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Preface

Background

I was an eighteen-year-old freshman when I began studying analysis. I
had arrived at Columbia University ready to major in physics or perhaps
engineering. But my seduction into mathematics began immediately with
Lipman Bers’ calculus course, which stood supreme in a year of exciting
classes. Then after the course was over, Professor Bers called me into his
office and handed me a small blue book called Principles of Mathematical
Analysis by W. Rudin. He told me that if I could read this book over the
summer, understand most of it, and prove it by doing most of the problems,
then I might have a career as a mathematician. So began twenty years of
struggle to master the ideas in “Little Rudin.”

I began because of a challenge to my ego but this shallow reason was
quickly forgotten as I learned about the beauty and the power of analysis
that summer. Anyone who recalls taking a “serious” mathematics course
for the first time will empathize with my feelings about this new world
into which I fell. In school, I restlessly wandered through complex analysis,
analytic number theory, and partial differential equations, before eventually
settling in numerical analysis. But underlying all of this indecision was
an ever-present and ever-growing appreciation of analysis. An appreciation
that still sustains my intellect even in the often cynical world of the modern
academic professional.

But developing this appreciation did not come easy to me, and the pre-
sentation in this book is motivated by my struggles to understand the
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most basic concepts of analysis. To paraphrase J. von Neumann, it is not
that we understand mathematics, rather mathematics just becomes famil-
iar with practice. We often understand a difficult concept by considering
special cases that make the concept concrete. In turn, our understanding of
a concept is shaded by the special cases we consider. After learning about
mathematics in specific contexts, it is easy to become convinced that this
is the natural and best setting in which to teach these ideas.

I think this is especially true of analysis. I view analysis as the art and the
science of estimation. That the practice of analysis is an art is understood
by anyone who tries to explain an “ epsilon-delta” proof of differentiation
to a calculus student. At certain points, the natural response to “Why did
you do that?” is “It’s obvious, don’t you see?” By the science of estimation,
I refer to the need for the mathematical rigor that guarantees that any
estimates obtained are meaningful and that plausible arguments are true.

Neither an art nor a science can be taught effectively in the abstract.
Concepts and techniques that are perfectly well motivated in practical set-
tings simply become a “bag of tricks” in the abstract. Moreover, technical
difficulties often become overwhelming when there are no concrete exam-
ples to motivate the issues or provide a compelling reason to spend time
on the complications. Too often, the mind lacks the firepower to leap past
abstract technical mathematics to imagine how the underlying ideas might
be used.

Consequently, I present the basic ideas of real analysis in the context
of a fundamental problem of applied mathematics, which is approximating
solutions of physical models. This approach is natural to me because of my
research interests in numerical analysis and applied mathematics. I am a
numerical analyst because my first reaction to being faced with a difficult
analytic concept is to compute examples. I believe this “experimental” ap-
proach to understanding mathematics is natural for many people. So as
much as practicable, I present analysis from a constructive point of view.
Many major theorems are proved using constructive arguments that can
be implemented on a computer and verified by computation. The theorems
themselves are motivated in the context of solving models of physical sit-
uations that beg for computational solution. I believe that students who
implement these proofs and solve the practical problems in this book will
develop a “hands-on” understanding of analysis that will serve them well
in the future.

Motivation

I have three overt reasons for writing this book, and one covert reason.
First whenever I teach numerical analysis, I am annoyed by the amount

of time I spend on topics from basic calculus. From the point of view of
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scientists and engineers, modern calculus is very unsatisfactory. Students
spend much of their time practicing skills that are rarely used and are never
taught some fundamental ideas that come up repeatedly. One consequence
is that students studying science and engineering spend a large portion of
their time in upper-level mathematics courses on elementary topics at the
expense of sophisticated material for which they truly need a mathemati-
cian’s help.

Second, teaching a modern calculus course is a frustrating experience
for many analysts. Calculus should be a course in real analysis because
that is what it is. But the current trend in teaching calculus is to avoid
anything to do with analysis and instead concentrate on solving practically
unimportant “exact answer” problems. The conventional wisdom is that
analysis is too hard (or put cynically, students are too dumb to learn real
mathematics). But having met many bright students over the years, I have
found this rationale increasingly questionable. Rather, this trend might
originate in the observation that teaching rigorous mathematics to young
students requires significant effort and ingenuity from the instructor.

Third, teaching introductory real analysis using a modern abstract ap-
proach, even from a beautiful book like Rudin’s, is far from optimal. As
noted, I have serious doubts as to the effectivness of an abstract approach to
teaching analysis. Moreover, this approach has some serious consequences.
First of all, it perpetuates the faulty notion that there is some difference
between “pure” analysis and the “dirty” topics important to numerical
analysis and applied mathematics. This seeds the prejudices of pure and
applied mathematicians that are so unfortunate for mathematics. More-
over, it makes the typical introductory real analysis course unattractive to
the brightest students in science and engineering, who could benefit from
taking such a course.

This book attempts to place the basic ideas of real analysis and nu-
merical analysis together in an applied setting that is both accessible and
motivational to young students of all technical persuasions.

This goal reflects my covert reason for writing this book. Namely, this
book is a personal statement about how I believe people learn mathematics
and how mathematics should therefore be taught.

Usage

This book begins by considering the solution of algebraic models with nu-
meric roots. The discussion leads naturally from the integers through ratio-
nal numbers and induction to the construction of the real numbers. Inter-
woven is a thorough discussion of functions, and the high point of this part
of the book is the theory of the fixed point iteration for solving nonlinear
equations. The next part of the book is concerned with models that involve
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derivatives and whose solutions are functions. Modeling and the analysis of
functions motivates the introduction of the derivative, while the solution of
the simplest differential models motivates the introduction of the integral.
We investigate the properties of these operations thoroughly; and then as a
practical application, we derive and analyze the basic transcendental func-
tions as solutions of some classic differential equations. This part concludes
with a discussion of Newton’s method for solving root problems. With the
basic material about numbers and functions in hand, the book turns to
more detailed analysis of functions, including investigations of continuity,
sequences of functions, and approximation theory. The book concludes by
discussing the solution of nonlinear differential equations by means of the
essentially important Contraction Mapping Principle and Arzela’s theorem
about equicontinuous functions.

While these are classic topics, the material in this book is not arranged
in the usual order found in most real analysis texts. There are two reasons.
One of the few tenets of teaching I have managed to hold after twenty
years is to introduce only one new concept at a time and only introduce a
concept when it is needed. Consequently, material in this book is introduced
in an order motivated by the practical problem of solving models rather
than by the formal style of building the subject from the ground up. Three
important examples are the introduction and use of Lipschitz continuity
well before other notions of continuity, the introduction of differentiation
via the linearization of a function, and the introduction of integration as
an approximation method for solving a differential equation rather than as
a way of computing the area under a curve. Each of these choices yields
distinct pedagogical benefits in terms of motivating ideas and teaching
students how to do analysis.

The order of the material in this book is also dictated by the goal of pre-
senting constructive arguments. For example, assuming Lipschitz continu-
ity makes it much easier to give constructive proofs for several fundamental
results like the Mean Value Theorem. Hence, the most general notion of
continuity and general versions of some fundamental results are not pre-
sented until the final third of the book, where the discussion becomes more
abstract and sophisticated as well as less constructive.

This book is aimed at two kinds of courses. First, there is the honors cal-
culus sequence typically taken by freshman planning on a technical major.
These students often have advanced placement credit in calculus. Second,
there is the introductory course in real analysis offered to mathematics ma-
jors that have completed calculus. This book has been used successfully for
both kinds of courses at Georgia Tech and Colorado State University. Much
of this material has also been successfully tested at Chalmers University of
Technology in Sweden.

To use this book for such courses, it is necessary to be selective on the
material covered. For a freshman honors calculus course, I lecture on ma-
terial in Chapters 1–4, 5–7 (briefly), 8–15, and finally calculus material
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proper in Chapters 16–30 and 35. I conclude by covering selected mate-
rial in Chapters 31 and 36–38. A calculus course that follows this syllabus
certainly omits several topics covered in a standard course, like a detailed
discussion of integration techniques and various standard “applications.” I
have not found that my students suffer from this. For an advanced calcu-
lus/introductory real analysis course, I lecture on material in Chapters 3,
4, 8–15, 16, 18–23, 25–27, 28 and 29 very briefly, 32–35. I then lecture on
a selection of material from Chapters 36–41.

The material is supplemented by exercises that range from simple com-
putations to estimates to computational projects. When I teach this ma-
terial, I assign a mixture of course work, including in-class exams testing
basic understanding, take-home problem sets covering the more difficult
analytic problems, and “laboratory” projects performed using a computer
and requiring a written report.
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Introduction

Analysis. Thinking about this word evokes a surprising range of emotions.
Now, in the prime of my mathematical career, I suppose I feel about analysis
the way a master woodworker feels about her woodworking tools. I take
professional pride in my skill and the things I have created using my tools,
and I have a professional interest in how others use these tools. I am always
on the lookout to hone and improve my skills. But I can also remember
back to when I was a student first learning analysis. I remember days of
angry frustration trying to read a page or two of a paper or a book or
trying to do some problem. There were also a few moments of beautiful
epiphany with feelings like those I get when hiking through endless trees
in my native Appalachians and suddenly coming upon a gap that reveals
the beauty of those old mountains.

But I am getting ahead of myself. What is analysis? Analysis presents
two faces, depending on the user’s orientation. To “applied” mathemati-
cians, analysis means approximation and estimation. The quest of science
and engineering is to describe the physical world, explain how it works, and
then make predictions for future behavior. Most often, our descriptions of
the physical world are mathematical; truly, mathematics is the language of
science and engineering. But even though we must often make gross simpli-
fications to obtain a mathematical description, mathematical descriptions
of physical situations are often too complicated to be understood directly.
Thus enters analysis in the form of estimates on the description, simplifi-
cations of the description, and approximations of the description.

To “pure” mathematicians, working far away from applications to the
physical sciences, analysis is the study of the limiting behavior of infinite
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processes. Many mathematical objects, such as the derivative and the in-
tegral and even numbers themselves, for example, are best defined as the
limit of an infinite process. Dealing with infinity and infinite processes in
a rational and mathematically rigorous way is what distinguishes mod-
ern mathematics, beginning around the time of Newton and Leibniz, from
“classical” mathematics as developed by the ancient Greeks, for example.
The difficulty is understanding what it means to find such a limit, since ob-
viously we can never go to the “end” of an infinite process. Modern analysis
has placed this issue on a firm mathematical foundation.

But these two viewpoints of analysis describe the same activity. Approx-
imation and estimation imply some notion of a limit, that is, the possibility
of obtaining full accuracy as the limit of the approximation process. On the
other hand, the concept of a limit also implies an approximation that can
be made as accurate as desired. Indeed, many analysts are primarily inter-
ested in infinite processes closely associated to mathematical descriptions
of physical phenomena.

Well, enough vague words about analysis. This book not only introduces
analysis but also defines analysis, or at least the fundamental elements of
analysis. That it takes 600 pages to define these elements is not surprising
considering that rigorous mathematical analysis is one of the finest and
most important intellectual achievements of mankind. This text describes
the path created by a number of geniuses who worked in mathematics,
science, and engineering.

This book is organized in three parts, which divide the material by
subject and difficulty. The first part, Numbers and Functions, Sequences
and Limits, discusses the basic properties of numbers and functions and
introduces the fundamental concept of the limit and its use for solving
mathematical models. The second part, Differential and Integral Calculus,
introduces the derivative and the integral as well as modeling with and
the solution of differential equations. The third part, You Want Analy-
sis? We’ve Got Your Analysis Right Here, digs deeper into properties of
functions and the solution of differential equations. The three parts cover
successively more difficult topics. The three parts are also written in suc-
cessively more sophisticated styles. In particular, the material in the first
part is bound tightly to the solution of models, while the material in the
last part is often presented on its own accord in the abstract.

The ideal preparation for reading this book is previous exposure to calcu-
lus, such as an advanced placement course in high school or an introductory
course in college. The minimum requirements are a course in trigonometry
and exposure to analytic geometry.

By the way, I should have included frustration in my description of my
feelings about analysis at present as well as in the past. I still get mighty
bouts of frustration when I try to learn new analysis or solve problems in
my research. The great professional cyclist Greg LeMond said about riding
a bike, “It doesn’t get any easier, you just get faster.” I suppose the same
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is true of mathematics. Now some analysis seems easy in its familiarity and
I struggle with more complicated ideas. But the struggle to understand
analysis is really neverending for me. So if it is any consolation to the
reader, analysis may never become easy, but at least you will struggle with
harder and harder ideas.1

If I had not ended up as a mathematician, I would likely have become
an engineer or a scientist for the simple reason that I am driven by the
same underlying urge as many engineers, mathematicians, and scientists:
namely, the urge to understand . As long as I can remember, I have hated
not knowing why something is true. This desire is the primary motivation
for the approach to analysis I have taken in this book.

The book is not written in the “theorem–proof” style common in rigorous
mathematics textbooks. With a few exceptions, the discussions in this book
are not aimed at merely proving that a fact is true; rather, they attempt to
explain why certain facts are true. Hence, the explanations and discussions
are given the primary focus and, for the most part, theorems are just used to
summarize the discussions. This prejudice toward understanding is reflected
in the problems, which largely demand that you explain why things are true
rather than just doing rote computations.

Setting out to understand analysis is a difficult undertaking and it is
a rare person who will be able to understand everything the first time
out. Indeed, most people can expect to take years to understand some
of the basic ideas of analysis, as the author ruefully knows from his own
experience. Since we cannot delay things for years while waiting for true
enlightenment, it is important not to get “hung up” on some tricky point. If
you do not understand something after spending some time on it, just go on.
Working during the time when the mathematical foundations of calculus
were being questioned seriously (ultimately leading to modern analysis),
d’Alembert2 wrote

Proceed and faith will come unto you.

Discussing wider human conflicts, Winston Churchill put this more pithily,

If you’re going through hell, keep going.

1Funny, that doesn’t sound as encouraging as it is meant to be!
2The French mathematician Jean Le Rond d’Alembert (1717–1783) was a highly

influential scientist and mathematician. His major mathematical results were in differ-
ential equations and mechanics. d‘Alembert first defined the derivative of a function as
the limit of the ratio of small increments and argued that the concept of the limit should
be placed on a firm mathematical foundation.
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1
Mathematical Modeling

The first stop on our journey into analysis is the subject of mathematical
modeling. In this book, we explain analysis in the context of understanding
mathematical models of the physical world. This is not a book on mathe-
matical modeling, however. That is a subject unto itself, requiring not only
a mastery of mathematics, but also of particular scientific and engineering
fields. Indeed, a large part of the curricula in science and engineering is
devoted precisely to creating mathematical models.

Nevertheless, since we intend to analyze mathematical models of the
physical world, it is important to understand how mathematical models
are created, what they are intended to model, and what kind of informa-
tion is expected from models. We start by giving two simple examples of
the use of mathematics for describing practical situations. The first exam-
ple is a problem in economics and the second is a problem in surveying.
Both have been important fields of application for mathematics since the
time of the Babylonians.1 While the models are very simple, they illustrate
fundamental ideas that reoccur repeatedly.

1The term Babylonian describes various groups of peoples that lived in Mesopotamia
in the region around the Tigris and Euphrates rivers roughly in the period of 4000–1000
B.C. Babylonian mathematics included tables of roots of numbers (exact and approxi-
mate), solutions of algebra problems, formulas for long sums, and rudimentary geometry.
The Babylonians relied on mathematics extensively to organize their daily business.
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1.1 The Dinner Soup Model

We are making soup for dinner, and, following a recipe, we ask our room-
mate to go to the grocery store and buy 10 dollars worth of potatoes,
carrots, and beef according to the proportions 3:2:1 by weight. In other
words, so that by weight there is three times as much potatoes as beef and
two times as much carrots as beef. At the grocery store, our roommate
finds that potatoes are 1 dollar per pound, carrots are 2 dollars per pound,
and beef is 8 dollars per pound. Our roommate thus faces the problem of
figuring out how much of each ingredient to buy to use up the 10 dollars.

One way to solve the problem is by trial-and-error. Our roommate could
take quantities of the ingredients to the cash register in the proportions of
3:2:1 and let the clerk check the price, repeating until a total of 10 dollars is
reached. Of course, both our roommate and the clerk could probably think
of better ways to spend the afternoon. Another possibility is to describe
the problem mathematically on a piece of paper, or make a mathematical
model of the problem, and then find the correct amounts by doing some
computations. If they are simple enough, our roommate might be able to
do the computations in his/her head. Otherwise, he/she might use a piece
of paper and a pen or a calculator. In any case, the idea is to use brains
(and pen and paper or calculator) instead of brute physical work.

The mathematical model may be set up as follows: we note that it suffices
to determine the amount of beef, since we’ll buy twice as much carrots
as beef and three times as much potatoes as beef. We give a name to
the quantity to determine; namely, we let x denote the amount of meat
in pounds to buy. The symbol x here represents an unknown quantity, or
unknown, that we are seeking to determine by using available information.

If the amount of meat is x pounds, then the price of the meat to buy is
8x dollars by the simple computation

cost of meat in dollars = xpounds × 8
dollars
pound

.

Since there should be three times as much potatoes as meat by weight,
the amount of potatoes in pounds is 3x and the cost of the potatoes is
3x dollars since the price of potatoes is one dollar per pound. Finally, the
amount of carrots to buy is 2x and the cost is 2 times 2x = 4x dollars,
since the price is 2 dollars per pound. The total cost of meat, potatoes and
carrots is found by summing up the cost of each

8x + 3x + 4x = 15x.

Since we assume that we have 10 dollars to spend, we get the relation

15x = 10, (1.1)

which expresses the equality of total cost and available money. This is an
equation involving the unknown x and data determined by the physical
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situation. From this equation, our roommate can figure out how much of
each ingredient to buy. This is done by dividing both sides of (1.1) by 15,
which gives x = 10/15 = 2/3 ≈ 0.667. So, our roommate should buy 2/3
of a pound of meat, and therefore 2 × 2/3 = 4/3 pounds of carrots, and
finally 3 × 2/3 = 2 pounds of potatoes.

The mathematical model for this situation is (1.1), i.e. 15x = 10, where x
is the amount of meat, 15x is the total cost, and 10 is the available money.
The modeling consisted in expressing the total cost of the ingredients 15x
in terms of the amount of beef x. Note that in this model, we only take
into account what is essential for the current purpose of buying potatoes,
carrots, and meat for the Dinner Soup, and we do not bother to write
down the prices of other items, like ice cream or beer.2 Determining the
useful information is an important, and sometimes difficult, part of the
mathematical modeling.

Assigning symbols to relevant quantities, known or unknown, is an im-
portant step in setting up a mathematical model. The idea of assigning
symbols to unknown quantities was introduced by the Babylonians, who
used models like the Dinner Soup model to help organize the feeding of the
many people working on their irrigation systems.

A nice feature of mathematical models is that they can be reused to
describe different situations. For example if we have 15 dollars to spend,
then the model is 15x = 15 with solution x = 1. If we have 25 dollars
to spend, then the model is 15x = 25 with solution x = 25/15 = 5/3. In
general, if the amount of money y is given, then the model is 15x = y. In
this model we use the two symbols x and y, and assume that the amount
of money y is given and the amount of beef x is an unknown quantity to
be determined from the equation (15x = y) of the model. The roles can
be reversed and we can think of the amount of beef x as being given and
the expenditure y to be determined (according to the formula y = 15x). In
the first case we would think of the amount of beef x as a function of the
expenditure y, and in the second the expenditure y as a function of x.

Before figuring out the mathematical model for the amount of beef to
buy, we suggested that our roommate could find the amount using a trial-
and-error strategy. We can also carry out such a strategy mathematically.
First, we guess x = 1, which gives a total cost of ingredients of 15 dollars.
Since this is too much, we try a smaller amount of meat, say, x = .5, to
get a total cost of 7.5 dollars. This is too little, so we increase a little, say,
x = .75. This gives a total cost of 11.25 dollars. So we try again with a guess
between .5 and .75, say, .625. Now we get 9.38 for the total cost (rounding
up). Note that we are definitely making progress toward the target cost
of 10 dollars with this procedure. We choose an amount between .625 and
.75, say, .6875, to get a total cost of ≈ 10.31. Continuing to guess in this

2No matter how desirable. Intellectual discipline is paramount, after all.
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fashion, we find that the guesses tend closer and closer to the correct value
x = 2/3 = 0.66666 · · · that we determined by division.

1.2 The Muddy Yard Model

The author owns a house with a 100 × 100 m backyard that has the un-
fortunate tendency to form a muddy lake every time it rains. We show a
perspective of the field on the left in Fig. 1.1. Because of the grading in the

x

1

1

drain pipe

FIGURE 1.1. Perspective of a field with poor drainage and a model describing
the dimensions.

yard, he believes the flooding can by stopped by digging a shallow ditch
down the diagonal of the yard, laying some perforated plastic drain pipe,
then covering the pipe back up. He is faced with the problem of determin-
ing the amount of pipe that he needs to purchase. Since a survey of the
property only provides the outside dimensions and the locations of corners,
and physically measuring the diagonal is not easy to do, he has decided to
try to compute the distance using mathematics.

It is quite difficult to describe a yard exactly, so we create a simple model
by assuming that the yard is perfectly square and level. In this model, we
change to units of 100 m, so the field is 1 × 1. We plot the model on the
right in Fig. 1.1. If we denote the length of the diagonal of the model field
by x, then Pythagoras’ theorem says that x2 = 12 + 12 = 2. Therefore, to
find the length x of the drain pipe, we have to solve the equation

x2 = 2. (1.2)

We call this equation the Muddy Yard model. In general, if we are talking
about a field with sides of length y, the model is y = x2.

Solving (1.2) may seem to be deceptively simple at first; the positive
solution is just x =

√
2, after all. But this leaves the pertinent question,

“What is
√

2?” Walking into a store and asking for
√

2 units of pipe is
not going to get a positive response. Chances are that precut pipes do not
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come in lengths calibrated by
√

2 and a clerk is going to need more concrete
information than the symbol “

√
2” to measure out a piece of pipe.

We can try to pin down the value of
√

2 by using a trial-and-error strategy
as we did for the Dinner Soup model. We can check easily that 12 = 1 < 2
while 22 = 4 > 2. So

√
2, whatever it is, is between 1 and 2. Next we

can check 1.12 = 1.21, 1.22 = 1.44, 1.32 = 1.69, 1.42 = 1.96, 1.52 = 2.25,
1.62 = 2.56, 1.72 = 2.89, 1.82 = 3.24, 1.92 = 3.61. Apparently

√
2 is

between 1.4 and 1.5. Next we can try to fix the third decimal. Now we find
that 1.412 = 1.9881, while 1.422 = 2.0164. So apparently

√
2 is between

1.41 and 1.42 and likely closer to 1.41. Proceeding in this way, we can
apparently determine as many decimal places of

√
2 as we like.

It turns out that we are going to meet many models that have to be
solved by using some variation of a trial-and-error strategy. In fact, most
mathematical equations cannot be solved exactly by some algebraic manip-
ulations as we can do in the case of the Dinner Soup model (1.1). Conse-
quently, the trial-and-error approach to solving mathematical equations is
fundamentally important in mathematics. We shall see that trying to solve
equations such as x2 = 2 carries us directly into the very heart of analysis.

1.3 Mathematical Modeling

Based on these examples, we can describe mathematical modeling as a
process with three components:

1. formulating the model in mathematical terms

2. understanding the model mathematically

3. solving for the solution of the model

We began this chapter by describing the physical situations in the Din-
ner Soup model and Muddy Yard model in terms of mathematical equa-
tions, which is the first component of mathematical modeling. Note that
this aspect is not just mathematical in nature. Formulating equations that
describe a physical situation certainly involves mathematics, but it also
requires knowledge of physics, engineering, economics, history, psychology,
and any other subjects that are relevant to describing the physical setting.

As a second step, we have to determine if the model makes “mathematical
sense.” “Does it have a solution and is the solution unique?” are important
questions, for example. “What are the properties of a solution and do they
make sense in terms of the physical situation being modeled?” is another
important question. To understand a model mathematically, we have to
understand the mathematical components making up the model and the
properties of the solution.
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The equations we obtained in the Dinner Soup model and the Muddy
Yard model, namely, 15x = y and x2 = y, are examples of algebraic
equations in which the data y and the unknown x are both numbers.
The models themselves are functions. So we begin our study of analysis by
considering the properties of numbers and functions.

As we consider more complicated situations, we encounter models in
which the data and the unknown quantities are functions. For example if
we want to describe the motion of a satellite, then the description is a
function giving the position and perhaps velocity versus time. Such models
typically contain derivatives and integrals and are referred to as differential
equations or integral equations. Calculus is nothing more (or less) than the
science of formulating and solving differential and integral equations.

The last component of modeling is solving the equations in the model
in order to determine some new information about the situation being
modeled. In the case of the Dinner Soup model, we can solve the model
equation explicitly, writing down a formula for the number that satisfies
the equation. But, we cannot write down the solution of the Muddy Yard
model explicitly and we resort to an iterative “trial-and-error” strategy to
compute some digits of the decimal expansion of the solution. So it goes in
general; once in a while, we can write down a solution of a model equation
explicitly, but most often we can only approximate a solution by means of
some iterative computational process.

In this book, we mainly take a constructive approach to the prob-
lem of analyzing and solving equations in which we seek algorithms, or
mathematical procedures, through which solutions may be determined or
computed as accurately as desired by increasing amounts of work. In this
approach, we try to combine components 2 and 3 above.
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Chapter 1 Problems

1.1. Suppose that the grocery store sells potatoes for 40 cents per pound, carrots
for 80 cents per pound, and beef for 40 cents per ounce. Determine the model
relation for the total price.

1.2. Suppose that you change the soup recipe to have equal amounts of carrots
and potatoes, while the weight of these combined should be six times the weight
of beef. Determine the model relation for the total price.

1.3. Suppose you go all out and add onions to the soup recipe in the proportion of
2:1 to the amount of beef, while keeping the proportions of the other ingredients
the same. The price of onions in the store is 1 dollar per pound. Determine the
model relation for the total price.

1.4. While flying directly over the airport in a holding pattern at an altitude of
1 mile, you see your high-rise condominium from the window. Knowing that the
airport is 4 miles from your condominium and pretending that the condominium
has height 0, how far are you from home and a cold beer?

1.5. Devise a model giving the length of drain pipe placed between opposing
corners of a field that is 100 × 200 m in size and find an approximate solution
using a trial-and-error strategy.

1.6. Devise a model of the draining of a yard that has three sides of approximately
the same length 2 assuming that we drain the yard by laying a pipe from one
corner to the midpoint of the opposite side. What quantity of pipe do we need?

1.7. A father and his child are playing with a teeter-totter which has a seat board
12 feet long. If the father weighs 170 pounds and the child weighs 45 pounds,
construct a model for the location of the pivot point on the board in order for
the teeter-totter to be in perfect balance? Hint: Recall the principle of the lever
which says that the products of the distances from the fulcrum to the masses on
each end of a lever must be equal for the lever to be in equilibrium.

1.8. A rectangular plot of land is to be fenced off from a large field that lies
along a straight river so that the river forms one side of plot. If fencing is 35
dollars/meter and the rectangular plot is to consist of 100 m2, find a formula for
the cost of the fence in terms of the length of one side of the plot. Note: There
are two possible forms for the answer.
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2
Natural Numbers Just Aren’t Enough

Numbers are a key component of mathematical modeling and therefore we
need to develop a deep understanding of the construction and properties
of numbers. In this chapter, we begin by considering the natural numbers.
These are the numbers 1, 2, 3, · · · , which we first learn about as children
and encounter most frequently in our daily life. While their properties are
familiar to us, it is still worthwhile recalling their properties and how these
fit our intuition about counting.

We also recall that the natural numbers alone do not suffice for our
daily arithmetic needs. Even simple models involving only natural numbers
quickly lead to the integers and then the rational numbers. These numbers
extend the natural numbers in the sense that they include the natural
numbers as well as numbers that are not natural. We explain how the
properties of such extensions are “inherited” from the natural numbers.
This is an important idea that we use later on in calculus with great effect.

2.1 The Natural Numbers

The natural numbers are familiar from our experience with counting,
where we start with 1 and repeatedly add 1 to get the rest; 2 = 1 + 1,
3 = 2+1 = 1+1+1, 4 = 3+1 = 1+1+1+1, 5 = 4+1 = 1+1+1+1+1, and
so on. Counting is a pervasive activity in human society: we count minutes
waiting for the bus to come and the years of our life; the clerk counts change
in the store, the teacher counts exam points, Robinson Crusoe counted the
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days by making cuts on a log. In each of these cases, the unit 1 represents
something different; minutes and years, cents, exam points, days; but the
operation of addition is the same for all the cases.

Encompassed in this counting experience are the basic rules learned in
school about natural numbers. For example, if n and m are natural num-
bers, then n + m is a natural number and both the commutative rule
for addition,

m + n = n + m,

and the associative rule for addition,

m + (n + p) = (m + n) + p,

where m, n, and p are natural numbers, are familiar. The commutative rule
2 + 3 = 3 + 2 comes from the realization that

(1 + 1) + (1 + 1 + 1) = 1 + 1 + 1 + 1 + 1 = (1 + 1 + 1) + (1 + 1).

This can be explained in words by observing that if we have 5 donuts in a
box, then we can consume them by first eating 2 donuts and then 3 donuts
or, equally well, by first eating 3 donuts and then 2 donuts.

In a similar way, we define multiplication of two natural numbers m
and n denoted by m×n = mn as the result of adding n to itself m times to
get the natural number mn. The commutative rule for multiplication,

m × n = n × m,

expresses the fact that adding n to itself m times is equal to adding m to
itself n times. This can be pictured by making a square array of dots with
m rows and n columns and counting the total number of dots m × n in
two ways: first by summing the m dots in each column and then summing
over the n columns and second by summing the n dots in each row and
then summing over the m rows (see Fig. 2.1). Other familiar facts are the
associative rule for multiplication,

m × (n × p) = (m × n) × p,

as well as the distributive rule combining addition and multiplication,

m × (n + p) = m × n + m × p,

that hold for any natural numbers m, n, and p. These rules can be verified
by similar manipulation of arrays of dots. Since addition and multiplication
of natural numbers always produces another natural number, we say the
natural numbers are closed under the operations of addition and multipli-
cation.
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m

n

FIGURE 2.1. Illustration of the commutative rule for multiplication
m×n = n×m. The same sum is obtained if the dots are counted across the rows
or down the columns.

We define powers of natural numbers through repeated multiplication.
If n and p are natural numbers, then

np = n × n × · · · × n
p multiplications

.

We use the notation of the three dots “· · · ” to indicate “continue in the
same way.” The well-known properties, such as

(
np
)q = npq

np × nq = np+q

np × mp = (nm)p,

and so on, follow from this definition. By the way, it is useful to remember
the formulas

(n + m)2 = n2 + 2nm + m2

(n + m)3 = n3 + 3n2m + 3nm2 + m3.
(2.1)

We also have a clear idea of ranking natural numbers according to size,
or ordering the numbers. We consider m to be larger than n, m > n, if
m can be obtained by adding 1 repeatedly to n. The inequality relation
satisfies its own set of rules, including

m < n and n < p implies m < p

m < n implies m + p < n + p

m < n implies p × m < p × n

m < n and p < q implies m + p < n + q,

which hold for natural numbers n, m, p, and q. But it is equally important
to note that some rules do not hold, such as m < n and p < q does not say
anything about the relative sizes of m + q and n + p. (Why not?)
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One way of representing the natural numbers visually is to use a hori-
zontal line extending to the right with the marks 1, 2, 3, spaced at a unit
distance consecutively (see Fig. 2.2). This is called the natural number
line. The line serves like a ruler to keep the points lined up. All of the

1 2 3 4 5

FIGURE 2.2. The natural number line.

arithmetic operations can be interpreted using the number line. For exam-
ple, adding 1 to a natural number n means shifting from the position of n
one unit to the right to n + 1 and likewise adding p means shifting p units
to the right.

Representing natural numbers as sums of ones like 1+1+1+1+1, cuts on
a log, or beads on a thread quickly becomes impractical, and the positional
number system using base 10 is a great improvement. In this system, we use
the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 together with position to represent
any natural number efficiently. For example,

4711 = 4 × 10 × 10 × 10 + 7 × 10 × 10 + 1 × 10 + 1

The choice of the base 10 is of course connected to counting using our
fingers.

2.2 Infinity or Is There a Largest Natural Number?

The insight that if n is a natural number, then n + 1 is a natural number
is an important observation. One consequence is that there cannot be a
largest natural number. For given any natural number, we can always find
a larger natural number by adding 1 to it.

The principle that there cannot be a largest natural number is expressed
by the word infinity, denoted by ∞. We say that there are infinitely many
natural numbers, or that the set of natural numbers is infinite, as a way
of saying that in principle it is possible to add 1 to any natural number
and thereby obtain a larger natural number. Don’t spend too much time
philosophizing about the meaning of infinity; it just means that we never
stop counting. Infinitely many steps means there is always the potential to
take yet another step independent of the number of steps already taken.
To have infinitely many donuts means that we can always take yet another
donut independent of how many we have already eaten. This potential
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seems more realistic (and pleasant) than actually eating infinitely many
donuts.1

2.3 A Controversy About the Set of Natural
Numbers

We can easily understand the set {1, 2, 3, 4, 5} of the first 5 natural num-
bers. We can simply write down the numbers 1, 2, 3, 4, and 5 on a piece
of paper and then view the numbers as one entity like a telephone num-
ber. Likewise, we can grasp the set {1, 2, ..., 100} of the first 100 natural
numbers. We can also grasp very large individual numbers. For example,
we can understand the numbers $1000 and $10,000 because we buy things
that cost that much during our life. We can even comprehend $10,000,000
by imagining what the rest of our life would be like with that much money.
But despite this understanding, defining the set of natural numbers is not
completely straightforward.

The usual definition of the set of natural numbers, which is denoted by N,
is the set of all natural numbers. This is a universal concept and turns out
to be a useful notion. But there is a catch. Any attempt to write down this
set on a piece of paper is rudely interrupted by reality. We simply cannot
write down all the members of a set with an infinite number of members.

For this reason, a small group of mathematicians called constructivists
and the closely related intuitionists2 object to definitions involving infinite
sets. The constructivists believe that any valid mathematical argument
can be reduced to a finite number of operations on numbers with a finite
number of digits. This belief has far-reaching consequences that are not at
all obvious. A constructivist certainly could not accept the first definition
of N, but might accept the definition of N as the set of possible natural
numbers that can potentially be computed by adding 1 over and over.
In this view, N is always under construction and can never actually be
completed. The difference between the two definitions of N is subtle, but

1Of course, this discussion is related to some kind of unlimited thought experiment.
In the real world there are limits on how long we can add numbers. Eventually, Robinson
Crusoe’s log will be filled with cuts. Likewise, a natural number with say 1050 digits is
impossible to store in a computer since this is about the total number of atoms estimated
to be in the Universe. Therefore while in principle there is no largest natural number,
in reality there are practical limits on the size of natural numbers we can use. It is
important to distinguish what is true in principle and what is true in practice as we
study mathematics.

2We refer to both groups as constructivists.
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leads to major differences in the ways one goes about proving facts about
N.3

The idea of treating infinity and infinite sets as definite quantities orig-
inated with the work of Cantor.4 Cantor’s work on sets has had a great
influence on the view of infinity in mathematics, and a majority of mathe-
maticians today believe that the set of all natural numbers is a well-defined
entity denoted by N. But Cantor’s ideas were controversial at the time, with
much of the initial opposition being led by Kronecker,5 who was the first
constructivist. Other constructivists and intuitionists include such impor-
tant mathematicians as Poincaré,6 Brouwer,7 and Weyl.8

One important consequence of the constructivist point of view is that
a statement about a mathematical object is considered to be meaningful
only if it contains an algorithm for computing the object. The expression “a
constructive proof” is used to distinguish proofs that reach their conclusions
through a constructive algorithm. It is natural to favor such proofs in the
context of studying mathematical models because of the ultimate goal of
solving the models. Hence for the most part, we provide constructive proofs
in this book. On the other hand, there is no denying that the road of strict
constructivism is rocky and steep. Thus, we resort to non-constructivist

3The discussion of the controversies associated with the foundations of analysis in
this book is cursory at best. Please see Kline [16] and Davis and Hersh [8] for more
detailed and coherent presentations.

4Georg Ferdinand Ludwig Philipp Cantor (1845–1915) worked in Germany on number
theory and analysis before developing an original theory for infinite sets and infinite
numbers. Cantor constructed a description of the real numbers that is closely related to
the approach adopted in this book. The controversy surrounding his ideas about sets had
a negative impact on his career and contributed to the terrible depression that affected
him during his last few years.

5Leopold Kronecker (1823–1891) worked in Germany on algebra and number theory.
A well known quote of Kronecker’s is “God made the positive integers, everything else is
the handiwork of man.” Kronecker was so opposed to Cantor’s ideas that he attempted
to prevent an early paper of Cantor’s from being published and later argued publicly
against his ideas.

6The French mathematician Jules Henri Poincaré (1857–1912) created or transformed
several areas of mathematics and mathematical physics and derived a theory of special
relativity independently of Einstein. He also wrote some very popular books about sci-
ence.

7The Dutch mathematician Luitzen Egbertus Jan Brouwer (1881–1967) made funda-
mental contributions to topology, which include some early fixed point theorems, before
turning to the foundations of mathematics and founding the intuitionists. Interestingly,
his most important results rely on the kind of non-constructive arguments that he even-
tually rejected.

8Hermann Klaus Hugo Weyl (1885–1955) worked in Germany before coming to the
United States when the Nazis came to power. He made important contributions in anal-
ysis, group theory, mathematical physics, number theory, and topology. An interesting
self-evaluation by Weyl was “My work always tried to unite the truth with the beautiful,
but when I had to choose one or the other, I usually chose the beautiful.”
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ideas when it is convenient or the alternative is too technical.9 It is probably
fair to say that many mathematicians adopt the same attitude.

2.4 Subtraction and the Integers

Along with our experience of addition, we have an intuitive understanding
of the inverse operation of subtraction. For example, if we have 12 donuts
at home in Atlanta, cycle out to Paulding County and back, and then eat
7 donuts, we know there are 5 left. We originally got the 12 donuts by
adding individual donuts into a box and we may take away donuts, or
subtract them, by taking them back out of the box. Mathematically, we
write this as 12 − 7 = 5.

The need for subtraction also arises if we formulate models using addition
and natural numbers. Suppose we wish to determine the number of donuts
that add to seven to get twelve, i.e. we want to solve 7+x = 12. The answer
is given by subtraction, x = 12 − 7 = 5.

But this leads immediately to a complication because we can formulate
an equation using natural numbers and addition that does not have a nat-
ural number as a solution. For example, suppose we have the equation

x + 12 = 7.

This kind of equation arises if we want to eat 12 donuts but only have
7 available. The solution, which we know is x = 7 − 12, can not be a
natural number. For if we add any natural number to 12, the resulting
natural number is certainly larger than 7. Of course, similar situations
arise frequently.

Example 2.1. Suppose that we want to buy a titanium bike frame
for $2500, while we only have $1500 in the bank. We immediately un-
derstand this means that we have to borrow $1000 to buy the frame.
This $1000 is a debt and does not represent a positive amount in our
savings account. It is not a natural number.

-2 -1 0 1 2-3 3

FIGURE 2.3. The integer number line.

Another way to describe this difficulty is to say that the natural numbers
are not closed under subtraction, To handle such situations, we extend the

9If this is an intellectual contradiction, we can only be thankful for the tremendous
capacity of the human mind to accept concrete statements about objects that are vaguely
defined, like the world, soul, love, jazz music, ego, happiness, and N.
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natural numbers {1, 2, 3, · · · } by adjoining the negative numbers −1, −2,
−3, · · · together with 0. The result is the set of integers

Z = {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · } = {0,±1,±2,±3, · · · }.

We say that 1, 2, 3, · · · , are the positive integers, while −1, −2. −3, · · · ,
are the negative integers. Graphically, we think of extending the natural
number line to the left and then marking the point that is one unit distance
to the left of 1 by 0, the point two units to the left of 1 by −1, and so on.
The resulting line is called the integer number line (see Fig. 2.3). We
call the 0 point the origin of the number line. The origin is often treated
as the “center” of the number line.

Whenever we extend a set of numbers, we need to extend the definitions
of the arithmetic operations so they are defined on the new expanded set
of numbers as well. We know how to add two natural numbers, but how do
we add integers? One consideration for finding the right definitions of the
operations is that the “new” arithmetic operations on the integers should
agree with the “old” operations when the integers happen to be natural
numbers.

An easy way to visualize the extension of the operations is to use the
number line. We define the sum of two integers m and n as follows. If n and
m are both natural numbers, or positive integers, then n + m is obtained
the usual way: starting at 0, we move n units to the right followed by m
more units to the right. If n is positive and m is negative, then we get
n + m by starting at 0, moving n units to the right, then m units back to
the left. Likewise if n is negative and m is positive, then we obtain n + m
by starting at 0, moving n units to the left and then m units to the right.
Finally if both n and m are negative, then we obtain n + m by starting
at 0, moving n units to the left and then m more units to the left. Since
the number 0 is neither positive nor negative, when we add 0 we should
move neither right nor left. In other words, n + 0 = n for all integers n. It
is straightforward to verify that this definition of addition for the integers
has all the same properties as addition on the natural numbers.

We can now define the inverse operation of subtraction. First, for an
integer n, we define −n to be the integer with the opposite sign. It is clear
that these definitions mean that n+(−n) = (−n)+n = 0 for any integer n.
Finally, we define subtraction of two integers as n−m = n+(−m), and −n+
m = (−n)+m. Working with this definition, we can now verify that all the
properties that we expect from addition, subtraction, and multiplication
hold true. By the way, recall that even though subtraction is related to
addition, it does not have the same properties. For example, while addition
is commutative, subtraction is not in general: n−m �= m−n unless n = m.

We recall that inequalities and the inverse operations can be a little
tricky. For example, multiplying by a negative number reverses an inequal-
ity, so that m < n implies −m > −n.
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2.5 Division and the Rational Numbers

We now investigate the inverse operation to multiplication, which is di-
vision. Actually, we already used division to solve the equation for the
Dinner Soup model 15x = 10 to get x = 10/15 = 2/3. Even though 15
and 10 are integers, the answer is not another integer. This motivates the
extension of the integers to the rational numbers, which is the set Q of
solutions of all equations of the form nx = m, where m and n are integers
with n �= 0. To make this definition useful, we have to figure out how to
compute such solutions of course.

We begin by defining division with remainder of a natural number
n by another natural number m �= 0 as the process of computing natural
numbers p and r such that n = pm + r with r < m. This computation can
be done mechanically by repeated subtraction.

Example 2.2. Suppose that n = 64 and m = 15. Then

64 = 15 + 49
64 = 15 + 15 + 34 = 2 × 15 + 34

64 = 3 × 15 + 19
64 = 4 × 15 + 4.

A more efficient method, or algorithm, for doing division is the long
division algorithm in which we systematically divide the denominator into
groups of digits of the numerator, working from left to right. We illustrate
first by dividing 64 by 15 on the left in Fig. 2.4. Since 15 does not go into
6, we begin the division by considering the first two digits of 64. Since
15 × 4 = 60, so we put 4 in line with the 4 in 64 and put the result 60
underneath 64. Subtracting, we get the remaining part of the numerator.
In this case, the remaining part is 4 and no further divisions can be carried
out. On the right we divide 2418610 by 127. When the remainder of n

15 64

4

60

4

127 2418610
127

1148
1143

561
508

530
508

22

19044

1×127

9×127

4×127

4×127

4×15

FIGURE 2.4. Two examples of long division.

divided by m is zero, then we obtain a factorization n = pm of n as a



24 2. Natural Numbers Just Aren’t Enough

product of the factors p and m. In this case, we define n/m = p and say
that p is the quotient of n and m. Likewise n/p = m and m is the quotient
of n and p. But, when the remainder of n divided by m is not zero, we have
to extend the integers to the rational numbers, which are numbers of
the form n/m for integers n and m �= 0, in order to define division of all
integers. We discuss the properties of rational numbers in Chapter 4.

2.6 Distance and the Absolute Value

Sometimes it is convenient to talk about the distance between two numbers.
For example, suppose we have to buy a piece of molding for a doorway and
when using a tape measure we position one side of the door frame at 2
inches and the opposite side at 32 inches. We would not go to the store and
ask the person for a piece of molding that begins at 2 inches and ends at
32 inches. Instead, we would tell the clerk that we need 32− 2 = 30 inches.
In this case, 30 is the distance between 32 and 2. We define the distance
between two integers p and q as |p − q| where the absolute value | | is
defined by

|p| =

{
p, p ≥ 0,

−p, p < 0.

For example, |3| = 3 and | − 3| = 3. By using the absolute value, we insure
that the distance between p and q is the same as the distance between q
and p. For example, |5 − 2| = |2 − 5|.

In this book, we frequently deal with inequalities combined with the
absolute value. We give an example close to every student’s heart

Example 2.3. Suppose the scores on an exam that are within 5 of 78
out of 100 get a grade of B and we want to write down the list of scores
that get a B. This includes all scores x that are a distance of at most
5 from 79, which can be written

|x − 79| ≤ 5. (2.2)

There are two possible cases: x < 79 and x ≥ 79. If x ≥ 79, then
|x − 79| = x − 79 and (2.2) becomes x − 79 ≤ 5 or x ≤ 84. If x < 79,
then |x − 79| = −(x − 79) and (2.2) means that −(x − 79) ≤ 5 or
(x−79) ≥ −5 or x ≥ 74. Combining these results, we have 79 ≤ x ≤ 84
as one possibility or 74 ≤ x < 79 as another possibility, or in other
words, 74 ≤ x ≤ 84.

In general if |x| < b, then we have the two possibilities −b < x < 0 or
0 ≤ x < b, which means that −b < x < b. We can actually solve both cases
at one time.

Example 2.4. |x − 79| ≤ 5 means that
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−5 ≤ x − 79 ≤ 5
74 ≤ x ≤ 84 .

To solve |4 − x| ≤ 18, we write

−18 ≤ 4 − x ≤ 18
18 ≥ x − 4 ≥ −18 (Note the changes!)
22 ≥ x ≥ −14.

The other direction of inequality is handled differently.

Example 2.5. Suppose we want to solve

|x − 79| ≥ 5. (2.3)

Now if x ≥ 79, then (2.3) becomes x − 79 ≥ 5 or x ≥ 84. If x ≤ 79,
then (2.3) becomes −(x − 79) ≥ 5 or (x − 79) ≤ −5 or x ≤ −74. So the
answer is all x with x ≥ 84 or x ≤ −74. We can write this

−(x − 79) ≥ 5 or x − 79 ≥ 5
(x − 79) ≤ −5 or x − 79 ≥ 5

x ≤ −74 or x ≥ 84 .

Lastly, we mention an important property of | | called the triangle
inequality,

|a + b| ≤ |a| + |b| (2.4)

that holds for all rational numbers a and b. We ask you to prove this in
Problem 2.12.

2.7 Computer Representation of Integers

Since we use the computer throughout this course, we point out some
properties of computer arithmetic from time to time. In particular, we
distinguish arithmetic carried out on a computer from the “theoretical”
arithmetic described so far.

The fundamental issue that arises when using a computer stems from the
physical limitation on memory. A computer must store numbers on a physi-
cal device which cannot be “infinite.” Hence, a computer can only represent
a finite number of numbers. Every computer language has a finite limit on
the numbers it can represent. It is quite common for a language to have
INTEGER and LONG INTEGER types of variables, where an INTEGER
variable is an integer in the range of {−32768,−32767, ..., 32767}, which
are the numbers that take two bytes of storage, and a long integer variable
is an integer in the range {−2147483648 , −2147483647, ..., 2147483647},
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which are the integers requiring four bytes of storage. This can have some
serious consequences, as anyone who programs a loop using an integer in-
dex that goes above the permitted largest value discovers. In particular, we
cannot check whether some fact is true for all integers using a computer to
test each case.
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Chapter 2 Problems

2.1. Identify five ways in your life in which you count and the unit “1” for each
case.

2.2. Use the natural number line representation to to interpret and verify the
equalities (a) x + y = y + x and (b) x + (y + z) = (x + y) + z that hold for any
natural numbers x, y, and z.

2.3. Use an array of dots to interpret and verify the distributive rule for multi-
plication m × (n + p) = m × n + m × p.

2.4. Use the definition of np for natural numbers n and p to verify that (a)(
np
)q = npq and (b) np × nq = np+q for natural numbers n, p, q.

2.5. Verify that (2.1) is true.

2.6. Use the integer number line to illustrate the four possible cases in the
definition of n + m for integers n and m.

2.7. Divide (a) 102 by 18, (b) −4301 by 63, and (c) 650, 912 by 309 using long
division.

2.8. (a) Find all the natural numbers that divide into 40 with zero remainder.
(b) Do the same for 80.

Problem 2.9 is an abstract version of long division. We discuss this kind
of division in detail later in Chapter 7.

2.9. Use long division to show that

a3 + 3a2b + 3ab2 + b3

a + b
= a2 + 2ab + b2.

2.10. Pick out the invalid rules from the following list

a < b implies a − c < b − c

(a + b)2 = a2 + b2

(
c(a + b)

)2 = c2(a + b)2

ab < bc implies b < c

a − b < c implies a < c + b

a + bc = (a + b)c.

In each case, find numbers that show the rule is invalid.

2.11. Solve the following inequalities:

(a) |2x − 18| ≤ 22 (b) |14 − x| < 6

(c) |x − 6| > 19 (d) |2 − x| ≥ 1.
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2.12. Prove (2.4). Hint: Consider different cases of signs of a and b.

2.13. Write a little program in the computer language of your choice that finds
the largest integer that the language can represent. Hint: Usually one of two
things happen if you try to use set an integer variable to a value that is too large:
either you get an error message or the computer gives the variable a negative
value.



3
Infinity and Mathematical Induction

We claimed that the set of all natural numbers N is a useful concept. One
reason is that it makes it easier to talk about properties of all natural
numbers. But this raises the issue of how we should go about proving
a property for all natural numbers. If we are asked to prove a property
of a few numbers, we could just check the property for each number. In
principle, this can be done for any finite set of numbers, though very large
sets might cause difficulties. But we can not explicitly check a property for
each number in an infinite set of numbers, like N. Mathematical induction
is a tool for proving properties of infinite sets of numbers.

3.1 The Need for Induction

We motivate the need for induction using a story about the mathematician
Gauss1 when he was 10. His old-fashioned arithmetic teacher liked to show

1Carl Friedrich Gauss (1777-1885), sometimes called the Prince of Mathematics, was
one of the greatest mathematicians of all times. In addition to an incredible ability to
compute (especially important in the 1800s) and an unsurpassed talent for mathematical
proof, Gauss had an inventive imagination and a restless interest in nature. He made
important discoveries in a staggering range of pure and applied mathematics, as well
as important discoveries in science. As part of his investigative method, Gauss relied
heavily on “experimental” computation. Unfortunately, Gauss wrote about his work
sparingly and several mathematicians that followed him labored to discover theorems
that he already knew. Gauss’ interest in non-Euclidean geometry gives a good picture of
how his mind worked. When Gauss was sixteen, he began seriously to question Euclidean
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off to his students by asking them to add a large number of sequential
numbers by hand, which the teacher knew from a book could be done
quickly using the formula

1 + 2 + 3 + · · · + (n − 1) + n =
n(n + 1)

2
. (3.1)

Note that the “· · · ” indicates that we add all the natural numbers between
1 and n. This formula makes it possible to replace the n−1 additions on the
left by a multiplication and a division, which is a considerable reduction in
work when using a piece of chalk and a slate to do the sums.

By the way, long sums of numbers arise in integration and in models such
as computing compound interest on a savings account or adding up pop-
ulations of animals. Addition formulas like (3.1) are therefore practically
useful, which is why we are interested in them.

The teacher posed the sum 1 + 2 + · · · + 99 to the class, and almost
immediately Gauss came up and laid his slate down on the desk with the
correct answer, 4950, while the rest of the class still struggled. How did
young Gauss manage to compute the sum so quickly? He did not know the
formula (3.1), he just derived it using the following clever argument. To
sum 1 + 2 + · · · + 99, we group the numbers two by two as follows:

1 + · · · + 99
= (1 + 99) + (2 + 98) + (3 + 97) + · · · (49 + 51) + 50
= 49 × 100 + 50 = 49 × 2 × 50 + 50 = 99 × 50.

This agrees with the formula (3.1) with n = 99. In Problem 3.9, we ask
you to show that this argument can be used to show that (3.1) holds for
any natural number n.

Gauss had a special ability to see patterns in numbers that allowed him
to discover formulas like (3.1) easily. Most of us do not have that talent.
Someone might claim that a formula like (3.1) is true and if we want to use
the formula for something important, for example, if our grade depended
on adding n numbers, then we would be motivated to try to check if the
formula is true.

geometry. At the time that Gauss lived, Euclidean geometry had obtained a holy status
and was held to be a higher truth that could never be questioned. Yet, Gauss was
bothered by the fact that Euclidean geometry rested on postulates that apparently
could not be proved, e.g., two parallel lines cannot meet. He went on to develop a theory
of non-Euclidean geometry in which parallel lines can meet and this theory seemed
to be as good as Euclidean geometry for describing the world. Gauss did not publish
his theory, fearing too much controversy, but he decided that it should be tested. In
Euclidean geometry, the sum of the angles in a triangle add up to 180◦ while in the
non-Euclidean geometry this is not true. So centuries before the age of modern physics,
Gauss conducted an experiment to see if the universe is “curved” by measuring the
angles in the triangle made up by three mountain peaks. Unfortunately, the accuracy of
his instruments was not sufficient to settle the question.
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3.2 The Principle of Mathematical Induction

So the problem is to show that the formula (3.1) is true for any natural
number n. It is easy enough to verify that it is true for n = 1: 1 = 1 × 2/2;
for n = 2: 1 + 2 = 3 = 2 × 3/2; and for n = 3: 1 + 2 + 3 = 6 = 3 × 4/2.
Checking the validity in this way for any natural number, one at a time,
up to, say, n = 1000, would be very tiring but possible. Of course we can
use a computer to go further, but even a computer gets stuck when n is
very large. We also know in the back of our minds that no matter how
many natural numbers n we check, there are always natural numbers that
we have not checked.

Instead, we use a technique called the Principle of Mathematical Induc-
tion to show that (3.1) is true. The first step is to check that the formula
is valid for n = 1, which we did above. The second step, which is called the
inductive step, is to show that if the formula holds for a given natural
number then it also holds for the next natural number. The Principle of
Mathematical Induction states that the formula must therefore hold for
any natural number n. This is a fairly intuitive claim. We know that the
formula holds for n = 1. By the inductive step, it therefore holds for the
next number, n = 2. But then the inductive step implies it also holds for
n = 3, and then for n = 4, and so on. Since we eventually reach any natural
number this way, it is fair to say that the formula holds for any natural
number. Of course the Principle of Mathematical Induction is based on the
conviction that we eventually reach any natural number if we start at 1 and
then add 1 sufficiently many times. We take this as a defining property, or
axiom, of the natural numbers.

Now we try to prove (3.1) by showing that the inductive step holds.
Therefore, we assume that the formula (3.1) is valid for n = m − 1, where
m ≥ 2 is a natural number. In other words, we assume that

1 + 2 + 3 + · · · + m − 1 =
(m − 1)m

2
. (3.2)

We now want to prove that the formula holds for the next natural number
n = m. To do this for (3.1), we add m to both sides of (3.2) to get

1 + 2 + 3 + · · · + m − 1 + m =
(m − 1)m

2
+ m

=
m2 − m

2
+

2m

2
=

m2 − m + 2m

2

=
m(m + 1)

2
,

which shows the validity of the formula for n = m. We have verified that
if (3.1) is true for any natural number n = m − 1 then it is true for the
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next natural number n = m. By induction, we see that (3.1) holds for any
natural number n.2

We can also write out the proof without introducing the natural number
m. In the reformulation, we assume that (3.1) holds with n replaced by
n − 1, that is, we assume that

1 + 2 + 3 + · · · + n − 1 =
(n − 1)n

2
.

Adding n to both sides, we get

1 + · · · + n − 1 + n =
(n − 1)n

2
+ n =

n(n + 1)
2

,

which is (3.1) as desired.

3.3 Using Induction

We emphasize that the method of induction is useful for showing the valid-
ity of a given formula, but induction does not say how to get the formula
in the first place. In fact, there is no technique for systematically deriving
formulas like (3.1). Finding such formulas may require some good intuition,
trial and error, or some other insight like the clever idea of Gauss. How-
ever, experience with such formulas can make it easier to guess at them.
For example, we could argue that the average size of the numbers 1 to n is
n/2 and since there are n numbers to add, their sum should be something
like nn

2 , which is pretty close to the correct (n + 1)n
2 .

We give two more examples illustrating the use of mathematical induc-
tion.

Example 3.1. First we show a formula for the geometric sum with
n terms for the fixed natural number p > 1,

1 + p + p2 + p3 + · · · + pn =
1 − pn+1

1 − p
, (3.3)

which holds for any natural number n. Here we think of p as being fixed
and the induction is on n. The formula (3.3) holds for n = 1, since

1 + p =
1 − p2

1 − p
=

(1 − p)(1 + p)
1 − p

= 1 + p,

2In our experience, most students find that verifying a property like (3.1) for specific
n like 1 or 2 or 100 is not so difficult to do. But the general inductive step, i.e., assuming
the formula is true for an unspecified natural number and showing that it is true for
the next natural number, is troublesome. This sort of abstract argument feels strange at
first, but try the problems anyway. Working out some induction proofs is good practice
for some of the arguments that we encounter later.
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where we use the formula a2 − b2 = (a − b)(a + b). Assuming it is true
with n replaced by n − 1, we have

1 + p + p2 + p3 + · · · + pn−1 =
1 − pn

1 − p
.

We add pn to both sides to get

1 + p + p2 + p3 + · · · + pn−1 + pn =
1 − pn

1 − p
+ pn

=
1 − pn

1 − p
+

pn(1 − p)
1 − p

=
1 − pn+1

1 − p
,

which shows the inductive step.

Example 3.2. Induction can also be used to show properties that do
not involve sums. For example, we show an inequality that is useful.
For any fixed natural number p,

(1 + p)n ≥ 1 + np (3.4)

for any natural number n. The inequality (3.4) is certainly valid for
n = 1, since (1 + p)1 = 1 + 1 × p. Now assume it holds for n − 1,

(1 + p)n−1 ≥ 1 + (n − 1)p.

We multiply both sides by the positive number 1 + p,

(1 + p)n = (1 + p)n−1(1 + p) ≥ (1 + (n − 1)p)(1 + p)

≥ 1 + (n − 1)p + p + (n − 1)p2

≥ 1 + np + (n − 1)p2.

Since (n−1)p2 is nonnegative, we can take it away from the right-hand
side and then obtain (3.4).

3.4 A Model of an Insect Population

Induction is often used to derive models as well. We present an example
involving the population growth in insects.

We consider a simplified situation of an insect population in which all of
the adults breed at one specific time during the first summer they are alive,
then die before the following summer. In general, there are many factors
that affect the rate of reproduction: the food supply, the weather, pesticides,
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and even the population itself. But the first time around, we simplify all
of this by assuming that the number of offspring that survive to the next
breeding season is simply proportional to the number of adults alive during
the breeding time. Experimentally this is often a valid assumption if the
population is not too large.

The goal of the model is to determine if and when the population of
insects reaches a critical size. This is an important for instance if the insects
carry disease or consume farm crops.

Because we are describing populations of the insects during different
years, we need to introduce a notation that makes it easy to associate
variable names with different years. We use the index notation to do
this. We let P0 denote the current or initial population and P1, P2, · · · ,
Pn, · · · denote the populations during subsequent years numbered 1, 2, · · · ,
n, · · · , respectively. The index or subscript on Pn is a convenient way to
denote the year. Our modeling assumptions mean that Pn is proportional
to Pn−1. We use R to denote the constant of proportionality, so

Pn = RPn−1. (3.5)

Assuming the initial population P0 is known, the problem is to figure out
when the population reaches a specific level M . In other words, find the
first n such that Pn ≥ M .

To do this, we find a formula expressing the dependence of Pn on n using
induction on (3.5). Since (3.5) also holds for n − 1, i.e. Pn−1 = RPn−2.
Substituting, we find

Pn = RPn−1 = R(RPn−2) = R2Pn−2.

Now we substitute for Pn−2 = RPn−3, Pn−3 = RPn−4, and so on. After
n − 2 more substitutions, we find

Pn = RnP0. (3.6)

Since R and P0 are known, this gives an explicit formula for Pn in terms
of n. Note that the way we use induction in this example is different than
the previous examples. But the difference is only superficial. To make the
induction argument look the same as for the previous examples, we can
assume that (3.6) holds for n−1 and then use (3.5) to show that it therefore
holds for n.

Returning to the question of finding n such that Pn ≥ M , the model
problem is to find n such that

Rn ≥ M/P0. (3.7)

As long as R > 1, Rn eventually grows large enough to do this. For example,
if R = 2, then Pn grows quickly with n. If P0 = 1000, then P1 = 2000,
P4 = 32, 000, and P9 = 1, 024, 000.
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Chapter 3 Problems

3.1. Prove the formulas

(a) 12 + 22 + 32 + · · · + n2 =
n(n + 1)(2n + 1)

6
(3.8)

and

(b) 13 + 23 + 33 + · · · + n3 =
(

n(n + 1)
2

)2

(3.9)

hold for all natural numbers n by using induction.

3.2. Using induction, show the following formula holds for all natural numbers
n:

1
1 × 2

+
1

2 × 3
+

1
3 × 4

+ · · · +
1

n(n + 1)
=

n

n + 1
.

3.3. Using induction, show the following inequalities hold for all natural numbers
n:

(a) 3n2 ≥ 2n + 1 (b) 4n ≥ n2 .

Problems 3.4 and 3.5 are different applications of induction than those
given in the chapter.

3.4. Prove that 7n − 4n is a multiple of 3 for all natural numbers n. Hint: If a is
a multiple of 3 then a = 3b for some natural number b.

3.5. Find a formula for the sum of the odd natural numbers from 1 to n, 1 +
3 + 5 + · · · + n, where n is odd, and prove the formula is correct using induction.
Hint: To find the formula, compute the sum for the first few odd numbers.

Problems 3.6–3.8 have to do with modeling insect populations. Prob-
lem 3.8 is considerably harder than Problems 3.6 and 3.7.

3.6. The problem is to model the population of a species of insects that has
a single breeding season during the summer. The adults breed during the first
summer they are alive, then die before the following summer. Assuming that the
number of offspring that survive to the next breeding season is proportional to
the square of the number of adults, express the population of the insects as a
function of the year.

3.7. The problem is to model the population of a species of insects that has
a single breeding season during the summer. The adults breed during the first
summer they are alive, then die before the following summer and moreover the
adults kill and eat some of their offspring. Assuming that the number of offspring
born each breeding season is proportional to the number of adults and that a
number of offspring are killed by the adults is proportional to the square of the
number of adults and there is no other cause of death, derive an equation relating
the population of the insects in one year to the population in the previous year.
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3.8. The problem is to model the population of a species of insects that has a
single breeding season during the summer. The adults breed during the first and
second summers they are alive, then die before their third summer. Assuming
that the number of offspring born each breeding season is proportional to the
number of adults that are alive and that all insects live out their full lifespan,
derive an equation relating the population of the insects in any year past the first
to the population in the previous two years.

3.9. Derive the formula (3.1) by verifying the sum

1 + 2 + · · · + n-1 + n
+ n + n-1 + · · · + 2 + 1

n+1 + n+1 + · · · + n+1 + n+1

and showing that this means that 2(1 + 2 + · · · + n) = n × (n + 1).



4
Rational Numbers

One motivation for considering rational numbers is that we want to solve
equations of the form

qx = p, (4.1)

where p and q �= 0 are integers. In particular, we encountered the equation
15x = 10 in the Dinner Soup model, which cannot be solved if x is restricted
to be an integer. We need to extend the integers to allow fractions. In school,
we learn the definition of a rational number r as any number of the form
r = p/q, where p and q are integers with q �= 0. We call p the numerator
and q the denominator of the fraction or ratio.

Another motivation for introducing rational numbers is the practical
problem of measuring quantities for which integers alone are too crude an
instrument. When a set of standards for measuring quantities such as the
metric system is created, some arbitrary amount is designated as the unit
measurement. For example, the meter for distance, the gram for weight, and
the minute for time. We measure everything in reference to these units. But
rarely does a quantity measure out to be an exact number of units, and so
we are forced to deal with fractions of the units. We even give names to some
particular units of fractions; centimeters are 1/100 of meters, millimeters
are 1/1000 of a meter, and so on.

Actually, these two motivations are really one and the same. For exam-
ple, consider our thought process when we are faced with the problem of
dividing a pie into seven equal pieces. As we make the first cut, we try to
guess at the angle of the piece that gives a whole pie if we add it to six
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more pieces of the same size. In other words, we try to solve the equation
7x = 1.

4.1 Operating with Rational Numbers

Recall that when we construct the integers by extending the natural num-
bers, we need to extend the definitions of the arithmetic operations as well.
We do this in a way that preserves the arithmetic properties we know for
natural numbers. This is necessary because the integers include the natural
numbers.

When we extend the integers to get the rational numbers, we are faced
with the same problem. Certainly the rational numbers include the inte-
gers, since we understand that p/1 should equal p, so again we want the
operations on rational numbers to agree with the operations on integers.
With this mandate, we can define the arithmetic operations for rational
numbers in a unique way.

It is a useful, and even interesting, exercise to work through the defini-
tions of the arithmetic operations for rational numbers. Suppose for exam-
ple that our roommate has never heard of rational numbers and has asked
for an explanation. Fresh from reading the previous chapters, we decide to
explain the rational numbers from the point of view of solving equation
(4.1). To avoid any confusion with our roommate’s previous experience
with fractions and the symbols “ ” and “/”, we use a more abstract nota-
tion in the beginning and describe a rational number as that “thing” that
solves (4.1), which we denote as an ordered pair x = (p, q) where the first
component p denotes the right-hand side of the equation and the second
component q denotes the left-hand side of the equation qx = p. Whatever
notation we use, we need some way to designate the two numbers p and
q and also the role of these numbers in the equation (4.1). To orient our
roommate, we point out that some of these pairs identify naturally with the
familiar integers, namely, (p, 1) is the same as p since the solution of 1x = p
is x = p. Therefore, the rational numbers are an extension of the integers.
We also point out that there is no reason to expect that (p, q) = (q, p) in
general.

Now we build up the rules for performing arithmetic on the set of such
ordered pairs of numbers based on the properties of integers. For exam-
ple, suppose we want to figure out how to multiply the rational number
x = (p, q) by the rational number y = (r, s). We start from the defin-
ing equations qx = p and sy = r. Multiplying both sides, and naturally
assuming that xs = sx should be true since multiplication of integers is
commutative, we find

qxsy = qsxy = qs(xy) = pr.
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We conclude that
xy = (pr, qs),

since z = xy solves the equation qsz = pr. We are thus led to the familiar
rule

(p, q)(r, s) = (pr, qs).

Written in the standard notation for rational numbers, this is

p

q
× r

s
=

pr

qs
. (4.2)

Similarly, to figure out how to add two rational numbers x = (p, q)
and y = (r, s), we again start with the defining equations qx = p and
sy = r. Multiplying both sides of qx = p by s, and both sides of sy = r
by q, we find qsx = ps and qsy = qr. Adding, and naturally assuming that
qsx+qsy = qs(x+y) should be true since addition of integers is associative,
we find that

qs(x + y) = ps + qr,

which suggests that

(p, q) + (r, s) = (ps + qr, qs).

Written using the standard notation for rational numbers, this is

p

q
+

r

s
=

ps + qr

qs
. (4.3)

This says that we add two rational numbers by finding a common denom-
inator.

Inspired by these computations, we define rational numbers to be ordered
pairs of integers (p, q) with q �= 0, where the operations of multiplication ×
and addition + are defined by (4.2) and (4.3). We can now verify that all
the familiar rules for arithmetic with integers hold for rational numbers as
well. For example, to show (p, p) = 1 for p �= 0, we use (4.3) and (4.2) to
get

(p, p) + (r, 1) = (p + pr, p) = (p(r + 1), p) = (r + 1, 1)(p, p),

so
(r, 1) = (p, p)(r + 1 − 1, 1)(p, p) = (r, 1)(p, p),

which shows that (p, p) acts just like 1. In standard notation, we get p/p = 1
when p �= 0. In a similar way, (pr, ps) = (r, s) for p �= 0, or

pr

ps
=

r

s
.

Arguing in the same way, we define division (p, q)/(r, s) of the rational
number (p, q) by the rational number (r, s) with r �= 0, as

(p, q)/(r, s) = (ps, qr)
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since (ps, qr) solves the equation (r, s)x = (p, q). In the standard notation,
p
q
r
s

=
ps

qr
.

We can now check the validity of the expected properties of multiplication
and division, such as

p

q
= p × 1

q
.

Of course, we use xn with x rational and n a natural number to denote
the number x multiplied with itself n times. Following this, we have

x−n =
1
xn

for natural numbers n and x �= 0. As with integers, we define x0 = 1 for x
rational.

It is important to note that these definitions of the arithmetic operations
for rational numbers mean that the sum, product, difference, or quotient
of any two rational numbers is always another rational number (when de-
fined). In other words, the rational numbers are closed under the arith-
metic operations. Recall that the initial motivation for defining rational
numbers is the observation that we cannot always find integer solutions for
(4.1). But we can find a rational number that solves the equation, namely,
x = (p, q) since (q, 1)(p, q) = (pq, q) = (p, 1). Moreover, we can find a ra-
tional solution of any equation of the form ax = b, where a and b are any
rational numbers with a �= 0, namely, if a = (p, q) and b = (r, s), then
x = ((r, s), (p, q)) (= b/a).

As a final step, we introduce our roommate to the notation

(p, q) =
p

q
= p/q.

The idea of constructing the integers and the rational numbers from the
natural numbers and a list of properties, or axioms, that govern arithmetic
on the natural numbers originates with Peano.1

4.2 Decimal Expansions of Rational Numbers

The most useful way to represent a rational number is in the form of a
decimal expansion, such as 1/2 = 0.5, 5/2 = 2.5, and 5/4 = 1.25. In

1Giuseppe Peano (1858–1932) was an Italian mathematician. He proved his version
of Theorem 41.5 and also discovered the method of successive approximation relatively
early in his career. Peano’s most important work was in mathematical logic and the
foundations of analysis.
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general, a finite decimal expansion is a number of the form

±pmpm−1 · · · p2p1p0.q1q2 · · · qn, (4.4)

where m and n are natural numbers and the digits pm, pm−1, · · · , p0, q0,
· · · , qn are equal to one of the natural numbers {0, 1, · · · , 9}. We use the
“· · · ” to indicate the digits that are not written out. The integer part of
the decimal number is pmpm−1...p1p0, while the decimal or fractional part
is 0.q1q2 · · · qn. For example, 432.576 = 432 + 0.576.

The decimal expansion is computed by continuing the long division algo-
rithm “past” the decimal point rather than stopping when the remainder
is found. We illustrate in Fig. 4.1.

40 1902.000
160

302
280

22.0

20.0

2.00
2.00

.00

47.55

FIGURE 4.1. Using long division to obtain a decimal expansion.

It is useful to remember that the decimal expansion (4.4) is actually just
a shorthand notation for the number

± pm10m + pm−110m−1 + · · · + p110 + p0

+ q110−1 + · · · + qn−110−(n−1) + qn10−n.

Example 4.1.

432.576 = 4 × 102 + 3 × 101

+ 2 × 100 + 5 × 10−1 + 7 × 10−2 + 6 × 10−3.

A finite decimal expansion is necessarily a rational number because it
is a sum of rational numbers. This can also be understood by writing
pm−1 · · · p1.q1q2 · · · qn as the quotient of the integers pmpm−1 · · · p1q1q2 · · · qn

and 10n:
pm−1 · · · p1.q1q2 · · · qn =

pm−1 · · · p1q1q2 · · · qn

10n
,

like 432.576 = 432576/103.
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Computing decimal expansions of rational numbers using long division
leads immediately to an interesting observation: some decimal expansions
do not “stop.” In other words, some decimal expansions contain a never-
ending, or infinite number, of nonzero digits. For example, the solution
of the dinner soup model is 2/3 = .666 · · · while 10/9 = 1.11111 · · · . We
carry out the division in Fig. 4.2. As usual, we use “infinite” because we are

9 10.0000...
9

1.0
.9

.10

.09

.010

.009

.0010

1.1111...

FIGURE 4.2. The decimal expansion of 10/9 never stops.

discussing something that continues without stopping. We can find many
examples of infinite decimal expansions:

1
3

= .3333333333 · · ·
2
11

= .18181818181818 · · ·
4
7

= .571428571428571428571428 · · ·

Note that all of these examples have the property that the digits in the
decimal expansion begin to repeat after some point. The digits in 10/9 and
1/3 repeat in each entry, the digits in 2/11 repeat after every two entries,
and the digits in 4/7 repeat after every six entries. We say that decimal
expansions with this property are periodic. We use the word periodic to
describe anything that repeats at a regular interval. In fact, if we consider
the process of long division in computing the decimal expansion of p/q,
then we realize that the decimal expansion of any rational number must
either be finite or periodic. If the expansion is not finite, then at every stage
in the division process there is a nonzero remainder, which is an integer
between 0 and q − 1. In other words, there are at most q − 1 possibilities
for remainders at each step. This means that after at most q divisions, a
particular remainder must turn up again. But after that, the subsequent
remainders repeat in the same order as before.
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The fact that many rational numbers have infinite decimal expansions
leads to the same kind of uncertainty encountered when talking about
the set of natural numbers. While we know everything about the rational
number 5/4 = 1.25 with a finite decimal expansion, there is an inherent
uncertainty to the meaning of the decimal expansion of 10/9 since we can
never write down all the digits. In other words, what is the meaning of the
“· · · ” in the decimal expansion of 10/9?

It turns out that we can use the formula for the geometric sum (3.3)
to make this more clear. Consider the decimal expansion obtained from
10/9 by stopping after n + 1 divisions, which we write as 1.1 · · · 1n, with n
decimals equal to 1 after the point. In long form, this number is

1.11 · · · 11n = 1 + 10−1 + 10−2 + · · · + 10−n+1 + 10−n,

which by (3.3) is

1.11 · · · 11n =
1 − 10−n−1

1 − 0.1
=

10
9

(1 − 10−n−1); (4.5)

that is
10
9

= 1.11 · · · 11n +
10−n

9
. (4.6)

The term 10−n/9 decreases steadily toward 0 as n increases. Therefore,
we can make 1.11 · · · 11n as close as desired to 10/9 simply by making n
sufficiently large. This leads to interpreting

10
9

= 1.11111111 · · ·

as meaning that we can make the numbers 1.111 · · · 1n as close as desired
to 10/9 by taking n large. Taking sufficiently many decimals in the nev-
erending decimal expansion of 10/9 makes the error smaller than any given
positive number.

We give another example before considering the general case.

Example 4.2. Computing, we find that 2/11 = .1818181818 · · · . Tak-
ing the first m pairs of the digits 18, we get

.1818 · · · 18m =
18
100

+
18

10000
+

18
1000000

+ · · · +
18

102m

=
18
100

(
1 +

1
100

+
1

1002 + · · · +
1

100m−1

)

=
18
100

1 − (100−1)m

1 − 100−1 =
18
100

100
99

(1 − 100−m−1)

=
2
11

(1 − 100−m),
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that is,
2
11

= 0.1818 · · · 18m +
2
11

100−m.

We thus interpret 2/11 = .1818181818 · · · as meaning that we can make
the numbers .1818 · · · 18m as close as desired to 2/11 by making m
sufficiently large.

We now consider the general case of an infinite periodic decimal expan-
sion of the form

p = .q1q2 · · · qnq1q2 · · · qnq1q2 · · · qn · · · ,

where each period consists of the n digits q1 · · · qn. Truncating the decimal
expansion after m periods, we use (3.3) to get

pm =
q1q2 · · · qn

10n
+

q1q2 · · · qn

10n2 + · · · +
q1q2 · · · qn

10nm

=
q1q2 · · · qn

10n

(
1 +

1
10n

+
1

(10n)2
+ · · · +

1
(10n)m−1

)

=
q1q2 · · · qn

10n

1 − (10−n)m

1 − 10−n
=

q1q2 · · · qn

10n − 1
(
1 − (10−n)m

)
.

That is,
q1q2 · · · qn

10n − 1
= pm +

q1q2 · · · qn

10n − 1
10−nm.

We conclude that
p =

q1q2 · · · qn

10n − 1

in the sense that the difference between the truncated decimal expansion
pm of p and q1q2 · · · qn/(10n−1) can be made arbitrarily small by increasing
the number of periods m, that is, by taking more digits of p into account.
Thus, p = q1q2 · · · qn/(10n − 1). We conclude that every infinite periodic
decimal expansion is equal to some rational number.

We summarize this discussion as the following fundamental result, orig-
inally formulated by Wallis.2

Theorem 4.1 A rational number has either a finite or infinite periodic
decimal expansion, and vice versa, each finite or infinite periodic decimal
expansion represents a rational number.

2John Wallis (1616–1703) was an English mathematician who originally studied divin-
ity at Cambridge University because there was no one to advise mathematics students.
Wallis made fundamental contributions to the foundations of calculus, especially using
analytic techniques to establish important integration formulas that were later used by
Newton. Wallis also introduced ∞ to represent infinity and the expression “proof by
induction.”
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4.3 The Set of Rational Numbers

The definition of the set of rational numbers is even more prone to con-
troversy than the definition of the integers. First of all, given any rational
number we can always write down a larger rational number. But in addi-
tion to this, between any two distinct rational numbers, we can always find
another rational number. The common convention is to define the set of
rational number denoted Q, to be the set of all rational numbers, or

Q =
{

x =
p

q
: p, q in Z, q �= 0

}
.

Alternatively, we could also define Q to be the set of possible numbers x of
the form x = p/q, where p and q �= 0 are integers.

4.4 The Verhulst Model of Populations

In next couple of sections, we present models that require rational numbers.
Certain bacteria cannot produce some of the amino acids they need for

the production of proteins and cell reproduction. When such bacteria are
cultured in growth media containing sufficient amino acids, then the popu-
lation doubles in size at a regular time interval, say on the order of an hour.
If P0 is the initial population at the current time and Pn is the population
after n hours, then we have

Pn = 2Pn−1 (4.7)

for n ≥ 1. This model is similar to the model (3.5) used to describe the
insect population in Section 3.4. If the bacteria can keep growing in this
way, then we know from that model that Pn = 2nP0. However if there is a
limited amount of amino acid, then the bacteria begin to compete for the
resource. As a result, the population can no longer double every hour. The
question is what happens to the bacteria population as time increases? For
example, does it keep increasing, does it decrease to zero (die out), or does
it tend to some constant value?

To model this, we allow the proportionality factor 2 in (4.7) to vary with
the population in such a way that it decreases as the population increases.
For example, we assume there is a constant K > 0 that the population at
hour n satisfies

Pn =
2

1 + Pn−1/K
Pn−1. (4.8)

With this choice, the proportionality factor 2/(1 + Pn−1/K) is always less
than 2 and clearly decreases as Pn−1 increases. We emphasize that there
are many other functions that have this behavior. The right choice is the
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one that gives results that match experimental data from the laboratory.
It turns out that the choice made here does fit experimental data well and
(4.8) has been used as a model not only for bacteria but also for animals,
humans, and insects.

The choice of a mechanism to decrease the population growth rate as the
population increases in (4.8) is originally due to Verhulst.3 We discuss a
version of Verhulst’s model involving differential equations in Chapter 39.

We now seek a formula expressing how Pn depends on n. We define
Qn = 1/Pn, then (4.8) implies that

Qn =
Qn−1

2
+

1
2K

.

Using induction in the same way used for the insect model in Section 3.4,
we get

Qn =
1
2
Qn−1 +

1
2K

=
1
22 Qn−2 +

1
2K

+
1

4K

=
1
23 Qn−3 +

1
2K

+
1

4K

1
8K

...

=
1
2n

Q0 +
1

2K

(
1 +

1
2

+ · · · +
1

2n−1 .

)

With each hour that passes, we add another term onto the sum, giving Rn.
The goal is to figure out what happens to Rn as n increases. Using the
formula for the sum of the geometric series (3.3), which obviously holds for
rational numbers as well as for integers, we find

Pn =
1

Qn
=

1
1
2n Q0 + 1

K

(
1 − 1

2n

) . (4.9)

4.5 A Model of Chemical Equilibrium

The solubility of ionic precipitates is an important issue in analytical chem-
istry. For the equilibrium

A x B y � xA y+ + y B x− (4.10)

3The Belgian mathematician Pierre Francois Verhulst (1804–1849) worked in math-
ematics, physics, and social statistics. His most notable achievements were in the study
of population dynamics.
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for a saturated solution of slightly soluble strong electrolytes, the solubility
product constant is given by

Ksp = [ A y+]x[ B x−]y. (4.11)

The solubility product constant is useful for predicting whether or not a
precipitate can form in a given set of conditions or the solubility of an
electrolyte.

For example, we use it to determine the solubility of Ba(IO 3 ) 2 in a .020
mole/liter solution of KIO 3 :

Ba(IO 3 ) 2 � Ba 2+ + 2 IO −
3

given that the Ksp for Ba(IO 3 ) 2 is 1.57 × 10−9. We let S denote the
solubility of Ba(IO 3 ) 2. By the conservation of mass, S = [ Ba 2+] while
iodate ions come from both the KIO 3 and the Ba(IO 3 ) 2. The total iodate
concentration is the sum of these contributions,

[ IO −
3 ] = (.02 + 2S).

Substituting these into (4.11), we obtain

S (.02 + 2S)2 = 1.57 × 10−9. (4.12)

4.6 The Rational Number Line

Recall that we represent the integers using the integer number line, which
consists of a line with regularly spaced points. We can also use a line to
represent the rational numbers. We begin with the integer number line and
then add the rational numbers that have one decimal place:

− · · · ,−1,−.9,−.8, · · · ,−.1, 0, .1, .2, · · · , .9, 1, · · · .

Then we add the rational numbers that have two decimal places:

− · · · ,−.99,−.98, · · · ,−.01, 0, .01, .02, · · · .98, .99, 1, · · · .

Then on to the rational numbers with 3, 4, and more decimal places. We
illustrate in Fig. 4.3. The rational line quickly begins to look solid. A solid
line would mean that every number is rational, something we discuss later.
But in any case, a drawing of a number line appears solid. We call this the
rational number line.
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-4 -3 -2 -1 -0 1 2 3 4 

-4 -3 -2 -1 -0 1 2 3 4 

-4 -3 -2 -1 -0 1 2 3 4 

FIGURE 4.3. Filling in the rational number line between −4 and 4 starting with
integers, rational numbers with one digit, and rational numbers with two digits,
and so on.

Given rational numbers a and b with a < b, we say that the rational
numbers x such that a ≤ x ≤ b is a closed interval4 and we denote the
interval by [a, b]. We also write

[a, b] = {x in Q : a ≤ x ≤ b}.

The points a and b are called the endpoints of the interval. Similarly we
define open (a, b) and half-open intervals [a, b) and (a, b] by

(a, b) = {x in Q : a < x < b}, [a, b) = {x in Q : a ≤ x < b},

[a, b) = {x in Q : a ≤ x < b}, and (a, b] = {x in Q : a < x ≤ b}.

In an analogous way, we write all the rational numbers larger than a number
a as

(a,∞) = {x in Q : a < x} and [a,∞) = {x in Q : a ≤ x}.

We use ∞ symbolically to indicate that there is no right-hand endpoint for
the set of numbers larger than a. We write the set of numbers less than
a in a similar way. We also represent intervals graphically by marking the
points on the rational line segment, as we show in Fig. 4.4. Note how we
use an open circle or a closed circle to mark the endpoints of open and
closed intervals.

4To be accurate, we should call this the closed rational interval. The term closed has
two meanings. One is an interval that contains its endpoints and the second is a more
general notion that we avoid describing at the moment. These ideas are the same for
intervals of real numbers, but are not the same for intervals of rational numbers. This
could lead to confusion, except that we rarely talk about intervals of rational numbers
after we discuss real numbers in Chapter 11.
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Chapter 4 Problems

4.1. Using the definitions of multiplication and addition of rational numbers,
show that if r, s and t are rational numbers, then (a) r(s + t) = rs + rt and (b)
r/(s/t) = rt/s.

In Problems 4.2 and 4.3, we ask you to find the consequences of making
alternate definitions of basic arithmetic operations for rational numbers.

4.2. Suppose that the rational numbers are defined to be ordered pairs (p, q) =
p/q of integers where we define the product of two rational numbers (p, q) and
(m, n) by (p, q)(m, n) = (pm, qn) as usual and addition as

(p, q) + (m, n) = (p + q + m + n, q + n).

Find at least one of the arithmetic properties that fails.

4.3. Suppose that the rational numbers are defined to be ordered pairs (p, q) =
p/q of integers where we define the product of two rational numbers (p, q) and
(m, n) by (p, q)(m, n) = (pm, qn) as usual and addition as

(p, q) + (m, n) = (p + m, q + n).

Find at least one of the standard arithmetic properties that fails.

4.4. A person running on a large ship runs 8.8 feet/second heading toward the
bow while the ship is moving at 16 miles/hour. What is the speed of the runner
relative to a stationary observer? Interpret the computation giving the solution
as finding a common denominator.

4.5. Compute decimal expansions for (a) 432/125 and (b) 47.8/80.

4.6. Compute decimal expansions for (a) 3/7, (b) 2/13, and (c) 5/17.

4.7. Find rational numbers corresponding to the decimal expansions (a) .4242
4242 · · · , (b) .881188118811 · · · , and (c) .4290542905 · · · .

4.8. Find an equation for the number of milligrams of Ba(IO 3)2 that can be
dissolved in 150 ml of water at 25◦ C with Ksp = 1.57 × 10−9 mol2/L3. The
reaction is

Ba(IO 3 ) 2 � Ba 2+ + 2 IO −
3

.5 2

.5 < x < 2

.3 .4

.3 ≤ x < .4

-8 4

-8 < x ≤ 4

.45 3

.45 ≤ x ≤ 3

FIGURE 4.4. Various rational line intervals.
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4.9. We invest some money in a bond that yields 9% interest each year. Assuming
that we invest any money we make from interest in more bonds for an initial
investment of $C0, write down a model giving the amount of money we have
after n years.

4.10. Solve the following inequalities:

(a) |3x − 4| ≤ 1 (b) |2 − 5x| < 6

(c) |14x − 6| > 7 (d) |2 − 8x| ≥ 3 .



5
Functions

We turn now to investigate functions, another key component of mathe-
matical modeling. For example, in the Dinner Soup model, the total cost of
the purchased food is 15x (dollars) where x is the amount of beef in pounds.
In other words, for every amount of beef x, there is a corresponding total
cost 15x. We say that the total cost 15x is a function of, or depends on,
the amount of beef x.

5.1 Functions

In the modern definition of a function, which is due to Dirichlet,1 f is a
function of x if for each choice of x in a prescribed set, there is assigned
a unique value f(x). A general notion of a function was first used by Leib-
niz,2 who defined a function to be a quantity that varies along a curve and

1Johann Peter Gustav Lejeune Dirichlet (1805–1859) worked in Germany. He pro-
duced important results in the equilibrium of systems; fluid mechanics; number theory,
including the founding of analytic number theory; potential theory; and the theory of
Fourier series.

