
See Problem 18 at the end of this section for more information.
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General Resistor Networks and Reversible Markov Chains

Let G be a connected graph, that is, a finite set of vertices x, y, . . .,
z connected by edges such that it is possible to go between any two
vertices traveling along the edges. The graph G becomes a resistor
network by installing resistors along its edges. The vertices x of the
graph become the nodes of the resistor network, at which places the
voltage vx may be measured.

If xy is an edge, let Rxy denote the resistance connecting nodes x
and y. Of course Ryx = Rxy. The reciprocal of resistance, Cxy = 1/Rxy,
is defined as the conductance between x and y. According to Ohm’s
law, the current ixy from x to y is calculated as (vy − vx)Cxy. Let
Cx =

∑
y Cxy be the sum of the conductances out of x leading to all

possible neighboring nodes y.
A Markov chain may be associated with this network as follows. The

states of the chain are the nodes of the network, the nonzero transitions
from x are exactly the neighbors of x in the network, and the transition
probabilities are defined by

pxy =
Cxy

Cx
, (5.26)

i.e., that edge’s fraction of the node’s conductance.
The resulting chain is irreducible (but may not be aperiodic). Nev-

ertheless, just as in Chapter 3, it has a unique invariant distribution
π, a probability vector satisfying πP = π. In fact the components of
the invariant vector are given by πx = Cx/C, where C is defined as
C =

∑
x Cx. A characterizing property of electrical network chains is

that for all x and y,
πxpxy = πypyx.

This is the same detailed balance that we have already seen in Sec-
tion 3.2.

Detailed balance follows because

πxpxy =
Cx

C

Cxy

Cx
=

Cy

C

Cxy

Cy
= πypyx.

Alternatively, the chain is said to be reversible. The reason is that
when the chain reaches invariance, a path from x1 to x2 to . . . to xn

moving forward in time has the same probability of occurring as the
reverse path. For example, for a path from x to y to z, by detailed
balance is given by
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πxpxypyz = πypyxpyz = pyxπypyz = pyxπzpzy = πzpzypyx,

and so we see that the forward and reverse paths have the same prob-
ability of occurring.

The converse is also true: a Markov chain satisfying detailed balance
corresponds to an electrical (resistor) network just as above. One only
has to put Cxy = πxpxy for all terms of P . Note that if P has a nonzero
diagonal term pxx 
= 0, then the circuit will have a self-connected node
at x of conductance πxpxx. (A network is not prohibited from having
such a self-loop, but no current will flow through it.)

Now consider a random walk on G. The walker at node x selects
among its neighbors y according to roulette wheel selection with prob-
abilities pxy. The electrical interpretation is that of an electron moving
randomly from node to node under the influence of the conductances.
The random walk is therefore just the Markov chain state random vari-
able X(t), and the component πx of the invariant distribution is the
asymptotic frequency with which the walker visits state x.

Next select two nodes of the network a and b and connect a 1-volt
battery across these nodes with va = 1 and vb = 0. The corresponding
modification of the Markov chain is to make the states a and b ab-
sorbing. As before, let hx denote the probability that the random walk
starting at x hits node a before node b. Then, as before, hx equals the
voltage vx of the network at x.

To see this, by invoking Kirchhoff’s and Ohm’s laws at node x we
have

0 =
∑

y

(vy − vx)Cxy =
∑

y

vyCxy − vx

∑

y

Cxy.

Hence, letting Cx =
∑

y Cxy,

vx =
∑

y

Cxy

Cx
vy =

∑

y

pxyvy.

This shows that vx is the average of its neighboring values and so is
a harmonic function for all x 
= a, b. Likewise, hx is harmonic for all
x 
= a, b. Further, va = ha = 1 and vb = hb = 0. It follows that v and h
must agree for all x.
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Notes

The remarkable fact that diffusion can be derived from a simple random walk
on the line is yet another consequence of the central limit theorem. There is
an alternative derivation of the diffusion equation via Stirling’s approximation
to the factorial, namely

n! ≈
√

2πn
(n

e

)n

.

The Wiener process is the starting point for an entire calculus defined on
functions. Wiener measure assigns a “size” to sets of functions just as ordinary
calculus assigns a “size” to sets of points such as intervals (a, b). One can then
integrate with respect to Wiener measure. On the other side of calculus is the
derivative. Equation (5.4) for the moment-by-moment description of the stock
price is the derivative of Brownian motion. This is an example of a stochastic
differential equation. Just as ordinary differential equations have solutions, so
it is with their stochastic counterparts. The solution of (5.4) is the famous
Black–Scholes option-pricing equation. With notation as in Section 5.3, for a
call option, the price C is given by

C = SF (d1) − Xe−rT F (d2),

where F (·) is the N(0,1) cumulative distribution function, Table 2.2, and d1

and d2 are

d1 =
log( S

X ) + (r + σ2/2)T

σ
√

T
,

d2 =
log( S

X ) + (r − σ2/2)T

σ
√

T
.

The Kelly criterion has been advocated as the basis of an investment
system because it optimizes the long-term growth rate of the investment.
However, some financial theorists, most notably Paul Samuelson, are strongly
opposed to this. Their fears are based on the fact that as a random walk, in-
vestments can, and with probability 1 will, shrink to fractions of the starting
value. It is quite unfortunate if one’s retirement occurs during such a time. In-
stead, most advisors use the system developed by Harry Markowitz known as
the capital asset pricing model. The strategy here is to invest in a diversified
portfolio whose investments are chosen in relation to the risk that the investor
is willing to bear. For a delightful and fascinating account of the history of
the Kelly criterion see “Fortunes Formula” [Pou05].

Probability has always been associated with gambling, and as noted in the
text, had its roots in gambling. It is no surprise that much has been written
about gambling systems. One of the most influential treatises in this area is
“How to Gamble If You Must,” by Lester E. Dubbins and Leonard J. Savage.
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Problems: Chapter 5

1. (4) (Leads in walk) For a random walk starting at the origin, by a “leads
in walk” we mean to say “heads” are leading if the present position is
positive and “tails” are leading if the present position is negative. As the
experiment, keep a running count of whether heads or tails is leading for
each step of a total walk of 1000 steps. Histogram the fraction of the walk
in which heads is leading for some number of trials of this experiment.
Comment on the shape of the histogram. Is it Gaussian? Repeat again
with 100 trials of 10,000 steps each.

2. (4) (Diffusion through a crack) Simulate an unbiased random walk
(Pr(H) = Pr(T ) = 0.5) with some obstacles. (a) Put a reflecting barrier at
x = −4, i.e., the walk may land at −4 but may not stay there, and the next
step must be to −3. Plot a sample path and a histogram. (b) Next add a
partial block at x = +6, i.e., at x = 6 there is only a 0.25 chance of going
to 7 and a 0.75 chance of going to 5 (same for 7 to 6). Plot a histogram.
These are results that are hard to get in any way other than by simulation.

3. (5) For a random walk on the set Ω = {0, 1, 2, . . . , a}, with probability
that p = 0.51 of taking a step to the right, let hx denote the probability
that the walk will reach a before reaching 0. (a) Calculate hx by Markov
chain methods. (b) Use simulation to estimate hx.