2The German mathematician Gottfried Wilhelm von Leibniz (1646–1716) was an
important mathematician and philosopher, who also worked as a diplomat, economist,
geologist, historian, linguist, lawyer, and theologian. Leibniz was a true interdisciplinary
scientist, which is a very rare and exalted state. Leibniz and Newton are credited with
inventing calculus independently and roughly at the same time. However, Leibniz devel-
oped a better notation for calculus, which we use today. In particular, Leibniz first used
the notation dy/dx for the derivative and

∫
for the integral. In addition to function,
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used the expression “a function of.” Before Leibniz’s time, mathematicians
occasionally used the idea of a “relation” between quantities, though de-
fined rather vaguely, and knew about specific functions like the logarithm.
The modern notation for a function is due to Euler.3

In the Dinner Soup model, the function is f(x) = 15x. It is helpful to
think of x as the input, while f(x) is the corresponding output. Corre-
spondingly, we sometimes write x → f(x), which visibly represents the idea
that the input x is “sent” to the value f(x).

We refer to the input x of a function as a variable since x can vary in
value. We also call x the argument of the function f(x). The prescribed set
from which the input to a function f is selected is called the domain of the
function f and is denoted by D(f). The set of values f(x) corresponding
to the choices of x in the domain D(f) is called the range R(f) of f .

Example 5.1. In the Dinner Soup model with f(x) = 15x, we may
choose D(f) = [0, 1] if we decide that the amount of beef x can vary
in the interval [0, 1], in which case R(f) = [0, 15]. We may also choose
the domain D(f) to be some other set of possible values of the amount
of beef x such as D(f) = [a, b], where a and b are nonnegative rational
numbers, with the corresponding range R(f) = [15a, 15b]. We might
also choose D(f) = {x in Q, x > 0} with the corresponding R(f) =
{x in Q, x > 0}.

In daily life, we stumble over functions right and left.

Example 5.2. A car dealer assigns a price f(x), which is a number,
to each car x in the lot. The domain D(f) is the set of cars on the lot
and the range R(f) is the set of all different prices of these cars.

Example 5.3. When we tell time by looking at a clock, we are assign-
ing a numeric value f(x) to the set of angles x made by clock hands.
The domain D(f) is the set of angles in a circle that is D(f) = [0, 360]

he also introduced the terms algorithm, constant, parameter, and variable. Leibniz also
designed an early “computing machine.”

3Leonhard Euler (1707–1783) was born in Switzerland but spent most of his career
in Germany and Russia. He worked in nearly all areas of mathematics and was the
most prolific mathematician of all time as he published over 850 works. However qual-
ity did not suffer with quantity, as it so often does, and Euler made fundamentally
important contributions in geometry, calculus and number theory. He synthesized the
calculus of Leibniz and Newton into the first definitive calculus textbook, which has
heavily influenced almost all subsequent calculus texts. Euler studied differential equa-
tions, continuum mechanics, lunar theory, the three body problem, elasticity, acoustics,
the wave theory of light, hydraulics, music, and laid the foundation of analytical me-
chanics. He invented the notation f(x) for a function of x, e for the base of the natural
logarithm, i for the square root of -1, π, the Σ notation for sums, and the ∆ notation for
finite differences, among other things. Euler continued to work during the last seventeen
years of his life despite being totally blind.



5.2 Functions and Sets 53

if we use degrees, and the range R(f) is the set of time instants from 0
to 24 hours.

Example 5.4. When the government makes out a tax bill, it is assign-
ing one number f(x), representing the amount owed, to another number
x, representing the corresponding salary. The domain D(f) and range
R(f) change a lot depending on the political winds.

It is useful to assign a variable name to the output of a function; for
example we may write y = f(x). Thus, the value of the variable y is given
by the value f(x) assigned to x. We call x the independent variable and
y the dependent variable. x takes on values in the domain D(f) while y
takes on values in the range R(f). The names we use for the independent
variable and the dependent variables are chosen simply for convenience.
The names x and y are common but there is nothing special about these
letters. For example, z = f(u) denotes the same function if we do not
change f , i.e., the function y = 15x can just as well be written z = 15u.

Example 5.5. In the used car sales business, we may know that one
of the older cars is a lemon, but we nevertheless call it “a creampuff
previously owned by a little old lady from Des Moines who only drove it
to go to church” simply because that name has some fortunate conno-
tations, while the price we want to get for the car is the same whether
it is called a lemon or a creampuff.

5.2 Functions and Sets

So far, we have thought of the input and output of a function as single
values. But sometimes we also need to use functions of sets, that is, where
the input and output are sets.

Example 5.6. When we buy a pad of 200 sheets of paper, we pay a
price for the set of sheets and do not compute 200 times the price of an
individual sheet.

Example 5.7. Though a car dealership sells cars for an individual
price, if the dealership goes bankrupt, then the lot of cars may be
priced as a collection.

The root of the need to deal with sets is the difficulty we have in thinking
about two things at one time. To get out of this limitation, we have to
group things together into sets and therefore naturally we have to consider
functions on these sets. In this context, we say that the function f defines
a transformation or map of the domain D(f) onto the range R(f). We
write this symbolically as f : D(f) → R(f).
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Example 5.8. For the Dinner Soup model with f(x) = 15x and do-
main D(f) = [0, 1] we write f : [0, 1] → [0, 15]. If we instead let the
domain be Q, then we have f : Q → Q. In this case of course the
function f(x) = 15x is no longer directly connected to the Dinner Soup
model since we allow x to be negative.

-1 0 1 2 3 4 5 -1 0 1 2 3 4 5

f(x) = x2

D(f) R(f)

FIGURE 5.1. Illustration of f : Q → {x in Q, x ≥ 0} with f(x) = x2.

Example 5.9. We use the function f(x) = x2 in the Muddy Yard
model. In that model, D(f) = {x in Q, x > 0} and f : {x in Q, x >
0} → {x in Q, x > 0}. If we take D(f) = Q, we get f : Q →
{x in Q, x ≥ 0}. We illustrate in Fig. 5.1. If we take D(f) = Z, then
f : Z → {0,±1,±2,±3,±4, ...}.

Example 5.10. The function f(z) = z+3 satisfies f : N → {4, 5, 6, · · · }
but f : Z → Z.

Example 5.11. The function f(n) = 2−n satisfies f : N → { 1
2 , 1

4 , 1
8 , · · · }.

Example 5.12. The function f(x) = 1/x : {x in Q, x > 0} →
{x in Q, x > 0}. Note that this means that given any x in {x in Q, x >
0}, 1/x is in {x in Q, x > 0}. Vice versa, given any y in {x in Q, x > 0}
there is an x in {x in Q, x > 0} with y = 1/x.

It is very often tedious or difficult to determine exactly the range of a
function f corresponding to the domain. So we often write f : D(f) → B,
meaning that for each x in D(f) there is an assigned value f(x) that is
in the set B. The range R(f) is included in B, but the set B may be
bigger than R(f). In this way, we avoid having to figure out the range
R(f) exactly. We then say that f maps D(f) into B.

Example 5.13. The function f(x) = x2 satisfies both f : Q →
{x in Q, x > 0} and f : Q → Q. This can be seen clearly in Fig. 5.1.

Example 5.14. The function

f(x) =
x3 − 4x2 + 1

(x − 4)(x − 2)(x + 3)

is defined for all rational numbers x �= 4, 2,−3, so it is natural to
define D(f) = {x in Q, x �= 4, x �= 2, x �= 3}. It is often the case
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that we take the domain to be the largest set of numbers for which
a function is defined. The range is hard to compute, but certainly we
have f : D(f) → Q.

In the first few examples, we defined functions of sets by first defining the
function on members of the set. But it often happens that it is more natural
to consider the sets first and then what happens to individual members of
the sets second.

Example 5.15. A movie consists of a sequence of pictures that are
displayed at the rate of 16 pictures per second. We usually watch a
movie from the first to the last picture. Afterward we might talk about
different scenes in the movie, which corresponds to subsets of the to-
tality of pictures. A very few people, like the film editor and director,
might consider the movie on the level of the individual elements in the
domain, that is the pictures on the film. When editing the movie, they
number the picture frames 1, 2, 3, · · · , N and view the movie as a func-
tion f with D(f) = {1, 2, · · · , N} associating to each number n in D(f)
the picture frame f(n) with number n.

Example 5.16. A telephone directory of the people living in a city
like Fort Collins is simply a printed version of the function that assigns
a telephone number f(x) to each person x in Fort Collins with a listed
number. For example, if x = E. Merckx, then f(x) = 4631123456 which
is the number of E. Merckx. If we have to find a telephone listing, we
first pick up the telephone book, that is the printed representation of
the entire domain and range of the function f , and then determine the
image, i.e. telephone number, of an individual in the domain.

5.3 Graphing Functions of Integers

So far we have described a function both by listing all its values in a table
and by giving a formula like f(n) = n2 and indicating the domain. It is
also useful to have a picture, or graph or plot, of a function. A graph of
a function is a way of describing the behavior of a function “globally.”
For example, we can describe the function as increasing in this region and
decreasing in another region and thus give an idea of how it behaves without
listing specific values.

We begin by describing the graph of a function f : Z → Z. Recall that
integers are represented geometrically using the integer line. To describe
the input and output for f : Z → Z, we need two number lines so that
we can mark the points in D(f) on one and the points in R(f) on the
other. A convenient way to arrange these two number lines is to place
them orthogonal to each other and intersecting at the respective origins as
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0

FIGURE 5.2. The integer coordinate plane.

n f(n)

0
1

-1
2
-2

3
-3

0
1

1
4
4

9
9

4
-4

5
-5

16
16

25
25

6
-6

36
36 2 4-2-4

5

10

15

FIGURE 5.3. A tabular listing of f(n) = n2 and a graph of the points associated
with the function f(n) = n2 with domain equal to the integers.

shown in Fig. 5.2. If we mark the points obtained by intersecting vertical
lines through integer points on the horizontal axis with the horizontal lines
through integer points on the vertical axis, we get a grid of points as shown
in Fig. 5.2. This is called the integer coordinate plane. Each number
line is called an axis of the coordinate plane while the intersection point
of the two number lines is called the origin and is denoted by 0.

As we saw, a function f : Z → Z can be represented by making a list
with the inputs placed side-by-side with the corresponding outputs. We
show such a table for f(n) = n2 in Fig. 5.3. We can represent such a table
in the rational coordinate plane by marking only those points corresponding
to an entry in the table, i.e., marking each intersection point of the line
rising vertically from the input and the line extending horizontally from
the corresponding output. We draw the plot corresponding to f(n) = n2

in Fig. 5.3.
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FIGURE 5.4. Plots of the functions � f(n) = n, �f(n) = n2, and • f(n) = 2n.

Example 5.17. In Fig. 5.4, we plot n, n2, and 2n along the vertical
axis with n = 1, 2, 3, .., 6 along the horizontal axis. The plot suggests
2n grows more quickly than both n and n2 as n increases.

Example 5.18. In Fig. 5.5, we plot n−1, n−2, and 2−n with n =
1, 2, .., 6. These plots indicate that 2−n decreases most rapidly and n−1

least rapidly.

We can represent a point on the integer plane as an ordered pair of
numbers. To each point in the plane located at the intersection of a ver-
tical line passing through n on the horizontal axis and a horizontal line
passing through m on the vertical axis, we associate the pair of numbers
(n, m). These are the coordinates of the point. Using this notation, we
can describe the function f(n) = n2 as the set of ordered pairs

{(0, 0), (1, 1), (−1, 1), (2, 4), (−2, 4), (3, 9), (−3, 9), · · · }.
By arbitrary convention, we always associate the first number in the ordered
pair with the horizontal location of the point and the second number with
the vertical location.

We can illustrate the idea of a function giving a transformation of its
domain into its range nicely using its graph. Consider Fig. 5.3. We start
at a point in the domain on the horizontal axis and follow a line straight
up to the point on the graph of the function. From this point, we follow
a line horizontally to the vertical axis. In other words, we can find the
output associated to a given input by tracing first a vertical line and then
a horizontal line. By tracing lots of points, we can see that Z is mapped to
{x in Z, x > 0}.
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FIGURE 5.5. Plots of the functions � f(n) = n−1, � f(n) = n−2, and •
f(n) = 2−n.

5.4 Graphing Functions of Rational Numbers

Now we consider the graph of a function f : Q → Q. Following the example
of functions of integers, we plot functions of rational numbers on the ratio-
nal coordinate plane constructed by placing two rational number lines
at right angles and meeting at the origins and then marking every point
that has rational number coordinates. Of course, considering Fig. 4.3, such
a plane appears to be solid, even if it is not solid. We avoid plotting an
example!

If we try to plot a function f : Q → Q by writing down a list of values, we
realize immediately that graphing a function of rational numbers is more
complicated than graphing a function of integers. When we compute values
of a function of integers, we cannot compute all the values because there are
infinitely many integers. Instead, we choose a smallest and largest integer
and compute the values of the functions for those integers in between. For
the same reason, we can not compute all the values of a function defined
on the rational numbers. But now we have to cut off the list in two ways.
We have to choose a smallest and largest number for making the list, but
we also have to decide how many points to use in between the low and
high values. In other words, we cannot compute the values of the function
at all the rational numbers in between two rational numbers. This means
that a list of values of a function of rational numbers always has “gaps” in
between the points where the function is evaluated. We give an example to
make this clear.

Example 5.19. We list some values of the function f(x) = 1
2x + 1

2
defined on the rational numbers in Fig. 5.6 and then plot the function
values in Fig. 5.7.

The values we list for this example suggest strongly that we should draw
a straight line through the indicated points in order to plot the function. In
other words, we are guessing the values of the function in between the points
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x 1
2x + 1

2
−5 −2

−2.8 −.9
−2 −.5

−1.2 −.1
−1 0

x 1
2x + 1

2
−.6 .2
.2 .6
1 1
3 2
5 3

FIGURE 5.6. A list of some function values of f(x) = 1
2x + 1

2 .

-3 -2 1 2 3

1
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-2

-1

4 5-4-5 -1

FIGURE 5.7. A plot of some of the points given by f(x) = 1
2x + 1

2 and several
functions that pass through those points.

computed by assuming that the function does not do anything strange in
between. But there are many functions that agree with 1

2x+ 1
2 at the points

listed as shown in Fig. 5.7. Deciding whether or not we have evaluated a
function defined on the rational numbers enough times to be able to guess
its behavior is an interesting and important problem. 4

In fact, we can use calculus to help with this decision. For now, we assume
that plotted functions vary smoothly between sample points, which is largely
true for the functions we consider in this book.

4All software packages like MATLAB c© that plot functions have to make this deci-
sion, and not infrequently such software can fail to make a good plot.
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Chapter 5 Problems

5.1. Identify four functions you encounter in your daily life and determine the
domain and range for each.

5.2. For the function f(x) = 4x − 2, determine the range corresponding to (a)
D(f) = (−2, 4], (b) D(f) = (3, ∞), and (c) D(f) = {−3, 2, 6, 8}.

5.3. Given that f(x) = 2 − 13x, find the domain D(f) corresponding to the
range R(f) = [−1, 1] ∪ (2, ∞).

5.4. Determine the domain and range of f(x) = x3/100 + 75, where f(x) is a
function giving the temperature inside an elevator holding x people and with a
maximum capacity of 9 people.

5.5. Determine the domain and range of H(t) = 50−t2, where H(t) is a function
giving the height in meters of a ball dropped at time t = 0.

5.6. Find the range of the function f(n) = 1/n2 defined on D(f) = {n in N :
n ≥ 1}.

5.7. Find the domain and a set B containing the range of the function f(x) =
1/(1 + x2).

5.8. Find the domain of the functions

(a)
2 − x

(x + 2)x(x − 4)(x − 5)
(b)

x

4 − x2 (c)
1

2x + 1
+

x2

x − 8
.

5.9. Consider the function f defined on the natural numbers, where f(n) is
the remainder obtained by dividing n by 5 using long division. So, for example,
f(1) = 1, f(6) = 1, f(12) = 2, etc. Determine R(f).

5.10. Illustrate the map f : N → Q using two intervals where f(n) = 2−n.

5.11. Plot the following functions f : N → N after making a list of at least 8
values: (a) f(n) = 4 − n, (b) f(n) = n − n2, (c) f(n) = (n + 1)3.

5.12. Draw three different curves that pass through the points (−3, −2.5),
(−2, −1), (−1, −.5), (0, .25), (1, 1.5), (2, 2), (3, 4).

5.13. Plot the functions (a) 2−n, (b) 5−n, and (c) 10−n defined on the natural
numbers n. Compare the plots.

5.14. Plot the function f(n) = 10
9 (1 − 10−n−1) defined on the natural numbers.

5.15. Plot the function f : Q → Q with f(x) = x3 after making a table of values.



6
Polynomials

Before further exploring the properties of general functions, we consider
the basic example of polynomials. In a concrete way, explained in Chap-
ter 36, polynomials are the “building blocks” for many of the functions
encountered in mathematical modeling. Consequently, polynomials crop
up repeatedly in analysis.

In this chapter, we develop arithmetic for general polynomials using a
convenient notation for sums. Recall that when rational numbers are added,
subtracted, or multiplied, the result is another rational number. We show
that the analogous property holds for polynomials.

6.1 Polynomials

A polynomial function, or polynomial, f is a function of the form

f(x) = a0 + a1x + a2x
2 + a3x

3 + · · · + anxn, (6.1)

where a0, a1, · · · , an, are given numbers called the coefficients. Note how
we use the “· · · ” in this case to indicate the sum includes the “missing”
terms. The domain of a polynomial can be taken to be the set of rational
numbers; however, it is difficult to determine the range. Certainly if x is
any rational number and the coefficients are rational, then f(x) is another
rational number. So the range of a polynomial with rational coefficients
contains rational numbers. The question is whether it contains all the ra-
tional numbers. It turns out that it may not in general, which we show in
Chapter 10.
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If n denotes the largest subscript with an �= 0, we say that the degree
of f is n. If all the coefficients ai are zero, then f(x) = 0 for all x and we
say that f is the zero polynomial. The simplest polynomial beyond the
zero polynomial is the constant polynomial f(x) = a0 of degree 0. The
next simplest cases are the linear polynomials f(x) = a0 +a1x of degree 1
and quadratic polynomials f(x) = a0 + a1x + a2x

2 of degree 2 (assuming
a1 �= 0 respectively a2 �= 0). We use the linear polynomial f(x) = 15x
in the Dinner Soup model, the quadratic f(x) = x2 in the Muddy Yard
model, and a polynomial of degree 3 to model the solubility of Ba(IO 3 ) 2 in
Section 4.5. The polynomials of degree 0, 1, 2, and even 3 are fairly familiar,
so we concentrate on developing properties of general polynomials.

6.2 The Σ Notation for Sums

Before exploring arithmetic with polynomials, we introduce a convenient
notation for dealing with sums called the sigma notation that was in-
vented by Euler. Given any n + 1 quantities {a0, a1, · · · , an} indexed with
subscripts, we write the sum

a0 + a1 + · · · + an =
n∑

i=0

ai.

The index of the sum is i and we assume that it takes on all the integers
between the lower limit, which is 0 here, and the upper limit, which is
n here, of the sum.

Example 6.1. The finite harmonic series of order n is
n∑

i=1

1
i

= 1 +
1
2

+
1
3

+ · · · 1
n

.

Example 6.2. The geometric sum of order n with factor r is

1 + r + r2 + · · · + rn =
n∑

i=0

ri.

The index i is considered to be a dummy variable in the sense that it
can be renamed or the sum can be rewritten to start at another integer.

Example 6.3. The following sums are all the same:

n∑

i=1

1
i

=
n∑

z=1

1
z

=
n−1∑

i=0

1
i + 1

=
n+3∑

i=4

1
i − 3

.
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Using the Σ notation, we can write the general polynomial (6.1) in the
more condensed form

f(x) =
n∑

i=0

aix
i = a0 + a1x

1 + · · · + anxn.

Example 6.4. We can write

1 + 2x + 4x2 + 8x3 + · · · + 220x20 =
20∑

i=0

2ixi

and

1 − x + x2 − x3 − x99 =
99∑

i=0

(−1)2i−1xi

since (−1)2i−1 = 1 if i is odd and (−1)2i−1 = −1 if i is even.

6.3 Arithmetic with Polynomials

In this section, we work out rules for combining polynomials to get new
polynomials. The rules are based on the arithmetic operations for numbers.

We define the sum of two polynomials

f(x) = a0 + a1x
1 + a2x

2 + · · · + anxn

and
g(x) = b0 + b1x

1 + b2x
2 + · · · + bnxn

as the new polynomial f + g given by

(f + g)(x) = (b0 + a0) + (b1 + a1)x1 + (b2 + a2)x2 + · · · (bn + an)xn;

i.e., the sum is the polynomial with coefficients obtained by adding the cor-
responding coefficients in each summand. Note how we use the parentheses
around f +g to indicate that a new polynomial has been constructed. Using
the Σ notation,

(f + g)(x) =
n∑

i=0

aix
i +

n∑

i=0

bix
i =

n∑

i=0

(ai + bi)xi.

Notice that the value of f + g at the point x can be computed by adding
the numbers f(x) and g(x), i.e.,

(f + g)(x) = f(x) + g(x).
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Example 6.5. If f(x) = 1+x2 −x4 +2x5 and g(x) = 33x+7x2 +2x5,
then

(f + g)(x) = 1 + 33x + 8x2 − x4 + 4x5,

where of course we “fill in” the “missing” monomials, i.e., those with
coefficients equal to zero in order to use the definition.

Example 6.6. If f(x) = 1+x2 −x4 +2x5 and g(x) = 33x+7x2 +2x5,
then

(f + g)(x) = (1 + 0x + x2 + 0x3 − x4 + 2x5)

+ (0 + 33x + 7x2 + 0x3 + 0x4 + 2x5)

= 1 + 33x + 8x2 + 0x3 − x4 + 4x5

= 1 + 33x + 8x2 − x4 + 4x5.

In general, to add the polynomials

f(x) =
n∑

i=0

aix
i

of degree n (assuming that an �= 0) and the polynomial

g(x) =
m∑

i=0

bix
i

of degree m, where we assume that m ≤ n, we just fill in the “missing”
coefficients in g by setting bm+1 = bm+2 = · · · bn = 0, and add using the
definition.

Example 6.7.
15∑

i=0

(i + 1)xi +
30∑

i=0

xi =
30∑

i=0

aix
i

with

ai =

{
i + 2, 0 ≤ i ≤ 15,

i + 1, 16 ≤ i ≤ 30.

In the next step, we define the product cf of a constant c and a poly-
nomial

f(x) =
n∑

i=0

aix
i,

as the polynomial obtained by multiplying each coefficient of the polyno-
mial by c, i.e.,

(cf)(x) =
n∑

i=0

caix
i.

This is suggested, of course, by the distributive properties of addition and
multiplication of rational numbers.
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Example 6.8.

2.3(1 + 6x − x7) = 2.3 + 13.8x − 2.3x7.

Note that following this definition, we define the difference of two poly-
nomials f and g as f − g = f + (−g).

We can now combine polynomials by multiplying the polynomials by
rational numbers and adding the results, and thereby obtain new poly-
nomials. Thus, if f1, f2, · · · , fn are n polynomials and c1, · · · , cn are n
numbers, then

f(x) =
n∑

m=1

cmfm(x)

is a new polynomial called the linear combination of the polynomials f1,
· · · , fn. The name is suggested by the fact that a linear function ax + b
is defined using the operations of addition and multiplication by a con-
stant. The numbers c1, · · · , cn are called the coefficients of the linear
combination.

Example 6.9. The linear combination of 2x2 and 4x − 5 with coeffi-
cients 1 and 2 is

1
(
2x2)+ 2

(
4x − 5

)
= 2x2 + 8x − 10.

With this definition, a general polynomial

f(x) =
n∑

i=0

aix
i

can be described as a linear combination of the particular polynomials 1,
x, x2, · · · , xn, which are called the monomials. To make the notation
consistent, we set x0 = 1 for all x.

The definitions of the arithmetic operations we have made imply the
following theorem:

Theorem 6.1 A linear combination of polynomials is a polynomial. A gen-
eral polynomial is a linear combination of monomials.1

As a consequence of these definitions, we obtain a number of rules for
linear combinations of polynomials that reflect the corresponding rules for
rational numbers. For example, if f , g and h are polynomials and c is
rational number, then

f + g = g + f, (6.2)
(f + g) + h = f + (g + h), (6.3)

c(f + g) = cf + cg. (6.4)

1We discuss linear combinations of polynomials further in Chapter 38.
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Finally, we consider the product of general polynomials. We define the
product of two monomials xj and xi as

xjxi = xj × xi = xj+i,

following the same rule that holds for multiplying powers of numbers. Then
we define the product of xj and a polynomial f(x) =

∑n
i=0 aix

i by dis-
tributing xj as follows:

xjf(x) = a0x
j + a1x

j × x + a2x
j × x2 + · · · + anxj × xn

= a0x
j + a1x

1+j + a2x
2+j + · · · + anxn+j

=
n∑

i=0

aix
i+j ,

which is a polynomial of degree n + j.

Example 6.10.

x3(2 − 3x + x4 + 19x8) = 2x3 − 3x4 + x7 + 19x11.

Finally, we define the product fg of of two polynomials f(x) =
∑n

i=0 aix
i

and g(x) =
∑m

j=0 bjx
j by (fg)(x) = f(x)g(x). This means that we can

compute f(x)g(x) as follows:

(fg)(x) = f(x)g(x) = (
n∑

i=0

aix
i)(

m∑

i=0

bix
i)

=
n∑

i=0



 aix
i

m∑

j=0

bjx
j



 =
n∑

i=0



ai

m∑

j=0

bjx
i+j





=
n∑

i=0

m∑

j=0

aibjx
i+j .

We consider an example:

Example 6.11.

(1 + 2x + 3x2)(x − x5) = 1(x − x5) + 2x(x − x5) + 3x2(x − x5)

= x − x5 + 2x2 − 2x6 + 3x3 − 3x7

= x + 2x2 + 3x3 − x5 − 2x6 − 3x7

These definitions imply the following theorem:

Theorem 6.2 The product of a nonzero polynomial of degree n and a
nonzero polynomial of degree m is a polynomial of degree n + m.
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These definitions also imply the commutative, associative, and distributive
properties for polynomials f , g, and h,

fg = gf, (6.5)
(fg)h = f(gh), (6.6)

(f + g)h = fh + fh, (6.7)

hold true.
Products are tedious to compute, but luckily we can use software like

MAPLE c© to compute them. There are a couple of examples that are good
to keep in mind:

(x + a)2 = (x + a)(x + a) = x2 + 2ax + a2

(x + a)(x − a) = x2 − a2

(x + a)3 = x3 + 3ax2 + 3a2x + a3.

6.4 Equality of Polynomials

We say that two polynomials f and g are equal, f = g, if f(x) = g(x) at
every point x. Equivalently, f = g if (f − g)(x) is the zero polynomial with
all coefficients equal to zero. Note that two polynomials are not necessarily
equal because they happen to have the same value at just one point!

Example 6.12. f(x) = x2 − 4 and g(x) = 3x − 6 are both zero at
x = 2 but are not equal.
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+203.889x5 −368.554x6 −211.266x7 +313.197x8 +70.965x9 −97.9x10 −7.5x11

+10x12.
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FIGURE 6.2. Plots of some monomials.

6.5 Graphs of Polynomials

A general polynomial of degree greater than 2 or 3 can be quite a compli-
cated function and it is difficult to make meaningful general observations
about their plots. We show an example in Fig. 6.1. When the degree of a
polynomial is large, the tendency is for the plot to have large “wiggles,”
which makes it difficult to plot the function. The value of the polynomial
shown in Fig. 6.1 is 987940.8 at x = 3.

On the other hand, we can plot the monomials rather easily. It turns out
that once the degree n ≥ 2, the plots of the monomials with odd degree
n have a similar shape as do the plots of the monomials with even degree.
We show some samples in Fig. 6.2.

One obvious feature of graphs of monomials is symmetry. When the
degree is even, the plots are symmetric across the y-axis, see Fig. 6.3. This
means that the value of the monomial is the same for x and −x, or in
other words xm = (−x)m for m even. When the degree is odd, the plots
are symmetric through the origin. In other words, the value of the function
for x is the negative of the value of the function for −x or (−x)m = −xm

for m odd.

6.6 Piecewise Polynomial Functions

We started this chapter by declaring that polynomials are building blocks
for functions. An important class of functions constructed using polynomi-
als are the piecewise polynomials. These are functions that are equal to
polynomials on intervals contained in the domain.
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xodd

FIGURE 6.3. The symmetries of the monomial functions of even and odd degree.

We already met one example, namely,

|x| =

{
x, x ≥ 0,

−x, x < 0.

The function |x| looks like y = x for x ≥ 0 and y = −x for x < 0. We plot
it in Fig. 6.4. The most interesting thing to note about the graph of |x| is
the sharp corner at x = 0, which occurs right at the transition point of this
piecewise polynomial.
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FIGURE 6.4. Plot of y = |x|.

Another example is provided by a piecewise constant function that is used
to model the current supplied to an electric circuit. Suppose the power is
off, so the current is 0, and that we turn the power on, say, with current
equal to 1, at time t = 0 and then turn it off again at t = 1 second. The
function I(t) describing the current is called the step function and is
defined

I(t) =






0, t < 0,

1, 0 ≤ t ≤ 1,

0, 1 < t.

(6.8)
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We plot I in Fig. 6.5.
In Section 38.4, we explain why piecewise polynomials are preferred over

polynomials in several circumstances.
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FIGURE 6.5. Plot of the step function I(t).
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Chapter 6 Problems

6.1. Write the following finite sums using the summation notation. Be sure to
get the starting and ending values for the index correct!

(a) 1 + 1
4 + 1

9 + 1
16 + · · · + 1

n2 (b) −1 + 1
4 − 1

9 + 1
16 − · · · ± 1

n2

(c) 1 + 1
2×3 + 1

3×4 + · · · + 1
n×(n+1) (d) 1 + 3 + 5 + 7 + · · · + 2n + 1

(e) x4 + x5 + · · · + xn (f) 1 + x2 + x4 + x6 + · · · + x2n .

6.2. Write the finite sum
n∑

i=1

i2 so that (a) i starts with −1, (b) i starts with

15, (c) the coefficient has the form (i + 4)2, and (d) i ends with n + 7.

6.3. Rewrite the following polynomials using the summation notation:

(a) x + 2x3 + 3x5 + 4x7 + · · · + 10x19

(b) 2 + 4x + 6x2 + 8x3 + · · · + 24x10

(c) 1 + x − x2 + x3 + x4 − x5 + · · · − x17 .

6.4. Given f1(x) = −4 + 6x + 7x3, f2(x) = 2x2 − x3 + 4x5 and f3(x) = 2 − x4,
compute the following polynomials:

(a) f1 − 4f2 (b) 3f2 − 12f1 (c) f2 + f1 + f3

(d) f2f1 (e) f1f3 (f) f2f3

(g) f1f3 − f2 (h) (f1 + f2)f3 (i) f1f2f3 .

6.5. For a equal to a constant, compute

(a) (x + a)2 (b) (x + a)3 (c) (x − a)3 (d) (x + a)4 .

6.6. Compute f1f2 where f1(x) =
8∑

i=0

i2xi and f2(x) =
11∑

j=0

1
j + 1

xj .

6.7. Plot the function

f(x) = 360x − 942x2 + 949x3 − 480x4 + 130x5 − 18x6 + x7

using MATLAB c© or MAPLE c© . This takes some trial-and-error in choosing
a good interval on which to plot. You should make plots on several different
intervals, starting with −.5 ≤ x ≤ .5, then increasing the size.

6.8. Plot the following piecewise polynomials for −2 ≤ x ≤ 2

(a) f(x) =






2, −2 ≤ x ≤ −1,

x2, −1 < x < 1,

x, 1 ≤ x ≤ 2.

(b) f(x) =






−1 − x, −2 ≤ x ≤ −1,

1 + x, −1 < x ≤ 0,

1 − x, 0 < x ≤ 1,

−1 + x, 1 < x ≤ 2.
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6.9. (a) Show that the monomial x3 is increasing for all x. (b) Show the monomial
x4 is decreasing for x < 0 and increasing for x > 0.



7
Functions, Functions, and More
Functions

Before continuing the investigation of functions, we describe ways to make
complicated functions by combining simpler functions.1 In fact, this idea
was encountered in Chapter 6, where we constructed general polynomials by
adding up monomials. We first describe how to add up arbitrary functions,
then we consider the operations of multiplication and division. We finish
off with composition.

7.1 Linear Combinations of Functions

It is straightforward to generalize the idea of adding functions to produce
a new function. The first step is to define the sum f1 + f2 of two given
functions f1 and f2 as the function with the value at x given by the sum
of the values of f1(x) and f2(x), i.e.,

(f1 + f2)(x) = f1(x) + f2(x).

1The idea of combining simple things to get complex ones is fundamental in many
different settings. Music is a good example: chords or harmonies are formed by combin-
ing single tones, complex rhythmic patterns may be formed by overlaying simple basic
rhythmic patterns, single instruments are combined to form an orchestra. Another ex-
ample is a fancy dinner that is made up of an entree, main dish, dessert, coffee, together
with aperitif, wines, and cognac, in endless combinations. Moreover, each dish is formed
by combining ingredients like beef, carrots, and potatoes.
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For the sum f1+f2 to be defined at x, both f1 and f2 must be defined at x.
Therefore, the domain D(f1+f2) of f1+f2 is the intersection D(f1)∩D(f2)
of the domains D(f1) and D(f2).

Example 7.1. The function f(x) = x3 + 1/x defined on D(f) =
{x in Q : x �= 0} is the sum of the functions f1(x) = x3 with domain
D(f1) = Q and f2(x) = 1/x with domain D(f2) = {x in Q : x �= 0}.
The function f(x) = x2 + 2x defined on Z is the sum of x2 defined on
Q and 2x defined on Z.

Note this definition implies that f1(x) + f1(x) = 2f1(x) for any valid x.
Similarly, we define the product of a given function f and a rational number
c, as the new function cf whose value at x is determined by multiplying
the value f(x) by c, that is,

(cf)(x) = cf(x).

Naturally, the domain of cf is D(cf) = D(f).
These definitions are consistent with the definitions we use for polyno-

mials and we get all the familiar commutative, associative, and distributive
properties like (6.2)–(6.4).

Combining these operations, we can define a new function c1f1 + c2f2
by adding multiples c1 and c2 of given functions f1 and f2 to form a new
function whose domain is the intersection of the domains of f1 and f2. This
new function is called a linear combination of f1 and f2. In general, we
define the linear combination a1f + · · ·+anfn of n functions f1, · · · , fn by

(a1f + · · · + anfn)(x) = a1f1(x) + · · · + anfn(x),

where a1, · · · , an are numbers called the coefficients of the linear combina-
tion. Of course the domain of the linear combination a1f + · · · + anfn is
the intersection of the domains D(f1), · · · , D(fn).

Example 7.2. The domain of the linear combination of
{

1
x , x

1+x , 1+x
2+x

}

given by

− 1
x

+ 2
x

1 + x
+ 6

1 + x

2 + x

is {x in Q : x �= 0, x �= −1, x �= −2}.

The sigma notation from Section 6.2 is useful for writing general linear
combinations.

Example 7.3. The linear combination of
{ 1

x , · · · , 1
xn

}
given by

2
x

+
4
x2 +

8
x3 + · · · +

2n

xn
=

n∑

i=1

2i

xi

has domain {x in Q : x �= 0}.



7.1 Linear Combinations of Functions 75

Note that there is some uncertainty about linear combinations in the
sense that it is generally possible to write a linear combination of a given
set of functions in a number of different ways.

Example 7.4. A linear combination of the functions {1 + x, 1 + x +
x2, x2} can generally be written in a number of ways. For example,

2(1 + x) + (1 + x + x2) + 3x2 = (1 + x) + 2(1 + x + x2) + 2x2

= −(1 + x) + 4(1 + x + x2) + 0x2.

In some situations we want to know that every linear combination of a
given set of functions {f1, f2, · · · , fn} can be written in only one way or is
unique. For example, it is important to know that a polynomial written
in the form a0 + a1x+ · · ·+ anxn, which is just a linear combination of the
monomials, is a unique polynomial and there is no other linear combination
of {1, x, · · · , xn} that gives the same polynomial.

Whether or not this is true depends on the functions {f1, · · · , fn}. Sup-
pose that two linear combinations of the functions are equal, say,

a1f1(x) + · · · + anfn(x) = b1f1(x) + · · · + bnfn(x)

for all x in the domain. We can rewrite this as

(a1 − b1)f1(x) + · · · + (an − bn)fn(x) = 0 (7.1)

for all x in the domain. Now if a1 = b1, · · · , an = bn, then the linear
combination is unique. So if f1, · · · , fn have the property that whenever
(7.1) holds for all x in the domain, we have a1 − b1 = · · · = an − bn = 0,
then every linear combination of f1, · · · , fn is unique. We say that the
functions {f1, · · · , fn} are linearly independent on a domain if the only
constants c1, c2, · · · , cn such that

c1f1(x) + · · · + cnfn(x) = 0

for all x in the domain are c1 = · · · = cn = 0. Functions that are not
linearly independent are said to be linearly dependent.

Theorem 7.1 If the functions {f1, · · · , fn} are linearly independent, then
every linear combination of the functions is unique.

Example 7.5. The functions {1 + x, 1 + x + x2, x2} are linearly de-
pendent since 1(1 + x) − 1(1 + x + x2) + 1x2 = 0 for all x.

Example 7.6. The functions {x, 1/x} are linearly independent. Sup-
pose that there are constants c1, c2 such that

c1x + c2
1
x

= 0

for all x �= 0. Setting x = 1 arbitrarily, we get c1 + c2 = 0 or c1 = −c2.
Setting x = 2, we also get 2c1 + .5c2 = 0. But this means −2c2 + .5c2 =
−1.5c2 = 0 and hence c2 = c1 = 0.
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Example 7.7. We can prove that the monomials are linearly inde-
pendent using induction. First we show that {1} is linearly indepen-
dent, which is easy since c0 × 1 = 0 implies c0 = 0. Now suppose
that {1, x, · · · , xn−1} are linearly independent, i.e., if a0 × 1 + a1x +
· · · + an−1x

n−1 = 0 for all x, then a0 = a1 = · · · = an−1 = 0. If
c0 × 1 + c1x + · · · + cnxn = 0 for all x, then setting x = 0, we conclude
that c0 × 1 + 0 + · · · + 0 = 0 or c0 = 0 and

c0 × 1 + c1x + · · · + cnxn = c1x + · · · + cnxn = 0.

Factoring, we get

c1x + · · · + cnxn = x
(
c1 + c2x + · · · + cnxn−1) = 0

for all x. However, this means that

c1 + c2x + · · · + cnxn−1 = 0

for all x. By the inductive assumption, this means that c1 = · · · = cn =
0 and therefore the monomials {1, · · · , xn} are linearly independent.
By induction, all monomials are linearly independent.

7.2 Multiplication and Division of Functions

We multiply arbitrary functions using the same idea used to multiply poly-
nomials. If f1 and f2 are two functions, we define the product f1f2 by

(f1f2)(x) = f1(x)f2(x).

Example 7.8. The function

f(x) = (x2 − 3)3
(
x6 − 1

x
− 3
)

with D(f) = {x ∈ Q : x �= 0} is the product of the functions f1(x) =
(x2 − 3)3 and f2(x) = x6 − 1/x − 3. The function f(x) = x2 2x is the
product of x2 and 2x.

The domain of the product of two functions is the intersection of the do-
mains of the two functions. This definition is consistent with the definition
we use for polynomials and it implies that the familiar commutative, asso-
ciative, and distributive properties like (6.5)–(6.7) are true.

Following this lead, given two functions f1 and f2, we define the quotient
function f1/f2 by

(f1/f2)(x) =
f1

f2
(x) =

f1(x)
f2(x)
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as long as f2(x) �= 0. However, determining the domain requires some ad-
ditional thought. Not only is it necessary to make sure that both functions
are defined, we also have to avoid zeroes in the denominator. Therefore,
the domain of the quotient f1/f2 of two functions is the intersection of the
domains of the two functions taking away points where the denominator
f2 is zero.

Example 7.9. The domain of

1 + 1/(x + 3)
2x − 5

is the intersection of {x in Q : x �= −3} and {x in Q} excepting x = 5/2
or {x in Q : x �= −3, 5/2}.

Actually, determining the domain of the quotient of two functions con-
tains a hidden complication. Clearly, we must avoid points at which the
denominator is zero and the numerator is nonzero. However, the situation
in which both the numerator and denominator are zero at a point is a little
less clear.

Example 7.10. Consider the quotient

x − 1
x − 1

with domain {x in Q : x �= 1}. Since

x − 1 = 1 × (x − 1) (7.2)

for all x, it is natural to “divide” the polynomials to get

x − 1
x − 1

= 1. (7.3)

However, the domain of the constant function 1 is Q so the left- and
right-hand sides of (7.3) have different domains and therefore must
represent different functions. We plot the two functions in Fig. 7.1. The

1 1

FIGURE 7.1. Plots of (x − 1)/(x − 1) on the left and 1 on the right.

two functions agree at every point except for the “missing” point x = 1.
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By the definition, we can only assert that (7.3) holds for {x in Q : x �= 1}.
On the other hand, (7.3) is just another way of writing (7.2), which holds
for all x. So there is a little uncertainty in all of this.

As we said, the quotient f1/f2 is defined at all points in the intersection
of the domains of f1 and f2 taking away points where f2 is zero. However,
if there is a function f such that

f1(x) = f2(x)f(x)

for all x in the intersection of the domains of f1 and f2, we often abuse no-
tation and replace f1/f2 by f and neglect to mention that we are supposed
to avoid those “missing” points where f2 is zero. In this situation, we say
that we have divided f1 by f2 to get f .

Example 7.11. Since x2 − 2x − 3 = (x − 3)(x + 1), we write

x2 − 2x − 3
x − 3

= x + 1.

In most situations, we replace (x2 − 2x − 3)/(x − 3), which is defined
for {x in Q : x �= 3}, by x + 1, which is defined for all x in Q.

Note that the fact that both f1 and f2 are zero at the same point does
not mean that we can automatically replace their quotient by a function
defined at all points.

Example 7.12. Consider the functions
(x − 1)2

x − 1
and

x − 1
(x − 1)2

,

both of which are defined for {x in Q : x �= 1}. We usually replace the
first function by x−1 defined for all x, but dividing the second example
gives 1/(x − 1), which is still undefined for x = 1.

In general, it can take a little work to figure out whether the substitution
is possible.

We discuss this issue in great detail in Chapter 35.

7.3 Rational Functions

The quotient f1/f2 of two polynomials f1 and f2 is called a rational func-
tion. This is the analog of a rational number.

Example 7.13. The function f(x) = 1/x is a rational function defined
for {x in Q : x �= 0}. The function

f(x) =
(x3 − 6x + 1)(x11 − 5x6)
(x4 − 1)(x + 2)(x − 5)

is a rational function defined on {x in Q : x �= 1,−1,−2, 5}.
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In an example above, we saw that x − 3 divides into x2 − 2x − 3 exactly
because x2 − 2x − 3 = (x − 3)(x + 1) so

x2 − 2x − 3
x − 3

= x + 1.

In the same way, a rational number p/q sometimes simplifies to an inte-
ger, in other words q divides into p exactly without a remainder. We can
determine if this is true by using long division. It turns out that long divi-
sion also works for polynomials. Recall that in long division, we match the
leading digit of the denominator with the remainder at each stage. When
dividing polynomials, we write them as a linear combination of monomials
starting with the monomial of highest degree and then match coefficients
of the monomials one by one.

Example 7.14. We show a couple of examples of polynomial division.
In Fig. 7.2, we give an example in which there is no remainder. We

x3 + 4x2 - 2x - 3

x2 + 5x+ 3

x-1
x3 -    x2

5x2 - 2x

5x2 - 5x

3x2 - 3x
3x2 - 3x

0

FIGURE 7.2. An example of polynomial division with no remainder.

conclude that
x3 + 4x2 − 2x + 3

x − 1
= x2 + 5x + 3.

In Fig. 7.3, we give an example in which there is a remainder, i.e.
we carry out the division to the point where the remaining numerator
has lower degree than the denominator. Note that in this example, the
numerator is “missing” a term so we fill in the missing term with a zero
coefficient to make the division easier. We conclude that

2x4 + 7x2 − 8x + 3
x2 + x − 3

= 2x2 − 2x + 15 +
−29x + 48
x2 + x − 3

.

7.4 Composition of Functions

Given two functions f1 and f2, we can define a new function f by first
applying f1 to an input and then applying f2 to the result: i.e.,

f(x) = f2(f1(x)).
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2x4 + 0x3 + 7x2 - 8x + 3

2x2 - 2x +15

x2+x-3
2x4 + 2x3  - 6x2

- 2x3+13x2 - 8x

15x2 - 14x + 3

-29x +48

- 2x3-  2x2 + 6x

15x2 + 15x -45

FIGURE 7.3. An example of polynomial division with a remainder.

We say that f is the composition of f2 and f1, and we write f = f2 ◦ f1:
that is,

(f2 ◦ f1)(x) = f2(f1(x)).

We illustrate this operation in Fig. 7.4.

x f
1
(x) f

2
(f

1
(x))

D(f
1
) D(f

2
)

f
1 f

2

FIGURE 7.4. Illustration of the composition f2 ◦ f1.

Example 7.15. If f1(x) = x2 and f2(x) = x + 1, then f1 ◦ f2(x) =
f1(f2(x)) = (x + 1)2, while f2 ◦ f1 = f2(f1(x)) = x2 + 1.

This example illustrates the general fact that f2 ◦ f1 �= f1 ◦ f2 most of the
time.

Determining the domain of the composition of f2◦f1 can be complicated.
Certainly to compute f2(f1(x)) we have to insure that x is in the domain
of f1 so that f1(x) is defined. Next we apply f2 to the result; therefore
f1(x) must have a value that is in the domain of f2. Therefore the domain
of f2 ◦ f1 is the set of points x in D(f1) such that f1(x) is in D(f2).

Example 7.16. Let f1(x) = 3 + 1/x2 and f2(x) = 1/(x − 4). Then
D(f1) = {x in Q : x �= 0} while D(f2) = {x in Q : x �= 4}. Therefore
to compute f2 ◦ f1, we must avoid any points where 3 + 1/x2 = 4 or
1/x2 = 1 or x = 1 and x = −1. We conclude that D(f2◦f1) = {x in Q :
x �= 0, 1,−1}.
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Chapter 7 Problems

7.1. Determine the domains of the following functions:

(a) 3(x − 4)3 + 2x2 +
4x

3x − 1
+

6
(x − 1)2

(d)
(2x − 3) 2

x

4x + 6

(b) 2 +
4
x

− 6x + 4
(x − 2)(2x + 1)

(e)
6x − 1

(2 − 3x)(4 + x)

(c) x3
(

1 +
1
x

)
(f)

4
x + 2

+
6

x2 + 3x + 2
.

7.2. Write the following linear combinations using the sigma notation and de-
termine the domain of the result:

(a) 2x(x − 1) + 3x2(x − 1)2 + 4x3(x − 1)3 + · · · + 100x101(x − 1)101

(b)
2

x − 1
+

4
x − 2

+
8

x − 3
+ · · · +

8192
x − 13

.

7.3. (a) Let f(x) = ax+ b, where a and b are numbers, and show that f(x+y) =
f(x) + f(y) for all numbers x and y if and only if b = 0. (b) Let g(x) = x2 and
show that g(x + y) �= g(x) + g(y) unless x and y have special values.

7.4. Write the function in Example 7.4 as a linear combination in two new ways.

7.5. Write the following linear combinations in two new ways:

(a) 2x + 3 + 5(x + 2)

(b) 2x2 + 4x4 − 2(x2 + x4)

(c)
1
x

+
2

x − 1
+

3
x(x − 1)

.

7.6. Show the following functions are linearly dependent or prove they are lin-
early independent:

(a) {x + 1, x − 3} (b) {x, 2x + 1, 4}

(c) {2x − 1, 3x, x2 + x} (d)
{

1
x

,
1

x − 1
,

1
x(x − 1)

}

(e) {4x + 1, 6x2 − 3, 2x2 + 8x + 2} (f)
{

1
x

,
1
x2 ,

1
x3

}
.

7.7. Prove the functions
{

1
x

,
1
x2 ,

1
x3 , · · ·

}
are linearly independent using induc-

tion.

7.8. Use polynomial division on the following rational functions to show that
the denominator divides the numerator exactly or to compute the remainder if
not:
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(a)
x2 + 2x − 3

x − 1
(b)

2x2 − 7x − 4
2x + 1

(c)
4x2 + 2x − 1

x + 6
(d)

x3 + 3x2 + 3x + 2
x + 2

(e)
5x3 + 6x2 − 4
2x2 + 4x + 1

(f)
x4 − 4x2 − 5x − 4

x2 + x + 1

(g)
x8 − 1
x3 − 1

(h)
xn − 1
x − 1

, n in N .

7.9. Prove the formula for the geometric sum (3.3) holds by using induction on
long division on the expression

pn+1 − 1
p − 1

.

Hint: Another way to view this is to note that (1−p)(1+p+p2 +p3 + · · ·+pn) =
1 + p + p2 + p3 + · · · + pn − p − p2 − p3 − · · · − pn − pn+1 and that a lot of terms
cancel in this last sum.

7.10. Given f1(x) = 3x−5, f2(x) = 2x2+1, and f3(x) = 4/x, write out formulas
for the following functions:

(a) f1 ◦ f2 (b) f2 ◦ f3 (c) f3 ◦ f1 (d) f1 ◦ f2 ◦ f3 .

7.11. With f1(x) = 4x + 2 and f2(x) = x/x2, show that f1 ◦ f2 �= f2 ◦ f1.

7.12. Let f1(x) = ax + b and f2(x) = cx + d, where a, b, c, and d are rational
numbers. Find a condition on the numbers a, b, c, and d that implies that f1◦f2 =
f2 ◦ f1 and produce an example that satisfies the condition.

7.13. For the given functions f1 and f2, determine the domain of f2 ◦ f1:

(a) f1(x) = 4 − 1
x

and f2(x) =
1
x2

(b) f1(x) =
1

(x − 1)2
− 4 and f2(x) =

x + 1
x

.



8
Lipschitz Continuity

Recall that when we graph functions of rational numbers, we make a leap of
faith and assume that the function varies “smoothly” between the sample
points. In fact, a basic problem in calculus is determining how much a
function changes for a given change in input. In this chapter, we investigate
the conditions under which a function varies smoothly as well as making
the idea of varying smoothly more precise. As a first step in understanding
smooth behavior, we introduce a property of functions called continuity
that eliminates sharp changes.

Up to this point, we have been collecting facts about numbers and func-
tions that we need for analysis, but have not been spending much time
on the practice of analysis, that is on making estimates. Analysis depends
on making estimates and it is necessary to learn the craft of estimation in
order to do analysis. We start explaining the process of making estimates
in this chapter. One way to learn to make estimates is to first study and
understand other people’s arguments, then apply those same arguments to
new problems.

8.1 Continuous Behavior and Linear Functions

A function behaves continuously, or is continuous, if the change in its
values can be made small by making the change in the input small. To
make this definition more precise, we consider the behavior of a linear
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polynomial.1 The value of a constant polynomial doesn’t change when we
change the input, so the linear polynomial is the first interesting example
to consider. Based on their graphs, linear polynomials certainly behave
continuously.

Suppose the linear function is y = mx + b and we set y1 = mx1 + b and
y2 = mx2 + b to be the values at two rational numbers x1 and x2. The
change in the input is |x2 −x1| and the corresponding change in the output
of the function is |y2 − y1|. We can compute a relation between these:

|y2 − y1| = |(mx2 + b) − (mx1 + b)| = |m||x2 − x1|. (8.1)

In other words, the absolute value of the change in the function values is
proportional to the absolute value of the change in the input values with
constant of proportionality equal to |m|. In particular, this means that we
can make the change in the output arbitrarily small by making the change
in the input small, which certainly fits our intuition that a linear function
varies continuously.

Example 8.1. Let f(x) = 2x give the total number of miles for an
“out and back” bicycle ride that is x miles one way. To increase a given
ride by a total of 4 miles, we increase the one way distance x by 4/2 = 2
miles while to increase a ride by a total of .01 miles, we increase the
one way distance x by .005 miles.

In contrast, the step function (6.8) is not continuous, or is discontinu-
ous, at 0. We recall the graph of I(t) in Fig. 8.1. If we choose t1 < 0 and

-3 -1

t

-1

 

1

2 I(t)

1 3

FIGURE 8.1. Plot of the step function I(t).

t2 > 0, then |I(t2) − I(t1)| = 1 regardless of the size of |t2 − t1|. Functions
like the step function that make sudden changes for small changes in input

1By the way, we consider linear polynomials because we actually know everything
about them. This won’t be the last time that we base an investigation of complicated
functions on the behavior of linear polynomials!
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cause a lot of trouble. Think about what happens to electronic equipment
when the power supply abruptly spikes during a thunderstorm.

Note that the slope m of the linear function f(x) = mx + b determines
how much the function values change as the input value x changes. The
steeper the line, the more the function changes for a given change in input.
We illustrate in Fig. 8.2.

y=3x

y=x/2

FIGURE 8.2. The outputs of these two lines change a different amount for a
given change in input.

Example 8.2. Suppose that f1(x) = 4x + 1 while f2(x) = 100x − 5.
To increase the value of f1(x) at x by an amount of .01, we change
the value of x by .01/4 = .0025. On the other hand, to change the
value of f2(x) at x by an amount of .01, we change the value of x by
.01/100 = .0001.

8.2 The Definition of Lipschitz Continuity

The idea is to extend the relation between the change in the output of
a linear function and the change in the input to general functions. Let
f : I → Q be a function defined on a set I of rational numbers and taking
on rational values f(x) for each rational x.

Example 8.3. A typical example of a set I is a rational interval, i.e.
{x in Q : a ≤ x ≤ b} for some rational numbers a and b.

In general, if x1 and x2 are two numbers in I, then |x2 − x1| is the change
in the input and |f(x2)−f(x1)| is the corresponding change in the output.
We say that f is Lipschitz continuous with Lipschitz constant L on
I if there is a nonnegative constant L such that

|f(x1) − f(x2)| ≤ L|x1 − x2| (8.2)
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for all x1 and x2 in I.

Example 8.4. A linear function f(x) = mx+b is Lipschitz continuous
with Lipschitz constant L = |m| on the entire set of rational numbers
Q.

Example 8.5. We show that f(x) = x2 is Lipschitz continuous on
the interval I = [−2, 2] with Lipschitz constant L = 4. We choose two
rational numbers x1 and x2 in [−2, 2]. The corresponding change in the
function values is

|f(x2) − f(x1)| = |x2
2 − x2

1|.

The goal is to estimate this in terms of the difference in the input
values |x2 −x1|. Using the identity for products of polynomials derived
in Chapter 6, we get

|f(x2) − f(x1)| = |x2 + x1| |x2 − x1|. (8.3)

We have the desired difference on the right, but it is multiplied by a
factor that depends on x1 and x2. In contrast, the analogous relation-
ship (8.1) for the linear function has a factor that is constant, namely,
|m|. At this point, we have to use the fact that x1 and x2 are in the
interval [−2, 2], which means that

|x2 + x1| ≤ |x2| + |x1| ≤ 2 + 2 = 4

by the triangle inequality. We conclude that

|f(x2) − f(x1)| ≤ 4|x2 − x1|

for all x1 and x2 in [−2, 2].

If there is no such Lipschitz constant, then the function may not behave
continuously.

Example 8.6. The step function I(t) is not Lipschitz continuous on
any interval that contains 0, for example, [−.5, .5]. If we choose t1 < 0
and t2 > 0 in [−.5, .5], then I(t1) = 0 and I(t2) = 1 and there is no
constant L such that

|I(t2) − I(t1)| = 1 ≤ L|t2 − t1|

for all such t1 and t2 since given any value of L, we can make L|t2 − t1|
arbitrarily small by choosing t2 close to t1.

Lipschitz continuity quantifies the idea of continuous behavior using the
Lipschitz constant L. If L is moderately sized, then small changes in input
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yield small changes in the function’s output, but a large Lipschitz constant
means that the function’s values may make a large change when the input
values change by a small amount.

However, it is important to note that there is a certain amount of inherent
imprecision in the definition of Lipschitz continuity (8.2), and we have to be
circumspect about drawing conclusions when a Lipschitz constant is large.
The reason is that (8.2) is only an upper estimate on how much the function
changes, and the actual change might be much smaller than indicated by
a Lipschitz constant.2

Example 8.7. Example 8.5 shows that f(x) = x2 is Lipschitz contin-
uous on I = [−2, 2] with Lipschitz constant L = 4. It is also Lipschitz
constant on I with Lipschitz constant L = 121 since

|f(x2) − f(x1)| ≤ 4|x2 − x1| ≤ 121|x2 − x1|.

But the second value of L greatly overestimates the change in f , whereas
the value L = 4 is just about right when x is near 2, since 22 − 1.92 =
.39 = 3.9 × (2 − 1.9) and 3.9 ≈ 4.

To determine a Lipschitz constant, we have to make some estimates and
the result can vary greatly depending on how difficult the estimates are to
compute.

Note that if we change the interval, then we expect to get a different
Lipschitz constant L.

Example 8.8. We show that f(x) = x2 is Lipschitz continuous on the
interval I = [2, 4], with Lipschitz constant L = 8. Starting with (8.3),
for x1 and x2 in [2, 4] we have

|x2 + x1| ≤ |x2| + |x1| ≤ 4 + 4 = 8

so
|f(x2) − f(x1)| ≤ 8|x2 − x1|

for all x1 and x2 in [2, 4].

The reason that the Lipschitz constant is bigger in the second example
is clear from the graph (see Fig. 8.3), where we show the change in f
corresponding to equal changes in x near x = 2 and x = 4. Because f(x) =
x2 is steeper near x = 4, f changes more near x = 4 for a given change in
input.

Example 8.9. f(x) = x2 is Lipschitz continuous on I = [−8, 8] with
Lipschitz constant L = 16 and on I = [−400, 200] with L = 800.

2That is why we avoid talking about a Lipschitz constant as if it is unique.
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16

0 4-4 -2 2

FIGURE 8.3. The change in f(x) = x2 for equal changes in x near x = 2 and
x = 4.

The definition of Lipschitz continuity is due to Lipschitz.3 It is not the
most general notion of continuity. However, the assumption of Lipschitz
continuity is frequently encountered in mathematical modeling and analy-
sis in science and engineering. Moreover, the assumption of Lipschitz con-
tinuity makes it possible to give constructive proofs of some fundamental
results in analysis. So we use Lipschitz continuity until Chapter 32, where
we explore other notions of continuity.

8.3 Bounded Sets of Numbers

In all of the examples involving f(x) = x2, we use the fact that the interval
under consideration is of finite size. A set of rational numbers I is bounded
with size less than or equal to b−a if I is contained in the finite interval [a, b].
We often try to take [a, b] to be the smallest interval with this property, in

3Rudolf Otto Sigismund Lipschitz (1832–1903) worked in Germany, first as a high
school teacher and later as a university professor. Lipschitz studied number theory, the
theory of Bessel functions, Fourier series, differential equations, analytical mechanics,
and potential theory. He used the Lipschitz condition to generalize a result of Cauchy
on the existence of a solution of an ordinary differential equation.
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which case we set |I| = b − a to be the size of I.4 Any finite interval [a, b]
is bounded with |[a, b]| = b − a.

Example 8.10. The set of rational numbers I = [−1, 500] is bounded
with |I| = 501 but the set of even integers is not bounded.

While linear functions are Lipschitz continuous on the unbounded set Q,
functions that are not linear are usually only Lipschitz continuous on
bounded sets.

Example 8.11. The function f(x) = x2 is not Lipschitz continuous on
the set Q of rational numbers. This follows from (8.3) because |x1 +x2|
can be made arbitrarily large by choosing x1 and x2 freely in Q, so it
is not possible to find a constant L such that

|f(x2) − f(x1)| = |x2 + x1||x2 − x1| ≤ L|x2 − x1|

for all x1 and x2 in Q.

8.4 Monomials

Continuing the investigation of continuous functions, we next show that
the monomials are Lipschitz continuous on bounded intervals, as we expect
based on their graphs.

Example 8.12. We show that the function f(x) = x4 is Lipschitz
continuous on I = [−2, 2] with Lipschitz constant L = 32. We choose
x1 and x2 in I and we estimate

|f(x2) − f(x1)| = |x4
2 − x4

1|

in terms of |x2 − x1|.
To do this, we first show that

x4
2 − x4

1 = (x2 − x1)(x3
2 + x2

2x1 + x2x
2
1 + x3

1)

by multiplying out

(x2 − x1)(x3
2 + x2

2x1 + x2x
2
1 + x3

1)

= x4
2 + x3

2x1 + x2
2x

2
1 + x2x

3
1 − x3

2x1 − x2
2x

2
1 − x2x

3
1 − x4

1

and then canceling the terms in the middle to get x4
2 − x4

1.

4The existence of such a smallest interval is an interesting question that we address
in Chapter 32.
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This means that

|f(x2) − f(x1)| = |x3
2 + x2

2x1 + x2x
2
1 + x3

1| |x2 − x1|.

We have the desired difference |x2 − x1| on the right and we just have
to bound the factor |x3

2 + x2
2x1 + x2x

2
1 + x3

1|. By the triangle inequality,

|x3
2 + x2

2x1 + x2x
2
1 + x3

1| ≤ |x2|3 + |x2|2|x1| + |x2||x1|2 + |x1|3.

Now because x1 and x2 are in I, |x1| ≤ 2 and |x2| ≤ 2, so

|x3
2 + x2

2x1 + x2x
2
1 + x3

1| ≤ 23 + 222 + 222 + 23 = 32

and
|f(x2) − f(x1)| ≤ 32|x2 − x1|.

Recall that a Lipschitz constant of f(x) = x2 on I is L = 4. The fact that
a Lipschitz constant of x4 is larger than the constant for x2 on [−2, 2] is
not surprising considering the plots of the two functions, see Fig. 6.3.

We can use the same technique to show that the function f(x) = xm is
Lipschitz continuous where m is any natural number.5

Example 8.13. The function f(x) = xm is Lipschitz continuous on
any interval I = [−a, a], where a is a positive rational number, with
Lipschitz constant L = mam−1. Given x1 and x2 in I, we want to
estimate

|f(x2) − f(x1)| = |xm
2 − xm

1 |

in terms of |x2 − x1|. We can do this using the fact that

xm
2 − xm

1 = (x2 − x1)(xm−1
2 + xm−2

2 x1 + · · · + x2x
m−2
1 + xm−1

1 )

= (x2 − x1)
m−1∑

i=0

xm−1−i
2 xi

1.

We show this by first multiplying out

(x2 − x1)
m−1∑

i=0

xm−1−i
2 xi

1 =
m−1∑

i=0

xm−i
2 xi

1 −
m−1∑

i=0

xm−1−i
2 xi+1

1 .

To see that there is a lot of cancellation among the terms in the middle
in the two sums on the right, we separate the first term out of the first

5This is the first really hard estimate we encounter. When reading a difficult piece
of analysis, we have to avoid concentrating so hard on the details that we forget about
the goal of the analysis and how we might get there.
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sum and the last term in the second sum,

(x2 − x1)
m−1∑

i=0

xm−1−i
2 xi

1

= xm
2 +

m−1∑

i=1

xm−i
2 xi

1 −
m−2∑

i=0

xm−1−i
2 xi+1

1 − xm
1 ,

and then change the index in the second sum to get

(x2 − x1)
m−1∑

i=0

xm−1−i
2 xi

1

= xm
2 +

m−1∑

i=1

xm−i
2 xi

1 −
m−1∑

i=1

xm−i
2 xi

1 − xm
1 = xm

2 − xm
1 .

This is tedious, but it is good practice to go through the details and
make sure this argument is correct.

This means that

|f(x2) − f(x1)| =

∣
∣
∣
∣
∣

m−1∑

i=0

xm−1−i
2 xi

1

∣
∣
∣
∣
∣

|x2 − x1|.

We have the desired difference |x2 − x1| on the right and we just have
to bound the factor ∣

∣
∣
∣
∣

m−1∑

i=0

xm−1−i
2 xi

1

∣
∣
∣
∣
∣
.

By the triangle inequality,

∣
∣
∣
∣
∣

m−1∑

i=0

xm−1−i
2 xi

1

∣
∣
∣
∣
∣
≤

m−1∑

i=0

|x2|m−1−i|x1|i.

Now because x1 and x2 are in [−a, a], |x1| ≤ a and |x2| ≤ a. So

∣
∣
∣
∣
∣

m−1∑

i=0

xm−1−i
2 xi

1

∣
∣
∣
∣
∣
≤

m−1∑

i=0

am−1−iai =
m−1∑

i=0

am−1 = mam−1

and

|f(x2) − f(x1)| ≤ mam−1|x2 − x1|.
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8.5 Linear Combinations of Functions

Now that we have seen that the monomials are Lipschitz continuous on a
given interval, it is a short step to show that any polynomial is Lipschitz
continuous on a given interval. But rather than just do this for polynomials,
we show that a linear combination of Lipschitz continuous functions is
Lipschitz continuous.

Suppose that f1 is Lipschitz continuous with constant L1 and f2 is Lip-
schitz continuous with constant L2 on the interval I.6 Then f1 + f2 is
Lipschitz continuous with constant L1 + L2 on I, because if we choose two
points x and y in I, then

|(f1 + f2)(y) − (f1 + f2)(x)| = |(f1(y) − f1(x)) + (f2(y) − f2(x))|
≤ |f1(y) − f1(x)| + |f2(y) − f2(x)|
≤ L1|y − x| + L2|y − x|
= (L1 + L2)|y − x|

by the triangle inequality. The same argument shows that f2−f1 is Lipschitz
continuous with constant L1 + L2 as well. It is even easier to show that
if f(x) is Lipschitz continuous on an interval I with Lipschitz constant L,
then cf(x) is Lipschitz continuous on I with Lipschitz constant |c|L.

From these two facts, it is a short step to extend the result to any linear
combination of Lipschitz continuous functions. Suppose that f1, · · · , fn are
Lipschitz continuous on I with Lipschitz constants L1, · · · , Ln, respectively.
We use induction, so we begin by considering the linear combination of two
functions. From the remarks above, it follows that c1f1 + c2f2 is Lipschitz
continuous with constant |c1|L1 + |c2|L2. Next given i ≤ n, we assume that
c1f1 + · · · + ci−1fi−1 is Lipschitz continuous with constant |c1|L1 + · · · +
|ci−1|Li−1. To prove the result for i, we write

c1f1 + · · · + cifi =
(
c1f1 + · · · + ci−1fi−1

)
+ cnfn.

But the assumption on
(
c1f1 + · · ·+ ci−1fi−1

)
means that we have written

c1f1 + · · · + cifi as the sum of two Lipschitz continuous functions, namely(
c1f1 + · · · + ci−1fi−1

)
and cnfn. The result follows by the result for the

linear combination of two functions. By induction, we have proved the
following theorem:

Theorem 8.1 Suppose that f1, · · · , fn are Lipschitz continuous on I with
Lipschitz constants L1, · · · , Ln respectively. The linear combination c1f1 +
· · · + cnfn is Lipschitz continuous on I with Lipschitz constant |c1|L1 +
· · · + |cn|Ln.

6Likely, f1 and f2 are Lipschitz continuous on intervals I1 and I2, respectively, and
we take I = I1 ∩ I2.
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Corollary 8.2 A polynomial is Lipschitz continuous on any bounded in-
terval.

Example 8.14. We show that the function f(x) = x4−3x2 is Lipschitz
continuous on I = [−2, 2], with constant L = 44. For x1 and x2 in
[−2, 2], we have to estimate

|f(x2) − f(x1)| = |(x4
2 − 3x2

2) − (x4
1 − 3x2

1)|
= |(x4

2 − x4
1) − (3x2

2 − 3x2
1)|

≤ |x4
2 − x4

1| + 3|x2
2 − x2

1|.

Example 8.13 shows that x4 is Lipschitz continuous on I with constant
32 while x2 is Lipschitz continuous on [−2, 2] with constant 4. Therefore

|f(x2) − f(x1)| ≤ 32|x2 − x1| + 3 × 4|x2 − x1| = 44|x2 − x1|.

8.6 Bounded Functions

Lipschitz continuity is related to another important property of a function
called boundedness. A function f is bounded on a set of rational numbers
I if there is a constant M such that

|f(x)| ≤ M for all x in I.

Note that in every case, the arguments needed to verify the definition of
Lipschitz continuity (8.2) involve showing that some function is bounded
on a given interval.

Example 8.15. To show that f(x) = x2 is Lipschitz continuous on
[−2, 2] in Example 8.5, we proved that |x1 + x2| ≤ 4 for x1 and x2 in
[−2, 2].

It turns out that a function that is Lipschitz continuous on a bounded
domain is automatically bounded on that domain. To be more precise,
suppose that a function f is Lipschitz continuous with Lipschitz constant
L on a bounded set I with size |I| and choose a point y in I. Then for any
other point x in I

|f(x) − f(y)| ≤ L|x − y|.
Now, |x − y| ≤ |I|. Also, since |c + d| ≤ |e| implies |c| ≤ |d| + |e| for any
numbers c, d, e, we get

|f(x)| ≤ |f(y)| + L|x − y| ≤ |f(y)| + L|I|.

Even though we don’t know |f(y)|, we do know that it is finite. This shows
that |f(x)| is bounded by the constant M = |f(y)| + L|I| for any x in I,
and we have proved:
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Theorem 8.3 A Lipschitz continuous function on a bounded set I is
bounded on I.

Example 8.16. In Example 8.14, we showed that f(x) = x4 + 3x2 is
Lipschitz continuous on [−2, 2] with Lipschitz constant L = 44. Using
this argument, we find that

|f(x)| ≤ |f(0)| + 44|x − 0| ≤ 0 + 44 × 2 = 88

for any x in [−2, 2]. In fact, since x4 is increasing for 0 ≤ x, |f(x)| ≤
|f(2)| = 16 for any x in [−2, 2]. So the estimate on the size of |f | using
the Lipschitz constant 44 is not very accurate.

By the way, bounded functions are not necessarily Lipschitz continuous.

Example 8.17. The step function in Model 6.8 is a bounded function
that is not Lipschitz continuous on any set I that contains 0 and points
near 0.

8.7 Products and Quotients of Functions

The next step in investigating which functions are Lipschitz continuous is
to consider the product of two Lipschitz continuous functions on a bounded
interval I. We show that the product is also Lipschitz continuous on I. More
precisely, if f1 is Lipschitz continuous with constant L1 and f2 is Lipschitz
continuous with constant L2 on a bounded interval I, then f1f2 is Lipschitz
continuous on I. We choose two points x and y in I and estimate by using
the old trick of adding and subtracting the same quantity

|f1(y)f2(y) − f1(x)f2(x)|
= |f1(y)f2(y) − f1(y)f2(x) + f1(y)f2(x) − f1(x)f2(x)|
≤ |f1(y)f2(y) − f1(y)f2(x)| + |f1(y)f2(x) − f1(x)f2(x)|
= |f1(y)| |f2(y) − f2(x)| + |f2(x)| |f1(y) − f1(x)|.

Theorem 8.3, which says that Lipschitz continuous functions are bounded,
implies there is some constant M such that |f1(y)| ≤ M and |f2(x)| ≤ M
for x, y ∈ I. Using the Lipschitz continuity of f1 and f2 in I, we find

|f1(y)f2(y) − f1(x)f2(x)| ≤ ML1|y − x| + ML2|y − x|
= M(L1 + L2)|y − x|.

We summarize as follows:

Theorem 8.4 If f1 and f2 are Lipschitz continuous on a bounded interval
I, then f1f2 is Lipschitz continuous on I.
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Example 8.18. The function f(x) = (x2+5)10 is Lipschitz continuous
on the set I = [−10, 10] because x2 + 5 is Lipschitz continuous on I
and therefore (x2 + 5)10 = (x2 + 5)(x2 + 5) · · · (x2 + 5) is as well by
Theorem 8.4.

We can extend this result to unbounded intervals provided we know that
f1 and f2 are bounded in addition to being Lipschitz continuous.

Continuing the investigation, we consider the quotient of two Lipschitz
continuous functions. In this case, however, we require more information
about the function in the denominator than just that it is Lipschitz continu-
ous. We also have to know that it does not become too small. To understand
this, we first consider an example.

Example 8.19. We show that f(x) = 1/x2 is Lipschitz continuous on
the interval I = [1/2, 2], with Lipschitz constant L = 64. We choose
two points x1 and x2 in I and we estimate the change

|f(x2) − f(x1)| =
∣
∣
∣
∣

1
x2

2
− 1

x2
1

∣
∣
∣
∣

by first doing some algebra

1
x2

2
− 1

x2
1

=
x2

1

x2
1x

2
2

− x2
2

x2
1x

2
2

=
x2

1 − x2
2

x2
1x

2
2

=
(x1 + x2)(x1 − x2)

x2
1x

2
2

.

This means that

|f(x2) − f(x1)| =
∣
∣
∣
∣
x1 + x2

x2
1x

2
2

∣
∣
∣
∣ |x2 − x1|.

Now we have the looked-for difference on the right, we just have to
bound the factor in front. The numerator of the factor is the same as
in Example 8.5 and so

|x1 + x2| ≤ 4.

Also,

x1 ≥ 1
2

implies
1
x1

≤ 2 implies
1
x2

1
≤ 4

and likewise 1
x2
2

≤ 4. So we get

|f(x2) − f(x1)| ≤ 4 × 4 × 4 |x2 − x1| = 64|x2 − x1|.

Note, we use the fact that the left-hand endpoint of the interval I is 1/2. The
closer the left-hand endpoint is to zero, the larger the Lipschitz constant
has to be. In fact, 1/x2 is not Lipschitz continuous on (0, 2].

We mimic this example in the general case f1/f2 by assuming that the
denominator f2 is bounded below by a positive constant. We give the
proof of the following theorem as Problem 8.16.
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Theorem 8.5 Assume that f1 and f2 are Lipschitz continuous on a bound-
ed set I with constants L1 and L2 and moreover assume there is a constant
m > 0 such that |f2(x)| ≥ m for all x in I. Then f1/f2 is Lipschitz
continuous on I.

Example 8.20. The function 1/x2 does not satisfy the assumptions
of Theorem 8.5 on the interval (0, 2] and it is not Lipschitz continuous
on that interval.

8.8 The Composition of Functions

We conclude the investigation into Lipschitz continuity by considering the
composition of Lipschitz continuous functions. This is actually easier than
either products or ratios of functions. The only complication is that we
have to be careful about the domains and ranges of the functions. Consider
the composition f2(f1(x)). Presumably, we have to restrict x to an interval
on which f1 is Lipschitz continuous and we also have to make sure that the
values of f1 are in a set on which f2 is Lipschitz continuous.

So we assume that f1 is Lipschitz continuous on I1 with constant L1 and
that f2 is Lipschitz continuous on I2 with constant L2. If x and y are points
in I1, then as long as f1(x) and f1(y) are in I2, we have

|f2(f1(y)) − f2(f1(x))| ≤ L2|f1(y) − f1(x)| ≤ L1L2|y − x|.

We summarize as a theorem.

Theorem 8.6 Let f1 be Lipschitz continuous on a set I1 with Lipschitz
constant L1 and f2 be Lipschitz continuous on I2 with Lipschitz constant
L2 such that f1(I1) ⊂ I2. Then the composite function f2 ◦ f1 is Lipschitz
continuous on I1 with Lipschitz constant L1L2.

Example 8.21. The function f(x) = (2x−1)4 is Lipschitz continuous
on any bounded interval since f1(x) = 2x − 1 and f2(x) = x4 are
Lipschitz continuous on any bounded interval. If we consider the interval
[−.5, 1.5], then f1(I) ⊂ [−2, 2]. From Example 8.12, we know that x4

is Lipschitz continuous on [−2, 2] with Lipschitz constant 32, while a
Lipschitz constant of 2x − 1 is 2. Therefore, f is Lipschitz continuous
on [−.5, 1.5] with constant 64.

Example 8.22. The function 1/(x2 − 4) is Lipschitz continuous on
any closed interval that does not contain either 2 or −2. This follows
because f1(x) = x2 −4 is Lipschitz continuous on any bounded interval
while f2(x) = 1/x is Lipschitz continuous on any closed interval that
does not contain 0. To avoid zero, we must avoid x2 = 4 or x = ±2.
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Chapter 8 Problems

8.1. Verify the claims in Example 8.9.

In Problems 8.2–8.7, verify the definition of Lipschitz continuity to show
the indicated functions are Lipschitz continuous.

8.2. Show that f(x) = x2 is Lipschitz continuous on [10, 13].

8.3. Show that f(x) = 4x − 2x2 is Lipschitz continuous on [−2, 2].

8.4. Show that f(x) = x3 is Lipschitz continuous on [−2, 2].

8.5. Show that f(x) = |x| is Lipschitz continuous on Q.

8.6. Show that f(x) = 1/x2 is Lipschitz continuous on [1, 2].

8.7. Show that f(x) = 1/(x2 + 1) is Lipschitz continuous on [−2, 2].

8.8. In Example 8.12, we show that x4 is Lipschitz continuous on [−2, 2] with
Lipschitz constant L = 32. Explain why this is a reasonable value for a Lipschitz
constant.

Problems 8.9–8.12 deal with functions for which verifying the Lipschitz
continuity condition is either problematic or impossible.

8.9. Compute a Lipschitz constant of f(x) = 1/x on the intervals (a) [.1, 1], (b)
[.01, 1], and [.001, 1].

8.10. Explain why f(x) = 1/x is not Lipschitz continuous on (0, 1].

8.11. (a) Explain why the function

f(x) =

{
1, x < 0,

x2, x ≥ 0,

is not Lipschitz continuous on [−1, 1]. (b) Is f Lipschitz continuous on [1, 4]?

8.12. Suppose a Lipschitz constant L of a function f is equal to L = 10100.
Discuss the continuity properties of f(x) and in particular decide if f continuous
from a practical point of view.

8.13. Assume that f1 is Lipschitz continuous with constant L1 and f2 is Lipschitz
continuous with constant L2 on a set I, and let c be a number. Show that f2 −f1

is Lipschitz continuous with constant L1+L2 on I and cf1 is Lipschitz continuous
with constant |c|L1 on I.

8.14. Show that a Lipschitz constant of a polynomial f(x) =
∑n

i=0 aix
i on the

interval [−c, c] is

L =
n∑

i=1

|ai|ici−1 = |a1| + 2c|a2| + · · · + ncn−1|an|.
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8.15. Explain why f(x) = 1/x is not bounded on {x in [−1, 1], x �= 0}.

8.16. Prove Theorem 8.5.

8.17. Use the theorems in this chapter to show that the following functions are
Lipschitz continuous on the given intervals and compute a Lipschitz constant, or
prove they are not Lipschitz continuous:

(a) f(x) = 2x4 − 16x2 + 5x on [−2, 2] (b)
1

x2 − 1
on

[
−1

2
,
1
2

]

(c)
1

x2 − 2x − 3
on [2, 3) (d)

(
1 +

1
x

)4

on [1, 2] .

8.18. Show the function

f(x) =
1

c1x + c2(1 − x)
,

where c1 > 0 and c2 > 0, is Lipschitz continuous on [0, 1].



9
Sequences and Limits

With the tools to create complicated functions in hand, we can now model
more complicated situations. However, as with the simple Dinner Soup
model, solving models almost invariably leads to a lot of work. In fact,
usually we cannot solve for the solution of a model in terms of a value
that can be written down concretely like an integer. The best we can do
in general is approximate a solution to increasing accuracy by increasing
amounts of work. This trade-off can be quantified in the mathematical
terms of the limit.

The infinite decimal expansion of rational numbers discussed in Chap-
ter 4 is a particular example of a limit. The limit is the fundamental concept
of analysis.1

9.1 The First Encounter with Sequences and
Limits

We begin with the infinite decimal expansion of 10/9, which by (4.6) can
be written

10
9

= 1.11 · · · 11n +
1
9
10−n.

1The limit also has the dubious honor of being one of the more confusing topics in
analysis and the history of analysis has been a struggle to come to grips with certain
evasive aspects of its definition.
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Rewriting this equation, we get an estimate on the difference between
1.111 · · · 11n and 10/9,

∣
∣
∣
∣
10
9

− 1.11 · · · 11n

∣
∣
∣
∣ ≤ 10−n. (9.1)

If we consider 1.11 · · · 11n as an approximation of 10/9, then (9.1) means
that the error |10/9−1.11 · · · 11n| can be made arbitrarily small by taking
n large. If we want the error to be smaller than 10−9, then we simply choose
n ≥ 10. Computing 1.11 · · · 1n requires more work as n increases, for which
we gain increased accuracy. Trading work for accuracy is the idea behind
limits.2

The concept of the limit applies to the set, or sequence, of successive
approximations {1.1, 1.11, 1.111, · · · , 1.1 · · · 1n, · · · }. The name sequence
suggests that set is to be considered as being ordered from left to right.
In general, a sequence of numbers is a neverending ordered list of numbers
{a1, a2, a3, · · · , an, · · · } called elements, where the index notation is used
to distinguish the elements. We also write

{a1, a2, a3, · · · , an, · · · } = {an}∞
n=1.

The symbol ∞ indicates that the list continues forever in the same sense
that the natural numbers 1, 2, 3, ..., continue forever.

Example 9.1. The sequence of even natural numbers can be written

{2, 4, 6, · · · } = {2n}∞
n=1

and the odd natural numbers as

{1, 3, 5, 7, · · · } = {2n − 1}∞
n=1

and some other sequences:
{

1,
1
22 ,

1
32 ,

1
42 , · · ·

}
=
{

1
n2

}∞

n=1{
1
32 ,

1
42 , · · ·

}
=
{

1
n2

}∞

n=3

{1, 2, 4, 8, · · · } = {2i}∞
i=0

{−1, 1,−1, 1,−1 · · · } = {(−1)j}∞
j=1

{1, 1, 1, · · · } = {1}∞
k=1.

2An estimate like (9.1) gives a quantitative measurement of how much accuracy is
gained for each increase in work, and so such estimates are useful not only to mathe-
maticians but to engineers and scientists.
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Note the index of a sequence is a dummy variable that can be called
anything we like.

Example 9.2.
{
n + n2}∞

n=1 =
{
j + j2}∞

j=1 =
{
Frodo + (Frodo)2

}∞
Frodo =1 .

We can also change its value so the sequence begins with a different number
by reformulating the coefficients.

Example 9.3.
{
1 + 12, 2 + 22, 3 + 32, · · ·

}
=
{
n + n2}∞

n=1 =
{
(j − 2) + (j − 2)2

}∞
j=3 .

See Problems 9.1–9.3.
The sequence {1.11 · · · 11n}∞

n=1 has the property that each number in
the sequence is a better approximation to 10/9 than the preceding number
and as we move from left to right the numbers approach 10/9 in value. In
contrast, a single element, even one with many digits like 1.1111111111111,
has a fixed accuracy. We say that the sequence {1.11 · · · 11n}∞

n=1 converges
to 10/9 and that 10/9 is the limit of the sequence {1.11 · · · 11n}∞

n=1 because
the difference between 10/9 and 1.11 · · · 11n can be made arbitrarily small
by taking the index large.

9.2 The Mathematical Definition of a Limit

The estimate (9.1) implies that 10/9 can be approximated to any specified
accuracy by taking terms in the sequence with sufficiently large index.
This is the observation that we use to define the convergence of a general
sequence. We explain the logic of the definition with an example.

Example 9.4. To tighten or loosen a hex bolt with head diameter 2/3,
a mechanic needs to use a socket wrench of a slightly bigger size. The
tolerance on the difference between the sizes of the bolt and the wrench
depend on the tightness, the material of the bolt and the wrench, and
conditions such as whether the bolt threads are lubricated and whether
the bolt is rusty or not. If the wrench is too large, then the head of the
bolt is in danger of being stripped before the bolt can be tightened or
loosened. Two wrenches with different tolerances are shown in Fig. 9.1.

Now suppose that we have an infinite set of wrenches of sizes .7, .67,
.667, · · · that can be represented as a sequence {.66 · · · 667n}∞

n=1. In
every case the wrenches are bigger than 2/3, but not by much. In fact,
we ask you to show that

∣
∣
∣
∣.66 · · · 667n − 2

3

∣
∣
∣
∣ < 10−n (9.2)
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FIGURE 9.1. Two socket wrenches with different tolerances.

in Problem 9.5. Naturally, (9.2) suggests that {.6 · · · 67n}∞
n=1 converges

to the limit 2/3.

What does this mean in practical terms for the mechanic? Given any
specified tolerance on the size, she can reach into the tool chest and
pull out a wrench that meets the criteria. The accuracy tolerance is not
up to the mechanic, it is specified by some second party like a bicycle
manufacturer. Rather, the mechanic has to meet any specified accuracy
to avoid voiding a warranty. The cost of being able to meet any specified
tolerance is having to stock an expensive set of wrenches.

In general, we say that a sequence {an}∞
n=1 converges to a limit A if it

is possible to make the terms an arbitrarily close to A by taking the index
n sufficiently large. In other words, the difference |an − A| can be made as
small as desired by taking n large. When this is true, we write

lim
n→∞

an = A.

It is convenient to translate this definition into mathematical notation.
From the statement, we can guess that there are two quantities involved:
a bound on the size of |an −A| and a corresponding number that indicates
how large the index has to be to achieve the bound.

In the two examples considered so far, the relation between the size of
|an −A| and n is given by (9.1) and (9.2), both of which guarantee that an

agrees with A to at least n − 1 decimal places. But in general we cannot
expect to gain a whole digit of accuracy each time n is increased by 1. So
the mathematical statement of the convergence has to be more flexible.
Therefore, we specify the size of |an − A| by using a general variable ε
rather than specifying a number of digits.3 The bound on |an − A| should

3Traditionally, ε and δ are used to denote small quantities, though not interchange-
ably. Thinking of δ as “difference” and ε as “error” may help clarify their usage.
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be satisfied for all sufficiently large n. In other words, given ε, there should
be a number N such that the bound is satisfied for all n larger than N .4

Putting this together, the mathematical statement that a sequence con-
verges to a limit reads

lim
n→∞

an = A

if for any ε > 0 there is a number N > 0 such that

|an − A| ≤ ε for all n ≥ N.

We emphasize that the value of N depends on ε, and in particular, we
expect that decreasing ε means that N increases.

Example 9.5. We verify the definition for {1.11 · · · 11n}∞
n=1. We want

to show5 that given ε > 0 there is a N > 0 such that
∣
∣
∣
∣1.11 · · · 11n − 10

9

∣
∣
∣
∣ ≤ ε

for all n ≥ N . Suppose that ε has the decimal expansion

ε = 0.000 · · · 00pmpm+1 · · ·

where the first digit of ε that is nonzero is pm in the mth place. By
(9.1), if we choose n ≥ m, then

∣
∣
∣
∣1.11 · · · 11n − 10

9

∣
∣
∣
∣ ≤ 10−n = .00 · · · 001 ≤ ε.

Therefore given any ε > 0, if we choose N = m, where the first nonzero
digit of ε is in the mth place, then |1.11 · · · 11n − 10/9| < ε for n ≥ N .

We next present a couple of less familiar examples.

Example 9.6. We show that {1/n}∞
n=1 converges to 0, i.e.,

lim
n→∞

1
n

= 0.

This is intuitively obvious since 1/n can be made as close to 0 as desired
by taking n large. It is also visible in a plot of the elements of the
sequence (see Fig. 5.5). But to satisfy the annoying mathematician who
specifies an ε > 0, we show there is an N > 0 such that

∣
∣
∣
∣
1
n

− 0
∣
∣
∣
∣ ≤ ε

4What happens if the bound is satisfied for only some of the n larger than N? We
address this question in Chapter 32.

5It is often helpful to begin these problems by writing out the definition.
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for all n ≥ N . In this case, it is not too hard to determine N since
n ≥ 1/ε implies that 1/n ≤ ε. Therefore given any ε > 0, if N = 1/ε,
then ∣

∣
∣
∣
1
n

− 0
∣
∣
∣
∣ =

1
n

≤ ε (9.3)

for n ≥ N . Note that if ε decreases, then N naturally increases.

In Problem 9.8, we ask you to show that

lim
n→∞

1
np

= 0

where p is any natural number.

Example 9.7. We show that

lim
n→∞

1
2n

= 0.

This limit is suggested by considering a plot of the elements of the
sequence (see Fig. 5.5). By the definition, given ε > 0, we show that
there is an N such that

∣
∣
∣
∣

1
2n

− 0
∣
∣
∣
∣ =

1
2n

≤ ε

for n ≥ N . Certainly
24 = 16 ≥ 10

so given any natural number m

1
24m

≤ 1
10m

.

So if ε has the decimal expansion ε = 0.000 · · · 00pmpm+1 · · · , where the
first digit of ε that is nonzero is pm in the mth place, then

1
24m

≤ 1
10m

≤ ε.

Therefore, given any ε > 0, if N = 4m, where the first nonzero digit of
ε is in the mth place, then |1/2n − 0| < ε for n ≥ N .

In general, it is possible to show that

lim
n→∞

rn = 0

when |r| < 1 by using a proof similar to the case r = 1/2. We ask you
to do the case |r| < 1/2 in Problem 9.9. We can show the general result
easily after introducing the logarithm in Chapter 28.
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We continue with a more complicated example.

Example 9.8. We show that the limit of the sequence { n
n+1}∞

n=1 =
{ 1

2 , 2
3 , · · · } equals 1, that is

lim
n→∞

n

n + 1
= 1. (9.4)

This is suggested by a plot of the elements (see Fig. 9.2). We begin by

0 10 20 30
n

0.0

0.5

1.0

FIGURE 9.2. The elements of the sequence {n/(n + 1)}.

simplifying the difference
∣
∣
∣
∣1 − n

n + 1

∣
∣
∣
∣ =

∣
∣
∣
∣
n + 1 − n

n + 1

∣
∣
∣
∣ =

1
n + 1

.

Note that this intuitively shows that n
n+1 can be made arbitrarily close

to 1 by taking n large and so 1 is the limit. To verify the definition,
suppose ε > 0 is given. By the equality above,

∣
∣
∣
∣1 − n

n + 1

∣
∣
∣
∣ =

1
n + 1

≤ ε

provided that n ≥ 1/ε − 1. Given ε > 0, if N ≥ 1/ε − 1, then
∣
∣
∣
∣1 − n

n + 1

∣
∣
∣
∣ ≤ ε

for n ≥ N .

We conclude with an important observation. The examples of conver-
gent sequences presented so far have the property that the elements of the
sequence are rational and the limit of the sequence is a rational number.
This is important because up to now arithmetic is only defined for rational
numbers, and subtraction is used in the definition of the limit. In other
words, the definition of a limit presented so far only makes sense if the
sequence consists of rational numbers and the limit of the sequence is a
rational number.
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This raises the question: does a convergent sequence of rational numbers
always converge to a rational number? The short answer is no, and therein
lies a mystery that confounded generations of mathematicians attempting
to establish a rigorous foundation for analysis. We explain how this can be
in Chapter 10. In this chapter, we simply assume that all sequences consist
of rational numbers, all convergent sequences converge to a rational limit,
and the domains and ranges of all functions are contained in Q. Technically,
this means that the discussion in this chapter does not apply to all rational
sequences that converge. In Chapter 11, we show that this assumption can
be removed and the results in this chapter do hold for general sequences of
numbers.

9.3 Some Background on the Definition of a Limit

Leibniz and Newton6 implicitly used the idea of limits in their versions
of calculus. Newton in particular formulated a definition in words that is
close to the modern definition. But they did not express the idea of a limit
in quantitative terms, and this opened up the early versions of calculus to
criticism about its rigor. As a consequence, there was increasing recognition
of the need for a more precise definition of a limit among mathematicians
following Leibniz and Newton. Cauchy7 was the first person to write down
the modern definition of the limit. We owe the notation “lim” to Weier-

6The English mathematician Sir Isaac Newton (1643–1727) is credited jointly with
the discovery of calculus together with Leibniz. The scope of Newton’s achievements
in mathematics and physics has likely never been surpassed by any other individual.
Remarkably, he made some of his most important scientific discoveries, including the
composition of white light, calculus, and his law of gravitation, while waiting out the
Great Plague of 1644–45 at home. A few years later, Newton became the Lucasian
Professor at Cambridge University; a position he held for eighteen productive years.
Though active in scientific politics, Newton tended to publish his results many years
after they were derived, and only then at the urging of his colleagues. Newton was
always prone to depression and nervous irritability, and the strain of publishing his
renowned Principia caused him to turn away from research in physics and mathematics
for the last forty years of his life. During this period, Newton worked successfully as
Master of the Mint and acquired a fortune. He also worked in theology and alchemy,
producing little that is remembered.

7Augustin Louis Cauchy (1789–1857) was born and worked in France. Cauchy was
incredibly productive, publishing nearly as many papers as Euler (789) while produc-
ing fundamentally important results in nearly all areas of mathematics including real
and complex analysis, ordinary and partial differential equations, matrix theory, Fourier
theory, elasticity, and the theory of light. Cauchy worried about the foundations of anal-
ysis and gave the first rigorous proofs of some well-known results in calculus, including
the first general existence result for ordinary differential equations and the Mean Value
Theorem. Cauchy wrote down the first “ε-δ proof” in proving the Mean Value Theorem.
Cauchy was a principled person in political terms and his career path took up and down
swings as the political winds changed.
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strass,8 who was also a key figure in clarifying the mathematical meaning
of the limit.

9.4 Divergent Sequences

For the sake of comparison, it is a good idea to examine some sequences
that do not converge, or diverge. There are lots of ways for a sequence to
diverge; for example, consider the divergent sequences

{−6, 2,−.4,−.7, 5, 6.1, 2, 9.9,−3, .2, 1, 7, 28, .3,−5.4, · · · }, (9.5)
{(−1)n}∞

n=1 = {−1, 1,−1, 1, · · · }, (9.6)
{(−n)n}∞

n=1 = {−1, 4,−27, · · · }, (9.7)

{n2}∞
n=1 = {1, 4, 9, 16, · · · }. (9.8)

In each case, there is no single number that the terms in the sequence
approach as n increases. In general, we expect that if the elements of a se-
quence are written down at “random” it is likely that the sequence diverges.
The sequences that converge are special.

Also in general, there is relatively little that can be said about a diver-
gent sequence. However, we do distinguish one special case of divergence.
No pattern in the elements of (9.5) can be seen, while the elements of (9.6)
oscillate between two values, but never get close to one value. The ele-
ments of (9.7) also oscillate, but now become bigger as the index increases.
Whereas the elements of (9.8) simply become bigger as the index increases,
which is predictable behavior. We distinguish this case by saying that a
sequence diverges to infinity, and write

lim
n→∞

an = ∞,

whenever the terms grow without bound as the index increases. Mathe-
matically, we say that a sequence diverges to infinity if given any positive
M there is a natural number N such that an ≥ M for n ≥ N .

8Karl Theodor Wilhelm Weierstrass (1815–1897) began his career as a high school
teacher before bursting on the mathematical scene with a few papers and acquiring a
professorship at the University of Berlin. Weierstrass made fundamental contributions
to bilinear forms, infinite series and products, the theory of functions, the calculus of
variations, and the foundations of real analysis. While Weierstrass published relatively
few papers, he was a tremendous lecturer, and his seminars and courses had great impact
on mathematics. Much of the modern concern with complete rigor in analysis originated
with Weierstrass. Weierstrass introduced the notation lim, | |, and the ε-δ definitions
of continuity and limit of a function. Weierstrass was also the first mathematician to
sponsor a woman for a doctorate degree. This was the talented Russian mathematician
Sofia Vasilyevna Kovalevskaya (1850–1891).
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Example 9.9. We show that limn→∞ n2 = ∞ by verifying the defini-
tion. For n ≥ 1, n2 ≥ n. Hence, given any M

n2 ≥ n ≥ M,

provided n ≥ M . This means we take N = M .

Similarly, we say that the sequence diverges to minus infinity, and write

lim
n→∞

an = −∞,

if given any negative M we can find a natural number N such that an ≤ M
for n ≥ N .

9.5 Infinite Series

An important example of sequences is provided by series, or infinite sums.
We begin by recalling the geometric sum discussed in Chapter 3.

Example 9.10. Recall that the sum

1 + r + r2 + · · · + rn =
n∑

i=0

ri

is called the geometric sum of order n with factor r. Both to under-
stand infinite decimal expansions and the Verhulst population model in
Section 4.4, we determined the value of this sum as we take more and
more terms. If we let

sn =
n∑

i=0

ri,

then this is the same thing as studying the convergence of the sequence
{sn}∞

n=0.

To study the convergence, we use the formula

sn =
n∑

i=0

ri =
1 − rn+1

1 − r

that was proved using induction for any r �= 1. If |r| < 1, then as n
increases rn+1 approaches zero in value. Hence it is reasonable to guess
that

lim
n→∞

sn =
1

1 − r

for |r| < 1. This is also suggested by plotting sn, as in Fig. 9.3.
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n

0.0

0.5

1.0

sn

FIGURE 9.3. The elements of the partial sum {sn} of the geometric series with
r = −.9.

We verify this is true using the definition of the limit. Given ε > 0, we
show there is an N such that

∣
∣
∣
∣
1 − rn+1

1 − r
− 1

1 − r

∣
∣
∣
∣ =

∣
∣
∣
∣
rn+1

1 − r

∣
∣
∣
∣ ≤ ε

for all n ≥ N . Equivalently, given ε > 0 we show there is an N > 0
such that

|r|n+1 ≤ ε |1 − r| (9.9)

for |r| < 1. But ε|1 − r| is a fixed number once ε is specified, while
|r|N+1 can be made as small as desired by taking N sufficiently large
when |r| < 1. Certainly (9.9) holds for any n ≥ N once N is determined.
This verifies the definition of convergence, albeit rather vaguely. After
we introduce the logarithm in Chapter 28, an exact relationship between
N and ε is easy to determine.

Based on this result, we call the limit of {sn}∞
n=0 the geometric series

and write

lim
n→∞

sn =
∞∑

i=0

ri = 1 + r + r2 + · · · .

Since this limit is defined for |r| < 1, we say the geometric series con-
verges for |r| < 1 and write

1 + r + r2 + · · · =
1

1 − r
. (9.10)

The sequence {sn}∞
n=0 is called the sequence of partial sums of the

series.

In general, the infinite series

∞∑

i=0

ai = a0 + a1 + · · ·
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is defined to be the limit of the sequence {sn}∞
n=0 of partial sums

sn =
n∑

i=0

ai

when the limit is defined. In this case, we say the infinite series converges.
If the sequence of partial sums of a series diverges to infinity or minus

infinity, then we say that the series diverges to infinity or minus infinity.

Example 9.11. The series
∑∞

i=1 i = 1+2+3+ · · · diverges to infinity.
This follows because the partial sum sn =

∑n
i=1 i satisfies sn ≥ n for

all n. Therefore the partial sums increase without bound as the index
increases.

In this book, infinite series are given much less space than is usual for
calculus and analysis texts. Historically, infinite series were crucial to the
development of analysis. Indeed, much of early analysis, including differen-
tiation formulas, integration, and the existence of solutions of differential
equations, was justified using the properties of infinite series, and many im-
portant analysts worked on the properties of infinite series. Nevertheless,
the role of infinite series in real analysis, which is analysis in the space of
real numbers, has diminished greatly in this century.9

There is a fundamental difference between the smoothness of functions
encountered in real analysis and those encountered in complex analysis,
which is analysis in the space of complex numbers. The so-called analytic
functions that lie at the heart of complex analysis are very smooth and for
this reason are closely connected to infinite series.10 For this reason, infinite
series remain a central topic of complex analysis. We believe the natural
place to learn about infinite series is in a course in complex analysis, and
point to Ahlfors [1], for example.

9.6 Limits Are Unique

In the next few sections, we work out some useful properties of convergent
sequences. The sequences studied in this book are usually constructed as ap-
proximations to a quantity that we want to compute, e.g., {1.11 · · · 1n}∞

n=1
is a sequence of approximations to 10/9. The properties developed in this
chapter make it possible to combine approximations of different quantities
to form an approximation of a new quantity.

9This is one reason that the chapter on infinite series in a standard calculus book is
one of the least popular and least motivated topics from the students’ point of view.

10The connection between smoothness of functions and infinite series is discussed
further in Chapter 37.
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We begin with the observation that the limit of a convergent sequence
is unique. It certainly makes sense that it is impossible for the terms in a
sequence to become arbitrarily close to two different numbers at the same
time. Suppose in fact that a sequence {an}∞

n=1 converges to two numbers
A and B. To show that A and B are equal, we show that the distance
|A−B| is zero. To estimate this difference, we use a variation of the triangle
inequality (2.4) that reads

|a − b| ≤ |a − c| + |c − b| for all a, b, c. (9.11)

We ask you to prove this in Problem 9.14. Using (9.11) with a = A, b = B,
and c = an, we get

|A − B| ≤ |an − A| + |an − B|

for any n. Now because an converges to A, both |an − A| and |an − B| can
be made smaller than |A − B|/4 by taking n sufficiently large. But this
means that |A − B| ≤ |A − B|/2, which can only hold if |A − B| = 0.

Theorem 9.1 A sequence can have at most one limit.

On this topic, there is a minor hiccup regarding the uniqueness of infi-
nite decimal expansions. For example, it is straightforward to show (Prob-
lem 9.15) that limn→∞ 0.99 · · · 99n = 1. This means that 1 has two decimal
representations, namely, 1.000 · · · = 0.9999 · · · . So we have to decide what
we mean when we write a = b, where a and b are not written in the same
way.

A standard approach is to interpret a = b as meaning that we can show
that |a − b| is smaller than any positive number. This is equivalent to
writing a = 0 if we can show that |a| is smaller than any positive number.
Correspondingly, if |a| is bigger than some positive number, then we write
a �= 0. With this definition, we can write .999 · · · = 1 without trouble.11

Another approach is to simply avoid decimal representations ending in
repeated digits of 9 by replacing any such expansion by the equivalent
expansion ending with all 0 digits. Hence when .999 · · · occurs, it is replaced
by 1.000 · · · = 1.

9.7 Arithmetic with Sequences

It turns out that if we perform arithmetic on sequences that converge,
we end up with another convergent sequence. For example, suppose that

11However, this interpretation could trouble a constructivist because verifying that
a = b for arbitrary a and b nominally requires showing |a − b| is smaller than an infinite
number of positive numbers. Verifying that |a − b| is smaller than any finite number of
positive numbers can not settle the issue. This is discussed in more detail in Chapter 11.
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{an}∞
n=1 converges to A and {bn}∞

n=1 converges to B. Then {an + bn}∞
n=1,

the sequence obtained by adding the terms of each individual sequence,
converges to A+B. Since we are trying to prove that {an+bn}∞

n=1 converges
to A+B, we estimate the difference |(an +bn)− (A+B)|. Inequality (9.11)
implies

|(an + bn) − (A + B)| = |(an − A) + (bn − B)|
≤ |an − A| + |bn − B|.

Since |an − A| and |bn − B| can be made as small as desired by taking n
large, |(an + bn) − (A + B)| can be made as small as desired by taking n
large.12

Likewise, {anbn}∞
n=1 converges to AB. This requires a frequently useful

trick of adding and subtracting the same quantity. We have

|(anbn) − (AB)| = |anbn − anB + anB − AB|
= |an(bn − B) + B(an − A)|
≤ |an||bn − B| + |B||an − A|.

We also need the fact that the numbers |an| are smaller than |A| + 1 for n
large, which follows because |an − A| can be made as small as desired for
n large. So for n large,

|(anbn) − (AB)| ≤ (|A| + 1)|bn − B| + |B||an − A|.

Now we can make the differences on the right arbitrarily small by taking n
large.

The analogous properties hold for the difference and quotient of two
sequences (Problems 9.16 and 9.18). We summarize as a theorem.

Theorem 9.2 Suppose that {an}∞
n=1 converges to A and {bn}∞

n=1 con-
verges to B. Then {an+bn}∞

n=1 converges to A+B, {an−bn}∞
n=1 converges

to A − B, {anbn}∞
n=1 converges to AB, and if bn �= 0 for all n and B �= 0,

{an/bn}∞
n=1 converges to A/B.

We say that a sequence {an} is bounded if there is a constant M such
that |an| ≤ M for all indices n. The previous argument also justifies the
following theorem We ask you to provide the details in Problem 9.27.

Theorem 9.3 A convergent sequence is bounded.

12This proof introduces a new level of sophistication into discussions involving conver-
gence. We did not write down the formal definition of convergence to a limit with its ε
and corresponding N . Rather, we use informal language about making certain quantities
“as small as desired” by choosing indices “sufficiently large.” Once we understand how
to argue from the formal definition, then it is convenient to use informal language. But
we point out that we can modify this and the following informal arguments to use the
definition of convergence. We pose this as Problem 9.19.
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This discussion is a bit tedious but it can make computing the limit of a
complicated sequence much easier.

Example 9.12. Consider {2 + 3n−4 + (−1)nn−1}∞
n=1.

lim
n→∞

(2 + 3n−4 + (−1)nn−1)

= lim
n→∞

2 + 3 lim
n→∞

n−4 + lim
n→∞

(−1)nn−4

= 2 + 3 × 0 + 0 = 2.

Example 9.13. We compute the limit of
{

4
1 + n−3

3 + n−2

}∞

n=1

by using Theorem 9.2 to argue

lim
n→∞

4
1 + n−3

3 + n−2 = lim
n→∞

4
limn→∞

(
1 + n−3

)

limn→∞
(
3 + n−2

)

= 4
limn→∞ 1 + limn→∞ n−3

limn→∞ 3 + limn→∞ n−2

= 4
1 + 0
3 + 0

=
4
3
.

Each step in the computations in Examples 9.12 and 9.13 is justified
because we obtain new limits that are defined after every application of
Theorem 9.2. On the other hand, if we attempt to use Theorem 9.2 to
manipulate a sequence and end up with limits that are undefined at some
point, then the computation is not justified by Theorem 9.2.

Example 9.14. Clearly,

lim
n→∞

1 + n

n2 = lim
n→∞

(
1
n2 +

1
n

)
= 0.

However, if we try to use Theorem 9.2 to compute the limit as

lim
n→∞

1 + n

n2 “ = ”
limn→∞ 1 + n

limn→∞ n2 ,

we get nonsense.

9.8 Functions and Sequences

A common way to make a complicated sequence is to apply a function to
each term in a sequence and there by get a new sequence.
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Example 9.15. In the Verhulst model Model 4.4, we consider the
sequence

{Pn}∞
n=1 =






1
1
2n

Q0 +
1
K

(
1 − 1

2n

)






∞

n=1

.

The sequence {Pn} is obtained by applying the function

f(x) =
1

Q0x + 1
K (1 − x)

to the terms in the sequence
{ 1

2n

}
.

Example 9.16. As part of solving the Muddy Yard model in Chap-
ter 10, we need to compute

lim
n→∞

(
an

)2

for a special sequence {an} . Here, we have applied f(x) = x2 to {an}.

Therefore, it is natural to investigate the convergence of a sequence ob-
tained by applying a function to a convergent sequence.

By the way, there are usually several different ways to write a given
sequence in terms of functions and other sequences.

Example 9.17. Consider

lim
n→∞

(
n−2 + 3

)4
. (9.12)

We can choose {an} =
{ 1

n

}
and f(x) = (x2 + 3)4 so (9.12) can be

written
lim

n→∞
f(an) = lim

n→∞

(
(an)2 + 3

)4
.

We can also choose {an} =
{ 1

n2

}
and f(x) = (x + 3)4 so (9.12) can be

written
lim

n→∞
f(an) = lim

n→∞
(an + 3)4 .

Another possibility is {an} =
{ 1

n2 + 3
}

and f(x) = x4 so (9.12) can be
written

lim
n→∞

f(an) = lim
n→∞

(an)4 .

See Problem 9.4 for more examples.

The idea behind convergence is to show that the terms in a sequence
become close to the limit as the index increases. If we apply a function
to a sequence with a limit and the function changes arbitrarily with small
changes of input, i.e., the function is not continuous, then we cannot really
expect much.
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Example 9.18. The sequence
{

−1,
1
2
,
−1
3

,
1
4
, · · ·

}
=
{

(−1)n

n

}

has the limit

lim
n→∞

{
(−1)n

n

}
= 0.

But the sequence obtained by applying the step function I(t) to this
sequence,

{
I(−1), I

(
1
2

)
, I

(
−1
3

)
, I

(
1
4

)
, · · ·

}
= {0, 1, 0, 1, · · · },

diverges.

In other words, it only makes sense to try to compute the limit in such situ-
ations if the function behaves continuously. So we assume that the function
is Lipschitz continuous.

Now suppose that {an} converges to the limit A, where all the an and A
belong to a set I on which f is Lipschitz continuous with Lipschitz constant
L. We define the sequence {bn} by bn = f(an) and we show that

lim
n→∞

bn = f(A).

Actually this follows directly from the definitions of a limit and Lipschitz
continuity. We want to show that |bn −f(A)| can be made arbitrarily small
by taking n large. But

|bn − f(A)| = |f(an) − f(A)| ≤ L|an − A|,

since an and A are in I. We can make the right-hand side arbitrarily small
by taking n sufficiently large since an converges to A. We summarize as

Theorem 9.4 Let {an} be a sequence with limn→∞ an = A and f a Lip-
schitz continuous function on a set I such that an is in I for all n and A
is in I. Then

lim
n→∞

f(an) = f
(

lim
n→∞

an

)
. (9.13)

Example 9.19. In the Verhulst model Model 4.4, we need to compute

lim
n→∞

Pn = lim
n→∞

1
1
2n

Q0 +
1
K

(
1 − 1

2n

) .

The sequence {Pn} is obtained by applying the function

f(x) =
1

Q0x + 1
K (1 − x)
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to the terms in the sequence
{ 1

2n

}
. In this case, f is Lipschitz continuous

on any bounded interval, say, [0, 1]. Since 1/2n is in [0, 1] for all n as is
limn→∞ 1/2n = 0, we compute easily limn→∞ Pn = f(0) = K.

Example 9.20. The function f(x) = x2 is Lipschitz continuous on
bounded intervals, therefore, if {an} converges to A, then

lim
n→∞

(
an

)2 = A2

We can apply this rule to compute more complicated examples as well.

Example 9.21. By Corollary 8.2 and Theorem 9.2,

lim
n→∞

(
3 + 1

n

4 + 2
n

)9

=
(

lim
n→∞

3 + 1
n

4 + 2
n

)9

=
(

limn→∞(3 + 1
n )

limn→∞(4 + 2
n )

)9

=
(

3
4

)9

.

Example 9.22. By Corollary 8.2 and Theorem 9.2,

lim
n→∞

(
(2−n)7 + 14(2−n)4 − 3(2−n) + 2

)

= 2 × 07 + 14 × 04 − 3 × 0 + 2 = 2.

9.9 Sequences with Rational Elements

We conclude the discussion of computing limits of sequences by consider-
ing sequences in which the elements are rational functions of the index.
Such examples are common in modeling, and moreover there is a trick that
enables such sequences to be analyzed relatively easily.

Example 9.23. Consider
{

6n2 + 2
4n2 − n + 1000

}∞

n=1
.

Before computing the limit, we work out what happens when n becomes
large. In the numerator, 6n2 is much larger than 2 when n is large and
likewise in the denominator, 4n2 becomes much larger than −n + 1000
in size when n is large. So we might guess that for n large,

6n2 + 2
4n2 − n + 1000

≈ 6n2

4n2 =
6
4
.
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To see this is a good guess for the limit, we use a trick to put the
sequence in a better form to compute the limit,

lim
n→∞

6n2 + 2
4n2 − n + 1000

= lim
n→∞

(6n2 + 2)n−2

(4n2 − n + 1000)n−2

= lim
n→∞

6 + 2n−2

4 − n−1 + 1000n−2

=
6
4
,

where we finish the computation as usual.

The trick of multiplying top and bottom of a ratio by a power can also be
used to figure out when a sequence converges to zero or diverges to infinity.

Example 9.24.

lim
n→∞

n3 − 20n2 + 1
n8 + 2n

= lim
n→∞

(n3 − 20n2 + 1)n−3

(n8 + 2n)n−3

= lim
n→∞

1 − 20n−1 + n−3

n5 + 2n−2 .

We conclude that the numerator converges to 1 while the denominator
increases without bound. Therefore,

lim
n→∞

n3 − 20n2 + 1
n8 + 2n

= 0.

Example 9.25.

lim
n→∞

−n6 + n + 10
80n4 + 7

= lim
n→∞

(−n6 + n + 10)n−4

(80n4 + 7)n−4

= lim
n→∞

−n2 + n−3 + 10n−4

80 + 7n−4 .

We conclude that the numerator grows in the negative direction without
bound while the denominator tends toward 80. Therefore,

{
−n6 + n + 10

80n4 + 7

}∞

n=1
diverges to −∞.

9.10 Calculus and Computing Limits

In a standard calculus course, it is easy to get the impression that calculus
is about computing limits. Even in this book on analysis, we present many
examples and problems on computing limits. However, rarely are we able
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to compute the limits of the sequences that arise in mathematical modeling.
In general practice, the best we can do is to first determine that a sequence
converges theoretically, and then compute an element of the sequence cor-
responding to an index that is sufficiently large so that the element is a
reasonable approximation of the limit.13

9.11 Computer Representation of Rational
Numbers

The decimal expansion ±pmpm−1 · · · p1.q1q2 · · · qn uses the base 10 system,
and consequently each of the digits pi and qj may take on one of the 10
values 0, 1, 2, ...9. Of course, it is possible to use bases other than 10. For
example, the Babylonians used the base 60 and thus their digits range
between 0 and 59. The computer operates with the base 2 and the two
digits 0 and 1. A base 2 number has the form

± pm2m + pm−12m−1 + ... + p222 + p12 + q12−1 + q22−2

+ ... + qn−12n−1 + qn2n,

which we write as

±pm−1...p1.q1q2....qn = pmpm−1...p1 + 0.q1q2....qn

where n and m are natural numbers, and each pi and qj takes the value 0
or 1. For example, in base 2,

11.101 = 1 · 21 + 1 · 20 + 1 · 2−1 + 1 · 2−3.

In the floating point representation of a computer using the standard 32
bits, which is known as single precision, numbers are represented in the
form

±r2N ,

where 0 ≤ r < 1 is the mantissa and the exponent N is an integer. Out
of the 32 bits, 23 bits are used to store the base, 2 are used to store the
mantissa, 7 bits are used to store the exponent, and finally 1 bit is used
to store the sign. Since 210 ≈ 10−3 this gives 6 to 7 decimal digits for the
mantissa while the exponent N may range from −126 to 127, implying
that the absolute value of numbers stored on the computer may range
from approximately 10−40 to 1040. Numbers outside these ranges cannot
be stored by a computer using 32 bits. Some languages permit the use of

13Which raises the practical problem of determining an index that is sufficiently large
to yield a desired accuracy.
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double precision using 64 bits for storage with 11 bits used to store the
exponent, giving a range of −1022 ≤ n ≤ 1023, with 52 bits used to store
the the mantissa, giving about 15 decimal places.

We point out that the finite storage capability of a computer has two
consequences for storing rational numbers. The first consequence occurred
for integers: namely, only rational numbers within a finite range can be
stored. The second consequence is more subtle, but is actually more serious.
This is the fact that only a finite number of digits can be stored. Any
rational number that requires more than the finite number of digits in its
decimal expansion, which includes any rational number with an infinite
periodic expansion, is stored on a computer with an error. So, for example,
2/11 is stored as .1818181 or .1818182, depending on whether the computer
rounds or not.

Now, introducing an error in the 7th or 15th digit of a single number
would not be so serious except for the fact that such round-off errors ac-
cumulate when arithmetic operations are performed. For example, if two
numbers with a small error are added, the result has a slightly larger pos-
sible error.14 This is a complicated and dry subject, and we won’t go into
further detail. But we show that the accumulation of errors can have some
startling consequences with an example of a divergent series.

Example 9.26. To begin with, we show that the harmonic series

∞∑

i=1

1
i

diverges. This means that the sequence {sn}∞
n=1 of partial sums

sn =
n∑

i=1

1
i

diverges. To see this, we write a partial sum out for a large n and group
the terms as shown:

1 +
1
2

+
1
3

+
1
4

+
1
5

+
1
6

+
1
7

+
1
8

+
1
9

+
1
10

+ · · · +
1
15

+
1
16

+
1
17

+ · · · +
1
32

+ · · ·

The first “group” is 1/2. The second group is

1
3

+
1
4

≥ 1
4

+
1
4

=
1
2
.

14The accumulation of errors is commonly encountered in science experiments.
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The third group is

1
5

+
1
6

+
1
7

+
1
8

≥ 1
8

+
1
8

+
1
8

+
1
8

=
1
2
.

The fourth group,

1
9

+
1
10

+
1
11

+
1
12

+
1
13

+
1
14

+
1
15

+
1
16

,

has 8 terms that are larger than 1/16, so it also gives a sum larger than
8/16 = 1/2. We can continue in this way, taking the next 16 terms, all
of which are larger than 1/32, then the next 32 terms, all of which are
larger than 1/64, and so on. With each group, we get a contribution to
the overall sum that is larger than 1/2.

When we take n larger and larger, we can combine more and more
terms in this way, making the sum larger in increments of 1/2 each
time. The partial sums therefore just become larger and larger as n
increases, which means the partial sums diverge to infinity.

Note that by the arithmetic rules, the partial sum sn should be the
same whether the sum is computed in the “forward” direction,

sn = 1 +
1
2

+
1
3

+ · · · 1
n − 1

+
1
n

,

or the “backward” direction,

sn =
1
n

+
1

n − 1
+ · · · +

1
3

+
1
2

+ 1.

In Fig. 9.4, we list various partial sums in both the forward and back-
ward directions computed using FORTRAN with single precision vari-
ables with about 7 places of accuracy. Note two things about these
results. First of all, the partial sums sn all become equal when n is
large enough even though theoretically they should keep increasing as
n increases. Second of all, the forward and backward sums do not give
the same value! This is all due to the effects of the errors accumulating
as the sums are computed.
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Chapter 9 Problems

Problems 9.1–9.4 are exercises in using index notation.

9.1. Write the following sequences using the index notation:

(a) {1, 3, 9, 27, · · · } (b) {16, 64, 256, · · · }

(c) {1, −1, 1, −1, 1, · · · } (d) {4, 7, 10, 13, · · · }

(e) {2, 5, 8, 11, · · · } (f) {125, 25, 5, 1,
1
5
,

1
25

,
1

125
, · · · } .

9.2. Determine the number of different sequences there are in the following list
and identify the sequences that are equal:

(a)
{

4n/2

4 + (−1)n

}∞

n=1
(b)

{
2n

4 + (−1)n

}∞

n=1

(c)
{

2 car

4 + (−1) car

}∞

car =1
(d)

{
2n−1

4 + (−1)n−1

}∞

n=2

(e)
{

2n+2

4 + (−1)n+2

}∞

n=0
(f)

{
8

2n

4 + (−1)n+3

}∞

n=−2
.

9.3. Rewrite the sequence
{

2 + n2

9n

}∞

n=1
so that (a) the index n runs from −4

to ∞, (b) the index n runs from 3 to ∞, and (c) the index n runs from 2 to −∞.

n forward sum backward sum
10000 9.787612915039062 9.787604331970214

100000 12.090850830078120 12.090151786804200
1000000 14.357357978820800 14.392651557922360

10000000 15.403682708740240 16.686031341552740
100000000 15.403682708740240 18.807918548583980

1000000000 15.403682708740240 18.807918548583980

FIGURE 9.4. Forward 1+ 1
2 + · · ·+ 1

n
and backward 1

n
+ 1

n−1 + · · ·+ 1
2 +1 partial

harmonic sums for various n.

9.4. Rewrite the following sequences as a function applied to another sequence
three different ways:

(a)

{(
n2 + 2
n2 + 1

)3
}∞

n=1

(b)
{(

n2)4 +
(
n2)2 + 1

}∞

n=1
.
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Verify the definition of convergence (or divergence) to do Problems 9.5–
9.10.

9.5. Prove (9.2).

9.6. Show that lim
n→∞

rn = ∞ for any r with |r| ≥ 2.

9.7. Show the following limits hold:

(a) lim
n→∞

8
3n + 1

= 0 (b) lim
n→∞

4n + 3
7n − 1

=
4
7

(c) lim
n→∞

n2

n2 + 1
= 1.

9.8. Prove that
lim

n→∞

1
np

= 0,

where p is any natural number.

9.9. Show that lim
n→∞

rn = 0 for any r with |r| ≤ 1/2.

9.10. Show the following hold:

(a) lim
n→∞

−4n + 1 = −∞ (b) lim
n→∞

n3 + n2 = ∞.

Use the material on geometric series to do Problems 9.11–9.13.

9.11. Find the values of

(a) 1 − .5 + .25 − .125 + · · ·

(b) 3 +
3
4

+
3
16

+ · · ·

(c) 5−2 + 5−3 + 5−4 + · · ·

9.12. Find formulas for the sums of the following series, assuming |r| < 1:

(a) 1 + r2 + r4 + · · ·
(b) 1 − r + r2 − r3 + r4 − r5 + · · ·

9.13. A classic paradox posed by Zeno15 can be solved using the geometric series.
Suppose you are in Paulding county on your bike, 32 miles from your house in
Atlanta. You break a spoke, you have no more food and you drank the last of your
water, you forgot to bring money, and it starts to rain: the usual activities that
make cycling so much fun. While riding home, as you are wont to do, you begin
to think about how far you have to ride. Then you have a depressing thought:
you can never get home! You think to yourself: first I have to ride 16 miles, then
8 miles after that, then 4 miles, then 2, then 1, then 1/2, then 1/4, and so on.
Apparently you always have a little way to go, no matter how close you are, and
you have to add up an infinite number of distances to get anywhere! Some of the
Greek philosophers did not understand how to interpret a limit of a sequence,
so this caused them a great deal of trouble. Explain why there is no paradox
involved here using the sum of a geometric series.

15The Greek philosopher Zeno (≈490 B.C.) is best known for his paradoxes.
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Problems 9.14–9.27 have to do with the theoretical results on converging
and diverging sequences.

9.14. Show that (9.11) holds using (2.4) and the fact that a − c + c − b = a − b.

9.15. Show that
lim

n→∞
0.99 · · · 99n = 1,

where 0.99 · · · 99n contains n decimals all equal to 9.

9.16. Suppose that {an}∞
n=1 converges to A and {bn}∞

n=1 converges to B. Show
that {an − bn}∞

n=1 converges to A − B.

9.17. Show that if limn→∞ an = A, then for any constant c (a) limn→∞(c+an) =
c + A and limn→∞(can) = cA.

9.18. Suppose that {an}∞
n=1 converges to A and {bn}∞

n=1 converges to B. Show
that if bn �= 0 for all n and B �= 0, then {an/bn}∞

n=1 converges to A/B. Hint:
Write

an

bn
− A

B
=

an

bn
+

an

B
− an

B
− A

B
,

and use the fact that for n sufficiently large, |bn| ≥ B/2. Be sure to say why the
last fact is true!

9.19. Rewrite the proofs for Theorem 9.2 using the formal definition of conver-
gence.

9.20. Prove Theorem 9.3. Hint: Consider the argument for Theorem 9.2.

9.21. Suppose that {an} is a sequence that converges to the limit A. Prove that
{a2

n} converges to A2 without using Theorem 9.2 or Theorem 9.4.

9.22. Suppose that {cn} is a sequence such that there are numbers a and b with
a ≤ cn ≤ b for all indices n and {cn} converges to C. Prove that a ≤ C ≤ b.

9.23. Suppose that there are three sequences {an}, {bn}, and {cn} such that
an ≤ cn ≤ bn for all indices n and {an} and {bn} both converge to the limit A.
Prove that {cn} also converges to A.

9.24. Suppose that there are two sequences {an} and {bn} with an ≤ bn for all
indices n and {an} diverges to ∞. Prove that {bn} diverges to ∞.

9.25. Suppose that there are two sequences {an} and {bn} such that {an}
diverges to ∞ and {bn} is bounded. Prove that {an + bn} diverges to ∞.

9.26. Explain why each of the following claims are true or give an example that
shows why it is false.

(a) If {an} and {bn} are divergent sequences, then {an + bn} diverges.

(b) If {an} and {an + bn} are both sequences that converge, then {bn}
converges.

(c) If {an} is a convergent sequence with limit A and an > 0 for all n,
then A > 0.
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9.27. Suppose {an} is a convergent sequence with limit A such that an and A
are all in a set I on which the function f is Lipschitz continuous with constant L.
Suppose further that f(an) and f(A) are all in a set J on which the function g is
Lipschitz continuous with constant K. Prove that limn→∞ g(f(an)) = g(f(A)).

Use the theoretical results about converging sequences to evaluate the lim-
its in Problems 9.28–9.29.

9.28. Compute the following limits:

(a) lim
n→∞

(
n + 3
2n + 8

)37

(b) lim
n→∞

(
31
n2 +

2
n

+ 7
)4

(c) lim
n→∞

1
(
2 + 1

n

)8 (d) lim
n→∞





(((
1 +

2
n

)2
)3)4



5

.

9.29. Compute the limits of the sequences {an}∞
n=1 with the indicated terms or

show they diverge:

(a) an = 1 +
7
n

(b) an = 4n2 − 6n

(c) an =
(−1)n

n2 (d) an =
2n2 + 9n + 3

6n2 + 2

(e) an =
(−1)nn2

7n2 + 1
(f) an =

(
2
3

)n

+ 2

(g) an =
(n − 1)2 − (n + 1)2

n
(h) an =

1 − 5n8

4 + 51n3 + 8n8

(i) an =
2n3 + n + 1

6n2 − 5
(j) an =

( 7
8

)n − 1
( 7

8

)n + 1
.

Before doing Problem 9.30, consider the warning given before Exam-
ple 9.14.

9.30. Compute lim
n→∞

(√
n2 + n − n

)
. Hint: Multiply by

√
n2+n+n√
n2+n+n

and simplify

the numerator.

9.31. Determine the number of digits used to store rational numbers in the pro-
gramming language that you use and whether the language truncates or rounds.

9.32. The machine number µ is the smallest positive number µ stored in
a computer that satisfies 1 + µ > 1. Note that µ is not zero! For example,
explain the fact that in a single precision language 1 + .00000000001 = 1. Write
a little program that computes an approximation of the µ for your computer and
programming language. Hint: 1 + .5 > 1 in any programming language on any
computer. Also 1 + .25 > 1. Continue...



10
Solving the Muddy Yard Model

With basic properties of numbers and functions at hand, we can now solve
more sophisticated mathematical models. We start by considering the so-
lution of the Muddy Yard model (see Section 1.2),

f(x) = x2 − 2 = 0. (10.1)

Recall that to solve the Dinner Soup model 15x = 10 to get x = 2/3,
we extended the integers to get the rational numbers. It turns out that
the solution of (10.1) is not a rational number and we have to extend
the rational numbers to include a new set of numbers called the irrational
numbers in order to solve (10.1).

It may seem counterintuitive to worry about solving (10.1) since we
“know” the solution is x =

√
2. Of course that is true by definition, but

the question remains: what is
√

2? To simply say that it is the solution
of (10.1), or “that number” that is equal to 2 when squared, is circular
reasoning and not much help when we go to buy the corrugated pipe.

10.1 Rational Numbers Just Aren’t Enough

In Section 1.2, we found that
√

2 ≈ 1.41 using a trial-and-error strategy.
But computing 1.412 = 1.9881, we see that

√
2 is not exactly equal to

1.41. A better guess is 1.414, but then we get 1.4142 = 1.999386. We use
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MAPLE c© to compute the decimal expansion of
√

2 to 415 places:

x = 1.4142135623730950488016887242096980785696718753
7694807317667973799073247846210703885038753432
7641572735013846230912297024924836055850737212
6441214970999358314132226659275055927557999505
0115278206057147010955997160597027453459686201
4728517418640889198609552329230484308714321450
8397626036279952514079896872533965463318088296
4062061525835239505474575028775996172983557522
0337531857011354374603408498847160386899970699,

but using MAPLE c© again, we find that

x2 = 1.999999999999999999999999999999999999999999999
999999999999999999999999999999999999999999999
999999999999999999999999999999999999999999999
999999999999999999999999999999999999999999999
999999999999999999999999999999999999999999999
999999999999999999999999999999999999999999999
999999999999999999999999999999999999999999999
999999999999999999999999999999999999999999999
999999999999999999999999999999999999999999999
999999999986381037002790393547544921481567520
719364336722392248627179189098787015809960232
640597261312640760405691299950309295747831888
596950070887405605833650165227157380944559332
069004581726422217393596953324251515876023360
427299488914180359897103820495618481233332162
516016097283137123064499497943653479698629776
683334066577024031851330600242723212517527304
354776748660808998780793579777475964587708250
3170068870585486010.

The number x = 1.4142 · · · 699 satisfies the equation x2 = 2 to a high
degree of precision but not exactly. In fact, it turns out that no matter how
many digits we use in a guess with a finite decimal expansion, we never get
a number that gives exactly 2 when squared.

We show that
√

2 cannot be a rational number using a proof by contra-
diction. That is, we show that assuming that

√
2 is a rational number of
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the form p/q, where p and q are natural numbers, leads to a contradiction
or logical impossibility.1

To do this, we need some facts about natural numbers. A factor of a
natural number n is a natural number p that divides into n without leaving
a remainder. For example, 2 and 3 are both factors of 6. A natural number
n always has factors 1 and n since 1 × n = n. A natural number n is called
a prime number if the only factors of n are 1 and n. The first few prime
numbers are {2, 3, 5, 7, 11, · · · }. The only even prime number is 2.

Suppose that we take the natural number n and try to find two factors
n = pq.2 There are two possibilities:

• The only two factors are 1 and n: i.e., n is prime;

• There are two factors p and q, neither of which is 1 or n.

In the second case, p ≤ n/2 and q ≤ n/2, since the smallest possible factor
not equal to 1 is 2.

Now we repeat by factoring p and q separately. In each case, either the
number is prime or we factor it into a product of smaller natural numbers.
Then we continue with the smaller factors. Eventually this process stops
since n is finite and the factors at any stage are no larger than half the
size of the factors of the previous stage. When the process has stopped, we
have factored n into a product of prime numbers. It turns out that this
factorization is unique except for order.3

One consequence of the factorization into prime numbers is the following
fact. Suppose that 2 is a factor of n. If n = pq is any factorization of n, it
follows that at least one of the factors p and q must have a factor of 2.

Now assume that
√

2 = p/q, where all common factors in the natural
numbers p and q have been divided out. For example if p and q both have
the factor 3, then we replace p by p/3 and q by q/3, which does not change
the quotient p/q. We write this as

√
2q = p, where p and q have no common

factors, or squaring both sides, 2q2 = p2. By the fact just mentioned, p must
contain the factor 2; therefore p2 contains two factors of 2, and we can write
p = 2× p̄ with p̄ a natural number. Thus 2q2 = 4× p̄2, that is, q2 = 2× p̄2.
But the same argument implies that q must also contain a factor of 2. This
contradicts the original assumption that p and q had no common factors

1Constructionists and intuitionists do not like proof by contradiction, since it is in-
herently non-constructive. Likewise we generally avoid proof by contradiction, but this
is a pretty argument and well worth an exception. On occasion, we also use proof by
contradiction when the alternative is clumsy.

2It is straightforward to write a program to search for all the factors of a given
natural number n by systematically dividing by all the natural numbers up to n (see
Problem 10.2).

3First proved by Gauss.
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so assuming
√

2 to be rational leads to a contradiction and
√

2 cannot be
a rational number.4

10.2 Infinite Nonperiodic Decimal Expansions

The decimal expansion of any rational number is either finite or infinite
periodic; and vice versa, any decimal expansion that is finite or infinite
periodic represents a rational number. The periodic pattern in a decimal
expansion of a rational number may take a long time to appear. But it does
eventually, and once the pattern is determined, then we know the complete
decimal expansion of the rational number in the sense that we no longer
have to divide to determine the digits. In fact, we can give the value for
any number digit. For example, the 231st digit of 10/9 = 1.111 · · · is 1 and
the 103rd digit of .56565656 · · · is 5.

But there is no reason to think that all infinite decimal expansions even-
tually begin to repeat. For example, the decimal expansion of

√
2, if it

exists, cannot be finite or infinite periodic. In fact, it is easy (see Prob-
lem 10.6) to write down infinite nonperiodic decimal expansions like

2.12112111211112111112 · · · , (10.2)

where “· · · ” means “continue in the same pattern.” This decimal expansion
clearly never repeats, so it cannot correspond to a rational number. We call
an infinite nonperiodic decimal expansion an irrational number because
it cannot be a rational number. To solve models with irrational solutions,
we have to extend the set of rational numbers to include the irrational
numbers.

The irrational number (10.2) is special because there is a distinct pattern
to its digits and we “know” this number’s decimal expansion in the same
way we know the infinite decimal expansion of a rational number. In short,
we know all the digits involved and can give the value of any number digit
that might be specified (see Problem 10.7). In general, we cannot expect
to see such nice patterns in the digits of an infinite nonperiodic decimal
expansion. In particular, if we would examine the digits of the decimal
expansion of

√
2, we would not be able to discern any pattern whatsoever.

It is almost as if the digits occur “randomly.”

4This is a modification of the classic proof that was likely discovered during the fifth
century B.C. around the time that the ancient Greek school of philosophy called the
Pythagoreans fell into decline. The Pythagorean philosophy revolved around explaining
the world in terms of properties of numbers, and one of their principle assumptions was
that all numbers could be computed as the ratio of natural numbers. This is contradicted
by the irrationality of

√
2, of course. Geometrically, on the other hand, it seems like the

diagonal of the unit square must exist. It is tempting to think that this contributed to
the rise in the importance of geometry over the following two centuries.
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The crux of trying to make sense of irrational numbers is that we would
have to give every digit of an irrational number in order to specify it com-
pletely. This is practically impossible. In the real world, we can only write
down a finite number of digits.

We get around this difficulty by viewing an irrational number as the
limit of a sequence of rational numbers that we can use to compute the
digits of the irrational number to any desired accuracy. For each irrational
number, we specify an algorithm that produces a sequence of increasingly
accurate rational approximations. In other words, we never write down
an irrational number, we only specify a procedure for computing it to any
desired accuracy.

10.3 The Bisection Algorithm for the Muddy Yard
Model

In order to devise an algorithm for computing an irrational number, we need
to have some information about the number.5 In this case, we know that√

2 satisfies (10.1) if it exists. We describe an algorithm that generates a
sequence of rational numbers that satisfy (10.1) with successively increasing
accuracy. The algorithm uses a trial and error strategy that checks whether
a given rational number x satisfies f(x) < 0 or f(x) > 0, i.e., if x2 < 2 or
x2 > 2. The algorithm only involves computations with rational numbers,
so there is never any uncertainty about how to use it. However, because
the numbers produced by the algorithm are rational, none of them can ever
actually equal

√
2.

The algorithm actually produces two sequences {xi} and {Xi} that are
the endpoints of intervals [xi, Xi] that contain

√
2 and become smaller as

i increases. We begin by noting that f(x) = x2 − 2 is a strictly increasing
function for rational numbers x > 0; that is, 0 < x < y implies f(x) < f(y).
This follows because 0 < x < y means that x2 < xy < y2.

Now f(1) < 0 since 12 < 2 and f(2) > 0 since 22 > 2. Therefore,
f(x) < 0 for all rational 0 < x ≤ 1 and f(x) > 0 for all rational x ≥ 2 (see
Fig. 10.1). We therefore naturally look for a solution of (10.1) between 1
and 2. So as the first step of the algorithm, we set x0 = 1 and X0 = 2 as
shown in Fig. 10.1.

Next we choose a point between x0 = 1 and X0 = 2 and check the
sign of f at that point. For the sake of symmetry, we choose the midpoint
1.5 = (1 + 2)/2 and find that f(1.5) > 0 (see Fig. 10.1). Since this means
that f(x) > 0 for rational x ≥ 1.5 and we know that f(x) < 0 for x ≤ 1,
we naturally look for a solution of (10.1) between 1 and 1.5. We set x1 = 1
and X1 = 1.5 as shown in Fig. 10.2.

5This is a subtle point related to the constructivism controversy.
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-1

x0=1

1

2

X0=2

midpoint
0

f(x)=x2-2

FIGURE 10.1. The first interval computed using the Bisection Algorithm.

Continuing the process, we next check the midpoint 1.25 of x1 = 1 and
X1 = 1.5 to find that f(1.25) < 0, as shown in Fig. 10.2. We therefore

-1

x1=1

1

2

X1=1.5

midpoint

0

f(x)=x2-2

FIGURE 10.2. The second interval computed using the Bisection Algorithm.

naturally look for the solution of (10.1) between 1.25 and 1.5 and set x2 =
1.25 and X2 = 1.5. We then check the sign of f at the midpoint of x2 and
X2, which is 1.375, and find that f(1.375) < 0. As before, we look for a
solution of (10.1) between 1.375 and 1.5.

We can continue to search in this way as long as desired, each time
determining two rational numbers that apparently “trap” a solution of
(10.1). This procedure is called the Bisection Algorithm. We list the
output for 20 steps from a MATLAB c© m-file implementing this algorithm
in Fig. 10.3.
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i xi Xi

0 1.00000000000000 2.00000000000000
1 1.00000000000000 1.50000000000000
2 1.25000000000000 1.50000000000000
3 1.37500000000000 1.50000000000000
4 1.37500000000000 1.43750000000000
5 1.40625000000000 1.43750000000000
...

...
...

10 1.41406250000000 1.41503906250000
...

...
...

15 1.41418457031250 1.41421508789062
...

...
...

20 1.41421318054199 1.41421413421631

FIGURE 10.3. 20 steps of the Bisection Algorithm for computing an approximate
root of (10.1).

10.4 The Bisection Algorithm Converges

Continuing this procedure, we generate two sequences of rational numbers
{xi}∞

i=0 and {Xi}∞
i=0 with the property that

x0 ≤ x1 ≤ x2 ≤ · · · and X0 ≥ X1 ≥ X2 ≥ · · ·

In other words, the terms xi either increase or stay constant while the Xi

always decrease or remain constant as i increases. Moreover, by construc-
tion, the distance between Xi and xi strictly decreases as i increases. In
fact,

0 ≤ Xi − xi ≤ 2−i for i = 0, 1, 2, · · · (10.3)

i.e., the difference between the value xi for which f(xi) < 0 and the value
Xi for which f(Xi) > 0 is halved for each increase in i. This means that as
i increases, more and more digits in the decimal expansions of xi and Xi

agree.
The estimate (10.3) on the difference of Xi − xi also implies that the

terms in the sequence {xi}∞
i=0 become closer to each other as the index

increases. This follows because xi ≤ xj < Xj ≤ Xi if j > i, so (10.3)
implies

|xi − xj | ≤ |xi − Xi| ≤ 2−i if j ≥ i. (10.4)

We illustrate in Fig. 10.4. We call a sequence in which the terms become
closer to each other with increasing index a Cauchy sequence.

In particular, this means that when 2−i ≤ 10−N−1, the first N decimals
of xj are the same as the first N decimals in xi for any j ≥ i. We conclude
that the sequence {xi}∞

i=0 determines a specific decimal expansion. To get
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xi xj Xj Xi

| xi - xj |

| xi - Xi |

FIGURE 10.4. |xi − xj | ≤ |Xi − xi|.

the first N digits of this expansion we simply take the first N digits of any
number xj in the sequence with 2−j ≤ 10−N−1 since (10.4) implies that all
such xj agree in the first N digits.

Considering the idea behind convergence, it is natural to think that the
sequence {xi}∞

i=0 converges to the decimal expansion determined by its
elements. But this decimal expansion does not have to be finite or infinite
periodic. In fact, we believe that it corresponds to

√
2, in which case it must

be infinite nonperiodic. Since this decimal expansion does not represent
a rational number, the previous definition of convergence of a sequence
of rational numbers, which assumes the sequence converges to a rational
number, does not apply. In fact, we cannot even write down that definition
in this case, since that definition uses the limit which is not yet defined! We
get out of this dilemma by simply defining the limit, limi→∞ xi, of {xi}∞

i=0
to be the infinite nonperiodic decimal expansion determined by the xi.

10.5 ... and the Limit Solves the Muddy Yard
Model

Defining a new kind of number and a new kind of convergence as we did in
the last section is simple. But showing that the definition is useful is a little
more difficult. When we extended the integers to get the rational numbers,
we also had to figure out how to compute with rational numbers in ways
that are consistent with the rules we know for integers. Likewise in order
for this definition to be useful, we have to figure out how to compute with
the new number produced by the Bisection Algorithm. In particular, the
definition had better lead to the conclusion that limi→∞ xi =

√
2! In view

of (10.1), this means we want

f( lim
i→∞

xi) = 0.

Since we have so far only defined functions of rational numbers, we have
to extend the previous definitions so that f(limi→∞ xi) makes sense.

A way past this obstacle is suggested by the result in Theorem 9.4, which
says that for any Lipschitz continuous function f defined on a set of rational
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numbers,
f( lim

i→∞
xi) = lim

i→∞
f(xi)

when xi is rational for all i and limi→∞ xi is also rational. In this case,
f(x) = x2 − 2 is certainly Lipschitz continuous but limi→∞ xi is irrational
so the theorem does not apply. We skip past this trouble by defining

f( lim
i→∞

xi) = lim
i→∞

f(xi) (10.5)

if the second limit exists. Since xi is rational for all i, f(xi) is always
defined. Moreover f(xi) is also rational for all i so {f(xi)} is a sequence of
rational numbers that we believe converges to the rational number 0 and
therefore we can use the definition of convergence for rational sequences.

Therefore to show that
√

2 = limi→∞ xi, we have to show that
limi→∞ f(xi) = 0 using the standard definition of convergence of a rational
sequence. The rational numbers xi and Xi are always between 0 and 2, and
in Example 8.5 we saw that x2 is Lipschitz continuous with constant L = 4
on the rational numbers between 0 and 2. Therefore, (10.3) implies that
for any i ≥ 1,

|f(xi) − f(Xi)| ≤ 4|xi − Xi| ≤ 2−i.

Since f(xi) < 0 < f(Xi), we can take away the absolute value signs to get

f(Xi) − f(xi) ≤ 2−i.

But f(Xi) being positive and f(xi) being negative means (see Problem 10.10)
that

|f(xi)| ≤ 2−i and |f(Xi)| ≤ 2−i.

Now f(xi) and f(Xi) are rational for all i, so there is no problem taking
limits in the usual way. Therefore,

lim
i→∞

f(xi) = 0 and lim
i→∞

f(Xi) = 0.

These limits imply that xi and Xi become closer to being solutions of (10.1)
as i increases. The definition (10.5) therefore implies that f(

√
2) = 0 and

lim
i→∞

xi =
√

2

as claimed.
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Chapter 10 Problems

10.1. Use the evalf function in MAPLE c© to compute
√

2 to 1000 places and
then square the result and compare to 2.

10.2. (a) Write a MATLAB c© routine that tests a given natural number n to
see if it is prime. Hint: Systematically divide n by the smaller natural numbers
from 2 to n/2 to check whether there are factors. Explain why it suffices to check
up to n/2. (b) Use this routine to write a MATLAB c© routine that finds all the
prime numbers less than a given number n. (c) List all the prime numbers less
than 1000.

10.3. Factor the following integers into a product of prime numbers: (a) 60, (b)
96, (c) 112, (d) 129.

10.4. Find two natural numbers p and q such that pq contains a factor of 4 but
neither p nor q contains a factor of 4. This means that the fact that some natural
number m is factor of a product n = pq does not imply that m must be a factor
of either p or q. Why doesn’t this contradict the fact that if pq contains a factor
of 2, then at least one of p or q contains a factor of 2?

10.5. (a) Show that
√

3 (see Problem 1.6) is irrational. Hint: Use a powerful
mathematical technique: try to copy a proof you already know. (b) Do the same
for

√
a where a is any prime number.

10.6. Specify three different irrational numbers using the digits 3 and 4.

10.7. Determine the 347th digit of (10.2).

10.8. (a) Compute 20 steps of the Bisection Algorithm for computing
√

2 starting
with x0 = 1 and X0 = 2. (b) Compute the errors |xi −

√
2| and see if there is a

pattern to the decrease in error as i increases.

10.9. Show that
√

2 = lim
i→∞

Xi where {Xi}∞
i=0 is the sequence produced by the

Bisection Algorithm.

10.10. Show that if a < 0 and b > 0, then b − a < c implies |b| < c and |a| < c.
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Real Numbers

Dealing with the existence of irrational numbers in a mathematically cor-
rect way is the hallmark of modern analysis. The difficulty with irrational
numbers stems from the fact that it is generally impossible to write down
the complete decimal expansion of an irrational number. To understand
how this causes trouble, consider the addition of irrational numbers. We
add two numbers with finite decimal expansions by starting with the right-
most digit and working left. We add two arbitrary rational numbers by
finding a common denominator. But neither of these techniques works for
irrational numbers.

To overcome such difficulties, we devise a way of describing an irrational
number in terms of the better-understood rational numbers. Recall that
in Chapter 10, we showed that the Bisection Algorithm can be used to
compute any number of digits of the irrational number

√
2 by means of

a sequence of rational numbers. Since this algorithm is the only concrete
information we have (so far) about

√
2, it is natural to identify the symbol

“
√

2” with the algorithm itself.1

The mathematical definition of irrational numbers such as
√

2 lies at the
heart of the controversy of constructivism. Using a constructive interpre-
tation, in which

√
2 is an algorithm to compute the decimal expansion of

the solution of x2 = 2 to any desired accuracy, while conveying a certain
nobility of thought, does raise the need to explain how to compute with

1Certainly when we need
√

2 in some practical computation, we replace it by a rational
approximation.
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irrational numbers such as
√

2. Explaining how to compute with irrational
numbers, defined by means of sequences of rational numbers, is the goal of
this chapter.

11.1 Irrational Numbers

In Chapter 10, we define irrational numbers to be those numbers with infi-
nite nonperiodic decimal expansions. It is easy to write down such numbers,
for example

.212112111211112 · · · ,

which we can consider as being determined by the sequence of rational
numbers

{.2, .21, .212, .2121, .21211, .212112, · · · }.
We also saw that

√
2 is irrational, though the digits in its decimal expansion

are not so easy to describe. Indeed at present, we can only compute the
decimal expansion of

√
2 using the Bisection Algorithm for computing the

root of x2 − 2 = 0. This produces a sequence of rational numbers {xi} that
defines the digits of

√
2 as i → ∞.

To generalize these examples, we consider sequences of rational numbers
that define a unique decimal expansion. However, we cannot invoke the in-
dicated decimal expansion, as in the definition of the limit, to characterize
such sequences. The reason is that we have not yet figured out how to com-
pute with such numbers when the decimal expansion is infinite nonperiodic.
That is precisely what we do in this chapter.

Instead, we use a condition that guarantees a sequence {xi} defines a
unique decimal expansion that does not involve the expansion. We assume
that {xi} is a Cauchy sequence, which means that for any ε > 0 there is
an N such that

|xi − xj | < ε for i, j > N.

Another way to write this condition is that given ε > 0 there is a N such
that i > N implies

|xi+j − xi| < ε

for all j > 0. In particular, by choosing ε = 10−n−1 for some natural
number i, we can guarantee that the elements xi agree in the first n digits
for all i sufficiently large. In other words, {xi} defines a unique decimal
expansion.2

Example 11.1. Consider a rational or irrational number x with decimal
expansion

x = ±pm · · · p0.q1q2q3 · · · ,

2Cantor called such sequences “fundamental sequences.”
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where the digits are specified in some way, such as .2121121112 · · · .
In this case, it is reasonable to consider the sequence {xi} of rational
numbers

xi = ±pm · · · p0.q1 · · · qi

obtained by truncating the decimal expansion of x. If x has a finite
decimal expansion itself, then the elements in {xi} just equal x at some
point.

With this choice of {xi}, we immediately conclude that for all i,

|xj − xi| ≤ 10−i for j ≥ i.

Example 11.2. In Chapter 10, we show that the Bisection Algorithm
for solving x2 − 2 = 0 produces a Cauchy sequence of rational numbers
{xi} that define the unique decimal expansion of

√
2. We gain about

one digit in the decimal expansion of
√

2 for every three iterates of the
Bisection Algorithm.

Given a Cauchy sequence of rational numbers {xi}, we identify the
unique decimal expansion x defined by {xi}, whether finite, infinite pe-
riodic, or infinite nonperiodic, with {xi} and write x ∼ {xi}. The word
identify and the notation ∼ indicate that something subtle is going on.
Indeed, we would like to write “x = limi→∞ xi,” but we cannot do that
yet because we have not defined what “x =” means when x has an infinite
nonperiodic decimal expansion!3

Before we get to that, there is an important issue of uniqueness to settle.
Namely, a Cauchy sequence of rational numbers defines a unique decimal
expansion. However, any given decimal expansion can be identified with
many different Cauchy sequences of rational numbers.

Example 11.3. We can identify .212112111211112 · · · with {.2, .21, .212,
· · · } and {.212, .212112, .212112111, · · · } and ...

Example 11.4. In the following chapters, we develop several other
algorithms for solving for the root of x2 − 2 = 0 that produce Cauchy
sequences of rational numbers that are identified with

√
2 but are not

the same as the sequence produced by the Bisection Algorithm.

We would like to characterize the relationship between sequences that
are identified with the same decimal expansion. We suppose that {xi} and
{x̃i} are two Cauchy sequences of rational numbers with x ∼ {xi} and
x ∼ {x̃i}. First, it follows that {xi − x̃i} is a Cauchy sequence of rational
numbers. The triangle inequality means that

|(xi − x̃i) − (xj − x̃j)| ≤ |xi − xj | + |x̃i − x̃j |.

3Of course, if x is rational, then x ∼ {xi} means precisely that x = limi→∞ xi.
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Given ε > 0, there are N and Ñ such that |xi − xj | < ε/2 for i, j > N and
likewise |x̃i− x̃j | < ε/2 for i, j > Ñ . It follows that |(xi− x̃i)−(xj − x̃j)| < ε

for i, j > max{N, Ñ}. Now for any n > 0 there is a N such that the first n
digits to the right of the decimal point in the decimal expansion of xi agree
with the corresponding digits in the expansion of x for i > N . Likewise,
there is a Ñ such that the first n digits to the right of the decimal point
in the decimal expansion of x̃i agree with the corresponding digits of x for
i > Ñ . Hence, for any n > 0, there is a M such that |xi − x̃i| < 10−n for
i > M . We conclude that {xi − x̃i} converges to zero, i.e., limi→∞ xi − x̃i =
0.4

Likewise, in Problem 11.1, we ask you to show that if {xi} and {x̃i} are
Cauchy sequences of rational numbers such that limi→∞ xi − x̃i = 0, then
{xi} and {x̃i} are identified with the same decimal expansion. This proves
the following:

Theorem 11.1 Suppose that {xi} and {x̃i} are Cauchy sequences of ra-
tional numbers. Then {xi} and {x̃i} are identified with the same decimal
expansion if and only if limi→∞ xi − x̃i = 0.5

11.2 Arithmetic with Irrational Numbers

We next define the basic arithmetic operations for irrational numbers. To
do this, we require some basic facts about Cauchy sequences of rational
numbers.

For one thing, if {xi} is a Cauchy sequence of rational numbers, then
there is a N such that |xj − xi| < 1 for j ≥ i > N . This means that

|xj | ≤ |xN+1| + 1 for j ≥ N,

and therefore

|xi| ≤ max{|x1|, · · · , |xN |, |xN+1| + 1} for all i.

We conclude the following:

Theorem 11.2 A Cauchy sequence of rational numbers is bounded.

In Theorem 9.2, we show how to do arithmetic with limits. The same
kinds of rules hold for Cauchy sequences of rational numbers. For example,

4Note we can use the idea of a limit defined in Chapter 9 because the limit 0 is
rational.

5This result is important in practice because it implies that it does not matter which
Cauchy sequence of rational numbers identified with a given irrational number is used
to define operations with that irrational number in the limit of large index.
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we show that the fact that {xi} and {yi} are Cauchy sequences means that
{xi + yi} is a Cauchy sequence. This just uses the triangle inequality,

|(xi + yi) − (xj + yj)| ≤ |xi − xj | + |yi − yj |.

Now we can make |xi −xj | and |yi −yj | as small as we like by taking i and j
large, so we can make |(xi +yi)−(xj +yj)| arbitrarily small as well.6 In the
same way, we show that the fact that {xi} and {yi} are Cauchy sequences
means that {xiyi} is a Cauchy sequence. We estimate using some of the
standard tricks and the triangle inequality

|xiyi − xjyj | = |xiyi − xiyj + xiyj − xjyj |
≤ |xiyi − xiyj | + |xiyj − xjyj |
= |xi| |yi − yj | + |yj | |xi − xj |.

Theorem 11.2 implies that the numbers |xi| and |yi| are all bounded by
some constant. Calling this C, we get

|xiyi − xjyj | ≤ C|yi − yj | + C|xi − xj |.

We can make the right-hand side small by taking i and j large, so this
shows that {xiyi} is a Cauchy sequence.

We ask you to treat the cases of subtraction and division in Problem 11.4.
We summarize as a theorem.

Theorem 11.3 Let {xi} and {yi} be Cauchy sequences of rational num-
bers. Then {xi + yi}, {xi − yi}, and {xiyi} are all Cauchy sequences of
rational numbers as well. If yi �= 0 for all i and {yi} is identified with a
number that is not 0, then {xi/yi} is also a Cauchy sequence of rational
numbers.

We let x and y be irrational numbers that are identified with Cauchy se-
quences of rational numbers {xi} and {yi}, respectively. Now consider the
definition of x+ y. If x and y have finite decimal expansions, then we com-
pute their sum by adding digit by digit starting with the first digit on the
right, i.e., “at the end.” When x and y are irrational, there is no “end,” so it
is not immediately clear how to compute the sum. But there is no problem
computing the sum xi + yi. Moreover, {xi + yi} is a Cauchy sequence of
rational numbers that is identified with a unique decimal expansion. So we
define x + y to be the unique decimal expansion

x + y ∼ {xi + yi}.

6This is essentially the same argument used to prove Theorem 11.1, which we carried
out in gory detail.
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Example 11.5. We add

x =
√

2 = 1.4142135623730950488 · · ·

and
y =

1043
439

= 2.3758542141230068337 · · ·

by adding xi + yi for i ≥ 1 in Fig. 11.1.

i xi yi xi + yi

1 1 2 3
2 1.4 2.3 3.7
3 1.41 2.37 3.78
4 1.414 2.375 3.789
5 1.4142 2.3758 3.7900
...

...
...

...
10 1.414213562 2.375854214 3.790067776

...
...

...
...

15 1.42421356237309 2.37585421412300 3.79006777649609
...

...
...

...

FIGURE 11.1. Computing the decimal expansion of
√

2 + 1043/439 by using the
truncated decimal sequences.

We define the other operations in the same way. For example, we define xy
to be the unique decimal expansion identified with the Cauchy sequence
{xiyi},

xy ∼ {xiyi},

and similarly with division and subtraction.
With these definitions, we can easily show that the usual commutative,

distributive, and associative rules for these operations hold. For example,
addition is commutative since

x + y ∼ {xi + yi} = {yi + xi} ∼ y + x.

Note we define = to mean that the numbers on both sides of the equality
are identified with the same decimal expansion. The point is that once
we replace x and y by using the rational sequences {xi} and {yi}, then
we inherit the properties we know and love from the rational numbers. We
summarize as a theorem. We ask you to complete the proof in Problem 11.5.

Theorem 11.4 Arithmetic Properties of Numbers With these def-
initions of the arithmetic operations, the following properties hold for all
rational and irrational numbers x, y, and z:
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• x + y is either rational or irrational.

• x + y = y + x.

• x + (y + z) = (x + y) + z.

• x + 0 = 0 + x = x and 0 is the unique number with this property.

• There is a unique rational or irrational number −x such that x +
(−x) = (−x) + x = 0.

• xy is either rational or irrational.

• xy = yx.

• (xy)z = x(yz).

• 1 · x = x · 1 = x and 1 is the unique number with this property.

• If x is not the rational number 0, there is unique a rational or irra-
tional number x−1 such that x · x−1 = x−1 · x = 1.

• x(y + z) = xy + xz.

11.3 Inequalities for Irrational Numbers

We use the same approach to define inequalities involving irrational num-
bers. But, we need to be a little careful defining inequalities. For suppose
that {xi} and {yi} are Cauchy sequences of rational numbers such that
xi < yi for all i. It does not follow that {xi} and {yi} correspond to differ-
ent decimal expansions.

Example 11.6. Let xi = .999 · · · 9 with i digits and yi = 1 for all i.
We have

xi < yi for all i (11.1)

yet 1 ∼ {xi} and 1 ∼ {yi}.

The problem is that xi can approach arbitrarily close to yi as i increases.
Suppose that {xi} is a Cauchy sequence of rational numbers identified

with the decimal expansion x. If there is a constant c such that

xi ≤ c < 0 for all i sufficiently large,

then we say that x < 0. This condition prevents xi from approaching
arbitrarily close to 0. Likewise if there is a constant c such that

xi ≥ c > 0 for all i sufficiently large,
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then we say that x > 0. When neither of these conditions hold, then x = 0.
Now suppose that {xi} and {yi} are Cauchy sequences of rational num-

bers identified with decimal expansions x and y, respectively. We say that
x < y if x − y < 0, x = y if x − y = 0, and x > y if x − y > 0 using the
definitions above. Similarly, we define x ≤ y if x < y or x = y, and so on.7

It is easy to check that these definitions follow the rules we expect to
hold for inequalities.

Example 11.7. For example, x ≤ y implies −x ≥ −y, since xi ≤ yi

for all i implies −xi ≥ −yi for all i. Moreover, x ≤ y and w ≤ z implies
x+w ≤ y+z since xi ≤ yi and wi ≤ zi for all i implies xi +wi ≤ wi +zi

for all i.

We summarize the crucial properties as a theorem, which we ask you to
prove in Problem 11.6.

Theorem 11.5 Order Properties of Numbers With these definitions
of the arithmetic operations and relations <, =, and >, the following prop-
erties hold for all rational and irrational numbers x, y, and z:

• Exactly one of x < y, x = y, or x > y holds.

• x < y and y < z implies x < z.

• x < y implies x + z < y + z.

• If z > 0, x < y implies xz < yz.

These definitions allow a nice interpretation of the meaning of ∼. If
{xi} is a Cauchy sequence of rational numbers and x ∼ {xi}, then we
write x = limi→∞ xi because given any ε > 0 there is a N such that
|x−xi| < ε for i > N . Consequently, we drop the use of ∼ for the remainder
of the book and simply speak about the limit of a Cauchy sequence of
rational numbers.

Once we have inequalities for real numbers, we can define intervals with
real endpoints in the obvious way. The set of real numbers x between a
and b, {x : a < x < b}, is called the open interval between a and b and is
denoted by (a, b), where a and b are called the endpoints of the interval.
An open interval does not contain its endpoints. The closed interval [a, b]
is a set {x : a ≤ x ≤ b}, which does contain its endpoints. Finally, we can

7A constructivist might object to these definitions on the grounds that they cannot
be verified for arbitrary real numbers x and y by finite sequential computation. Suppose
that we check and find that xi < yi − c for i = 1, 2, · · · , N for some large N and some
constant c > 0. We still cannot conclude that x < y, since it might be that xi = yi

for i > N . Practically speaking, of course, we can only check the definition for a finite
number of terms in the sequences. However, avoiding the use of inequalities raises many
complications and in this instance we yield to self-preservation.
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have a half-open interval with one end open and the other closed, such
as (a, b] = {x : a < x ≤ b}.

We also have “infinite” intervals such as (−∞, a) = {x : x < a} and
[b, ∞) = {x : b ≤ x}.

11.4 The Real Numbers

In this rest of this book, we discuss rational and irrational numbers simul-
taneously, so it is convenient to introduce a set that includes both kinds of
numbers. A real number is what we call any number that is either rational
or irrational and the set of real numbers R is defined to be the set of all
rational and irrational numbers. Since each decimal expansion defines a
real number, we also could define the set of real numbers R to be the set
of all possible decimal expansions.

This definition is controversial for the same reasons that the definition of
Q as the set of all rational numbers is controversial (see Section 4.3). The
set R contains arbitrarily large numbers, and moreover there are infinitely
many real numbers between any two different real numbers. In addition, we
have not specified any algorithm that determines the digits of an arbitrary
real number. Ideally, every time an irrational number arises in a mathe-
matical discussion, we should provide an algorithm for computing its digits
to any desired accuracy. But generally devising such an algorithm requires
some information about the number in question, such as knowing it is the
root of some equation. So not only is it rather tedious to specify algorithms
for each number that pops up, it also cumbersome to talk about a general
number since we do not have an algorithm that computes all irrational
numbers. Therefore to make life simple, we often talk about a general real
number without specifying how the digits are to be computed .8

11.5 Please Oh Please, Let the Real Numbers Be
Enough

There is one last subtle question about the construction of the real numbers
hanging in the air. We have followed a long path to get to this point. We
began with natural numbers and quickly found that the demands of com-
mon arithmetic required the extension of natural numbers to the integers
and then the rational numbers. We then discovered that the solutions of
models involving rational numbers, and indeed the rational numbers them-
selves, are naturally connected to infinite sequences of rational numbers.

8And so we stray far from the path of constructivism.
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But sequences of rational numbers that converge do not necessarily con-
verge to a rational limit, and so we extended the rational numbers to get
the irrational numbers.

It is reasonable at this point to fervently hope that we have constructed
all the numbers. In other words, we are faced with the question: do the real
numbers contain all numbers or do we need to extend the real numbers
to get some new, larger system of numbers? We now show that the real
numbers are sufficient.9

The definitions of arithmetic for real numbers insure that the result of
combining real numbers using arithmetic is another real number. But se-
quences of real numbers present a more subtle problem. We have to worry
about sequences of real numbers because they crop up everywhere in anal-
ysis and mathematical modeling.

Our particular concern is to show that a Cauchy sequence of real numbers
converges to a real limit. If a Cauchy sequence of real numbers did not
converge to a real limit, we would be forced to look for a new, larger set
of numbers. Here, we use the same definition of convergence and Cauchy
sequence as used for sequences of rational numbers. A sequence of real
numbers {xi} converges to x if for any ε > 0 there is a natural number
N such that |xi − x| < ε for i > N . If this holds, we write x = limi→∞ xi.
Likewise, a sequence of real numbers {xi} is a Cauchy sequence if for
any ε > 0 there is a N such that |xi − xj | < ε for i, j > N .

Showing that a sequence of real numbers converges using the definition
is no different than showing a sequence of rational numbers converges, and
we point back to Chapter 9 for examples and problems. To illustrate how
to use the definition to show that a sequence of real numbers is a Cauchy
sequence, we recall three examples from Chapter 9.

Example 11.8. In Example 9.6, we analyze the convergence of {1/i}∞
i=1.

To show this is a Cauchy sequence, we compute
∣
∣
∣
∣
1
i

− 1
j

∣
∣
∣
∣ =

∣
∣
∣
∣
j − i

ij

∣
∣
∣
∣ =

∣
∣
∣
∣
1
i

∣
∣
∣
∣

∣
∣
∣
∣
j − i

j

∣
∣
∣
∣ .

Since j ≥ i ≥ 1, j − i ≤ j and therefore
∣
∣
∣
∣
j − i

j

∣
∣
∣
∣ ≤

j

j
= 1,

so ∣
∣
∣
∣
1
i

− 1
j

∣
∣
∣
∣ ≤

1
i
.

9That is, the real numbers are sufficient if we stay out of the domain of complex
numbers. We do not have room in this book to motivate the need for extending the real
numbers to get the complex numbers. But be assured that extending the real numbers
to get the complex numbers is much easier than constructing the real numbers.
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In other words if we choose N to be the smallest natural number larger
than 1/ε, then the definition of a Cauchy sequence holds.

Example 11.9. In Example 9.8, we study the convergence of {i/(i + 1)}∞
i=1.

To show this is a Cauchy sequence, we compute
∣
∣
∣
∣

i

i + 1
− j

j + 1

∣
∣
∣
∣ =

∣
∣
∣
∣
(j + 1)i − (i + 1)j

(i + 1)(j + 1)

∣
∣
∣
∣ =

∣
∣
∣
∣

i − j

(i + 1)(j + 1)
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∣
∣
∣

=
∣
∣
∣
∣

1
i + 1

∣
∣
∣
∣

∣
∣
∣
∣
j − i

j + 1

∣
∣
∣
∣ .

Since j ≥ i ≥ 1, j − i ≤ j, while j + 1 ≥ j, so
∣
∣
∣
∣
j − i

j + 1

∣
∣
∣
∣ ≤

j

j
= 1

and ∣
∣
∣
∣

i

i + 1
− j

j + 1

∣
∣
∣
∣ ≤

1
i + 1

.

In other words if we choose N to be the smallest natural number larger
than 1/ε − 1, then the definition of a Cauchy sequence holds.

Example 11.10. Recall that in Example 9.10, we show that the geo-
metric series for r

1 + r + r2 + r3 + · · ·

converges if the sequence of partial sums {sn},

sn = 1 + r + r2 + · · · rn =
1 − rn+1

1 − r

converges. We show that the sequence of partial sums is a Cauchy se-
quence when |r| < 1. For m ≥ n ≥ 1, we compute

|sn − sm| =
∣
∣
∣
∣
1 − rn+1

1 − r
− 1 − rm+1

1 − r

∣
∣
∣
∣

=
∣
∣
∣
∣
(1 − r)(1 − rn+1) − (1 − r)(1 − rm+1)

(1 − r)2

∣
∣
∣
∣

=
∣
∣
∣
∣
rn+1 + rn+2 − rm+1 − rm+2

(1 − r)2

∣
∣
∣
∣

=
∣
∣
∣
∣

rn+1

(1 − r)2

∣
∣
∣
∣
∣
∣1 + r − rm−n − rm+1−n

∣
∣ .

Since m ≥ n ≥ 1 and |r| < 1, |r|m−n < 1 and |r|m+1−n < 1. Therefore
∣
∣1 + r − rm−n − rm+1−n

∣
∣ ≤ |1| + |r| + |r|m−n + |r|m+1−n ≤ 4
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and
|sn − sm| ≤ 4

|1 − r|2 |r|n+1.

Now 4/|1− r|2 is fixed and since |r| < 1 we can make |r|n+1 as small as
we like by taking n large. So the sequence of partial sums is a Cauchy
sequence.

We return to the question of whether or not a Cauchy sequence of real
numbers has to converge to a real number. Each element xi of a Cauchy
sequence of real numbers {xi} can be approximated to arbitrary accu-
racy by a Cauchy sequence of rational numbers.10 We need to distin-
guish the sequences for different elements so we use a double index. Let
{xij}∞

j=1 = {xi1, xi2, xi3, · · · } denote a Cauchy sequence of rational num-
bers that converges to xi.

Example 11.11. If

xi = 4.12112111211112 · · · ,

then
xi1 = 4.1
xi2 = 4.12
xi3 = 4.121
xi4 = 4.1211

...
...

is one possibility.

We have a lot of sequences, which we write out in a big chart:

x11 x12 x13 x14 x15 · · · → x1
x21 x22 x23 x24 x25 · · · → x2
x31 x32 x33 x34 x35 · · · → x3
x41 x42 x43 x44 x45 · · · → x4
...

. . .
...

Since {xi} is a Cauchy sequence, we can make |xi−xj | as small as desired
by taking j ≥ i sufficiently large. This means in particular that {xi} defines
a unique decimal expansion x. We want to show that x is the limit of a
Cauchy sequence of rational numbers. To construct the sequence, we argue
like this. Since {x1j} converges to x1,

|x1 − x1j | < 10−1

10If nothing else, we can use the sequence formed by truncating the decimal expansion
of xi.
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for all j sufficiently large. Let m1 denote the smallest index such that

|x1 − x1m1 | < 10−1.

In the same way, let m2 denote the smallest index such that

|x2 − x2m2 | < 10−2.

In general, let mi denote the smallest index (which is always finite) such
that

|xi − ximi
| < 10−i.

We claim that {ximi
} is a Cauchy sequence of rational numbers that con-

verges to x. This follows from definition in fact. First we estimate

|ximi − xjmj | = |ximi − xi + xi − xj + xj − xjmj |
≤ |ximi − xi| + |xi − xj | + |xj − xjmj |
≤ 10−i + |xi − xj | + 10−j .

Since {xi} is a Cauchy sequence, given ε > 0 there is an N such that

10−i ≤ ε/3, |xi − xj | < ε/3, 10−j < ε/3,

and hence |ximi
− xjmj

| < ε, for i, j > N . So {ximi
} is a Cauchy sequence.

By construction, the first i digits to the right of the decimal point in the
decimal expansion of ximi agree with the corresponding digits of xi. But
this means that {ximi

} defines the same decimal expansion as {xi}, which
by definition implies

lim
i→∞

ximi
= x.

On the other hand, if {xi} is a sequence that converges to a limit x, then
the estimate

|xi − xj | ≤ |xi − x| + |x − xj |

implies immediately that {xi} is a Cauchy sequence. We summarize with
a theorem.

Theorem 11.6 Cauchy Criterion for Convergence A Cauchy se-
quence of real numbers converges to a unique real number and any sequence
of real numbers that converges is a Cauchy sequence.

We describe this result by saying that the real numbers R are complete.
Theorem 11.6 and the preceding discussion imply the following important

observation.

Theorem 11.7 Denseness of the Rational Numbers Any real num-
ber can be approximated to arbitrary accuracy by a Cauchy sequence of
rational numbers.
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For if a number x is rational, we simply take the sequence with constant
values {x}. If a number is irrational, we can use the sequence of truncated
decimal expansions {xn} as in Example 11.1. We describe this result by
saying the rational numbers are a dense subset of the real numbers.11

The definitions we have made for convergence and Cauchy sequence for
sequences of real numbers means that all of the usual properties that hold
for sequences of rational elements carry over to sequences of real numbers.

In particular, the same arguments used to show Theorems 9.2, 11.2, and
11.3 also imply the following results.

Theorem 11.8 Suppose that {xn}∞
n=1 converges to x and {yn}∞

n=1 con-
verges to y. Then {xn +yn}∞

n=1 converges to x+y, {xn −yn}∞
n=1 converges

to x − y, {xnyn}∞
n=1 converges to xy, and if yn �= 0 for all n and y �= 0,

{xn/yn}∞
n=1 converges to x/y.

Theorem 11.9 A Cauchy sequence of real numbers is bounded.

Theorem 11.10 Let {xi} and {yi} be Cauchy sequences of real numbers.
Then {xi + yi}, {xi − yi}, and {xiyi} are all Cauchy sequences of real
numbers as well. If yi �= 0 for all i and limi→∞ yi �= 0, then {xi/yi} is also
a Cauchy sequence of real numbers.

11.6 Some History of the Real Numbers

We can summarize the main result in this chapter as the following descrip-
tion of the essence of the real numbers.

Theorem 11.11 Real Number Theorem The real numbers are com-
plete and the rational numbers are dense in the real numbers.

It is surprising to learn that the construction of the real numbers was the
final step in the long struggle to put analysis and Calculus on a rigorous
mathematical foundation. In hindsight, it seems obvious that it would be
difficult to make mathematical sense out of notions like limits, which are
inherent to analysis and calculus, without a complete system of numbers
like the reals. Otherwise, we would constantly be dealing with convergent
sequences of numbers whose limits are not understood. On the other hand,

11Theorems 11.6 and 11.7 are important in practice as well as in theory. If we want
to compute the limit of a sequence of real numbers using a computer, we are faced with
the problem that the computer cannot store general irrational elements that occur in
the sequence. But these theorems imply that we can replace a Cauchy sequence of real
numbers by a Cauchy sequence of rational numbers with the same limit. This means
that we can approximate the limit of a sequence of real numbers on a computer to within
the computer’s accuracy even though we have not used all of the exact elements of the
sequence.
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the real numbers act just like the rational numbers, so early analysts who
relied on intuition based on properties of rational numbers encountered no
inconsistencies.

In any case, modern explanations of analysis always present the construc-
tion of the real numbers before turning to deeper topics in analysis. There
are several possible tacks. The approach we have adopted, i.e., extending
the rational numbers to get the irrational numbers, is essentially due to
Cantor, who constructed the first rigorous theory for the real numbers.

What might be considered the classic approach for the construction of
real numbers was first championed by Hilbert12 some time after Cantor’s
work. We would begin by laying out the properties that we expect to hold
for a system of real numbers as a set of axioms. The first set of axioms
describe how the numbers are to be combined using arithmetic. We assume
that the set of numbers R together with the operations of addition +,
multiplication × = · satisfy the properties listed in Theorem 11.4. These
are called the Field Axioms. In addition, we assume there is an ordering
operation < on R satisfying the properties in Theorem 11.5, which are
called the Order Axioms. A set of numbers R satisfying the Field and Order
Axioms is called an ordered field. The rational numbers are an example of
an ordered field.

Finally, the set R is assumed to satisfy the Axiom of Completeness:

Any nonempty set of numbers in R that is bounded above has
a least upper bound in R.

This axiom is required to insure that the number system R is continuous in
the sense that there are no “gaps” between the numbers in R. The Axiom of
Completeness is the property that distinguishes the real numbers from the
rational numbers.13 We know that the rational numbers do not represent all
numbers. The completeness property insures that R does cover all numbers.

The classic existence result for the real numbers shows that the real
numbers are an ordered field and the rational numbers are dense in the
real numbers. This result is usually proved by approximating an arbitrary
real number by rational numbers using the Dedekind cut,14 which is based

12David Hilbert (1862–1943) was a very influential German mathematician who proved
fundamentally important results in many areas including algebra, algebraic numbers, the
calculus of variations, functional analysis, integral equations, and mathematical physics.
Hilbert (co-)wrote several influential text books and, in a famous talk given at the Second
International Congress of Mathematics, posed 23 outstanding mathematical problems
known as Hilbert’s problems. Some of these are still unsolved and drive mathematical re-
search today. A solution of one of Hilbert’s problems is considered a tremendous achieve-
ment among mathematicians. Hilbert attempted to establish a consistent axiomatic and
logical description of numbers. While ultimately unsuccessful, Hilbert’s approach has
heavily influenced the way modern mathematics is presented.

13There are several ways to formulate this property.
14Named after its inventor, the German mathematician Julius Wihelm Richard

Dedekind (1831–1916). Along with a construction of the real numbers, Dedekind made
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on the idea that each number divides the other numbers into two sets,
those less than and those greater than the number. See Rudin [19] for a
presentation of this approach.

However we choose to introduce the irrational numbers, developing their
basic properties requires some work. We like Cantor’s approach because it
is an example of a powerful general technique: namely, approximate an un-
known quantity by known quantities and then show the unknown quantity
inherits important properties of the approximations. This approach is used
with great success in the study of functions, the solution of root problems,
the solution of differential equations, and so on. Indeed, we can fairly claim
that modern computational science is based philosophically on this idea.
Many important mathematical models in science and engineering are too
difficult for mathematical analysis and any information about solutions is
obtained almost exclusively through approximation made on a computer.
We believe that such approximations accurately reveal important proper-
ties of the solution, though we can rarely prove that is true.

important contributions in the study of mathematical induction, the definition of finite
and infinite sets, and algebraic number theory. Dedekind was also a very clear exposi-
tor and lecturer, and his style has strongly influenced the way modern mathematics is
written down.



11.6 Some History of the Real Numbers 151

Chapter 11 Problems

11.1. Complete the proof of Theorem 11.1.

11.2. Let x be the limit of the sequence of rational numbers {xi} where the first
i − 1 decimal places of xi agree with the first i − 1 decimal places of

√
2, the

ith decimal place is equal to 3, and the rest of the decimal places are zero. Is
x =

√
2? Give a reason for your answer.