4. (6) (Wiener process/Brownian motion) Simulate a random walk in the
plane as follows. Start at the origin. From any given position, choose a di-
rection from 0 to 360 degrees equally likely, that is, uniformly on [0, 360).
Next choose a step size according to a Gaussian (normal) distribution with
mean 0 and variance σ2. Advance to that position and continue. Take σ2

to be, variously, 0.5, 1, 2, the idea being to see what effect variance has on
the walk. Take the number of steps to be, variously, 20, 400, 1600, again
to gauge the effect. Show a typical walk (i.e., a sample path) for one of the
1600 (or more) steps. Also, instead of histogramming, show a density plot,
that is, for several walkers, plot a point in the plane where the walker stops.

5. (3) (Black–Scholes) A difference equation for the future price S of a stock
is

∆S

S
= µ∆t + σ∆W.

In this, µ is the growth rate of the stock, σ is its volatility, and ∆W is a
normally distributed random variable with mean 0 and variance ∆t. (Al-
ternatively, ∆W =

√
∆tN where N ∼ N(0, 1).) Taking µ = 0.1 per year,

σ = 0.3 per square root year, and the starting price S(0) = 100, simulate
the random walk with 1-day increments, ∆t = 1, to find the distribution
of the price of the stock S(T ) in T = 90 days. (Don’t forget to divide the
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growth rate by 365 and volatility by square root of 365 to get the per day
values.)

6. (4) (Black–Scholes) With the setup as in Problem 5, take various values of
σ and of T to gauge the effect these parameters have on the distribution.
Comment.

7. (5) (Black–Scholes) With the setup as in Problem 5, and using a risk-free
rate of 3.1%, calculate the value of call options for various strike prices
from $90 to $115. See Section 5.3. Graph the results with respect to each
parameter: volatility, expiration, and strike price.

8. (5) (Black–Scholes) Do the same as the Problem 7 except for put options.
The only difference is that for puts, the payoff is max(X − ST , 0). That
is to say, if the ending price ST is less than the strike price X , then the
option is in-the-money by the value of their difference.

9. (6) (Diffusion in the plane) (a) Starting at the origin in the plane, carry
out a random walk on the lattice of integer coordinate points over the
square [−20, 20] × [−20, 20]. Assume that there is a square hole whose
boundary is (13, 7), (14, 7), (14, 8), and (13, 8). Walks that reach this hole
are absorbed, along with any walk which reaches the boundary. Show the
distribution of final positions for walks of various steps and especially the
fraction that enters the hole. (b) Same thing but this time assume a re-
flecting obstacle at y = 6 and −12 ≤ x ≤ 12.

10. (5) (Levy flight) For the Cauchy density f(x) = (2/π)
1+x2 , x ≥ 0, there is a

high probability of selecting a small value and a low, but not 0, probability
of selecting a large value. Perform a random walk in the plane, starting at
the origin, in which the direction of the next step is uniform at random
from 0 to 360 degrees and the step size is from f . Such a random walk
is called a Levy flight . Draw samples from f by inverting the cdf. In this
regard, note that for x ≥ 0, the integral of f is

F (x) =

∫ x

−∞

(2/π)

1 + t2
dt =

∫ x

0

(2/π)

1 + t2
dt =

2

π
tan−1 x.

Show a typical walk (i.e., a sample path) for some convenient number of
steps (try a few hundred, experiment some). Look for self-similarity in
the plots. Also, instead of histogramming, show a density plot, that is,
for several walkers, plot a point in the plane where the walker stops. (It
is thought that seabirds use this random walk in searching for schools of
fish.)

11. (5) (Levy flight) Discover the empirical transport properties of Levy flight
(see Problem 10), that is, how far from the origin does a random walker
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get, on average, as a function of the number of steps n. Do this by simulat-
ing a few hundred flights for various values of n and plotting the average
distance displaced versus n.

12. (5) (Gambling system.) Suppose you use the system “double up” to win
$1 at Las Vegas roulette. The wheel has 18 red, 18 black and 2 green
sectors, and there is an equal chance that any one sector is selected. Thus
to start, bet $1 on “red,” say. If you win (with probability 18/38), stop.
Otherwise double your previous bet, e.g., $2 on the second time, until
you do win. Simulate this to find out (1) the maximum number of bets
before winning the $1, (2) if the house has a betting limit of $1,024,
how often do you lose everything? (Expected number of turns to win:
p + 2qp + 3q2p + · · · = p/(1− q)2 = 1/p, where p = 18/38 the probability
of winning.)

13. (5) The same as in Problem 12, but now suppose the probability of win-
ning is p = 1/2. Assume that the house has unlimited funds but the player
can bet only up to $1024 (i.e., the gambler starts with $2047).

14. (5) Simulate (a reasonable approximation of) the game of blackjack (or 21)
as follows. A game begins with the player receiving two cards. With aces
counting 11, jacks and queens and kings (known as “face” cards) counting
10, and all other cards counting their index value, the value of the player’s
hand is the sum of the count of his cards. The object of the game is that
the value should be closer to 21, without exceeding 21, than the dealer’s
hand. If the value is 21, the player wins immediately. Otherwise, the player
may elect to be “hit,” i.e., receive, one at a time, additional cards. If at
any time the value exceeds 21, the player loses. When satisfied, the player
“stands” and receives no more cards. Next the dealer receives two cards.
The house rule is that the dealer is to stand on 17 or better and draw on
16 or less. If the dealer breaks 21, the player wins; the dealer wins if his
value exceeds or equals the player’s; otherwise, the player wins.
Simulate several such games using a single deck or “shoe” of 52 cards.
Does the player or dealer come out ahead in the long run? Card-counting
players of this game attempt to count the number of “10’s,” i.e., 10’s or
face cards, as the shoe works down, and alter the size of their bets accord-
ingly by betting bigger when the deck is 10’s “rich.”

15. (5) (Self-avoiding walk) Conduct a self-avoiding random walk on a square
lattice. (a) Estimate cn for n = 4, 5, 6, and 7. (b) Also estimate the ex-
pected squared distance from the origin of the endpoint of the walk for
these values of n. (c) Make a plot of average of the displacement squared
vs cn.
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16. (6) (Noisy “Wire,” Kelly criterion) In earlier times a gambler could get
advance notice of the winner of a horse race from an informant at the
track and use that information to place bets off track. But the wire is
noisy and the gambler gets the information wrong 20% of the time. (That
is, the information “bet on X to win” loses 20% of the time.) The gambler
starts with a stake of S dollars. (a) By simulation, what fraction of his
fortune should the gambler risk each time, assuming that there will be a
large number of such bets, to maximize the expected growth rate of his
fortune? (b) Plot one of the possible fortune histories. Does it ever reach
one-half the gambler’s original stake S? How about one-third? (c) Why is
it better to follow Kelly’s criterion than to try to maximize the expected
winnings? Test your answer using simulation with different betting strate-
gies. Which one performs best and why?