Problems 11.3–11.10 have to do with arithmetic and inequalities for real
numbers.

11.3. Prove that if a Cauchy sequence of rational numbers {yi} is identified with
a decimal expansion y that is not the rational number 0, then there is a constant
c > 0 such that |yi| ≥ c for all i sufficiently large.

11.4. Let {xi} and {yi} be Cauchy sequences of rational numbers. (a) Show that
{xi − yi} is a Cauchy sequence of rational numbers. (b) Assume that yi �= 0 for
all i and that {yi} is identified with a number that is not 0. Prove that {xi/yi}
is a Cauchy sequence. Hint: Use Problem 11.3.

11.5. Complete the proof of Theorem 11.4.

11.6. Prove Theorem 11.5. (b) Theorem 11.5 is sufficient to conclude the other
usual properties of inequalities hold. For example, prove that x < y implies
−x > −y.

11.7. Suppose that x and y are two real numbers and {xi} and {yi} are the
sequences generated by truncating their decimal expansions. (a) Estimate |(x +
y) − (xi + yi)|. (b) Estimate |xy − xiyi|. Hint: Explain why |xi| ≤ |x| + 1 for i
sufficiently large.

11.8. Let x = .37373737 · · · and y =
√

2 and {xi} and {yi} be the sequences
generated by truncating their decimal expansions. Compute the first 10 terms of
the sequences defining x + y and y − x and the first 5 terms of the sequences
defining xy and x/y.

11.9. Let x be the limit of the sequence
{

i

i + 1

}
. Show that

i

i + 1
< 1 for all

i. Is x < 1?

11.10. If x and y are real numbers and {yi} is any sequence that converges to y,
show that x < y implies x < yi for all i sufficiently large.

Problems 11.11–11.13 have to do with Cauchy sequences of real numbers.

11.11. Show that the following sequences are Cauchy sequences:

(a)
{

1
(i + 1)2

}
(b)

{
4 − 1

2i

}
(c)

{
i

3i + 1

}
.



152 11. Real Numbers

11.12. Show that the sequence {i2} is not a Cauchy sequence.

11.13. Let {xi} denote the sequence of real numbers defined by

x1 = .373373337 · · ·
x2 = .337733377333377 · · ·
x3 = .333777333377733333777 · · ·
x4 = .333377773333377773333337777 · · ·

...

(a) Show that the sequence is a Cauchy sequence and (b) find lim
i→∞

xi. This shows

that a sequence of irrational numbers can converge to a rational number.

11.14. Prove Theorems 11.8, 11.9, and 11.10.

Problems 11.15 and 11.16 are relatively difficult.

11.15. Let {xi} be an increasing sequence, xi−1 ≤ xi, which is bounded above;
i.e., there is a number c such that xi ≤ c for all i. Prove that {xi} converges. Hint:
Use a variation of the argument for the convergence of the Bisection Algorithm.

11.16. Explain why there are infinitely many real numbers between any two
distinct real numbers by giving a systematic way to write them down.



12
Functions of Real Numbers

The functions we have investigated so far have been defined on sets of
rational numbers. Now that we have constructed the real numbers, it is
natural to consider functions defined on sets of real numbers.

Example 12.1. The constant function f(x) =
√

2 for any rational
or irrational x has the domain of real numbers and the range of one
irrational number.

Once we have defined functions of real numbers and investigated their
properties, we can run full bore into the study of mathematical models and
their solution.

12.1 Functions of a Real Variable

Actually, there is no trouble extending the definitions made for functions
of rational numbers to functions of real numbers. Ideas such as the linear
combination, product, and quotient of functions are the same. Likewise, we
define a function f to be Lipschitz continuous on a set of real numbers
I if there is a constant L such that

|f(x2) − f(x1)| ≤ L|x2 − x1| for all x1, x2 in I.

We ask you to show that the properties of Lipschitz continuous functions
contained in Theorems 8.1–8.6 hold for functions defined on real numbers
in Problem 12.1. We summarize as a theorem.
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Theorem 12.1 Let f1 and f2 be Lipschitz continuous on a set of real
numbers I. Then f1+f2 and f1−f2 are Lipschitz continuous. If the domain
I is bounded, then f1 and f2 are bounded and f1f2 is Lipschitz continuous.
If I is bounded and moreover |f2(x)| ≥ m > 0 for all x in I, where m is
some constant, then f1/f2 is Lipschitz continuous.

If f1 is Lipschitz continuous on a set of real numbers I1 with Lipschitz
constant L1 and f2 is Lipschitz continuous on a set of real numbers I2 with
Lipschitz constant L2 and f1(I1) ⊂ I2, then f2 ◦ f1 is Lipschitz continuous
on I1 with Lipschitz constant L1L2

12.2 Extending Functions of Rational Numbers

Given that, theoretically at least, functions of real numbers behave as we
expect, we are still left with the practical issue of producing some interest-
ing examples. The main goal in this section is to show that the functions
defined on rational numbers that we have met so far correspond in a nat-
ural way to functions defined on real numbers. By natural, we mean that
important properties of a function on rational numbers, such as Lipschitz
continuity, also hold for the corresponding function on real numbers.

The correspondence between functions of rational and real numbers is
based on the same idea (10.5) used to show that the limit of the Bisection
Algorithm is

√
2. Namely, for a real number x, which is the limit of the

sequence of rational numbers {xi}, we define

f(x) = lim
i→∞

f(xi). (12.1)

We say that we have extended f from the rational numbers to the real
numbers and call f the extension of f .1

Example 12.2. We evaluate f(x) = .4x3 − x for x =
√

2 using the
truncated decimal sequence {xi} in Fig. 12.1.

With a little thought, we see that this definition makes sense only if f is
continuous because we depend on the fact that small changes in the input
to f produces small changes in the output of f . In fact, if f is Lipschitz
continuous on a set of rational numbers I and {xi} is a Cauchy sequence
of rational numbers in I, then {f(xi)} is also a Cauchy sequence since

|f(xi) − f(xj)| ≤ L|xi − xj |,

and we can make the right-hand side arbitrarily small by taking i and j
large. This means that {f(xi)} converges to a limit and it makes sense to

1Using the same notation for f and its extension is a potential source of confusion.
But after this chapter, we deal only with the extensions of the usual functions.
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i xi .4x3
i − xi

1 1 −.6
2 1.4 .0976
3 1.41 .1212884
4 1.414 .1308583776
5 1.4142 .1313383005152
6 1.41421 .1313623002245844
7 1.414213 .1313695002035846388
8 1.4142135 .13137070020305452415
9 1.41421356 .1313708442030479314744064

10 1.414213562 .1313708490030479221535281312
...

...
...

FIGURE 12.1. Computing the decimal expansion of f(
√

2) for f(x) = .4x3 − x
by using the truncated decimal sequence.

talk about limi→∞ f(xi). In Problem 12.2, we ask you to show this also
holds for functions defined on sets of real numbers and Cauchy sequences
of real numbers. We summarize as a theorem.

Theorem 12.2 Suppose that f is Lipschitz continuous on a set of real
numbers I with constant L and {xi} is a Cauchy sequence in I. Then
{f(xi)} is also a Cauchy sequence.

Example 12.3. We can extend any polynomial to be defined on the
real numbers since a polynomial is Lipschitz continuous on any bounded
set of rational numbers.

Example 12.4. The previous example means that we can extend f(x) =
xn to the real numbers for any integer n. We can also show that
f(x) = x−n is Lipschitz continuous on any set of rational numbers that
avoids 0. Therefore f(x) = xn can be extended to the real numbers
where n is any integer provided that when n < 0, x �= 0.

Example 12.5. The function f(x) = |x| is Lipschitz continuous on the
set of rational numbers, so it can be extended to the real numbers.

It turns out that if f is Lipschitz continuous on a set of rational num-
bers, then its extension is also Lipschitz continuous with the same constant.
Suppose that f is Lipschitz continuous on the interval of rational numbers
I = (a, b) with constant L. We assume that x and y are two real numbers
between a and b that are the limits of Cauchy sequences of rational numbers
{xi} and {yi}, respectively. It follows that xi and yi are also contained in
(a, b) for all sufficiently large i. We remove any of the finite number of ele-
ments from these sequences that do not lie in (a, b) to obtain sequences that
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converge to x and y and lie entirely in (a, b). We just call these potentially
new sequences {xi} and {yi}. Now by definition,

|f(x) − f(y)| =
∣
∣
∣ lim
i→∞

(f(xi) − f(yi))
∣
∣
∣ .

By the Lipschitz assumption on f ,

|f(x) − f(y)| = lim
i→∞

|f(xi) − f(yi)|

≤ L lim
i→∞

|xi − yi|

≤ L|x − y|.

This shows f is Lipschitz continuous as claimed. We ask you to treat the
case that either end of the interval is closed or a real number in Prob-
lem 12.3. We summarize as a theorem.

Theorem 12.3 Suppose that f is Lipschitz continuous on the set of ratio-
nal numbers in (a, b). The extension of f to [a, b] is Lipschitz continuous
with the same constant. The same holds if either end of the interval is
closed.

Example 12.6. Following Examples 12.3, 12.4, and 12.5, polynomials,
f(x) = xn for integer n, and f(x) = |x| are Lipschitz continuous on
suitable domains.

By the way, if f is Lipschitz continuous on the closed interval [a, b], it is
immediately Lipschitz continuous on the open interval (a, b). But even if f
is defined on [a, b] and Lipschitz continuous on (a, b), it may not be Lipschitz
continuous on [a, b] for the simple reason that it may be discontinuous at
one of the endpoints a or b.

12.3 Graphing Functions of a Real Variable

We represent real intervals graphically in the same way as rational intervals
(see Section 4.6).2

In practice, graphing a function of real numbers is no different than
graphing a function of the rational numbers. We face the same dilemma:
namely, we can only evaluate the function at a finite set of rational numbers.

2It is interesting, however, to contemplate the difference between intervals of rational
and real numbers. Theoretically, intervals of rational numbers appear to be solid but
are not, since all the irrational numbers are left out, while intervals of real numbers are
solid. Of course, in practice, the computer can only draw intervals of rational numbers
and in fact numbers with finite decimal expansions. At least it draws enough points that
the intervals look solid, so we can maintain appearances.
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x

f(x)

y

f(y)

a b

FIGURE 12.2. A function f that is discontinuous at x. As y approaches x from
the right, f(y) does not approach f(x). To draw f on the interval [a, b], we must
lift the pen at x.

This means that we have to decide both how large a range of points to use
and how “dense” a set of points to use. We then draw the graph assuming
that the function varies smoothly in between the points where we evaluate
the function. For example, this means that we get the same graphs for the
polynomial functions whether we consider the polynomials as functions of
rational numbers or real numbers.

a b

f(a)

f(b)

a b

FIGURE 12.3. In the example on the left, f transforms the open interval (a, b)
into the open interval (f(a), f(b)). In the example on the right, f transforms the
open interval (a, b) into the closed interval.

The assumption that the function varies smoothly is critical. Suppose
that a function f is Lipschitz continuous with constant L on some set of
real numbers and choose a number x in this set. If y is any other real number
in the set, then |f(y) − f(x)| ≤ L|y − x| . If we consider moving y toward
x, then this means that the value of f(y) approaches the value of f(x). In
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a b

f(a)

f(b)

c

f(c)

d

FIGURE 12.4. A discontinuous transformation of an interval (a, b). The image of
(a, b) is the union of the disjoint intervals (f(a), d) and [f(c), f(b)).

other words, we cannot have any sudden jumps in the value of f from one
point to the next near x. This suggests that if f is Lipschitz continuous on
an interval, then we can draw its graph on the interval without lifting the
pen. Vice versa, if f has a sudden jump in value at a point x, then it cannot
be Lipschitz continuous on any interval that contains x. We illustrate in
Fig. 12.2. When a function f has a sudden jump in value at a point x, we
use solid and open circles to denote the two dangling ends of f at the point
x, with the solid circle denoting the value of f at x.

Another way to think about this is to consider functions as transforma-
tions. An open interval can be transformed into another open interval or a
closed interval or a half-open interval, as we illustrate in Fig. 12.3. If the
function is discontinuous on the other hand, the image of an interval does
not have to be an interval, as shown in Fig. 12.4.3

12.4 Limits of a Function of a Real Variable

Previously, we considered the limit of a sequence obtained by applying a
function to a given sequence of distinct numbers. Now we have defined
functions of a real variable on an interval I and we are interested in how
the function behaves as the inputs in the interval tend to some number c.
We say that f converges to a limit L as x approaches c in I and write

lim
x→c

f(x) = L

3These examples suggest that the image of a real interval under a Lipschitz continuous
function is another real interval. We can rephrase this as an equivalent question: Does
the image of an interval (a, b) under a Lipschitz continuous function take on every value
in between f(a) and f(b)? We answer this question in Theorem 13.2.
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if for any sequence {xn} with

xn in I for all n, xn �= c for all n, lim
n→∞

xn = c, (12.2)

we have
lim

n→∞
f(xn) = L

in the usual sense of sequences of numbers. In other words, f converges to
L if {f(xn)} converges to L for any sequence {xn} that converges to c but
never actually takes on the value c.4

The fact that we do not allow the sequences actually to reach point c is a
subtle but important point. In defining the limit as above, we are interested
in the behavior of the function f as the inputs tend to some number c, but
not necessarily in the value of f at c. In fact, f may not even be defined
at the point c, and if defined, its limit may not be the same as its value at
c. We illustrate these cases in Fig. 12.5.5

c

f(x)
L

c

f(x)
L

f(c)

FIGURE 12.5. Both of the functions plotted converge to L as x → c. However, the
function on the left is undefined at c and the function on the right has f(c) �= L.

Both of the functions shown in Fig. 12.5 are discontinuous at c. But this is
a mild form of discontinuous behavior since the functions have well-defined
limits at c. The situation for more “strongly” discontinuous functions is
much different. Consider the step function I(t) shown in Fig. 12.6. This
function does not have a limit at either 0 or 1, because we can find sequences
{ti} that converge to either 0 or 1, for which {I(ti} converges to 1 or 0 or
does not even converge at all.

Example 12.7. For example, consider applying the step function I(t)
to the sequences {1/n}, {−1/n}, and {(−1)n/n} for n ≥ 1. In the
first case, {I(1/n)} converges to 1 and in the second case {I(−1/n)}
converges to −1. In the third case, {I((−1)n/n)} = {−1, 1,−1, 1, · · · }
does not converge.

4If I can be understood from the function, it is usually omitted from the definition.
5Likewise, when we take the limit of a sequence limi→∞ ai, the index i never actually

takes on the value “∞”.
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1

2 I(t)

1 3

FIGURE 12.6. Plot of the step function I(t).

With this definition, we immediately obtain some useful properties of
limits of functions from the properties of limits of sequences of numbers.
We ask you to prove the following in Problem 12.12.

Theorem 12.4 Assume that f and g are defined on an interval I and

lim
x→c

f(x) = L, lim
x→c

g(x) = M

and c is a number. Then

lim
x→c

(f(x) + cg(x)) = L + cM

and
lim
x→c

f(x)g(x) = LM.

If M �= 0, then

lim
x→c

f(x)
g(x)

=
L

M
.

Ideally, we have to check this definition of the limit of a function for
every appropriate sequence, which certainly makes this definition difficult
to verify in practice. This motivates seeking another formulation of the
definition. The basic idea is that f converges to L at c if we can make
f(x) arbitrarily close to L by taking x close to c. We can write this in
mathematical terms as given any ε > 0 there is a δ > 0 such that

|f(x) − L| < ε for all x �= c in I with |x − c| < δ.

We can show these two definitions are equivalent with a deceptively
simple argument. Suppose the second definition holds and let {xn} be
a sequence satisfying (12.2). For any ε > 0 there is a δ > 0 such that
|f(x)−L| < ε for x with 0 < |x− c| < δ. Moreover, there is an N such that
|xn − c| < δ for n ≥ N . Hence, for n ≥ N , |f(xn) − L| < ε. So the first def-
inition holds. Now assume the second condition does not hold. Then there
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is an ε > 0 such that for every n there is an xn with 0 < |xn − c| < 1/n but
|f(xn) − L| ≥ ε. But {xn} converges to c while {f(xn)} does not converge
to L, so the first definition cannot hold either.

We summarize as a theorem.

Theorem 12.5 Weierstrass’s Characterization of a Limit of a Func-
tion Suppose f is a function defined on an interval I. Then f(x) converges
to a number L as x approaches c in I if and only if for every ε > 0 there
is a δ > 0 such that |f(x) − L| < ε for all x in I with 0 < |x − c| < δ.

We have shown a number of examples of proving a function applied to a
given sequence results in a convergent sequence. We finish this section by
presenting an example where we verify the alternate formulation.

Example 12.8. We show that f(x) = x2 converges to 1 as x ap-
proaches 1. We know this is true from our previous discussion since x2

is Lipschitz continuous on an interval containing 1, and if {xn} is any se-
quence converging to 1, then limn→∞(xn)2 =

(
limn→∞ xn

)2 = 12 = 1.

To verify the alternate formulation, we suppose that ε > 0 is given. We
want to show that we can make

|x2 − 1| < ε

by taking x sufficiently close to 1. For x in [0, 2], x+1 < 3 and therefore
|x2 − 1| = |x + 1||x − 1| ≤ 3|x − 1|. Hence, if we restrict x in [0, 2] so
that |x − 1| < ε/3, then

|x2 − 1| = |x − 1||x + 1| ≤ |x − 1||x + 1| <
ε

3
3 = ε.

This means the second definition holds with δ = ε/3.
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Chapter 12 Problems

12.1. Show Theorem 12.1 is true.

12.2. Complete the proof of Theorem 12.2.

12.3. Complete the proof of Theorem 12.3. Hint: It is possible to approximate
a real number x by a sequence of rational numbers {xi} that satisfy xi ≤ x or
xi ≥ x for all i by using the sequence of truncated decimal expansions obtained
by rounding down or up.

12.4. Compute the first 5 terms of the sequence that defines the value of the
function f(x) =

x

x + 2
at x =

√
2. Hint: Follow Fig. 12.1 and use the evalf

function of MAPLE c© in order to determine all the digits.

12.5. Let {xi} be the sequence with xi = 3 − 2
i

and f(x) = x2 − x. What is the

limit of the sequence {f(xi)}?

12.6. Show that |x| is Lipschitz continuous on the real numbers R.

12.7. Construct and draw a function that is defined on [0, 1], Lipschitz continuous
on (0, 1), but not Lipschitz continuous on [0, 1].

(a) (b)

(c) (d)

FIGURE 12.7. Plots for Problem 12.11.

12.8. Assume that the two sequences {xi}∞
i=1 and {yi}∞

i=1 have the same limit

lim
i→∞

xi = lim
i→∞

yi = x

and the elements xi and yi are all in an interval I containing x. If g is Lipschitz
continuous on I, prove that

lim
i→∞

g(xi) = lim
i→∞

g(yi).
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Problems 12.9–12.11 have to do with plotting a function of a real variable.

12.9. Produce an interval that contains all the points 3−10−j for j ≥ 0 but does
not contain 3.

12.10. Using MATLAB c© or MAPLE c© , graph the following functions on one
graph: y = 1 × x, y = 1.4 × x, y = 1.41 × x, y = 1.414 × x, y = 1.4142 × x,
y = 1.41421 × x. Use your results to explain how you could graph the function
y =

√
2 × x.

12.11. In the plots shown in Fig. 12.7, draw the images of the indicated sets of
real numbers under the indicated functions.

Problems 12.12–12.14 have to do with limits of a function of a real vari-
able.

12.12. Verify Theorem 12.4.

12.13. Show that x3 converges to 8 as x approaches 2 using the alternate for-
mulation in Theorem 12.5.

12.14. Show that 1/x converges to 1 as x approaches 1 using the alternate
formulation in Theorem 12.5.
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13
The Bisection Algorithm

We turn the focus onto developing a general method for solving mathemat-
ical models. It turns out that the Bisection Algorithm used to approximate√

2 can serve equally well to approximate a root of any Lipschitz continu-
ous function f in a given interval [a, b] provided [a, b] has the property that
f(a) has the opposite sign as f(b). In this chapter, we describe how to use
the Bisection Algorithm to solve a general root problem and show that it
converges. As an application, we use it to solve a difficult chemical model.
We also discuss some practical matters that arise when using the Bisection
Algorithm.

13.1 The Bisection Algorithm for General Root
Problems

Given a function f , the problem is to compute a root

f(x̄) = 0 (13.1)

in a given interval [a, b]. We assume that f is Lipschitz continuous on [a, b]
and f(a) and f(b) have opposite signs.1

As with the Muddy Yard model, the Bisection Algorithm produces two
sequences {xi} and {Xi} that are the endpoints of intervals [xi, Xi] that

1An efficient way to check this in practice is to verify that f(a)f(b) < 0.
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contain a root x̄ of (13.1) and become smaller as i increases. Since f(a)
and f(b) have the opposite signs we set x0 = a and X0 = b.

In the first step, we check the sign of f at the midpoint x̄1 = (x0+X0)/2.
If f(x̄1) = 0, then we have found a root and we stop. Otherwise f(x̄1) has
the opposite sign as one of f(x0) or f(X0). We set x1 = x0 and X1 = x̄1
if f(x0) and f(x̄1) have the opposite sign. Otherwise, we set x1 = x̄1 and
X1 = x1.

In step 2, we compare the sign of f(x̄2) at the midpoint x̄2 = (x1+X1)/2
with the signs of f(x1) and f(X1). If f(x̄2) = 0 we stop; otherwise we define
the new interval [x2, X2] using the points {x1, x̄2, X1} so that f(x2) and
f(X2) have opposite signs.

Continuing this process, we produce a sequence of intervals [xi, Xi] with
f(xi) and f(Xi) having the opposite signs. The algorithm can be described
like this.

Algorithm 13.1 Bisection Algorithm

1. Set the initial values x0 = a and X0 = b where f(a) and f(b) have
opposite signs.

2. Given two rational numbers xi−1 and Xi−1 with the property that
f(xi−1) and f(Xi−1) have the opposite signs, set x̄i = (xi−1 +
Xi−1)/2.

• If f(x̄i) = 0, stop.
• If f(x̄i)f(Xi−1) < 0, set xi = x̄i and Xi = Xi.
• If f(x̄i)f(xi−1) < 0, set xi = xi and Xi = x̄i.

3. Increase i by 1 and go back to step 2 as desired.

13.2 Solving the Model of Chemical Equilibrium

In Section 4.5, we derived a model

S (.02 + 2S)2 − 1.57 × 10−9 = 0 (13.2)

that gives the solubility S of Ba(IO 3 ) 2 in a .020 mol/L solution of KIO 3.
We use the Bisection Algorithm to solve (13.2).

Unfortunately, as posed, the roots of (13.2) are very small, which makes
it difficult to graph the function and find the initial interval [a, b]. We show
the plot in Fig. 13.1. So we first rescale the problem to more convenient
variables. Rescaling a problem in order to make it easier to find the roots
is often necessary in practice. We rescale the variables in this problem for
the same reason we change from kilometers to meters when measuring how
far a baby crawls in 5 minutes. We can measure the distance in either unit
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-.02  .02

-0.000008

0.000032

0.000072

FIGURE 13.1. A plot of the function S (.02 + 2S)2 − 1.57 × 10−9 in the model
(13.2). Apparently there are roots near −.01 and 0, but it is hard to see them!

but kilometers produces awkwardly small results, at least if we want to do
some boasting.2

We first multiply both sides of (13.2) by 109 to get

109 × S (.02 + 2S)2 − 1.57 = 0.

Next, we write

109 × S (.02 + 2S)2 = 103 × S ×
(
103)2 × (.02 + 2S)2

= 103 × S ×
(
103 × (.02 + 2S)

)2

= 103 × S ×
(
20 + 2 × 103 × S

)2
.

If terms of the new variable x = 103S, we want to find the roots of

f(x) = x(20 + 2x)2 − 1.57 = 0. (13.3)

If we find a root x of (13.3), then we can find the physical value by taking
S = 10−3x.

This new function, shown in Fig. 13.2, has much more reasonably sized
coefficients and the roots are not nearly as small as in the original formu-
lation. Moreover, f is a polynomial and therefore Lipschitz continuous on
any bounded interval. It appears that f might have one root near 0 and
another root near −10, but we ignore the negative root, if it exists, because
we cannot have “negative” solubility.

Since the positive root of (13.3) is near 0, we choose x0 = −.1 and X0 = .1
and apply Algorithm 13.1 for 20 steps. We show the results in Fig. 13.3.
This suggests that the root of (13.3) is x ≈ .00392 or S ≈ 3.92 × 10−6.

2Unfortunately, there is no real “technique” to rescaling variables. It just takes prac-
tice and experience.
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FIGURE 13.2. A plot of the function f(x) = x(20 + 2x)2 − 1.57 in (13.3).

13.3 The Bisection Algorithm Converges

To show that the Bisection Algorithm converges to a root of (13.1), we
show that the sequence {xi} is a Cauchy sequence, and hence has a limit,
and then show that the limit is a root.

The convergence of the algorithm is the same as for computing
√

2. At
step i, either f is zero at the midpoint x̄i of xi−1 and Xi−1 and we have
computed a root, i.e. f(x̄i) = 0, or f(x̄i) has the opposite sign of either
f(xi−1) or f(Xi−1) and we get a new interval [xi, Xi] which is half the size
of the previous interval. After i steps, we conclude that

0 ≤ Xi − xi ≤ 2−i(X0 − x1) = 2−i(b − a).

Arguing as when we computed
√

2, we find that

|xi − xj | ≤ 2−i(b − a) if j ≥ i. (13.4)

This means that {xi} is a Cauchy sequence and therefore converges to a
unique real number x̄.

To verify that x̄ is a root of f , we use the definition

f(x̄) = f( lim
i→∞

xi) = lim
i→∞

f(xi).

This makes sense because f is Lipschitz continuous on [a, b]. Now suppose
that f(x̄) is not zero, say, for example, f(x̄) > 0. Since f is Lipschitz
continuous in an interval around x̄, the values of f(x) are close to f(x̄) for
all points x close to x̄. Since f(x̄) > 0, this means that f(x) > 0 for x close
to x̄.

More precisely if we choose δ > 0 sufficiently small, then f is positive for
all points in the interval (x̄ − δ, x̄ + δ) (see Fig. 13.4). But if we choose i
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i xi Xi

0 -0.10000000000000 0.10000000000000
1 0.00000000000000 0.10000000000000
2 0.00000000000000 0.05000000000000
3 0.00000000000000 0.02500000000000
4 0.00000000000000 0.01250000000000
5 0.00000000000000 0.00625000000000
...

...
...

10 0.00390625000000 0.00410156250000
...

...
...

15 0.00391845703125 0.00392456054688
...

...
...

20 0.00392189025879 0.00392208099365

FIGURE 13.3. 20 steps of the Bisection Algorithm applied to (13.3) using
x0 = −.1 and X0 = .1.

so 2−i < δ, then xi and Xi are both within δ of x̄ and so f(xi) and f(Xi)
are both positive (see Fig. 13.4). But this contradicts the choice of xi and
Xi in the Bisection Algorithm, since f(xi) and f(Xi) must be opposite in
sign. A similar argument works for f(x̄) < 0. Therefore, f(x̄) = 0.

We summarize this as a theorem.

Theorem 13.1 Bolzano’s Theorem If f is Lipschitz continuous in an
interval [a, b] and f(a) and f(b) have opposite signs, then f has at least one
root in (a, b) and the Bisection Algorithm starting with x0 = a and X0 = b
converges to a root of f in (a, b).3

We name this theorem after Bolzano,4 who proved an early version.
One consequence of Bolzano’s theorem is the following well-known and

important theorem, which we ask you to prove in Problem 13.9.

3There can very well be more than one root of f in (a, b), and if there is more than
one root, it is unclear which root is found by the Bisection Algorithm.

4Bernard Placidus Johann Nepomuk Bolzano (1781–1848) lived and worked in what
is now the Czech Republic. Ordained as a Roman Catholic priest, he held positions as a
professor of theology and philosophy while devoting considerable time to mathematics.
Bolzano was particularly concerned about the foundations of mathematics. He attempted
to place calculus on a more rigorous foundation by eliminating “infinitesimals.” He also
investigated infinite sets and infinity, anticipating Cantor. Bolzano used a modern notion
of continuity of a function and derived both his namesake theorem and the Intermediate
Value Theorem. However, his proof was incomplete because he lacked a rigorous theory
of real numbers. Bolzano also used the idea of a Cauchy sequence a few years before
Cauchy, though Cauchy was probably ignorant of this. Much of Bolzano’s work was
never published, which diminished the impact of his results.
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x+δx- δ

xi Xi

x

f(x)

FIGURE 13.4. If f is Lipschitz continuous and f(x̄) > 0, then f is positive at all
nearby points.

Theorem 13.2 Intermediate Value Theorem Suppose that f is Lip-
schitz continuous on an interval [a, b]. Then for every d between f(a) and
f(b), there is at least one point c between a and b such that f(c) = d.

Regarding the discussion in Section 12.3, this theorem implies that the im-
age of an interval under a Lipschitz continuous function is another interval.

13.4 When to Stop the Bisection Algorithm

Now that we know that {xi}∞
i=0 converges to x̄, it would be useful to know

how quickly the sequence converges. In other words, we would like to have
an estimate of the error of the iteration

|xi − x̄| =
∣
∣
∣
∣xi − lim

j→∞
xj

∣
∣
∣
∣ (13.5)

for any i. Remember that we do not know x̄, so we cannot simply compute
|x̄ − xi|! It is important to have an estimate on (13.5), for example, in
order to know how many iterations of the Bisection Algorithm to perform
in order to determine the value of x̄ to a required accuracy.

The difference (13.5) can be made arbitrarily small by taking i large but
we want more precise information. Now, if j ≥ i, then xj agrees to more
decimal places with x̄ than xi. So for large j, xj is a lot closer to x̄ than
xi and |xi − xj | is a good approximation of |xi − x̄|. We estimate using the
triangle inequality

|xi − x̄| = |(xi − xj) + (xj − x̄)|
≤ |xi − xj | + |xj − x̄|.

This estimates the distance between xi and x̄ in terms of the distance
between xi and xj and the distance between xj and x̄. Now given any
ε > 0, |xj − x̄| ≤ ε if j is sufficiently large. So (13.4) implies that for any
ε > 0,

|xi − x̄| ≤ 2−i(b − a) + ε.
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Since ε can be arbitrarily small, we conclude

|xi − x̄| ≤ 2−i(b − a).

Example 13.1. Since 2−10 ≈ 10−3, we gain approximately 3 decimal
places for every 10 successive steps of the Bisection Algorithm. We can
see this predicted gain in accuracy in the numbers listed in Fig. 10.3
and Fig. 13.3, for example.

13.5 Power Functions

Now that we have the Bisection Algorithm to compute roots, we can define
ar for any positive real number a and real number r. So far we have only
defined ar when r is an integer.

We first consider the case that r is rational, i.e., r = p/q for integers p
and q. For a > 0, we define ap/q to be the positive root of

f(x) = xq − ap = 0. (13.6)

Such a root exists by the Intermediate Value Theorem since ap is a fixed
positive number so xq > ap for all sufficiently large x and likewise xq < ap

for x = 0. If we define x0 = 0 and choose X0 sufficiently large, then the
Bisection Algorithm started on [x0, X0] converges to a root of (13.6).

Example 13.2. Recall that we defined the 21/2 =
√

2 as the root
of f(x) = x2 − 21 and computed its value by applying the Bisection
Algorithm starting with the interval [1, 2], where f(1) < 0 and f(2) > 0.

Using this definition, it is possible to show that the properties of expo-
nents, such as aras = ar+s, a−r = 1/ar, and (ar)s = ars, that hold for
integer powers also hold for rational powers. However, it is difficult to do
this now, while it is easy after defining the logarithmic function. So we
delay proving these properties until Chapter 28.

Based on the discussion about real numbers, ar is defined for a real
number r by taking the limit of ari as i → ∞ where ri is the truncated
decimal expansion of r with i decimal digits. But to show this makes sense,
we have to show that ar is Lipschitz continuous in r and that is not so easy
using this definition. So again we delay discussing this definition further
until we introduce the logarithmic function, which makes it all much easier.

With the ability to compute the value of ar for any non-negative a given
a real number r, it is natural to define the power function with power r,

xr,
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defined for x in the set of non-negative real numbers. Here we consider
r to be a fixed real number. Again we delay discussing the details until
we can use the logarithm, but it is possible to show that xr is Lipschitz
continuous on bounded intervals for any r ≥ 1 and Lipschitz continuous on
real intervals [a, b] with a > 0 for any 0 ≤ r < 1. We show plots of xr for
these two cases in Fig. 13.5.

xr, r >1

xr, r >1 x1

FIGURE 13.5. Plots of xr for r < 1, r = 1, and r > 1.

Example 13.3. We verify that x1/2 =
√

x is Lipschitz continuous on
any bounded interval [a, b] with a > 1. The properties of exponents
imply that

(
x1/2 − y1/2)(x1/2 + y1/2) =

(
(x1/2)2 − (y1/2)2

)
= x − y;

so
∣
∣x1/2 − y1/2

∣
∣ =

x − y∣
∣x1/2 − y1/2

∣
∣ ≤ 1

2a1/2 |x − y|,

provided that x ≥ a > 0 and y ≥ a > 0. Therefore the Lipschitz
constant of

√
x on [a, b] is 1/2

√
a. When a is smaller, the constant

becomes larger. If we examine the graph of xr for r < 1 in Fig. 13.5, we
see that when x is near 0, the function makes large changes for small
changes in input.

13.6 Computing Roots by the Decasection
Algorithm

It turns out that there are many different ways to compute a root of a
function. The choice of the method depends on the circumstances of the
problem we have to solve.

To illustrate how a different method can work, we describe a variation of
the Bisection Algorithm called the Decasection Algorithm. Like the Bisec-
tion Algorithm, the Decasection Algorithm produces a sequence of numbers
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{xi}∞
i=0 that converges to a root x̄. However with the Decasection Algo-

rithm, there is a close connection between the index i of xi and the number
of decimal places xi and x̄ have in common.

The Decasection Algorithm looks the same as the Bisection Algorithm
except that at each step the current interval is divided into 10 subintervals
instead of 2. We start as before by choosing x0 = a and X0 = b so that
f(x0)f(X0)) < 0. Next we compute the value of f at nine equally spaced
points between x0 and X0. More precisely, we set δ0 = (X0 − x0)/10 and
check the signs of f at the points x0, x0 + δ0, x0 + 2δ0, · · · , x0 + 9δ0,
x0 + 10δ0 = X0. There must be two consecutive points at which f has
opposite signs, so we set x1 and X1 to be two consecutive points where
f(x1)f(X1) < 0.

Now we continue the algorithm by evaluating f at nine equally spaced
points x1 + δ1, x1 + 2δ1, · · · , x1 + 9δ1 with δ1 = (X1 − x1)/10. We choose
two consecutive numbers x2 and X2 from among x1, x1 + δ1, x1 +2δ1, · · · ,
x1 + 9δ1, X1 with f(x2)f(X2) < 0. We then proceed to compute [x3, X3]
and so forth.

By construction
|xi − Xi| ≤ 10−i(b − a)

and the same argument used for the Bisection Algorithm implies that

lim
i→∞

xi = x̄ and lim
i→∞

Xi = x̄; (13.7)

and, moreover,
|xi − x̄| ≤ 10−i(b − a).

So we gain approximately one digit of accuracy for each step of the Deca-
section Algorithm.

We show the first 14 steps of this algorithm applied to f(x) = x2 − 2
starting on [1, 2] in Fig. 13.6.

Once we have more than one method to compute a root of a function, it
is natural to ask which method is “best.” We have to decide what we mean
by “best” of course. For this problem, best might mean “most accurate”
or “cheapest,” for example.

However, for this problem, accuracy is apparently not an issue since both
the Decasection and Bisection algorithms can be executed until we get 16
places or whatever number of digits is used for floating point representation.
Therefore the way to compare the methods is by the amount of computing
time it takes to achieve a given level of accuracy. This computing time is
often called the cost of the computation, a holdover from the days when
computer time was actually purchased by the second.

The cost involved in one of these algorithms can be determined by fig-
uring out the cost per iteration and then multiplying by the total number
of iterations we need to reach the desired accuracy. In one step of the Bi-
section Algorithm, the computer must compute the midpoint between two
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i xi Xi

0 1.00000000000000 2.00000000000000
1 1.40000000000000 1.50000000000000
2 1.41000000000000 1.42000000000000
3 1.41400000000000 1.41500000000000
4 1.41420000000000 1.41430000000000
...

...
...

9 1.41421356200000 1.41421356300000
...

...
...

14 1.41421356237309 1.41421356237310

FIGURE 13.6. 14 steps of the Decasection Algorithm applied to f(x) = x2 − 2
implemented in a MATLAB c© m-file.

points, evaluate the function f at that point and store the value temporar-
ily, check the sign of the function value, and then store the new xi and
Xi. We assume that the time it takes for the computer to do each of these
operations can be measured and we define

Cm = cost of computing the midpoint
Cf = cost of evaluating f at a point

C± = cost of checking the sign of a variable
Cs = cost of storing a variable.

The total cost of one step of the bisection algorithm is

Cm + Cf + C± + 4Cs,

and the cost after Nb steps is

Nb(Cm + Cf + C± + 4Cs). (13.8)

One step of the Decasection Algorithm has a considerably higher cost be-
cause there are 9 intermediate points to check. The total cost after Nd steps
of the Decasection Algorithm is

Nd(9Cm + 9Cf + 9C± + 20Cs). (13.9)

On the other hand, the difference |xi − x̄| decreases by a factor of 1/10
after each step of the Decasection Algorithm as compared to a factor of
1/2 after each step of the Bisection Algorithm. Since 1/23 > 1/10 > 1/24,
this means that the Bisection Algorithm requires between 3 and 4 times as
many steps as the Decasection Algorithm in order to reduce the initial size
|x0 − x̄| by a given factor. So Nb ≈ 4Nd. This gives the cost of the Bisection
Algorithm as

4Nd(Cm + Cf + C± + 4Cs) = Nd(4Cm + 4Cf + 4C± + 16Cs)
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as compared to (13.9). This means that the Bisection Algorithm is cheaper
to use than the Decasection Algorithm.
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Chapter 13 Problems

13.1. Implement Algorithm 13.1 in a program to find a root of a general function
f . Test your program by computing a root of f(x) = x2 − 2 starting with the
interval [1, 2] and comparing the results to Fig. 10.3.

Problems 13.2–13.5 involve using the Bisection Algorithm to solve a
model equation. The program from Problem 13.1 would be useful.

13.2. In the model for the solubility of Ba(IO 3 ) 2, suppose that Ksp for Ba(IO 3 ) 2

is 1.8 × 10−5. Find the solubility S to 10 decimal places.

13.3. In the model for the solubility of Ba(IO 3 ) 2, determine the solubility of
Ba(IO 3 ) 2 in a .037 mol/L solution of KIO 3 to 10 decimal places.

13.4. The power P delivered into a load R of a simple class A amplifier of output
resistance Q and output voltage E is

P =
E2R

(Q + R)2
.

Find all possible solutions R for P = 1, Q = 3, and E = 4 to 10 decimal places.

13.5. Van der Waal’s model for one mole of an ideal gas, including the effects of
the size of the molecules and the mutual attractive forces, is

(
P +

a

V 2

)
(V − b) = RT,

where P is the pressure, V is the volume of the gas, T is the temperature, R
is the ideal gas constant, a is a constant depending on the size of the molecules
and the attractive forces, and b is a constant depending on the volume of all the
molecules in one mole. Find all possible volumes V of the gas corresponding to
P = 2, T = 15, R = 3, a = 50, and b = .011 to 10 decimal places.

Problems 13.6–13.8 are concerned with the accuracy of the Bisection Al-
gorithm. The program from Problem 13.1 would be useful.

13.6. (a) Compute 30 steps of the Bisection Algorithm applied to f(x) = x2 − 2
starting with (1) x0 = 1 and X0 = 2; (2) x0 = 0 and X0 = 2; (3) x0 = 1 and
X0 = 3; and (4) x0 = 1 and X0 = 20. Compare the errors |xi −

√
2| of the results

at each step and explain any observed differences in accuracy.

(b) Using the results from (a), plot (1) |Xi − xi| versus i; (2) |xi − xi−1| versus i;
and (3) |f(xi)| versus i. In each case, determine if the plotted quantity decreases
by a factor of 1/2 after each step.

13.7. Display the output of 40 steps of the Bisection Algorithm applied to f(x) =
x2 − 2 using x0 = 1 and X0 = 2. Describe anything you notice about the last
10 values xi and Xi and explain what you see. Hint: Consider the floating point
representation on the computer you use.
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13.8. Apply the Bisection Algorithm to the function

f(x) =

{
x2 − 1, x < 0
x + 1, x ≥ 0,

starting with x0 = −.5 and X0 = 1. Explain the results.

Problems 13.9 and 13.10 have to do with the Intermediate Value Theo-
rem.

13.9. Show that Theorem 13.2 is true.

13.10. Modify Algorithm 13.1 to get a program that computes a point c with
f(c) = d, where d is any number between f(a) and f(b) and f is Lipschitz
continuous on [a, b]. Test it by finding the point where f(x) = x3 equals 9, noting
that f(2) = 8 and f(3) = 27.

Problem 13.11 has to do with the power function. Review Example 13.3
before doing the problem.

13.11. (a) Prove that x1/3 is Lipschitz continuous on any bounded interval [a, b]
with a > 0. (b) Prove that x3/2 is Lipschitz continuous on any bounded interval
[a, b] with a ≥ 0.

Problems 13.12 and 13.13 have to do with modifications of the Bisection
Algorithm.

13.12. (a) Write down an algorithm for the Decasection Algorithm in a form
similar to that of Algorithm 13.1. (b) Program the algorithm and then compute√

2 to 15 places. (c) Show that (13.7) holds. (d) Show that (13.9) is valid.

13.13. (a) Devise a Trisection Algorithm to compute a root f(x̄) = 0. (b) Imple-
ment the Trisection Algorithm. (c) Compute

√
2 to 15 places. (c) Show that the

endpoints produced by the Tridiagonal Algorithm form a Cauchy sequence. (d)
Show that limit of the sequence is x̄; (e) Estimate on |xi − x̄|. (e) Compute the
cost of the Tridiagonal Algorithm from Problem 13.13 and compare to the costs
of the Bisection and Decasection Algorithms.
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14
Inverse Functions

Possessing the ability to solve general root problems yields a surprising
range of benefits. As a particular application, we study the process of “un-
doing” a given function, by which we mean reversing the action of a function
to trace from a given output back to the corresponding input. This is called
inverting a function and the function that undoes the action of a given func-
tion is called its inverse function. Finding the inverse function to a given
function generalizes the problem of solving a root problem for the function.
The concept of the inverse function is very powerful, and we use the idea
of inverse functions to derive some particular functions, like root functions
and later exponential functions and the inverse trigonometric functions.

We investigate inverse functions in two ways. First, we conduct a “ge-
ometric” investigation based on graphs. After figuring out what happens
using pictures, we go back and re-derive the results analytically. The an-
alytic investigation applies to wider circumstances so it is more generally
useful.

14.1 A Geometric Investigation

In Fig. 14.1, we recall the idea that a function “sends” an input point x to
an output point y = f(x). More precisely, leaving from the point x on the
x axis, we follow a vertical line up to where it intersects the graph of f and
then trace a horizontal line over to the y axis. We say that the image of x
is y.
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x

y

f(x)

x

y

f(x)

FIGURE 14.1. (Left) A function sends the point x to the point y. (Right) To
compute the inverse function, we start at the input y and trace back to find the
corresponding input x.

The idea behind the inverse function is to reverse this process and
start with the output y and find the corresponding input x. Visually, we
can think of following a horizontal line over from y to the graph of f and
then following a vertical line down to x, as shown on the right in Fig. 14.1.
The function that does this is called the inverse function of f and is written
f−1. We emphasize that

f−1 �= (f)−1 =
1
f

.

To get the graph of an inverse function in the usual coordinate system
with inputs running horizontally, we can lean our heads over to the right
so that the y axis looks horizontal. We see the graph shown on the left in
Fig. 14.2. Now the problem is that the usual meaning of right and left have

x

y

x

y

FIGURE 14.2. To get the graph of the inverse function, we first lean our heads
over to the right so the y-axis looks horizontal, giving the graph on the left. To
get the usual orientation with positive numbers on the right, we have to switch
the right and left hands of the graph as shown on the right.

been reversed, with the left hand denoting positive numbers and the right
negative numbers. To fix this, we have to switch the right and left hands,
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as shown on the left in Fig. 14.2. The resulting curve is the graph of the
inverse function.

We observe this picture can be obtained by reflecting the graph of the
function through the line y = x, as shown in Fig. 14.3. Note that we switch

x

y
f(x)

f 
-1(x)

y=x

FIGURE 14.3. To get the graph of the inverse function f−1, we reflect the graph
of the function f through the line y = x.

y and x to fit the axes.
The question is, when do we get a function when we perform this reflec-

tion? Recall that a graph represents a function when it passes the Vertical
Line Test, which says that any vertical line intersects the graph at most
at one point. We illustrate in Fig. 14.4. Therefore, the reflected graph must

FIGURE 14.4. Illustration of the Vertical Line Test. The graph on the left fails
and does not represent a function. The graph on the right passes the test.

pass the Vertical Line Test. Back in the original coordinates, vertical lines
correspond to horizontal lines. So we get the Horizontal Line Test, which
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states that a function has an inverse function if any horizontal line inter-
sects its graph at most at one point. We illustrate in Fig. 14.5.

FIGURE 14.5. Illustration of the Horizontal Line Test. The graph on the left fails
and does not have an inverse. The graph on the right passes and does have an
inverse.

Example 14.1. The domain of f(x) = x3 is R. From the graph, it
appears that x3 passes the Horizontal Line Test. We can prove this by
arguing that if x1 < x2, then x3

1 = x1 × x1 × x1 < x3
2 = x2 × x2 × x2.

Therefore, x3 has an inverse function, which we denote f−1(x) = 3
√

x,
that is also defined on R. We find

f(f−1(x)) = ( 3
√

x)3 = x

f−1(f(x)) = 3
√

x3 = x

for all x.

When does a function pass the Horizontal Line Test? In Fig. 14.5, we
show a function that fails on the left and one that passes the test on the
right. The difference between these two graphs is that the function on the
left is first decreasing and then increasing in value while the function on the
right is always increasing as x increases. A function is called monotone
when it is either always increasing or always decreasing in value.1

Example 14.2. Any line that is not horizontal is monotone.

Example 14.3. The domain of f(x) = x2 is all real numbers, but this
function is decreasing for x < 0 and increasing for x > 0 and therefore
fails the Horizontal Line Test and does not have an inverse.

1Some authors call a function that is either always increasing or decreasing in value
strictly monotone while a monotone function is merely either nonincreasing or non-
decreasing in value.
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Geometrically, we have proved

Theorem 14.1 Inverse Function Theorem A function has an inverse
if and only if it is monotone. When a function has an inverse, the graph
of the inverse function is obtained by reflecting the graph of the function
through the line y = x.

A function that has an inverse is said to be invertible.
Note that we can often take a “piece” of a graph to get a function that

is invertible. We call the resulting function a restriction of the original
function.

Example 14.4. By taking part of the graph of the function plotted
on the left in Fig. 14.5, we get an invertible function (see Fig. 14.6).
Note that we can also take the left-hand part of the function and get

f(x) f(x)
-

f 
-1

(x)
-

FIGURE 14.6. We take the right half of the graph of the function plotted on the
left in Fig. 14.5 and obtain an invertible function f̄ . We plot f̄ and f̄−1 on the
right.

an invertible function.

Example 14.5. The function f(x) = x2 for x ≥ 0 is monotone on
x ≥ 0 and hence has an inverse, which is f−1(x) =

√
x.

14.2 An Analytic Investigation

Armed with a geometric understanding, we now discuss the subject of
inverse functions using analysis. One reason to take a different approach
is that when we study functions of several variables, it is difficult to get a
good geometric picture.

We begin with the definition. The functions f and g are said to be in-
verse functions if:

1. For every x in the domain of g, g(x) is in the domain of f and
f(g(x)) = x.
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2. For every x in the domain of f , f(x) is in the domain of g and
g(f(x)) = x.

In this case, we write g = f−1 and f = g−1.
We can see the idea that g “undoes” the action of f , and vice versa, in

this definition. But we have to be careful. In order to evaluate f(g(x)), we
must assume that g(x) is a value in the domain of f , for example.

Example 14.6. The domain of f(x) = 2x−1 is R. The inverse function
is f−1(x) = 1

2 (x + 1), which is also defined on R. Therefore, there is no
problem to compute f(f−1(x)) or f−1(f(x)) for all x. We find

f(f−1(x)) = 2f−1(x) − 1 = 2 × 1
2
(x + 1) − 1 = x

f−1(f(x)) =
1
2
(f(x) + 1) =

1
2
(2x + 1 − 1) = x.

Example 14.7. The domain of f(x) = 1/(x − 1) is all real numbers
x �= 1. The inverse function is f−1(x) = 1+1/x, which is defined on all
real numbers x �= 0. In order to compute f(f−1(x)), we have to make
sure that f−1(x) �= 1 for any input x. But 1+1/x �= 1 for any x, so that
is okay. Likewise to compute f−1(f(x)), we have to make sure f(x) �= 0.
But 1/(x − 1) �= 0 for all x. We can therefore compute without fear

f(f−1(x)) =
1

1 + 1/x − 1
= x, x �= 0

f−1(f(x)) = 1 +
1

1/(x − 1)
= x, x �= 1.

How do we compute an inverse function? The analog of reflecting the
graph of a function through the line y = x is to switch the variables y and
x in the equation y = f(x) to get x = f(y) and then trying to solve for y.

Example 14.8. Given f(x) = 2x − 1, we write y = 2x − 1. Switching
y and x gives x = 2y − 1, which finally leads to f−1(x) = y = 1

2 (x + 1).
These computations are valid for all x in R.

Example 14.9. In fact the inverse function of f(x) = mx + b, m �= 0,
is f−1(x) = 1

m (x − b).

Example 14.10. Given f(x) = 1/(x − 1), we write y = 1/(x − 1).
Switching y and x gives x = 1/(y − 1), which finally leads to f−1(x) =
y = 1+1/x. These computations are valid for all real x �= 0 and x �= 1.

Note this procedure is not guaranteed to work.
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Example 14.11. Given f(x) = x2, we write y = x2. Switching y and
x gives x = y2. Now when we try to solve, we get y = ±

√
x; in other

words there are two possible values of y for each valid input x. This
reflects the fact that f(x) = x2 does not have an inverse function since
its graph does not pass the Horizontal Line Test. In fact, this is the
function plotted on the left in Fig. 14.5.

When does a function have an inverse? Suppose that f is defined and is
Lipschitz continuous on the interval [a, b] and

α = f(a) and β = f(b).

We illustrate in Fig. 14.7

f(x)

a b

α

β
f(x)

a b

α

β

FIGURE 14.7. Two examples of functions on [a, b].

By the Intermediate Value Theorem, f takes on every value between α
and β at least once in (a, b). Now f may take on a particular value, including
α and β, at more than one point, as shown on the right in Fig. 14.7. In this
case, f does not have an inverse function.

We say that a function is one-to-one, or 1-1, on an interval [a, b] if each
value of f reached on [a, b] is reached at exactly one point. Equivalently, f
is 1-1 if for any two points x1 �= x2 in [a, b] we have f(x1) �= f(x2). Clearly,
a function is 1-1 on an interval if and only if it passes the Horizontal Line
Test on that interval. The function on the left in Fig. 14.7 is 1-1 while the
function on the right is not. Therefore, a function has an inverse when it
is 1-1.

When is a function 1-1? Suppose that α < β and f is strictly increasing
on [a, b], which means that x1 < x2 implies that f(x1) < f(x2). This
implies that f is 1-1 on [a, b] and takes on each value between α and β at
exactly one point. Therefore, f has an inverse function. The same is true
if α > β and f is strictly decreasing, so as before we conclude that f has
an inverse on an interval if and only if it is monotone on the interval. If
y is any number between α and β, then there is exactly one number x
with f(x) = y. The definition of f−1 is simply the function that assigns
f−1(y) = x.
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But this definition is dissatisfying in that it does not say how to find the
value of x associated with y. In other words, knowing that a function has
an inverse function on an interval is not the same as having a formula for
the inverse function. In fact, it is usually the case that we cannot find an
explicit formula for an inverse function.

So how do we compute the inverse function of a given function when there
is no explicit formula for the inverse? We use the Bisection Algorithm.
Suppose that α = f(a) < β = f(b) and f is monotone increasing. For
each value y in (α, β), the function f(x) − y is Lipschitz continuous and
f(a) − y = α − y < 0 while f(b) − y = β − y > 0. Therefore, the Bisection
Algorithm applied to f − y starting with the interval [a, b] converges to a
root x of f(x) − y = 0. The root is unique because f is increasing. In this
way, we can compute the value of f−1(y) at any point y in (α, β). The same
method works if α > β and f is monotone decreasing.2

By the way, it is a good exercise to show that f−1 is monotone increasing
or decreasing when f is monotone increasing or decreasing.

We sum up this discussion as:

Theorem 14.2 Inverse Function Theorem Let f be a Lipschitz con-
tinuous, monotone increasing or decreasing function on [a, b] with α = f(a)
and β = f(b). Then f has a monotone increasing or decreasing inverse
function defined on [α, β]. For any x in (α, β), the value of f−1(x) can
be computed by applying the Bisection Algorithm to compute the root y of
f(y) − x = 0 starting on the interval [a, b].

Example 14.12. We can use the Inverse Function Theorem to define
the root function x1/n for a natural number n.

If n is odd, then f(x) = xn is a monotone increasing function and
therefore f is invertible on any interval. We define the function x1/n to
be the inverse of f ,

x1/n = f−1(x) where f(x) = xn.

The graph of f indicates that the domain and range of x1/n is all real
numbers and moreover x1/n is a monotone increasing function.

If n is even, then f(x) = xn is not monotone. However, we can restrict
f(x) = xn to have domain x ≥ 0 and then obtain an increasing function.
The range of f is all nonnegative real numbers as well. Once again we
define the function x1/n to be the inverse of f ,

x1/n = f−1(x) where f(x) = xn for x ≥ 0.

The graph of f indicates that the domain and range of x1/n are all non-
negative real numbers and that x1/n is a monotone increasing function.

2Note that we usually write f−1 as a function of x not y. If we want to do this, then
we let x denote any value in (α, β) and then compute the root y of f(y) − x = 0.
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With this definition, we can define the power function f(x) = xp/q for
any integer p and natural number q as the composition

f(x) =
(
x1/q

)p
.

We can verify that all the expected properties of exponents hold by
using the properties that hold for integer exponents.
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Chapter 14 Problems

14.1. Using the internet version of the yellow pages, one can enter the name
of a company and obtain the company’s phone number. This defines a function
from the set of company names to the set of telephone numbers. Describe the
corresponding inverse function.

14.2. A survey poll is a function that maps the set of poll takers to their responses
in a given set of possible responses. Is this function invertible in general?

14.3. For each of the following functions either make a rough sketch of the
inverse of the function or explain why it does not have an inverse.

a. b.

c. d.

e. f.

g. h.
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14.4. By restricting the domain of the function shown in Fig. 14.8, obtain three
different invertible functions and plot the corresponding inverse functions.

a b

f(x)

FIGURE 14.8. The function for Problem 14.4.

14.5. Verify that the following functions have the indicated inverses. Be sure to
specify the domains of the functions and the inverses!

(a) f(x) = 3x − 2 and f−1(x) =
x + 2

3
.

(b) f(x) =
x

x − 1
and f−1(x) =

x

x − 1
.

(c) f(x) = (x − 4)5 and f−1(x) = x1/5 + 4.

14.6. Compute the inverses of the following functions on the indicated domains:

(a) f(x) = 3x − 1, all x (b) f(x) = x1/5, all x

(c) f(x) = −x4, x ≥ 0 (d) f(x) = (x + 1)/(x − 1), x > 1

(e) f(x) = (1 − x3)/x3, x > 0 (f) f(x) = (2 +
√

x)3, x > 0

(g) f(x) = (1 − x3)−1, x > 1 (h) f(x) = (x − 2)(x − 3), 2 ≤ x ≤ 3.

14.7. Decide if the function f(x) = x8 is 1-1 on the indicated domains:

(a) all x (b) x ≥ 0 (c) x < −4.

14.8. Decide if the function f(x) = x2 + x − 1 is 1-1 on the indicated domains:

(a) all x (b) x ≥ −1/2 (c) x ≤ −1/2.

14.9. For each function below, determine an interval on which the function is
1-1 and then find the inverse function on the interval:

(a) f(x) = (x + 1)2 (b) (x − 4)(x + 5) (c) x3 + x.
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14.10. Prove geometrically and analytically that if f is monotone increasing or
decreasing, then its inverse is also monotone increasing or decreasing.

14.11. Using the definition of the root function in Example 14.12, prove that
(x1/n)1/m = x1/(nm) holds for all natural numbers n and m and nonnegative
real numbers x by using the corresponding property (xb)m = xnm that holds for
natural number powers.

14.12. Given monotone, Lipschitz continuous function f on the interval [a, b],
write a MATLAB c© function that computes the value of the inverse function at
any point y in (α, β) where [α, β] = f([a, b]).



15
Fixed Points and Contraction Maps

In practice, we are concerned not only with computing a root of a function,
but also with how quickly we can compute the root. If we are using an
approximation algorithm that computes the root as a limit, then “quick-
ness” is determined mainly by how many iterations the algorithm needs to
compute a root to a given accuracy and how much time each iteration takes
to compute. In particular, the Bisection Algorithm is a dependable way to
approximate a root, but it is slow in practice, requiring many iterations to
achieve high accuracy.1 So we still need to find better ways to solve root
problems.

In this chapter, we investigate new ways to solve root problems, moti-
vated in part by a search for faster methods. To look for new ways, we
reformulate the root problem into a new form called the fixed point prob-
lem. Given a function g, the fixed point problem for g is to find x̄ such
that

g(x̄) = x̄. (15.1)

Graphically, a fixed point x̄ of g is the point of intersection of the graphs
of the line y = x and the curve y = g(x) (see Fig. 15.1). It turns out that
modeling often results in a fixed point problem rather than a root problem,
so it natural to consider the subject of solving fixed point problems. As with
root problems, we are rarely able to compute the solution of a fixed point

1In contrast, the error of the Decasection Algorithm decreases more quickly per it-
eration than the error of the Bisection Algorithm, but takes so much more time per
iteration that it is not faster.
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y = x

y = g(x)

x

x = g(x)

FIGURE 15.1. Illustration of a fixed point g(x̄) = x̄.

problem exactly so we devise an algorithm that allows the solution to be
computed to any desired accuracy.

To explain how fixed point problems appear in modeling, we consider
two models.

15.1 The Greeting Card Sales Model

We model the financial situation of a door-to-door greeting cards salesman
that has the following price arrangement with a greeting card company.2

For each shipment of cards, she pays a flat delivery fee of $25 dollars, and
on top of this, for sales of x, where x is measured in units of $100, she pays
an additional fee of 25% to the company. In mathematical terms, for sales
of x hundreds of dollars, she pays

g(x) =
1
4

+
1
4
x (15.2)

where g is also given in units of $100. The problem of the Greeting Card
Sales model is to find the “break-even point:” i.e., the amount of sales x̄
where the money that she takes in exactly balances the money she has to
pay out. Of course, she expects to clear a profit with each additional sale
after this point.

We can visualize this problem by plotting two lines, shown in Fig. 15.2.
The first line, y = x, represents the amount of money collected for sales
of x. In this problem, we measure sales in units of dollars, so we just get
y = x for this curve. The second line, y = 1

4x + 1
4 , represents the amount

of money that has to be paid to the greeting card company. Because of the
initial flat fee of $25, the salesman starts with a loss. Then as sales increase,

2Fixed point problems are essential to mathematical modeling in economics.
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she reaches the break-even point x̄ and finally begins to see a profit. The
picture shows that the break-even point is a fixed point of g.

money collected

money paid 
to company

x

profitloss

sales

y = ¼ x + ¼

y = x

¼

FIGURE 15.2. Illustration of the problem of determining the break-even point
for selling greeting cards door-to-door. Sales above the break-even point x̄ give a
profit to the salesman, but sales below this point mean a loss.

In this example, it is easy to solve for the fixed point x̄. We find the
intersection of the two lines drawn in Fig. 15.2 by equating their formulas,

x̄ = g(x̄) =
1
4
x̄ +

1
4
,

which gives x̄ = 1/3.

15.2 The Free Time Model

The second example is more sophisticated and leads to a more complicated
fixed point problem.

In an effort to put his life in order, your roommate tries to figure out the
optimal balance between working and having fun by constructing a model
for his free time.3 Some activities, like studying and working part-time in
the cafeteria, cannot be avoided, and the time spent on these activities has
to be set aside. What can be adjusted is the time your roommate spends
on discretionary activities like sleep, eating, going to clubs, and so on. The
problem is to determine how much free time t he needs to be happy.

In counting up the time spent on discretionary activities, your roommate
estimates that he needs 6 hours a day minimum for eating and sleeping. He
decides that he should spend half of his free time, t/2, on purely fun activ-
ities. Finally, he observes that as the amount of free time shrinks, the time

3Of course, anyone that resorts to mathematics to figure out how to have fun is
hopeless anyway, but we ignore that. We are mathematicians after all.
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required for doing anything increases dramatically because he is cranky
and tired. He models this by assuming the amount of time wasted because
of being tired is .25/t of his t free time. To reach a balanced state, the
amount of time spent on discretionary activities should equal the amount
of free time, i.e., he has to solve the Free Time model ,

D(t) = 6 +
t

2
+

.25
t

= t, (15.3)

which is just the fixed point problem for the function D(t) giving the time
spent on discretionary activities. We plot g and the fixed point in Fig. 15.3.

4 8 12 16
t

0

4

8

12

16

D(t)

t

FIGURE 15.3. Plot of the fixed point problem for optimizing your roommate’s
free time.

Solving (15.3) for the fixed point t̄ is not straightforward because the
solution is irrational. We need to determine an algorithm for approximating
the solution. In any case, we can see the solution is around t = 12; so to
be truly happy, your roommate should spend around 12 hours on chores, 8
hours sleeping and eating, and 4 hours having fun.

15.3 Fixed Point Problems and Root Problems

As we said, fixed point problems and root problems are closely related. In
particular, a given fixed point problem can be rewritten as a root problem
and vice versa.

Example 15.1. If we define

f(x) = g(x) − x,

then
f(x) = 0 if and only if g(x) = x.
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a b a b

g(x)

g(x)

y = x y = x

FIGURE 15.4. Two conditions that guarantee that a Lipschitz continuous func-
tion g has a fixed point in the interval [a, b]. First, g(a) > a and g(b) < b; and
second, g(a) < a and g(b) > b.

With these choices, if we find a root of f , so f(x̄) = 0, then we have
also found a fixed point of g, g(x̄) = x̄.

Notice that in general we can rewrite a fixed point problem as a root
problem in many different ways.

Example 15.2. The fixed point problem

g(x) = x3 − 4x2 + 2 = x

can be written as the root problems

x3 − 4x2 − x + 2 = 0

5(x3 − 4x2 − x + 2) = 0

x2 − 4x +
2
x

− 1 = 0.

The same is true for writing root problems as fixed point problems.

Example 15.3. The root problem

f(x) = x4 − 2x3 + x − 1 = 0

is equivalent to the fixed point problems

x = −x4 + 2x3 + 1

x =
2x3 − x + 1

x3

x = x5 − 2x4 + x2.

This discussion suggests one way to solve a fixed point problem g(x) = x.
Namely, we rewrite it as a root problem f(x) = 0 and then apply the
Bisection Algorithm. We know this works provided we find an interval [a, b]
for which f(a) and f(b) have opposite signs and f is Lipschitz continuous
on [a, b]. Whether these properties are true depends on how we change the
fixed point problem into a root problem.



196 15. Fixed Points and Contraction Maps

a b a b

g(x)

g(x)

y = x y = x

FIGURE 15.5. In the figure on the left, g is not continuous on [a, b] and conse-
quently does not have a fixed point on [a,b] even though g(a) > a and g(b) < b.
In the figure on the right, g has two fixed points on [a, b] even though g(a) > a
and g(b) > b and g is Lipschitz continuous on [a, b].

Example 15.4. If g is Lipschitz continuous on an interval [a, b] and
we choose f(x) = g(x)−x, then f is Lipschitz continuous on [a, b]. The
condition that f(a) < 0 means that g(a) < a, and f(a) > 0 means
that g(a) > a. Therefore, g is guaranteed to have a fixed point in the
interval [a, b] provided either that g(a) > a and g(b) < b or g(a) < a
and g(b) > b. We illustrate the two possibilities in Fig. 15.4. Note that
if g is not continuous on the interval [a, b], then these conditions do not
guarantee that g has a fixed point in [a, b] (see Fig. 15.5). Also, g may
have a fixed point on an interval [a, b] even if these conditions do not
hold, as shown in Fig. 15.5.

It is certainly possible to convert a fixed point problem into a “bad” root
problem.

Example 15.5. We can rewrite the fixed point problem g(x) = x as
the root problem f(x) = 0 by defining f(x) = (g(x)−x)2. f is certainly
Lipschitz continuous when g is Lipschitz continuous but there is no way
we can find points a and b where f has the opposite signs, since f is
always non-negative.

So to use the Bisection Algorithm to solve a fixed point problem for g,
we find a way to transform the fixed point problem into a root problem
f(x) = 0 where f is Lipschitz continuous on an interval [a, b] and f(a) and
f(b) have the opposite signs.

Example 15.6. For the fixed point problem 1
4x+ 1

4 = x in the Greeting
Card model, we set f(x) = 1

4x + 1
4 − x = − 3

4x + 1
4 . Then f(0) = 1/4,

f(1) = −1/2 and f is Lipschitz continuous on [0, 1]. The Bisection
Algorithm starting with x0 = 0 and X0 = 1 converges to the root 1/3.
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Example 15.7. For the fixed point problem 6 + t/2 + .5/t = t in the
Free Time model, we set

f(t) =
6 + t/2 + .5/t

t
− 1 =

6
t

+
.5
t2

− 1
2
.

Then f(1) = 6, f(15) = −0.0977 · · · and f is Lipschitz continuous on
[1, 15]. The Bisection Algorithm starting with x0 = 1 and X0 = 15
converges to the root 12.0415229868 · · · .

15.4 Solving the Greeting Card Sales Model

Actually, we already solved for the solution x̄ = 1/3 of the fixed point
problem for the Greeting Card model. But we consider this problem once
again in order to figure out a new method for solving fixed point problems.
Knowing the fixed point beforehand makes it a lot easier to explain how
the new procedure works.

In Fig. 15.6, we plot the function g(x) = 1
4x + 1

4 used in the Card Sale
model along with y = x and the fixed point x̄. We also plot the value of

xx

g(x)

x

x

y=x

y=g(x)

FIGURE 15.6. The value of g(x) is closer to x̄ than x.

g(x) for some point x. We choose x < x̄ because in the model the sales start
at zero and then increase. The plot shows that g(x) is closer to x̄ than x,
i.e.,

|g(x) − x̄| < |x − x̄|.
In fact, we can compute the difference exactly using x̄ = 1/3,

|g(x) − x̄| =
∣
∣
∣
∣
1
4
x +

1
4

− 1
3

∣
∣
∣
∣ =

∣
∣
∣
∣
1
4

(
x − 1

3

)∣∣
∣
∣ =

1
4
|x − x̄|.

So the distance from g(x) to x̄ is exactly 1/4 the distance from x̄ than x.
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But the same argument shows that if we apply g to g(x), i.e. compute
g(y) where y = g(x), then the distance from that value to x̄ is 1/4 the
distance from g(x) to x̄ and 1/16 the distance from x to x̄. In other words,

|g(g(x)) − x̄| =
1
4
|g(x) − x̄| =

1
16

|x − x̄|

where we write g(y) where y = g(x) as g(g(x)). We illustrate this in
Fig. 15.7. Following the trend, if we apply g to g(g(x)) to get g(g(g(x))),

xx

g(x)

g(x)
g(g(x))

x
g(g(x))

y=x

y=g(x)

FIGURE 15.7. The distance of g(g(x)) to x̄ is 1/4 the distance from g(x) to x̄
and 1/16 the distance from x to x̄.

this value is closer to x̄ than x by a factor of 1/4 × 1/16 = 1/64. This
suggests that we can approximate the fixed point simply by choosing an
initial point x ≥ 0 and then continually reapplying g. This is called the
Fixed Point Iteration for g(x).

We show 7 steps of the Fixed Point Iteration in Fig. 15.8. We also show
the values of Xi from the Bisection Algorithm applied to the equivalent root
problem f(x) = − 3

4x + 1
4 starting on [0, 1]. The numbers suggest that the

error of the Fixed Point Iteration decreases by a factor of 1/4 for each iter-
ation, as opposed to the error of the Bisection Algorithm, which decreases
by a factor of 1/2. Moreover, since both methods require one function eval-
uation and one storage per iteration but the Bisection Algorithm requires
an additional sign check, the Fixed Point Iteration costs less per iteration.
For this problem, the Fixed Point Iteration is apparently “faster” than the
Bisection Algorithm.

The data in Fig. 15.8 suggests that the sequence generated by the Fixed
Point Iteration converges to the fixed point. We can prove this is true in
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Bisection Algorithm Fixed Point Iteration
i Xi xi

0 1.00000000000000 1.00000000000000
1 0.50000000000000 0.50000000000000
2 0.50000000000000 0.37500000000000
3 0.37500000000000 0.34375000000000
4 0.37500000000000 0.33593750000000
5 0.34375000000000 0.33398437500000
6 0.34375000000000 0.33349609375000
7 0.33593750000000 0.33337402343750
8 0.33593750000000
...

...
13 0.33337402343750

FIGURE 15.8. Results of the Bisection Algorithm and the Fixed Point Iteration
for the Greeting Card model.

this example by computing an explicit formula for the elements. We begin
with the first element,

x1 =
1
4
x0 +

1
4
,

then continuing

x2 =
1
4
x1 +

1
4

=
1
4

(
1
4
x0 +

1
4

)
+

1
4

=
1
42 x0 +

1
42 +

1
4
.

Likewise, we find

x3 =
1
43 x0 +

1
43 +

1
42 +

1
4

and after n steps

xn =
1
4n

x0 +
n∑

i=1

1
4i

. (15.4)

The first term on the right-hand side of (15.4), x0/4n converges to 0 as n
increases to infinity. The second term is equal to

n∑

i=1

1
4i

=
1
4

×
n−1∑

i=0

1
4i

=
1
4

×
1 − 1

4n

1 − 1
4

=
1 − 1

4n

3
,

using the formula for the geometric sum. The second term therefore con-
verges to the fixed point 1/3 as n increases to infinity.



200 15. Fixed Points and Contraction Maps

15.5 The Fixed Point Iteration

The Fixed Point Iteration for a general fixed point problem

g(x) = x,

is simply:

Algorithm 15.1 Fixed Point Iteration Choose x0 and set

xi = g(xi−1) for i = 1, 2, 3, · · · (15.5)

Showing that the algorithm converges to a fixed point of g and estimating
the error at each iteration are more difficult topics. Before tackling these,
we present a few examples.

Example 15.8. We apply the Fixed Point Iteration to solve the Free
Time model with g(t) = 6 + t/2 + .5/t starting with t = 1 and show
the results in Fig. 15.9. The iteration apparently converges to the fixed

i xi

0 1
1 6.75
2 9.41203703703704
3 10.7325802499499
4 11.3895836847879
5 11.7167417228215
...

...
10 12.0315491941695
...

...
15 12.0412166444154
...

...
20 12.0415135775222

FIGURE 15.9. Results of the Fixed Point Iteration applied to the Free Time
model.

point in this example.

Example 15.9. In computing the solubility of Ba(IO 3 ) 2 in Section 4.5,
we solved the root problem (13.3)

x(20 + 2x)2 − 1.57 = 0
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using the Bisection Algorithm and displayed the results in Fig. 13.3. In
this example, we use the Fixed Point Iteration to solve the equivalent
fixed point problem

g(x) =
1.57

(20 + 2x)2
= x. (15.6)

We know that g is Lipschitz continuous on any interval that avoids
x = 10 (and we also know that the fixed point/root is close to 0). We
start off the iteration with x0 = 1 and show the results in Fig. 15.10
The iteration appears to converge very quickly in this case.

i xi

0 1.00000000000000
1 0.00484567901235
2 0.00392880662465
3 0.00392808593169
4 0.00392808536527
5 0.00392808536483

FIGURE 15.10. Results of the Fixed Point Iteration applied to (15.6).

But the Fixed Point Iteration often fails to converge as well.

Example 15.10. The fixed point of

g(x) = x2 + x = x (15.7)

is easily computed to be x̄ = 0. It turns out, however, that the Fixed
Point Iteration diverges for any initial value x0 �= 0. We display the
results of the Fixed Point Iteration starting with x0 = .1 in Fig. 15.11.

15.6 Convergence of the Fixed Point Iteration

In this section, we investigate the convergence of the Fixed Point Iteration.
The investigation starts with the observation that the Fixed Point Iteration
for the Greeting Card model converges because the slope of g(x) = 1

4x + 1
4

is 1/4 < 1. This produces a factor of 1/4 in the error after each iteration,
forcing the right-hand side of (15.4) to have a limit as n tends to infinity.
Recalling that the slope of a linear function is the same thing as its Lipschitz
constant, we can say this example worked because the Lipschitz constant
of g is L = 1/4 < 1.

In contrast if the Lipschitz constant, or slope, of g is larger than 1, then
the analog of (15.4) does not converge.
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i xi

0 .1
1 .11
2 .1221
3 .13700841
4 .155779714410728
5 .180047033832616
6 .212463968224539
7 .257604906018257
8 .323965193622933
9 .428918640302077
10 .612889840300659
11 .988523796644427
12 1.96570309317674
13 5.82969174370134
14 39.8149975702809
15 1625.04902909176
16 2642409.39598115

FIGURE 15.11. Results of the Fixed Point Iteration applied to g(x) = x2 + x.

Example 15.11. We demonstrate this graphically in Fig. 15.12 using
the function g(x) = 2x + 1

4 . The difference between successive iterates
increases with each iteration and the Fixed Point Iteration does not con-
verge. It is clear from the plot that there is no positive fixed point. On
the other hand, the Fixed Point Iteration does converge when applied
to any linear function with Lipschitz constant L < 1. We illustrate the
convergence for g(x) = 3

4x+ 1
4 in Fig. 15.12. Thinking about (15.4), the

reason is simply that the geometric sum for L converges when L < 1.

Returning to the general case, we look for conditions on g that guarantee
that the Fixed Point Iteration converges to a fixed point of g. Based on the
previous examples, it is natural to assume that g is Lipschitz continuous
with constant L < 1. But we have to be careful now because linear functions
are Lipschitz continuous on the entire set of real numbers R, but most
functions are not. For example, polynomials of degree larger than 1 are
Lipschitz continuous on bounded sets of numbers but not on R. So we
assume that there is an interval [a, b] such that g is Lipschitz continuous
on [a, b] with Lipschitz constant L < 1.

This assumption introduces a complication. If we think about the anal-
ysis of the Greeting Card model, we might guess that we have to use the
Lipschitz condition on g evaluated at the iterates {xi} produced by the
Fixed Point Iteration. To do this, we need all of the xi to be in the interval
[a, b] on which g is Lipschitz continuous. Unfortunately, it is not so easy to
check this condition for all i. Since each xi is given by evaluating g(xi−1),



15.6 Convergence of the Fixed Point Iteration 203

y = x

y = x

x1x0 x2 x3

g(x) = 2 x + ¼

g(x) = ¾ x + ¼

x0 x1 x2 x3 x

FIGURE 15.12. On the left, we plot the first three fixed point iterates for
g(x) = 2x + 1

4 . The iterates increase without bound as the iteration proceeds.
On the right, we plot the first three fixed point iterates for g(x) = 3

4x + 1
4 . The

iteration converges to the fixed point in this case.

a way around this difficulty is to assume that if x is in [a, b], then g(x) is in
[a, b]. In other words, the image of [a, b] under the transformation g is con-
tained in [a, b]. This implies that as long as x0 is in [a, b] then xi = g(xi−1)
is also in [a, b] for every i by induction.

To summarize, we say that g is a contraction map on the interval
[a, b] if x in [a, b] implies g(x) is in [a, b] and if g is Lipschitz continuous
on [a, b] with Lipschitz constant L < 1. It turns out that the Fixed Point
Iteration for a contraction map always converges to a unique fixed point of
g in [a, b].

The first step is to show that the sequence {xi} generated by the Fixed
Point Iteration is a Cauchy sequence and therefore converges to a real num-
ber x̄. We have to show that the difference xi − xj can be made arbitrarily
small by taking j ≥ i both large. We start by showing that the differ-
ence xi − xi+1 can be made arbitrarily small. We subtract the equation
xi = g(xi−1) from xi+1 = g(xi) to get

xi+1 − xi = g(xi) − g(xi−1).

Because xi−1 and xi are both in [a, b] by assumption, we can use the Lips-
chitz continuity of g to conclude that

|xi+1 − xi| ≤ L|xi − xi−1|. (15.8)

This says that the difference between xi and xi+1 cannot be larger than a
factor of L times the previous difference between xi−1 and xi. This is how
we get a decrease in successive iterates. We can use the same argument to
show that

|xi − xi−1| ≤ L|xi−1 − xi−2|,
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so
|xi+1 − xi| ≤ L2|xi−1 − xi−2|.

By induction, we conclude that

|xi+1 − xi| ≤ Li|x1 − x0|. (15.9)

Since L < 1, this implies that |xi+1 − xi| can be made as small as we like
by taking i large.

To show that {xi} is a Cauchy sequence, we have to show the same holds
for |xi − xj | for any j ≥ i. Assuming that j > i, we can write

|xi − xj | = |xi − xi+1 + xi+1 − xi+2 + xi+2 − · · · + xj−1 − xj |.

Using the triangle inequality,

|xi − xj | ≤ |xi − xi+1| + |xi+1 − xi+2| + · · · + |xj−1 − xj |

=
j−1∑

k=i

|xk − xk+1|.

Now we use (15.9) on each term in the sum and get

|xi − xj | ≤
j−1∑

k=i

Lk |x1 − x0| = |x1 − x0|
j−1∑

k=i

Lk.

Now
j−1∑

k=i

Lk = Li(1 + L + L2 + · · · + Lj−i−1) = Li 1 − Lj−i

1 − L

by the formula for the geometric sum for L. Since L < 1, 1 − Lj−i ≤ 1 and
therefore

|xi − xj | ≤ Li

1 − L
|x1 − x0|.

Since L < 1, Li approaches 0 as i increases, we can make the difference
|xi − xj | with j ≥ i as small as we like by taking i large. In other words,
{xi} is a Cauchy sequence and therefore converges to a real number x̄.

The second step is to show that the limit x̄ is a fixed point of g. Recall
that by definition

g(x̄) = lim
i→∞

g(xi).

Now by the definition of the Fixed Point Iteration ,

lim
i→∞

g(xi) = lim
i→∞

xi+1 = lim
i→∞

xi = x̄,

and g(x̄) = x̄ as desired.
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In the last step, we show that g can have at most one fixed point in [a, b],
so there is no question about which fixed point the Fixed Point Iteration
approximates. Suppose that x̄ and x̃ are fixed points of g in [a, b], i.e.,

g(x̄) = x̄ and g(x̃) = x̃.

Subtracting and using the Lipschitz assumption on g, we find

|x̄ − x̃| = |g(x̄) − g(x̃)| ≤ L|x̄ − x̃|.

Since L < 1, this is only possible if x̄ − x̃ = 0.
We summarize this discussion as a theorem.

Theorem 15.1 Banach Contraction Mapping Principle If g is a
contraction map on an interval [a, b], then the Fixed Point Iteration starting
with any point x0 in [a, b] converges to the unique fixed point x̄ of g in [a, b].

The theorem is named after Banach,4 who first proved this result gener-
alizing the method of successive approximations for differential equations.
We present a more general version of the theorem and discuss the relation
to the method of successive approximation in Chapter 40.

Most of the time, the hard part in using this theorem is finding a good
interval. We finish with some examples that show different possibilities and
return to this subject in Chapter 31.

Example 15.12. In the Greeting Card model, g(x) = 1
4x + 1

4 is
Lipschitz continuous on R, so we can take any interval [a, b] and apply
the theorem. This means that there is only one solution in R.

Example 15.13. In the Free Time model, we can show (Problem 15.17)
that on the interval [a, b] with a > 0, D(t) = 6+t/2+.25/t has Lipschitz
constant

L =
1
2

+
.25
a2 .

As long as a > 1/
√

2 ≈ .7072, then we can use the theorem on [a, b] to
guarantee convergence. In practice, the Fixed Point Iteration converges
on any interval [a, b] with a > 0.

Example 15.14. To compute the solubility of Ba(IO 3 ) 2, we solve the
fixed point problem (15.6)

g(x) =
1.57

(20 + 2x)2
= x.

4The Polish mathematician Stefan Banach (1892–1945) developed the first systematic
theory of functional analysis, as well as making contributions to integration, measure
theory, orthogonal series, the theory of sets, and the topological vector spaces. Banach’s
name is found on several fundamental theorems in normed linear spaces as well as Banach
spaces. Banach was a popular, lively, and charming person who often worked in cafes,
bars, and restaurants.
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It is possible to show (Problem 15.18) g is Lipschitz continuous on [a, b]
with a ≥ 0 and b ≤ 9.07 with Lipschitz constant L < 1 and the theorem
applies. In practice, the Fixed Point Iteration converges for any x0 �= 10.

Example 15.15. In Example 15.10, we tried the Fixed Point Iteration
on g(x) = x2 + x = x with x0 = .1 and it failed to converge. On any
interval [a, b] with a > 0, the Lipschitz constant of g is L = 1 + 2a > 1,
so we cannot use the theorem.

Example 15.16. We can show (Problem 15.19) that g(x) = x4/(10 −
x)2 is Lipschitz continuous on [−1, 1] with L = .053 and the theorem
implies the Fixed Point Iteration converges to x̄ = 0 for any x0 in
[−1, 1]. However, the Lipschitz constant of g on [−9.9, 9.9] is about
20 × 106 and the Fixed Point Iteration diverges rapidly if x0 = 9.9.

15.7 Rates of Convergence

Recall that one motivation for the Fixed Point Iteration was to find a faster
way to solve root problems. This is a good time to discuss what is meant
by “how quickly an iteration converges”, and to provide a way to compare
the speeds at which different iterations converge.

We know that the error of the Bisection Algorithm decreases by at least
a factor of 1/2 with each iteration. For comparison, we need an estimate
on the amount of decrease of the error |xi − x̄| of the Fixed Point Iteration
with each iteration. Since x̄ = g(x̄),

|xi − x̄| = |g(xi−1) − g(x̄)| ≤ L|xi−1 − x̄|. (15.10)

This means that the error decreases by at least a factor of L < 1 during
each iteration. In particular if L < 1/2, then the Fixed Point Iteration
converges more quickly than the Bisection Algorithm in the sense that the
error generally decreases by a larger fraction with each iteration.

Moreover, we can turn (15.10) into an estimate on the error after n steps
by using induction to conclude that

|xn − x̄| ≤ Ln|x0 − x̄| ≤ Ln|b − a|. (15.11)

Using (15.11), we can decide how many iterations are needed to guarantee
a given accuracy in xn.

There is uncertainty in this discussion because it depends on estimates
of the errors of the iterations. It is possible that the error of the Fixed
Point Iteration actually decreases exactly by a factor of L. This is true
for the Greeting Card model in which the error decreases by a factor of
L = 1/4 for each iteration for example. When the error of an iterative
method decreases exactly by a constant factor of L during each iteration,
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i xi for 1
9x + 3

4 xi for 1
5x + 2

0 1.00000000000000 1.00000000000000
1 0.86111111111111 2.20000000000000
2 0.84567901234568 2.44000000000000
3 0.84396433470508 2.48800000000000
4 0.84377381496723 2.49760000000000
5 0.84375264610747 2.49952000000000
...

...
...

10 0.84375000004481 2.49999984640000
...

...
...

15 0.84375000000000 2.49999999995085
...

...
...

20 0.84375000000000 2.49999999999998

FIGURE 15.13. Results of the Fixed Point Iterations for 1
9x + 3

4 and 1
5x + 2.

we call this linear convergence and say the iteration converges at a linear
rate with convergence factor L. The Fixed Point Iteration applied to
any linear function g(x) with Lipschitz constant L < 1 converges at a
linear rate with convergence factor L. When two iterations converge at a
linear rate, we can compare the rate at which the iterations converge by
comparing the size of the convergence factors.

Example 15.17. The Fixed Point Iteration converges more quickly for
the function g(x) = 1

9x+ 3
4 than for g(x) = 1

5x+2. We show the results
in Fig. 15.13. The iteration for 1

9x + 3
4 reaches 15 places of accuracy

within 15 iterations, while the iteration for 1
5x + 2 has only 14 places

of accuracy after 20 iterations.

It is also possible for an iteration to converge more quickly than at a
linear rate. We explain using an example.

Example 15.18. The functions 1
2x and 1

2x2 are both Lipschitz con-
tinuous on [−1/2, 1/2] with Lipschitz constant L = 1/2. The estimate
(15.10) suggests the Fixed Point Iteration for both should converge to
x̄ = 0 at the same rate. We show the results of the Fixed Point Iteration
applied to both in Fig. 15.14.

It is clear that the Fixed Point Iteration for 1
2x2 converges much more

quickly, reaching 15 places of accuracy after 7 iterations.
To explain how this can happen, we look into the argument (15.10) for

the particular function g(x) = 1
2x2. Computing in the same way for the

fixed point x̄ = 0,

xi − 0 = g(xi−1) − g(0) =
1
2
x2

i−1 − 1
2
02 =

1
2
(xi−1 + 0)(xi−1 − 0)
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i xi for 1
2x xi for 1

2x2

0 0.50000000000000 0.50000000000000
1 0.25000000000000 0.25000000000000
2 0.12500000000000 0.06250000000000
3 0.06250000000000 0.00390625000000
4 0.03125000000000 0.00001525878906
5 0.01562500000000 0.00000000023283
6 0.00781250000000 0.00000000000000

FIGURE 15.14. Results of the Fixed Point Iterations for 1
2x and 1

2x2.

so
|xi − 0| =

1
2
|xi−1| |xi−1 − 0|.

This says that the error of the Fixed Point Iteration for 1
2x2 decreases

exactly by a factor of 1
2 |xi−1| during the ith iteration. In other words,

for i = 1 the factor is 1
2 |x0|

for i = 2 the factor is 1
2 |x1|

for i = 3 the factor is 1
2 |x2| ,

and so on. This is called a quadratic convergence rate. Unlike the case
of linear convergence, where the error decreases by a fixed factor each time,
in quadratic convergence the factor by which the errors decrease depends
on the values of the iteration.

Now consider what happens as the iteration proceeds and the iterates
xi−1 become closer to zero. The factor by which the error in each step
decreases becomes smaller as i increases! In other words, the closer the
iterates get to zero, the faster they get close to zero. The estimate in (15.10)
significantly overestimates the error of the Fixed Point Iteration for 1

2x2

because it treats the error as if it decreases by a fixed factor each time.
Thus it cannot be used to accurately predict the quadratic convergence for
this function. For a function g, the first part of (15.10) tells the same story:

|xi − x̄| = |g(xi−1) − g(x̄)|.

The error of xi is determined by the change in g in going from x̄ to the
previous iterate xi−1. This change can depend on xi−1 and when it does,
the Fixed Point Iteration does not converge at a linear rate.