17. (6) (Random walk on grid) Simulate a random walk on the points with
integer coordinates bounded by the triangle x-axis, y-axis and the line
joining (0, 9) with (12, 0). Let those points nearest the hypotenuse count
as “1” and those on the x-axis and y-axis as “0.” (Specifically, in addi-
tion to the other points on the two axes, the points (0, 9) and (12, 0) are
to be 0’s; the 1’s are (1, 8), (2, 7), (3, 7), (4, 6), (5, 5), (6, 4), (7, 4), (8, 3),
(9, 2), (10, 1), and (11, 1).) To do: (a) for each point (i, j) of the interior
of the triangle, walk until you reach a “0” or a “1”, then stop and note
the outcome 0 or 1; estimate the expected outcome for (i, j). (b) estimate
the expected hitting time from each point.

18. (6) In Problem 1 of the optimization chapter, Chapter 4, the transition
matrix for a simulated annealing solution of the 2-bit Sandia Mountain
problem is given. Instead of lowering the temperature, assume that it is
fixed for this problem; then the material of Section 5.6 applies.
Decompose this matrix, in the same way as that of equation (5.19). The
goal state x = 0 acts as the absorbing state, and P̂ is the transition ma-
trix among the nongoal states. For some fixed temperature, use simulated
annealing to find the goal starting equally likely in a non-goal state. Use
your simulation to estimate (a) the rate per iteration of finding the goal
and (b) the expected number of iterations to find the goal. Compare these
estimates of λ and E with exact values, obtained as in Section 5.6.2.

19. (8) (Kelly criterion with correlation) In the text it was assumed that the
two option trades were independent. But this is often not true. The trend
of the market in general affects a majority of the stocks in the same way.
In this case we say that the two trades are correlated. The correlation
between two random variables X and Y is measured by the correlation
coefficient ρ,

ρ =
cov(X, Y )√

var(X)var(Y )
. (5.27)
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Recall covariance from (1.24). If X and Y are Bernoulli trials and f(1, 1)
is the joint probability of success, then (5.27) becomes

ρ =
f(1, 1)− pXpY√

pXqXpY qY
, (5.28)

where pX and pY are the marginal success probabilities for X and Y
respectively and qX = 1 − pX and qY = 1 − pY as usual.
For this problem, rework the two option trades example making the as-
sumption that they jointly vary with ρ = 0.8. Assume that the trades only
win or lose, i.e., there is no catastrophic loss category. Letting

η = ρ
√

pXqXpY qY , (5.29)

the joint win(1) or loss(0) probabilities for (X, Y ) become

f(1, 1) = pXpY + η, f(0, 0) = qXqY + η,

f(1, 0) = pXqY − η, f(0, 1) = qXpY − η.

Now the success probabilities are the marginal successes.



A

Generating Uniform Random Numbers

A.1 Multiple Stored Value Random Number Generation

As we saw above in Section 1.3.3, the period of the linear congruential
RNG is necessarily at most m, the value of the modulus. This is forced
by the use of only one stored value, or seed; when the seed equals any
value that it had on a previous iteration, then the sequence of returned
pseudorandom numbers will repeat.

However by using two or more stored values, the period can greatly
exceed m. In this section we look at some of the possibilities.

A.1.1 Fibonacci Generators

We start by incorporating two stored values, seed1 and seed2. Addi-
tionally there are also three parameters a1, a2, and c, and a modulus m.
Initially the generator is doubly seeded; let x1 = seed1 and x0 = seed2.
The next number generated is

xn+1 = (a1xn + a2xn−1 + c) mod m.

In this way a sequence x2, x3, . . . , xn, . . . of pseudorandom numbers is
generated. Often c is taken to be 0.

These types of RNGs are referred to as Fibonacci generators in
reference to the famous Fibonacci sequence xn = xn−1 + xn−2 starting
with x0 = 0 and x1 = 1, which was proposed centuries ago by Fibonacci
to model the population growth of rabbits.

More generally, one can create a table of stored values and allow
more flexibility in their choice. For example, good results are reported
for the generator
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xn = (xn−24 + xn−55)modm, n ≥ 55,

where the multipliers are both 1. This generator requires seeding a table
with the values x0, x1, . . ., x54.

Another example is the Fibonacci generator proposed by Marsaglia
given in Figure A.1. In this code, the syntax a % b means a mod b.

Marsaglia Random Number Generator

double rndm(long ss)
//call with ss 
= 0 to seed, else with ss = 0
static int nBits = 32; // set to # bits used for integers

static long m1 = 2nBits−2 + 2nBits−2 − 1;
static long m[17]; // 17 components must be initialized
static long i, j;

long seed, k, k0, k1, j0, j1, m2 = 2nBits/2;
if( ss 
= 0 ) {
if( ss < 0 ) ss = -ss;
seed = ss % m1;
if( seed % 2 == 0 ) seed = seed-1;
k0 = 9069 % m2; k1 = 9069/m2;
j0 = seed % m2; j1 = seed/m2;
loop p = 0, 1, . . . , 16
seed = j0*k0;
j1 = ((seed/m2)+j0*k1+j1*k0)% (m2/2);
j0 = seed % m2;
m[p] = j0+m2*j1;

end loop
i = 4; j=16;

}
k=m[i]-m[j];
if( k<0 ) k = k+m1;
m[j] = k;
i = i-1; if( i<0) i=16;
j = j-1; if( j<0) i=16;
return (double)k/m1;

Fig. A.1. Marsaglia’s generator

The key line is the sixth from the bottom, which shows that the
generator has the Fibonacci form,

next value = (some previous value) − (some other previous value)

and the new value enters the table of previous values.
Fibonacci generators are harder to analyze than linear congruential

generators. In the Marsaglia generator the output numbers are modulo
m1. In turn, m1 depends on the number of bits entered into line 3.
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With nBits = 32, the number of integers available to the generator is
m1 = 231−1 = 2,147,483,647, counting 0 but not m1 itself. The period
is far greater than this, but how big is it?

To see the operation of the generator, imagine nBits=3, so that
m1 = 3 and the available integers are 0, 1, 2. Further, let the length
of the m array be taken to be 3, initialize it to 1, 2, 0, and let i and j
be initialized to i = 1 and j = 0. These initial variables have maximal
period before repeating of 33 × 3 − 3 = 78. (Note that i and j are not
independent but cycle in lock step.) Hence it is possible to inspect the
complete sequence for this choice of nBits.

The first three return values (without dividing by m1), manually
computed, are (in the following let dec(i) mean subtract 1 from i and
a % b mean a mod b as above):

currently m = 1, 2, 0, i = 1, j = 0
k = mi − mj = 1, return 1
update: mj = k = 1, dec(i) % m1 = 0, dec(j) % m1 = 2

currently m = 1, 2, 0 i = 0, j = 2
k = mi − mj = 1, return 1
update: mj = k = 1, dec(i) % m1 = 2, dec(j) % m1 = 1

currently m = 1, 2, 1 i = 2, j = 1
k = mi − mj = −1 % 3 = 2, return 2
update: mj = k = 2, dec(i) % m1 = 1, dec(j) % m1 = 0

Continuing the computation yields the full length-78 sequence:

1 1 2 1 0 1 0 0 2 2 2 0 1 2 2 1 2 0 2 0 0
1 1 1 0 2 1 1 2 1 0 1 0 0 2 2 2 0 1 2 2 1
2 0 2 0 0 1 1 1 0 2 1 1 2 1 0 1 0 0 2 2 2
0 1 2 2 1 2 0 2 0 0 1 1 1 0 2

.

However, inspecting this output shows the numbers cycle with a pe-
riod of 26; this is easiest to see starting with the sequence 2, 2, 2 and
continuing until this sequence arises again.

A.1.2 Finite Field RNG

(This section uses some more advanced material; in particular, it is
based on the theory of finite fields.)

Some Fibonacci RNGs can be analyzed with the help of the theory of
finite fields. We illustrate the method to construct generators that use
two stored values and whose period is m2−1. Consider an example, kept
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small for illustration purposes. Using a modulus of m = 5, a period-24
sequence is possible (but not a period-25 sequence).1

As an example, we construct a pseudorandom sequence of period 24 =
52 − 1 with digits from Z5 = {0, 1, 2, 3, 4}. This construction can be
generalized to construct sequences of length mj − 1 for any odd prime
m and j ≥ 1.

Our construction takes place in G25 = {a0 + a1x : a0, a1 ∈ Z5, x
2 =

3}, the field of polynomials over Z5 = {0, 1, 2, 3, 4} modulo x2 + 2.
Similar to the use of the the term modulo above (as in 8 ≡ 3 mod 3),
here modulo x2+2 means that two polynomials are counted as the same
if their difference is divisible by x2 +2. Also notice that the coefficients
come from Z5, the equivalence class of integers modulo 5. So 8x − 3 is
the same polynomial as 3x + 2 because 3 = 8mod 5 and 2 = −3mod 5.
As another example,

2x5 + 2x4 + 4x3 + x2 + 3 ≡ 3x + 4 mod x2 + 2,

since

2x5 + 2x4 + 4x3 + x2 + 3 = 3x + 4 + (x2 + 1)(2x3 − 3x2 + 2x + 4).

Note that the polynomial x2 + 2 cannot be written as the product of
two polynomials of smaller degree with coefficients in Z5. One says
that x2 + 2 cannot be factored over Z5. So, in the polynomials over Z5

modulo x2 + 2, we may identify x2 with −2 or alternatively, with 3.
In G25 we want to find special values of a0 and a1 such that β =

a0 + a1x generates the nonzero elements of G25 as its powers, i.e., we
want β to be a primitive element of G25. Try β = 2+3x. Before testing
it, note that with this choice, β is a root of the polynomial z2 − 4z− 3,
since

β2 − 4β − 3 = (2 + 3x)2 − 4(2 + 3x) − 3
= (4 + 12x + 9x2) − (8 + 12x) − 3
= 3 + 4x2 = 3 + 4 × 3 = 0.

Therefore, wherever it occurs, β2 can be replaced by 4β + 3. Further-
more, since 2β = 4+6x = 4+x, x can be replaced by x = 2β−4 = 2β+1.
Then computing the powers of β, we obtain

1
Exercise: Show that if m is prime, then for any integers a �= 1 and c, x �→

ax+c mod m has a fixed point mod m, i.e., an integer v such that av+c = v mod m.
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coef
sum β basis powers scratch x basis

1 ← β = β = 2 + 3x = 2 + 3x
2 ← 3 + 4β = β2 = 4 + 12x + 9x2 = 1 + 2x
1 ← 2 + 4β = β3 = 2 + 7x + 6x2 = 2x
0 ← 2 + 3β = β4 = 4x + 6x2 = 3 + 4x
3 ← 4 + 4β = β5 = 6 + 17x + 12x2 = 2 + 2x
2 ← 2 = β6 = 4 + 10x + 6x2 = 2
2 ← 2β = β7 = 4 + 6x = 4 + x
4 ← 1 + 3β = β8 = 8 + 14x + 3x2 = 2 + 4x
2 ← 4 + 3β = β9 = 4 + 14x + 12x2 = 4x
0 ← 4 + β = β10 = 8x + 12x2 = 1 + 3x
1 ← 3 + 3β = β11 = 2 + 9x + 9x2 = 4 + 4x
4 ← 4 = β12 = 8 + 20x + 122 = 4
4 ← 4β = β13 = 8 + 12x = 3 + 2x
3 ← 2 + β = β14 =16 + 48x + 36x2= 4 + 3x
4 ← 3 + β = β15 = 8 + 18x + 9x2 = 3x
0 ← 3 + 2β = β16 = 6x + 9x2 = 2 + x
2 ← 1 + β = β17 = 4 + 8x + 3x2 = 3 + 3x
3 ← 3 = β18 = 4 + 15x + 9x2 = 3
3 ← 3β = β19 = 6 + 9x = 1 + 4x
1 ← 4 + 2β = β20 = 2 + 11x + 12x2 = 3 + x
3 ← 1 + 2β = β21 = 6 + 11x + 3x2 = x
0 ← 1 + 4β = β22 = 2x + 3x2 = 4 + 2x
4 ← 2 + 2β = β23 = 8 + 16x + 6x2 = 1 + x
1 ← 1 = β24 = 2 + 5x + 3x2 = 1

Thus the powers of β generate all the nonzero elements of G25, so β
is primitive. Now we need a method of turning an element of the form
a+bβ into an element of Z5, since we want our pseudorandom sequence
to have values in {0, 1, 2, 3, 4}. The simplest one is to add coefficients,
so that 4 + 2β becomes 4 + 2 = 1 mod 5. This explains the first two
columns of the table of powers of β.

This construction is nice, in theory, but rather cumbersome. It is
possible to find a linear recurrence relation that will do the same thing.
We have already discovered that the polynomial of lowest degree of
which β is a root is z2 − 4z − 3, that is β2 − 4β − 3 = 0 in G25, or
equivalently, β2 = 4β + 3. Thus, for any three consecutive powers of β
we have

βk+2 = 4βk+1 + 3βk.
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Now we just sum the coefficients (in the β basis) of this relation to get
the recurrence relation

yn = (4yn−1 + 3yn−2)mod 5.

Starting with the values y0 = 4 and y1 = 1 gives the data from the
table above, or the pseudorandom sequence

1 2 1 0 3 2 2 4 2 0 1 4 4 3 4 0 2 3 3 1 3 0 4 1.

Notice that it will not repeat until both seeds y0 and y1 simultaneously
repeat a previous pair of values. Also notice that any two nonzero y0

and y1 will give you the same sequence, just starting at a different
point.

A.2 Testing for Nonrandomness

We briefly describe two tests of an RNG sequence to test for nonran-
domness (that is, the tests can show only that the sequence is non-
random, not that the sequence is in fact random). For more tests and
discussion, see [Knu81].

A.2.1 Chi-Square Test

The chi-square test is a very general statistical test of the hypothe-
sis that random outcomes are occurring according to some specified
distribution. Suppose the possible outcomes of an experiment are par-
titioned into events E1, E2, . . ., Ek. Further suppose, according to the
hypothesis, that the probability of event Ei is pi, pi > 0,

∑k
1 pi = 1.

Now let N trials of the experiment be performed; the expected number
of outcomes of Ei is piN . Suppose the actual number of outcomes is
Yi. Then

V =
k∑

i=1

(Yi − piN)2

piN

is a chi-square random variable with k − 1 degrees of freedom (DOF).
The chance that V deviates from 0 is predicted by a chi-square table.