A natural question is whether or not it is always possible to write a
fixed point problem in such a way that we get quadratic convergence. It
turns out that it is often possible, and we discuss this question again in
Chapter 31. For now, we give another example that demonstrates quadratic
convergence.
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Example 15.19. The Bisection Algorithm for computing the root of
f(x) = x2 − 2 converges at a linear rate with convergence factor 1/2.
We can write this problem as the fixed point problem

g(x) =
1
x

+
x

2
= x. (15.12)

It is easy to verify that x̄ is a fixed point for g if and only if it is
a root of f . We claim that the Fixed Point Iteration for g converges
at a quadratic rate. We show the result in Fig. 15.15. It takes only 5

i xi

0 1.00000000000000
1 1.50000000000000
2 1.41666666666667
3 1.41421568627451
4 1.41421356237469
5 1.41421356237310
6 1.41421356237310

FIGURE 15.15. The Fixed Point Iteration for (15.12).

iterations to reach 15 places of accuracy.

To show that the convergence is indeed quadratic, we compute as in
(15.10).

|xi −
√

2| = |g(xi−1) − g(
√

2)|

=

∣
∣
∣
∣
∣
xi−1

2
+

1
xi−1

−
(
√

2
2

+
1√
2

)
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
x2

i−1 + 2
2xi−1

−
√

2
∣
∣
∣
∣ .

Now we find a common denominator for the fractions on the right and
then use the fact that

(xi−1 −
√

2)2 = x2
i−1 − 2

√
2xi−1 + 2

to get

|xi −
√

2| =
(xi−1 −

√
2)2

2xi−1
. (15.13)

This says that as long as xi−1 is not close to zero, and since it converges
to

√
2 this is true for large i, then the error of xi is the square of the

error of xi−1. When the error of xi−1 is less than one, then the error of
xi is much smaller. This is quadratic convergence.
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Chapter 15 Problems

15.1. A salesman selling vacuum cleaners door-to-door has a franchise with the
following payment scheme. For each delivery of vacuum cleaners, the salesman
pays a fee of $100 and then a percentage of the sales, measured in units of
hundreds of dollars, that increases as the sales increases. For sales of x, the
percentage is 20x%. Show that this model gives a fixed point problem and make
a plot of the fixed point problem that shows the location of the fixed point.

15.2. Rewrite the following fixed point problems as root problems three different
ways each:

(a)
x3 − 1
x + 2

= x (b) x5 − x3 + 4 = x .

15.3. Rewrite the following root problems as fixed point problems three different
ways each:

(a) 7x5 − 4x3 + 2 = 0 (b) x3 − 2
x

= 0 .

15.4. If possible, find intervals suitable for application of the Bisection Algorithm
to each of the three root problems found in Example 15.2. A suitable interval is
one on which the function is Lipschitz continuous and on which the function
changes sign.

15.5. (a) If possible, find intervals suitable for application of the Bisection Al-
gorithm to each of the three root problems found in Problem 15.2(a). (b) Do
the same for Problem 15.2(b). A suitable interval is one on which the function is
Lipschitz continuous and on which the function changes sign.

15.6. (a) Draw a Lipschitz continuous function g on the interval [0, 1] that
has three fixed points such that g(0) > 0 and g(1) < 1. (b) Draw a Lipschitz
continuous function g on the interval [0, 1] that has three fixed points such that
g(0) > 0 and g(1) > 1.

15.7. Verify that (15.4) is true.

Do Problems 15.8–15.10 by finding an explicit formula analogous to (15.4).

15.8. (a) Find an explicit formula for the nth fixed point iterate xn for the
function g(x) = 2x + 1

4 . (b) Prove that xn diverges to ∞ as n increases to ∞.

15.9. (a) Find an explicit formula for the nth fixed point iterate xn for the
function g(x) = 3

4x + 1
4 . (b) Prove that xn converges as n increases to ∞ and

compute the limit.

15.10. (a) Find an explicit formula for the nth fixed point iterate xn for the
function g(x) = mx+b. (b) Prove that xn converges as n increases to ∞ provided
that L = |m| < 1 and compute the limit.
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15.11. Write a program that implements Algorithm 15.1. The program should
employ three methods for stopping the iteration: (1) when the number of itera-
tions is larger than a user-input number and (2) when the difference between suc-
cessive iterates |xi − xi−1| is smaller than a user-input tolerance and (3) (15.11).
Test the program by reproducing the results in Fig. 15.13.

Problems 15.12–15.15 involve solving a fixed point problem on a com-
puter. The program from Problem 15.11 would be useful for these.

15.12. In Section 4.5, suppose that Ksp for Ba(IO 3 ) 2 is 1.8 × 10−5. Find the
solubility S to 10 decimal places using the Fixed Point Iteration after writing
the problem as a suitable fixed point problem. Hint: 1.8 × 10−5 = 18 × 10−6 and
10−6 = 10−2 × 10−4.

15.13. In Section 4.5, determine the solubility of Ba(IO 3 ) 2 in a .037 mol/L
solution of KIO 3 to 10 decimal places using the Fixed Point Iteration after writing
the problem as a suitable fixed point problem.

15.14. The power P delivered into a load R of a simple class A amplifier of
output resistance Q and output voltage E is

P =
E2R

(Q + R)2
.

Find all possible solutions R for P = 1, Q = 3, and E = 4 to 10 decimal places
using the Fixed Point Iteration after writing the problem as a fixed point problem.

15.15. Van der Waal’s model for one mole of an ideal gas including the effects
of the size of the molecules and the mutual attractive forces is

(
P +

a

V 2

)
(V − b) = RT,

where P is the pressure, V is the volume of the gas, T is the temperature, R
is the ideal gas constant, a is a constant depending on the size of the molecules
and the attractive forces, and b is a constant depending on the volume of all the
molecules in one mole. Find all possible volumes V of the gas corresponding to
P = 2, T = 15, R = 3, a = 50, and b = .011 to 10 decimal places using the Fixed
Point Iteration after writing the problem as a fixed point problem.

Problems 15.16–15.21 are concerned with the convergence of the Fixed
Point Iteration.

15.16. Draw a Lipschitz continuous function g that does not have the property
that x in [0, 1] means that g(x) is in [0, 1].

15.17. Verify the details of Example 15.13.

15.18. Verify the details of Example 15.14.

15.19. Verify the details of Example 15.16.
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15.20. (a) If possible, find intervals suitable for application of the Fixed Point
Iteration to each of the three fixed point problems found in Example 15.3. (b)
If possible, find intervals suitable for application of the Fixed Point Iteration to
each of the three fixed point problems found in Problem 15.3(a). (c) If possible,
find intervals suitable for application of the Fixed Point Iteration to each of the
three fixed point problems found in Problem 15.3(b). In each case, a suitable
interval is one on which the function is a contraction map.

15.21. Apply Theorem 15.1 to the function g(x) = 1/(1 + x2) to show that the
Fixed Point Iteration converges on any interval [a, b].

Problems 15.22–15.26 are concerned with the rate of convergence of the
Fixed Point Iteration.

15.22. Given the following results of the Fixed Point Iteration applied to a
function g(x),

i xi

0 14.00000000000000
1 14.25000000000000
2 14.46875000000000
3 14.66015625000000
4 14.82763671875000
5 14.97418212890625 ,

compute the Lipschitz constant L for g. Hint: consider (15.9).

15.23. Given the following results of the Fixed Point Iteration applied to a
function g(x),

i xi

0 0.50000000000000
1 0.70710678118655
2 0.84089641525371
3 0.91700404320467
4 0.95760328069857
5 0.97857206208770 ,

decide if the convergence rate is linear or not.

15.24. (a) Show that g(x) = 2
3x3 is Lipschitz continuous on [−1/2, 1/2] with

Lipschitz constant L = 1/2. (b) Use the program from Problem 15.11 to compute
6 Fixed Point Iterations starting with x0 = .5 and compare to the results in
Fig. 15.14. (c) Show that the error of xi is approximately the cube of the error
of xi−1 for any i.

15.25. Verify that (15.13) is true.
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15.26. (a) Show the root problem f(x) = x2 + x − 6 can be written as the fixed

point problem g(x) = x with g(x) =
6

x + 1
. Show that the error of xi decreases

at a linear rate to the fixed point x̄ = 2 when the Fixed Point Iteration converges
to 2 and estimate the convergence factor for xi close to 2. (b) Show the root
problem f(x) = x2 + x − 6 can be written as the fixed point problem g(x) = x

with g(x) =
x2 + 6
2x + 1

. Show that the error of xi decreases at a quadratic rate to

the fixed point x̄ = 2 when the Fixed Point Iteration converges to 2.

15.27. The Regula Falsi Method is a variation of the Bisection Algorithm
for computing a root of f(x) = 0. For i ≥ 1, assuming f(xi−1) and f(xi)
have the opposite signs, define xi+1 as the point where the straight line through
(xi−1, f(xi−1)) and (xi, f(xi)) intersects the x-axis. Write this method as Fixed
Point Iteration by giving an appropriate g(x) and estimate the corresponding
convergence factor.
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16
The Linearization of a Function at a
Point

Up to this point, we have been concerned with mathematical models whose
solutions are numbers. The next stage is to consider more sophisticated
models1 whose solutions are functions. To do this, we need to investigate
functions in greater detail. In this chapter, we begin with the differential
calculus.

One of the fundamental tools for investigating the behavior of a nonlinear
function is to approximate the function by a linear function. The motivation
is that linear functions are well understood, whereas nonlinear functions
are not. In this chapter, we explain how to compute an accurate linear
approximation of a smooth function.

16.1 The Imprecision of Lipschitz Continuity

The linear approximation of a function is based on a refinement of the idea
of Lipschitz continuity. Recall that according to the definition of Lipschitz
continuity, the output of a linear function changes when the input changes.
If f(x) = mx + b for some constants m and b, then for any two points x
and x̄,

|f(x̄) − f(x)| = |m| |x̄ − x|
and the Lipschitz constant of f is |m|. Note that this holds for any x̄ and
x (see Fig. 16.1). The idea behind Lipschitz continuity is to apply this

1Such as differential equations.
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|f(x)-f(x)|

|x-x||x-x|

|f(x)-f(x)|

FIGURE 16.1. The change in output of a linear function for a given change in
input |x̄ − x| is the same regardless of x and x̄.

x

f(x)

f(x)+(x-x)L

f(x)-(x-x)L

f(x)

FIGURE 16.2. The Lipschitz condition means that the value of f(x) is “trapped”
between the lines y = f(x̄) ± L(x − x̄).

condition to general nonlinear functions in order to measure how much the
output changes with a small change in input.

The definition of Lipschitz continuity of f on an interval I: namely, there
is a constant L such that

|f(x) − f(x̄)| ≤ L|x − x̄|

for all x and x̄ in I: means that the value of f(x) lies in the sector formed
by the two straight lines

y = f(x̄) ± L(x − x̄)

through the point (x̄, f(x̄)) (see Fig. 16.2). This figure shows that Lips-
chitz continuity can be a rather imprecise way to describe how a function
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x

f(x)

f(x)

0 x x x

f(x)

f(x)

FIGURE 16.3. The change in output of f(x) = x2 corresponding to a given
change in input |x̄ − x| is larger when x̄ and x are larger.

changes. The function can “wiggle” around quite a bit in the region deter-
mined by the Lipschitz condition.

In fact for most nonlinear functions, the change in output for a given
change in input does depend on the values of the input.

Example 16.1. Fig. 16.3 clearly shows that the change in output of
f(x) = x2 depends on the values of the input. The reason is simply
that f(x) = x2 varies in “steepness” as x increases. We can compute
the Lipschitz constant from the equality

|x̄2 − x2| = |x + x̄| |x̄ − x|.

The factor |x̄ + x| is largest when x̄ and x are largest. On the interval
[0, 2], the Lipschitz constant of f(x) = x2 is therefore L = 4.

So showing that a function is Lipschitz continuous does imply that small
changes in input cause small changes in output. But the change is measured
imprecisely since the Lipschitz constant is determined by the largest change
possible in a given interval. If we look at changes for input at points away
from where the biggest change occurs, the corresponding change in the
output is smaller than predicted by the Lipschitz condition.

Example 16.2. Computing the change in x2 from x = 1.9 to x = 2, we
get 22 − 1.92 = .39, while the Lipschitz condition gives 4(2 − 1.9) = .4,
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which is not far off. However, the change in value going from x = 0 to
x = .1 is .12 − 02 = .01. This is quite a bit smaller than the change of
.4 predicted by the Lipschitz condition.

To measure the change in output for a nonlinear function more precisely,
we can shrink the interval on which the Lipschitz condition is applied.

Example 16.3. If we are interested in how f(x) = x2 changes for x
near 1, we can use the interval [.75, 1.25] instead of [0, 2], (see Fig. 16.4).
The Lipschitz constant of x2 on [.75, 1.25] is L = 2.5. The graph shows

13_
4

5_
4

2

FIGURE 16.4. The Lipschitz condition for f(x) = x2 is more precise if we make
the interval smaller.

there is less variation in the change |f(x̄)−f(x)| for a given change |x̄−x|
when x and x̄ are restricted to the interval [.75, 1.25] as compared to
[0, 2].

In other words, f(x) = x2 looks “more” like a linear function on smaller
intervals. Figure 16.5 shows that the curve in the graph of x2 is less notice-
able on smaller intervals. Since the idea of Lipschitz continuity is based on
how linear functions change, the more a function looks like a linear func-
tion, the more precisely the Lipschitz condition determines the change in
the function values.
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1 1 1

FIGURE 16.5. Comparing f(x) = x2 to linear functions on decreasing intervals
from left to right. If we make the interval for the comparison smaller, x2 looks
more like a line.

f(x) f(x)

x x

FIGURE 16.6. Some bad linear “approximations” to the function f near x̄ are
shown on the left and some good linear approximations are shown on the right.

16.2 Linearization at a Point

We construct a linear approximation to a nonlinear function using the idea
that a smooth function “looks” more like a line on a small interval. In
particular, we construct a linear function that is a good approximation of
a nonlinear Lipschitz continuous function f near a particular point x̄. In
general, there are many lines that are close to a given function f near a
point, as illustrated in Fig. 16.6. The question is whether one of the many
possible approximate lines is a particularly good choice or not.

Assuming the value of f(x̄) is known, it is natural to consider lines that
pass through the point (x̄, f(x̄)). Such lines are said to interpolate f at
x̄. All such lines have the equation

y = f(x̄) + m(x − x̄) (16.1)

for some slope m. Several examples are shown in Fig. 16.7.
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f(x)

x

f(x)

FIGURE 16.7. Linear approximations to a function that pass through the point
(x̄, f(x̄)). We focus on the region near (x̄, f(x̄)) on the right.

Even with the interpolation condition, there are still many possibili-
ties. To find a good approximation, we consider how f(x) changes as x
moves away from x̄. If we examine the three lines plotted in Fig. 16.7 near
(x̄, f(x̄)), we see that two of the lines do not change in the same way as
f(x) for x near x̄. One line changes more quickly and the other line changes
more slowly. The line in the middle, on the other hand, does change more
or less like f for x close to x̄. This line is said to be tangent to the graph of
f at the point x̄. The plot suggests that f looks very similar to the tangent
line at x̄ for x near x̄.

We therefore attempt to choose the slope m so that f(x̄) + m(x − x̄) is
tangent to f . To see how to do this, we consider the error of the approxi-
mation,

error = f(x) −
(
f(x̄) + m(x − x̄)

)
. (16.2)

Naturally, we try to choose m so that the error is relatively small. Both
the function f and its approximation f(x̄) + m(x − x̄) have the same value
f(x̄) at x̄. For x close to x̄, we think of m(x − x̄) as a small correction to
the value of f(x̄). Likewise if we rewrite (16.2) as

f(x) = f(x̄) + m(x − x̄) + error ,

then we can think of the error as being a correction to the value of f(x̄) +
m(x−x̄). The linear approximation f(x̄)+m(x−x̄) is a good approximation
if the correction given by the error is small compared to the correction
m(x − x̄).

To make this more precise, recall that if |x − x̄| < 1 and n ≥ 2, then

|x − x̄|n < |x − x̄|.

In fact, |x − x̄|n is much smaller than |x − x̄| when |x − x̄| is small. For
example, .12 = .01 is quite small compared to .1. Therefore, if the slope
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m is chosen so that the error is roughly proportional to |x − x̄|n for some
n ≥ 2, then the error is relatively small for x close to x̄.2

Now we are in position to define the linear approximation of a function.
The function f is said to be strongly differentiable at x̄ if there is an
open interval Ix̄ containing x̄, a number f ′(x̄), and a constant Kx̄ such that

∣
∣f(x) −

(
f(x̄) + f ′(x̄)(x − x̄)

)∣∣ ≤ (x − x̄)2Kx̄ for all x in Ix̄. (16.3)

The approximation f(x̄) + f ′(x̄)(x − x̄) is called the linearization of f at
the point x̄ while the slope of the linearization f ′(x̄) is called the derivative
of f at x̄. The linearization f(x̄) + f ′(x̄)(x − x̄) is also called the tangent
line to f at x̄. Note that f ′(x̄) = m in (16.1).3 Note that the error term
depends on x̄ as well as x.

Example 16.4. To compute the linearization of x2 at x̄ = 1, we com-
pute numbers m and K1 such that

|x2 − (1 + m(x − 1))| ≤ (x − 1)2K1 (16.4)

for x near 1. Now x2 − (1 + m(x − 1)) = x2 − 1 − m(x − 1). Since
x2 − 1 = (x − 1)(x + 1), we get

x2 − (1 + m(x − 1)) = (x − 1)(x + 1) − m(x − 1) = (x − 1)(x + 1 − m).

To achieve (16.4), which now reads

|x − 1| |x + 1 − m| ≤ (x − 1)2K1,

for all x near 1, we must choose m and K1 so that

|x + 1 − m| ≤ |x − 1|K1.

Now the right-hand side tends to zero as x → 1: hence, the left-hand side
must also tend to zero. But this means that m = 2. Since |x + 1 − 2| =
|x − 1|, we conclude that (16.4) holds with m = 2 and K1 = 1. The
linearization of f(x) = x2 at x̄ = 1 is 1 + 2(x − 1). The derivative of f
at x̄ = 1 is f ′(1) = 2. We compare some values of x2 to 1 + 2(x − 1)
and plot the functions in Fig. 16.8.

It is illustrative to consider an example of a function that does not have
a linearization at one point.

2Actually, we only require n > 1 for the error to be relatively small for x sufficiently
close to x̄. However, dealing with a fractional power 1 < n < 2 is more difficult and
n ≥ 2 serves most of the time.

3We use f ′(x̄) to denote the slope of the linearization, even though it is a more
complicated symbol than m, because this is useful later on.
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x f(x) f(x̄) + f ′(x̄)(x − x̄) error
.7 .49 .4 .09
.8 .64 .6 .04
.9 .81 .8 .01
1.0 1.0 1.0 0.0
1.1 1.21 1.2 .01
1.2 1.44 1.4 .04
1.3 1.69 1.6 .09

 1 2
0

1

2

3

4

x2

1+2(x-1)

FIGURE 16.8. Some values of the linearization 1 + 2(x − 1) of x2 at x̄ = 1 along
with plots of the functions.

Example 16.5. The Lipschitz continuous function f(x) = |x| does not
have a linearization at x̄ = 0. This is intuitively obvious from the graph
because the “sharp corner” in the graph of |x| at 0 means that there
is no way to draw a single good linear approximation (see Fig. 16.9).
If we try to use the definition of the linearization, we immediately run
into trouble. For all x > 0, |x| = 0 + x + 0 = |x̄| + x + error. But for
x < 0, |x| = 0−x+0. Hence, there is no single number f ′(0) for which
|x| = 0 + f ′(0)x + error for all x near 0.

16.3 A Systematic Approach

Computing the linearization and estimating its error can be difficult. How-
ever if a function is strongly differentiable, there is a systematic way to
determine first the derivative and then estimate the error in principle, if
not in practice. Before computing more examples, we describe this method
in abstract terms. Consider a Lipschitz continuous function Ex̄ of x in some
open interval I containing x̄ and suppose that

Ex̄(x) ≤ (x − x̄)2Kx̄ (16.5)
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|x|

FIGURE 16.9. There is no single good linear approximation of |x| at x̄ = 0.

for all x in I, where Kx̄ is some constant. In the present situation, we can
think of Ex̄ as being the error of the linear approximation, i.e.,

Ex̄(x) = |f(x) −
(
f(x̄) + f ′(x̄)(x − x̄)

)
|;

but these comments hold in general. It follows from (16.5) that

lim
x→x̄

Ex̄(x) = Ex̄(x̄) = 0. (16.6)

In addition, it follows that

lim
x→x̄

Ex̄(x)
|x − x̄| = 0 (16.7)

since ∣
∣
∣
∣
Ex̄(x)
|x − x̄|

∣
∣
∣
∣ ≤ |x − x̄||Kx̄|

for all x �= x̄ in I.
Therefore, the statement (16.5) that Ex̄ is quadratic in x − x̄ for x close

to x̄ means that both (16.6) and (16.7) hold. This gives precise criteria for
checking such a statement.4

It is important to realize that while (16.6) can be verified by substituting
x = x̄ into Ex̄, we cannot check (16.7) by simple substitution. We have
divided by x − x̄ after all, which is undefined at x = x̄. Condition (16.7)
must be verified by computing a limit. It is also important to note that while
(16.6) and (16.7) are necessary for (16.5) to hold, they are not sufficient.
We discuss this point in more detail later.

Note that we actually use these ideas in computing the linearization of
x2 at 1. We now consider a few more examples.

4Prior experience with the standard definition of the derivative will make the work
needed to compute the linearization of a function seem familiar. Showing a function is
strongly differentiable does take more work, however, since we are estimating the error
of the linearization in addition to computing the linearization.
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Example 16.6. We compute the linearization of f(x) = x3 at x̄ = 2.
To do this, we compute m and K2 such that

∣
∣x3 −

(
23 + m(x − 2)

)∣∣ ≤ (x − 2)2K2

for x near 2. It turns out to be better not to simplify 23 = 8 just yet.
We compute using the equality

a3 − b3 = (a − b)(a2 + ab + b2)

to get
∣
∣x3 −

(
23 + m(x − 2)

)∣∣ =
∣
∣x3 − 23 − m(x − 2)

∣
∣

=
∣
∣(x − 2)(x2 + 2x + 4) − m(x − 2)

∣
∣

= |x − 2| |x2 + 2x + 4 − m|.

We conclude that

lim
x→2

∣
∣x3 −

(
23 + m(x − 2)

)∣∣ = 0

for any m as required. We also require

lim
x→2

∣
∣x3 −

(
23 + m(x − 2)

)∣∣

|x − 2| = lim
x→2

|x2 + 2x + 4 − m| = 0,

which forces m = 12. The linearization is 8 + 12(x − 2).

To estimate the error, we compute
∣
∣x3 −

(
23 + 12(x − 2)

)∣∣ =
∣
∣x3 − 23 − 12(x − 2)

∣
∣

=
∣
∣(x − 2)(x2 + 2x + 4) − 12(x − 2)

∣
∣

= |x − 2| |x2 + 2x − 8| = |x − 2| |x − 2| |x + 4|
= |x − 2|2|x + 4|.

On any finite interval I2 containing 2 of size |I2|, |x + 4| ≤ |I2| + 6. So
for any such interval,

∣
∣x3 −

(
23 + m(x − 2)

)∣∣ ≤ (x − 2)2(|I2| + 6)

for x in I2. We conclude that x3 is strongly differentiable at 2.5

We compare some values of x3 to 8+12(x−2) and show the linearization
in Fig. 16.10 .

5Note that much of the work in estimating the error duplicates the work used to
compute the derivative.



16.3 A Systematic Approach 227

x f(x) f(2) + f ′(2)(x − 2) error
1.7 4.913 4.4 .513
1.8 5.832 5.6 .232
1.9 6.859 6.8 .059
2.0 8.0 8.0 0.0
2.1 9.261 9.2 .061
2.2 10.648 10.4 .248
2.3 12.167 11.6 .567

 x
3

5

7

9

11

x3

8+12(x-2)

2

12

FIGURE 16.10. Some values of the linearization 8+12(x − 2) of x3 at x̄ = 2 and
plots of the functions.

Example 16.7. To compute the linearization of f(x) = 1/x at x̄ = 1,
we compute numbers m and K1 such that

∣
∣
∣
∣
1
x

−
(
1 + m(x − 1)

)
∣
∣
∣
∣ ≤ (x − 1)2K1 (16.8)

for x near 1. We first compute m and estimate K1. The strategy in the
analysis is to find factors of |x − 1| in the expression on the left-hand
side of (16.8). Now

∣
∣
∣
∣
1
x

−
(
1 + m(x − 1)

)
∣
∣
∣
∣ =

∣
∣
∣
∣
1
x

− 1 − m(x − 1)
∣
∣
∣
∣

=
∣
∣
∣
∣
1 − x

x
− m(x − 1)

∣
∣
∣
∣

= |1 − x|
∣
∣
∣
∣
1
x

+ m

∣
∣
∣
∣ .

We conclude that

lim
x→1

∣
∣
∣
∣
1
x

−
(
1 + m(x − 1)

)
∣
∣
∣
∣ = 0
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for any m, as (16.6) requires. For (16.7) to hold, we want

lim
x→1

∣
∣ 1
x −

(
1 + m(x − 1)

)∣∣

|x − 1| = lim
x→1

|1 − x|
∣
∣ 1
x + m

∣
∣

|x − 1| = lim
x→1

∣
∣
∣
∣
1
x

+ m

∣
∣
∣
∣ = 0.

We conclude that m = −1, i.e., f ′(1) = −1, and the linearization is
1 − (x − 1). To show that f is strongly differentiable, we need to show
that ∣

∣
∣
∣
1
x

−
(
1 − (x − 1)

)
∣
∣
∣
∣ ≤ (x − 1)2K1

for x near 1. We manipulate the quantity on the left in order to get two
factors of x − 1,
∣
∣
∣
∣
1
x

−
(
1 − (x − 1)

)
∣
∣
∣
∣ =

∣
∣
∣
∣
x − 1

x
+ (x − 1)

∣
∣
∣
∣ = |x − 1|

∣
∣
∣
∣
1
x

− 1
∣
∣
∣
∣ =

|x − 1|2
|x| .

This gives the desired result provided we can bound the size of the
factor 1/|x| for x near 1. In this problem, we need to choose an interval
I1 carefully in order to get the desired bound because the factor 1/|x| in
the error becomes arbitrarily large as x approaches zero. Since we want
to show the linearization is accurate for x near 1, we just choose any
interval I1 that contains 1 but is bounded away from 0. The interval
I1 = (.5, 2) is a suitable choice, for example. Then 1/|x| ≤ 2 for x in I1
and we conclude that

∣
∣
∣
∣
1
x

−
(
1 − (x − 1)

)
∣
∣
∣
∣ ≤ (x − 1)2 2

for x in I1. So 1/x is strongly differentiable at 1.

We compare some values of 1/x to 1−(x−1) and show the linearization
in Fig. 16.11.

16.4 Strong Differentiability and Smoothness

Example 16.5 shows that some degree of smoothness beyond Lipschitz con-
tinuity is required for a function to be strongly differentiable. We investigate
this issue in great detail, beginning with this section.

Here, we show the intuitively obvious fact that the graph of a function f
that is strongly differentiable at a point x̄ cannot have a jump or disconti-
nuity at x̄. From the definition, there is an open interval Ix̄ and constants
f ′(x̄) and Kx̄ such that for all x in Ix̄,

|f(x) − (f(x̄) + f ′(x̄)(x − x̄))| ≤ |x − x̄|2Kx̄.
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x f(x) f(x̄) + f ′(x̄)(x − x̄) error
.7 1.428571· · · 1.3 ≈ .1286
.8 1.25 1.2 .05
.9 1.111111· · · 1.1 ≈ .01111
1.0 1.0 1.0 0.0
1.1 .909090· · · .9 ≈ .00909
1.2 .833333· · · .8 ≈ .03333
1.3 .769230· · · .7 ≈ .06923

1 2
0

2

4

1_
x

1-(x-1)

FIGURE 16.11. Some values of the linearization 1− (x−1) of 1/x at x̄ = 1 along
with plots of the functions.

But this means that

|f(x) − f(x̄)| ≤ |f ′(x̄)||x − x̄| + Kx̄|x − x̄|2

≤ (|f ′(x̄)| + Kx̄|Ix̄|)|x − x̄|
= L|x − x̄|

where we have assumed that Ix̄ is finite. This essentially says that f is
Lipschitz continuous “at a point” where it is strongly differentiable.6 We
summarize as a theorem:

Theorem 16.1 If f is strongly differentiable at x̄, then there is an open
interval I containing x̄ and a constant L such that

|f(x) − f(x̄)| ≤ L|x − x̄| for all x in I.

6The quotes are there because we do not define Lipschitz continuity at a point!
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Chapter 16 Problems

16.1. Compare the Lipschitz constants for f(x) = 1/x on the intervals [.01, .1]
and [1, 2]. Explain the reason for the difference using a plot.

16.2. Compare the Lipschitz constants for f(x) = x3 on [0, 2] and [.9, 1.1].
Explain the difference using a plot.

16.3. Use a ruler to draw linear approximations to the function shown in Fig. 16.12
at the indicated points.

FIGURE 16.12. Figure for Problem 16.3.

16.4. Compute the linearizations for the following functions at the indicated
points.

(a) f(x) = 4x at x̄ = 1 (b) f(x) = x2 at x̄ = 0

(c) f(x) = x2 at x̄ = 2 (d) f(x) = 1/x at x̄ = 2

(e) f(x) = x3 at x̄ = 1 (f) f(x) = 1/x2 at x̄ = 1

(g) f(x) = x + x2 at x̄ = 1 (h) f(x) = x4 at x̄ = 1.

16.5. (a) Make a table showing the values of the functions, the values of the
linearizations, and the values of the error functions at the points 1.7, 1.8, 1.9, 2.0,
2.1, 2.2, 2.3 for the functions f1(x) = x2 and f2(x) = x3, where the linearizations
are computed at x̄ = 2. Use a graph to explain why the error of the linearization
of x3 is larger than the error of the linearization for x2 for most x near x̄. (b)
Would you expect this is true if x̄ = 0? Make a table that confirms or refutes
your answer.

16.6. Which would you expect to be a worse approximation on the interval
[.1, .3], the linearization of 1/x at x̄ = .2 or the linearization of 1/x2 at x̄ = .2?
Why?



17
Analyzing the Behavior of a
Population Model

To illustrate the power of linearization as a tool for analysis, we use lin-
earization to analyze the behavior of a complicated population model for
a certain species of insect. This model encompasses all of the models for
insect populations considered so far.

17.1 A General Population Model

We assume that there is a single breeding season during the summer while
the adults that breed in one summer die before the next summer. We let
Pn denote the population of adults at the start of the nth breeding season
and assume that each adult produces, on average, R offspring that survive
to breed in the next year. This implies that

Pn = RPn−1.

In the simplest case, R is constant and induction shows that

Pn = RnP0,

where P0 is the initial population given in some starting year. In this case,
we can determine the behavior of Pn easily. If 0 < R < 1, then Pn decreases
steadily toward 0 as n increases and the population of insects dies out. If
R > 1, then Pn increases steadily as n increases. If R = 1, then Pn = Pn−1
and Pn remains constant as the population just replenishes itself.
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But assuming R is a constant is too simplistic in most cases. Rather, R
usually varies with the population. If the population is large, then there is
a lot of competition for resources and R tends to be small. If the population
is small, then R is also small because, for example, the females may have
a difficult time finding mates. On the other hand, for the population to
survive, there must be a range of population P with R(P ) > 1. To make a
more realistic model, we have to use a function R that is less than 1, for
P small and large, and greater than 1, when P is neither small or large.
There are many possible choices of such functions and we plot one choice
in Fig. 17.1. It is important to note that the model describes the qualitative

Ps Pb

1

R < 1

R > 1 R(P)

FIGURE 17.1. A possible growth rate function R. R(Ps) = R(Pb) = 1, R(P ) < 1
for P < Ps and P > Pb, and R(P ) > 1 for Ps < P < Pb.

features of the coefficient R but does not give an exact formula. There are
many choices of R that yield the same qualitative features.

Note that the solution of (17.1) is not Pn = RnP0 in general. It is
considerably more complicated, and depending on R, we may not even be
able to write down the solution as a formula. So we have to be clever when
analyzing how the population behaves.

17.2 Equilibrium Points and Stability

We use the linearization to analyze the behavior of the population assuming
the relationship

Pn = R(Pn−1)Pn−1, (17.1)

where R is a function like that plotted in Fig. 17.1.
The first observation is that the populations Ps and Pb that satisfy

R(Ps) = R(Pb) = 1 are special. If, for example, Pn−1 = Pb for some
n−1, then Pn = R(Pn−1)Pn−1 = 1×Pb = Pb. Also Pn+1 = Pb, Pn+2 = Pb,
and so on. In words, if the population reaches the value of Pb, then it re-
mains at that value for subsequent generations. Likewise, if Pn−1 = Ps,
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then Pi = Ps for all i ≥ n. We call these populations equilibrium points
of the iteration (17.1).

But the behavior of the population model is different around the two
equilibrium points Ps and Pb. If Pn−1 > Pb, then R(Pn−1) < 1 so Pn <
Pn−1. In words, if the population is larger than Pb, then it decreases in the
next generation. On the other hand, if Pn−1 < Pb, then R(Pn−1) > 1 so
Pn > Pn−1. In words, if the population is smaller than Pb, then it increases
in the next generation. In short, the population tends toward the value of
Pb. We say that Pb is a stable equilibrium point of the iteration (17.1).
Arguing the same way, we can show that the population tends to move
away from the value Ps and we call Ps an unstable equilibrium point of
the iteration (17.1). In particular, if the population becomes less than Ps,
the species tends to extinction.

Given that the population tends toward Pb, we would like to get more
information about how it behaves as it does this. For example, does the
population oscillate in value around Pb or does it steadily increase or de-
crease to Pb? We assume that R is strongly differentiable at Pb, so there is
a constant KPb

such that

R(P ) = R(Pb) + R′(Pb)(P − Pb) + (P − Pb)2KPb
(P )

= 1 + R′(Pb)(P − Pb) + (P − Pb)2KPb
(P ).

Incidentally, Fig. 17.1 indicates that R′(Pb) < 0. For P close to Pb, we use
the approximation1

R(P ) ≈ 1 + R′(Pb)(P − Pb).

In other words, we replace the function R by the linearization of R at Pb

for P close to Pb. Substituting into (17.1), we get

Pn ≈ (1 + R′(Pb)(Pn−1 − Pb))Pn−1.

We have made some progress using the linearization since we replaced the
possibly complicated factor R(Pn−1) by the linear factor (1+R′(Pb)(Pn−1−
Pb)).

We are interested in how P changes relative to Pb, so we rearrange the
equations so that the differences Pn − Pb and Pn−1 − Pb appear:

Pn − Pb ≈ (1 + R′(Pb)(Pn−1 − Pb))Pn−1 − Pb

≈ Pn−1 − Pb + R′(Pb)(Pn−1 − Pb)(Pn−1 − Pb + Pb)

≈ Pn−1 − Pb + R′(Pb)Pb(Pn−1 − Pb) + R′(Pb)(Pn−1 − Pb)2.

1The analysis in this chapter can be made precise using the definition of strong
differentiability and carrying along the errors. Doing so makes the analysis a lot harder
to read, however, so we give this as Problem 17.6.
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In the original approximation, we dropped the term (Pn−1−Pb)2 KPb
, which

is at least quadratic in Pn−1 − Pb. Therefore, we also drop the quadratic
term on the right above to obtain

Pn − Pb ≈ (1 + R′(Pb)Pb)(Pn−1 − Pb).

Now this is real progress, because the factor (1+R′(Pb)Pb) is constant! To
simplify things, we recall that R′(Pb) < 0 and set

C = −R′(Pb)Pb > 0

to obtain
Pn − Pb ≈ (1 − C)(Pn−1 − Pb). (17.2)

Based on the previous discussion, there are three cases.

• If 0 < C < 1, then |Pn − Pb| < |Pn−1 − Pb|, while Pn − Pb has the
same sign as Pn−1 − Pb. This means that Pn decreases or increases
steadily toward the value Pb, depending on whether the population
starts above or below Pb. 0 < C < 1 means that

0 < −R′(Pb) <
1
Pb

.

• If 1 < C < 2, then |Pn−Pb| ≤ |Pn−1−Pb|, but Pn−Pb has the opposite
sign of Pn−1 − Pb. This means that the population tends toward Pb

but in an oscillating fashion: if the population of one generation is
above Pb, then the population of the next generation is below Pb.
1 < C < 2 means that

1
Pb

< −R′(Pb) <
2
Pb

.

• If C > 2 or C < 0, then the population moves away from Pb.

It is important to note that these conclusions are based on the assump-
tion that the population Pn is close to Pb. If the population is too far away
from Pb, then the approximation (17.2) is not valid and these conclusions
do not hold.

Example 17.1. To show that these predictions describe what hap-
pens, we compute some generations corresponding to the population
rate function

R(P ) = 1 − c(P − 100)(P − 1000) (17.3)

which has the shape drawn in Fig. 17.1 for c > 0. For this function,
Ps = 100 and Pb = 1000. It is straightforward to verify that we expect
the population to decrease steadily to Pb when

0 < c <
1

900000
(17.4)
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and to approach Pb in an oscillatory fashion when

1
900000

< c <
1

450000
. (17.5)

We plot both cases in Fig. 17.2 starting with two initial populations in
each case.

0 2 4 6 8 10 12

Pn

900

950

1000

1050

0 2 4 6 8 10 12

P
n

900

950

1000

1050

FIGURE 17.2. Eleven generations of the population model (17.1) using the pop-
ulation rate function (17.3). In the upper plot, we use c = 1/18000000 and in the
lower plot we use c = 1/600000.
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Chapter 17 Problems

17.1. Verify that (17.4) and (17.5) are correct for the rate function (17.3).

17.2. Repeat the computations shown in Fig. 17.2.

17.3. Consider the population model (17.1) where R is a function like that
plotted in Fig. 17.3. (a) Explain why this model has three equilibrium points: Ps,
Pc, and Pb. (b) Discuss the behavior of the population near the three points Ps,
Pc, and Pb. For example, do the populations move away from these points and
in what direction?

PPs Pb

1

R < 1

R > 1 R(P)

Pc

FIGURE 17.3. A population rate with three equilibrium points.

17.4. Consider the population model (17.1) with population rate

R(P ) =
5

1 + P/Pc

where Pc > 0 is a constant.

(a) Show that Pc is a stable equilibrium point.

(b) Use the derivative of R to discuss the behavior of P for populations
near Pc. Find regions of populations when the population decreases or increases
steadily toward Pc and regions where it oscillates as it approaches Pc.

(c) Using Pc = 100, compute some iterations that illustrate your con-
clusions.

17.5. Consider the population model (17.1) with population rate

R(P ) =
1

1 + P 2 .

Discuss the behavior of the population as the iteration proceeds.

17.6. Write out the analysis in this chapter using the definition of strong differen-
tiability and carrying along the error terms. Hint: For p ≥ 2, (x − x̄)p ≤ (x − x̄)2

for all x sufficiently close to x̄. This can be used to simplify things as you go
along.
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Interpretations of the Derivative

Before continuing the investigation of linearization, we present two impor-
tant interpretations of the derivative. The first is geometric and is related
to the idea of the tangent line to a curve. The second involves the rates at
which quantities change. Both are important in modeling.

In this chapter, the emphasis is changed a bit. Observe that determin-
ing the linearization of a function at a point x̄ only requires knowing the
derivative of the function at the point. The only purpose of the secondary
computation that determines the error is to show that the error is small
for x near x̄. Therefore, we concentrate on computing the derivative of a
function. In Chapter 20, we show that the derivative has several nice prop-
erties, which in particular imply that the error of linearization of many
functions is small once we have shown it is small for some relatively simple
functions.

18.1 A Geometric Picture

Recall that in the process of computing the derivative of a function f at
x̄, we “match” terms that are the same order in x − x̄ by subtracting f(x̄)
from both sides of (16.3) and dividing by x − x̄ to get

∣
∣
∣
∣
f(x) − f(x̄)

x − x̄
− f ′(x̄)

∣
∣
∣
∣ ≤ |x − x̄| Kx̄.

At this point, we do some algebra on the expression on the left to “cancel
out” the pesky factor of x − x̄ in the denominator. After that, we take the
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limit as x → x̄, the error term drops out, and we find that if f is strongly
differentiable at x̄, then

f ′(x̄) = lim
x→x̄

f(x) − f(x̄)
x − x̄

. (18.1)

Of course, we have to prove that this limit exists to compute the derivative.
For x close to x̄, we conclude that

f ′(x̄) ≈ f(x) − f(x̄)
x − x̄

.

The quantity on the right can be interpreted as the slope of the secant
line that connects the points (x̄, f(x̄)) and (x, f(x)) on the plot of f (see
Fig. 18.1).

f(x)

x

f(x)

x

f(x)-f(x)

x-x
slope =

FIGURE 18.1. The secant line joining (x̄, f(x̄)) and (x, f(x)).

Recalling that f ′(x̄) is the slope of the tangent line to f at x̄, or the
linearization of f at x̄, (18.1) says that the slope of the secant line between
(x̄, f(x̄)) and any point (x, f(x)) approaches the slope of the tangent line
as x approaches x̄. We illustrate in Fig. 18.2

Turning this around, we say that a function f is differentiable at a
point x̄ if f is defined on some open interval Ix̄ containing x̄ and if (18.1)
holds, i.e.,

f ′(x̄) = lim
x→x̄

f(x) − f(x̄)
x − x̄

exists.1

Example 18.1. We compute the derivative of f(x) = x2 at x̄ by taking
the limit of the slopes of secant lines. We already know this can be

1This definition was first given by Bolzano and Cauchy also used this definition.
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xxxxx 4 3 2 1

f(x)

tangent line

secant lines

FIGURE 18.2. A sequence of secant lines approaching the tangent line at x̄.

done because f(x) = x2 is strongly differentiable at every point. Now
we compute

f ′(x̄) = lim
x→x̄

x2 − x̄2

x − x̄
= lim

x→x̄

(x − x̄)(x + x̄)
x − x̄

= lim
x→x̄

(x + x̄) = 2x̄.

When x̄ = 1, we get f ′(1) = 2.

Note that this example uses exactly the same computations used to com-
pute the linearization of f . We have just repackaged the computation for
a geometric point of view.2

The limit in (18.1) is often written in another way. We replace x by
x̄ + ∆x, where ∆x represents a small change from x̄ (see Fig. 18.3). Since
∆x = (x̄ + ∆x) − x̄, the previous limit as x → x̄ is replaced by a limit as
∆x → 0 and we obtain

f ′(x̄) = lim
∆x→0

f(x̄ + ∆x) − f(x̄)
∆x

. (18.2)

Example 18.2. We compute the derivative of f(x) = x2 at x by taking
the limit of the slopes of secant lines using the new notation. Now we
compute

f ′(x̄) = lim
∆x→0

(x̄ + ∆x)2 − x̄2

∆x

= lim
∆x→0

x̄2 + 2x̄∆x + ∆x2 − x̄2

∆x
= lim

∆x→0

2x̄∆x + ∆x2

∆x

= lim
∆x→0

(2x̄ + ∆x) = 2x.

2It is a useful exercise to go back to Chapter 16 and recompute all of the linearizations
using the new formulation.
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f(x+∆x)

x

f(x)

x+∆x

f(x+∆x)-f(x)

∆x
slope =

FIGURE 18.3. The secant line joining (x̄, f(x̄)) and (x̄ + ∆x, f(x̄ + ∆x)).

We introduce this new formulation because it motivates the most common,
and indeed the most powerful, notation for the derivative. Since ∆x repre-
sents the “change” in the variable x, it is natural to define the corresponding
change in the function f by

∆f = f(x̄ + ∆x) − f(x̄).

The ratio
∆f

∆x
,

which gives the slope of the secant line through (x + ∆x, f(x + ∆x)) and
(x, f(x)) can be interpreted as the change in f over the change in x and
the derivative is

f ′(x̄) = lim
∆x→0

∆f

∆x
.

The notation for the derivative reflects the limit process. We write

f ′(x̄) = Df(x̄) =
df

dx
.

It is common (especially in physics) to interpret df to be the infinitesimal
change in f corresponding to an infinitesimal change dx in the value x. But
these words only mean the derivative is computed by taking the limit in
(18.2). If we write y = f(x), then we also write y′, by which we mean

y′ =
dy

dx
= f ′(x).

18.2 Rates of Change

The mathematical models of many physical situations involve the rates at
which a quantity such as mass or distance changes as some other quantity
such as time or position changes.
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Example 18.3. A model of the gasoline consumption of an automobile
involves the rate of change of the position of the car with time because
as the car moves faster, it encounters increasingly more air resistance.

A rate of change is determined by a ratio. For example, if we want an
idea of how quickly an object is moving, we compute the ratio of elapsed
distance to elapsed time. More precisely, assume the object travels in a
straight line and is at position s1 at time t1 and later at time t2 is at
position s2. Then its average velocity or average rate of change is

s2 − s1

t2 − t1
.

Example 18.4. If a car is driven 45 miles in 3/4 of an hour, then its
average velocity was 60 miles/hour. But clearly the average velocity is
rather a crude description of how the car moves. To travel 45 miles in
3/4 of an hour, it might stand still for 15 minutes and then travel at
90 miles/hour for 30 minutes rather than travel at a steady speed of 60
miles/hour for 45 minutes.

If the position of the object is given by a function s(t) at time t, then the
average rate of change of the object from t to some nearby time t + ∆t
is

s(t + ∆t) − s(t)
∆t

.

From Section 18.1, this is simply the slope of the secant line to s(t) joining
(t, s(t)) and (t + ∆t, s(t + ∆t)).

The average rate of change provides only a crude description of how
quickly s changes as t changes. We can get a more precise idea by letting
(t, t + ∆t) shrink in size. If s is differentiable at t, we define the instanta-
neous rate of change or velocity of the object at t as

v(t) = s′(t) =
ds

dt
= lim

∆t→0

s(t + ∆t) − s(t)
∆t

. (18.3)

Example 18.5. If the position of an object is given by s(t) = t2, then
its velocity is v(t) = s′(t) = 2t.

Example 18.6. Suppose someone is driving a car in a straight line
and their position at time t measured from the starting point at t = 0
is s(t) = 3 × (2t − t2) miles, where t is measured in hours and the
positive direction for s is to the right. Later, we show that their speed
is s′(t) = 6−6t = 6(1−t) miles/hour. Since the derivative is positive for
0 ≤ t < 1, which means that the tangent lines to s(t) have positive slope
for 0 ≤ t < 1, the car moves to the right up to t = 1. At exactly t−1, the
car is stopped. After t > 1, the car begins to move left again, because
the slopes of the tangents are negative. We illustrate in Fig. 18.4.
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t

s(t)

moving
forward
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backward

t < 1

t > 1

direction

1

car is stopped

FIGURE 18.4. An illustration of a car moving back and forth on a straight line.
On the left, we show how the position of the car and how it moves. On the
right, we plot the position versus time. The derivative of position is positive for
0 ≤ t < 1, so the car moves to the right during this period. It is stopped at t = 1
and then goes left for t > 1. At t = 1, the speed is zero and therefore the tangent
line is horizontal.

Example 18.7. Someone throws a ball straight up at 3 feet/second.
If they release the ball at a height of 6.2 feet, estimate the height of the
ball .4 seconds later.

height at t = .4 ≈ height at t = 0 + speed at t = 0 × (.4 − 0)
≈ 6.2 + 3 × .4 = 7.4

18.3 Differentiability and Strong Differentiability

It is important to realize that differentiability and strong differentiability
are not equivalent. A function that is strongly differentiable is automati-
cally differentiable. In fact, we compute the limit (18.1) that determines
the derivative in the process of computing the linearization of a function.
But differentiability does not imply strong differentiability. Strong differ-
entiability requires that the limit in (18.1) converges at least at a linear
rate, since ∣

∣
∣
∣
f(x) − f(x̄)

x − x̄
− f ′(x̄)

∣
∣
∣
∣ ≤ |x − x̄|Kx̄

for some constant Kx̄. Differentiability only implies that the quantity on
the left goes to zero at x → x̄, but does not specify a rate.

Is the difference important? Well, yes and no. It is not an issue for any
functions we have met so far and in fact almost all functions that we write
down are strongly differentiable anywhere they are differentiable. But there
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are exceptions and it is important to understand these when they arise. So
we return to this discussion in Chapter 32.
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Chapter 18 Problems

18.1. Compute the formulas and plot the secant lines to the function f(x) = x2

between x̄ = 1 and x = 4, x = 2, x = 1.5. What is the average rate of change
corresponding to each secant line?

18.2. Compute the formulas and plot the secant lines to the function f(x) = 1/x
between x̄ = 1 and x = .25, x = .5, x = .75. What is the average rate of change
corresponding to each secant line?

18.3. Compute the derivatives in Problem 16.4 by taking the limit of slopes of
secant lines. Do not compute the error functions again.

18.4. Describe three different situations in your life in which a rate of change is
involved.

18.5. A car travels at 35 miles/hour for 30 minutes, 65 miles/hour for 60 minutes,
then 35 miles/hour for 30 minutes. What is its average rate of change over the
intervals [0, 30], [0, 60], [0, 90], and [0, 120] in minutes?

18.6. A bicyclist rides 15 miles in 1 hour. Find three different riding patterns
that lead to this average rate of change. Hint: One is of course that the bicyclist
rides at a steady 15 miles/hour.

18.7. Verify the computations in Example 18.6.

18.8. Someone rides a unicycle in a straight line so that their distance from an
observer in meters at time t is s(t) = t5. What is their velocity at t = 1 and
t = 2?.

18.9. A police officer uses a radar gun to find the speed of a car that is .1 miles
away is 80 miles/hour. The radar gun takes .25 seconds to compute the speed.
What is the approximate location of the car by that time? What factors could
affect the accuracy of your answer?



19
Differentiability on Intervals

So far we have defined the linearization of function at one point. In general
however, we are interested in the behavior of a function over an interval. In
that case, we may need the linearization of a function at any point in the
interval. We say that a function is strongly differentiable on an interval if
the function is strongly differentiable at each point in the interval. In this
chapter, we investigate the consequences of this definition.

19.1 Strong Differentiability on Intervals

More precisely, a function f is strongly differentiable on an open interval
I if f is strongly differentiable at each x̄ in I. In other words, for each x̄
in I, there is an open interval Ix̄, a number f ′(x̄), and a constant Kx̄ such
that

∣
∣f(x) −

(
f(x̄) + f ′(x̄)(x − x̄)

)∣∣ ≤ (x − x̄)2Kx̄ (19.1)

for x in Ix̄.
If a function f is strongly differentiable on open interval I, then each

point x̄ in I is associated to the slope f ′(x̄) of the linearization of f at x̄.
Therefore to a function f that is strongly differentiable on an open interval
I, we associate a new function f ′(x̄) for x̄ in I that gives the slope of the
linearization at x̄. Since x̄ is allowed to vary in I, we rename it as simply
x, and we define the derivative f ′ of f to be the function that gives the
slope f ′(x) of the linearization of f at each point x in I. This notation is
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due to Lagrange.1 We also use D(f) = Df = f ′ to denote the derivative, a
notation that originates with Johann Bernoulli,2 who, along with his older
brother Jacob Bernoulli,3 were the first mathematicians to understand and
use Leibniz’s results in calculus.

Example 19.1. For a constant function f(x) = c, where c is a real
number, we get

f ′(x) = 0

for all real numbers x. This follows from the fact that

f(x) − f(x̄) = c − c = 0

for any x and x̄ and so (19.1) is satisfied with f ′(x̄) = 0 and Kx̄ ≡ 0.

Example 19.2. If f(x) = ax + b where a and b are real numbers, then

f ′(x) = a

for all x since
f(x) − f(x̄) = a(x − x̄)

for all x and x̄ and so (19.1) holds with f ′(x̄) = a and Kx̄ ≡ 0.

In other words, the derivative of a linear function is constant and a
linear function has the same linearization at each point.

1Joseph-Louis Lagrange (1736–1813) is claimed as one of their own by both the
French and Italian schools of mathematics. Lagrange contributed substantially to the
foundations of the calculus of variations and the theory of dynamics. He also made
important investigations in astronomy, differential equations, fluid dynamics, number
theory, probability, the stability of the solar system, and the theory of sounds, regularly
winning prizes for his work. Lagrange was concerned with the foundations of calculus
and wrote two textbooks in which he attempted to avoid the use of limits by employing
infinite series. Interestingly, Lagrange’s approach to the derivative is closely related to
the definition of the linearization in this book. Lagrange first stated a general Mean
Value Theorem and discovered the formula for the remainder of a Taylor polynomial
that carries his name.

2The Swiss mathematician Johann Bernoulli (1667–1748) worked in France and Hol-
land before finally returning to Switzerland. Johann Bernoulli made fundamental ad-
vances in basic calculus formulas and mechanics, building on Leibniz’s results. His
legacy is also known indirectly through the lectures he gave to the French mathematician
L’Hôpital, who subsequently published the first calculus textbook. See Chapter 35 for
more on this. Johann Bernoulli introduced the use of δ to denote a small quantity.

3The Swiss mathematician Jacob Bernoulli (1654–1705) traveled and studied in Hol-
land and England before returning to teach in Switzerland. Jacob Bernoulli made par-
ticularly important contributions to the foundation of probability, and also contributed
to algebra, the calculus of variations, infinite series, and mechanics. He also made fun-
damental advances in calculus, building on the work of Leibniz. He first used integrals
in reference to integration and developed the method of separation of variables.
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Example 19.3. We next compute the derivative of f(x) = x2. We look
for f ′(x̄) and Kx̄ such that

∣
∣x2 −

(
x̄2 + f ′(x̄) (x − x̄)

)∣∣ ≤ (x − x̄)2Kx̄ (19.2)

for x close to x̄. We compute
∣
∣x2 −

(
x̄2 + f ′(x̄) (x − x̄)

)∣∣ =
∣
∣x2 − x̄2 − f ′(x̄) (x − x̄)

∣
∣

= |(x − x̄)(x + x̄) − f ′(x̄) (x − x̄)|
= |x − x̄||x + x̄ − f ′(x̄)|.

We conclude that limx→x̄

∣
∣x2 −

(
x̄2 + f ′(x̄) (x − x̄)

)∣∣ = 0. We also want

lim
x→x̄

|x + x̄ − f ′(x̄)| = 0,

which forces f ′(x̄) = 2x̄. The linearization is x̄2 +2x̄(x− x̄). Estimating
the error

∣
∣x2 −

(
x̄2 + 2x̄(x − x̄)

)∣∣ = |x − x̄||x + x̄ − 2x̄| = |x − x̄|2,

so (19.2) holds with Kx̄ = 1 for any x.

We conclude that
f ′(x) = 2x

for any x. We illustrate in Fig. 19.1.
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FIGURE 19.1. f(x) = x2 and f ′(x) = 2x.

Example 19.4. We next compute the derivative of f(x) = 1/x for any
x �= 0. We look for f ′(x̄) and Kx̄ such that

∣
∣
∣
∣
1
x

−
(

1
x̄

+ f ′(x̄) (x − x̄)
)∣∣
∣
∣ ≤ (x − x̄)2Kx̄
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for x near x̄. Clearly we require that x̄, x �= 0. Since x̄ �= 0, we can always
find a small open interval Ix̄ such that 0 is not in Ix̄. For example, we
could use Ix̄ = (x̄/2, 2x̄) when x̄ > 0. We then restrict x to Ix̄. Note
that the maximum size of Ix̄ depends on x̄!

Computing,
∣
∣
∣
∣
1
x

− 1
x̄

− f ′(x̄) (x − x̄)
∣
∣
∣
∣ =

∣
∣
∣
∣
x̄ − x

x̄x
− f ′(x̄) (x − x̄)

∣
∣
∣
∣

= |x − x̄|
∣
∣
∣
∣

1
x̄x

+ f ′(x̄)
∣
∣
∣
∣ .

Therefore, limx→x̄

∣
∣ 1
x −

( 1
x̄ + f ′(x̄) (x − x̄)

)∣∣ = 0. We also want

lim
x→x̄

∣
∣
∣
∣

1
x̄x

+ f ′(x̄)
∣
∣
∣
∣ = 0,

which forces
f ′(x̄) =

−1
x̄2 .

The linearization at x̄ is

1
x̄

+
−1
x̄2 (x − x̄).

We estimate the error next,
∣
∣
∣
∣
1
x

− 1
x̄

− −1
x̄2 (x − x̄)

∣
∣
∣
∣ =

∣
∣
∣
∣
x̄ − x

x̄x
+

x − x̄

x̄2

∣
∣
∣
∣ = |x − x̄|

∣
∣
∣
∣

1
x̄x

− 1
x̄2

∣
∣
∣
∣

= |x − x̄|
∣
∣
∣
∣
x̄ − x

x̄2x

∣
∣
∣
∣ =

|x̄ − x|2
|x̄2x| .

On Ix̄, there is a constant Kx̄ such that 1/|xx̄2| ≤ Kx̄. We conclude
that 1/x is strongly differentiable at x̄ �= 0.

The derivative of 1/x is

f ′(x) =
−1
x2

for any x �= 0. We illustrate in Fig. 19.2.

Example 19.5. We compute the derivative of the monomial f(x) =
xn, n ≥ 1, using the factorization

xn − x̄n = (x − x̄)
(
xn−1 + xn−2x̄ + xn−3x̄2 + · · · + xx̄n−2 + x̄n−1)

= (x − x̄)
n−1∑

i=0

xn−1−i x̄i.
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FIGURE 19.2. f(x) = 1/x and f ′(x) = −1/x2.

This means that

xn − x̄n

x − x̄
=

n−1∑

i=0

xn−1−i x̄i. (19.3)

We look for f ′(x̄) and Kx̄ such that

|xn − (x̄n + f ′(x̄) (x − x̄))| ≤ (x − x̄)2Kx̄

for x near x̄. Subtracting, we get

|xn − x̄n − f ′(x̄) (x − x̄)| =

∣
∣
∣
∣
∣
(x − x̄)

n−1∑

i=0

xn−1−i x̄i − f ′(x̄) (x − x̄)

∣
∣
∣
∣
∣

= |x − x̄|
∣
∣
∣
∣
∣

n−1∑

i=0

xn−1−i x̄i − f ′(x̄)

∣
∣
∣
∣
∣
.

so limx→x̄ |xn − (x̄n + f ′(x̄) (x − x̄))| = 0. We also want

lim
x→x̄

∣
∣
∣
∣
∣

n−1∑

i=0

xn−1−i x̄i − f ′(x̄)

∣
∣
∣
∣
∣
= 0,

which forces f ′(x̄) = nx̄n−1 since there are n terms in the sum.

Estimating the error is a real mess.4 But it is a good exercise in the
summation notation and we ask you to verify each step in Problem 19.2.

4But we carry out the computation in the spirit of sharing pain.



250 19. Differentiability on Intervals

We compute

|xn − x̄n −nx̄n−1 (x − x̄)
∣
∣ = |x − x̄|

∣
∣
∣
∣
∣

n−1∑

i=0

xn−1−i x̄i − nx̄n−1

∣
∣
∣
∣
∣

= |x − x̄|
∣
∣
∣
∣
∣

n−1∑

i=0

(
xn−1−i x̄i − x̄n−1)

∣
∣
∣
∣
∣

= |x − x̄|
∣
∣
∣
∣
∣

n−1∑

i=0

(
xn−1−i − x̄n−1−i

)
x̄i

∣
∣
∣
∣
∣

= |x − x̄|
∣
∣
∣
∣
∣

n−2∑

i=0

(
xn−1−i − x̄n−1−i

)
x̄i

∣
∣
∣
∣
∣

= |x − x̄|

∣
∣
∣
∣
∣
∣

n−2∑

i=0




( n−1−i−1∑

j=0

xn−1−i−j x̄j

)
(x − x̄)



 x̄i

∣
∣
∣
∣
∣
∣

= |x − x̄|2
∣
∣
∣
∣
∣
∣

n−2∑

i=0

n−1−i−1∑

j=0

xn−1−i−j x̄j+i

∣
∣
∣
∣
∣
∣
.

(19.4)
Choosing any finite open interval Ix̄ containing x̄, we can bound
∣
∣
∣
∣
∣
∣

n−2∑

i=0

n−1−i−1∑

j=0

xn−1−i−j x̄j+i

∣
∣
∣
∣
∣
∣
≤

∣
∣
∣
∣
∣
∣

n−2∑

i=0

n−1−i−1∑

j=0

|Ix̄|n−1−i−j |Ix̄|j+i

∣
∣
∣
∣
∣
∣
= Kx̄

and conclude that
∣
∣xn − x̄n − nx̄n−1 (x − x̄)

∣
∣ ≤ |x − x̄|2Kx̄

for x in Ix̄. Therefore, xn is strongly differentiable for all x and

f ′(x) = nxn−1

for any x.

19.2 Uniform Strong Differentiability

Note that the interval Ix̄ and constant Kx̄ in the definition (19.1) of the
derivative of a function f on an open interval I depend on x̄ in general.

Example 19.6. This observation is important when differentiating
1/x (see Example 19.4). We have to restrict the size of Ix̄ depending
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on the distance between x̄ and 0 and moreover the factor multiplying
(x − x̄)2 in the estimate of the error

(x − x̄)2
1

x̄2 x

becomes larger as x̄ and x approach zero.

In many situations however, it is possible to choose the same interval Ix̄

for all x̄ in I, namely, Ix̄ = I, and moreover the same constant Kx̄ = K for
all x̄ in the interval I. In this situation, we say that f is uniformly strongly
differentiable on the interval I. More precisely, f is uniformly strongly
differentiable on an open interval I if there is a constant K such that for
any x̄ in I ∣

∣f(x) −
(
f(x̄) + f ′(x̄)(x − x̄)

)∣∣ ≤ (x − x̄)2K
for x in I.

Example 19.7. The function ax+b is uniformly strongly differentiable
on any interval I since Kx̄ = 0 for any x̄ and x.

Example 19.8. The function x2 is uniformly strongly differentiable
on any interval I, including (−∞,∞), since Kx̄ = 1 for any x̄ and x.
Hence, uniform strong differentiability on an interval does not imply
Lipschitz continuity on the interval.

Example 19.9. The monomial xn, n ≥ 3, is uniformly strongly dif-
ferentiable on any bounded interval. The monomial xn, n ≥ 3, is not
uniformly strongly differentiable on (0,∞) or any other infinite interval,
however.

Example 19.10. The function x−1 is uniformly strongly differentiable
on any interval bounded away from 0 but is not uniformly strongly
differentiable on any interval that contains 0 as an endpoint.

19.3 Uniform Strong Differentiability and
Smoothness

Uniform strong differentiability on an interval conveys a lot of smoothness
properties on a function.

We first show that the derivative f ′(x) of a function f(x) that is uni-
formly strongly differentiable on an interval I with size |I| > 0 is Lipschitz
continuous on I. We choose two points x, y in I and by assumption

|f(y) − (f(x) + f ′(x)(y − x))| ≤ |y − x|2K
|f(x) − (f(y) + f ′(y)(x − y))| ≤ |x − y|2K
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for some constant K. We first estimate

|(f ′(y) − f ′(x))(x − y)| = |f ′(x)(y − x) + f ′(y)(x − y)|
= |(f(y) + f(x)) − (f(x) + f(y)) + f ′(x)(y − x) + f ′(y)(x − y)|
= |f(y) − (f(x) + f ′(x)(y − x)) + f(x) − (f(y) + f ′(y)(x − y))|
≤ |y − x|2(K + K).

For all x �= y, we conclude that

|f ′(y) − f ′(x)| ≤ 2K|y − x|. (19.5)

Since (19.5) is also true when x = y because both sides are zero, we conclude
the claim is true.

Using this result, we can also show that f is Lipschitz continuous on
a bounded interval I if it is uniformly strongly differentiable on I. This
follows from the fact that f ′ is Lipschitz continuous on I and hence is
bounded by some constant, e.g., |f ′(x)| ≤ M for x in I. Now if x and y
are in I, then the definition of uniform strong differentiability means that
there is a constant K such that

|f(y) − (f(x) + f ′(x)(y − x))| ≤ |y − x|2K.

This means that

|f(y) − f(x)| ≤ |f ′(x)||y − x| + K|y − x|2

≤ (M + K|I|)|y − x|
= L|y − x|

for all x, y in I with Lipschitz constant L = M + K|I|.
We can improve this result by showing that if f is uniformly strongly

differentiable and |f ′| is bounded by M , then in fact f is Lipschitz continu-
ous with constant M . We didn’t quite obtain this result above because we
ended up with a larger Lipschitz constant L = M + K|I|.

Given |I| > δ > 0, if x and y are restricted to a subinterval Iδ of I of
length δ, then the discussion above implies that

|f(x) − f(y)| ≤ (L + Kδ)|x − y|.

By choosing δ small, we can make L + Kδ as close to L as desired. The
only problem is that x and y may not be in a Iδ with a small δ.

Suppose that x and y in I are given. We choose points {x0, x1, · · · , xN}
such that x = x0 < x1 < · · · < xN = y, and xi − xi−1 ≤ δ. By the triangle
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inequality,

|f(x) − f(y)| = |
N∑

i=1

(f(xi) − f(xi−1)| ≤
N∑

i=1

|f(xi) − f(xi−1)|

≤ (L + Kδ)
N∑

i=1

|xi − xi−1|

= (L + Kδ)|x − y|.

Since this inequality holds for any δ > 0, we conclude that indeed

|f(x) − f(y)| ≤ L|x − y|, for x, y in I.

We summarize as a useful theorem.

Theorem 19.1 If f is uniformly strongly differentiable on an interval I,
then f and f ′ are Lipschitz continuous on I. If in addition |f ′(x)| ≤ M for
all x in I, then f is Lipschitz continuous with constant M .5

19.4 Closed Intervals and One-Sided Linearization

We say that a function is strongly differentiable on an open interval if
it is strongly differentiable at each point in the interval. To extend this
definition to a closed interval, a new idea is needed.6 The difficulty can be
understood by considering three examples. The function x2 is differentiable
on the interval (0, 1) and moreover we can also define the derivative at x = 0
by noting that it is also differentiable on (−1, 1) with 0 being in the middle
of the interval. The step function (6.8) is another matter. This is clearly
differentiable on any of the intervals (−∞, 0), (0, 1), and (1,∞), with the
linearizations being the constant functions 0, 1, and 0, respectively; but we
also have great difficulty defining a meaningful linearization at either x = 0
or x = 1 because of the discontinuity. Finally, x−1 is differentiable on the
intervals (−∞, 0) and (0,∞), but we cannot define a linearization at x = 0
since the function is not even defined there.

We deal with these difficulties using the idea of a one-sided linearization,
which is closely related to the idea of a one-sided limit. A one sided limit
is like a usual limit, except we restrict to one side of the point in question.
So the one-sided limit of f from the right at x, which is denoted as f(x+),
is defined by

f(x+) = lim
z↓x

f(z) = lim
z→x, z>x

f(z).

5This result does not hold in general for functions that are merely strongly differen-
tiable on an interval. This is discussed further in Chapter 32.

6This section is rather technical and can be skipped on first reading if the claim that
differentiability can be extended to closed intervals is palatable.
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Likewise the one-sided limit f(x−) of f from the left at x is defined by

f(x−) = lim
z↑x

f(z) = lim
z→x, z<x

f(z).

Example 19.11. Consider the step function I(x) defined in (6.8)
and J(x) = xI(x) (see Fig. 19.3). We see that I(0−) = limz↑0 I(z) =

I(x) J(x)

1 1

1 1

FIGURE 19.3. I(x) and J(x) = xI(x).

limz↑0 0 = 0 while I(0+) = limz↓0 I(z) = limz↓0 1 = 1. Note that we
define I(0) = 1, which in this case is equal to I(0+) but not I(0−). Like-
wise, J(0−) = limz↑0 J(z) = limz↑0 0 = 0, while J(0+) = limz↓0 J(z) =
limz↓0 z = 0 as well.

A one-sided linearization of a function f(x) at a point x̄ is a linearization
that is a good approximation of f for x on one side of x̄, i.e., either for
x > x̄ or x < x̄. In order to define this condition precisely, we have to
take into account the possibility that f(x) might be discontinuous at x̄.
Consider the step function I(x) at 0, for example. A linear approximation
on the left of 0 should have the value 0 at 0, while a linear approximation
on the right should have the value 1 at 0. But a discontinuous function can
only have one value at each point, and in this case I(0) = 1. Hence, we can
define a linear approximation on the right of 0 but not on the left.

We say that f(x) is strongly differentiable on the right at x̄ if there
is an interval [x̄, b), a number f ′(x̄+), and a constant Kx̄ such that
∣
∣f(x) −

(
f(x̄) + f ′(x̄+)(x − x̄)

)∣∣ ≤ (x − x̄)2Kx̄ for all x̄ ≤ x < b. (19.6)

Note that f(x̄) has to be equal to limx↓x̄ f(x). We call f(x̄)+f ′(x̄+)(x− x̄)
the right linearization of f at x̄ and f ′(x̄+) the derivative from the
right or the right derivative of f at x̄. The function f(x) is strongly
differentiable on the left at x̄ if there is an interval (a, x̄], a number
f ′(x̄−), and a constant Kx̄ such that
∣
∣f(x) −

(
f(x̄) + f ′(x̄−)(x − x̄)

)∣∣ ≤ (x − x̄)2Kx̄(x) for all a < x ≤ x̄.
(19.7)
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Note again that f(x̄) has to be equal to limx↑x̄ f(x). We call f(x̄) +
f ′(x̄−)(x − x̄) the left linearization of f at x̄ and f ′(x̄−) the deriva-
tive from the left or the left derivative of f at x̄.

By Theorem 16.1, if f(x) is strongly differentiable on the right at x̄, then
there is an interval I and a constant L such that |f(x) − f(x̄)| ≤ L|x − x̄|
for all x ≥ x̄ in I. Likewise, if f(x) is strongly differentiable on the left at x̄,
then there is an interval I and a constant L such that |f(x)−f(x̄)| ≤ L|x−x̄|
for all x ≤ x̄ in I.

Example 19.12. The step function (6.8) has a right linearization at 0,
namely, 1, but not a left linearization.

Example 19.13. The right linearization of x2 at x = 0 is 0+0(x−0) = 0
and the left linearization of x2 at x = 0 is 0+0(x−0) = 0. The right and
left derivatives are both 0. In this case, the right and left linearizations
at 0 are equal if the functions are extended in the obvious way past 0.

Example 19.14. The function |x| is strongly differentiable at any point
x �= 0. This is easy to see since |x| = x when x > 0 and |x| = −x when
x < 0 and we can differentiate x and −x. There is a problem at x = 0,
of course, because of the sharp “point” in the graph of |x|. However, the
right linearization of |x| at 0 is 0+1(x−0) = x and the left linearization
is 0 − 1(x − 0) = −x.

This example shows that being Lipschitz continuous does not imply a
function is strongly differentiable.

Example 19.15. The function 1/x has neither a left or right lineariza-
tion at 0.

Note that it follows from these definitions that a function is strongly
differentiable at a point x̄ if and only if it is strongly right differentiable
and strongly left differentiable at x̄, and moreover the right and left lin-
earizations of f at x̄ are equal if these functions are extended past x̄. The
extensions of the right and left linearizations are equal when the right and
left derivatives are equal. We conclude:

Theorem 19.2 A function is strongly differentiable at a point x̄ if and
only if it is strongly right and left differentiable at x̄ and the right and left
derivatives are equal.

Now we can define differentiability on closed intervals. A function f is
strongly differentiable on an interval [a, b) if it is strongly differentiable
on (a, b) and it is strongly differentiable on the right at a. A function f
is strongly differentiable on an interval (a, b] if it is strongly differentiable
on (a, b) and it is strongly differentiable on the left at b. A function f is
strongly differentiable on an interval [a, b] with length b − a > 0 if it is
strongly differentiable on (a, b), it is strongly differentiable on the right at
a, and it is strongly differentiable on the left at b.



256 19. Differentiability on Intervals

Example 19.16. The function x2 is strongly differentiable on any open
or closed interval.

Example 19.17. The function |x| is strongly differentiable on [0,∞)
and (−∞, 0] but is not differentiable on any open interval that contains
0.

Example 19.18. The step function (6.8) is strongly differentiable on
the intervals (−∞, 0), [0, 1], and (1,∞).

19.5 Differentiability on Intervals

We can carry over all the extensions of strong differentiability to differen-
tiability. We say that a function is differentiable on an open interval I if
it is differentiable at each point in I. In this case, we define the derivative
f ′(x) of f(x) as the function that gives the derivative of f(x) at each point
x in I.

We define right and left differentiability of a function f at a point x̄ by
using one-sided limits again. We say f is right differentiable at x̄ if it is
defined on a small interval [x̄, b) and if

f ′(x̄+) = lim
∆x↓0

f(x̄ + ∆x) − f(x̄)
∆x

is defined. By ∆x ↓ 0 we mean take the limit as ∆x → 0 for ∆x > 0.
Likewise, we say f is left differentiable at x̄ if it is defined on a small
interval (a, x̄] and if

f ′(x̄−) = lim
∆x↑0

f(x̄ + ∆x) − f(x̄)
∆x

is defined, where ∆x ↑ 0 means take the limit as ∆x → 0 for ∆x < 0.
We call the resulting limits the right and left derivatives of f at x̄. The
following theorem is immediate.

Theorem 19.3 A function f is differentiable at point x if and only if it is
right and left differentiable at x and the right and left derivatives are equal.

Given these definitions, we can define differentiability on different kinds of
intervals. For example, f is differentiable on [a, b] if it is differentiable on
(a, b), is right differentiable at a, and left differentiable at b.

Example 19.19. Consider the function J(x) = xI(x) graphed in
Fig. 19.3 J(x) is clearly differentiable on (∞, 0), (0, 1), and (1,∞),
since in those regions it is simply 0, x, and 0 respectively. Since J is



19.5 Differentiability on Intervals 257

not continuous at x = 1, it is clearly not differentiable there. It does
have a left derivative at 1, however, since

lim
∆x↑0

J(1 + ∆x) − J(1)
∆x

= lim
∆x↑0

1 + ∆x − 1
∆x

= 1.
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Chapter 19 Problems

19.1. Verify the details in Example 19.1 and Example 19.2.

19.2. Verify the details in (19.4).

19.3. Compute the linearizations of the following functions at a point x̄ in the
indicated sets.

(a) f(x) = 7x on R (b) f(x) = 1/x2 on (0, ∞)

(c) f(x) = 2x3 on R (d) f(x) = 2x2 − 5x on R

(e) f(x) = 1/(1 + x) on (−1, ∞) (f) f(x) = (x + 2)2 on R.

Problems 19.4–19.6 have to do uniform strong differentiability.

19.4. Verify the argument in Example 19.9.

19.5. Verify the claim in Example 19.10.

19.6. Prove that if f and g are uniformly strongly differentiable on an interval
I, then so is f + g, fg, and f(g(x)).

Problems 19.7–19.10 have to do with one-sided differentiability.

19.7. Verify the claim in Example 19.12.

19.8. Verify the claim in Example 19.13.

19.9. Verify the claim in Example 19.14.

19.10. Discuss the strong differentiability properties of the function J(x) = xI(x)
graphed in Fig. 19.3. This means find intervals on which the function is strongly
differentiable. If it is not strongly differentiable at a point, indicate whether it
is strongly differentiable from the right or left or both. Do the same for K(x) =
x2I(x).

Problems 19.11–19.13 have to do with differentiability on intervals.

19.11. Define

f(x) =

{
x2, x ≤ 1,

2 − x2, x > 1.

(a) Is f(x) differentiable at x < 1, x > 1, x = 1? (b) What is the derivative of
f(x) at x < 1? At x > 1? (b) Compute the derivatives from the right and the
left at x = 1.

19.12. Draw a function that is piecewise differentiable on [0, 4], but not differ-
entiable at 1, 2, and 3.

19.13. Discuss the differentiability of the function f(x) = 1/(1−x) using a plot.
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Useful Properties of the Derivative

As we have seen, computing the derivative and the linearization of a func-
tion using the definitions is tedious. Luckily, the derivative has some prop-
erties that can help to make the computations easier and we explore these
in this chapter. Unfortunately, verifying these properties leads to some
of the ugliest estimates in the book. Everything worthwhile has a price.
Nonetheless, it is useful to go through the arguments and try to under-
stand each step. Over and over, the analysis uses the same idea: rewrite a
given quantity in terms of differences of quantities that can be estimated.1

20.1 Linear Combinations of Functions

We first consider differentiation of a function that is a linear combination
of two functions with known derivatives. Suppose that h = f + g, where f
and g are differentiable at x̄. This means that f and g are defined on some
interval Ix̄ (strictly speaking there are different intervals associated to f
and g, but we take Ix̄ to be the intersection of these two intervals). Now h
is also defined on Ix̄ and hence is differentiable if

h′(x̄) = lim
x→x̄

h(x) − h(x̄)
x − x̄

1It may be useful to go back to Chapter 8 and review the techniques used to prove
facts about Lipschitz continuous functions.
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exists. But,

lim
x→x̄

h(x) − h(x̄)
x − x̄

= lim
x→x̄

f(x) + g(x) − (f(x̄) + g(x̄))
x − x̄

= lim
x→x̄

f(x) − f(x̄)
x − x̄

+ lim
x→x̄

g(x) − g(x̄)
x − x̄

= f ′(x̄) + g′(x̄)

by assumption. Thus,
h′(x̄) = f ′(x̄) + g′(x̄). (20.1)

To show that h is strongly differentiable at x̄, we estimate

|h(x)−(h(x̄) + h′(x̄)(x − x̄))|
= |f(x) + g(x) − (f(x̄) + g(x̄) + (f ′(x̄) + g′(x̄))(x − x̄)|
≤ |f(x) − (f(x̄) + f ′(x̄)(x − x̄))| + |g(x) − (g(x̄) + g′(x̄)(x − x̄))|
≤ (Kf + Kg)|x − x̄|2

for some constants Kf and Kg.
We ask you to treat the case cf for a constant c in the same way in

Problem 20.1. We summarize:

Theorem 20.1 Linearity of Differentiation Suppose f and g are dif-
ferentiable at x̄ and c is a constant. Then f + g and cf are differentiable
at x̄ and

D(f(x̄) + g(x̄)) = Df(x̄) + Dg(x̄) (20.2)

and
D(cf(x̄)) = cDf(x̄). (20.3)

If f and g are strongly differentiable at x̄, then so is f + g and cf .

Example 20.1. For all x �= 0,

d

dx

(
2x3 + 4x5 +

7
x

)
= 6x2 + 20x4 − 7

x2 .

Example 20.2. Using this theorem and the derivative of the monomial,
Dxi = ixi−1, we find that the derivative of

f(x) = a0 + a1x + a2x
2 + · · · + anxn =

n∑

i=0

aix
i

is

f ′(x) = a1 + 2a2x
2 + · · · + nanxn−1 =

n∑

i=1

iaix
i−1

for all x.
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20.2 Products of Functions

Next, we look at the product of two differentiable functions, h = fg. If f
and g are defined on an interval Ix̄, then so is h. To discover the formula
for the derivative of h, we first estimate

|f(x)g(x) − (f(x̄)g(x̄) + h′(x̄)(x − x̄))|
= |f(x)g(x) − f(x̄)g(x̄) − h′(x̄)(x − x̄)|.

We insert the linear approximations of f and g and multiply out to get

|f(x)g(x)−(f(x̄)g(x̄) + h′(x̄)(x − x̄))|
≈ |(f(x̄) + f ′(x̄)(x − x̄))(g(x̄) + g′(x̄)(x − x̄))

− f(x̄)g(x̄) − h′(x̄)(x − x̄)|
= |g(x̄)f ′(x̄)(x − x̄) + f(x̄)g′(x̄)(x − x̄)

+ f ′(x̄)g′(x̄)(x − x̄)2 − h′(x̄)(x − x̄)|.

Finally, we drop the term that is quadratic in (x − x̄) because it is smaller
than the other terms when x is close to x̄. We get

|f(x)g(x) − (f(x̄)g(x̄) + h′(x̄)(x − x̄))|
≈ |g(x̄)f ′(x̄)(x − x̄) + f(x̄)g′(x̄)(x − x̄) − h′(x̄)(x − x̄)|.

Based on (16.7), we conclude that h′(x̄) = f(x̄)g′(x̄) + f ′(x̄)g(x̄).
Armed with the formula for h′, we now verify that

h′(x̄) = lim
x→x̄

f(x)g(x) − f(x̄)g(x̄)
x − x̄

is defined. Based on the formula for the derivative, we compute

lim
x→x̄

f(x)g(x) − f(x̄)g(x̄)
x − x̄

= lim
x→x̄

f(x)g(x) − f(x̄)g(x) + f(x̄)g(x) − f(x̄)g(x̄)
x − x̄

.

We add and subtract f(x̄)g(x) in the numerator because the properties of
limits then imply that

lim
x→x̄

f(x)g(x) − f(x̄)g(x̄)
x − x̄

= lim
x→x̄

g(x)
f(x) − f(x̄)

x − x̄
+ lim

x→x̄
f(x̄)

g(x) − g(x̄)
x − x̄

= f ′(x̄)g(x̄) + f(x̄)g′(x̄)
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as expected.
To show that h = fg is strongly differentiable, we estimate the error of

the linearization

|f(x)g(x) − (f(x̄)g(x̄) + (f ′(x̄)g(x̄) + f(x̄)g′(x̄))(x − x̄)|
= |f(x)g(x) − f(x̄)g(x̄) − f ′(x̄)g(x̄)(x − x̄) − f(x̄)g′(x̄)(x − x̄)|

using the error estimates for the linearizations of f and g. We add and
subtract terms to get these errors

|f(x)g(x) − (f(x̄)g(x̄) + (f ′(x̄)g(x̄) + f(x̄)g′(x̄))(x − x̄)|
= |f(x)g(x̄) − f(x̄)g(x̄) − f ′(x̄)g(x̄)(x − x̄)

+ f(x)g(x) − f(x)g(x̄) − f(x)g′(x̄)(x − x̄)
+ f(x)g′(x̄)(x − x̄) − f(x̄)g′(x̄)(x − x̄)|.

Now we start estimating,

|f(x)g(x) − (f(x̄)g(x̄) + (f ′(x̄)g(x̄) + f(x̄)g′(x̄))(x − x̄)|
≤ |f(x) − f(x̄) − f ′(x̄)(x − x̄)| |g(x̄)|

+ |f(x)| |g(x) − g(x̄) − g′(x̄)(x − x̄)|
+ |f(x) − f(x̄)| |g′(x̄)(x − x̄)|

≤ (x − x̄)2|g(x̄)|Kf + (x − x̄)2MfKg + (x − x̄)2|g′(x̄)|Lf

= (x − x̄)2(|g(x̄)|Kf + MfKg + |g′(x̄)|Lf ),

where Lf is the Lipschitz constant of f and Mf is a bound on |f | for x in
Ix̄ and Kf and Kg are constants given by the assumption that f and g are
strongly differentiable at x̄. This proves that fg is strongly differentiable.

We summarize:

Theorem 20.2 The Product Rule If f and g are differentiable at x̄,
then fg is differentiable at x̄ and

D(f(x̄)g(x̄)) = f(x̄)Dg(x̄) + Df(x̄)g(x̄). (20.4)

If f and g are strongly differentiable at x̄, then so is fg.

Example 20.3.

D
(
(10 + 3x2 − x6)(x − 7x4)

)

= (10 + 3x2 − x6)(1 − 28x3) + (6x − 6x5)(x − 7x4).

We often write the product rule in the form

(fg)′ = fg′ + f ′g.
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20.3 Composition of Functions

Next, we consider the composition z = h = f ◦ g(x) of two differentiable
functions y = g(x) and z = f(y). We assume that g is differentiable at a
point x̄ with associated interval Ix̄ and f is differentiable at ȳ = g(x̄) with
associated interval Iȳ. We decrease the interval Ix̄ if necessary to guarantee
that g(x) is in Iȳ for all x in Ix̄. We can do this because Theorem 16.1
implies that g varies continuously on Ix̄ (see Problem 20.2).

To discover the formula for the derivative of h, we first estimate using
the approximation

f(y) ≈ f(ȳ) + f ′(ȳ)(y − ȳ).

Substituting y = g(x) and ȳ = g(x̄) and using the approximation

y − ȳ = g(x) − g(x̄) ≈ g′(x̄)(x − x̄),

we get
f(g(x)) ≈ f(g(x̄)) + f ′(g(x̄))g′(x̄)(x − x̄).

We conclude that h′(x̄) = f ′(g(x̄))g′(x̄).
We use this formula to prove

h′(x̄) = lim
x→x̄

f(g(x)) − f(g(x̄))
x − x̄

is defined. It suggests that we rewrite

lim
x→x̄

f(g(x)) − f(g(x̄))
x − x̄

= lim
x→x̄

f(g(x)) − f(g(x̄))
g(x) − g(x̄)

g(x) − g(x̄)
x − x̄

so that Theorem 16.1 apparently implies

h′(x̄) = lim
g(x)→g(x̄)

f(g(x)) − f(g(x̄))
g(x) − g(x̄)

lim
x→x̄

g(x) − g(x̄)
x − x̄

= f ′(g(x̄))g′(x̄).

The only difficulty with this argument is that g(x) − g(x̄) may be zero at
some point, in which case we cannot compute like this. We have to play a
little game to get around this sticking point.

Recalling the notation ∆y = y − ȳ, we define

εf (∆y) =

{
f(y)−f(ȳ)

∆y − f ′(ȳ), ∆y �= 0,

0, ∆y = 0.

Notice that
lim

∆y→0
εf (∆y) = εf (0) = 0

by the assumption that f is differentiable at ȳ. Now we have

f(y) − f(ȳ) = (f ′(y) + εf (∆y))∆y
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for all ∆y ≥ 0. In the same way, we define

εg(∆x) =

{
g(x)−g(x̄)

∆x − g′(x̄), ∆x �= 0,

0, ∆x = 0,

so
g(x) − g(x̄) = (g′(x) + εg(∆x))∆x

for all ∆x ≥ 0. Now with y = g(x), we compute

f(g(x)) − f(g(x̄))
∆x

= (f ′(g(x)) + εf (g(x) − g(x̄)))
g(x) − g(x̄)

∆x
= (f ′(g(x)) + εf (g(x) − g(x̄)))(g′(x) + εg(∆x)).

We conclude that

lim
∆x→0

f(g(x)) − f(g(x̄))
∆x

= f ′(g(x̄))g′(x̄).

To verify strong differentiability, we estimate the error of the linearization
of f ◦g at x̄ by first adding and subtracting a term that yields an expression
giving the error of the linearization of f(g(x)) around g(x̄),

|f(g(x))−(f(g(x̄)) + f ′(g(x̄))g′(x̄)(x − x̄)|
= |f(g(x)) − f(g(x̄)) − f ′(g(x̄))(g(x) − g(x̄))

+ f ′(g(x̄))(g(x) − g(x̄)) − f ′(g(x̄))g′(x̄)(x − x̄)|.
Now estimating,

|f(g(x))−(f(g(x̄)) + f ′(g(x̄))g′(x̄)(x − x̄)|
≤ |f(g(x) − f(g(x̄)) − f ′(g(x̄))(g(x) − g(x̄))|

+ |f ′(g(x̄))(g(x) − g(x̄) − g′(x̄)(x − x̄)|
≤ |g(x) − g(x̄)|2Kf + |x − x̄|2Kg|f ′(g(x̄))|
≤ (x − x̄)2(L2

gKf + Kg|f ′(g(x̄))|)

for some constants Kf and Kg given by the strong differentiability of f and
g and with Lg denoting the constant given by Theorem 16.1.

Theorem 20.3 The Chain Rule Assume that g is differentiable at x̄
and f is differentiable at ȳ = g(x̄). Then the composite function f ◦ g is
differentiable at x̄ and

D(f(g(x̄))) = Df(g(x̄))Dg(x̄).

If g is strongly differentiable at x̄ and f is strongly differentiable at ȳ =
g(x̄), then f ◦ g is strongly differentiable at x̄.2

2It is useful to state the Chain Rule in words. We compute the derivative of a com-
posite function f(g(x)) by taking the derivative of the outside function f leaving the
inside g(x) unchanged and then multiplying by the derivative of the inside function.
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Example 20.4. Let f(x) = x5 and g(x) = 9 − 8x. Then Df(x) = 5x4

and Dg(x) = −8 so

D(f(g(x))) = Df(g(x))Dg(x) = 5(g(x))4Dg(x) = 5(9 − 8x)4 × −8.

We often write the Chain Rule in the form

(f(g(x)))′ = f ′(g(x))g′(x);

and with y = g(x) and z = f(y),

dz

dx
=

dz

dy

dy

dx
.

The last equation is very suggestive as it appears to indicate that we “can-
cel” the infinitesimal changes dy from the denominator and numerator in
the two factors on the right. Of course, such cancellation is completely
meaningless! Nonetheless it does serve make the Chain Rule easier to re-
member.

Example 20.5. We compute the following derivative

d

dx

(
7x3 + 4x + 6

)18 = 18
(
7x3 + 4x + 6

)17 d

dx
(7x3 + 4x + 6)

= 18
(
7x3 + 4x + 6

)17(21x2 + 4)

by identifying g(x) = 7x3 + 4x + 6 and f(y) = y18.

Example 20.6. The Chain Rule can also be used recursively:

d

dx
((((1 − x)2 + 1)3 + 2)4 + 3)5

= 5((((1 − x)2 + 1)3 + 2)4 + 3)4 × 4(((1 − x)2 + 1)3 + 2)3

× 3((1 − x)2 + 1)2 × 2(1 − x) × −1.

20.4 Quotients of Functions

We can use the Chain Rule to deal with quotients of functions. Consider
first the reciprocal of a function.

Example 20.7. From Example 19.4, it follows that

D
1
f

= D
(
(f)−1) =

−1
(f)2

Df =
−Df

f2

as long as f is differentiable and f �= 0.
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Example 20.8. Using Example 20.7 and the Chain Rule, we get the
formula for n ≥ 1:

Dx−n = D

(
1
xn

)
=

−1
(xn)2

Dxn

=
−1
x2n

× nxn−1

= −nx−n−1.

The Chain Rule can also be used to prove the following theorem:

Theorem 20.4 The Quotient Rule Assume that f and g are differen-
tiable at x̄ and g(x̄) �= 0. Then

D

(
f(x̄)
g(x̄)

)
=

Df(x̄)g(x̄) − f(x̄)Dg(x̄)
g(x̄)2

.

If f and g are strongly differentiable at x̄ and g(x̄) �= 0, then f/g is strongly
differentiable at x̄.

We often write this as (
f

g

)′
=

f ′g − fg′

g2 .

Example 20.9.

d

dx

(
3x + 4
x2 − 1

)
=

3 × (x2 − 1) − (3x + 4) × 2x

(x2 − 1)2
.

Example 20.10.

d

dx

(
x3 + x

(8 − x)6

)9

= 9
(

x3 + x

(8 − x)6

)8
d

dx

(
x3 + x

(8 − x)6

)

= 9
(

x3 + x

(8 − x)6

)8 (8 − x)6 d
dx (x3 + x) − (x3 + x) d

dx (8 − x)6
(
(8 − x)6

)2

= 9
(

x3 + x

(8 − x)6

)8 (8 − x)6(3x2 + 1) − (x3 + x)6(8 − x)5 × −1
(8 − x)12

.

20.5 Derivatives of Derivatives: Descent into
Despair

Continuing the discussion about the smoothness properties of derivatives,
it is natural to consider situations in which the derivative itself is differ-
entiable. The derivative of the derivative describes how quickly the rate
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of change of a function is changing. The derivative of the derivative of a
function f is called the second derivative of f and is denoted by

f ′′ = D2f =
d2f

dx2 .

Example 20.11. For f(x) = x2, f ′(x) = 2x and f ′′(x) = 2.

Example 20.12. For f(x) = 1/x, f ′(x) = −1/x2 and f ′′(x) = 2/x3.

Second order derivatives are particularly important in modeling. The
derivative of velocity is called acceleration. Velocity indicates how quickly
the position of an object is changing with time and acceleration indicates
how quickly the object is speeding up or slowing down with respect to time.

When the second derivative of a function is differentiable, then we can
compute a third derivative. In general, we define the nth derivative of f
recursively. The nth derivative is found by taking the derivative of the
n − 1st derivative, which is found by taking the derivative of the n − 2
derivative and so on. We denote this by

f (n) = Dnf =
dnf

dxn
.

Note that it is too awkward to use ′ to denote higher order derivatives,
so instead we use (n) with parentheses. Note that f (n)(x) �= (f(x))n.

Example 20.13. If f(x) = x4, then Df(x) = 4x3, D2f(x) = 12x2,
D3f(x) = 24x, D4f(x) = 24 and D5f(x) ≡ 0.

Example 20.14. The n + 1st derivative of a polynomial of degree n is
zero.

Example 20.15. If f(x) = 1/x, then

f(x) = x−1

Df(x) = −1 × x−2

D2f(x) = 2 × x−3

D3f(x) = −6 × x−4

...

Dnf(x) = (−1)n × 1 × 2 × 3 × · · · × nx−n−1

= (−1)nn!x−n−1.
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Chapter 20 Problems

20.1. Show that D(cf) = cDf for any differentiable function f and constant c.
Discuss strong differentiability as well.

20.2. Suppose that g is Lipschitz continuous on an open interval Ix̄ containing
a point x̄. Let Iȳ denote any open interval containing ȳ = g(x̄). Prove that it is
possible to find a new interval I contained in Ix̄ such that g is in Iȳ for all x in I.

20.3. Prove the Quotient Rule Theorem 20.4 first using the Chain Rule and
then directly with an argument similar to that used for the Product Rule.

20.4. Without using the definition, compute the derivatives of the following
functions. In each case, indicate any restrictions needed on the domain.

(a) 7x13 +
14
x8 (b) (1 + 9x)5 + (2x5 + 1)4

(c) (−1 + x−4)−6 (d)
4

1 + x

(e)
x

x2 + 3
(f)

2x − 2
1 + 6x

(g)
(
2x − (4 − 7x)3

)10 (h) (((2 − x2)3 + 2)−1 − x)9

(i)
1

1 +
1

2 +
1

3 +
1

4 + 2x

(j)
(1 + 7x − 81x2)5

(
1 +

4
x

)7

(k) 1 + x2 + x4 + · · · + x100 (l)
n∑

i=0

ixi.

20.5. Compute the second order derivatives of

(a) 9x3 − 4
x

(b) (1 + 4x5)3

(c)
1

1 − x
(d)

n∑

i=0

ixi.

20.6. Compute the third derivatives of (a) x5 − 78x2 and (b) 1/x.

20.7. Show that the nth derivative of xn is zero and use this to explain Exam-
ple 20.14.

20.8. Compute the nth derivative of (a) 1/x2, (b) 1/(1+2x), and (c) x/(1−x).



21
The Mean Value Theorem

We previously found that the tangent line to a function at a point can be
interpreted as the limit of secant lines to the function. In this chapter, we
explore the converse relationship: that is, how a given secant line is related
to tangent lines of a function. In doing so, we touch on the basic issue of
the relation between the global behavior of a function over an interval, for
example, as given by a secant line over the interval, and the local behavior
of the function, as in the tangent line at each point. The result we derive
is the celebrated Mean Value Theorem. While the Mean Value Theorem is
rarely used for practical purposes, it is very useful for proving all kinds of
interesting and useful facts about functions. We conclude this chapter with
a simple application and we present many others in the following chapters.

The Mean Value Theorem is a simple observation. Consider the secant
line of a function f between two points (a, f(a)) and (b, f(b)), for example,
as illustrated in Fig. 21.1. When the graph of f is smooth, there is always
at least one point c in [a, b] where the tangent line of f is parallel to the
secant line. Intuitively, for the graph of f to bend around to connect the
points (a, f(a)) and (b, f(b)), it has to become “parallel” to the secant line
at least at one point. Stated precisely:

Theorem 21.1 Mean Value Theorem Suppose that f is uniformly
strongly differentiable on an interval [a, b]. There is at least one point c in
[a, b] such that

f(b) − f(a)
b − a

= f ′(c). (21.1)

Note, as Fig. 21.1 shows, there may be more than one such point c.
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a bc c

f(x)

FIGURE 21.1. Illustration of the Mean Value Theorem. The tangent lines to
the function at the points marked c are both parallel to the secant line through
(a, f(a)) and (b, f(b).

Another way to write (21.1) is that if f is uniformly strongly differen-
tiable on [a, b], then there is a point c in [a, b] such that

f(b) = f(a) + f ′(c)(b − a).

This means that the Mean Value Theorem has direct application to the
approximation of functions. We investigate this further in Chapters 37 and
38.

Sometimes we can find the point c directly.

Example 21.1. For f(x) = x2 on [1, 4], we find

f(4) − f(1)
4 − 1

=
15
3

= 5.

Since f ′(x) = 2x, we solve for c in 2c = 5 to get c = 2.5.

But most of the time, c can only be approximated using an iterative al-
gorithm. Therefore, the first proof of the Mean Value Theorem involves
constructing an algorithm for approximating the point c that is based on
the Bisection Algorithm. Though the individual steps are simple enough,
the proof is rather long.1

In fact, the way in which the Mean Value Theorem is most often used,
it is only the existence of the point c that is important, not its value. In
Chapter 32, we present a non-constructive proof.

1The best way to learn the proof is to implement it on the computer.
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21.1 A Constructive Proof

We begin by simplifying things a bit. The equation of the secant line
through the points (a, f(a)) and (b, f(b)) is

f(b) − f(a)
b − a

(x − a) + f(a),

and the distance between the secant line and the value of f(x) is

g(x) =
f(b) − f(a)

b − a
(x − a) + f(a) − f(x).

We illustrate in Fig. 21.2.

f(b)-f(a)

b-a
(x-a)+f(a)

f(x)

secant line

f(b)-f(a)

b-a
(x-a)+f(a)-f(x)

x

g(x)=

a b

FIGURE 21.2. The formulas for the secant line to f and the distance between
the secant line and the graph of f .

Of course, g(a) = g(b) = 0. Now suppose we find a c in [a, b] with
g′(c) = 0. This means

g′(c) =
f(b) − f(a)

b − a
− f ′(c) = 0

or

f ′(c) =
f(b) − f(a)

b − a
.

In other words, the Mean Value Theorem 21.1 follows from:

Theorem 21.2 Rolle’s Theorem If g is uniformly strongly differen-
tiable on an interval [a, b] and g(a) = g(b) = 0, then there is a point c in
[a, b] such that g′(c) = 0.
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This theorem, named after the mathematician Rolle,2 says that there must
be at least one point in [a, b] where g has a horizontal tangent when g(a) =
g(b) = 0. We illustrate in Fig. 21.3.

a bc

c

g(x)

FIGURE 21.3. Illustration of Rolle’s theorem. The tangent lines to the function
at the points marked c are both horizontal.

To prove Rolle’s theorem, we consider several cases.
First case: If g′(a) = 0 or g′(b) = 0, then we just choose c = a or c = b

(see Fig. 21.4).

a b

g(x)

g'(a)=0

FIGURE 21.4. The case when g′(a) = 0.

So we only have to consider the cases when g′(a) �= 0 and g′(b) �= 0.
Second case: We next assume that g′(a) and g′(b) have opposite signs

(see Fig. 21.5). By Theorem 19.1, g′ is Lipschitz continuous on [a, b] and
therefore the Intermediate Value Theorem 13.2 implies there is a c in [a, b]
such that g′(c) = 0. Moreover, we can compute c by using the Bisection
Algorithm applied to g′ starting with the interval [a, b]. We ask you to
explain how in Problem 21.3.

Third case: In the final case, we assume that g′(a) and g′(b) have the
same sign. This case is more complicated. We can assume that g′(a) > 0
and g′(b) > 0, as for example shown in Fig. 21.3. Otherwise, we replace g
by −g.

2Michel Rolle (1652–1719) was a French mathematician who worked on algebra, ge-
ometry, and number theory. He stated a purely algebraic form of his namesake theorem
but did not prove it.
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a bc

g(x)

g′(b)<0g′(a)>0

g′(c)=0

FIGURE 21.5. The case when g′(a) > 0 and g′(b) < 0.

We set a0 = a and b0 = b. In the first step, we show that there is a point
c0 in (a0, b0) such that g(c0) = 0 using the Intermediate Value Theorem
(see Fig. 21.6). To do this, we first show there are two points ã0 < b̃0 in
[a0, b0] such that g has different signs at these points. In fact, g(ã0) > 0 for
all ã0 close to a0 with ã0 > a0 and likewise g(b̃0) < 0 for all b̃0 close to b0
with b̃0 < b0. We can see this is true in Fig. 21.6:

a0

g(x)

c0
b0

a0
~

b0

~

FIGURE 21.6. The choice of ã0 and b̃0.

We can prove this using the definition of the derivative. Because g is
uniformly strongly differentiable, there is a constant K such that for x > a0
close to a0

|g(x) − (g(a0) + g′(a0)(x − a0))| = |g(x) − g′(a0)(x − a0)| ≤ (x − a0)2K.

This implies that

g(x) ≥ g′(a0)(x − a0) − (x − a0)2K = (g′(a0) − (x − a0)K)(x − a0).

Now,

g′(a0) − (x − a0)K ≥ 1
2
g′(a0) (21.2)

for all x ≥ a0 with |x−a0| ≤ 1
2K |g′(a0)|. We choose x = ã0 > a0 sufficiently

close to a0 so

g(ã0) ≥ (g′(a0) − (ã0 − a0)K)(ã0 − a0) ≥ 1
2
g′(a0)(ã0 − a0) > 0.
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The proof that b̃0 exists is very similar (see Problem 21.5).
It follows that there is a point c0 with a0 < ã0 < c0 < b̃0 < b0 such that

g(c0) = 0 as claimed and moreover we can use the Bisection Algorithm
applied to g starting with [ã0, b̃0] to compute c0.

There are three possibilities now. If g′(c0) = 0, then we set c = c0 and
the theorem is proved.

If g′(c0) < 0, then we can use the Bisection Algorithm applied to g′ to
compute a point c in [a0, c0] with g′(c) = 0. In fact, we can also compute
another such point c in [c0, b0]! This is illustrated in Fig. 21.6.

In the third case, which is more complicated, g′(c0) > 0. We illustrate in
Fig. 21.7. We define a new interval [a1, b1] by setting a1 = a0 and b1 = c0

a0

g(x)

c0 b0

a1 b1

FIGURE 21.7. The choice of a1 and b1.

if c0 − a0 ≤ b0 − c0, i.e., if c0 is closer to a0, and otherwise setting a1 = c0
and b1 = b0. We end up with the interval [a1, b1] contained in [a0, b0] such
that |b1 − a1| ≤ 1

2 |b0 − a0| with the properties that g(a1) = g(b1) = 0 and
g′(a1) > 0 and g′(b1) > 0.

Now repeating the argument, we choose points ã1 > a1 and b̃1 < b1 with
g(ã1) > 0 and g(b̃1) < 0 and then use the Bisection Algorithm applied to g
to compute c1 in [ã1, b̃1] with g(c1) = 0. Again if g′(c1) = 0, then we stop
with c = c1 or if g′(c1) < 0, we can compute the point c by applying the
Bisection Algorithm to g′ on the interval [a1, c1]. Otherwise, we define a
new interval [a2, b2] contained in [a0, b0] with |b2 − a2| ≤ 2−2|b0 − a0| and
g(a2) = g(b2) = 0 and g′(a2) > 0 and g′(b2) > 0.

Continuing in this way, we compute a sequence of intervals [ai, bi] with
[ai, bi] ⊂ [ai−1, bi−1] ⊂ [a0, b0] for i ≥ 1 and [a0, b0] with |bi −ai| ≤ 2−i|b0 −
a0|, g(ai) = g(bi) = 0, and g′(ai) > 0 and g′(bi) > 0 together with a
sequence of points ci in (ai, bi) such that g(ci) = 0. We stop the iteration if
g′(ci) = 0, so we set c = ci, or if g′(ci) < 0, in which case we compute c in
[ai, ci] using the Bisection Algorithm applied to g′. If these two conditions
never occur, then we obtain, as with the Bisection Algorithm, two Cauchy
sequences {ai} and {bi} that converge to the same limit in [a, b]. We claim
this limit is c. In other words, if

c = lim
i→∞

ai = lim
i→∞

bi,

then g′(c) = 0.
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We prove this by showing g′(c) �= 0 contradicts the construction of the
sequences {ai} and {bi}. We begin by observing that because g is Lipschitz
continuous, say, with constant L, we get for any i

|g(c)| = |g(c) − g(ai)| ≤ L|c − ai|,

which implies that g(c) = 0 since |c − ai| → 0.
Suppose first that g′(c) < 0. Since g′ is Lipschitz continuous, there is

a δ > 0 such that g′(x) < 0 for all x with |x − c| < δ. Recall that we
use a similar result (see Fig. 13.4), to show that the Bisection Algorithm
converges. But for i sufficiently large, |ai − c| < δ while g′(ai) > 0 by
construction. Thus g′(c) < 0 is impossible.

Suppose next that g′(c) > 0. This turns out to be more complicated, so
we describe the idea of the proof before giving the details. Since g′(c) > 0,
the graph of g(x) must increase as x moves from left to right near the value
of c (see Fig. 21.8). But this means that g(x) > 0 for all x > c sufficiently

c

g(x)

g'(c)>0

x

FIGURE 21.8. If g′(c) > 0, then g(x) increases as x moves from left to right near
c.

close to c. Now, we get a contradiction since g(x) < 0 for all x < bi close
to bi and we can make bi arbitrarily close to c by taking i large.

To make this argument precise, we use the fact that for x close to c,

|g(x) − (g(c) + g′(c)(x − c))| = |g(x) − g′(c)(x − c)| ≤ (x − c)2K,

which implies

g(x) ≥ g′(c)(x − c) − (x − c)2K = (g′(c) − (x − c)K)(x − c).

As before, because g′(c) > 0 there is a δ such that for all x with |x−c| ≤ δ,

g′(c) − (x − c)K ≥ 1
2
g′(c). (21.3)

Now we choose i so that [ai, bi] is contained in [c − δ, c + δ] and set

δ̃ = the smaller of |c − ai|/2 and |c − bi|/2
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cc-δ c+δai
bic-δ c+δ

~~

FIGURE 21.9. The definitions of δ̃ and J . J is marked by the thick line segments.

and define the set

J = {x in [ai, bi] but not in [c − δ̃, c + δ̃]}.

We illustrate these definitions in Fig. 21.9. By these choices and (21.3), for
any x in J we have

g(x) > (g′(c) + (x − c)K)(x − c) ≥ 1
2
g′(c) × δ̃ > 0.

But this gives a contradiction because g(x) < 0 for all x < bi sufficiently
close to bi. Thus g′(c) > 0 is also impossible and therefore g′(c) = 0.

21.2 An Application to Monotonicity

As an application of the Mean Value Theorem, we show that a function
whose derivative has only one sign on an interval must be either monotone
increasing or decreasing. This is intuitively obvious and it follows easily
from the Mean Value Theorem.

Suppose that f is uniformly strongly differentiable on an interval I and
f ′(x) > 0 for all x in I. We want to show that x1 < x2 implies f(x1) < f(x2)
for any x1 and x2 in I. Consider the difference f(x2) − f(x1). The Mean
Value Theorem says there is a c between x1 and x2 such that

f(x2) − f(x1) = f ′(c)(x2 − x1) > 0.

The case when f ′(x) < 0 for all x in I is similar (see Problem 21.7). We
have proved:

Theorem 21.3 Suppose that f is uniformly strongly differentiable on an
interval I. If f ′(x) > 0 for all x in I, then f is monotone increasing on I.
If f ′(x) < 0 for all x in I, then f is monotone decreasing on I.
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Chapter 21 Problems

Do Problems 21.1 and 21.2 by forming an equation and solving it directly.

21.1. Find the point c given by the Mean Value Theorem for the function f(x) =
x2 − 2x on the interval [1, 3] and make a plot illustrating the theorem on this
example.

21.2. Find the point c given by the Mean Value Theorem for the function f(x) =
6/(1 + x) on the interval [0, 1] and make a plot illustrating the theorem on this
example.

21.3. Explain how to use the Bisection Algorithm to compute the point c in the
second case of the proof of Rolle’s theorem.

21.4. Explain why (21.2) and (21.3) are true.

21.5. Prove that the point b̃0 used in the proof of Rolle’s theorem exists as
claimed.

21.6. (a) Write down an algorithm that implements the proof of Rolle’s theorem
for determining the point c. (b) Implement this algorithm in a program that
computes the point c given by the Mean Value Theorem. (c) Find the points c
for f(x) = x3 − 4x2 + 3x on [0, 3] and f(x) = x/(1 + x) on [0, 1].

21.7. Prove the claim about monotone decreasing functions in Theorem 21.3.

21.8. Use the Mean Value Theorem to give a simple proof of the second part of
Theorem 19.1.
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22
Derivatives of Inverse Functions

As an application of the Mean Value Theorem, we investigate the conti-
nuity and differentiability of the inverse function to a given function that
is Lipschitz continuous or differentiable. It is a good idea to review Chap-
ter 14.

22.1 The Lipschitz Continuity of an Inverse
Function

We begin by investigating whether a given Lipschitz continuous function f
that has an inverse always has a Lipschitz continuous inverse function f−1.

The short answer is no!

Example 22.1. Consider f(x) = x3 with f−1(x) = 3
√

x = x1/3. x3 is
Lipschitz continuous on any interval containing the origin, say [−1, 1].
But x1/3 is not Lipschitz continuous on any interval containing the
origin. For suppose that there is a constant L such that

|x1/3 − y1/3| ≤ L|x − y|

for all x and y in [0, 1]. Now the identity

x3 − y3 = (x − y)(x2 + xy + y2)

means that

x − y = (x1/3 − y1/3)(x2/3 + x1/3y1/3 + y2/3).
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So L must satisfy

L ≥ |x1/3 − y1/3|
|x − y| =

1
|x2/3 + x1/3y1/3 + y2/3| .

But we can make the right-hand side of this inequality as large as
desired by taking x and y close to zero. So L cannot exist.

The problem with x3 is that this function is flat near x = 0 (see the
graph on the right in Fig. 14.5). This means that the graph of 3

√
x is steep

near x = 0. Too steep in fact for 3
√

x to be Lipschitz continuous! Lipschitz
continuity controls how much a function can change on an interval, but not
how little a function can change.

To get a handle on how little a function changes, we can use the Mean
Value Theorem. We assume that f is uniformly strongly differentiable on
the interval [a, b] and moreover that f is monotone increasing on [a, b] so
that f has an inverse on [a, b] defined on [α, β] with α = f(a) < β = f(b).
Given two points x1 and x2 in (α, β), we want to estimate |f−1(x1) −
f−1(x2)| in terms of |x1 − x2|. Let y1 = f−1(x1) and y2 = f−1(x2) so that

|x1 − x2| = |f(y1) − f(y2)|.

By the Mean Value Theorem, there is a c between y1 and y2 such that

|f(y1) − f(y2)| = |f ′(c)||y1 − y2|.

This means that

|x1 − x2| = |f ′(c)||f−1(x1) − f−1(x2)|.

Turning this around, we get

|f−1(x1) − f−1(x2)| =
1

|f ′(c)| |x1 − x2|

provided f ′(c) �= 0. Clearly, the Lipschitz constant for f−1 depends on the
size of 1/|f ′(c)|.

Since we want the Lipschitz condition on f−1 to hold for all x1 and x2 in
the interval (α, β), c could possibly take on any value in [a, b]. Therefore,
we assume that there is a constant d with

|f ′(x)| ≥ d > 0 for all x in [a, b].

Under this assumption, we conclude that

|f−1(x1) − f−1(x2)| ≤ L|x1 − x2|

for all x1 and x2 in (α, β) where L = 1/d. Of course the same argument
also works if f is monotone decreasing.
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Note that the condition |f ′(x)| ≥ d > 0 for all x in [a, b] means that
either f ′(x) ≥ d > 0 for all x or f ′(x) < −d < 0 for all x. This means that
f is either strictly increasing or strictly decreasing on the interval [a, b]. We
summarize as a theorem:

Theorem 22.1 If f is uniformly strongly differentiable on [a, b], [α, β] =
f([a, b]) and if there is a constant d such that |f ′(x)| ≥ d > 0 for all x in
[a, b], then f has a Lipschitz continuous inverse function defined in [α, β]
with Lipschitz constant 1/d.

Example 22.2. f(x) = x3 is strictly increasing on any interval that
contains the origin, yet f ′(0) = 0. So there is no d > 0 with |f ′(x)| ≥ d
for all x in any interval containing the origin. The theorem does not
apply, luckily!

22.2 The Differentiability of an Inverse Function

There are two natural questions that follow from the assumptions of this
last theorem. Since we have assumed that f is uniformly strongly differ-
entiable, does it follow that f−1 is differentiable? If f−1 is differentiable,
what is its derivative?

First, we conduct a geometric investigation. If f is smooth enough to have
a linearization at each point, then the reflection of the graph of f through
the line y = x is also sufficiently smooth to have a linearization at each
point. The only possible problem is, if the linearization of f is horizontal
at some point, f ′ is zero there. Then the reflection of the graph of f has a
linearization that is vertical at the corresponding reflected point and so the
derivative of the inverse is undefined at that point. The assumption that
|f ′(x)| ≥ d > 0 for all x in [a, b] prevents this. We conclude that f−1 is also
differentiable.

We can also compute the value of Df−1 at any point once we realize
that the linearization of f at any point and the linearization of f−1 at
the corresponding reflected points are themselves reflections of each other
through the line y = x. We illustrate in Fig. 22.1. The means that the two
linearizations are inverse functions, and by Example 14.9, the slopes of the
two lines are reciprocal. In other words, if y0 = f(x0), then

df

dx
(x0) =

1
df−1

dx
(y0)

or Df(x0) =
1

Df−1(y0)
. (22.1)

Example 22.3. If f(x) = x3, then f(2) = 8. Therefore,

Df−1(8) =
1

Df(2)
=

1
3 × 22 =

1
12

.
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f(x)

f 
-1(x)

y=x

FIGURE 22.1. The linearization of f at a point and the linearization of f−1 at
the corresponding reflected point are reflections of each other through the line
y = x.

We can also derive (22.1) using an analytic argument. We suppose that
f is uniformly strongly differentiable on [a, b] and that |f ′(x)| ≥ d > 0 for
all x in [a, b]. By the definition, there is a constant K such that

|f(x) − (f(x̄) + f ′(x̄)(x − x̄))| ≤ (x − x̄)2K (22.2)

for all x, x̄ in [a, b]. Now let

y = f(x) or x = f−1(y)

ȳ = f(x̄) or x̄ = f−1(ȳ).

Substituting these into (22.2) yields

|y − (ȳ + f ′(x̄)(f−1(y) − f−1(ȳ)))| ≤ (f−1(y) − f−1(ȳ))2K.

Dividing both sides by f ′(x̄), we get

| 1
f ′(x̄)

(y − ȳ) − (f−1(y) − f−1(ȳ))| ≤ (f−1(y) − f−1(ȳ))2
K

|f ′(x̄)| .

Rearranging and using the assumptions and Theorem 22.1, we get

|f−1(y) − (f−1(ȳ)) +
1

f ′(x̄)
(y − ȳ))|

≤ (f−1(y) − f−1(ȳ))2
K

|f ′(x̄)| ≤ (y − ȳ)2
K
d3 .

Since this holds for every y and ȳ in [α, β], we conclude:
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Theorem 22.2 If f is uniformly strongly differentiable on [a, b], [α, β] =
f([a, b]), and if there is a constant d such that |f ′(x)| ≥ d > 0 for all x in
[a, b], then f has a uniformly strongly differentiable inverse function defined
in [α, β]. If ȳ = f(x̄) for x̄ in [a, b], then Df−1(ȳ) = 1/Df(x̄).

Example 22.4. We can use Theorem 22.2 to compute the derivative
of x1/n for a natural number n. Let f(x) = xn so f−1(x) = x1/n by
Example 14.12. If y0 = xn

0 or x0 = y
1/n
0 , then

Df−1(y0) =
1

Df(x0)
=

1
nxn−1

0
=

x0

nxn
0

=
y
1/n
0

ny0
=

1
n

y
1/n−1
0 .

This is nothing more than the usual power rule for derivatives!

Using the Chain Rule, we can extend the formula

Dxr = rxr−1

to any rational number r.

Example 22.5.

D(2x − 1)5/7 =
5
7
(2x − 1)−2/7 × 2.
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Chapter 22 Problems

22.1. Prove that y = x1/2 is not Lipschitz continuous on [0, 1].

22.2. Assume that f is Lipschitz continuous and monotone on [a, b] and further-
more that there is a constant l > 0 such that

|f(x) − f(y)| ≥ l|x − y|

for all x and y in [a, b]. (Note the direction of the inequality!) If [α, β] = f([a, b]),
prove that f has a Lipschitz continuous inverse on [α, β] and compute a Lipschitz
constant.

22.3. Prove that the fact that f is strictly increasing on an interval [a, b] does
not imply there is a constant d such that |f ′(x)| ≥ d > 0 for all x in [a, b]. Hint:
Consider f(x) = x3 on [−1, 1].

22.4. If f and g are strictly monotone functions with f(2) = 7 and f ′(2) = −1,
compute g′(7).

22.5. (a) Prove that f(x) = x3 + 2x is strictly increasing, so it has an inverse
function defined for all x. (b) Compute Df−1(12) given that f(2) = 12.

22.6. (a) Prove that f(x) = 1 − 3x3 − x5 is strictly decreasing, so it has an
inverse function defined for all x. (b) Compute Df−1(−3) given that f(1) = −3.

22.7. (a) Prove that f(x) = x2 − x + 1 is strictly increasing for x > 1/2, so it
has an inverse function defined for all x > 1/2. (b) Compute Df−1(3).

22.8. (a) Prove that f(x) = x3 − 9x is strictly decreasing for −
√

3 < x <
√

3,
so it has an inverse function defined for −

√
3 < x <

√
3. (b) Compute Df−1(0).

22.9. Compute the derivatives of the following functions:

(a) f(x) = (x + 1)1/2 (b) f(x) = (x1/3 − 3)4 (c) f(x) = x−3/4.

22.10. Prove that if f is uniformly strongly differentiable in an interval con-
taining a point x0 and if f ′(x0) �= 0, then there is some interval containing x0 on
which f is 1-1.



23
Modeling with Differential Equations

The discussion of derivatives so far has emphasized the approximation of
a function through linearization. This is one of the two main uses for the
derivative. The other main use is for mathematical modeling in the form
of differential equations. A differential equation describes a function,
called the solution, by specifying a relationship between the derivatives of
the solution and the physical world. Differential equations arise in all areas
of science and engineering and an enormous amount of time and energy
is spent trying to analyze and compute solutions of differential equations.
In this chapter, we introduce the subject of posing, analyzing, and solving
differential equations.

We begin by presenting a couple of models to make the discussion con-
crete. The first model is Newton’s Law of Motion, which describes an object
moving in a straight line under the influence of a force. This is perhaps the
quintessential model in physics and one of Newton’s main motivations for
inventing the calculus. We apply Newton’s law to model the motion of a
mass connected to a spring. After that we describe Einstein’s Law of Mo-
tion, which is a modern version of Newton’s law. We then introduce some
general language for describing differential equations and make some ob-
servations about the existence and uniqueness of solutions. We conclude
by encapsulating these ideas in the solution of Galileo’s model for a falling
object.

We continue the discussion about modeling with differential equations
in Chapter 39 after developing integration as an important tool for solving
differential equations in the following chapters.
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23.1 Newton’s Law of Motion

Newton’s Law of Motion is one of the cornerstones of the Newtonian physics
that accurately describes much of the world in which we live. It is a rela-
tionship between the mass and acceleration of an object and the forces
acting on the object.

The acceleration a of an object of mass m moving in a straight
line while being acted on by a force F satisfies

ma = F. (23.1)

If s(t) gives the position of the object at time t relative to some initial
starting position s0 = s(0), then (23.1) is

m
d2s

dt2
= F or ms′′ = F. (23.2)

This is an example of a differential equation. Solving the differential equa-
tion means finding a function s that satisfies (23.2) for all time in some
specified interval.

Example 23.1. By differentiating twice, we can show that s(t) =
1/(1 + t) is a solution of the differential equation

ms′′ = 2ms3,

which is (23.2) with F = 2ms3, for all t > −1.

Differential equations can often be written in different ways. For example,
if v = s′ denotes the velocity of the object, then (23.2) can be written as a
differential equation for v,

dv

dt
= F or v′ = F. (23.3)

A model of the motion of an object in a specific physical setting involves
combining Newton’s law (23.2) with a description of the forces involved in
the system.

Example 23.2. Galileo’s1 law says

A free-falling object, that is, an object that is acted upon by
gravity and no other force, always has the same acceleration
regardless of its mass, position, or the time.

1Galileo Galilei (1564–1642) was an Italian mathematician and scientist. Galileo is
perhaps best known for his work in astronomy and mechanics. But, he also used a
concept akin to functions and dealt with infinite sums.
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In other words, the acceleration of a free-falling object is constant.

We assume that the object moves vertically and let s(t) denote the
height of the object at time t starting from some initial height s(0) = s0
where the positive direction corresponds to moving upward and the
negative direction corresponds to moving downward (see Fig. 23.1). In

s(t)

s(0) = s0 initial height

s=0 the ground

FIGURE 23.1. The coordinate system describing the position of a free-falling
object with the initial height s(0) = s0.

this coordinate system, a positive velocity v = s′ > 0 corresponds to
the object moving upwards, while a negative velocity means the object
is falling. The weight W of a object is the absolute value of the force
acting on the object that tends to make it fall. Since the force of gravity
tends to make the object move downward, in this coordinate system,
Newton’s law takes the form

ms′′ = −W.

This is usually rewritten by assuming2 there is a constant g such that

W = mg,

which gives
s′′ = −g. (23.4)

The constant g is called the acceleration of gravity and has the value
≈ 9.8 m/sec2.

In general the force acting on the object can depend on the time t, the
position s, the velocity s′, and on physical characteristics such as the mass

2A valid assumption near the Earth’s surface.
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m and size of the object. For example, the force might be a function of the
form F = F (t, s, s′, m) so that (23.2) becomes

ms′′(t) = F (t, s(t), s′(t), m), (23.5)

which is an equation that is supposed to hold for all time t in some interval.

23.2 Einstein’s Law of Motion

Newtonian physics serves well to describe situations involving low speeds,
such as those encountered in daily life. But at the beginning of the century,
Einstein3 discovered that Newtonian physics did not describe the behavior
of particles moving at high speeds. In Einstein’s Theory of Special Relativ-
ity, the differential equation modeling the motion of a particle moving in a
straight line with velocity v under the influence of a force F is

m0
d

dt

v
√

1 − v2/c2
= F, (23.6)

where m0 is the mass of the particle at rest and c ≈ 3 × 108 m/s is the
speed of light in a vacuum. This differential equation is considerably more
complicated than the Newton’s law (23.3).4 In general, (23.6) is sufficiently
complicated that we almost never can write down a solution in the form of
an explicit function.

23.3 Describing Differential Equations

As we learn more about differential equations, we begin to discover pat-
terns among different kinds of problems and their solutions. This kind of
information is important when deciding on ways to compute solutions and
analyze their properties. There is a lot of notation and language associated
with differential equations that help to classify different problems according
to their form and the behavior of their solutions.

One way that differential equations are classified is by their order, which
refers to the highest order derivative that appears in the equation.

Example 23.3. The order of

y(4) − 45(y(3))10 =
1

y + 1

3The famous Albert Einstein (1879–1955) was a physicist of course. But he made use
of the most current mathematics in his research and corresponded closely with leading
mathematicians during his most active period of research.

4Among other things, it involves the
√

which we have not differentiated yet.
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is 4, while the order of (
y(2))5 = y

is 2. The order of Newton’s law is 2 for the position, though we changed
it into a differential equation of order 1 for the velocity.

In general, we expect complications to increase with order.

Differential equations are also classified according to how the unknown
variable appears in the equation. A nth order differential equation is called
linear if it can be written in the form

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1 + · · · + a1(x)
dy

dx
+ a0(x)y = f(x), (23.7)

i.e., if it is a linear function of the unknown variable and its derivatives;
otherwise it is called nonlinear.

Example 23.4. The differential equation

x7u′′ + 2u′ + 4u =
1
x

is linear and second order, while

y
dy

dx
= x3

is nonlinear and first order. The differential equations in Example 23.3
are also nonlinear. Newton’s law may or may not be linear depending
on the force F . Hooke’s model of a spring is linear. Einstein’s law is
nonlinear.

In general, we expect nonlinear differential equations to pose
additional difficulties.

By the way, when we write a differential equation in the form (23.7), we
implicitly assume that an(x) �= 0 on the interval where we want to solve the
differential equation. If an(x) = 0 at some points in the interval of solution,
the differential equation is said to be degenerate. In general, a differential
equation is called degenerate if the order of the problem changes at some
point(s).

Degenerate problems are particularly difficult.

With a couple of exceptions, we focus on first order differential equa-
tions in this book. The most general first order differential equation can be
written

G(y′, y, x) = 0
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for some function G. First order equations are classified by whether they
can be rewritten in the form

h(y(x))y′(x) = g(x)

for some functions h and g, in which case they are called separable, or
not, in which case they are called nonseparable.

Example 23.5. The following problems are separable:

y′ − y = 0 → y′

y
= 1

y′ = 4x2y3 → y′

y3 = 4x2

(y′)3 = 2x3/(1 + y) → (1 + y)1/3y′ = 21/3x,

while

(y′)2 + y − x = 0

y′ + (y′)3 = 1
y′ − y = x

are all nonseparable.

There is a general technique for solving separable equations in principle
described in Chapter 39.

In general, nonseparable differential equations are more difficult
to solve.

23.4 Solutions of Differential Equations

The difference between solving differential equations and algebraic equa-
tions is worth pointing out again. A solution of an algebraic equation like
the Dinner Soup or Muddy Yard model is a single number x̄. A solution of
a differential equation is a function that satisfies the differential equation
at all points in a given interval.

Example 23.6. By differentiation, we can verify that s(t) = t3 −2t+4
satisfies s′(t) = 3t2 − 2 for all t.

Example 23.7. By differentiation, we can verify that f(x) = 6x2

satisfies f ′(x) = 2f(x)/x for all x > 0 and all x < 0 since computing
we get f ′(x) = 12x = 2 × 6x2/x.
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Example 23.8. By differentiation, we can verify that y(x) = x3/3
satisfies

(
y′′(x)

)2−9y(x) = 5x3 for all x. This follows because
(
y′′(x)

)2−
9y(x) =

(
2x
)3 − 3x3 = 5x3.

Note that a function is not necessarily a solution of a differential equation
just because it satisfies the differential equation at a single point.

Example 23.9. The function y = 2x2 − 4 does not satisfy the dif-
ferential equation y′ = 2(x − 1)2 since y′ = 4x − 4 is not equal to
2(x − 1)2 at all points in any interval. Note that y′(x) does agree with
the differential equation at isolated points like x = 1.

Putting this in perspective, there are many distinct functions that have the
same derivative at a single point, as illustrated in Fig. 23.2. Therefore, a

x

FIGURE 23.2. All of these functions have the same derivative at the point x but
cannot all solve the differential equation (23.8) on any interval containing x.

differential equation should always be accompanied by an domain on which
the solution is to be computed. If a domain is not specified, then it is un-
derstood that the solution formula holds on the entire real line.

We consider two approaches to studying differential equations in this
book. The first approach is to simply guess the solution. For some spe-
cific kinds of differential equations, it is possible to make the technique
of guessing solutions fairly sophisticated and systematic. In fact, a more
old-fashioned calculus text concentrates on developing the art of guessing
to a high level. We do not do this. For one thing, symbolic manipulation
programs like MAPLE c© have made it unnecessary. For another thing, the
fact is that most differential equations that arise in engineering and science
cannot be solved by guesswork.

Therefore, we concentrate on developing algorithms that produce an ap-
proximation of a given solution to any desired accuracy and developing
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techniques of analysis that give information about a solution without know-
ing a formula for the solution. This approach is entirely analogous to the
approach used for studying root and fixed point problems.

However, the study of differential equations is a much more involved
and complicated subject than the study of equations whose solutions are
numbers. The fact that the solutions are functions makes all the difference.
Therefore, we can only begin the study of differential equations in this
book. We do this by considering a set of specific problems that illustrate
fundamental ideas. A roadmap of the problems we consider looks like:

Type of problem Chapter(s)
y′′ = constant 23
y′(x) = f(x) 24–27, 34
y′(x) = c/x 28

y′(x) = cy(x) 29
y′′(x) = cy(x) 30

y′(x) = f(y(x), x) 39–41

The problems are arranged more or less in increasing order of difficulty.
Over the next few chapters, we concentrate on the simplest differential

equation, which is the first order, separable, linear differential equation,

y′(x) = f(x). (23.8)

Equation (23.8) specifies the slope of the tangent line to the solution y(x)
at every point x in an interval. After discussing how to guess solutions
for some specific problems, we turn to developing integration, which is a
general constructive method for solving (23.8). It turns out that integration
is a fundamental tool for solving and analyzing all differential equations,
and the subsequent material uses integration heavily.

23.5 Uniqueness of Solutions

So far the discussion has focused on the existence of solutions, but there
is another topic of practical importance, namely, the uniqueness of so-
lutions. By uniqueness, we mean that there should be only one solution
of a given equation. This is desirable because if there is more than one
solution, then we have to decide which solution is the correct description
for the situation being modeled. The possibility of multiple solutions can
easily lead to predicting incorrect and nonphysical behavior of a model.5 In
the case of multiple solutions, we have to use additional information about
the physical situation to pick out the “physically meaningful” solution. In

5Fluid mechanics, which is the study of the physics of fluids, is notorious for this
problem.
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addition, when constructing approximations to a solution, we have to make
sure that the correct solution is approximated.

Example 23.10. The Dinner Soup model has a unique solution in con-
trast to the Muddy Yard model, x2 = 2, which has solutions x = ±

√
2.

In other words, mathematically both x =
√

2 and x = −
√

2 are valid
solutions of the model equation. As a general rule, nonlinear problems
have multiple solutions. In the Muddy Yard model, we simply elimi-
nate x = −

√
2 because it is meaningless in physical terms since a yard

cannot have a negative diagonal. If we use the Bisection Algorithm to
compute the solution, we have to start with an interval that contains the
positive root as opposed to the negative root. The Bisection Algorithm
converges to −

√
2 as readily as to

√
2 if given the chance.

The discussion of uniqueness of solutions of differential equations is com-
plicated by the fact that differentiation destroys information about func-
tions. This is simply the observation that if the graph of one function can
be obtained by translating the graph of a second function vertically, then
the two functions have the same derivative at every point. We illustrate
in Fig. 23.3. Therefore when we try to recover a function that satisfies a

x

FIGURE 23.3. All of these functions have the same derivative at every point x.

differential equation, we often have to specify some additional information
in order to pick out a particular solution.

For example, suppose y = F (x) is a solution of (23.8), y′ = f(x); i.e., sup-
pose that F (x) satisfies F ′(x) = f(x) in some interval. Then any function
of the form

y = F (x) + C

for a constant C also satisfies the differential equation. If we specify a value
of y at one point, then we can determine a specific value of the constant.
For example, if we specify that the solution of (23.8) has the value y0 at
the point x0, then we can determine C by solving

y0 = F (x0) + C
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for C.

Example 23.11. y = x2 satisfies y′ = 2x, as does y = x2+1, y = x2−6,
and so on. The only solution of the form y = x2 + C of the differential
equation that satisfies y(0) = 1 is y = x2 + 1.

Referring to Fig. 23.3, if we give a value of the solution at one point, we can
pick out which of the translated graphs satisfies the differential equation.

Example 23.12. Any function of the form y = x4/12 + C1x + C2 for
constants C1 and C2 satisfies the differential equation

y′′ = x2.

To determine a unique solution of this form, we can specify the value
of y and/or some of its derivatives at one or more points. For example,
if we specify that y(0) = 1 and y′(0) = 2, we get the equations

y(0) = 0 + 0 + C2 = 1
, y′(0) = 0 + C1 = 2.

or C2 = 1 and C1 = 2. If we specify that y(0) = 1 and y(1) = 2, we find

y(0) = 0 + 0 + C2 = 1
y(1) = 1/12 + C1 + C2 = 2,

which gives C2 = 1 and C1 = 11/12.

The term uniqueness as applied to solutions of differential equations
therefore has slightly different meanings depending on the context. If just
the differential equation is given, then having a unique solution means that
the solution is unique up to some constants that can be determined by
specifying information about the solution. If the differential equation and
additional data is given, then a unique solution means there can be at most
one function that satisfies both the differential equation and the additional
data.

Establishing uniqueness can often be difficult. In fact, as with algebraic
models, nonlinear differential equations may not have unique solutions at
all.

Example 23.13. The functions y(t) = 0 for all t ≥ 0 and

y(t) =






0, 0 ≤ t ≤ a,
(t − a)2

4
, t ≥ a,

for any a ≥ 0 all satisfy the differential equation and data
{

y′ =
√

y, 0 ≤ t,

y(0) = 0.



23.5 Uniqueness of Solutions 295

In this situation, we need to use additional information from the model to
determine the meaningful solution.

However, it is relatively straightforward to establish uniqueness for the
simplest differential equation (23.8). We can interpret uniqueness of a so-
lution of (23.8) in two equivalent ways:

• If y(x) satisfies (23.8) for all x in an interval, then any other solution
has the form y(x) + C for some constant C.

• There can be at most one function y(x) that satisfies (23.8) and an
additional condition y(x0) = y0 for some point x0 in the interval of
solution and some value y0.

The theorem we prove is:

Theorem 23.1 If f is Lipschitz continuous on an interval I, then there
is at most one uniformly strongly differentiable solution of (23.8) on I.6

We use the Mean Value Theorem 21.1 to prove Theorem 23.1. Suppose
that y = F (x) and y = G(x) are two uniformly strongly differentiable
solutions of y′ = f(x) in the interval I. This means that

F ′(x) = G′(x) = f(x) for all x in I,

and we want to prove that there is a constant C such that F (x) = G(x)+C
for all x in I.

If we define the function E(x) = F (x) − G(x), then y = E(x) satisfies
the differential equation y′ = 0 for all x in I and moreover is uniformly
strongly differentiable on I. We want to show that E(x) is constant in I.
Choose two points x1 and x2 in [a, b]. By the Mean Value Theorem there
is a point c between x1 and x2 such that

E(x2) − E(x1) = E′(c)(x2 − x1).

But E′(c) = 0 for any such c, so E(x2) = E(x1) for any x1 and x2. In other
words, E is constant.7

Example 23.14. The only solution of the differential equation y′ = 2x
in Example 23.11 is y = x2 + C for a constant C.

6By the way, this theorem does not say that there is a solution, just that there can
be at most one solution.

7Basically, this proof says that (23.8) has a unique solution because the only function
with a derivative that is zero everywhere is the constant function.
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23.6 Solving Galileo’s Model of a Free-Falling
Object

We encapsulate the ideas in this chapter by solving Galileo’s model of a free-
falling body (23.4). We begin by rewriting (23.4) as a first order differential
equation for the velocity,

v′ = −g. (23.9)

This is simpler because it involves one derivative as opposed to two deriva-
tives.

It turns out that one solution of (23.9) can be found fairly easily. Since
linear functions have constant derivatives, we might guess that a solution
of (23.9) is a linear function,

v = ct + b, (23.10)

where c and b are constants. We immediately find by substitution that
v′ = c = −g and v(t) = −gt + b. We cannot determine the value of b using
the differential equation (23.9) since differentiating a constant gives zero.
To pick out a particular solution, we suppose that the initial speed at time
t = 0, v(0) = v0, is given. Substituting t = 0 and a = −g into (23.10) gives
b = v0 and

v = −gt + v0, (23.11)

where g and v0 are constants, is a solution of the differential equation (23.9).
Recall that Theorem 23.1 implies that (23.11) is the only solution of the
differential equation (23.9) that satisfies the initial condition v(0) = v0.
Of course, we have to know this to predict how the object falls.

Returning to the model (23.4), it remains to solve the differential equa-
tion

s′ = −gt + v0, (23.12)

for constants g and v0. Recalling that (t2)′ = 2t and that (cf(t))′ = cf ′(t),
it is natural to guess that one solution of (23.12) is a quadratic function

s(t) = dt2 + et + f

for some constants d, e, f . Differentiating and substituting into (23.12)
gives

2dt + e = −gt + v0

for all t, which means that d = −g/2 and e = v0. As in the previous
problem, we cannot determine the value of f from the differential equation.
However, if we specify an initial height s(0) = s0, we find that f = s0 and

s(t) = −g

2
t2 + v0t + s0 (23.13)
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is a solution of (23.4) with an initial velocity at t = 0 of v0 and an initial
height of s0. Moreover, Theorem 23.1 again implies that this is the unique
solution.

We can now determine the position and velocity of the falling object as
desired.

Example 23.15. If the initial height of the object is 15 m and it is
dropped from rest, what is the height at t = .5 s? We have

s(3) = −9.8
2

(.5)2 + 0 × .5 + 15 = 13.775 m.

If initially it is thrown upward at 2 m/s, the height at t = .5 is

s(3) = −9.8
2

(.5)2 + 2 × .5 + 15 = 14.775 m.

If initially it is thrown downward at 2 m/s, the height at t = .5 is

s(3) = −9.8
2

(.5)2 − 2 × .5 + 15 = 12.775 m.

Example 23.16. An object starting from rest is dropped and hits the
ground at t = 5 s. What was its initial height? We have

s(5) = 0 = −9.8
2

52 + 0 × 5 + s0,

so s0 = 122.5 m.
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Chapter 23 Problems

Problems 23.1–23.2 have to do with modeling using Newton’s Law of
Motion.

23.1. A bicyclist experiences force due to wind resistance that is proportional
to the square of the velocity and force due to friction from the wheels that is
proportional to the weight of the bicycle and rider. Write down a differential
equation modeling the motion of a bicyclist coasting from an initial velocity of
v0.

23.2. Left alone, a cube of wood 1 centimeter on a side floats in a basin of water
with one side parallel to the water surface and with 2/3 of the cube submerged.
If the cube experiences an upward force equal to the amount of water that it
displaces, write down a differential equation modeling the motion of the cube
when it is disturbed in a vertical direction.

Problems 23.3–23.5 have to do with classifying differential equations.

23.3. Indicate the order of the following differential equations:

(a) (y(5) − 2yy(2))3 = y′ + x2 (b) y′′ + 45(y′)4 = x/(1 + x)
(c) yy′y′′ = 2 (d) (y(3))5 + (y(5))3 = y .

23.4. Indicate whether the following differential equations are linear or nonlinear:

(a) y(5) − 2xy(2) = y′ + x2 (b) y′′ + 45(y′)4 = x
(c) xy′′ + x2y′ + x3y = 2 (d) y′ = x(1 + y)
(e) y(4) + (1 + y)y′ = x (f) y′ = x + x2 − 2x3y .

23.5. Determine whether the following differential equations are separable or
nonseparable:

(a) y′ + xy = 4x2 (b) y′ = x2y3

(c) y′ + xy = y (d) (1 + x)yy′ = (2 + y)(1 − x)
(e) (y′ + y1/3)3 = xy (f) y′ − 1 = y2 .

Problems 23.6–23.11 have to do with existence and uniqueness of solu-
tions of differential equations.

23.6. Determine whether the indicated functions satisfy the indicated differential
equations on some interval.

(a) y = x2 − x and y′′ = 3

(b) y = 1/(x + 1) and y′′′ = −6y4

(c) y = x2 + 1/x and (yx − 1)y′ = 2x4 − x

(d) y = x4/4 + 4x2 and y′′ + y′ = 2x2 − x

(e) y =
1
12

x4 − x2 and
(

d3y

dx3

)2

+ 4y =
1
3
x4

(f) y = 6x3 + 4x and y′′ − y′ + y = 4x

(g) y =
1

x2 + 1
and y′ = −2xy2 .
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23.7. (a) Verify that any function of the form y = 2x2 + C with C constant
satisfies y′ = 4x for all x. (b) Determine the solution that satisfies y(0) = 1. (c)
Determine the solution that satisfies y(2) = 3.

23.8. (a) Verify that any function of the form y = x3/3+C1x+C0 with C1 and
C0 constant satisfies y(3) + y(2) = 2 + 2x for all x. (b) Determine the solution
that satisfies y(0) = 1 and y′(0) = 2. (c) Determine the solution that satisfies
y(0) = 3 and y(1) = 1.

23.9. Verify that any function of the form

y =
x5

5!
+ C4x

4 + C3x
3 + C2x

2 + C1x + C0

with C0, · · · , C5 constant satisfies y(5) = 1 for all x.

23.10. Verify the claims in Example 23.13.

23.11. Verify that the functions y = x2 and y = −x2 both satisfy the differential
equation (y′)2 = 4x2 and the data y(0) = 0.

Problems 23.12–23.15 have to do with Galileo’s model of a free-falling
object.

23.12. A car drives with constant acceleration of 30 miles/hour2. How fast is it
moving after 2 hours starting from a dead stop?

23.13. An object is thrown up in the air at 2.5 meters/second from a height of
120 meters. (a) How high is the object after 1 second? (b) When does the object
hit the ground?

23.14. An object is thrown downward from a height of 95 meters and hits the
ground in 4 seconds. How fast was it thrown down?

23.15. A ball is thrown upward from the ground at 20 meters/second. What is
its maximum height?

Problem 23.16 is a relatively difficult modeling problem which is realistic
in the sense that it begins with data measured in a laboratory experiment.

23.16. The goal of this problem is to devise a differential equation that describes
how much of a certain drug present in the bloodstream has been absorbed into
the body as time passes. A quantity of the drug is injected into the bloodstream
of a rabbit and then the concentration of the drug measured in micrograms
per milliliter (µg/mL) left after that is determined from blood samples taken
periodically. This gives the following results:
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Time (sec) Concentration of Drug (µg/mL)
3.00 1.639
3.05 1.613
3.10 1.587
3.15 1.563
3.20 1.538
3.25 1.515
3.30 1.493
3.35 1.471
3.40 1.449
3.45 1.429
3.50 1.408

If the drug is infused intravenously at a steady rate of r µg/mL/sec, write down
a differential equation modeling the amount of drug in the bloodstream. Hint:
Use the data above to figure out a modeling assumption about how quickly the
drug is absorbed into the body. To do this, compute average rates of change at
the various times. Assuming the rate of change due to absorption is proportional
to some power of the amount in the blood, use logarithms and a least squares line
fit to determine the power and proportionality constant from the average rates
of change.



24
Antidifferentiation

In this chapter, we consider the solution of some first order, linear, separable
equations

y′(x) = f(x) (24.1)

for which we can find solutions explicitly, i.e., as a formula involving known
functions. We call the process of guessing an explicit solution of (24.1)
antidifferentiation and a solution y is called an antiderivative of f .

The solution of differential equations shares many characteristics with
the solution of algebraic models. Recall that there are two kinds of al-
gebraic models. The first kind, like the Dinner Soup model (1.1), have
rational solutions computable using a finite amount of arithmetic. In con-
trast, the second kind, like the Muddy Yard model, have irrational solutions
that can only be approximated using an iterative algorithm. The fact that
most algebraic models fall into the second category motivated much of the
subsequent material on sequences, convergence, real numbers, fixed point
iterations, et cetera, as we strove to develop systematic methods for ap-
proximating solutions.

So it goes with differential equations. There are a few problems for which
we can determine solutions explicitly by the simple technique of guessing
the correct answer. We can actually make guessing into a fairly refined
and systematic tool and in this chapter we develop some ideas that help
out. Unfortunately, there are relatively few differential equations for which
we can guess at explicit solutions. So for the vast majority of differential
equations arising in engineering and science, we have to resort to some con-
structive algorithm for approximating solutions. Starting with Chapter 25,
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we concentrate on developing constructive techniques for approximating
solutions.

24.1 Antidifferentiation

We now develop the general method of guessing the solution of (24.1). The
idea is to compute antiderivatives for some basic simple problems and then
to develop ways to use this “library” of solutions to solve more compli-
cated problems. We obtain the basic antiderivatives simply by taking some
function F and differentiating to get f = F ′. Because the antiderivative
of a given function is unique, we conclude any antiderivative of f can be
written F + C for some constant C.

Example 24.1. First,
d

dx
(x2) = 2x

means that any antiderivative of y′ = 2x has the form y = x2 + C for
some constant C. Second,

d

dx
(x−1) = −x−2

means that any antiderivative of y′ = −x−2 has the form y = x−1 + C
for some constant C.

In fact, this argument leads immediately to the general rule. Since

d

dx

xm+1

m + 1
= xm, m �= −1,

any antiderivative of y′ = xm is y = xm+1/(m + 1) + C for m �= −1.

24.2 The Indefinite Integral

At this point, we need to get a good notation for the antiderivative of
a given function. We use the notation invented by Leibniz. The reason
for the notation becomes clearer when we study constructive methods for
computing antiderivatives.

Given a function f , we use
∫

f(x) dx

to denote all antiderivatives of f . We also call
∫

f(x) dx the indefinite
integral, or integral, of f . The process of computing an antiderivative
of a function f is called integrating f , or simply integration. If f has an
antiderivative, we say that f is integrable.
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Example 24.2. By Example 24.1, we conclude that
∫

2x dx = x2 + C

∫
−x−2 dx = x−1 + C

for some constants C.

Extrapolating from these examples, we also get the general rule
∫

xm dx =
xm+1

m + 1
+ C, m �= −1, (24.2)

for some constant C. This power rule is the first entry into the library of
integration formulas that we carry around in our heads.

Since the antiderivative of y′ is y +C for any function C, we get the nice
formula ∫

y′(x) dx =
∫

dy(x)
dx

dx = y(x) + C. (24.3)

This is the motivation for the name antiderivative.
In the integral of f ,

∫
is called the integral sign and x is called the

integration variable. The integrand is f . Note that the integration
variable is a dummy variable in the sense that using a different name just
corresponds to renaming the independent variable.

Example 24.3.
∫

2z dz = z2 + C

∫
−r−2 dr = r−1 + C

for some constants C.

It does not change the antiderivative.

24.3 Sophisticated Guesswork

In the rest of this chapter, we show how to leverage a few known integration
formulas like (24.2) into a technique for computing integrals of more com-
plicated functions. To do this, we derive properties of the integral based on
properties of the derivative.

To begin with, if f and g are differentiable and c is a constant, then
D(cf) = cDf and D(f + g) = Df + Dg. We conclude the following:
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Theorem 24.1 Linearity of Integration If f and g are integrable func-
tions on a common interval and c1 and c2 are constant, then
∫

(c1f + c2g)(x) dx =
∫

(c1f(x) + c2g(x)) dx

= c1

∫
f(x) dx + c2

∫
g(x) dx. (24.4)

This is very useful for computing some complicated integrals.

Example 24.4.
∫

5s10 ds = 5
∫

s10 ds =
5
11

s11 + C

∫
(x2 − 8x) dx =

∫
x2 dx − 8

∫
x dx =

x3

3
− 4x2 + C

∫
(t − 1

t2
) dt =

∫
t dt −

∫
1

t−2 dt =
t2

2
+

1
t

+ C.

We can always check the answer of course:

d

dx

(
x3

3
− 4x2 + C

)
= x2 − 8x.

Note there is some ambiguity about the constant C. It is natural to think
we need two or more constants in some of these examples. For example,
when we compute the integrals

∫
(x2 − 8x) dx =

∫
x2 dx − 8

∫
x dx,

we apparently get
x3

3
+ C1 − 4x2 + C2

for some constants C1 and C2. But we just sum these constants to get
C = C1 + C2. Any time there is a sum of constants arising from different
integrals, we simply rename the sum as a new constant C.

Example 24.5. We can even do an abstract example. If a0, · · · , an

are constants, then
∫

(a0 + a1x + a2x
2 + · · · anxn) dx

= a0x +
a1

2
x2 +

an+1

n + 1
xn + C,

or using the Σ notation,
∫ ( n∑

i=0

aix
i

)

dx =
n∑

i=0

ai

i + 1
xi+1 + C.
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In other words, combining the power rule and the linearity property (24.4)
allows us to integrate any polynomial.

24.4 The Method of Substitution

We saw how the linearity properties of the derivative allow more compli-
cated integrals to be computed. In this section, we show how to use the
Chain Rule for the derivative to compute integrals. Recall that the Chain
rule says that if g and u are differentiable functions,

d

dx
g(u(x)) = g′(u(x))u′(x).

We conclude immediately from (24.3) that
∫

g′(u(x))u′(x) dx = g(u(x)) + C (24.5)

for a constant C. This is called the method of substitution.

Example 24.6. Consider
∫

(x2 + 1)10 2x dx.

We set g′(u) = u10 and u(x) = x2 + 1; so u′(x) = 2x and the integral
has precisely the form

∫
(x2 + 1)10 2x dx =

∫
g′(u(x))u′(x) dx.

We know that

g′(u) = u10 → g(u) =
u11

11
+ C;

so from (24.5) we conclude that
∫

(x2 + 1)10 dx = g(u) + C =
u11

11
+ C =

(x2 + 1)11

11
+ C.

We can check,

d

dx

(
(x2 + 1)11

11
+ C

)
= (x2 + 1)10 × 2x.

Note that typically we can compute an integral in several different ways.
In this case, we could multiply out (x2+1)10 and use the tricks from the
previous section. That would take a lot more time and effort, however.
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The method of substitution, or substitution for short, is the most power-
ful tool for computing integrals. Using it effectively, however, requires a lot
of practice so that patterns can be recognized easily. In general, the idea is
to choose a function g′ that we know how to integrate.

Example 24.7. Consider
∫

3s2 + 1
(s3 + s)2

ds.

We can choose

g′(u) =
1
u2 → g(u) =

∫
g′(u) du =

−1
u

+ C

u(s) = s3 + s → u′(s) = 3s2 + 1

so the integral has the form required for (24.5), i.e.,
∫

3s2 + 1
(s3 + s)2

ds =
∫

1
(s3 + s)2

(3s2 + 1) ds =
∫

g′(u(s))u′(s) ds.

We conclude that
∫

3s2 + 1
(s3 + s)2

ds = g(u) + C =
−1
u

+ C =
−1

x3 + x
+ C.

Note that we can combine substitution with the linearity properties of
the integral.

Example 24.8. Consider
∫ (

x−2 − 4
)4

x3 dx.

To use substitution, it is tempting to choose

g′(u) = u4 → g(u) =
∫

g′(u) du =
u5

5
+ C

u(x) = x−2 − 4 → u′(x) = −2x−3.

The problem is that we don’t quite have u′ in the integral
∫ (

x−2 − 4
)4

x3 dx =
∫ (

x−2 − 4
)4

x−3 dx

because we are missing a factor of −2. However,
∫

cf(x) dx = c
∫

f(x) dx
for any constant c. So we can write

∫ (
x−2 − 4

)4
x−3 dx =

−1
2

× −2 ×
∫ (

x−2 − 4
)4

x−3 dx

=
−1
2

∫ (
x−2 − 4

)4 × −2x−3 dx

=
−1
2

∫
g′(u(x))u′(x) dx
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and we conclude that
∫ (

x−2 − 4
)4

x3 dx =
−1
2

×
(
x−2 − 4

)5

5
+ C =

−1
10
(
x−2 − 4

)5
+ C.

Remember, we can factor constants “through” an integral sign but we can-
not factor functions through an integral sign.

24.5 The Language of Differentials

Using substitution as above is a little awkward because the notation is
cumbersome. We can improve the notation to make it easier using the
language of differentials, which is due to Leibniz. If u is a differentiable
function, we define the differential du of u to be

du = u′ dx.

The differential of the function x is nothing more than dx of course.

Example 24.9. If u(x) = (x4 − x3 + 3)9, then

du = 9(x4 − x3 + 3)8 (4x3 − 3x2) dx.

Also
d(4 − x3)2 = 2(4 − x3) × −3x2 dx.

It is tempting to think that we get this notation by multiplying both sides
of

du

dx
= u′

by dx and then “canceling” the dx on the left. But we cannot actually do
this of course; the dx in the denominator of the derivative is not part of a
fraction. It only indicates the variable by which we differentiate. Nonethe-
less, it is useful to think of differentials as quantities that can be manipu-
lated using simple arithmetic.

We define the arithmetic operations involving differentials to be consis-
tent with the properties of the derivatives. For example, if u and v are
differentiable, then (u + v)′ = u′ + v′. Hence, we define

d(u + v) = du + dv.

Likewise, if c is a constant, then

d(cu) = c du.

With these properties, the Product Rule implies that

d(uv) = (uv)′dx = (uv′ + vu′) dx = u dv + v du.
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In the language of differentials, the Chain Rule applied to g ◦ u, where g
and u are differentiable, reads

dg ◦ u = g′(u)u′ dx = g′(u) du.

The last equation is connected to substitution.

Example 24.10. Consider again
∫

3s2 + 1
(s3 + s)2

ds.

Recall that we chose

g′(u) =
1
u2 and u(s) = s3 + s → du = (3s2 + 1) ds.

Using differentials, we get
∫

3s2 + 1
(s3 + s)2

ds =
∫

1
u2 du =

−1
u

+ C =
−1

x3 + x
+ C.

Example 24.11. Consider again

∫ (
x−2 − 4

)4

x3 dx.

We choose
g′(u) = u4 and u(x) = x−2 − 4.

Since du = −2x−3 dx, we write
∫ (

x−2 − 4
)4

x−3 dx =
−1
2

∫ (
x−2 − 4

)4 × −2x−3 dx

=
−1
2

∫
u4 du =

−1
2

× u5

5
+ C

=
−1
10

(x−2 − 4)5 + C.

Note that the differential notation makes it clear that we can change the
name of the integration variable at will without affecting the results. In
other words, ∫

g(u) du =
∫

g(s) ds =
∫

g(x) dx,

and so on. For this reason, we call the integration variable a dummy vari-
able.

We can do quite complicated integrals using the method of substitution.
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Example 24.12. Consider
∫

(2x7 − 4x3)
(
(x4 − 2)2 + 3

)7
dx.

We set
g′(u) = u7 and u = (x4 − 2)2 + 3

and get

∫
(2x7 − 4x3)

(
(x4 − 2)2 + 3

)7
dx

=
1
4

∫ (
(x4 − 2)2 + 3

)7 × 2(x4 − 2) × 4x3 dx

=
1
4

∫
u7 du.

Therefore,

∫
(2x7 − 4x3)

(
(x4 − 2)2 + 3

)7
dx =

(
(x4 − 2)2 + 3

)8

32
+ C.

24.6 The Method of Integration by Parts

The last method that we study is based on the Product Rule. If u and v
are differentiable functions, then

(uv)′ = uv′ + u′v,

which immediately gives
∫

u(x)v′(x) dx +
∫

u′(x)v(x) dx =
∫

(u(x)v(x))′ dx = u(x)v(x).

This is usually rewritten as the integration by parts formula
∫

u(x)v′(x) dx = u(x)v(x) −
∫

u′(x)v(x) dx. (24.6)

Using differentials, we get
∫

u dv = uv −
∫

v du. (24.7)

Example 24.13. We compute the integral
∫

(x2 + 4)7 x3 dx.
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Trying substitution directly leads nowhere. If we set u = x2 + 4, for
example, then we have du = 2x dx. But there is an x3, not x, factor in
the integrand and we cannot factor functions through the integral sign.

However, this abortive attempt does show the way to using integration
by parts. Recognizing that we can integrate (x2 + 4)7x, we write the
integral as ∫

x2 (x2 + 4)7 x dx.

Now we choose

u = x2 dv = (x2 + 4)7x dx

du = 2x dx v =
1
2

(x2 + 4)8

8

Note that we do not include a constant in the antiderivative of dv, since
the constant is added after the last integral in the integration by parts
formula. Now (24.7) implies that

∫
(x2 + 4)7 x3 dx = uv −

∫
v du

= x2 × 1
2

(x2 + 4)8

8
−
∫

1
2

(x2 + 4)8

8
2x dx

=
1
16

x2(x2 + 4)8 − 1
8

∫
(x2 + 4)8x dx.

We do the last integral using substitution with u = x2 + 8 and get
∫

(x2 + 4)7 x3 dx =
1
16

x2(x2 + 4)8 − 1
144

(x2 + 4)9 + C,

where 144 = 8 × 2 × 9.

24.7 Definite Integrals

Since the integral of f represents all of f ’s antiderivatives, we also call it
the general solution of the differential equation (24.1). But sometimes
we want to compute the antiderivative of a given function f that not only
satisfies (24.1) but in addition takes on a specific value at a specified point.
A solution of the differential equation (24.1) that takes on a specified value
at a specified point is called a particular solution of the differential equa-
tion.

Recall that we solve {
y′(x) = f(x),
y(a) = ya,



24.7 Definite Integrals 311

where ya is the value we specify for y at the point a, by first finding any
antiderivative of f , say, F so F ′ = f , and then using the fact that any other
antiderivative of f , including the one we want, can be written as y = F +C
for some constant C. Plugging in, we solve

y(a) = ya = F (a) + C

for C and get y = F + (ya − F (a)).

Example 24.14. We solve
{

y′ = 2x,

y(0) = 4,

by first noting that y =
∫

2x dx = x2 +C is the antiderivative and then
solving 4 = 02 + C for C to get y = x2 + 4.

Note that solving for the value of C is particularly easy when the an-
tiderivative F that we compute has the property F (a) = 0. Then C+F (a) =
C = ya and

y = F + ya.

We modify the integral notation to indicate this particular antiderivative.
The definite integral ∫ x

a

f(s) ds

denotes the antiderivative of f that has the value zero at x = a. That is,

F (x) =
∫ x

a

f(s) ds if and only if F ′(x) = f(x) and F (a) = 0.

This notation is due to Fourier1.

Example 24.15.
∫ x

0
2s ds = x2

∫ x

1
2s ds = x2 − 1

∫ x

2
2s ds = x2 − 4

1The French mathematician Jean Baptiste Joseph Fourier (1768–1830) had an in-
teresting and varied career. Not only was he considered a leading mathematician of his
generation, but he was also a political administrator who was highly valued by Napoleon.
Fourier is best known for his theory of heat, which used the trigonometric series now
called the Fourier series. However, Fourier’s analysis was sometimes not completely rig-
orous and so was controversial. Yet, his work was an important step in the eventual
rigorous treatment of functions and infinite series.
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If F is any antiderivative of f , then F (x) − F (a) is the antiderivative of
f that is zero at a. Hence, we conclude

F (x) − F (a) =
∫ x

a

f(s) ds

when F is an antiderivative of f . In particular,

y(x) − y(a) =
∫ x

a

y′(x) dx. (24.8)

Example 24.16. We compute the height of a particle that falls from
an initial height of 37 m with initial velocity 0 m/s at time t s. In these
variables, (24.8) becomes

s(t) − s(0) =
∫ t

0
s′(r) dr,

so by (23.12)

s(t) − s(0) =
∫ t

0
(−gr) dr = −g

t2

2
,

or
s(t) = 37 − 4.9t2.

The subscript on the integral sign, here a, is called the lower limit of
the integral and denotes the point where the antiderivative is zero. The
superscript on the integral sign, here x, is called the upper limit of the
integral and denotes the independent variable used for the antiderivative.
Sometimes we actually need the value of the antiderivative only at one
point, and will substitute that point in for x.

Example 24.17.
∫ 3

−1
x3 dx =

34

4
− (−1)4

4
= 20.

When we use substitution to compute a definite integral, we have to
change the limits as well.

Example 24.18. To compute
∫ x

1
(2s3 + 6s)4 (s2 + 1) ds

we use the substitution

u = 2s3 + 6s → du = (6s2 + 6) ds = 6(s2 + 1) ds.
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So we can compute the integral, but the limits for the integration vari-
able s are not the same as the integration limits for the variable u. So
we have to change the limits as well. But this is straightforward. Since
u = 2s3 +6s, when s = 1, u = 2+6 = 8 and when s = x, u = 2x3 +6x.
So ∫ x

1
(2s3 + 6s)4 (s2 + 1) ds =

1
6

∫ 2x3+6x

8
u4 du

=
1
6

(
(2x3 + 6x)5

5
− 85

5

)
.
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Chapter 24 Problems

24.1. Compute the following antiderivatives:

(a)
∫

x3 dx (b)
∫

1
s3 ds

(c)
∫

t1256 dt (d)
∫

7u5 du

(e)
∫

(2r−99 − 4r9) dr (f)
∫ (

74
5x23 +

3
x6 + x61

)
dx

(g)
∫

(x − 5)(x3 − 2x2) dx (f)
∫ (

4
x2 − x

)
1
x3 dx .

24.2. Given u(x) = 2x4 − x2 and v(x) = x−3, compute

(a) du (b) dv (c) d(uv) (d) d(u(v(x))).

24.3. Compute the following integrals:

(a)
∫

(x3 − 2)8 3x2 dx (b)
∫

4s3 + 2
(s4 + 2s)3

ds

(c)
∫

(6r2 + 1)8 r dr (d)
∫

1
u9

(
1
u8 + 4

)13

du

(e)
∫

(t − t−3)(t2 + t−2)11 dt (f)
∫

7x6 + x2

(3x7 + x3)14
dx

(g)
∫ (

(4x − 3)8 − 6
)9 (4x − 3)7 dx (f)

∫
1
x2

( 1
x

+ 4
)2

(( 1
x

+ 4
)3 + 92

)5 dx.

24.4. Compute the following integrals:

(a)
∫

(3 − 2x)23 x dx (b)
∫

(x3 + 4)19 x5 dx (c)
∫

x3

(3x2 + 1)3
dx.

24.5. Compute the following definite integrals:

(a)
∫ x

0
s3 ds (b)

∫ x

2
s3 ds (c)

∫ x

−1
s3 ds.

24.6. Compute the following definite integrals:

(a)
∫ x

3

u2

(u3 + 1)8
du (b)

∫ 7

4
(3t2 − 1) (3t3 − 3t)4 dt

(c)
∫ t

0
(2 + x)81 dx (d)

∫ 1

x

s3 ds.
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Integration

The technique of guessing the solution of a first order, linear, separable
equation (24.1),

y′(x) = f(x),

discussed in Chapter 24, works only for a limited number of examples.
Most of the differential equations that arise in engineering and science
have solutions that are so complicated, they defy any attempt to express
them as combinations of known functions.

Example 25.1. A simple example is
∫

dm

m
,

which arises in modeling the motion of a rocket. Recalling the differen-
tiation formulas from Chapter 20, we do not yet know a function whose
derivative is x−1. It turns out that this requires a new function called
the logarithm. This particular problem is discussed in Chapter 28.

When we encountered algebraic models that could not be solved with
simple arithmetic, we devised approximation methods like the Bisection
Algorithm and the Fixed Point Iteration to approximate the solution using
the computer. For the same reason, we devise a method for computing
approximations of the solution of (24.1). This method is in fact very general
and is used to solve a nonlinear differential equation in Chapter 41.

The approximation method yields values of a particular solution at par-
ticular points. To use the method, we therefore have to specify a particular
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solution to approximate. For arbitrary reasons, we choose to approximate
the solution of {

y′(x) = f(x), x0 < x,

y(x0) = 0.
(25.1)

From any approximate value of the solution of (25.1) at a point x, the
corresponding approximate value of the solution of

{
y′(x) = f(x), x0 < x,

y(x0) = y0,
(25.2)

at x can be obtained by simply adding y0 to the approximate value of the
solution of (25.1). Problem (25.2) is called an initial value problem for
y.

Example 25.2. To get the solution of
{

y′ = 12x3 − 4x,

y(1) = 0,

we first compute the antiderivative

y =
∫

(12x3 − 4x) dx = 3x4 − 2x2 + C,

and then solve

y(1) = 0 = 3 − 2 + C → C = −1

to get y(x) = 3x4 − 2x2 − 1.

The solution of {
y′ = 12x3 − 4x,

y(1) = 4,

is simply
y = 3x4 − 2x2 − 1 + 4 = 3x4 − 2x2 + 3.

Note that we do not know yet if the solution of (25.1) exists, only that
it is unique, if it does exist. So along with approximating values of the
solution, we also have to show that it does indeed exist. We faced the same
issue when solving root and fixed point problems.

25.1 A Simple Case

Before writing down the approximation procedure for (25.1), we first con-
sider a case where we know there is a solution. Namely, suppose that f is
constant. The solution of (25.1) is then

y = f × (x − x0).
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It is interesting to interpret the solution with a graph, as in Fig. 25.1. The

xx0

f

FIGURE 25.1. The solution y of (25.1) when f is constant gives the area under-
neath f from x0 to x.

figure indicates that y(x) gives the area underneath the graph of f from x0
to x.1

25.2 A First Attempt at Approximation

The idea is to replace the general f , for which we do not know if there is
an antiderivative, by an approximation of f for which an antiderivative can
be computed. For example, we can try to replace f by a constant that is
close to f . We might choose the value f(x0) of f at x0, for instance (see
Fig. 25.2). This is called the constant interpolant of f that interpolates

x0

f(x)

f(x0)

FIGURE 25.2. The constant approximation of f that interpolates f at x0.

f at x0.2 We can certainly solve the problem
{

Y ′ = f(x0),
Y (x0) = 0,

1This observation is the basis for several interesting applications of integration dis-
cussed in Chapter 27.

2Interpolation is discussed in great detail in Chapter 38.
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since the solution is simply

Y (x) = f(x0) × (x − x0).

Note that we change variables from y to Y to mark that Y is not y. The
question is whether Y is a good approximation of y. We understand that
solving y′(x) = f(x) means finding a curve y with the property that the
linearization of y has slope f(x) at every point x. Now Y is a linear function
that has slope f(x0) and passes through the point (x0, y(x0)) = (x0, 0). In
other words, Y is a straight line that has the same slope as the linearization
of y (if it exists) at x0 and agrees with y at x0. But this simply means that
Y is the linearization of y at x0 if it exists (see Fig. 25.3).

xx0

y(x)

Y(x)

slope = f(x0 )

FIGURE 25.3. Y is the linearization of y at x0, if it exists.

Example 25.3. For f(x) = 3x2 with x0 = 1, we compute y(x) = x3−1
while Y (x) = 3(x − 1).

We therefore expect that Y (x) is a good approximation to y(x), if it
exists, for x close to x0. On the other hand, as illustrated in Fig. 25.3, we
do not expect Y (x) to be a good approximation of y(x) for x far away from
x0.

25.3 Approximating the Solution on a Large
Interval

We have constructed a reasonable way to approximate the unknown func-
tion y close to x0. But we do not expect that the approximation Y (x) is
accurate for x in a relatively large interval. To overcome this difficulty, we
divide up a large interval [a, b] into a number of small pieces and then use
the approximation properties of the linearization on those small pieces.

Suppose that we want to solve (25.1) for x in an interval [a, b]. We create
a mesh of equally spaced points {xN,i} in [a, b] by setting

∆xN = (b − a)/2N for N in N
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and
xN,i = a + i × ∆xN , i = 0, 1, · · · , 2N

(see Fig. 25.4). Note in particular that xN,0 = a, xN,2N = b, and given the
mesh size ∆xN , we can determine N . The reason we use 2N to define the

xN,0 xN,1 xN,2 xN,3 xN,2NxN,2N-1

a

=

b

=

∆xN

. . . . . . 

FIGURE 25.4. A mesh for [a, b].

number of points in the mesh is the fact that if M > N are two natural
numbers, then each node in the mesh corresponding to 2N is automati-
cally a node in the mesh corresponding to 2M (see Fig. 25.5). Such meshes

a b

x1,0 x1,1
x1,2

x2,0 x2,1 x2,2 x2,3 x2,4

x3,0 x3,1 x3,2 x3,3 x3,4 x3,5 x3,6 x3,7 x3,8

. 
. 

.
. 

. 
.

. 
. 

.

2
1

2
2

2
3

2
N

2
M

FIGURE 25.5. By construction, the mesh for 2N is nested in the mesh for 2M

when M ≥ N .

are called nested. Using nested meshes makes it much easier to compare
approximations corresponding to different meshes, which we have to do
below.3

We construct the approximation YN on the mesh with 2N + 1 points
“interval-by-interval.” First on [xN,0, xN,1], we replace f(x) by the constant

3General meshes are considered in Chapter 34.
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interpolant f(xN,0) (see Fig. 25.6) and solve
{

Y ′
N = f(xN,0), xN,0 ≤ x ≤ xN,1,

YN (xN,0) = 0,

to get
YN (x) = f(xN,0) × (x − xN,0) for xN,0 ≤ x ≤ xN,1.

Here, we think of [xN,0, xN,1] as being sufficiently small so that Y should
be a good approximation of y, if y exists. We set

YN,1 = YN (xN,1) = f(xN,0)(xN,1 − xN,0) = f(xN,0)∆xN

to be the “nodal” value of YN at the node xN,1.
On the next interval [xN,1, xN,2], we approximate f by the constant in-

terpolant f(xN,1) (see Fig. 25.6). Ideally, we would solve Y ′ = f(xN,1)

xN,0

f(x)

f(xN,0)

xN,1

f(xN,1)

xN,2

FIGURE 25.6. The piecewise constant interpolant of f .

with initial value y(xN,1). This would make YN the linearization of y at
xN,1, if we knew that y existed (see Fig. 25.7). Unfortunately, we would
have to know y to get that value. Since the only value we have at xN,1 is
YN (xN,1) = YN,1, we compute Y on [xN,1, xN,2] by solving

{
Y ′

N = f(xN,1), xN,1 ≤ x ≤ xN,2,

YN (xN,1) = YN,1,

to get

YN (x) = YN,1 + f(xN,1) × (x − xN,1) for xN,1 ≤ x ≤ xN,2.

We show YN in Fig. 25.7. The plot indicates that YN is a continuous func-
tion that is linear on each of the intervals [xN,0, xN,1] and [xN,1, xN,2]; i.e.,
YN is piecewise linear. We define the next nodal value to be

YN,2 = YN (xN,2) = YN,1 + f(xN,1)(xN,2 − xN,1)
= f(xN,0)∆xN + f(xN,1)∆xN .
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xN,0

y(x)

YN(x)

YN,1

YN,2

linearization of

y at xN,1

xN,1 xN,2

FIGURE 25.7. The computation of YN on the intervals [xN,0, xN,1] and
[xN,1, xN,2]. Note that YN is parallel to the linearization of y at x1 on [xN,1, xN,2],
if y exists.

Note that the difference, or error, between Y and y on the second interval
is due not only to the fact that Y is linear but also to the fact that we
started with the “wrong” initial value YN,1.

Now we proceed interval by interval. Given the nodal value YN,n−1, we
solve

{
Y ′

N = f(xN,n−1), xN,n−1 ≤ x ≤ xN,n,

YN (xN,n−1) = YN,n−1,
(25.3)

to get

YN (x) = YN,n−1 + f(xN,n−1) × (x − xN,n−1)

for xN,n−1 ≤ x ≤ xN,n. In computing YN this way, we have replaced
the function f by a piecewise constant interpolant, as in Fig. 25.8 This

f(x)

FIGURE 25.8. The piecewise constant interpolant of f used to compute YN .

defines a continuous, piecewise linear function YN (x) like that shown in
Fig. 25.9. Working backward, the value of YN (x) for x in [xn−1, xn] is
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x0

y(x)?

YN(x)

FIGURE 25.9. The continuous, piecewise linear function YN .

YN (x) = YN,n−1 + f(xN,n−1)(x − xN,n−1)
= YN,n−2 + f(xN,n−2)∆xN + f(xN,n−1)(x − xN,n−1)
= YN,n−3 + f(xN,n−3)∆xN + f(xN,n−2)∆xN

+ f(xN,n−1)(x − xN,n−1),

Using induction, we conclude that for xN,n−1 ≤ x < xN,n,

YN (x) =
n−1∑

i=1

f(xN,i−1)∆xN + f(xN,n−1)(x − xN,n−1), (25.4)

Likewise, the nodal value of YN at xN,n is

YN,n = YN (xN,n) =
n∑

i=1

f(xN,i−1)∆xN . (25.5)

Example 25.4. For f(x) = x on [0, 1], we have ∆xN = 1/2N , xN,i =
i/2N , and on [xN,i−1, xN,i), f(x) is replaced by

f(xN,i−1) =
i − 1
2N

.

This means that

YN (xN,i) = YN (xN,i−1) +
i − 1
2N

× 1
2N

and by induction

YN (xN,n) =
n∑

i=1

i − 1
22N

=
1

22N

n(n − 1)
2

.

In particular,

YN (1) = YN (xN,2N ) =
1

22N

2N (2N − 1)
2

=
1
2

− 1
2N+1 .
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Now that we have constructed the function YN , the next step is to deter-
mine if it approximates the unknown solution y, if it exists. It is clear that
it takes more work to compute YN when N increases, so we presumably
hope that YN is a better approximation to y when N increases. In alge-
braic root problems, we show that the Bisection Algorithm and the Fixed
Point Iteration produce approximations of a root by showing the sequences
they produce converge to the root. Now we have constructed a sequence of
functions {YN (x)}∞

N=1 and we need to show that this sequence of functions
converges to the solution y(x).

The difficulty with talking about YN converging to y is that we do not
know if y even exists. Recall that the same problem crops up when solving
algebraic root problems. In that setting, we introduce the idea of a Cauchy
sequence to avoid having to use the limit of a sequence when checking if a
sequence converges or not. We do the same thing here.

25.4 Uniform Cauchy Sequences of Functions

Before showing {YN (x)} converges to the solution y, we develop some basic
facts about sequences of functions. A sequence of functions {fn(x)}∞

n=1 is a
set of functions that depend on the index n in some fashion. Some examples
are

{xn}∞
n=1 = {x, x2, x3, · · · }

{nx3}∞
n=1 = {x3, 2x3, 3x3, · · · }

{(
1 +

1
n

)
x3 + 5x − 3

}∞
n=1 =

{
2x3 + 5x − 3,

3
2
x3 + 5x − 3,

5
2
x3 + 5x − 3

}

{2 + x}∞
n=1 = {2 + x, 2 + x, 2 + x, · · · }

{5 − 1/n2}∞
n=1 = {4, 4.75, 4.888 · · · , · · · }.

Luckily, {YN (x)} has special properties that make convergence relatively
easy to show, and we concentrate on sequences that share these proper-
ties in this chapter.4 A sequence of functions {fn(x)}∞

n=1 converges uni-
formly to a function f(x) on an interval I if for every ε > 0 there is an N
such that for all x in I,

|fn(x) − f(x)| < ε for n ≥ N. (25.6)

In this case, we write

lim
n→∞

fn(x) = f(x).

4More general sequences are discussed in Chapter 33.
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Example 25.5.
{(

1+ 1
n

)
x3 +5x− 3

}∞
n=1 converges uniformly to x3 +

5x − 3 on any interval [a, b] since

∣
∣(1 +

1
n

)
x3 + 5x − 3 − (x3 + 5x − 3)

∣
∣ =

1
n

|x|3 ≤ 1
n

M3,

where M = max{|a|, |b|}. Therefore for any ε > 0,

∣
∣(1 +

1
n

)
x3 + 5x − 3 − (x3 + 5x − 3)

∣
∣ ≤ ε

for all n ≥ N = M3/ε.

Example 25.6. {xn}∞
n=1 converges uniformly to the zero function

f(x) = 0 on any interval I = [−a, a] with 0 < a < 1 since for any ε > 0

|xn − 0| ≤ an ≤ ε

for all n sufficiently large.