For example, in a sequence of two coin tosses, the probability that
HH occurs is 0.25, the same for HT, TH, and TT. Now for 20 trials of
the experiment (of tossing a coin twice) suppose we get the following
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p = 0.01 p = 0.05 p = 0.25 p = 0.50 p = 0.75 p = 0.95 p = 0.99

ν = 1 0.00016 0.00393 0.1015 0.4549 1.323 3.841 6.635

ν = 2 0.02010 0.1026 0.5753 1.386 2.773 5.991 9.210

ν = 3 0.1148 0.3518 1.213 2.366 4.108 7.815 11.34

ν = 4 0.2971 0.7107 1.923 3.357 5.385 9.488 13.28

ν = 5 0.5543 1.1455 2.675 4.351 6.626 11.07 15.09

ν = 6 0.8720 1.635 3.455 5.348 7.841 12.59 16.81

ν = 7 1.239 2.167 4.255 6.346 9.037 14.07 18.48

ν = 8 1.646 2.733 5.071 7.344 10.22 15.51 20.09

ν = 9 2.088 3.325 5.899 8.343 11.39 16.92 21.67

ν = 10 2.558 3.940 6.737 9.342 12.55 18.31 23.21

ν = 11 3.053 4.575 7.584 10.34 13.70 19.68 24.73

ν = 12 3.571 5.226 8.438 11.34 14.84 21.03 26.22

ν = 15 5.229 7.261 11.04 14.34 18.25 25.00 30.58

ν = 20 8.260 10.85 15.45 19.34 23.83 31.41 37.57

ν = 30 14.95 18.49 24.48 29.34 34.80 43.77 50.89

ν = 50 29.71 34.76 42.94 49.33 56.33 67.50 76.15

ν > 30 ν +
√

2ν xp + 2
3x2

p − 2
3 + O(1/

√
ν)

xp = −2.33 −1.64 −.675 0.00 0.675 1.64 2.33

Table A.1. Chi-square table. Table value x at row ν and column p means
that p is the probability a chi-square random variable with ν DOF is ≤ x.

outcomes: HH 2, HT 5, TH 3, TT 10. How likely is this outcome? The
chi-square random variable in this case is

V =
(2 − 0.25 × 20)2

0.25 × 20
+

(5 − 0.25 × 20)2

0.25 × 20
+

(4 − 0.25 × 20)2

0.25 × 20
+

(10 − 0.25 × 20)2

0.25 × 20
= 7.

According to the chi-square table with three degrees of freedom ν = 3,
the probability of this value or less is about 0.906 (interpolating in the
table). Put differently, the probability of this value or more is 0.094 or
9.4%. Thus, at the 90% level, this outcome fails the test, but at the
95% level it passes.

A.2.2 Kolmogorov–Smirnov Test

The Kolmogorov–Smirnov test is a general statistical test designed to
test the hypothesis that a given set of samples is from a specific dis-
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tribution. Say that the samples are x1, x2, . . . , xN and it is desired to
test whether they come from a distribution with cdf F . Compute the
empirical cumulative distribution function

F̂N (t) =
#{i : xi ≤ t}

N

(the fraction of the number of samples xi that are less than or equal to
t). According to the Glivinko–Cantelli theorem from probability theory
(see [Chu74]), if the xi’s are really independent samples from F , then

lim
N→∞

sup
t

|FN (t) − F (t)| = 0.

This says that the biggest difference between FN and F shrinks to 0 as
N , the number of samples, tends to infinity. Let

DN = sup
t

|FN (t) − F (t)|,

as illustrated in Figure A.2, where F is the cdf for the uniform dis-
tribution. Under the assumption that the samples Xi are independent
and with common distribution F , the distribution of DN is known and
can be tabulated.

In the context of a test for nonuniformity of an RNG, the target
distribution is the uniform distribution on [0, 1]; thus F (x) = x. Table
A.2 gives the acceptance limits for the Kolmogorov–Smirnov test. To
see how to use this, consider the following example.

If Fn is constructed using n = 12 samples, then the chance that D12

exceeds 0.38 is 5%. In this example we want to test whether the 12
data points,

.45 .22 .06 .93 .91 .61 .33 .80 .95 .74 .88 .21

are from a U(0, 1) random number generator at the 95% confidence
level.

The first task is to form the cdf of the data, by summing all proba-
bilities less than or equal to x as a function of x. The first row of the
following matrix is the sorted data values x; the second is the sum of
the number of data values less than x divided by the total number of
values, 12.

.06 .21 .22 .33 .45 .61 .74 .80 .88 .91 .93 .95
.083 .166 .25 .333 .416 .50 .583 .666 .75 .833 .916 1
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Cumulative Data vs the Uniform CDF.

D12

Fig. A.2. Twelve data point empirical CDF vs the uniform cdf.

see Figure A.2. The maximum vertical distance between the two is
D12 = 0.239. Note that this occurs at x = 0.739, just before the 0.74
data point. From the line n = 12 of Table A.2, with probability 0.2,
D12 could be as high as 0.30 with the data in fact coming from U(0, 1).
Therefore the data passes the test.

As another example, we use the Kolmogorov–Smirnov test at a level
of α = 0.05 to test the linear congruential RNG of the form

xn+1 = 1 + 3xn mod p,

for p = 11 and p = 229 and p = 104729, each with 1000 samples and
all of them with a starting seed of x0 = 3.

For the modulus p = 11, clearly the maximum cycle length is 11 (the
actual cycle length is 5), and thus in 1000 samples it will run through its
cycle many (200) times. We expect poor performance, and we compute
that D1000 = 0.3454, which is much larger than the threshold of 0.043 =
1.36/

√
1000, and thus this RNG fails the test (no surprise).

For the modulus p = 229, again the generator will run through its
cycle several times, but not as many as with p = 11. Thus D1000 =
0.1461 reflects this fact, but still fails the test.

Finally, with the modulus p = 104729 we obtain D1000 = 0.0241,
which is significantly below the threshold of 0.043, and thus this RNG
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passes the Kolmogorov–Smirnov test. However, this doesn’t mean that
the sequence is actually random, just that we cannot conclude that it
isn’t random.

α

p = 0.20 p = 0.10 p = 0.05 p = 0.01

n = 1 0.90 0.95 0.98 0.99
n = 2 0.68 0.78 0.84 0.93
n = 3 0.56 0.64 0.71 0.83
n = 4 0.49 0.56 0.62 0.73
n = 5 0.45 0.51 0.56 0.67
n = 6 0.41 0.47 0.52 0.62
n = 7 0.38 0.44 0.49 0.58
n = 8 0.36 0.41 0.46 0.54
n = 9 0.34 0.39 0.43 0.51
n = 10 0.32 0.37 0.41 0.49
n = 11 0.31 0.35 0.39 0.47
n = 12 0.30 0.34 0.38 0.45
n = 15 0.27 0.30 0.34 0.40
n = 20 0.23 0.26 0.29 0.35
n = 30 0.19 0.22 0.24 0.29
n = 35 0.18 0.21 0.23 0.27
n = 40 0.17 0.19 0.21 0.25
n = 45 0.16 0.18 0.20 0.24

n > 45 1.07√
n

1.22√
n

1.36√
n

1.63√
n

Table A.2. Kolmogorov–Smirnov acceptance limits.
Dn = ‖Fn(x) − F (x)‖∞, table value dn,α means Pr(Dn ≥ dn,α) = α.

Problems: Appendix A

In this set of problems we want to show that if the random number genera-
tor is linear congruential, xn+1 = axn + c modm, then it is possible to find
the parameters from the sequence of random integers it produces. For this,
it is helpful to have a tool from elementary number theory, the Euclidean
algorithm.

Theorem 2 Let d be the greatest common divisor of the integers g and h.
There exist integers x and y such that xg + yh = d.

Solutions x and y can be found by the division algorithm as follows. As-
suming g > h, divide g by h to get a quotient and remainder
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g = q1h + r1.

Now do the same with h and r1:

h = q2r1 + r2.

Continue this by shifting the r’s to the left, that is,

r1 = q3r2 + r3,

r2 = q4r3 + r4,

...
...

rk−2 = qkrk−1 + rk,

rk−1 = qk+1rk + d,

stopping when the remainder becomes d (carrying the division out one more
time gives a remainder of 0, hence determining d). Now work back up: In the
last equation, substitute for rk from the previous line

d = rk−1 − qk+1 (rk−2 − qkrk−1) .

Then substitute for rk−1 from the previous line, and so on.
Note that x and y are not unique.

Note that if the LCRNG is “degenerate,” then the parameters are not
necessarily unique. For example, the generator x′ = (2x + 1)%4 produces
x0 = 0, 1, 3, 3, . . ., at the same time the generator x′ = (4x + 7)%16 produces
x0 = 3, 3, 3, . . . . However, if we find either set of parameters or some other
one altogether that will give a constant stream of 3’s, then at least as far as
predicting future numbers is concerned, it does not matter.

1. (2) Assume that m is known and c is 0. Use two successive return values
xn+1 and xn to find a.

2. (2) Assume that both m and c are known (but c is not necessarily 0). Use
two successive return values xn+1 and xn to find a.

3. (3) Assume that both m and a are known. Use two successive return val-
ues xn+1 and xn to find c.

4. (4) Assume that only m is known. Use three successive return values to
find a and c.

5. (5) What can be done if none of a, c, and m are known?
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Perron–Frobenius Theorem

The version of the Perron–Frobenius theorem that we prove here is not
the most general version. Our version is specialized to row-stochastic
matrices, so it applies directly to the transition matrix for a Markov
chain. The more general version requires only that the matrix P be
nonnegative, and concludes that there is some eigenvalue λ > 0 for
P such that the corresponding eigenvector is positive and all other
eigenvalues have magnitude smaller than λ.

Theorem B.1. (Perron–Frobenius) Let P be an n × n row stochastic
matrix with Pi,j ≥ δ > 0 for all i, j. Then P has 1 as an eigenvalue
whose corresponding normalized left eigenvector πT is strictly positive.
Furthermore, all the other eigenvalues of P are strictly smaller than
one in modulus and

lim
n→∞

Pn = 1lπT ,

where 1l is the (column) vector of all ones. In particular, this means
that for all probability vectors α,

lim
n→∞

αPn = π.

B.1 Proof of Perron–Frobenius

Let P be a row stochastic matrix and let 1l be the (column) vector of
all ones. Then P1l = 1l. Furthermore, if fT1l = 0 then

(P T f)T 1l = fT (P1l) = fT1l = 0,

so P T has the space
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S = {v : vT 1l = 0}
as an invariant subspace.

Define osc(f) = max f − min f , where f ∈ R
N .

We restrict our attention to the case that P satisfies the condition

Pi,j ≥ δ > 0 ∀i, j. (B.1)

This condition isn’t as restrictive as it might appear. If the associated
Markov chain is irreducible (it is possible to go from any state to any
other state) and finite, then some power of the transition matrix P will
satisfy this condition. Thus, we will assume this condition.

Proposition B.2. If P satisfies condition (B.1), then for all f ,

osc(Pf) ≤ (1 − 2δ)osc(f).

Proof. Assume that fa is the smallest component of f and fb is the
largest, and consider the ith component of Pf ,

(Pf)i = pi1f1 + pi2f2 + · · · + piNfN

≤ piafa + (pi1 + · · · + pi,a−1 + pi,a+1 + · · · + piN )fb

≤ δfa + (1 − δ)fb.

Similarly,
(Pf)i ≥ (1 − δ)fa + δfb.

Thus for every component of Pf ,

max(Pf)i − min(Pf)i ≤ [δfa + (1 − δ)fb] − [(1 − δ)fa + δfb]

= (1 − 2δ)(fb − fa).

Proposition B.3. Let cn
j denote the jth column of Pn. If P satisfies

condition (B.1), then cn
j tends to a constant vector as n → ∞, that is,

for some constant πj,
lim

n→∞
cn
j = πj1l,

1 π2 . . . πN ]T ,
we have

max
i

‖Pn
i,j − πj‖ ≤ C(1 − 2δ)n ∀j

for some constant C > 0. Hence limn→∞ Pn = 1lπT . The vector π is
the invariant distribution of P , i.e.,

πT P = πT .

where 1l is the vector of 1’s. In particular, letting π =[π
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Proof. With cn
j as above, we see that

osc(cn+1
j ) = osc(Pcn

j ) ≤ (1 − 2δ)osc(cn
j );

thus cn
j → πj1l as claimed. This implies that π is a probability vector,

since Pn is row stochastic for all n. Further, πT P = πT , so πT (Pn −
1lπT ) = 0 for all n.

As n → ∞ the convergence above is at least geometric with rate
equal to 1 − 2δ.

Clearly P has 1 as an eigenvalue, since P1l = 1l. Thus, what we wish
to show is that under the condition (B.1), all the other eigenvalues of
P have modulus strictly smaller than one.

Proposition B.4. For all f ∈ S, (P T )nf → 0 (in fact, geometrically
fast).

Proof. Since S is an invariant subspace for P T , if we denote by P̂ T the

restriction of P T to S, we know that P̂ T f = P T f for all f ∈ S. But
then

(P̂ T )nf → π1lT f = 0,

since f ∈ S.

Thus, all the eigenvalues of P̂ T are strictly smaller than one in
modulus. However, the set of eigenvalues of P T is equal to {1} union

the set of eigenvalues of P̂ T (since S is invariant for P T ). Thus, P T

has only one eigenvalue of modulus 1; all others have modulus strictly
smaller than one. However, the eigenvalues of P are the same as those
of P T . Thus, P has 1 as an eigenvalue with all the rest having modulus
strictly smaller than 1.

An Observation

Let 1, µ2, µ3, . . ., µn be the eigenvalues of P , in order of decreasing
complex modulus; of course |µ2| < 1. Let π, r2, r3, . . ., rn be a Jordan
basis, so that

P = C−1JC,

where J is the Jordan form for P and C is the matrix whose rows are
the Jordan basis vectors.
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Proposition B.5. The first column of C−1 is the vector 1l.

Proof. Let c = [ c̄1 c̄2 . . . c̄n ]T be the first column of C−1. Since
CC−1 = I, the dot products must yield,

c · π = 1, c · ri = 0, i = 2, . . . , n.