The qualifier “uniformly” refers to the fact that the values of {fn(x)}
converge to the corresponding value f(x) at the same rate for all x in the
interval I. It is possible to have non-uniform convergence and of course
not all sequences converge. A sequence that does not converge is said to
diverge.

Example 25.7. {nx3}∞
n=1 converges to 0 for x = 0 but diverges for any

x �= 0.

Example 25.8. {xn}∞
n=1 converges to 0 for each x in I = (0, 1), but

the convergence is not uniform since for any n, we can find values of x
for which xn is arbitrarily close to 1.

If I includes points larger in magnitude than 1, the sequence diverges.

With these definitions, it is straightforward to prove that uniformly con-
vergent sequences share some of the important properties of convergent
sequences. We ask you to prove the following theorem in Problem 25.10.

Theorem 25.1 Suppose that {fn(x)} and {gn(x)} are uniformly conver-
gent sequences on [a, b] that converge to f and g, respectively, and c is a
constant. Then

• {fn + gn} converges uniformly to f + g on [a, b].

• {cfn} converges uniformly to cf on [a, b].

In addition if the sequences {fn} and {gn} are uniformly bounded, i.e.,
there is a constant M such that for all n and x in [a, b], |fn(x)| ≤ M and
|gn(x)| ≤ M , then
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• {fngn} converges uniformly to fg on [a, b].

In addition if the sequences {fn} and {gn} are uniformly bounded and there
is a constant C such that |gn(x)| ≥ C > 0 for all x in [a, b] and n,5

• {fn/gn} converges uniformly to f/g on [a, b].

Example 25.9. The sequence {fn(x)} = {x+1/n} on (−∞,∞) shows
that we need the assumption about uniform boundedness when dealing
with products and quotients of sequences. In Problem 25.11, we ask
you to show that fn converges uniformly to x for x in (−∞,∞) but f2

n

does not converge uniformly to x2 for x in (−∞,∞).

As mentioned, Cauchy sequences are useful when the limit is unknown.
A sequence of functions {fn(x)}∞

n=1 is a uniform Cauchy sequence on
an interval I if for any ε > 0 there is an N such that for all x in I,

|fn(x) − fm(x)| ≤ ε for m ≥ n ≥ N. (25.7)

Example 25.10.
{ 1

nx2 +3x−1
}∞

n=1 is a uniform Cauchy sequence on
any bounded interval since for m ≥ n,

∣
∣
∣
∣
( 1
n

x2 + 3x − 1
)

−
( 1
m

x2 + 3x − 1
)
∣
∣
∣
∣ =

( 1
n

− 1
m

)
|x|2

=
m − n

mn
|x|2

≤ 1
n

|x|2,

so the difference can be made arbitrarily small by taking n large pro-
vided |x| is bounded by some constant.

Example 25.11. {xn}∞
n=1 is a uniform Cauchy sequence on any inter-

val I = [−a, a] with 0 < a < 1 since

|xm − xn| = |x|n|xm−n − 1| ≤ 2an for m ≥ n,

and the difference can be made arbitrarily small by taking n large.

Example 25.12. {nx3}∞
n=1 is not a uniform Cauchy sequence on any

interval except the point 0 and {xn}∞
n=1 is not a uniform Cauchy se-

quence on any interval that contains points with magnitude greater
than or equal to 1.

5In words, {gn} is bounded away from zero uniformly on I.
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With these definitions, a uniform Cauchy sequence of functions on an
interval I converges to a function on I. This follows because for each x in
I, the sequence of numbers {fn(x)} is a Cauchy sequence and therefore has
a limit by Theorem 11.6. We define the unique limit function f(x) on I by
setting

f(x) = lim
n→∞

fn(x) for each x in I.

This convergence is defined pointwise for each x, but the definitions above
imply that {fn} converges to f uniformly as functions as well. We summa-
rize as a theorem that we ask you to prove in Problem 25.13.

Theorem 25.2 Uniform Cauchy Criterion for Sequences of Func-
tions A uniform Cauchy sequence of functions on an interval I converges
uniformly to a unique limit function on I. Conversely, a uniformly conver-
gent sequence of functions is a uniform Cauchy sequence.

An important issue is determining which properties of a uniform Cauchy
sequence of functions {fn(x)} are inherited by the limit f(x). To show that
integration works in particular, we want to find conditions that guaran-
tee the limit is Lipschitz continuous if the functions in the sequence are
Lipschitz continuous.6

A sequence of functions {fn(x)} is uniformly Lipschitz continuous
on an interval I if there is a constant L such that

|fn(x) − fn(y)| ≤ L|x − y| for all n and x, y in I.

Example 25.13. We can use Theorem 19.1 and the Mean Value The-
orem to show that {fn(x)}∞

n=1 =
{(

1+ 1
n

)
x3 +5x− 3

}∞
n=1 is uniformly

Lipschitz continuous on any bounded interval. First the functions are
uniformly strongly differentiable on any bounded interval I so by the
Mean Value Theorem, for any n and x, y in I, there is a c between x
and y with

|fn(x) − fn(y)| = |f ′
n(c)||x − y|.

But,

|f ′
n(x)| =

∣
∣
∣
∣3
(
1 +

1
n

)
x2 + 5

∣
∣
∣
∣ ≤ 6|x|2 + 5,

independent of n. Hence, there is a constant L depending only on I
such that |fn(x) − fn(y)| ≤ L|x − y| for all n and x, y in I.

Now suppose that the uniform Cauchy sequence {fn(x)} with limit f(x)
is uniformly Lipschitz continuous on an interval I. We want to show that

6We discuss the inheritance of other properties in Chapter 33.
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f(x) is Lipschitz continuous as well, so we choose two points x and y in I
and compute using the old tricks

|f(x) − f(y)| = |f(x) − fn(x) + fn(x) − fn(y) + fn(y) − f(y)|
≤ |f(x) − fn(x)| + |fn(x) − fn(y)| + |fn(y) − f(y)|.

(25.8)

The point of this argument is to get the term |fn(x)− fn(y)| in the middle
because the sequence is Lipschitz continuous. Hence there is a constant L
such that

|fn(x) − fn(y)| ≤ L|x − y| for all x, y in I and n.

As far as the remaining terms on the right of (25.8), for any ε > 0 there is
an N such that

|f(x) − fn(x)| ≤ ε and |f(y) − fn(y)| ≤ ε for all x, y in I and n ≥ N.

Using this in (25.8), we get

|f(x) − f(y)| ≤ 2ε + L|x − y| for all x, y in I.

But ε > 0 can be made arbitrarily small, so this means that

|f(x) − f(y)| ≤ L|x − y| for all x, y in I.

We summarize:

Theorem 25.3 A uniform Cauchy sequence of uniformly Lipschitz contin-
uous functions on an interval I converges to a Lipschitz continuous function
on I with the same Lipschitz constant.

25.5 Convergence of the Integration
Approximation

To show that the sequence of functions {YN} converges, we show that {YN}
is a uniform Cauchy sequence when the function f is Lipschitz continuous.7

Moreover, we show that {YN} is uniformly Lipschitz continuous, so the limit
is also a Lipschitz continuous function.

We assume that f is Lipschitz continuous on [a, b] with Lipschitz constant
L. We show that given any ε > 0 there is a Ñ such that for all x in [a, b],

|YN (x) − YM (x)| ≤ ε for M ≥ N ≥ Ñ .

The main difficulty is working through the notation needed to compare
functions on different meshes. We choose M ≥ N and show the two meshes
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2
N

2
M

xN,n=xM,m

FIGURE 25.10. The meshes corresponding to M ≥ N .

in Fig. 25.10. We first estimate |YN (x) − YM (x)| with x = xN,n for some n
by using the formula (25.5) to get

YN (xN,n) =
n∑

i=1

f(xN,i−1)∆xN .

Because the meshes are nested, xN,n = xM,m for some m, hence

YM (xN,n) = YM (xM,m) =
m∑

j=1

f(xM,j−1)∆xM .

To compare these two values, we rewrite the sums for each to be the same.
We can do this by using the fact that adding up the right number of ∆xM

gives exactly ∆xN . In fact, the number is

2M−N =
b−a
2N

b−a
2M

.

To make use of this, we define µ(i) to be the set of indices j such that
[xM,j−1, xM,j ] is contained in [xN,i−1, xN,i] (see Fig. 25.11). We can then

2
N

2
M

µ(i)

xN,i-1 xN,i

FIGURE 25.11. The definition of µ(i).

write

YM (xN,n) =
n∑

i=1

∑

j in µ(i)

f(xM,j−1)∆xM .

7This means we can consider YN (x) to be an approximation of the limit.
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There are 2M−N indices in µ(i) for each i, so
∑

j in µ(i)

∆xM = ∆xN ,

and we can also write

YN (xN,n) =
n∑

i=1

f(xN,i−1)∆xN =
n∑

i=1

∑

j in µ(i)

f(xN,i−1)∆xM .

We now estimate

|YM (xN,n) − YN (xN,n)| =

∣
∣
∣
∣
∣
∣

n∑

i=1

∑

j in µ(i)

(f(xM,j−1) − f(xN,i−1))∆xM

∣
∣
∣
∣
∣
∣

≤
n∑

i=1

∑

j in µ(i)

|f(xM,j−1) − f(xN,i−1)|∆xM .

Since |xM,j−1 − xN,i−1| ≤ ∆xN for j in µ(i) and f is Lipschitz continuous,
we find

|f(xM,j−1) − f(xN,i−1)| ≤ L|xM,j−1 − xN,i−1| ≤ L∆xN .

We conclude that

|YM (xN,n) − YN (xN,n)| ≤
n∑

i=1

∑

j in µ(i)

L∆xN∆xM

=
n∑

i=1

L(∆xN )2

= (xN,n − xN,0)L∆xN .

(25.9)

This estimate certainly implies the differences between YN (x) and YM (x)
can be made arbitrarily small at the nodes xN,n.

We have to show that a similar result holds for any x in [a, b]. We choose
x in [a, b] and choose n and m so that xN,n−1 ≤ x ≤ xN,n and xM,m−1 ≤
x ≤ xM,m and also choose m̃ so that xM,m̃−1 = xN,n−1. These definitions
are illustrated in Fig. 25.12. By (25.4),

YN (x) = YN (xN,n−1) + (x − xN,n−1)f(xN,n−1),
YM (x) = YM (xM,m−1) + (x − xM,m−1)f(xM,m−1).

Using induction as before, we can write the second equation as

YM (x) = YM (xM,m̃−1) +
m−1∑

i=m̃

f(xM,i−1)∆xM

+ (x − xM,m−1)f(xM,m−1). (25.10)
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2
N

2
M

xN,n-1 xN,n

xM,m-1 xM,m

x

xM,m-1
~

FIGURE 25.12. The choice of nodes near x.

We can also write

x − xN,n−1 =
m−1∑

i=m̃

∆xM + (x − xM,m−1),

and therefore

YN (x) = YN (xN,n−1) +
m−1∑

i=m̃

f(xN,n−1)∆xM

+ (x − xM,m−1)f(xN,n−1). (25.11)

Now subtracting (25.11) from (25.10) and estimating gives

|YM (x) − YN (x)| ≤ |YM (xM,m̃−1) − YN (xN,n−1)|

+
m−1∑

i=m̃

|f(xM,i−1) − f(xN,n−1)|∆xM

+ (x − xM,m−1)|f(xM,m−1) − f(xN,n−1)|.

Using the Lipschitz continuity of f and (25.9), we get

|YM (x) − YN (x)| ≤ L(xN,n−1 − xN,0)∆xN

+
m−1∑

i=m̃

L∆xN∆xM + (x − xM,m−1)L∆xN

= (x − xN,0)L∆xN .

In other words, for any x in [a, b] we can bound

|YM (x) − YN (x)| ≤ (b − a)L∆xN . (25.12)

This implies that {YN} is a uniform Cauchy sequence since for any ε > 0,
there is a Ñ such that for all x,

|YM (x) − YN (x)| ≤ ε for M ≥ N ≥ Ñ
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Namely, we choose Ñ so that

(b − a)L∆xN = (b − a)2L/2Ñ ≤ ε.

We conclude that there is a function, that we call y(x), such that

lim
N→∞

YN (x) = y(x) (25.13)

uniformly for x in [a, b]. In Problem 25.18, we ask you to show that {YN (x)}
is a uniform Lipschitz continuous sequence using the same kind of argu-
ments used to show that {YN (x)} converges. So Theorem 25.3 implies that
y(x) is Lipschitz continuous.

Example 25.14. In Example 25.4, we computed

YN (1) =
1
2

− 1
2N+1 ;

so clearly

lim
N→∞

YN (1) =
1
2
.

The solution of y′ = x, y(0) = 0, is y = x2/2 and therefore y(1) = 1/2.

25.6 The Limit Solves the Differential Equation

We know that {YN} converges uniformly to a Lipschitz continuous function
y(x), but we still have to show that this limit in fact solves the differential
equation (25.1). Actually, we also have to show that y has a derivative. This
is not obvious because the function YN (x) clearly does not have a deriva-
tive at every point in [a, b] because of the “corners” at the nodes {xN,j}.
However, intuition suggests that as we increase the number of points in the
mesh, the angle of change in these corners could become smaller and the
limit could be smooth.

To show that y is strongly differentiable at each x̄ in [a, b] with derivative
f(x̄), we show that there is a constant K such that for any x̄ in [a, b] 8

|y(x) − (y(x̄) + f(x̄)(x − x̄))| ≤ K|x − x̄|2 for all x in I. (25.14)

This implies that y is differentiable at each x̄ and y′(x̄) = f(x̄).
We begin by estimating YN (x) − YN (x̄) for x and x̄ in [a, b]. We first

assume that x > x̄ and for each N , choose mN so that xN,mN −1 < x̄ ≤
xN,mN

and nN so that xN,nN −1 < x ≤ xN,nN
(see Fig. 25.13). By this

8With the obvious one-sided interpretation when x̄ = a or b.
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xN,mN

x

xN,mN-1 xN,nN
xN,nN-1

...
x-

FIGURE 25.13. The choice of mN and nN .

choice, it follows that

x − x̄ = (x − xN,nN −1) +
nN −1∑

j=mN

∆xN − (x̄ − xN,mN −1), (25.15)

and

lim
N→∞

xN,mN −1 = lim
N→∞

xN,mN
= x̄ and lim

N→∞
xN,nN −1 = lim

N→∞
xN,nN

= x.

(25.16)
Moreover, using (25.4),

YN (x̄) = YN (xN,mN −1) + f(xN,mN −1)(x̄ − xN,mN −1),

and

YN (x) = YN (xN,mN −1) +
nN −1∑

j=mN

f(xN,j−1)∆xN

+ f(xN,nN −1)(x − xN,nN −1). (25.17)

Subtraction gives

YN (x) − YN (x̄) = f(xN,nN −1)(x − xN,nN −1) +
nN −1∑

j=mN

f(xN,j−1)∆xN

− f(xN,mN −1)(x̄ − xN,mN −1).

Using (25.15), we can rewrite this as

YN (x) − YN (x̄) = f(x̄)(x − x̄)
+ (f(xN,nN −1) − f(x̄))(x − xN,nN −1)

+
nN −1∑

j=mN

(f(xN,j−1) − f(x̄))∆xN

− (f(xN,mN −1) − f(x̄))(x̄ − xN,mN −1). (25.18)
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Finally we estimate

|YN (x) − YN (x̄) − f(x̄)(x − x̄)|
≤ |f(xN,nN −1) − f(x̄)| |x − xN,nN −1|

+
nN −1∑

j=mN

|f(xN,j−1) − f(x̄)|∆xN

+ |f(xN,mN −1) − f(x̄)| |x̄ − xN,mN −1|. (25.19)

This looks like a mess, but if we use the Lipschitz continuity of f and the
fact that all the x points in (25.18) are in [xN,mN −1, xN,nN

], it simplifies to

|YN (x) − YN (x̄) − f(x̄)(x − x̄)| ≤ 3L|xN,nN
− xN,mN −1|2. (25.20)

For example,

|f(xN,nN −1) − f(x̄)| |x − xN,nN −1| ≤ L|xN,nN
− xN,mN −1|2.

Taking the limit of both sides as N → ∞, we conclude that

|y(x) − y(x̄) − f(x̄)(x − x̄)| ≤ 3L|x − x̄|2

for x > x̄ in [a, b]. It is straightforward to treat the cases x̄ > x and x̄ = a
or b in the same way. Thus, (25.14) holds.

25.7 The Fundamental Theorem of Calculus

We summarize these results of the previous analysis into an important
theorem, which was first proved by Cauchy.

Theorem 25.4 Fundamental Theorem of Calculus If f is a Lipschitz
continuous function on [a, b] with Lipschitz constant L, then there is a
unique solution y(x) of

{
y′(x) = f(x), a ≤ x ≤ b,

y(a) = 0.

Moreover, the sequence {Yn} with

YN (x) =
n−1∑

i=1

f(xN,i−1)∆xN + f(xN,n−1)(x − xN,n−1),

where ∆xN = (b − a)/2N for a natural number N , xN,i = a + i × ∆xN

for i = 0, 1, · · · , 2N , and xN,n−1 < x ≤ xN,n, converges uniformly to y on
[a, b]. For any N , the error is bounded by

|y(x) − YN (x)| ≤ (b − a)L∆xN . (25.21)
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We can rewrite this result using the notation for definite integrals. By
definition,

y(x) =
∫ x

a

f(s) ds.

If we take x = b for simplicity,

y(b) =
∫ b

a

f(x) dx.

Moreover,

YN (b) = YN (xN,2N ) =
2N
∑

i=1

f(xN,i−1)∆xN .

So we have

Theorem 25.5 Fundamental Theorem of Calculus If f is a Lipschitz
continuous function on [a, b] with Lipschitz constant L, then

∫ b

a

f(x) dx

exists and
∣
∣
∣
∣
∣
∣

∫ b

a

f(x) dx −
2N
∑

i=1

f(xN,i−1)∆xN

∣
∣
∣
∣
∣
∣
≤ (b − a)L∆xN ,

where ∆xN = (b − a)/2N for a natural number N and xN,i = a + i × ∆xN

for i = 0, 1, · · · , 2N .

This theorem provides the motivation for the notation we use for the inte-
gral. Since N → ∞ is the same as ∆xN → 0, we can write formally

“ lim
∆x→0

∑
f(xi)∆x =

∫
f(x) dx”

so in the limit
∑

→
∫

and ∆x → dx.
The theory of integration described in this chapter is a simplification of

the general theory first suggested by Cauchy and later systematized and
generalized by Riemann.9 Cauchy’s goal was to prove that integration is

9The German mathematician Georg Friedrich Bernhard Riemann (1826–1866) was
one of the most original and creative thinkers in mathematics. Riemann depended heavily
on intuitive arguments that sometimes were not completely correct, yet his discoveries
have had a profound impact on mathematics and physics. His major achievements were
in abelian functions, complex analysis, electromagnetism, geometry, number theory, the
theory of integration, and topology. His name is remembered in the Riemann integral,
Riemann surfaces, and the Riemann zeta function. He was led to define a rigorous theory
of integration in the course of investigating the convergence of Fourier series.
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defined for continuous integrands. Riemann reversed the question: given
this process for defining integration, find a general class of functions for
which it works. A sum of the form

2N
∑

i=1

f(xN,i−1)∆xN

is known as a Riemann sum.
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Chapter 25 Problems

25.1. Suppose f(x) is a continuously differentiable function on an interval con-
taining x0. Use the Mean Value Theorem to prove the following error estimate
on the error of the constant interpolant of f ,

|f(x) − f(x0)| ≤ max
[x0,x]

|f ′| |x − x0|.

Problems 25.2–25.6 have to do with forming integration approximations.

25.2. Compute formulas for the value of xN,i for i between 0 and 2N when (a)
[a, b] = [0, 1] and (b) [a, b] = [3, 7].

25.3. Mark the mesh points on the interval [a, b] corresponding to ∆xN =
(b − a)/3N for N = 1, 2, 3, 4.

25.4. Draw the integration approximation YN (x) corresponding to the y(x)
shown in Fig. 25.14 on the indicated mesh.

y(x)

x
N,0

FIGURE 25.14. Plot for Problem 25.4.

25.5. Compute Y2(x) and then plot Y2(x) together with y(x) for (a) f(x) = x,
(b) f(x) = x2, and (c) f(x) = x3 on [0, 1].

25.6. Compute a formula for YN (1) for (a) f(x) = 2x, (b) f(x) = x2, and (c)
f(x) = x3 on [0, 1].

Problems 25.7–25.13 have to do with uniform Cauchy sequences of func-
tions.

25.7. Write down five different sequences of functions.

25.8. Use the definition to determine an interval on which the following sequences
converge or explain why they diverge for all x:
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(a) x3 −
(
2 + 1

n2

)
x2 − 3 (b) (3n + 1)x − 2

(c) (x − 3)n (d) 4n + x2

(e) xn/2n (f) (nx + 3)/(n + 2)

(g) xn + x2 + 2 (h)
( 1

2

)n − 5x.

25.9. Use the definition to determine an interval on which the following sequences
are Cauchy or explain why they are not Cauchy sequences for any x:

(a) x2 −
(
1 + 2

n

)
x + 4 (b) (2n − 3)x2 + 5

(c) (x − 2)n (d) 2n + 4x

(e) xn/3n (f) (nx − 1)/(n + 2)

(g) xn + x + 1 (h)
( 1

5

)n + 2x.

25.10. Prove Theorem 25.1. Hint: To deal with products and quotients, it is
useful to show that if {fn} converges uniformly on I to f and {fn} is uniformly
bounded on I by M , then f is also bounded by M on I.

25.11. Verify the claim in Example 25.9.

25.12. State and prove the analog of Theorem 25.1 for Cauchy sequences.

25.13. Prove Theorem 25.2.

In Problems 25.14–25.25, we ask you to verify details of the proof that
the approximate integral converges.

25.14. Find a formula relating the values of the common node xN,n = xM,m in
the nested meshes for M ≥ N .

25.15. Prove (25.9).

25.16. Prove (25.10).

25.17. Prove (25.11).

25.18. Prove that {YN (x)} is a sequence of uniformly Lipschitz continuous func-
tions with Lipschitz constant equal to the maximum value of f on the [a, b].

25.19. Prove (25.15) is true.

25.20. Prove (25.16) is true.

25.21. Show that (25.17) is valid.

25.22. Show that (25.18) is valid.
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25.23. Show that (25.19) implies (25.20).

25.24. Derive the analog of (25.20) when x̄ > x.

25.25. Prove (25.21).

25.26. Write a program that uses a user-defined function f(x) and computes
YN (x) at any point x in the user-defined interval [a, b] for a user-defined number
of mesh points 2N and the user-defined interpolation points of either the left-
or right-hand endpoints or the midpoints of each interval as well as computes
a bound on the error. Test your program on y = x and compare to the results
above. Then run the program to compute

∫ x

1 t−1 dt at x = 2 and x = 3 for
N = 4, 8, 16, 32, 64. Compare the results to ln(2) and ln(3), respectively. Compare
the accuracy of using the midpoint interpolant versus either of the endpoint
interpolants.



26
Properties of the Integral

In Chapter 24, we derived some properties of the integral by using the
properties of the derivative. In this brief chapter, we derive some important
properties of the definite integral by using properties of Riemann sums and
taking the limit, i.e.,

∫ b

a

f(x) dx = lim
N→∞

∑
f(xN,i)∆xN .

26.1 Linearity

To illustrate the idea, we begin with a property already derived. Recall
that if f and g are Lipschitz continuous functions and c is a constant, then

∫
(f(x) + cg(x)) dx =

∫
f(x) dx + c

∫
g(x) dx.

This property corresponds directly to the linearity property of the deriva-
tive. The corresponding property for definite integrals, namely,

∫ b

a

(f(x) + cg(x)) dx =
∫ b

a

f(x) dx + c

∫ b

a

g(x) dx (26.1)

follows from the properties of limits of sequences. For example, if {an} and
{bn} are convergent sequences, then limn(an + cbn) = limn an + c limn bn.
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If {xN,i} are the nodes in a mesh, then

2N
∑

i=1

(f(xN,i) + cg(xN,i))∆xN =
2N
∑

i=1

f(xN,i)∆xN + c

2N
∑

i=1

g(xN,i)∆xN .

Taking limits gives (26.1).

Example 26.1. We can compute

∫ 2

1
(3x2 + 4x) dx = (x3 + 2x2)

∣
∣x=2
x=1 = 16 − 3 = 13

directly or by computing

∫ 2

1
x2 dx =

x3

3

∣
∣
∣
∣

x=2

x=1
=

8
3

− 1
3

=
7
3

and likewise ∫ 2

1
x dx =

x2

2

∣
∣
∣
∣

x=2

x=1
=

4
2

− 1
1

=
3
2

and then adding

3 × 7
3

+ 4 × 3
2

= 13.

26.2 Monotonicity

It occasionally happens that we need to compare the sizes of the solutions
of the differential equations y′

1(x) = f(x) and y′
2(x) = g(x) when, say,

f(x) ≤ g(x) for all x in [a, b]. Intuitively, this means that the slope of the
linearization of y1 is always smaller than the slope of the linearization of
y2 at every point x; hence, y1(x) must not increase as quickly as y2(x) as
x increases. If y1(a) = y2(a), then y1(x) must be less than y2(x) for x ≥ a.
We illustrate in Fig. 26.1

Written in terms of integrals, we prove the following:

Theorem 26.1 Monotonicity of Integration If f and g are Lipschitz
continuous functions on [a, b] and f(x) ≤ g(x) for all a ≤ x ≤ b, then

∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx. (26.2)

This follows from properties of limits of sequences. If {xN,i} are the nodes
in a mesh, then

f(xN,i) ≤ g(xN,i)
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a

y2(x)

y1(x)

FIGURE 26.1. The derivative of y1 is smaller than the derivative of y2 at every
point x.

for all i and therefore
2N
∑

i=1

f(xN,i)∆xN ≤
2N
∑

i=1

g(xN,i)∆xN .

Taking limits as N → ∞ does the trick.

Example 26.2. Since x2 ≤ x for 0 ≤ x ≤ 1,
∫ 1

0
x2 dx ≤

∫ 1

0
x dx.

We can easily check that
∫ 1

0
x2 dx =

1
3

<

∫ 1

0
x dx =

1
2
.

26.3 Playing with the Limits

So far we have discussed solving the differential equation y′(x) = f(x) by
specifying that y = 0 at a point a and then computing the solution for
a ≤ x ≤ b. But this is an arbitrary choice. It can just as well happen that
we specify that y(b) = 0 and then solve for b ≥ x ≥ a, which is naturally
written ∫ a

b

f(x) dx.

To compute this integral using the approximation, we create a mesh for [a, b]
as before, except that now xN,0 = b, xN,2N = a, and ∆xN = (a − b)/2N .
But the only difference in the approximation sum is that we have relabeled
the node points from right to left, instead of left to right, and the new ∆xN

is minus the old ∆xN . Therefore, the new approximation sum is just minus
the old approximation sum. But this means that

∫ b

a

f(x) dx = −
∫ a

b

f(x) dx. (26.3)
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Example 26.3. We can compute
∫ 3

1
3x2 dx = x3

∣
∣x=3
x=1 = 27 − 1 = 26,

while ∫ 1

3
3x2 dx = x3

∣
∣x=1
x=3 = 1 − 27 = −26,

as predicted.

We approximate the value of

∫ b

a

f(x) dx

by defining a mesh on [a, b] and then computing the corresponding integra-
tion approximation. If c is a point between a and b, we can also approximate
the integral by defining meshes on [a, c] and [c, b], computing integration
approximations for each mesh, and then adding the two results. In other
words, if a ≤ c ≤ b, then

∫ b

a

f(x) dx =
∫ c

a

f(x) dx +
∫ b

c

f(x) dx. (26.4)

The formula generalizes to arbitrary a, b, and c.

Example 26.4. We can compute
∫ 5

1
6x dx = 3x2

∣
∣x=5
x=1 = 75 − 3 = 72

by computing the two integrals
∫ 3

1
6x dx = 3x2

∣
∣x=3
x=1 = 27 − 3 = 24

and ∫ 5

3
6x dx = 3x2

∣
∣x=5
x=3 = 75 − 27 = 48

and adding the results.

We can interpret (26.4) as saying that the value y(b) of the solution of
the differential equation y′(x) = f(x) with y(a) = 0 can be computed by
first solving to x = x to get y(c) for an intermediate point c and then
starting with that value at x = c and continuing on to b.
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26.4 More on Definite and Indefinite Integrals

Recall that the general solution of y′(x) = f(x),

y(x) =
∫

f(x) dx,

can be computed by adding a constant C to any antiderivative of f . This
means in particular that the general solution can also be written as

y(x) =
∫ x

a

f(s) ds + C,

where C is an undetermined constant.
One consequence of this relation between the indefinite and definite in-

tegral is yet another way to write the Fundamental Theorem of Calculus:

Theorem 26.2 Fundamental Theorem of Calculus If f is a Lips-
chitz continuous function on [a, b], then

∫ x

a

f(s) ds

defines a differentiable function for a < x ≤ b and

d

dx

∫ x

a

f(s) ds = f(x). (26.5)

Example 26.5. Using Theorem 26.2, we compute

d

dx

∫ x

1
3s2 ds = 3x2.

We can also compute

d

dx

∫ x

1
3s2 ds =

d

dx

(
s3
∣
∣s=x

s=1

)
=

d

dx

(
x3 − 1

)
= 3x2.
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Chapter 26 Problems

26.1. Prove (26.1) by assuming that F is an antiderivative of f and G is an
antiderivative of g and rewriting the definite integrals in terms of F and G.

26.2. Compute the following integrals directly and using (26.1):

(a)
∫ 2

1
(4x2 − 8x) dx (b)

∫ 1

0
(4x + 6x2 − 1) dx.

26.3. Draw a graph illustrating the fact that it is possible for one function y1(x)
to be less than another function y2(x) at every x, where y1(a) = y2(a), even if
the derivative of y1 is larger than the derivative of y2.

26.4. Since the function x2/(1 + x2) is Lipschitz continuous on any bounded
interval, ∫ 1

0

x2

x2 + 1
dx

is defined even if we cannot compute it. Prove that this integral is less than or
equal to one.

26.5. Prove that
∫ b

1
(1 + x2)100 dx ≤

∫ b

1
(1 + x3)100 dx

for all b ≥ 1 (without computing the integrals!).

26.6. Compute the following integrals directly and using (26.3):

(a)
∫ 1

2
12x3 dx (b)

∫ −1

0
2x dx.

26.7. Evaluate
∫ 4

0
2x3 dx directly and using (26.4) with c = 1.

26.8. Evaluate
∫ 2

0
2x dx directly and using (26.4) with c = −1.

26.9. Explain how Theorem 26.2 follows from Theorem 25.4.

26.10. Compute the following derivatives using Theorem 26.2:

(a)
d

dx

∫ x

1
(4s + 1) ds (b)

d

dx

∫ 2x

0
3s2 ds.

Note that (b) requires some thought!



27
Applications of the Integral

Recall that the derivative was introduced as part of the linearization of
a function, but the derivative itself has a geometric interpretation as the
limit of the slopes of secant lines that is important for modeling. The sit-
uation with integration is similar. We introduced integration as a method
of solving the simplest differential equation. But integration also has a ge-
ometric interpretation that is important for a variety of applications. In
fact, integration was originally developed based on its geometric interpre-
tation by Greek mathematicians long before the derivative was developed.
Even today in modern calculus books, integration is usually introduced by
means of its geometric interpretation.

We discuss this interpretation and a couple of applications in this chap-
ter. Geometrically, integration is a method for computing quantities like
length, area, and volume as a limit of approximating sums of “small”
quantities. In fact, this is exactly how Archimedes1 used integration to
approximate the area of the unit circle, which is π. In his “method of ex-
haustion,” Archimedes approximated the area of the circle by the areas of
regular polygonal figures, which are figures made up of straight edge sides,
that just barely encompass the unit circle. We illustrate in Fig. 27.1. The
polygonal figures in the method of exhaustion are made up of triangular
sections and the area of the figure is given by summing the areas of the tri-

1Archimedes of Sicily (287–212 B.C.) is considered to be one of the greatest math-
ematicians and engineers of all time. His “method of exhaustion” was very important
to the later development of calculus because early versions depended heavily on infinite
series.
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4 sides 8 sides 16 sides

FIGURE 27.1. Illustration of the method of exhaustion. The areas of the polyg-
onal figures are, respectively, 4, 3.313708498985, and 3.182597878075, while
π ≈ 3.14159265359. The black regions represent the error of the approximations
to the circle.

angular sections. As the number of sides of the polygonal figure increases,
the number of triangles also increases while the areas of the triangles de-
crease (see Fig. 27.2). Hence, the approximations to the area of the unit

4 sides 8 sides 16 sides

FIGURE 27.2. The polygonal figures in the method of exhaustion are made up
of an increasing number of smaller and smaller triangles.

circle can be written as sums of increasing numbers of ever smaller terms.

27.1 Area Under a Curve

We use a technique similar to Archimedes’ method of exhaustion to define
the area underneath the curve of a Lipschitz continuous function f on a
bounded interval [a, b] and to approximate this area to any desired degree
of accuracy. It turns out that this is just the integral of f over [a, b].

Geometrically, we have little trouble believing that the idea of the area
under the curve makes sense (see Fig. 27.3). But at this point, we do not
know that the area is well-defined mathematically. This is similar to the
situation with

√
2. Geometrically, we defined

√
2 to be the length of the

diagonal of a square with sides of length 1, but we were unhappy until
we found a method to compute

√
2 to any desired accuracy and used this

method to give an analytic definition of
√

2.
If f(x) = c is constant, then there is no problem defining the area under

f from a to b precisely (see Fig. 27.4). The problem in general is that f
might be curved. Recall that we dealt with the same problem in defining
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a b

f(x)

area under f

FIGURE 27.3. The area under the curve of f .

a b

f = c

area = c (b-a)

FIGURE 27.4. The area under the curve of a constant function f .

the integral by using the idea that on sufficiently small intervals a curved
function looks “flat.”

More precisely, we choose a mesh of equally spaced points {xN,i} in [a, b]
by setting ∆xN = (b−a)/2N for a natural number N and xN,i = a+i×∆xN

for i = 0, 1, · · · , 2N . Note in particular that xN,0 = a and xN,2N = b (see
Fig. 27.5). We compute an approximate area underneath f by summing

xN,0 xN,1 xN,2 xN,3 xN,2NxN,2N-1

a

=

b

=

∆xN

. . . . . . 

FIGURE 27.5. A mesh for [a, b].

the areas of the rectangles given by the piecewise constant interpolant of
f on the mesh just created (see Fig. 27.6).

The area of the rectangle on [xN,i−1, xN,i] is f(xN,i−1)∆xN and so the
area underneath the piecewise constant interpolant of f is

2N
∑

i=1

f(xN,i−1)∆xN .
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f(x)

a bxN,1 xN,i

FIGURE 27.6. The area underneath the piecewise constant interpolant of f . We
alternate the shading to distinguish contributions from neighboring rectangles.

The Fundamental Theorem of Calculus implies that this sum converges to a
unique limit, namely, the integral of f , as the number of intervals increases,
i.e., as N → ∞. In other words,

lim
N→∞

2N
∑

i=1

f(xN,i−1)∆xN =
∫ b

a

f(x) dx. (27.1)

So we define this limit,
∫ b

a
f(x) dx, to be the area underneath the curve

f from a to b.2

Example 27.1. The area underneath x2 from −1 to 1 is
∫ 1

−1 x2 dx =
x3/3|1−1 = 2/3.

This definition agrees with the couple of cases in which we can compute
the area using geometric identities, as when f is constant or linear.

Example 27.2. The area underneath x from 0 to 1 is
∫ 1
0 x dx =

x2/2|10 = 1/2. This agrees with the area of the triangle with corners at
(0, 0), (1, 0), and (1, 1) given by the formula for the area of a triangle
as one half the base times the height.

In situations in which f cannot be integrated exactly, we can approximate
the area underneath f to any desired accuracy by computing the sum in
(27.1) with a sufficiently large N .

Note that this definition of area has one peculiarity that does not fit
intuition. Namely, it might very well be negative.

Example 27.3. The area underneath the curve y = −x2 on [1, 2] is∫ 2
1 −x2 dx = −x3/3|21 = −7/3.

2The approach of defining geometric quantities like area underneath a curve and
length of a curve as the integrals of functions originates with Cauchy.
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This is because the “height” of the rectangles in the sum in (27.1) can be
negative or positive depending on the sign of f . In general, we could expect
that f is positive on part of [a, b] and negative on the rest (see Fig. 27.7).
So we sometimes call

∫ b

a
f(x) dx the net area underneath the curve f

f(x)

+

-a

b

FIGURE 27.7. A function that has regions of both “positive” and “negative”
areas under its graph.

from a to b.
If we want the total area between f and the x-axis summed without

cancelation, then we can compute
∫ b

a
|f(x)| dx. We call this the absolute

area underneath f from a to b. The absolute value has the effect of
reflecting those parts of f that are negative above the x-axis, resulting in
a function that is always nonnegative (see Fig. 27.8).

|  |

f(x) |f(x)|

FIGURE 27.8. The action of taking the absolute value of f .

Example 27.4. The absolute area underneath the curve y = −x2 on
[1, 2] is

∫ 2
1 | − x2| dx =

∫ 2
1 x2 dx = x3/3|21 = 7/3.

Example 27.5. To compute the absolute area underneath f(x) =
x3 − 3x2 + 2x = x(x − 1)(x − 2) from x = 0 to x = 3, we first note that
f(x) is positive when 0 < x < 1, negative when 1 < x < 2, and positive
when 2 < x < 3. Note that these regions are bordered by the zeros of
f . Since f is Lipschitz continuous, there must always be a point where
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f is zero between regions on which f changes sign. So,

∫ 3

0
|f(x)| dx =

∫ 1

0
|f(x)| dx +

∫ 2

1
|f(x)| dx +

∫ 3

2
|f(x)| dx

=
∫ 1

0
f(x) dx −

∫ 2

1
f(x) dx +

∫ 3

2
f(x) dx

=
∫ 1

0
(x3 − 3x2 + 2x) dx −

∫ 2

1
(x3 − 3x2 + 2x) dx

+
∫ 3

2
(x3 − 3x2 + 2x) dx

=
(x4

4
− x3 + x2)|10 −

(x4

4
− x3 + x2)|21 +

(x4

4
− x3 + x2)|32

=
1
4

−
(

−1
4

)
+

9
4

=
11
4

.

Based on this discussion, we define the area between the curves f
and g from a to b as

∫ b

a

(f(x) − g(x)) dx

(see Fig. 27.9). We define the absolute area between f and g from a

f(x)

g(x)
a

b

FIGURE 27.9. The area between the curves f and g.

to b as ∫ b

a

|f(x) − g(x)| dx.

Example 27.6. We compute the absolute area between the curves
8 − x2 and x2. When the interval is not specified, by default we take
the interval defined by the points of intersection of the two curves. Here
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8 − x2 = x2 at x2 = 4 or x = −2 and 2. Since 8 − x2 ≥ x2 on [−2, 2],
we compute

∫ 2

−2
(8 − x2 − x2) dx =

(
8x − 2

3
x3)|2−2 =

64
3

.

27.2 Average Value of a Function

As another application of the idea that integration is a sum of small quan-
tities, we consider the problem of defining the average value of a function.

The average value f̄ of a set of N numbers {f1, f2, · · · , fN} is defined

f̄ =
f1 + f2 + · · · + fN

N
= f1

1
N

+ f2
1
N

+ · · · + fN
1
N

.

The average is an important quantity in statistics, as any student who has
been graded on a curve knows.

We can think of the N numbers {f1, f2, · · · fN} as the N values of a func-
tion f with domain {1, 2, · · · , N}. So we have defined the average value of
a function with a discrete domain. We want to extend this idea to functions
f(x) of a real variable x on [a, b]. The difficulty is that there are an infinite
number of x in [a, b], so the analog of summing the values is not so obvious.

A way around this difficulty is to sample f at a set of N points {x1, · · · , xN}
and then let N tend to infinity. We want to choose the sample points more-
or-less well-distributed across the interval [a, b]. So we choose a mesh of
equally spaced points {xN,i} in [a, b] by setting ∆xN = (b − a)/2N for a
natural number N and xN,i = a + i × ∆xN for i = 0, 1, · · · , 2N . Note in
particular that xN,0 = a and xN,2N = b. This is the usual mesh we use for
integration. The average of f ’s values on the nodes of the mesh is therefore

2N
∑

i=1

f(xN,i−1)
1
N

.

From the definition of ∆xN ,

2N
∑

i=1

f(xN,i−1)
1
N

=
1

b − a

2N
∑

i=1

f(xN,i−1)
b − a

N
=

1
b − a

2N
∑

i=1

f(xN,i−1)∆xN .

Since the quantity on the right tends to a unique limit, namely, the integral
of f , as N → ∞, we define the average value of f on [a, b] to be

f̄ =
1

b − a

∫ b

a

f(x) dx.
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Example 27.7. The average value of f(x) = x3 on [0, 2] is

1
2

∫ 2

0
x3 dx =

16
8

= 2.

Example 27.8. The average value of f(x) = x on [−1, 1] is

1
2

∫ 1

−1
x dx =

1
2

x2

2

∣
∣1
−1 = 0.

Recall that sometimes we want to “weight” some of the numbers more
than others when computing an average. We call the numbers {ω1, ω2, · · · ,
ωN} a set of weights if they are nonnegative and ω1 +ω2 + · · ·+ωN = N .
In this case, we define the weighted average of {f1, f2, · · · , fN} as

f̄ = f1
ω1

N
+ f2

ω2

N
+ · · · + fN

ωN

N
.

To generalize this to functions of real variables, we call a Lipschitz continu-
ous function ω(x) a normalized weight function, or weight function,
if ω(x) ≥ 0 for all x in [a, b] and

∫ b

a
ω(x) dx = b−a. We define the weighted

average of f on [a, b] with respect to ω as

f̄ =
1

b − a

∫ b

a

f(x)ω(x) dx.

Example 27.9. The average values of f(x) = 2 − x on [0, 1] with
respect to weights 1 and 2x are

1
1

∫ 1

0
(2 − x) dx =

3
2

and
1
1

∫ 1

0
(2 − x) 2x dx =

4
3
.

It is sometimes inconvenient to choose ω so that
∫ b

a
ω(x) dx = b−a. If we

assume only that
∫ b

a
ω(x) dx > 0, then we define the weighted average

of f to be

f̄ =

∫ b

a
f(x) dx

∫ b

a
ω(x) dx

Example 27.10. The average value of f(x) = 2 − x on [0, 1] with
respect to x is ∫ 1

0 (2 − x) x dx
∫ 1
0 x dx

=
2/3
1/2

=
4
3
.
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Chapter 27 Problems

27.1. Verify the formula for half the length of a side of a n-sided regular polygonal
figure in Fig. 27.10 and use the formula to compute approximations to π using
n = 4, 8, 16, 32 sides.

0

A

B

π/n

1

tan(π/n)=AB

FIGURE 27.10. Archimedes’ computation for the area of the polygonal figure
with n sides.

27.2. Compute the area and absolute area of the following functions on the
indicated intervals:

(a) f(x) = x − 2 on [−1, 4]

(b) f(x) = x(x − 2)(x + 3) on [−4, 4].

27.3. Compute the area and absolute area between the curves f(x) = 2x3 and
g(x) = x2 + 4x − 3 .

27.4. Compute the average values of f(x) = x + x2 with on [0, 2] with respect
to 1, x, and x2.

27.5. Prove that |f | ≤ |f̄ | for any Lipschitz continuous function.

27.6. Assume that ω1 and ω2 are two weight functions on [a, b]. Suppose that
the average value of some function f with respect to ω1 is less than or equal
to its average with respect to ω2. Does it follow that ω1(x) ≤ ω2(x) for all x

in [a, b]? Does it follow that
∫ b

a
ω1(x) dx ≤

∫ b

a
ω2(x) dx? When answering these

questions, either provide a proof or a counterexample. Repeat the questions, but
now assume that the average value of f with respect to ω1 is less than the average
value with respect to ω2 for all Lipschitz continuous functions.

27.7. Prove that the average value of f on [a, b] with respect to 1 satisfies

min
[a,b]

f ≤ f̄ ≤ max
[a,b]

f

assuming the min and max values are well-defined. Does the result hold for ar-
bitrary weight functions?
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28
Rocket Propulsion and the Logarithm

Over the next three chapters, we analyze and solve three important dif-
ferential equations that appear repeatedly in mathematical modeling. In
each case, solving the equation requires defining a “new” function; i.e., the
solution is not to be found among the set of rational functions. These new
functions are essential to analysis.

The first problem is y′(x) = 1/x, and the solution is called the logarithm.
The logarithm was actually invented by Napier1 in the seventeenth century
as a method for simplifying complicated computations and it immediately
became an essential tool in engineering and science. The slide rule, which
was the standard calculating device before the electronic calculator, is based
on the logarithm. However, the advent of the calculator has reduced the
need to use logarithms and engineering students are saved from having
to memorize a table of logarithm values and learning to use a slide rule.
Nonetheless, the logarithm is still useful as a computational tool in many
situations and remains important in modeling.

28.1 A Model of Rocket Propulsion

The Law of Conservation of Momentum says,

1John Napier (1550–1617) was a wealthy Scottish landowner who studied mathemat-
ics as a hobby.
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If the sum of external forces acting on a system of particles is
zero, the total momentum of the system remains constant.

We apply this law to obtain a differential equation describing the accelera-
tion of a rocket in terms of its mass, the rate that fuel is being consumed,
and the rate the gases coming from the burnt fuel are ejected. We assume
that the rocket is in space sufficiently far from any planets that the effect
of gravitation can be ignored.2

When the rocket’s engine is fired, the exhaust gases from the burnt fuel
shoot backward at high speed and the rocket moves forward so as to balance
the momentum of the gases (see Fig. 28.1). Neglecting external forces, the
total momentum of the exhaust+rocket should remain zero.

t = t0

FIGURE 28.1. A model of rocket propulsion.

We let m(t) denote the mass of the rocket and v(t) its velocity at time t
and assume that the exhaust gases are ejected at a constant rate u, which
is approximately true in practice. We derive a differential equation for v by
considering the changes that occur in the rocket-exhaust system from time
t, greater than some initial time t0, to a later time s ≥ t, from the point
of view of an observer watching the rocket from a stationary position. We
assume that the mass m and the velocity v remain strongly differentiable
functions for t ≥ t0.

The change in momentum associated with the expelled gas is equal to the
mass of the gas ejected times the velocity of the gas. By the conservation
of mass, the mass of the gas must equal the change of mass of the rocket,
which is m(t) − m(s).3 The velocity of the gas is the sum of the velocity of
the gas relative to the rocket and the velocity of the rocket relative to the
observer, u + v. Hence, the change in momentum of the expelled gas is

(m(t) − m(s))(u + v(s)).

The change in momentum of the rocket is simply

m(s)v(s) − m(t)v(t).

2A rocket lifting off from the Earth’s surface is affected by the force of gravity and
the friction created by the atmosphere, so the equation describing launch is more com-
plicated.

3Note that m(t) > m(s).
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The conservation of momentum therefore implies that

(m(t) − m(s))(u + v(s)) + m(s)v(s) − m(t)v(t) = 0.

Dividing by s − t, assuming that s > t, gives

−(u + v(s))
m(s) − m(t)

s − t
+

m(s)v(s) − m(t)v(t)
s − t

= 0.

By the assumption of strong differentiability, letting s ↓ t, we conclude that
v and m satisfy

−(u + v(t))m′(t) +
d(m(t)v(t))

dt
= 0.

By the product rule

−(u + v(t))m′(t) +
d(m(t)v(t))

dt
= −um′(t) − v(t)m′(t) + m(t)v′(t) + m′(t)v(t)
= −um′(t) + m(t)v′(t).

So assuming that m(t) > 0, we obtain

v′(t)
u

=
m′(t)
m(t)

for t ≥ t0. (28.1)

To specify a particular solution, (28.1) is supplemented with an initial con-
dition

v(t0) = v0, m(t0) = m0 > 0. (28.2)

Equation (28.1) can be used in various ways to determine information
about a rocket flight.

Example 28.1. To obtain an acceleration of 5g while expending the
fuel at 2000 m/s (a typical value), the fuel must be consumed so that

m′(t)
m(t)

= −.0025.

A solution of this equation indicates how long a rocket of a given initial
mass can maintain an acceleration of 5g.

We can use (28.2) to conclude there is a solution as long as m(t) > 0.
The Fundamental Theorem of Calculus implies

1
u

(v(t) − v0) =
∫ t

t0

m′(s)
m(s)

ds, (28.3)
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provided the integral on the right exists. But m′/m is a Lipschitz continuous
function as long as there is a constant c > 0 such that m(t) ≥ c > 0.
Since m0 > 0, there is a c > 0 such that this holds for some time interval
starting at t0, if not for all time. Therefore the integral does exist as long as
m(t) > 0; and moreover it defines a strongly differentiable function, which
is v of course.

We can use substitution to rewrite (28.3) in a more tractable form. We
define x(t) = m(t) so that dx = m′ dt and

1
u

(v(t) − v0) =
∫ m(t)

m0

dx

x
. (28.4)

This motivates the study of the integral
∫

dx

x
=
∫

x−1 dx.

Note that the integrand does not fit into the formulas for differentiating
powers of x from Chapter 20. Somehow x−1 is a special case. In fact, we
have to define a new function, which turns out to be the logarithm. This
is an entirely new situation. Up to now, we have dealt with integrals of
functions that give new functions that can be written down explicitly. Now,
we are faced with an integral that is defined but for which we do not know
the resulting function.

28.2 The Definition and Graph of the Logarithm

The natural logarithm function, which is called the logarithm for short
and written as y = log(x), is defined by

log(x) =
∫ x

1

1
s

ds. (28.5)

Equivalently, log is the unique solution of the differential equation
{

y′(x) = 1/x,

y(1) = 0.
(28.6)

We know the integral is defined but we cannot use standard formulas to
evaluate it. We do know however that the logarithm is strongly differen-
tiable for x > 0.

We can use Riemann sums to approximate values of log at any desired
point.4 However, we would also like to determine general information about

4The efficient and accurate approximation of functions like log is an interesting and
difficult subject that we cannot discuss here in sufficient detail to make it worthwhile.
We leave it as a mystery: what exactly does a calculator do when you press the log or
any other function key?
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the function. It turns out that a surprising amount of information can be
determined from the fact that log satisfies the differential equation (28.6).

For example, since 1/s > 1/x on the interval [1, x], it follows from the
monotonicity property of integration that for x > 1,

log(x) =
∫ x

1

1
s

ds ≥
∫ x

1

1
x

ds =
1
x

(x − 1) = 1 − 1
x

,

which implies that log(x) > 0.5 For x < 1,

log(x) =
∫ x

1

1
s

ds = −
∫ 1

x

1
s

ds

so the same argument shows that log(x) < 0. Summarizing,





log(x) > 0, 1 < x,

log(1) = 0,
log(x) < 0, 0 < x < 1.

(28.7)

We can also find out a lot about the shape of the graph of log. For
example,

d

dx
log(x) =

1
x

> 0;

hence log is a monotone increasing function, i.e.,

x1 < x2 implies log(x1) < log(x2). (28.8)

Going a little deeper, the second derivative of log is

d2

dx2 log(x) =
d

dx

1
x

=
−1
x2 < 0.

Since the second derivative is negative, this means the first derivative is a
monotone decreasing function.6 This means that while log is an increasing
function, it increases at a steadily decreasing rate!

We finish by presenting a plot of log in Fig. 28.2.

28.3 Two Important Properties of the Logarithm

If a is a constant, then the Chain Rule implies

d

dx
log(ax) =

1
ax

a =
1
x

=
d

dx
log(x),

5Note that the integration variable in these integrals is s, and x is treated like any
other constant when we compute the integral.

6This can also be seen by plotting 1/x of course.
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FIGURE 28.2. A plot of the logarithm log.

or in other words,
d

dx

(
log(ax) − log(x)) = 0

for all x. So log(ax) − log(x) is a constant. Setting x = 1 gives

log(ax) − log(x) = log(a × 1) − 0 = log(a).

Renaming a to be y, we obtain a functional relation for log,

log(xy) = log(x) + log(y), (28.9)

which holds for all y, x > 0 This equation is the reason that the logarithm
is so useful for some kinds of computations.

One consequence is another functional equation. Setting x = xn−1 and
using (28.9) twice gives

log(xn) = log(x) + log(xn−1)

= log(x) + log(x × xn−2)

= log(x) + log(x) + log(xn−2)

= 2 log(x) + log(xn−2).

Induction yields
log(xn) = n log(x) (28.10)

for all x > 0 and positive integers n. If n is a negative integer, we set
m = −n so m is a positive integer, and use (28.9) and (28.10) to find

log(xn) = log(x−m) = log
( 1
xm

)
= 0 − log(xm)

= −m log(x) = n log(x).
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Since x = (x1/n)n, (28.10) implies

log(x) = log
(
(x1/n)n

)
= n log(x1/n)

or solving

log(x1/n) =
1
n

log(x).

Putting this all together, if p and q are integers, then

log(xp/q) = log
(
(x1/q)p

)
= p log(x1/q) =

p

q
log(x);

or in other words
log(xr) = r log(x) (28.11)

for all x > 0 and rational numbers r.

Example 28.2. Given that log(2) ≈ .693 and log(3) ≈ 1.10, we can
estimate

log(12) = log(22 × 3) = 2 log(2) + log(3) ≈ 2.49.

Example 28.3. Given log(a) = 2 and log(b) = −.1, we can compute

log
(

a3

b2

)
= 3 log(a) − 2 log(b) = 6 + .2 = 6.2.

28.4 Irrational Exponents

One consequence of the functional equation (28.10) is

lim
x→0−

log(x) = −∞ and lim
x→∞

log(x) = ∞.

To prove the second limit for example, we use the fact that log(2) > 0
which means that

log(2n) = n log(2)

can be made as large as desired by taking n large. The first limit follows
from the fact that log(x−1) = − log(x).

By the Intermediate Value Theorem, this means that log takes on every
value between −∞ and ∞. In other words, given a number a there is
a number x such that log(x) = a. Moreover, x is unique because log is
strictly increasing and cannot have the same value at two different points.

Using the logarithm makes it easy to define ba for irrational values of
a and b > 0 or b ≥ 0. For example, we might want to compute 3

√
2. The

definition is based on (28.11). For any b > 0 and real number a, the number
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ba is defined to be the unique number whose natural logarithm is a log(b).7

In other words, ba is the unique number such that

log(ba) = a log(b). (28.12)

When b = 0 and a > 0, we define ba = 0. We know (28.12) is defined based
on the discussion above. With this definition, it turns out that all the
standard properties of exponents hold. For all real a1 and a2 and positive
reals b1 and b2,

1a = 1, ba1+a2
1 = ba1

1 ba2
1 , ba1−a2

1 =
ba1
1

ba2
2

, (ba1
1 )a2 = ba1a2

1 , (b1b2)a1 = ba1
1 ba1

2 .

(28.13)
In each case, the property is true when both sides of the equality have the
same logarithm.

Example 28.4. To verify the last property in (28.13), we first note that
by the definition (b1b2)a1 is the unique number such that log((b1b2)a1) =
a1 log(b1b2). But (28.9) therefore implies that log((b1b2)a1) = a1 log(b1)+
a1 log(b2), which by definition means log((b1b2)a1) = log(ba1

1 )+log(ba1
2 ).

Using (28.9) again gives the desired log((b1b2)a1) = log(ba1
1 ba1

2 ). We ask
you to verify the others in Problem 28.10.

28.5 Power Functions

Given that we have defined ba uniquely for each b > 0 and real a and
for b = 0 when a > 0, we are in a position to define the power function
f(x) = xa for any real a. The value of xa is determined uniquely by

log(xa) = a log(x)

when x > 0 (and is zero when x = 0 and a > 0). The domain of xa is the
positive reals for any a and the nonnegative reals for any real a > 0.

From this definition, it follows that xa is strongly differentiable when
x > 0 and the derivative of xa can be computed by differentiating both
sides of (28.12)

d

dx
log(xa) =

d

dx
a log(x),

or using the Chain Rule,

1
xa

d

dx
(xa) = a

1
x

.

7It is important to note (28.11) implies this definition coincides with the value for xn

defined earlier for integer n.
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Solving gives
d

dx
(xa) = axa−1

which is the same power rule that holds for rational powers!

Example 28.5.
d

dx
x

√
2 =

√
2 x

√
2−1.

When a > 0, determining if xa is strongly differentiable at x = 0 is
more difficult. If a is any integer, then xa is strongly differentiable at 0. So
consider the case when 0 < a < 1 first. Then for x > 0,

d

dx
xα = αxα−1 =

α

x1−α
,

where 1 − α > 0. Hence,

lim
x↓0

d

dx
xα

is undefined. We conclude that xa is not differentiable at x = 0 when
0 < α < 1. Next, we consider α > 1. Now D(xα) = αxα−1 is defined at 0
and limx↓0 αxα = 0, so xα is differentiable at x = 0. But when we try to
verify the definition of strong differentiability, we get

|xα − (0α + α0α−1(x − 0)| = |x|α

for all x > 0. Clearly |x|α ≤ |x|2K for some constant K and x > 0 only if
α ≥ 2. Hence we conclude that for α > 0,

xα is not differentiable at 0 when 0 < α < 1
xα is differentiable but not strongly differentiable at 0 when 1 < α < 2

xα is strongly differentiable at 0 when α = 1 and α ≥ 2.

We also get the integration formula for α �= 1,
∫

xα dx =
xα+1

α + 1
+ C.

28.6 Change of Base

Let x and b be positive numbers with b �= 1. The classical definition of the
logarithm of x to the base b, is the number y such that x = by. We write
this as y = logb(x).
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Example 28.6.

log3(27) = 3, log2
( 1
64
)

= −6, log10(100) = 2.

Without using calculus, it is difficult to show that this definition is mean-
ingful. However we note that if the classic definition holds, then log(x) =
y log(b) or y = log(x)/ log(b). We can go back in the opposite direction of
course, and we conclude that logb(x) is well defined and, moreover,

logb(x) =
log(x)
log(b)

. (28.14)

We can define a unique number e with the property that log(e) = 1 and
then we have log(x) = loge(x).8 This means in particular that

log(ex) = x for all x and elog(x) = x for x > 0. (28.15)

In Problem 28.13, we ask you to prove the following properties of logb(x):

logb(1) = 0, logb(xy) = logb(x) + logb(y),
logb(a

x) = x logb(a), logb(b
x) = x. (28.16)

Example 28.7. To verify that logb(ax) = x logb(a), we convert to
log(x):

logb(a
x) =

log(ax)
log(b)

=
x log(a)
log(b)

= x
log(a)
log(b)

= x logb(a).

Finally, (28.14) implies

d

dx
logb(x) =

1
log(b)x

. (28.17)

28.7 Solving the Model of Rocket Propulsion

From (28.4), we conclude that the velocity of the rocket is given by

1
u

(v(t) − v0) = log(m(t)) − log(m0)

or

v(t) = v0 + u log
(

m(t)
m0

)
.

Since m(t) < m0 and u < 0 and moreover m(t) decreases to zero as fuel is
burned, v(t) increases from the initial value v0 as t increases.

8It is common to denote the function loge(x) = log(x) by ln(x) and the function
log10(x) by log(x).
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Example 28.8. Continuing Example 28.1, to obtain an acceleration
of 5g while expending the burnt fuel at a rate of 2000 m/s, we need to
consume fuel so that

log
(

m(t)
m0

)
= −.0025t.

To determine m, we need to compute the inverse function to log, which
we do in the next chapter.

28.8 Derivatives and Integrals Involving the
Logarithm

We conclude by discussing some derivatives and integrals that involve the
logarithm.

By the Chain Rule, if u is a differentiable function, then

d

dx
log(u(x)) =

u′(x)
u(x)

.

Example 28.9.
d

dx
log(x2 + x) =

2x + 1
x2 + x

.

In fact, we can differentiate log(|u|) for any differentiable function u that
is never zero. If u is never zero, then either u(x) > 0 for all x, in which
case

d

dx
log(|u(x)|) =

d

dx
log(u(x)) =

u′(x)
u(x)

,

or u(x) < 0 for all x, so that −u(x) > 0 and

d

dx
log(|u(x)|) =

d

dx
log(−u(x)) =

−u′(x)
−u(x)

=
u′(x)
u(x)

.

Putting these results together, we get

d

dx
log(|u(x)|) =

u′(x)
u(x)

. (28.18)

This means that if u is never zero, then
∫

u′(x)
u(x)

dx = log(|u(x)|) + C. (28.19)
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Example 28.10.
∫

1
x − 1

dx = log |x − 1| + C.

Example 28.11.
∫

x

x2 − 1
dx =

1
2

∫
2x

x2 − 1
dx =

1
2

log |x2 − 1| + C.

Example 28.12. To compute the following integral, we note that 1/x
is never zero on [−2,−1], so

∫ −1

−2

1
x

dx = log |x|
∣
∣x=−1
x=−2 = log | − 1| − log | − 2| = − log(2).

In this example, we need the absolute value signs!



28.8 Derivatives and Integrals Involving the Logarithm 367

Chapter 28 Problems

28.1. Write down a model of a rocket launching from the Earth’s surface that
includes the effects of gravity but ignores the effect of wind resistance.

28.2. Show that log(x) ≤ x for all x ≥ 1. Hint: First show that 1/x ≤ 1 for
x ≥ 1.

28.3. Prove that log(1 + x) < x for x > 0. Hint: First show that (1 + x)−1 < 1
for x > 0.

28.4. Show that log(2) ≥ 1/2 without using a calculator. Hint: Apply the Mean
Value Theorem to log(x) on the interval [1, 2].

28.5. Suppose we define a new function called lug by

lug(x) =
∫ x

2

1
s

ds.

Find an equation relating lug(x) to log(x) for all x.

28.6. (a) For 0 < x1 < x2, show that

log(x2) − log(x1) =
∫ x2

x1

1
s

ds.

(b) Use this to show that log is monotone increasing. Hint: on [x1, x2], 1/s ≥ 1/x2.

28.7. Make rough sketches of the following functions after specifying their do-
main and range:

(a) log(x − 2) (b) log(1 + x2) (c) − log(x) + 1 .

28.8. Given that log(2) ≈ .693, log(3) ≈ 1.10, and log(5) ≈ 1.61, estimate

(a) 250 (b) 6e2 (c) 10/3 .

28.9. Given that log(a) = −1, log(b) = 2, and log(c) = .4, estimate

(a) ab2/c (b) ab (c) ea/b .

28.10. Verify the properties (28.13).

28.11. Compute the following derivatives:

(a) xe (b) (x
√

3 − x)3 (c) (x2 + x)
√

10 .

28.12. Simplify the following:
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(a) log5(25) (b) log25(5) (c) log27

( 1
3

)
(d) log4(2

1/3)

(e) logz3(z12) (f) logv2+1(v
4 + 2v2 + 1) (g) 33 log3(8) (h) ulog

u2 (25) .

28.13. Verify the properties (28.16).

28.14. Differentiate the following functions:

(a) y = log(|x2 − x|) (b) y = log(log(x)) (c) y = log3(9 − x).

28.15. Compute the following:

(a)
∫

1
x + 1

dx (b)
∫ 0

−1

1
2 − 4x

dx (c)
∫ −2

−3

x2

x3 + 1
dx

(d)
∫

2x − x3

4x2 − x4 dx (e)
∫

1√
x(1 +

√
x)

dx (f)
∫

(log(2x) − 4)2

x
dx.



29
Constant Relative Rate of Change and
the Exponential

Continuing the investigation of three important differential equations, the
second problem we consider is y′(x) = cy(x) for a constant c. The solution
leads to the exponential function.

It would be hard to overstate the importance of the exponential function
for analysis and mathematical modeling.1 Exponential functions appear
everywhere in the mathematics of science and engineering. Moreover, it is
possible to derive both the logarithm and the trigonometric functions using
the exponential function.2

29.1 Models Involving a Constant Relative Rate of
Change

There are many models in which it is more natural to look at the relative
rate of change instead of the rate of change. The relative change of a
quantity that undergoes some change in size is defined as the change divided
by the size of the quantity. We can get the percent change by multiplying
the relative change by 100.

1The author recalls a final exam that his teacher Lipman Bers gave in calculus, which
consisted solely of the question, “Write down everything you can about the exponential
function.”

2The relation of the exponential function to the logarithm and the trigonometric
functions is a standard topic in complex analysis.
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If the quantity is given by P (t) at the value of the variable t, then the
relative change in P from t to t + ∆t is

P (t + ∆t) − P (t)
P (t)

.

The relative rate of change is therefore naturally defined to be

P (t+∆t)−P (t)
P (t)

(t + ∆t) − t
=

P (t+∆t)−P (t)
P (t)

∆t
=

1
P (t)

P (t + ∆t) − P (t)
∆t

.

There are many situations in which the relative rate of change is constant:
i.e., there is a constant k such that

1
P (t)

P (t + ∆t) − P (t)
∆t

= k

or
P (t + ∆t) − P (t)

∆t
= kP (t). (29.1)

Note that we can interpret a constant relative rate of change as saying that
the rate of change of a quantity is proportional to the quantity.

If P is a differentiable function, then if we let t + ∆t approach t, i.e., let
∆t → 0, we obtain the differential equation modeling constant relative rate
of change,

P ′(t) = kP (t). (29.2)

Many physical situations are modeled by (29.2). Among these are

• Earnings from compound interest

• Newton’s Law of Cooling governing the temperature difference be-
tween an object and the surrounding medium

• Radioactive decay

• Population growth

We describe a model of the growth of a biological population.

Example 29.1. Models of biological populations usually begin with
discrete equations because the population is an integer and therefore
increases or decreases by integer changes while we measure the changes
at discrete time intervals. For example, we have already modeled the
population of insects in Model 3.4 using a variable Pn denoting the
population in year n based on an equation Pn = RPn−1 relating Pn

to the population in the previous year. This kind of model is called a
discrete model.
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Nonetheless, it is often more convenient to model the population using
a differential equation. For one thing, the population might not syn-
chronize well so there may be no natural time at which to measure the
population. This is true of human populations, for example. For another
thing, the population might be very numerous so that the changes in
the population are relatively small, e.g., “almost” infinitesimal. For ex-
ample, a typical Petri dish contains on the order of millions of cells
and a change in population by a single cell is practically speaking un-
detectable. Lastly, and not the least important, we have many calculus
tools for dealing with smooth differentiable functions that do not apply
to functions that change by discrete amounts!

If the population at some discrete set of times t0 < t1 < t2 < · · · is
given by P0, P1, P2, · · · respectively, we model the population by a dif-
ferentiable function P with P (tn) ≈ Pn for all n. We determine P as
the solution of a differential equation constructed to model the charac-
teristics of a particular species and set of environmental conditions. We
call P a continuous model.

The continuous version of the standard Malthus3 model for reproducing
populations in the absence of competition for resources and predators
says that the rate at which the population reproduces is proportional
to the population. This gives precisely (29.2). The constant k is called
the intrinsic growth rate. The differential equation (29.2) is usu-
ally combined with the initial population P (0) in order to determine a
unique function P .

29.2 The Exponential Function

The solution of (29.2) turns out to exist, however, the solution is not given
by a formula involving simple functions like polynomials. Instead, we have
to figure out its properties indirectly and compute its values, for example,
by approximating the solution of (29.2). We begin by defining the expo-
nential function as the inverse function to the logarithm and then using
properties of the logarithm to show that the exponential function solves
(29.2) and other properties.

Recall the fact that loge(x) = log(x), where e is the unique number such
that log(e) = 1 implies (28.15),

log(ex) = x for all x and elog(x) = x for all x > 0.

3Thomas Malthus (1766–1834) was an English political economist and clergyman.
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These are exactly the relationships that should hold for log and its inverse
function. Recall that

d

dx
log(x) =

1
x

> 0 for all x > 0

and consequently log is a monotone increasing function on the positive real
numbers. The Inverse Function Theorem implies log(x) has a strongly dif-
ferentiable inverse function for x > 0. We define the exponential function
exp to be the inverse function of log, i.e.,

exp(x) = log−1(x).

Because of (28.15),
exp(x) = ex,

where e is the unique number such that log(e) = 1.
We can derive several properties of exp using the properties of log. We

first show the plot of exp in Fig. 29.1. The function exp is clearly monotone
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FIGURE 29.1. exp is the inverse of log.

increasing. The domain of exp is R while the range is all positive real
numbers. Also

lim
x→∞

exp(x) = ∞ and lim
x→−∞

exp(x) = 0.

To compute the derivative of exp, we let x = log(y) so y = exp(x). The
Inverse Function Theorem 22.2 implies that

d

dx
exp(x) =

1
d log(y)

dy

=
1
1
y

= y = exp(x).
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In short,
d

dx
exp(x) = exp(x) or

d

dx
ex = ex. (29.3)

The exponential function is its own derivative! The Chain Rule immediately
implies that

d

dx
exp(u(x)) = exp(u(x))u′(x)

d

dx
eu(x) = eu(x)u′(x),

and therefore ∫
eu(x)u′(x) dx = eu(x) + C.

In differential notation, we have

deu = eu du and
∫

eu du = eu + C.

Example 29.2.
d

dx
ex3

= ex3
3x2.

Example 29.3.

d

dx
(x − 2e4x)9 = 9(x − 2e4x)8 (1 − 2e4x × 4).

Example 29.4.
∫

e3x dx =
1
3

∫
e3x3 dx =

1
3

∫
eu du =

1
3
eu + C =

1
3
e3x + C.

Example 29.5. To compute
∫

ex

1 + ex
dx,

we set u = 1 + ex so du = ex dx and the integral becomes
∫

ex

1 + ex
dx =

∫
du

u
= log(u) + C = log(1 + ex) + C.

Recall that we earlier derived properties of the exponential function such
as

e−x = 1/ex or exp(−x) = 1/ exp(x)

ex+y = exey or exp(x + y) = exp(x) exp(y)
(ex)y = exy or (exp(x))y = exp(xy).
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29.3 Solution of the Model for Constant Relative
Rate of Change

Returning to the model problem (29.2), we show that

y = y0e
kx

is the unique solution of the differential equation describing a constant
relative rate of change,

{
y′(x) = ky(x), 0 ≤ x,

y(0) = y0.
(29.4)

Actually, differentiation shows that y satisfies the differential equation
immediately. But we need to show that there is no other solution. Note that
(29.4) is different from the problem y′(x) = f(x) that we solved previously
because now the derivative of y depends on the value of y. In particular,
we cannot apply the Fundamental Theorem of Calculus to compute the
solution directly. However, there is a trick that allows (29.4) to be rewritten
so the Fundamental Theorem of Calculus can be used. This trick works on
some differential equations that have a special form, such as (29.4).

We know that the solution y of (29.4) satisfies

y′(x) − ky(x) = 0. (29.5)

The trick for finding the solution of this equation is based on the observation
that the Product Rule implies that

d

dx

(
e−kxy(x)

)
= e−kxy′(x) − ke−kxy(x)

for any strongly differentiable function y. Therefore, we multiply (29.5) by
the integrating factor e−kx to get

e−kxy′(x) − ke−kxy(x) = 0,

which means that
d

dx

(
e−kxy(x)

)
= 0. (29.6)

The Fundamental Theorem of Calculus says that the only strongly dif-
ferentiable solution of the differential equation z′ = 0 is z = a constant.
Therefore, (29.6) implies that there is a constant C with

e−kxy(x) = C or y = Cekx.

Using the condition y(0) = y0 proves the result.
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Example 29.6. We apply this result to analyze a model of radioactive
decay. If a sample of material has P atoms of a radioactive element such
as radium, it is found that after a short time ∆t, approximately kP∆t
of the atoms disintegrate. Recalling (29.1), we therefore approximate
the amount of atoms P (t) at time t by a continuous function satisfying
P ′(t) = −kP (t). Note that k is arbitrarily assumed to be a positive
constant in this subject and therefore this introduces a minus sign into
the differential equation to guarantee that P is a decreasing function.

The standard way to measure how much of the radioactive element has
decayed is to measure the half-life, which is the length of time required
for a given amount to be reduced by half. If P0 is the initial amount,
then the half-life t1/2 is determined by the equation

P (t1/2) =
1
P0

= P0e
−kt1/2 . (29.7)

Note that the initial amount P0 factors out of this equation, so the
half-life is independent of the initial amount,

1
2

= e−kt1/2

or solving for k

k =
log(2)
t1/2

.

Using the half-life formula, we can rewrite the solution as

P (t) = P0e
− log(2)t/t1/2 =

P0

2t/t1/2
.

Example 29.7. The half-life of radium is 1656 years. How much ra-
dium is left after 2834 years in an object that initial contained 3 grams
of radium? The answer is 3/22834/1656 ≈ .92 grams. How long does it
take for the same object to contain .1 gram? We solve

.1 = 3e− log(2)t/1656

to get t ≈ 8126 years.

29.4 More on Integrating Factors

We can use the technique of multiplying by an integrating factor to solve
many differential equations in the form

y′(x) + a(x)y = b(x). (29.8)
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We cannot apply the Fundamental Theorem of Calculus to (29.8) directly
because of the presence of both y′ and y. But the Chain Rule and the
Fundamental Theorem of Calculus imply

d

dx
e
∫

a(x) dx = e
∫

a(x) dx × d

dx

∫
a(x) dx = e

∫
a(x) dxa(x).

Example 29.8.
d

dx
e
∫

x3 dx = e
∫

x3 dx × 3x2.

If we multiply both sides of (29.8) by the integrating factor e
∫

a(x) dx, then
we get

d

dx

(
e
∫

a(x) dxy(x)
)

= e
∫

a(x) dxy′(x) + e
∫

a(x) dxa(x)y(x)

= e
∫

a(x) dxb(x).

Since this holds for any fundamental solution given by
∫

a(x) dx, we use the
solution that is zero at x = 0. Now the Fundamental Theorem of Calculus
says that the only solution of z′ = f(x) is z =

∫
f(x) dx. If we apply this

to
d

dx

(
e
∫

a(x) dxy(x)
)

= e
∫

a(x) dxb(x),

we conclude that

e
∫

a(x) dxy(x) =
∫

e
∫

a(x) dxb(x) dx

or
y(x) = e−

∫
a(x) dx

∫
e
∫

a(x) dxb(x) dx. (29.9)

Example 29.9. To solve

y′ + 3x2y = x2

we multiply both sides by

e
∫

3x2 dx = ex3

to get
d

dx

(
ex3

y
)

= ex3
y′ + 3x3ex3

y = ex3
x2.

This means that
ex3

y =
∫

ex3
x2 dx.
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To do this integral, we set u = x3 so du = 3x2 dx and we get

ex3
y =

1
3
ex3

+ C

for some constant C. Dividing we conclude that

y =
1
3

+ Ce−x3
.

Note that in all of these examples, we should be careful to specify the
domains of the functions involved. We leave that as an exercise (of course).

29.5 General Exponential Functions

In the same way that we define logarithms to different bases based on the
logarithm, we define general exponential functions in terms of exp(x). Since

a = elog(a)

for a > 0 and (
elog(a))x = ex log(a)

for a > 0 and all x, we define the general exponential function

ax = ex log(a).

Using this definition, we can prove several properties of ax such as

a0 = 1, axay = ax+y, (ax)y = axy, a−x = 1/ax (29.10)

by using the corresponding properties of ex.

Example 29.10. By the definition and properties of ex,

axay = ex log(a)ey log(a) = e(x+y) log(a) = ax+y.

We immediately obtain the derivative formula

d

dx
ax = log(a) × ax

or
dau = log(a) × au du.

This means that ∫
au du =

1
log(a)

au + C.
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Example 29.11.

d

dx
3x2

= log(3) × 3x2 × 2x.

Example 29.12.
∫

10x dx =
1

log(10)
10x + C.

We can define more general exponential functions using the same idea.
If f(x) > 0 for all x in a domain, then we define

f(x)g(x) = eg(x) log(f(x)).

The derivative of such a function is therefore

d

dx
f(x)g(x) =

d

dx
eg(x) log(f(x))

= eg(x) log(f(x))
(

g(x)
f ′(x)
f(x)

+ g′(x) log(f(x))
)

= f(x)g(x)
(

g(x)
f ′(x)
f(x)

+ g′(x) log(f(x))
)

.

Example 29.13. For x > 0,

xx = ex log(x)

and

d

dx
xx =

d

dx
ex log(x) = ex log(x)(1 + log(x)

)
= xx

(
1 + log(x)

)
.

We can also compute the derivative of such functions using logarithmic
differentiation.

Example 29.14. To compute the derivative of y = xx, we first take
the logarithm of both sides to get

log(y) = log(xx) = x log(x).

Now differentiation gives

1
y
y′(x) = 1 + log(x),

which means that
y′(x) = xx

(
1 + log(x)

)
.
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29.6 Rates of Growth of the Exponential and
Logarithm

The plot of exp(x) in Fig. 29.1 suggests that the exponential function in-
creases more and more rapidly as x increases. In fact, we show that exp(x)
grows faster than any power of x. To be precise, given any p > 0, we prove
that

ex > xp for all sufficiently large x. (29.11)

The first step to show (29.11) is to show that for natural number n ,

ex > 1 + x +
x2

2!
+ · · · +

xn

n!
+

xn+1

(n + 1)!
, (29.12)

where for a natural number n ≥ 1, we define n!, or n factorial,4 by

n! = n × (n − 1) × (n − 2) × · · · × 1

with 0! = 1.

Example 29.15.

1! = 1, 2! = 2, 3! = 6, 4! = 24, 5! = 120.

This is just an exercise in induction. For the first case, we use the mono-
tonicity of the integral and the fact that ex > 1 for x > 0 to get

ex = 1 +
∫ x

0
es ds > 1 +

∫ x

0
1 ds = 1 + x.

Now we repeat the argument, using the newly acquired fact that ex > 1+x
for x > 0,

ex = 1 +
∫ x

0
es ds > 1 +

∫ x

0
(1 + s) ds = 1 + x +

x2

2
.

Continuing in this way, induction gives (29.12). The result (29.11) for an
integer power follows easily since

1 + x +
x2

2!
+ · · · +

xn

n!
+

xn+1

(n + 1)!
>

xn+1

(n + 1)!
= xn x

(n + 1)!

so
ex > xn x

(n + 1)!
> xn

4The quantity n! can be interpreted as the number of different ways that n objects
can be arranged in a sequence from right to left. For we can choose any one of n
objects for the first position, then any one of n − 1 for the second, and so on to get
n × (n − 1) × (n − 2) × · · · × 1 possible arrangements.
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for x > (n + 1)!. The proof for a general power p follows by choosing an
integer n > p for any given p.

It is a good exercise to show that (29.11) implies that for any p > 0,

xp > log(x) for all sufficiently large x. (29.13)

which means that log(x), while increasing monotonically, grows slower than
any power of x.

29.7 Justification of the Continuous Model

We began this chapter by describing situations in which a quantity that
changes by discrete amounts can be approximated by a continuously chang-
ing quantity that solves a differential equation. In this section, we justify
this approximation in the case of a constant relative rate of change.

We already discussed the modeling of populations. As another example,
we consider compound interest.

Example 29.16. We model the amount of money in a savings account
in which the interest is compounded at a stated periodic interval, which
means that the amount of money earned from interest is added back to
the current amount in the account at regular time intervals. Suppose
we open an account with an initial amount P0 in a bank that uses an
annual interest rate of α percent which is compounded at a regular time
interval. The problem is to determine how much we have in the account
after one year.

If the interest rate is compounded annually, then we earn

α

100
P0

at the end of the year, and we end up with

(1 +
α

100
)P0

in the account. To simplify things, we set β = α/100 so we get

(1 + β)P0

at the end of a year in an account in which the interest is compounded
annually.

If instead the interest rate is compounded bi-annually, then after six
months we have (

1 +
β

2

)
P0
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in the account, which reflects that idea that after six months we only
earn half the interest. But this amount stays in the account, so after
the second six months, we have

(
1 +

β

2

)(
1 +

β

2

)
P0 =

(
1 +

β

2

)2

P0

in the account. This is certainly an improvement over an account in
which the interest is compounded yearly since

(
1 +

β

2

)2

= 1 + β +
β2

4
> 1 + β.

Continuing this idea, if the interest is compounded quarterly, then we
end up with

(
1 +

β

4

)4

P0

in the account after a year, and if it is compounded daily, then we end
up with

(
1 +

β

365

)365

P0.

We conclude that if the interest is compounded n times during the year,
then we end up with (

1 +
β

n

)n

P0.

In general, the more frequently the interest is compounded the more
money we earn after a year.

It is clear that in this situation, the amount we earn changes by a
discrete amount at each time that the interest is compounded. Now we
try to approximate the amount we earn using a continuously changing
function P (t). Presumably this approximation is valid when n is large
and the changes are very small and occur very frequently.

Since the time interval is 1/n, we let ∆t = 1/n and we compute the
change in the amount P (t) in the account at t to the amount P (t+∆t)
at t + ∆t after the interest has been compounded exactly once. We get

P (t + ∆t) = P (t)
(

1 +
β

n

)
= P (t)(1 + β∆t),

which means that

P (t + ∆t) − P (t)
∆t

= βP (t).
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This is nothing more than (29.1) of course. We know that if P (t) is
a differentiable function and we let ∆t tend to zero, or equivalently n
tend to infinity, then P solves P ′ = βP and therefore

P (t) = P0e
βt.

After one year, we end up with

P (1) = P0e
β .

Example 29.17. If the annual interest rate is 9% on an account with
a balance of $2500 and the interest is compounded annually we end up
with $2725. If the interest is compounded continuously, we end up with
$2735.44.

The important modeling question about the continuous approximation
is whether the continuous approximation P (t) really does approximate the
true quantity that changes by discrete amounts. In other words, does

P0e
β ≈

(
1 +

β

n

)n

P0

for n large? Note that P0 factors out of both sides and is irrelevant to the
discussion.

Mathematically speaking, we want to prove that

lim
n→∞

(
1 +

β

n

)n

= eβ (29.14)

for any β.5 Note that if we let h = 1/n so h → 0+ as n → ∞, then this is
equivalent to showing that

lim
h→0+

(1 + βh)1/h = eβ . (29.15)

We actually prove the equivalent limit

lim
h→0+

log (1 + βh)1/h = β (29.16)

from which (29.15) follows upon exponentiating both sides.
For any β, log(1+βx) is strongly differentiable for x near 0. This means

that there is a constant K such that for x near 0,
∣
∣
∣
∣log(1 + βx) −

(
log(1) +

β

1 + βx
(x − 0)

)
∣
∣
∣
∣ ≤ (x − 0)2K.

5Euler was the first person to prove this.
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Setting x = h and simplifying gives
∣
∣
∣
∣log(1 + βh) − β

1 + βh
h

∣
∣
∣
∣ ≤ h2K.

Dividing by h and using the properties of log give
∣
∣
∣
∣log((1 + βh)1/h) − β

1 + βh

∣
∣
∣
∣ ≤ hK.

Now we can take the limit of the function on the right as h → 0 to
conclude (29.16).

Example 29.18. We can compute

lim
x→∞

(
1 − 2

x

)2x

=
(

lim
x→∞

(
1 +

−2
x

)x)2

=
(
e−2)2 = e−4.
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Chapter 29 Problems

29.1. Newton’s Law of Cooling states,

The rate of change of the temperature difference between an object and
its surrounding medium is proportional to the temperature difference.

Write down a differential equation modeling this situation.

29.2. The isotope 14C decays at a rate proportional to its mass, giving up an
electron to form a stable nitrogen 14N atom. The basis of “carbon dating” of
once living organisms is that the amount of 14C in the organism is replenished
while the organism is alive but the replenishing stops once the organism dies.
Write down a differential equation modeling the amount of 14C left starting from
a fixed initial amount.

29.3. A certain bank pays 4% interest compounded instantaneously. Write down
a differential modeling this.

29.4. The “carrying capacity” of a lake with respect to a species of fish is the
maximum number of that species of fish the lake can sustain. If the relative rate
of change of the population of a species of fish is proportional to the unused
capacity, write down a differential equation modeling the population.

29.5. A running motor generates heat at a constant rate and radiates it away
at a rate proportional to the temperature. Write down a differential equation
modeling the temperature in the engine.

29.6. A certain species grows so that its relative birth rate is a positive constant
while the relative death rate is proportional to the population. Write down a
differential equation modeling the population.

29.7. Explain why 2x is the inverse function for log2(x).

29.8. Compute derivatives of the following functions:

(a) e7x4−27x (b) log(ex + e−x) (c)
(
e3x − x

)8

(d) eeex

(e) xe (f) 7x .

29.9. Compute the following integrals:

(a)
∫

e4x

1 − e4x
dx (b)

∫
ex − e−x

ex + e−x
dx

(c)
∫

ex log(1 + ex)
1 + ex

dx (d)
∫ √

ex dx

(e)
∫

e
√

x

√
x

dx (f)
∫

xex dx.
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29.10. The half-life of polonium is around 140 days. How much polonium is left
of a 15 gram sample after 2.5 years?

29.11. It takes 4 years for 1/4 of a given amount of a radioactive material to
decay. What is the half-life?

29.12. Twenty-seven grams of a radioactive material are reduced to 9 grams
after 1.5 years. What is the half-life of the material?

29.13. The half-life of a radioactive substance is 21 days. How long does it take
for 80 grams of the substance to reduce to 2 grams?

29.14. A certain species of bacteria reproduces at rate proportional to the number
of bacteria present and an initial colony of 1000 bacteria increase to 1500 bacteria
after 50 minutes. How long does it take for the bacteria population to quadruple?

29.15. A certain species of bacteria reproduces at rate proportional to the number
of bacteria present. A colony of bacteria is observed to reach a population of
20,000,000 after 24 hours. What was the original population (at the start of the
24 hour period)?

29.16. Compute the solution of the following differential equations by multi-
plying the equation by a suitable integration factor and then simplifying the
problem:

(a) y′ + 5y = x (b) y′ + 2xy = x

(c) y′ +
1
x

y = x3 (d) y′ = y +
1

1 + e−x
.

29.17. Compute derivatives of the following functions:

(a) xx2
(b) (2x − 4)x (c) (log(x))x

(d) xlog(x) (e) xxx

(f) 1
xx .

29.18. Prove the formulas in (29.10).

29.19. Compute the following integrals:

(a)
∫

3x dx (b)
∫

1
95x

dx

(c)
∫

11x2
x dx (d)

∫
1010x

10x dx .

29.20. Carry out the induction step to prove (29.12).

29.21. Prove that (29.12) is true for any p by using the result that we prove for
integer p.
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29.22. Assuming initial balances of $1000, compare the amounts earned after
10 years in two savings accounts with annual interests rates of 10% where the
interest is compounded 6 times a year in one account and continuously in the
other account.

29.23. A parent starting a college fund for her new baby wants to have $80,000
available on the 18th birthday of the child. Assuming an annual interest rate of
7% compounded continuously, what is the initial investment required to reach
this amount?

29.24. Evaluate the following limits:

(a) lim
x→∞

(
1 +

3
x

)x

(b) lim
x→∞

(
1 − 1

4x

)x

(c) lim
x→∞

(
1 +

1
x + 1

)x

(d) lim
x→∞

(
1 +

1
x

)2x+1

(e) lim
x→0+

(
1 +

x

5

)1/x

(f) lim
x→∞

(
1 +

1
x

)(x+1)/x

.

29.25. Prove (29.13).



30
A Mass-Spring System and the
Trigonometric Functions

Concluding the investigation of three important differential equations, the
third problem we consider is y′′(x) = cy(x) for a constant c. The solution
leads to the trigonometric functions.

The trigonometric functions are usually introduced as a way of describ-
ing geometric situations involving angles and lengths. Recall that a defining
characteristic of the trigonometric functions is that they are periodic. We
show the graphs of sin and cos in Fig. 30.1. For this reason, the trigono-
metric functions often appear in situations in which there is some quantity
that varies in a repetitive fashion.