Since ri ∈ S, i = 2, . . . , n, this system has the unique solution c = 1l.

Since J is the Jordan form of P , we have P k = C−1JkC for all k.
Clearly

lim
k→∞

Jk = L =

⎡
⎢⎣

1 0 . . . 0
0 0 . . . 0
...

... . . .
...

0 0 . . . 0

⎤
⎥⎦ .

So from the proposition above,

lim
k→∞

P k = C−1LC = 1lπ,

where the right member is an outer product.
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Projects

The best way to learn about Monte Carlo methods is to implement
one for a real problem. Over the time we taught a course based on this
material, we received many outstanding projects from our students. We
include below a short list of suggested topics for projects. Of course the
best topic is often inspired by a problem that you select yourself and
whose solution is important and meaningful to you.

In general, a completed project should include a written report along
with commented source code. To be most useful, the report should
include any theory or analysis associated with the project, what the
software is supposed to do, and how to use it. The report should include
a discussion of validation runs as well as production runs. Be sure to
include results and conclusions.

This kind of formal write-up is good practice for “real-world” tech-
nical reports. In addition, it will provide you with a document that you
can refer back to in the future to remind yourself what you did and
why you did it.

Some Ideas for Project Topics

1. A genetic algorithm or simulated annealing solution to some com-
binatorial optimization problem. Examples problems are:
a) The TSP or TSP with time windows.
b) The maximum permanent problem.
c) The maximum clique problem. Given a graph, a clique is a sub-

graph which is completely connected (every pair of vertices are
connected). The problem is, given a graph, find its maximal
clique.
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d) The job shop scheduling problem. In one form, for a given ma-
chine, a number of jobs are to be processed on the machine. Each
job has a processing time, a deadline, and a cost if the deadline
is not met. How should the jobs be sequenced to minimize the
cost?

e) The assignment problem. Given an N ×N non-negative matrix
W of weights, find a subset of elements of W , with exactly one
element in each row and in each column, having minimal sum.

f) The structure of protein. The determination of the physical
structure of a protein is a very difficult optimization prob-
lem. This problem starts with a molecule formed as a sequence
of (chemical) amino acids, and attempts to find the three-
dimensional structure of the molecule which minimizes its in-
ternal energy.

g) The Steiner network problem. Given a graph G, find a minimal
subset of arcs such that when all arcs are removed but those,
a specified subset of vertices remain connected. This problem
is related to providing a service, such as electrical power, to a
group of cities.

h) The shortest path problem. This problem can take on many
different forms; one dichotomy being discrete or continuous. An
example of a continuous problem is finding the “optimal path”
to fly an aircraft between two points across mountainous and
hostile terrain. Most discrete manifestations of the shortest path
problem can be framed in terms of graphs. Thus, given two
vertices in a weighted graph, find the path which minimizes the
sum of weights. A modern example of this problem arises when
an online map service attempts to provide a user with a route
between two points in a city.

2. Both genetic algorithms and simulated annealing suffer from the
problem of niching. One possible solution is to restart the process
whenever such niching is detected. Invent several measures of nich-
ing and restarting rules and investigate their efficacy, i.e., when is
it better to restart rather than to continue the current run.

3. Investigate the parallelization of some MCMC method. This could
be practical (choose some problem, implement a parallel version,
run simulations, and compare with a serial version) or theoretical
(investigate the features of one/several MCMC method(s) which
allow parallelism).
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4. Program a more realistic version of a game such as Monopoly.

5. Two examples of possible financial mathematics topics:

a) Verify “put-call parity”. Let S be the stock price, X be the
strike price, T be the time to expiration, and r be the risk-free
rate. Further, let P be the cost of a put option and C be the
cost of a call option with those given parameters (S, X, T , and
r) and any volatility. Put-call parity asserts that

S + P − C = Xe−rT .

Note that since this is assumed to hold for any volatility, all risk
has been hedged away.
Test if put-call parity holds by making a choice of the parameters
and estimating P and C by Monte Carlo. Do this for several
choices of parameters. Of course, the Monte Carlo results will
only be approximate by the nature of the method. You can
improve the results by arranging your program to compute both
P and C in the same Monte Carlo run, that is, using the same
sequence of random numbers. This technique is called variance
reduction.

b) How much should the following option cost? The current stock
price of ABC is S1 = $30 and that of XY Z is S2 = $32. The
option states that if, 30 days from now, the price of ABC is
below $29, then the payoff is max(S1 − S2, 0) (those being the
respective stock prices at the expiration on day 30). In other
words, S2 must be below S1 and both must be below $29 for
the option to payout. The respective volatilities are v1 = 0.3
and v2 = 0.4, and the risk-free rate is r = 0.3%.

6. Simulate some version of a simple artificial ecosystem. As an
example:

Artificial life simulation, everything takes place in a 100 meter by
100 meter square.
Laws of physics: each season enough sunlight falls for exactly 100
new plants to grow, randomly distributed. There is space for 1000
eaters. An eater coming within 2 meters of a plant eats it all and gets
100 calories of energy. The most an eater can store is 200 calories.
It takes 1 calorie to move 2 meters and 20 to have an offspring.
Eaters live at most 20 seasons.
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Invent a 4 gene eater in which the genes code for movement and
reproduction control. Simulate 100 time periods per season. In one
time period an eater can move and eat or reproduce.

7. Use MCMC to convert a game of partial information to one of
stochastic, but full information (as in Section 3.7.1). As an example:

(Mini-hearts, using Monte Carlo to convert to complete informa-
tion.) Optimal “Hearts” play, assume 3 cards per suit (K, Q, J), 4
suits as usual. Assume 4 players.
Rules: cards are shuffled and completely dealt out, the hand with
the club-J leads (begins a trick) by playing it; play means to place a
card face up in the center of the table. Play proceeds clockwise from
the hand that leads. A play must follow suit if possible, otherwise
any card may be played. After all have played to a trick, the one
who placed the highest card of the suit lead wins the trick, and then
leads to the next trick.
Winning : taking a Heart on a trick counts 1 point, taking the
spade-Q counts 3 points. Player with the lowest count wins.
Strategy : To make a play that is the best possible, use Monte Carlo
simulation to distribute the, as yet, unseen cards into the opponents
hands. Given such a sample, use a complete information analysis to
decide the best play for that sample. Histogram, weight, and select
the overall (stochastically) best play.

8. Fractal inverse problem

Let W = {w1, w2, . . . , wn} be a finite set of affine maps of the unit
square I = [0, 1] × [0, 1] into itself, that is, maps of the form

wk(x) =

[
ak bk
ck dk

]
x +

[
ek
fk

]
.

Here x denotes the 2D vector

[
x
y

]
.

Associated with every such collection W is the attractor A, that is
the unique compact subset A ⊂ I characterized by the self-covering
property

A =

n⋃

i=1

wi(A).

For the proof of the existence and uniqueness of an attractor see
[Bar88]. It is, however, easy to obtain points in A. Obviously the
fixed point x∗

i of each map wi in W belongs to A. Further, this
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equation provides that if x ∈ A then also wi(x) ∈ A for each i =
1, 2, . . . , n. It follows that for every composition f = wi1 ◦wi2 ◦ · · · ◦
wik , where ij ∈ {1, . . . , n} for all j = 1, . . . , k, if x ∈ A then also
f(x) ∈ A. It is in this way that W is an iterated function system
(IFS).
Moreover the observation above provides a method to visualize an
attractor on a computer screen. Starting from the fixed point x∗ of
map w1, choose i1 ∈ {1, 2, . . . , n} at random and plot x1 = wi1(x

∗).
Now repeat this step with x1 in place of x∗, set x2 = wi2(x1), and
plot x2. Continuing this way, we set xn+1 = win(xn) and repeat
until some large number of points, say something like 10,000, have
been plotted. This construction is known as the Random Iteration
algorithm for constructing the attractor. Typically the attractor of
an IFS is a fractal set.
As an example, the Sierpinski gasket is the attractor of the IFS

w1(x) =

[
1/2 0
0 1/2

]
x,

w2(x) =

[
1/2 0
0 1/2

]
x +

[
1/2
0

]
,

w3(x) =

[
1/2 0
0 1/2

]
x +

[
1/4
1/2

]
.

The Inverse Fractal problem is that of finding an IFS whose attrac-
tor is the given set, or as close to the given set as possible.
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List of notation

Symbol Page Meaning

U(a, b) 15 uniform distribution on [a, b]
∼ 16 is a sample from
E(X) 17 expectation of X
µ 17 expected value
var(X) 17 variance of X
σ 19 standard deviation
Pr(A|B) 21 conditional probability of A given B
cov(X,Y ) 25 covariance of the rvs X and Y
a mod m 33 equivalence class modulo m, in range 0

to (m − 1)
int[x] 56 integer part of x
frac(x) 56 fractional part of x
b(n, p) 59 binomial distribution
E(λ) 64 exponential distribution
Be(α, β) 85 beta distribution
G(α, λ) 89 gamma distribution
Γ (x) 90 gamma function
Nx 102 Neighborhood of a state
pxy 102 transition probability from x to y
pt 105 probability vector of a Markov chain
π 106 invariant distribution of a Markov chain
kB 121 Boltzmann’s constant
rx 182 probability of gamber’s ruin
hx 182 probability of breaking the house



Index

absorbing state, 200
acceptance

discipline, 82
process, 108

admissible points, 139
annealing, 125
aperiodic, 106

batching, 79
Bayes’s formula, 23
beta distribution, 85
biased estimator, 49
binomial coefficient, 58
binomial distribution, 59
binomial theorem, 59
bivariate normal, 95
Boltzmann distribution, 120
Boltzmann factor, 120
Boltzmann’s constant, 121
breaking the house probability, 183
Buffon needle problem, 2

call option, 175
Cauchy density, 71
central limit algorithm, 75
central limit theorem, 73
characteristic function, 91
Chebyshev’s inequality, 20
chi-square test, 218
clock arithmetic, see modular arithmetic
conditional probability, 21
conductance, 205
confidence interval, 79
congruence, see modulo congruence

continuous random variable, 11
cooling schedule, 141
correlation plot, 45, 99
coupling from the past, 131
covariance, 24
credit spread, 191
crossover, 147
cumulative distribution function (cdf),

11
Curie point, 124

decomposition of events, 21
density plot, 48
detailed balance, 113, 205
diffusion, 165
diffusion coefficient, 169
diffusivity, see diffusion coefficient
dimer, 126
dimer density, 126
Dirichlet problem, 199
discrete random variable, 11
disjoint events, 11
displacement

self-avoiding walk, 180

efficient market hypothesis, 175
empirical cdf, 220
entropy, 118
equally likely, 16
equivalence class, 33
ergodic theorem, 114
Erlang distribution, 90
Euclidean algorithm, 222
event, 10
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event scheduled simulation, 68
expected hitting time, 204
exponential distribution, 64

Fibonacci RNG, 213
finite field RNG, 215
fundamental matrix, 202

gambler’s ruin, 10, 181
gambler’s ruin probability, 183
gamma distribution, 89
gamma function, 90
genetic algorithm, 146

crossover, 147
mutation, 147
niche, 149
one-point crossover, 148
population, 147
roulette wheel selection, 148
selection, 147

geometric Brownian motion, 176
geometric cooling, 142

harmonic function, 169, 198
histogram, 4
hit-or-miss, 38
hitting time, 204

independent events, 22
independent random variables, 22
invariant distribution, 104, 106
inverse log cooling, 142
inverting the cdf, 53
irreducible, 106
Ising model, 115

joint cdf, 26
joint distribution, 25
joint pdf, 25

Kelly’s criterion, 188
knapsack problem, 159
Kolmogorov–Smirnov test, 219

Levy flight, 209
linear congruential RNG (LCRGN), 34
lognormal distribution, 100, 178

macroscopic observables, 116
marginal distribution, 26

Markov chain, 101
absorbing state, 200
aperiodic, 106
as random walk on graph, 103
detailed balance, 113
fundamental matrix, 202
hitting time, 204
homogeneous, 148
inhomogeneous, 141
invariant distribution, 106
irreducible, 106
neighborhood, 102
reversible , 205
starting distribution, 102
state probability vector, 105
transient states, 203
transition matrix, 105

Markov chain Monte Carlo (MCMC),
107

Markovian, 64
martingale, 181, 183
matching in a graph, 127
median, 99
Metropolis algorithm, 107, 109
microstate, 115
modular arithmetic, 33
modulo congruence, 32
monomer, 126, 180
Monty Hall problem, 24, 46
mutation, 147

neighborhood, 102
niche, 149
normal distribution, 72

objective function, 139
one-point crossover, 148
optimization, 139
option

call option, 175
premium, 175
put option, 174
strike price, 175
volatility, 176

partial path reversal, 143
partition function, 120, 126
permanent, 153
permanent problem, 154
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permutations, 58
Perron–Frobenius theorem, 106, 225
phase change, 124
phase space, 115
Poisson distribution, 62
Poisson process, 62
population (GA), 147
premium, 175
primitive element, 35, 216
probability density function (pdf), 14
proposal

density, 83
matrix, 109
process, 108

pseudorandom numbers, 28
put option, 174

random number seed, 30
random variable, 10

covariance, 24
discrete, 11
expected value, 16
variance, 17

random walk, 165
1D lattice, 166
drift, 168
recurrence, 170

recombination, see genetic algorithm
crossover

recurrence, 170
rejection sampling, 84
relative frequency, 5
reproductive property, 89
risk-neutral evaluation, 177
riskless rate, 177
RNG, 28, 30

Fibonacci, 213
finite field, 215
linear congruential, 34

roulette wheel selection, 55, 148
runs-down, 46
runs-up, 46

sample path, 8
sample variance, 80
Sandia Mountain problem, 158
selection, 147
self-avoiding walk, 180
sheep-counting paradigm, 126
Shekel function, 149
simulated annealing, 140
simulation, 3, 60
spin, 115
standard deviation, 19
starting distribution, 102
state probability vector, 105
strike price, 175
Student-t random variable, 80

t-statistic, 80
transient states, 203
transition matrix, 105
traveling salesman problem (TSP), 143
TSP tour, 143
TSP with time windows, 162

uniform distribution, 15

variance, 17
volatility, 176

Walker’s alias method, 55
Wiener process, 171
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