30.1 Hooke’s Model of a Mass-Spring System

Hooke’s law for a spring says

The restoring force exerted by a spring stretched or compressed
a distance s from the rest position is proportional to s.

Hooke’s law, named for the English scientist Robert Hooke,1 is a linear
approximation of what actually happens with a spring and is valid for
small s.

1Robert Hooke (1635–1703) was a true general scientist. While holding a chair in
geometry for most of his career, he also made numerous important scientific observations
and worked as an architect and surveyor.
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FIGURE 30.1. Plots of cos (top) and sin (bottom).

We model a spring that has one end attached to a wall and the other
end to a mass m that is allowed to slide freely back and forth on a table,
neglecting friction. We choose coordinates so that when the spring is at
its rest position the mass is located at s = 0 and s > 0 corresponds to
stretching the spring to the right (see Fig. 30.2). In this coordinate system,

s=0 s>0

FIGURE 30.2. Illustration of the coordinate system used to describe a
spring-mass system. The mass is allowed to slide freely back and forth with no
friction.

Hooke’s law for the force F reads,

F = −ks, (30.1)
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where the constant of proportionality k > 0 is called the spring constant.
Combining Hooke’s law with Newton’s Law of Motion yields the equation

m
d2s

dt2
= −ks (30.2)

determining the motion of the mass.
This equation is usually rewritten as

s′′ + ω2s = 0, ω =

√
k

m
. (30.3)

To describe specific solution, we also give some initial conditions at time
t = 0. We can specify the initial position of the object, s(0) = s0, and the
initial velocity, s′(0) = s1, for example. The complete problem is therefore

{
s′′(t) + ω2s(t) = 0, t > 0,

s(0) = s0, s′(0) = s1.
(30.4)

This corresponds to pulling or pushing the object to some position, then
giving it a shove. The goal is to describe how the object moves after that.

In this chapter, we show that the solution of (30.4) is given in terms of
the trigonometric functions.

30.2 The Smoothness of Trigonometric Functions

We first show that sin(x) and cos(x) are Lipschitz continuous and then we
show they are strongly differentiable for all x. Note that only the smooth-
ness of sin has to be discussed, since

cos(x) = sin(x + π/2) (30.5)

means that cos is simply the composition of sin with the linear function
x + π/2.

To show that sin is Lipschitz continuous for all x, we show there is a
constant L such that

| sin(x2) − sin(x1)| ≤ L|x2 − x1|

for all x2 and x1. We consider the case x2 ≥ x1 ≥ 0 and the other cases
follow from standard trigonometric identities. We illustrate the proof in
Fig. 30.3. We draw a right triangle in the section of the circle between the
rays defining x1 and x2 sides parallel to the axes and hypotenuse connecting
the two points on the unit circle associated to x1 and x2. The triangle is
drawn in Fig. 30.3. The height of the triangle, which is | sin(x2) − sin(x1)|,
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FIGURE 30.3. Illustration of the proof that sin is Lipschitz continuous.

is smaller than the hypotenuse which in turn is smaller than the distance
along the part of the circle connecting the endpoints of the hypotenuse,
which is x2 − x1. In other words,

| sin(x2) − sin(x1)| ≤ |x2 − x1| (30.6)

for all x1 and x2.
Since x + π/2 is Lipschitz continuous for all x with Lipschitz constant 1,

(30.5) implies that

| cos(x2) − cos(x1)| ≤ |x2 − x1| (30.7)

for all x1 and x2 as well. This means that tan is Lipschitz continuous on
any interval that avoids the points · · · , −5π/2, −3π/2, −π/2, π/2, 3π/2,
5π/2, · · · , though the Lipschitz constant is not 1.

Choosing x1 = 0 and x2 = x in (30.6) and (30.7) yields the useful
estimates

| sin(x)| ≤ |x| (30.8)

and
|1 − cos(x)| ≤ |x|, (30.9)

which hold for all sx. The second estimate can be improved by using stan-
dard trigonometric identities. Since

1 − cos(x) =
1 + cos(x)
1 + cos(x)

(1 − cos(x)) =
1 − cos2(x)
1 + cos(x)

=
sin2(x)

1 + cos(x)
,

(30.8) implies that

|1 − cos(x)| =
| sin2(x)|

|1 + cos(x)| ≤ |x|2
|1 + cos(x)| .
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If x is restricted so |x| ≤ π/2, then cos(x) ≥ 0 and

|1 − cos(x)| ≤ |x|2 for |x| ≤ π/2. (30.10)

It turns out that sin is strongly differentiable and D sin(x) = cos(x) for
all x. To show this, we have to produce a constant Kx̄ that for all x near
x̄,

| sin(x) − (sin(x̄) + cos(x̄)(x − x̄))| ≤ (x − x̄)2Kx̄. (30.11)

To do this, we use the addition formula

sin(x1 + x2) = cos(x1) sin(x2) + sin(x1) cos(x2). (30.12)

We let s = x − x̄ and compute

sin(x) = sin(x̄ + s) = sin(x̄) cos(s) + cos(x̄) sin(s).

The first step is to rearrange the right-hand side so it looks like the right-
hand side of (30.11). By adding and subtracting, we get

sin(x) = sin(x̄) + cos(x̄)s +
(
sin(x̄)(cos(s) − 1) + cos(x̄)(s − sin(s))

)
.

Now if we define R by

R(s) = sin(x̄)(cos(s) − 1) + cos(x̄)(s − sin(s))

the result is
| sin(x) − (sin(x̄) + cos(x̄)s)| = |R(s)|.

This implies (30.11) with x − x̄ = s provided there is a constant Kx̄ such
that

|R(s)| ≤ |s|2Kx̄.

To estimate |R|, we begin by using the triangle inequality,

|R(s)| ≤ | sin(x̄)| | cos(s) − 1| + | cos(x̄)| |s − sin(s)|.

Since | sin(x̄)| ≤ 1 and | cos(x̄)| ≤ 1,

|R(s)| ≤ | cos(s) − 1| + |s − sin(s)|.

The first term on the right is bounded quadratically for small s by (30.10).
We draw another picture to show that |s−sin(s)| is bounded quadratically.
In Fig. 30.4, we draw two “nested” sections of circles. The smaller section
is determined from the unit circle by the angle s. We denote this section by
∠BOA where A and B are the two endpoints of the section and O is the
origin. To draw the larger circle, indicated by ∠COD, we draw a vertical
line from the point A up to the point C, where this line intersects the line
passing through O and B and then draw the circle that has center through
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FIGURE 30.4. Illustration of the estimate on |s − sin(s)|.

the origin and passes through the point of intersection C. We also need
to refer to the triangle with endpoints C, O, and A, which we denote by
�COA.

The estimate is based on the observation that the area of the smaller
section of the circle ∠BOA is smaller than the area of the triangle �COA,
which in turn is smaller than the area of the section of the larger circle
∠COD. In other words,

area of ∠BOA ≤ area of �COA ≤ area of ∠COD.

Classic results in geometry state that the area of a section of a circle is half
the radius times the length along the arc of the section and the area of a
triangle is half of the base times the height.

The area of ∠BOA is therefore 1
2 × 1 × s = s/2. The base of �COA

has length 1 and its height is tan(s). So the area of �COA is tan(s)/2.
Finally, the radius of ∠COD is 1/ cos(s), which implies by similarity that
the length of the arc from D to C is s/ cos(s). So the area of ∠COD is
s/(2 cos2(s)). We conclude that

s

2
≤ tan(s)

2
≤ s

2 cos2(s)
or

s ≤ tan(s) ≤ s

cos2(s)
.

Multiplying through by cos(s) gives

s cos(s) ≤ sin(s) ≤ s

cos(s)
.

Finally subtracting s yields

s cos(s) − s ≤ sin(s) − s ≤ s

cos(s)
− s.
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This pair of inequalities imply that | sin(s) − s| is smaller than the larger
of

|s cos(s) − s| and
∣
∣
∣
∣

s

cos(s)
− s

∣
∣
∣
∣ .

Now (30.10) implies that

|s cos(s) − s| ≤ |s|3

for |s| ≤ π/2. To estimate the other term, we write

s

cos(s)
− s = s

1 − cos(s)
cos(s)

.

If s is restricted so that |s| ≤ π/6, then cos(s) ≥ 1/2 and
∣
∣
∣
∣

s

cos(s)
− s

∣
∣
∣
∣ ≤ 2|s|3.

This finishes the proof that

d

dx
sin(x) = cos(x). (30.13)

Using (30.5), we conclude immediately that

d

dx
cos(x) = − sin(x), (30.14)

and so
d

dx
tan(x) =

1
cos2(x)

= sec2(x). (30.15)

The Chain Rule then implies that

d

dx
sin(u) = cos(u)u′,

d

dx
cos(u) = − sin(u)u′,

d

dx
tan(u) = sec2(u)u′. (30.16)

Example 30.1.
d

dx
sin(ex) = cos(ex) ex

Example 30.2.

d

dx
log(tan(x)) =

1
tan(x)

1
cos2(x)
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The Fundamental Theorem of Calculus implies that
∫

sin(u) du = − cos(u) + C, (30.17)

∫
cos(u) du = sin(u) + C, (30.18)

and ∫
sec2(u) du = tan(u) + C. (30.19)

Example 30.3. To integrate
∫

sin(log(x)
x

dx

we set u = log(x) so du = dx/x and

∫
sin(log(x)

x
dx =

∫
sin(u) du

= − cos(u) + C = − cos(log(x)) + C.

Example 30.4. To integrate
∫

tan(x) dx =
∫

sin(x)
cos(x)

dx

we set u = cos(x) so du = − sin(x) dx and
∫

sin(x)
cos(x)

dx = −
∫

du

u
= log |u| + C = − log | cos(x)| + C.

30.3 Solving the Model for a Mass-Spring System

It is straightforward to verify that the function

s(t) = A sin(ωt) + B cos(ωt)

satisfies the differential equation (30.3) where A and B are constants. Dif-
ferentiating, we compute

s′(t) = Aω cos(ωt) − Bω sin(ωt)

and therefore

s′′(t) = −Aω2 sin(ωt) − Bω2 cos(ωt) = ω2s.
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We can solve for the constants A and B using the initial conditions,

s(0) = B = s0 and s′(0) = ωA = s1.

We conclude that the function

s(t) =
s1

ω
sin(ωt) + s0 cos(ωt) (30.20)

is a solution of the problem (30.4).
We plot two examples of this solution for specific ω, s1, and s0 in Fig. 30.5

In general, ω determines the frequency of the oscillations of the spring, while
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-10

 0

10

  
10

 
-10

 0

10

FIGURE 30.5. Two solutions of (30.4) for 0 ≤ t ≤ 10. The solution in the upper
plot has ω = 2, s0 = 10 and s1 = 1. The solution in the lower plot has ω = .5,
s0 = 10, and s1 = 1.

s0 and s1 determine the magnitude of the oscillations. Large ω mean faster
oscillations, as can be seen in Fig. 30.5. ω is large when the spring constant
k is large relative to the mass.

Now that we have one solution of (30.4), the important question is
whether there are other solutions. We have to determine this in order to
predict how the spring-mass system behaves. To show that (30.20) is the
only solution, we use what is called an energy argument.

If we suppose that s and r are two strongly differentiable solutions of
(30.4), then the object is to show that s(t) = r(t) for all t. Another way
to view this is to define ε = s − r and then to show that ε(t) = 0 for all t.
First we show that ε(t) satisfies (30.3). This follows because

ε′′(t) + ω2ε(t) = s′′(t) − r′′(t) + ω2(s(t) − r(t))

= s′′(t) + ω2s(t) − (r′′(t) + ω2r(t))
= 0 − 0 = 0.
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Moreover, ε(0) = s(0) − r(0) = 0 and likewise ε′(0) = 0. In other words, ε
satisfies {

ε′′ + ω2ε = 0 t > 0,

ε(0) = 0, ε′(0) = 0.

We define a new function, called the “energy,”

E(t) = ω2ε2(t) + (ε′(t))2.

Differentiating E, we find

E′(t) = ω22ε(t)ε′(t) + 2ε′(t)ε′′(t)

= 2ε′(t)(ω2ε(t) + ε′′(t))
= 0.

In other words E remains constant: i.e., it is “conserved.” Since E(0) = 0,
we conclude that E(t) = 0 for all t. But E is the sum of nonnegative terms,
so it can be zero only if the terms are zero, so ε(t) = 0 for all t.

We summarize with a theorem.

Theorem 30.1 The unique strongly differentiable solution of the initial
value problem (30.4) is

s(t) =
s1

ω
sin(ωt) + s0 cos(ωt).

30.4 Inverse Trigonometric Functions

Now we turn to defining the inverse trigonometric functions and deriving
some of their properties. It is not surprising that the need for the inverses
pops up wherever there is a need for the trigonometric functions. We pro-
vide a particular example in an application to the polar coordinate system.

The polar coordinate system is an alternative to the rectangular coordi-
nate system for describing points in the plane. The idea is to mark a point
in the plane by the distance from the origin to the point together with the
angle the ray from the origin to the point makes with the positive x-axis.
This is a natural way to describe an object that is orbiting the origin for
example. We illustrate in Fig. 30.6. If we let r ≥ 0 denote the distance
between the origin and the point P and s the corresponding angle, then we
can denote a point P by (r, s). Note that a point P does not have a unique
representation in this system, since (r, s) = (r, s + 2nπ) for any integer n.

A natural problem is to convert between the rectangular coordinates of a
point P , (x, y), and its polar coordinates (r, s) (see Fig. 30.6). Given (r, s),
it is easy to determine x and y since the properties of similar triangles and
the definition of sin and cos mean that

x = r cos(s) and y = r sin(s). (30.21)
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s

P

y

x

r

FIGURE 30.6. The polar coordinate system (r, s).

Example 30.5. Given (r, s) = (3, π/4), we compute x = 3/
√

2 and
y = 3/

√
2 while if (r, s) = (3, 5π/4), we compute x = −3/

√
2 and

y = −3/
√

2.

It is more difficult to go back. By Pythagorean’s theorem, r =
√

x2 + y2.
But can we recover s from

sin(s) = x/r ?

To do this we need the inverse to sin.
We work out the inverse to sin first, then present the conclusions for cos

and leave the details as an exercise.
Of course the first thing we notice when trying to compute an inverse to

sin is that sin(x) does not pass the Horizontal Line Test, recall Fig. 30.1,
and does not have an inverse. As with x2, we have to restrict the domain
of sin in order to get an invertible function.

There are many possibilities for restricting the domain of sin. We plot
some examples in Fig. 30.7. We make the arbitrary choice of choosing the

2−
3π−2π −

1

−1

π−2
π−2

−

1

−1

π−2
π

2−
3π

1

−1

π 2−
3π

1

−1

FIGURE 30.7. Four possibilities for restricting the domain of sin in order to get
an invertible function.

largest possible domain that is closest to the origin. Therefore, we consider
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the “new” function sin with domain [−π/2, π/2] and range [−1, 1] pictured
in Fig. 30.8.2

π
−
2

π
−
2

−

1

−1

π
−
2

π
−
2

−

1

−1

FIGURE 30.8. The restricted function sin defined on [−π/2, π/2] (left) and its
inverse sin−1 (right).

Example 30.6.
sin−1(1/2) = π/6.

We plot the inverse of sin in Fig. 30.8, which is obtained by reflection.
The domain is [−1, 1] and the range is [−π/2, π/2]. With this choice,

sin−1(sin(x)) = x for − π

2
≤ x ≤ π

2
sin(sin−1(x)) = x for − 1 ≤ x ≤ 1.

Example 30.7. We have to be careful using sin−1 sometimes, for
example

sin−1(sin(5π/6)) = π/6.

Since D sin(x) = cos(x) > 0 for −π/2 < x < π/2, sin−1(x) is differen-
tiable for −1 < x < 1. We can also see this from the plot of course. It does
not have one-sided derivatives at x = 1 or x = −1 since the linearizations
at points approaching 1 and −1 become more and more vertical.

To compute D sin−1, we use the fact that since y = sin−1(x) is differen-
tiable, sin(y(x)) is as well, so we can differentiate both sides of

sin(y(x)) = x

to get
cos(y(x)) y′(x) = 1

2This function is sometimes written Sin but we do not do this. We assume that
whenever there is a sin−1 floating around, we are talking about the restricted sin function
shown in Fig. 30.8.
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or
y′(x) =

1
cos(y(x))

.

Recall that we used this same trick to differentiate ex. It is called implicit
differentiation. Normally we do not like to have a y in the formula for
the derivative, so to get rid of cos(y) we use the identity

sin2(x) + cos2(x) = 1 for all x

to get

cos(y) = ±
√

1 − sin2(y) = ±
√

1 − x2.

Since the plot of cos−1 shows that its derivative is positive, we conclude
that

d

dx
sin−1(x) =

1√
1 − x2

. (30.22)

It follows that
d

dx
sin−1(u) =

u′
√

1 − u2
(30.23)

and therefore ∫
1√

1 − u2
du = sin−1(u) + C. (30.24)

Example 30.8.
d

dx
sin−1(ex) =

ex

√
1 − e2x

.

Example 30.9. To integrate
∫

1√
1 − 4t2

dt,

we use u = 2t and du = 2dt so that
∫

1√
1 − 4t2

dt =
∫

1
√

1 − (2t)2
dt =

1
2

∫
1√

1 − u2
du

= sin−1(u) + C = sin−1(2t) + C.

Example 30.10. To integrate
∫

z3/2
√

1 − z5
dz,

we first write this as ∫
z3/2

√
1 − (z5/2)2

dz.
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We use u = z5/2 and du = 5
2z3/2dz so that

z3/2
√

1 − z5
dz =

2
5

∫
1√

1 − u2
du =

2
5

sin−1(z3/2) + C.

With this definition, we can solve the problem of converting from rect-
angular coordinates (x, y) to polar coordinates (r, s). If the point P is in
the first or fourth quadrants, which means that x ≥ 0, then we compute

r =
√

x2 + y2 for all x, y, (30.25)

and then
s = sin−1(y/r) for x ≥ 0. (30.26)

Note that |y/r| ≤ 1 for all x. This does not work if the point P is in the
second or third quadrants, when x < 0, because the range of sin−1(x) is
[−π/2, π/2]. We can still compute r the same way, but when we compute
s = sin−1(y/r), we get the angle between the negative x-axis and the line
joining the origin to the point P . To get the angle to the positive x-axis,
we have to set

s = π − sin−1(y/r) for x < 0. (30.27)

We can develop cos−1 in the same way. We take cos on the arbitrary
restricted domain [0, π], as shown in Fig. 30.9, to get an invertible function.
We also plot cos−1. The domain of cos−1 is [−1, 1], while the range is [0, π].

π

π
−
2

1

−1

π

π
−
2

1

−1

FIGURE 30.9. The restricted function cos defined on [−0, π] (left) and its inverse
cos−1 (right).

Arguing as for sin−1 we compute

d

dx
cos−1(x) =

−1√
1 − x2

. (30.28)

It follows that
d

dx
cos−1(u) =

−u′
√

1 − u2
(30.29)
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and therefore ∫ −1√
1 − u2

du = cos−1(u) + C. (30.30)

We usually use (30.24) instead of (30.30).

Example 30.11. To integrate
∫

cos−1(x)√
1 − x2

dx,

we use u = cos−1(x) so du = −dx/
√

1 − x2 and

∫
cos−1(x)√

1 − x2
dx = −

∫
u du = −u2

2
+ C = −

(
cos−1(x)

)

2
+ C.

Finally we compute an inverse for tan. We begin by restricting the do-
main to (−π/2, π/2) as shown in Fig. 30.10 to get an invertible function.
The plot shows that the new function is invertible and we can also compute
D tan(x) = 1/ cos2(x) > 0 for −π/2 < x < π/2. We plot tan−1, obtained
by reflection, in Fig. 30.11. The domain of tan−1 is R, while the range is

π−
2

π
−
2

−

FIGURE 30.10. The restricted function tan defined on [−π/2, π/2].

(−π/2, π/2).
Arguing as for sin−1, it is a good exercise to derive

d

dx
tan−1(x) =

1
1 + x2 . (30.31)
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π
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π
−
2

−

FIGURE 30.11. The plot of tan−1.

It follows that
d

dx
tan−1(u) =

u′

1 + u2 (30.32)

and therefore ∫
1

1 + u2 du = tan−1(u) + C. (30.33)

Example 30.12.
d

dx
tan−1(x2) =

2x

1 + x4 .

Example 30.13. To integrate
∫ 1

0

s

1 + s4 ds,

we use u = s2, so s = 0 → u = 0 and s = 1 → u = 1 and du = 2sds so
that
∫ 1

0

s

1 + s4 ds =
1
2

∫ 1

0

1
1 + u2 du =

1
2
(tan−1(1) − tan−1(0)) =

π

8
.

Example 30.14. To integrate
∫

1
9 + x2 dx,

we first rewrite the integrand so that it has a 1 like the integrand for
tan−1, i.e., ∫

1
9 + x2 dx =

1
9

∫
1

1 + x2/9
dx.

Now we use u = x/3 and du = dx/3 so that

∫
1

9 + x2 dx =
1
3

∫
1

1 + u2 du

=
1
3

tan−1(u) + C =
1
3

tan−1(x/3) + C.
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Chapter 30 Problems

30.1. A more realistic model of a spring and a sliding mass includes the damping
effect of friction. The force due to damping is experimentally determined to be
proportional to the velocity of the mass on the end of the spring. Write down a
differential equation model describing this situation.

30.2. Write down a differential equation modeling the motion of a spring and
mass hanging from a ceiling neglecting the weight of the spring.

30.3. Using a geometric argument, prove that cos is Lipschitz continuous with
Lipschitz constant 1.

30.4. Determine the smallest possible value of a Lipschitz constant for tan on
[−π/4, π/4].

30.5. Determine the smallest possible value of a Lipschitz constant for sin on
[−π/6, π/6].

30.6. Show that D cos = − sin directly, i.e., using the definition and not by using
the derivative formula for sin.

30.7. Referring to Fig. 30.4, show that the segment AC has length tan(s).

30.8. Referring to Fig. 30.4, show that the radius of the angle ∠COD has length
1/ cos(s).

30.9. Evaluate the following limits:

(a) lim
s→0

1 − cos(s)
s

(b) lim
s→0

sin(s)
s

.

30.10. Compute derivatives of the following functions:

(a) sin(9x3) (b) cos(3x − x7) (c) sin2(tan(t)) (d) tan(x1/2)

(e) log(tan(x)) (f) sin
(

1 + t

1 − t

)
(g) etan(t) (h)

1 − sin(u)
1 + sin(u)

.

30.11. Compute the following integrals:

(a)
∫

cos(8x) dx (b)
∫

x2 sin(x3) dx

(c)
∫

esin(x) cos(x) dx (d)
∫

sin(2x) cos(2x) dx

(e)
∫

tan(x) dx (f)
∫ π/4

−π/4
sin4(s + π/4) cos(s + π/4) ds.



404 30. A Mass-Spring System and the Trigonometric Functions

30.12. Develop the details of the derivation of cos−1 by following these steps:

1. Plot the restricted function cos(x), 0 ≤ x ≤ π and verify it is invertible.

2. Draw the plot of cos−1 using reflection and determine its domain and range.

3. Prove that cos−1(x) is differentiable for −1 < x < 1.

4. Derive the derivative of cos−1.

30.13. Work out the details for the inverse function to the restricted function
sin(x) with π/2 ≤ x ≤ 3π/2.

30.14. Work out the details for the inverse function to a suitable restriction of
cot.

30.15. Prove (30.27).

30.16. Convert the following rectangular coordinates to polar coordinates:

(a) (4, 8) (b) (−3, 7) (c) (−1, −9).

30.17. Convert the following polar coordinates to rectangular coordinates:

(a) (4, π/4) (b) (9, −7π/3) (c) (2, 5π/4).

30.18. Compute the following integrals:

(a)
∫

1√
9 − x2

dx (b)
∫

x√
1 − x4

dx

(c)
∫

1
√

1 − (x + 5)2
dx (d)

∫ (
sin−1(x)
1 − x2

)1/2

dx

(e)
∫

1
x2 + 2x + 2

dx (f)
∫

s2

1 + s6 ds.

30.19. Determine and plot (for 0 ≤ t ≤ 10) the solutions of the spring-mass
system (30.4) corresponding to

(a) s0 = 10, s1 = 1, ω = 2 and ω = .2

(b) s0 = 1, s1 = 10, ω = 2 and ω = .2.

30.20. This problem is concerned with deriving the solution of the two point
boundary value problem for the spring-mass system

{
s′′ + ω2s = 0, 0 ≤ t ≤ π/(2ω),
s(0) = s0, s(π/(2ω)) = s1,

(30.34)

which corresponds to observing the position of the mass at times t = 0 and
t = π/(2ω) and then predicting how it behaves for the rest of the time.
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1. Show that s(t) = A sin(ωt) + B cos(ωt) satisfies the differential equation in
(30.34) for any constants A and B.

2. Determine the values of A and B from the values of s at t = 0 and t =
π/(2ω).

3. Show that the solution determined in (1) and (2) is the only solution by
carrying out the following steps:

(a) Assume there are two solutions s and r and show that ε = s−r satisfies
{

ε′′(t) + ω2ε(t) = 0, 0 ≤ t ≤ π/(2ω),
ε(0) = 0, ε(π/(2ω)) = 0.

(b) Define an energy function E for ε and show that E′(t) = 0. Conclude
that E(t) = E2

0 , a nonnegative constant, for all t.
(c) From the equation E(t) = E2

0 , derive a differential equation

ε′(t) =
√

E2
0 − ω2ε(t)2. (30.35)

(d) Solve (30.35) by using separation of variables and show the solution is
ε(t) = E0

ω
sin(ωt + C) for some constant C.

(e) Show that ε must be zero for all t by using the values at t = 0 and
t = π/(2ω).
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31
Fixed Point Iteration and Newton’s
Method

We conclude the discussion of calculus by applying the idea of the lineariza-
tion to root and fixed point problems for functions. We have approached
these kinds of problems by constructing approximation methods that pro-
duce a sequence of iterates {xi} that converge to the root or fixed point x̄.
The first method we studied was the Bisection Algorithm in Chapter 13,
which has the property that the error of the iterates xi decreases by a factor
of 1/2 after each step. Later in Chapter 15, we considered the Fixed Point
Iteration. One motivation was that many models naturally result in fixed
point problems. But an equally important motivation is that we are inter-
ested in finding methods in which the error of the iterates decreases more
quickly than the Bisection Algorithm. We saw that it is possible to do this
in the sense that the error of the iterates of some Fixed Point Iterations
decrease by a factor smaller than 1/2 after each step.

In this chapter, we continue the search for approximation methods for
root and fixed point problems that converge quickly. The primary method
introduced in this chapter is called Newton’s method. Most modern tech-
niques for solving root problems use some form of Newton’s method at the
heart of the algorithm.

31.1 Linearization and the Fixed Point Iteration

The first step is to use the linearization in the analysis of fixed point meth-
ods. In Chapter 15, we show that if g is a contraction map on an interval
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I = [a, b], and in particular that the Lipschitz constant of g on I is L < 1,
then the Fixed Point Iteration for g converges. By Theorem 19.1, if g is
uniformly strongly differentiable on I with |g′(x)| < L for all x in I, then it
is Lipschitz continuous with constant L, so we conclude immediately that
the following theorem holds.

Theorem 31.1 If there is an interval I and a constant L < 1 such that g
is uniformly strongly differentiable on I and has the properties

g : I → I (31.1)
|g′(x)| ≤ L < 1 for all x in I, (31.2)

then the sequence {xi} generated by the Fixed Point Iteration starting with
any point x0 in I converges to the unique fixed point x̄ of g in I.

Example 31.1. Consider the fixed point problem g(x) = cos(x) = x
on the interval I = [0, π/3]. Because − sin(x) = D cos(x) ≤ 0 for 0 ≤
x ≤ π/3, cos is strictly decreasing on I. Therefore to show g : I → I,
it suffices to check that g evaluated at the endpoints of the interval
I are inside I. Since cos(0) = 1, while cos(π/3) = 1/2, g : I → I.
Furthermore, 0 ≤ |g′(x)| = sin(x) ≤

√
3/2 < 1 for x in I. Hence,

the Fixed Point Iteration converges to a unique fixed point x̄ in I.
Starting with x0 = 0, we find that the iterates agree to 15 places after
91 iterations, and x91 = 0.739085133215161 · · · .

31.2 Global Convergence and Local Behavior

Theorems 15.1 and 31.1 have some nice qualities. For one thing, we do not
need to know that there is a fixed point to use the theorems.1 If we can find
an interval on which g satisfies the properties, e.g., (31.1) and (31.2), the
theorems imply that there is a unique fixed point that can be approximated
to any desired accuracy using the fixed point iterates {xi} starting with
any initial value in the interval. In particular, the initial value does not
have to be close to x̄. These theorems are examples of global convergence
results.

One disadvantage of these two theorems is that it can be quite difficult
to find an interval I on which g has the required properties.2 For example,
we have carefully chosen functions g that either monotonically increase or
decrease in the examples because it is much easier to verify that g : I → I.

1In one dimension, we can usually use a graph to tell if there is a fixed point, but
it is not so easy in higher dimensions. Analogs of all of the fixed point and Newton’s
method theorems hold for higher dimensions.

2Which you may know from trying some of the problems.
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In general, checking this property leads to more root problems for g′ in
order to find maximum and minimum values of g on I!

Another disadvantage of these two theorems is that they can seriously
overestimate the factor by which the errors decrease after each step of the
Fixed Point Iteration when the iterates are close to the fixed point.

Example 31.2. We consider the fixed point problem for

g(x) = x +
9
20

e−2(x−1/2) − 9
20

e (31.3)

on the interval I = [.5, 10]. The fixed point is x̄ = 1. We plot g and
g′ in Fig. 31.1 By inspection, g satisfies (31.1) and (31.2). However,
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g(x)
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0.4
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1.0
g′(x)

.5 .5

FIGURE 31.1. On the left we plot g in (31.3) together with y = x and on the
right we plot g′(x).

g′(1) ≈ .669 is substantially smaller than g′(x) for most x in [.5, 10].
For example, g′(3) ≈ .994 while L = g′(10) ≈ .999999995. Theorem 31.1
predicts that the error of the iterates |xi − 1| decreases by a factor of
L at each step, which is of course extremely slow. In Fig. 31.2, we plot
the errors {|xi − 1|} and the ratios {|xi − 1|/|xi−1 − 1|} for the Fixed
Point Iteration beginning with x0 = 10. The errors decrease very slowly
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FIGURE 31.2. On the left we plot the errors {|xi −1|} and on the right the ratios
{|xi − 1|/|xi−1 − 1|} for the Fixed Point Iteration for g in (31.3) beginning with
x0 = 10.



410 31. Fixed Point Iteration and Newton’s Method

at first but as the iterates get close to 1, the errors begin to decrease
much more quickly.

The issue arises when using the Lipschitz constant or the maximum value
of g on the entire interval I, because it is too crude a measure of how g
behaves if I is relatively large and the iterates are close to the root or fixed
point. In Example 31.2, the constant L accurately predicts how the errors
decrease for iterates far from x̄ but is not accurate when the iterates are
close to x̄. In other words, the local behavior of the iterates may be much
better than the global behavior of the Fixed Point Iteration on the entire
interval.

A way to get a more accurate analysis of the Fixed Point Iteration when
the iterates are close to x̄ is to use the linearization of g at x̄. Since g is
strongly differentiable at x̄ there is a constant Kx̄ such that

|g(x) − (g(x̄) + g′(x̄)(x − x̄))| ≤ |x − x̄|2Kx̄

or since g(x̄) = x̄,

|g(x) − x̄ − g′(x̄)(x − x̄))| ≤ |x − x̄|2Kx̄. (31.4)

We assume that xn−1 is close to x̄ and set x = xn−1. Noting that xn =
g(xn−1), we get

|xn − x̄ − g′(x̄)(xn−1 − x̄)| ≤ |xn−1 − x̄|2Kx̄. (31.5)

Therefore for xn−1 close to x̄,

xn − x̄ ≈ g′(x̄)(xn−1 − x̄). (31.6)

In other words, the error decreases approximately by a factor of g′(x̄) when
the iterates are close to x̄. It is the size of g′(x̄) that ultimately determines
how the error decreases, not the maximum value of |g′| on the entire interval
I. This can be seen clearly in Fig. 31.2.

We can make this analysis of the local convergence behavior more precise.

Theorem 31.2 Local Convergence for the Fixed Point Iteration
If x̄ is a solution of g(x) = x and g is uniformly strongly differentiable at
x̄ and

|g′(x̄)| < 1, (31.7)

then the Fixed Point Iteration converges to x̄ for all initial values x0 suffi-
ciently close to x̄. Furthermore,

lim
n→∞

xn − x̄

xn−1 − x̄
= g′(x̄). (31.8)
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It is a good idea to compare Theorem 31.2 with Theorem 31.1 closely.
To use Theorem 31.2, we have to know that the fixed point exists and its
approximate value so we can verify (31.7), whereas we can verify (31.1) and
(31.2) without knowing there is a fixed point. On the other hand, (31.7)
is usually easier to check when we do have a rough estimate of the fixed
point.

Example 31.3. We apply the theorem to the fixed point problem
g(x) = log(x+2) = x. In Fig. 31.3, we show plots of g and g′. From the
plot of g we see that x̄ is between 1 and 1.5 and |g′(x̄)| ≤ .4. The Fixed
Point Iteration beginning with x0 = 1 gives x27 ≈ 1.146193220620577
and all the subsequent iterates agree with x27.
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g′(x)

FIGURE 31.3. On the left we plot g(x) = log(x + 2) together with y = x and on
the right we plot g′(x).

Theorem 31.1 guarantees that the Fixed Point Iteration converges for any
initial value in x0 even for values that are far away from x̄. Theorem 31.2
requires an initial value x0 that is close to x̄ and moreover does not say
how close, so again some information about x̄ is required. For this reason,
we call Theorem 31.2 a local convergence result.

Example 31.4. The fixed point of g(x) = (x − 1)3 + .9x + .1 is x̄ = 1.
It is easy to check that g′(x̄) = .9 < 1. Experimentally, the Fixed Point
Iteration converges for x0 in [.69, 1.31] but diverges rapidly for values
outside this interval.

On the other hand, the estimate on how quickly the error decreases (31.8)
can be very accurate.

Example 31.5. In Fig. 31.4, we plot the errors {|xi − 1|} and the
ratios {|xi−1|/|xi−1−1|} for the Fixed Point Iteration in Example 31.3
beginning with x0 = 1. The errors begin decreasing by more or less a
constant factor after the first few iterations. We find that |g′(x̄)| ≈
.3178444, while the error of x21 is roughly .3178446 times the error of
x20. Both of these values are not far from the crude estimate of .4 that
are obtained by inspecting the plot of g in Fig. 31.3.
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FIGURE 31.4. On the left we plot the errors {|xi −1|} and on the right the ratios
{|xi − 1|/|xi−1 − 1|} for the Fixed Point Iteration for log(2 + x) beginning with
x0 = 1.

We prove Theorem 31.2 by finding a small interval I containing x̄ as the
midpoint on which g is a contraction map so that Theorem 31.1 applies.
We begin by choosing L with |g′(x̄)| < L < 1. Because g′ is Lipschitz
continuous, |g′| is also Lipschitz continuous and this means that |g′(x)| ≤ L
for all x close to x̄. In particular, there is a δ > 0 such that |g′(x)| ≤ L for
x in I = [x̄− δ, x̄+ δ] (see Fig. 31.5). A value for δ can be computed. If the

+ δ− δ x

|g′(x)|

L
1 |g′(x)|

FIGURE 31.5. |g′(x)| ≤ L < 1 for x in I = [x̄ − δ, x̄ + δ].

Lipschitz constant of g′ is K for x near x̄, then |g′(x) − g′(x̄)| ≤ K|x − x̄|.
To guarantee that |g′(x)| ≤ L, we can use

|g′(x)| ≤ |g′(x̄)| + K|x − x̄| ≤ L,

which gives

|x − x̄| ≤ L − |g′(x̄)|
K

= δ.

Now we have an interval I on which (31.2) is satisfied, so we only have
to check (31.1) and we can use Theorem 31.1. The interval I is simply the
set of points x such that |x − x̄| ≤ δ, so if x is in I we need to show that
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|g(x) − x̄| ≤ δ. But |g(x) − x̄| = |g(x) − g(x̄)|, and Theorem 19.1 implies

|g(x) − g(x̄)| ≤ L|x − x̄| ≤ Lδ. (31.9)

Since L < 1, this shows that (31.1) holds.
To show that (31.8) is true, we divide both sides of (31.5) by |xn−1 − x̄|

to get ∣
∣
∣
∣

xn − x̄

xn−1 − x̄
− g′(x̄)

∣
∣
∣
∣ ≤ |xn−1 − x̄|Kx̄.

(If xn−1 = x̄ there is nothing to prove.) We conclude that (31.8) is true by
taking the limit as n goes to infinity.

By this argument, the Fixed Point Iteration is guaranteed to converge
for any x0 in the interval I constructed in Fig. 31.5. Therefore, the smaller
this interval I, the closer x0 has to be to x̄ and consequently the better we
have to know the location of x̄ before we start the Fixed Point Iteration.
The size of I depends on the distance between |g′(x̄)| and 1 and how |g′(x)|
behaves for x near x̄. If g′(x̄) is close to 1 and rises steeply as x moves away
from x̄, then I has to be chosen very small. We illustrate in Fig. 31.6. On
the other hand, if |g′(x)| decreases in value as x moves away from x̄, then
I can be chosen to be large.

L

|g′(x)|

I
x

|g′(x)|

L

|g′(x)|

I
x

|g′(x)|

FIGURE 31.6. The size of I depends on how |g′(x)| behaves for x near x̄. On the
left, |g′(x)| rises steeply from |g′(x̄)| and I is small. On the right, |g′(x)| is always
less than L and I can be chosen large.

Example 31.6. The fixed point of

g(x) = .9 + 1.9x − 1
10

tan−1(10(x − 1))

with
g′(x) = 1.9 − 1

1 + 100(x − 1)2
(31.10)

is x̄ = 1. We plot g′(x) in Fig. 31.7. From the plot, we can guarantee con-
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FIGURE 31.7. Plots of g′(x) defined in (31.10). The plot on the right is a closeup
for x in [.95, 1.05].

vergence for intervals approximately like [.97, 1.03], or smaller. Exper-
imentally, the Fixed Point Iteration converges to x̄ for x0 in [.96, 1.06]
but diverges for x0 = .939 and x0 = 1.061.

Example 31.7. The fixed point for g(x) = 1
2 cos(x) is x̄ ≈ 0.450183611294874.

Now |g′(x)| = 1
2 | sin(x)| ≤ 1

2 for all x and experimentally the Fixed
Point Iteration converges to x̄ for any initial value x0.

In general when solving a fixed point problem for a given function, g may
or may not satisfy the conditions needed for the theorems on convergence
stated above. If g does not satisfy the conditions, then we can try to rewrite
the problem g(x) = x to obtain an equivalent problem for another function
g̃ which does satisfy the conditions.

Example 31.8. The theorems above do not apply to the fixed point
problem for g(x) = ex − 2 since x̄ ≈ 1.146193220621 and |g′(x̄)| ≈
3.146 > 1. In fact, the Fixed Point Iteration fails to converge to x̄ for
any x0 �= x̄. However, we can solve

ex̄ − 2 = x̄ ⇐⇒ ex̄ = x̄ + 2 ⇐⇒ x̄ = log(x̄ + 2)

and we can apply Theorem 31.2 to g(x) = log(x + 2), as we show in
Example 31.3.

31.3 High Order Convergence

In the previous section, we found that the errors of the fixed point iterates
decrease by approximately a factor of |g′(x̄)| after each step when g′(x̄) �= 0.
Since smaller values of |g′(x̄)| mean the errors decrease more with each step,
it is natural to consider what happens when |g′(x̄)| = 0. In this case, (31.4)
reduces to

|g(x) − x̄| ≤ |x − x̄|2Kx̄.
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If we substitute x = xn−1 and xn = g(xn−1), we get

|xn − x̄| ≤ Kx̄|xn−1 − x̄|2. (31.11)

Induction yields

|xn − x̄| ≤ Kx̄

(
Kx̄|xn−2 − x̄|2

)2 ≤ · · · ≤
(
Kx̄|x0 − x̄|

)2n−1

|x0 − x̄|.

Therefore, the iteration converges to x̄ for all x0 with Kx̄|x0 − x̄| < 1, i.e.,
for all initial values x0 that are sufficiently close to x̄. Moreover, (31.11)
can be written as

Kx̄|xn − x̄| ≤
(
Kx̄|xn−1 − x̄|

)2
.

If |xn−1 − x̄| ≤ 10−p−log(Kx̄) for some p, i.e., if xn−1 agrees with x̄ to at
least p + log(Kx̄) digits, then |xn − x̄| ≤ 10−2p−log(Kx̄) or xn agrees to
about 2p + log(Kx̄) digits. In other words, when g′(x̄) = 0, the fixed point
iterate xn has roughly twice as many accurate digits as the previous iterate
xn−1. This is extremely fast convergence! We say that the sequence {xi}
converges at a second order rate or at a quadratic rate.

Example 31.9. The fixed point for

g(x) =
2(x + 1)

5 + 4x + x2 (31.12)

is x̄ =
√

2− 1 ≈ 0.414213562373095. It is straightforward to verify that
g′(x̄) = 0. In Fig. 31.8, we list the first few fixed point iterates along
with the errors. The convergence is very fast compared to the previous

i xi |xi − x̄|
0 0.000000000000000 0.414213562373095
1 0.400000000000000 0.014213562373095
2 0.414201183431953 1.237894114247684 × 10−5

3 0.414213562363800 9.295619829430279 × 10−12

4 0.414213562373095 0.000000000000000

FIGURE 31.8. The first few fixed point iterates and associated errors for g in
(31.12).

examples of Fixed Point Iterations, and counting digits, we find that xi

has roughly twice as many accurate digits as xi−1.

It is possible to find Fixed Point Iterations that gain accuracy even more
quickly than a second order rate. To cover all possibilities, we give a more
precise definition of the order of convergence of a sequence {xn} with
limn→∞ xn = x̄. We say that {xn} converges to order p, or converges
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at a pth order rate, if given p > 0 there are constants C > 0 and N > 0
such that

|xn − x̄| ≤ C|xn−1 − x̄|p for all n ≥ N. (31.13)

Higher order convergence means faster convergence in the sense that the
errors decrease more quickly for each iteration.

Example 31.10. The Fixed Point Iterations for g1(x) = 1
2x, g2(x) =

1
2x2, g3(x) = 1

2x3, and g4(x) = 1
2x4 converge with order 1, 2, 3, and 4,

respectively, on the interval I = [−1, 1] to x̄ = 0. We list the first few
iterates for each in Fig. 31.9. The differences in the rate are clear.

i 1
2x 1

2x2 1
2x3 1

2x4

0 1 1 1 1
1 .5 .5 .5 .5
2 .25 .125 .0625 .03125
3 .125 .0078125 .000122 · · · .00000047 · · ·

FIGURE 31.9. The first few fixed point iterates for the indicated g.

Note that this definition allows for the possibility that the error of the first
few iterates might not decrease as quickly as the rest, which makes sense
based on the discussions above, especially Example 31.2.

When the order of convergence is p = 1, then the iteration only converges
if C < 1. C is called the convergence factor when the convergence is first
order and it is customary to compare the rate of convergence of first order
convergent sequences by comparing the relative sizes of the convergence
factors.

Example 31.11. The Fixed Point Iteration for g1(x) = 1
4x converges

more quickly than the Fixed Point Iteration for g2(x) = 1
2 (x).

When the rate of convergence is higher than 1, the value of C determines
how close the initial value x0 has to be to the fixed point x̄ to get the Fixed
Point Iteration to converge. The larger C is, the closer x0 has to be to x̄.

Example 31.12. The Fixed Point Iteration for g1(x) = 1
2x2 converges

to the fixed point x̄ = 0 for all initial values |x0| < 2 since this means
that

1
2
x2

0 =
1
2
|x0| × |x0| < |x0|.

It diverges for any initial value with |x0| > 2. In contrast, the Fixed
Point Iteration for g2(x) = 4x2 converges to x̄ = 0 for any initial value
|x0| < 1

4 and diverges for |x0| > 1
4 .

Theorem 31.2 guarantees that the Fixed Point Iteration converges at a
first order rate when 0 < |g′(x̄)| < 1, while the discussion above implies
the following theorem is true.
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Theorem 31.3 If x̄ is a solution of g(x) = x and g is strongly differen-
tiable at x̄ and

|g′(x̄)| = 0, (31.14)

then the Fixed Point Iteration converges at least at a second order rate to
x̄ for all initial values x0 sufficiently close to x̄.

31.4 Newton’s Method

As mentioned, one motivation for introducing the fixed point problem was
to find faster methods for solving root problems. We now use Theorem 31.3
to construct a method for solving root problems that is second order con-
vergent called Newton’s method.

One of the simplest ways to rewrite a root problem f(x) = 0 as a fixed
point problem g(x) = x is to choose

g(x) = x − αf(x)

where α is a non-zero constant. Based on Theorem 31.3, it is natural to try
to choose α so that g′(x̄) = 0 and thereby gain second order convergence.
Assuming f is strongly differentiable and computing gives

g′(x) = 1 − αf ′(x),

which means that α should be chosen so

α =
1

f ′(x̄)

and

g(x) = x − f(x)
f ′(x̄)

.

The Fixed Point Iteration looks like

xi = xi−1 − f(xi−1)
f ′(x̄)

and converges quadratically. Unfortunately to use this Fixed Point Itera-
tion, we need to know the value of x̄.

To try to find a practical method, we use the more sophisticated approach
of writing

g(x) = x − α(x)f(x)

where α(x) is a nonzero strongly differentiable function. Now

g′(x) = 1 − α′(x)f(x) − α(x)f ′(x).
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Substituting x̄ and using f(x̄) = 0, we find that α(x) needs to have the
property

α(x̄) =
1

f ′(x̄)
.

One way to get α to have this property at x̄ is simply to choose

α(x) =
1

f ′(x)

for all x. In other words, we compute the Fixed Point Iteration for

g(x) = x − f(x)
f ′(x)

.

This gives:

Algorithm 31.1 Newton’s method Choose x0 and for i = 1, 2, · · · ,
set

xi = xi−1 − f(xi−1)
f ′(xi−1)

. (31.15)

Checking, we differentiate to find

g′(x) =
f(x)f ′′(x)
(f ′(x))2

so g′(x̄) = 0 (because f(x̄) = 0) provided that f ′(x̄) �= 0 and f ′′(x̄) is
defined. Moreover, g′(x) is Lipschitz continuous for x near x̄ provided
f ′(x̄) �= 0 and f ′′(x) is Lipschitz continuous near x̄. If these conditions
hold, then Theorem 31.3 implies:

Theorem 31.4 Local Convergence for Newton’s method If x̄ is a
solution of f(x) = 0, where f has a Lipschitz continuous second derivative
in an interval containing x̄, and if

|f ′(x̄)| �= 0, (31.16)

then Newton’s method (31.15) converges at least at a second order rate to
x̄ for all initial values x0 sufficiently close to x̄.

Example 31.13. Consider the root problem for

f(x) =
1

2 + x
− x.

Newton’s method is the Fixed Point Iteration for

g(x) = x −
1

2+x − x
−1

(2+x)2 − 1
=

2(x + 1)
5 + 4x + x2 ,

which we recognize from (31.12). Here, f ′(x) �= 0. The first few Newton
iterates are shown in Fig. 31.8.
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Example 31.14. The Fixed Point Iteration for g(x) = log(x + 2) dis-
cussed in Example 31.3 converges at a linear rate and took 27 iterations
to get 15 digits of accuracy. In order to get a second order Fixed Point
Iteration, we first rewrite the fixed point problem as a root problem
and then apply Newton’s method to get a better fixed point problem.
We set f(x) = x − log(x + 2) so f(x̄) = 0 if and only if g(x̄) = x̄. Then

f ′(x) = 1 − 1
x + 2

;

so f ′(x) = 0 only at x = −1, which is not x̄. Therefore, we can apply
Newton’s method, which is the Fixed Point Iteration for

g(x) = x − x − log(x + 2)
1 − 1

x+2

=
−x + (2 + x) log(2 + x)

1 + x
.

We show the results in Fig. 31.10

i xi

0 1.000000000000000
1 1.147918433002165
2 1.146193440797909
3 1.146193220620586
4 1.146193220620583
5 1.146193220620583

FIGURE 31.10. The first Newton iterates for f(x) = x − log(x + 2).

It is important to keep in mind that Theorem 31.4 only guarantees that
Newton’s method converges when the initial value x0 is sufficiently close to
x̄. Otherwise, the results of using Newton’s method are very unpredictable.

Example 31.15. We apply Newton’s method to f(x) = (x − 2)(x −
1)x(x + .5)(x + 1.5) without trouble because f ′(x) �= 0 at any of the
roots of f . We compute 21 Newton iterations for f starting with 5000
equally spaced initial values in [−3, 3], then we record the last value
computed by Newton’s method. We plot the resulting pairs of points
in Fig. 31.11. Each of the roots is contained in an interval in which all
initial values produce convergence to the root. But outside these inter-
vals the behavior of the iteration is unpredictable with nearby initial
values converging to different roots.
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-3 1 2 3-1.5 -.5 0

Converges to -1.5

Converges to -.5

Converges to 0

Converges to 2

Converges to 1

FIGURE 31.11. This plot shows the roots of f(x) = (x−2)(x−1)x(x+.5)(x+1.5)
found by Newton’s method for 5000 equally spaced initial guesses in [−3, 3] . The
horizontal position of the points shows the location of the initial guess and the
vertical position indicates the twenty first Newton iterate.

31.5 Some Interpretations and History of Newton’s
Method

We begin this section by giving a couple of interpretations of Newton’s
method.

The first interpretation is geometric and is a good way to remember the
formula for Newton’s method. The idea is drawn in Fig. 31.12 Given the

f(x)
f(xn-1)+f ′(xn-1)(x-xn-1)

xn-1 xn

FIGURE 31.12. An illustration of one step of Newton’s method from xn−1 to xn.

value xn−1, we would like to trace the graph of f to the point where it
crosses the x-axis, which is x̄. But this is difficult to do when f is non-
linear. The idea is to replace f by a linear approximation, for which we
can compute a root easily, and then compute the root of the linear ap-
proximation. The linear approximation is often called a linear model for
f . We can choose different linear approximations, but a natural choice is
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to use the linearization of f at the current iteration point xi−1. That is
presumably the closest value we know to x̄.

The linearization of f at xn−1 is

f(x) ≈ f(xn−1) + f ′(xn−1)(x − xn−1).

To approximate the root of f(x) = 0, we compute the root xn of the
linearization

f(xn−1) + f ′(xn−1)(x − xn−1) = 0,

which is

xn = xn−1 − f(xn−1)
f ′(xn−1)

.

This is precisely the definition of Newton’s method!
The second interpretation is particularly useful when we consider root

problems in higher dimensions. The Fundamental Theorem says that

f(x) = f(xn−1) +
∫ x

xn−1

f ′(s) ds

for any x. Therefore, another way to interpret x̄ is that it is the number
such that

f(xn−1) +
∫ x̄

xn−1

f ′(s) ds = 0.

Since we don’t know x̄, we can’t evaluate this integral. A way to get around
this is to use the rectangle rule approximation,

∫ x

xn−1

f ′(s) ds ≈ f ′(xn−1)(x − xn−1)

for any x close to xn−1. We define xn to be the number such that

f(xn−1) + f ′(xn−1)(xn − xn−1) = 0.

This also gives Newton’s method.
The history of Newton and Newton-like methods is long and complicated

(see Ypma [21] for a detailed account). Methods related to the Bisection Al-
gorithm and Newton’s method were known as far back as the Babylonians
and there was continued development down to Newton’s time, especially in
Arabia and China. Newton knew about various techniques and was partic-
ularly influenced by the work of Viéte.3 Newton derived his method using
algebraic arguments, not calculus, Moreover, he only explained his method

3François Viète (France, 1540–1603) was never a professional mathematician, yet
made some early important contributions to algebra, geometry, solving equations, and
trigonometry as well as writing several text. He also worked to crack Spanish secret
codes for King Henry IV.
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in the context of solving for the roots of polynomials, though he did use
it to solve for a root of a non-polynomial function. Newton’s description
and implementation of his method were very complicated, which greatly
limited its accessibility.

Wallis published the first printed description of Newton’s method, essen-
tially following Newton’s explanation. Later, Raphson4 published a book
in which he described a method for solving polynomial equations that was
equivalent to the method invented by Newton. His account and implemen-
tation were much simpler, however, and Raphson considered his method to
be new. Like Newton, Raphson did not use calculus in his derivation.

The first person to use calculus to describe Newton’s method was Simp-
son.5 After that, Lagrange published a description that used the modern
f ′ notation for the derivative, and somewhat later, Fourier published an
influential book in which he described Newton’s method in modern form
and called it “Newton’s method.” But, we see that a more accurate name
might be “Viète-Newton-Raphson-Simpson’s method”.

31.6 What Is the Error in an Approximate Root?

Naturally, we are interested in the error

|xn − x̄|

of xn. However, x̄ is usually unknown so the error cannot be computed in
general. Instead, we have to estimate the error in some fashion.

One quantity that can be computed is f(xn), which is called the residual
of xn. This is a measure of how well xn solves f(x) = 0 since the residual
of the true root x̄ is zero, i.e., f(x̄) = 0. The question is how to connect the
computable residual to the unknown error. We obtain an estimate assuming
that f is uniformly strongly differentiable in an interval containing x̄. This
means there is a constant K such that for xn sufficiently close to x̄,

|f(x̄) − (f(xn) + f ′(xn)(x̄ − xn))| ≤ |x̄ − xn|2K.

Since f(x̄) = 0, we conclude that for xn is close to x̄,

0 ≈ f(xn) + f ′(xn)(x̄ − xn)

4The English mathematician Joseph Raphson (1648–1715) was one of the few people
to enjoy close access to Newton’s work. Raphson wrote several books that described
many of Newton’s results. Raphson published a version of Newton’s method long before
Newton got around to doing so.

5The English mathematician Thomas Simpson (1710–1761) was an interesting char-
acter. He wrote several books and taught as a wandering lecturer in London coffee
houses. Rather remarkably, Simpson developed Newton’s method for a system and used
it to maximize a function of several variables. Simpson is best remembered for his work
on interpolation and numerical integration.



31.6 What Is the Error in an Approximate Root? 423

or
(x̄ − xn) ≈ −f ′(xn)−1f(xn). (31.17)

The approximation (31.17) says that the error x̄−xn is proportional to the
residual f(xn) with constant f ′(xn)−1 when xn is close to x̄.

One consequence is that if |f ′(xn)| is very small, then the error may be
large even though the residual is very small. In this case the process of
computing the root x̄ is said to be ill-conditioned.

Example 31.16. We apply Newton’s method to f(x) = (x − 2)2 −
10−15x with root x̄ ≈ 1.00000003162278. Here f ′(x̄) = 10−15, so that
f ′(xn) is very small for all xn close to x̄. We plot the errors and residuals
versus iteration in Fig. 31.13. The residuals become small considerably

0 5 10 15 20 25
10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

|f(xn)|

|xn-x|

FIGURE 31.13. Plots of the residuals • and errors � versus iteration number
for Newton’s method applied to f(x) = (x−2)2 −10−15x with initial value
x0 = 2.

faster than the errors.

Note that by the definition of Newton’s method,

xn+1 = f(xn) − f(xn)/f ′(xn);

so (31.17) implies
|xn − x̄| ≈ |xn+1 − xn|. (31.18)

In other words, to get an estimate of the error of xn, we can compute an
extra step of Newton’s method to get xn+1 and then compute |xn+1 −xn|.

Example 31.17. We apply Newton’s method to f(x) = x2 − 2 and
show the error and error estimate (31.18) in Fig. 31.14. The error esti-
mate does a pretty good job.
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i |xi − x̄| |xi+1 − xi|
0 .586 .5
1 .086 .083
2 2.453 × 10−3 2.451 × 10−3

3 2.124 × 10−6 2.124 × 10−6

4 1.595 × 10−12 1.595 × 10−12

5 0 0

FIGURE 31.14. The error and error estimate for Newton’s method for
f(x) = x2 − 2 with x0 = 2.

An issue closely related to estimating the error is the question of when to
stop the iteration. In many situations, the goal of solving a root problem is
to approximate the root x̄ to within a given accuracy. So ideally, we might
specify that the error of the final iterate xn should be less than a given
error tolerance TOL > 0,

|xn − x̄| ≤ TOL.

We do not know the error in general, of course, so this ideal goal must be
replaced by something practical. For example, we could use (31.18) and
stop the iteration when

|xn+1 − xn| ≤ TOL. (31.19)

Condition (31.19) is called a stopping criterion for the iteration. In some
cases, it is more natural to check that the residual is sufficiently small. In
other words, the iteration is stopped when

|f(xn)| ≤ TOL. (31.20)

31.7 Globally Convergent Methods

The theory only guarantees that Newton’s method converges when x0 is
sufficiently close to x̄. Moreover, it turns out to be the only way to guarantee
convergence in practice as well. The question is how to find good initial
values for Newton’s method.

One solution is based on the observation that there are iterative methods
that converge without requiring a starting value x0 to be close to x̄. For
example, recall that the Bisection Algorithm converges to the fixed point
starting with an interval of any size as long as the function changes sign
at the endpoint values. The Bisection Algorithm is a globally convergent
method, as opposed to Newton’s method, which is locally convergent. The
problem with globally convergent methods is that they invariably tend to
be slow in converging; i.e., they converge at first order.
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The idea is to use an algorithm that combines a globally convergent
method with a locally convergent method in such a way that the fast local
method is used when it is working well, otherwise the slow-but-sure globally
convergent method is used. Such a method is sometimes called a hybrid-
Newton method. It is good to keep in mind that in general it is impossible
to guarantee that an iterative approximation method for computing roots
approximates a desired root. In other words, there are no truly fast, globally
convergent methods. The best we can do is to devise methods that generally
compute some root starting from almost all initial values. We describe a
simplification of such a method below.6

For example, we could construct an algorithm that uses the Bisection
Algorithm until the endpoints are sufficiently close and then switches to
Newton’s method. The problem is to determine when the switch to New-
ton’s method should take place: there are no natural criteria for deciding.
Instead, we try to construct methods that switch from a globally convergent
method to Newton’s method automatically.

A popular approach is based on considering the Newton “change,”

− f(xn−1)
f ′(xn−1)

, (31.21)

which is added to xn−1 to get xn as determining both a direction and
a distance (see Fig. 31.15). Newton’s method has the property that f(x)
always decreases initially for x, changing value away from xn−1 in the
direction indicated by (31.21), i.e., toward xn. Unfortunately if Newton’s
method indicates a big change from xn−1 to xn, then it is possible for
|f(xn)| > |f(xn−1)| (see Fig. 31.15). This is counterproductive since we are
trying to make f(·) smaller.

The idea is to accept the computed Newton iterate xn when |f(xn)| <
|f(xn−1)| and to reject the iterate otherwise. When an iterate is rejected,
a bisection search is performed on the interval [xn−1, xn] with the object
of finding a x∗ between xn−1 and xn such that |f(x∗)| < |f(xn−1)|. First,
we set x∗ = (xn +xn−1)/2 and check |f(x∗)| < |f(xn−1). If this is true, we
set xn = x∗ and proceed forward to compute the next Newton step. If this
is false, we set xn = x∗ and return to take another bisection step. In the
Newton step shown in Fig. 31.15, the algorithm rejects xn and takes one
step of the bisection search before setting xn = x∗ and continuing with the
Newton iteration. The algorithm is:

Algorithm 31.2 hybrid-Newton method

given f , f ′, x0

6The analysis of this method is quite complicated and moreover requires some slight
modifications of the algorithm we have written down, so we do not give that and instead
refer to Dennis and Schnabel [9].
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f(x)

x
n-1

x
n

f(xn-1)

|f(x
n-1

)| < |f(x
n
)|

x*

FIGURE 31.15. The Newton step determines both the distance and the direction
for obtaining xn from xn−1. f(x) decreases initially as x changes value from
xn−1 in the direction of xn however |f(xn)| > |f(xn−1)| is possible if the change
xn−1 → xn is large.

for n = 1, 2, 3, · · ·
compute xn = xn−1 − f(xn−1)/f ′(xn−1)
if |f(xn)| > |f(xn−1)|

set xn = (xn + xn−1)/2
while |f(xn)| > |f(xn−1)|

set xn = (xn + xn−1)/2
decide if another Newton iteration is needed .

Example 31.18. We implement this algorithm in MATLAB c© and run
it on the function f(x) = tan−1(x − 1) with root x̄ = 1 using x0 = 6.
The output of the program is shown in Fig. 31.16 In this example, in
fact, Newton’s method actually diverges when x0 = 6. However the
hybrid-Newton method switches to the safe but slow global method
until xn is close enough to 1 for Newton’s method to converge.

31.8 When Good Derivatives Are Hard to Find

In many situations, computing the derivative of f is undesirable or even
impossible. For example, f ′ can be very hard to compute, especially in
higher dimensions, and moreover evaluating f ′ involves computing addi-
tional function values, which can be very expensive in terms of computing
time. Also, it often happens that f is known only through a set of values
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i method xi f(xi)
0 initial value 6.000000000000000 1.373400766945016
1 Newton iterate −29.708419940570410 −1.538243471665299

bisection search −11.854209970285200 −1.493157178586551
bisection search −2.927104985142602 −1.321454920055357

2 Newton iterate 18.774030640348380 1.514593719328215
bisection search 7.923462827602890 1.427351950092280
bisection search 2.498178921230144 0.982232920022955

3 Newton iterate −0.688715155697761 −1.036156901891317
bisection search 0.904731882766191 −0.094981458393522

4 Newton iterate 1.000575394221151 0.000575394157651
5 Newton iterate 0.999999999873000 −0.000000000127000
6 Newton iterate 1.000000000000000 0.000000000000000

FIGURE 31.16. Results of the hybrid Newton method applied to
f(x) = tan−1(x − 1).

measured during some computational or experimental procedure, so there
is no function to differentiate.

In Section 31.5, we interpreted Newton’s method as a process of replacing
the function f by its linearization at the current iterate and using the
linearization to compute the next iterate. To avoid the derivative of f , the
basic idea is to use a different linear approximation to the function f . A
simple example is to use a secant line passing through the current iterate
xn−1 and some nearby point xn−1 +hn where hn is a suitably chosen small
number. The slope of this secant line is

mn =
f(xn−1 + hn) − f(xn−1)

hn
, (31.22)

and the linear approximation to f is

f(x) ≈ f(xn−1) + mn(x − xn−1).

The new iterate is found by computing the root of the linear approximation
and we find

xn = xn−1 − f(xn−1)
mn

. (31.23)

We illustrate in Fig. 31.17. A Newton method that uses a linear approx-
imation to a function other than the linearization is sometimes called a
quasi-Newton method.

The important question is whether the new method works, and in par-
ticular, if it converges at a second order rate. It turns out that, neglecting
round-off error, if hn tends to zero at the same rate that xn − x̄ tends to
zero, and in particular, if there is a constant c > 0 such that

hn ≤ c|xn−1 − x̄| (31.24)
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f(x)

xn-1 xnxn-1+hn

f(xn-1)+
f(xn-1+hn)-f(xn-1)

h
n

(x-xn-1)

FIGURE 31.17. An illustration of one step of a quasi-Newton method from xn−1

to xn with step hn.

for all sufficiently large n, or equivalently if there is a constant c̃ such that

hn ≤ c̃|f(xn−1)|, (31.25)

then the quasi-Newton method does converge at a second order rate for all
x0 sufficiently close to x̄. In practice this works at first but as xn−1 gets
closer to x̄, the effects of round-off on the subtraction f(xn−1+hn)−f(xn−1)
cause a lot of trouble due to significant cancelation of the leading decimals,
owing to the closeness of xn−1 + hn and xn−1. So as a rule of thumb, hn is
never reduced lower than some constant times

√
u, where u is the machine

number.
One disadvantage of general quasi-Newton methods is that f must be

evaluated at two points, namely, xn−1 and xn−1 + hn, in order to compute
xn. This motivates the choice hn = −(xn−1 − xn−2), which gives

mn =
f(xn−1) − f(xn−2)

xn−1 − xn−2
(31.26)

and

xn = xn−1 − f(xn−1)
mn

. (31.27)

This is called the secant method. We illustrate in Fig. 31.18. Note that
the secant method requires two initial values x0 and x1. It turns out that
the secant method converges with order (1 +

√
5)/2 ≈ 1.6.

Example 31.19. Using the function f(x) = x2 − 2, we compare New-
ton’s method and a quasi-Newton method using x0 = 1 and the secant
method with x0 = 0 and x1 = 1 in Fig. 31.19.
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f(x)

xn-2 xnxn-1

f(xn-1)+
f(xn-1)-f(xn-2)

x
n-1

-x
n-2

(x-xn-1)

FIGURE 31.18. An illustration of one step of the secant method for computing
xn.

i Newton’s method quasi-Newton method secant method
0 1.000000000000000 1.000000000000000 0.000000000000000
1 1.500000000000000 1.400000000000000 1.000000000000000
2 1.416666666666667 1.437500000000000 2.000000000000000
3 1.414215686274510 1.414855072463768 1.333333333333334
4 1.414213562374690 1.414214117144937 1.400000000000000
5 1.414213562373095 1.414213562373512 1.414634146341463
6 1.414213562373095 1.414213562373095 1.414211438474870
7 1.414213562373095 1.414213562373095 1.414213562057320
8 1.414213562373095 1.414213562373095 1.414213562373095

FIGURE 31.19. Results of Newton’s method, a quasi-Newton method with
hn = |f(xn−1)|, and the secant method applied to f(x) = x2 − 1.

31.9 Unanswered Questions

We have given only brief descriptions of the construction of globally conver-
gent hybrid Newton’s methods and quasi-Newton methods in which finite
differences are used instead of derivatives. We have not proved that these
ideas work, nor discussed important practical details. This is an interesting
and complicated subject. See Dennis and Schnabel [9] for more details.
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Chapter 31 Problems

Problems 31.1–31.10 have to do with the Fixed Point Iteration.

31.1. Prove that the fixed point found in Theorem 31.1 is unique.

31.2. Verify that the assumptions of Theorem 31.1 are satisfied for g(x) =
1/(2 + x) on I5t = [0, 1]. Compute the fixed point.

31.3. Verify that the assumptions of Theorem 31.1 are satisfied for g(x) =
.5 tan(x) on I = [−.5, .5]. Compute the Fixed Point Iteration starting with x0 =
.5.

31.4. Find an interval I such that Theorem 31.1 applies for computing the fixed
point of g(x) = 1 − log(1 + e−x). Compute the fixed point.

31.5. Make a chart contrasting the assumptions and conclusions of Theorem 31.1
and Theorem 31.2.

31.6. Perform the computations displayed in Example 31.2.

31.7. Verify the claims in Example 31.4.

31.8. Find the fixed points of the following functions by using a graph to verify
the assumptions of Theorem 31.2 and finding an initial value x0 close enough to
x̄ to give convergence and then computing enough iterations to guarantee 3 digits
of accuracy for each fixed point x̄. Note that you may have to rewrite the fixed
point problem g(x) = x for each fixed point x̄ in order to use Theorem 31.2!

(a) g(x) = 2 + 2 cos(x/4) (b) g(x) = x3 − x2 − 1
(c) g(x) = log(2 + x2) (d) g(x) = x6 − 1
(e) g(x) = 2e−x (f) g(x) = x3.

31.9. Set
c1 = .4/64, c2 = .99999, c3 = 4 − 4c2 +

2
15

c1

and

g(x) = c3 + c2x − c1

(
1
20

x5 − x4 +
16
3

x3
)

.

(a) Verify that Theorem 31.2 applies. (b) Compute 30 fixed point iterations be-
ginning with x0 = 0 and verify that xi is converging to the fixed point x̄ = 4. (c)
Make a plot of the ratios

|xi − x̄|
|xi−1 − x̄| .

Explain the results of the graph by using a plot of |g′(x)|.

31.10. Rewrite the root problem f(x) = x2−3 as a fixed point problem by setting
g(x) = x+ c(x2 −3) and finding a value of c that allows the use of Theorem 31.2.
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Problems 31.11–31.17 have to do with high order convergence in the Fixed
Point Iteration.

31.11. Estimate the order of convergence, and in the case of first order conver-
gence, the convergence factor for the Fixed Point Iterations computed in Prob-
lem 31.8.

31.12. (a) Find the values of c for which you can guarantee that the Fixed Point
Iteration for g(x) = 2 − (1 + c)x + cx3 converges to x̄ = 1. (b) What value of c
gives second order convergence?

31.13. In each of the following cases, determine if the Fixed Point Iteration
converges to the indicated fixed point, and if it does converge, determine the
order of convergence and when the order is one the convergence factor:

(a) g(x) = x + 9/x2 − 1, x̄ = 3

(b) g(x) = 2
3x + 1

x2 , x̄ = 31/3

(c) g(x) = 6/(1 + x), x̄ = 2 .

31.14. (a) Experimentally verify the claims made about the intervals on which
the Fixed Point Iteration converges in Example 31.6 and Example 31.7. (b) Give
an explanation for the observation that the interval of convergence in Exam-
ple 31.6 found experimentally is larger than the region predicted by the analysis.
Hint: what can be overestimated in the estimates in (31.9).

31.15. (a) Verify theoretically that the Fixed Point Iteration for

g(x) =
1
2

(
x +

a

x

)

where x̄ =
√

a converges quadratically. (b) Try to say something about which
initial values guarantee convergence for a = 3 by computing some Fixed Point
Iterations.

31.16. (a) Show analytically that the Fixed Point Iteration for

g(x) =
x(x2 + 3a)

3x2 + a

is third order convergent for computing x̄ =
√

a. (b) Compute a few iterations for
a = 2 and x0 = 1. How many digits of accuracy are gained with each iteration?

31.17. (a) Verify the claims about the convergence rate for the functions in
Example 31.10. (b) Verify the claims about convergence for the functions in
Example 31.12.

Problems 31.18–31.22 have to do with Newton’s method.

31.18. Find the fixed points of the following functions by using Newton’s method.
Compare to rate of convergence for each computation to the rates obtained for
the fixed point computations in Problem 31.8.
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(a) f(x) = 2 + 2 cos(x/4) − x (b) f(x) = x3 − x2 − x − 1
(c) f(x) = log(2 + x2) − x (d) f(x) = x6 − x − 1
(e) f(x) = 2e−x − x (f) f(x) = x3 − x.

31.19. Use Newton’s method to compute all the roots of f(x) = x5 +3x4 −3x3 −
5x2 + 5x − 1.

31.20. Use Newton’s method to compute the smallest positive root of f(x) =
cos(x) + sin(x)2(50x).

31.21. Use Newton’s method to compute the root x̄ = 0 of the function

f(x) =

{√
x, x ≥ 0,

−
√

−x, x < 0.

Does the method converge? If so, is it converging at second order? Explain your
answer.

31.22. Apply Newton’s method to f(x) = x3 − x starting with x0 = 1/
√

5. Is
the method converging? Explain your answer using a plot of f(x).

Problems 31.23–31.25 have to do with error estimation and stopping cri-
teria.

31.23. Modify the code used to solve the root problems in Problem 31.18 to
output an error estimate for each xn using (31.18) as well as computing the real
error when the root x̄ is input into the program. Rerun the computations you
performed in Problem 31.18 and compare the error estimates to the errors as in
Fig. 31.14. If you do not have the exact root for a problem, take the value of xN

for a large N as an approximation for x̄ and then compare errors for n not too
large compared to N .

31.24. Modify the code used to solve the root problems in Problem 31.18 so
that it uses a choice of either (31.19) or (31.20) to stop the iteration.

31.25. (a) Derive an approximate relation between the residual g(x)−x of a fixed
point problem for g and the error of the fixed point iterate xn − x̄. (b) Devise two
stopping criteria for a Fixed Point Iteration. (c) Revise your fixed point code to
make use of (a) and (b).

Problems 31.26–31.28 have to do with modifications of Newton’s method.

31.26. (a) Implement Algorithm 31.2, making sure the code indicates when a
bisection search is performed. (b) Apply your code to the problems in Prob-
lem 31.18 compute above and note if any bisection searches are used. (c) Apply
your code to Problem 31.19. (d) Apply your code to Problem 31.21. (e) Apply
your code to Problem 31.22 with x0 < 1/

√
5, x0 = 1/

√
5, and x0 > 1/

√
5.

31.27. (a) Use a plot to explain why Newton’s method diverges for the root
problem in Example 31.18. (b) On your plot, illustrate the first Newton iterate
and the step-by-step results of the subsequent bisection search.
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31.28. (a) Write a code that simultaneously implements Newton’s method, a
quasi-Newton method with step hn = |f(xn−1)|, and the secant method. (b)
Apply your code to the problems in Problem 31.18 compute above and compare
the convergence of the methods.

In Problems 31.29 and 31.30, we apply Newton’s methods in situations
in which the conditions that guarantee convergence do not hold.

31.29. Use Newton’s method to compute the root x̄ = 1 of f(x) = x4 −3x2 +2x.
Is the method converging quadratically? Hint: You can test this by plotting
|xn − 1|/|xn−1 − 1| for n = 1, 2, · · · .

31.30. Assume that f(x) has the form f(x) = (x − x̄)2h(x) where h is a differ-
entiable function with h(x̄) �= 0. (a) Verify that f ′(x̄) = 0 but f ′′(x̄) �= 0. (b)
Show that Newton’s method applied to f(x) converges to x̄ at a linear rate and
compute the convergence factor.
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Calculus Quagmires

There are two major controversies associated with the creation of calcu-
lus. Both controversies involved generations of mathematicians and had
a strong effect on the development of mathematics. Both troubles yield
relevant lessons for modern scientists and mathematicians.

One controversy remains well known, even today, and that is the debate
over whether Leibniz or Newton invented calculus first. The debate began
a little while after Leibniz and Newton published their results. First, their
immediate associates argued; later, Leibniz and Newton themselves became
involved as did the following generation or two of mathematicians. The
controversy had a strongly negative effect on the pace of development of
mathematics because it kept the British mathematicians isolated from the
continental European mathematicians for generations.

Yet in retrospect, this debate is entirely meaningless in particular and in
general terms. In fact, Leibniz and Newton made most of their calculus dis-
coveries independently and within a few years of each other. Newton made
most of his discoveries somewhat before Leibniz, but Leibniz published his
results before Newton. Given this, it is simply unworthy of gentlefolk to
argue pointlessly about priority.

Perhaps more importantly, this debate is meaningless in general terms.
Neither Leibniz nor Newton “invented” calculus. Rather, they contributed
substantial progress to the development of calculus, which had begun with
the ancient Greeks and continued through to the rigorous construction of
the real numbers long after Leibniz and Newton had passed away.

The results of Leibniz and Newton were founded on a substantial body
of work on calculus. The ancient Greeks knew about infinite series and a



436 Calculus Quagmires

form of integration (see Chapter 27). The study of series continued right
up to the time of Leibniz and Newton, and series played a key role in their
arguments. The generations of mathematicians immediately before Leibniz
and Newton worked directly on the central problems of calculus, such as
computing tangents and integration. The calculus textbook of Barrows,1

who was Newton’s predecessor at Cambridge, contained material on finding
tangents to curves; differentiation of products and quotients; derivatives
of monomials; implicit differentiation; integration including the change of
variable formula in a definite integral; and computing the lengths of curves,
all described from a geometric point of view. Wallis wrote a similar textbook
from an algebraic point of view. Both Leibniz and Newton were fully aware
of the prior work on calculus.

Yet, calculus was not a unified subject before Leibniz and Newton. Rather,
it consisted of unconnected results for specific functions. The tremendous
achievement of Leibniz and Newton was to synthesize these results into a
general method and, in particular, to recognize the close relationship be-
tween differentiation and integration. They also demonstrated the power
of this method by a making a remarkable set of scientific applications.

The development of a general tool for analysis unleashed a revolution in
mathematics and science. Since this began with Leibniz and Newton, it is
natural to consider them as the inventors of calculus. Yet, to yield to the de-
plorable human tendency toward the “cult of personality”2 is to take a very
simplistic view of how science and mathematics are conducted. Progress in
science and mathematics is a communal affair. Spectacular achievements
like those of Leibniz and Newton mark a special kind of genius, yet they
are no more than part of the general human march toward understanding
nature.

The second controversy was significantly more substantial and impor-
tant for the development of modern mathematics. This controversy arose
because the calculus of Leibniz and Newton was not mathematically rigor-
ous. The central issue was the meaning of limits, which were not treated in
a mathematically precise way.

This controversy did not take the form of a debate between proponents
and opponents of calculus. Rather, it took the form of a serious self-
examination by mathematicians. Leibniz and Newton themselves, as well as
the subsequent generations of mathematicians, were aware that there were
essential holes in the mathematical foundations of calculus. They, and their
immediate successors like the Bernoulli’s, Dirichlet, Euler, and Lagrange,
worried a great deal about putting calculus on a rigorous basis. This fueled

1Isaac Barrows (1630–1677) held the Lucasian Chair in mathematics at Cambridge
University before resigning so Newton could take his place. Barrows wrote very influential
texts in geometry, an early form of calculus, and optics.

2With ill effects that are seen throughout business, politics, religion, and science.
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the ultimately successful efforts of Bolzano, Cantor, Cauchy, Dedekind, and
Weierstrass.

However, the power of calculus for describing the physical world and the
overwhelming computational and experimental evidence that calculus was
correct gave early analysts the confidence to continue developing and using
calculus even while they struggled with the lack of rigor. It is important to
realize that the revolution in science and mathematics that began in the
seventeenth century rested partly on analytic techniques that remained
largely unproved as correct until the beginning of this century.3

Yet, the very success in applying mathematics to understanding the phys-
ical world and the great advances made in mathematics made the need for
establishing a rigorous foundation all the more urgent. In fact, there were
many incorrect scientific explanations based on faulty mathematics4 that
were subsequently discarded. The gradual progress in establishing rigorous
mathematical analysis was important not only mathematically, but scien-
tifically.

In short, the effort to put analysis on a rigorous foundation was con-
ducted by mathematicians who worked in both pure and applied mathe-
matics and were motivated by both mathematical and scientific concerns.
For this reason, it is surprising and dismaying to learn that large gulfs have
formed between pure and applied and between rigorous and experimental
mathematics in this century. Indeed, today a large swath of mathematicians
consider these areas to be separate disciplines.

This development can be understood partly on historical grounds. The
deep self-examination that lead to rigorous analysis established mathemat-
ics as fundamentally different than the other sciences. The standard for
mathematical truth rests ultimately on consistent and correct proof rather
than on experimental evidence. We believe that correct mathematics is
provably correct and that we do not fully understand mathematics until it
has been proven true.5 In contrast, the other sciences rest on experimen-
tal evidence and the truths in science cannot be proved to be true in a
mathematical sense.

It is the interpretation of “ultimately” in the preceding description that
is the source of argument and controversy among mathematicians. Does
“ultimately” imply immediacy, i.e., that mathematical arguments are not
mathematics until they are in the form of rigorous proofs? Or do we in-

3This trend continues today. For example, theoretical physicists studying subjects
like quantum mechanics are using exploratory mathematics that lies far beyond what
has been proved to be true.

4The cavalier treatment of the convergence of infinite series had particularly mislead-
ing consequences.

5This is not to say that we understand mathematics just because it has been proven
to be true. A proof may not or may only partly explain why a fact is true.
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terpret “ultimately” as meaning proof is the final goal, but we accept that
there are valid and useful mathematical arguments that are not yet proofs?

Understanding the historical roots of the gulfs between pure and ap-
plied and between rigorous and experimental mathematics does not excuse
the ignorance and prejudice that keep them in place. Nothing good for
either mathematics or science results from these divisions. But there are
many bad consequences. Principally, the vast majority of research involv-
ing mathematics is conducted by non-mathematicians studying scientific
and engineering problems. Mathematicians who confine themselves only
to mathematics that is provably true, limit themselves to a small part of
the mathematical world, consequently losing a rich source of mathematical
problems and intuition. At the same time, scientists and engineers in many
fields sorely miss the expertise of mathematicians who could help guide
them in the exploratory world of applied mathematics.



Part III

You Want Analysis?
We’ve Got Your Analysis

Right Here.
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32
Notions of Continuity and
Differentiability

In the third part of this book, we look more deeply into the properties of
functions. We begin in this chapter by considering different ways to define
continuity and differentiability and the relations between the different no-
tions. Up to this point, we have employed somewhat restrictive notions of
continuity and differentiability in order to make it possible to use construc-
tive arguments to prove major theorems. By considering weaker notions of
these concepts, we include more functions in the discussion and also dis-
cover some important properties. However, we lose the possibility of using
constructive analysis in many cases.

Beginning with this chapter, the discussion takes on a decidedly theoret-
ical flavor and requires more sophistication1 to read. But, a mastery of the
material in this part opens up the doors to the entire world of analysis.

32.1 A General Notion of Continuity

Recall that the intent in defining Lipschitz continuity was to classify a
function as varying smoothly in the sense that small changes in input lead to
small changes in output. The Lipschitz continuous condition |f(x)−f(y)| ≤
L|x − y| quantifies the maximum amount a function’s value can change for
a given change in input. We based the notion of Lipschitz continuity on the
behavior of linear functions.

1Translation: patience and frustration.
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But Lipschitz continuity is not the most general way to express the idea
that f should vary smoothly.

Example 32.1. Consider x1/3, which is Lipschitz continuous on any
bounded interval that is bounded away from 0. Checking the Lipschitz
condition at 0 gives

|x1/3 − 01/3| = |x|1/3.

For any constant L,

|x|1/3 > L|x| for all x sufficiently small; (32.1)

hence x1/3 cannot be Lipschitz continuous on any interval that contains
0 or has 0 as an endpoint.

On the other hand, |x|1/3 can be made as close to 0 as desired by making
|x| small. So x1/3 does vary smoothly as x passes by 0. We can see this
from the plot Fig. 32.1.

-1 x

-1.5

-1.0

0.0

0.5

1.0

1.5

1

x1/3

FIGURE 32.1. Plot of x1/3.

We make a general definition of continuity that covers such cases.2 We
say that f is continuous at x̄ if given any sufficiently small ε > 0 there is
a δ > 0 such that

|f(x) − f(x̄)| < ε for all x with |x − x̄| < δ.

In words, this says that the change in value of f(x) from f(x̄) can be made
arbitrarily small by taking x sufficiently close to x̄. Note that f(x) needs
to be defined for all x sufficiently close to x̄. Note also that δ = δx̄,ε usually
depends on both x̄ and ε.

2Bolzano, Cauchy, and Weierstrass all used this notion of continuity. The notation is
due to Weierstrass.
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Example 32.2. We show that x2 is continuous at 1. Given ε > 0, we
want to show |x2−1| < ε for all x close to 1. Now |x2−1| = |x+1||x−1|
so restricting x to [0, 2] means that |x2−1| ≤ 3|x−1|. Hence if we further
restrict x so that 3|x − 1| < ε, then

|x2 − 1| ≤ 3|x − 1| < ε.

We can do this by choosing δ = ε/3.

Example 32.3. We show that x1/3 is continuous at 0. Given ε > 0 we
want to achieve |x1/3 − 01/3| = |x|1/3 < ε for all x close to 1. Now this
is true if

(
|x|1/3

)3
< ε3 or if |x| < ε3 = δ.

The last example shows that continuity is somehow a “weaker” property
than Lipschitz continuity.

32.2 Properties of Continuous Functions

The general properties of continuous functions follow almost immediately
from previous discussion. This is clear after the following theorem, which
presents an alternative formulation of continuity.

Theorem 32.1 f is continuous at x̄ if and only if f(x̄) is defined and
limx→x̄ f(x) = f(x̄).

We leave it as a problem (Problem 32.4) to show this using Theorem 12.5.

Example 32.4. The function f(x) = (x2 − 1)/(x − 1) has a limit at
x̄ = 1 but is not continuous there because f(1) is undefined.

From this result, it follows that:

Theorem 32.2 Suppose f and g are continuous at x̄ and c is a number.
Then f + cg and fg are continuous at x̄. If g(x̄) �= 0, then f/g is also
continuous at x̄.

We leave the proof of this as a problem (Problem 32.5).
Finally, we also leave as a problem (Problem 32.6) to prove a result about

the composition of continuous functions.

Theorem 32.3 If g is continuous at x̄ with ȳ = g(x̄) and f is continuous
at ȳ, then f ◦ g is continuous at x̄.

32.3 Continuity on an Interval

As before, we say that a function is continuous on an interval I if it is
continuous at every point in I.
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Example 32.5. We show that x2 is continuous on (−∞,∞). Choose
a real number x̄. Given ε > 0, we want to achieve |x2 − x̄2| < ε for
all x close to x̄. Now |x2 − x̄2| = |x + x̄||x − x̄| so if we restrict x to
[x̄ − 1, x̄ + 1], then |x2 − x̄2| ≤ (2|x̄| + 1)|x − x̄|. Hence, if we further
restrict x so that (2|x̄| + 1)|x − x̄| < ε, then

|x2 − x̄2| ≤ (2|x̄| + 1)|x − x̄| < ε.

We can do this by choosing δ = ε/(2|x̄| + 1).

Example 32.6. The step function I(t) is discontinuous at t = 0 and
t = 1 but is continuous on (−∞, 0), (0, 1), and (1,∞).

Example 32.7. The function defined on [0, 1] by

Q(x) =

{
0, x irrational,
1, x rational,

is discontinuous at every point in [0, 1]. Let x be any point in [0, 1],
then Q takes on the values 0 and 1 for points arbitrarily close to x.

We explore some properties of functions that are continuous on an inter-
val. First, it is straightforward to alter the proof of the Bisection Algorithm
so that the theorem applies to continuous functions. We leave the details
as a problem (Problem 32.10). We obtain:

Theorem 32.4 Bolzano’s Theorem If f is continuous in an interval
[a, b] and f(a) and f(b) have opposite signs, then f has at least one root
in (a, b) and the Bisection Algorithm starting with x0 = a and X0 = b
converges to a root of f in (a, b)

The Intermediate Value Theorem follows immediately.

Theorem 32.5 Intermediate Value Theorem Suppose that f is con-
tinuous on an interval [a, b]. Then for every d between f(a) and f(b) there
is at least one point c between a and b such that f(c) = d.

Another interesting fact is that unlike Lipschitz continuity, continuity
carries over to an inverse function without qualification, We give the proof
of the following theorem as an exercise (Problem 32.11).

Theorem 32.6 Inverse Function Theorem Let f be a continuous mono-
tone function on [a, b] with α = f(a) and β = f(b). Then f has a continuous
monotone inverse function defined on [α, β]. For any x in (α, β), the value
of f−1 can be computed by applying the Bisection Algorithm to compute the
root y of f(y) − x = 0 starting on the interval [a, b].

Example 32.8. The function x3 is Lipschitz continuous and continuous
on [0, 1], but its inverse function x1/3 is only continuous on [0, 1] and
not Lipschitz continuous.
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We have two notions of continuous behavior on an interval: continuity
and Lipschitz continuity. Lipschitz continuity is apparently the “stronger”
notion because Lipschitz continuity implies continuity and in particular
Lipschitz continuous functions can vary less abruptly than merely contin-
uous functions. We spend the rest of this section investigating the ways in
which the Lipschitz condition is more restrictive.

Actually, there are two ways in which the Lipschitz condition further
restricts the behavior of a continuous function. First, it insures that the
continuous behavior is uniform across the interval. To be more precise, we
recall that if f is continuous on an interval I, then given x̄ in I and ε > 0, we
can find a δx̄,ε such that for all x in I with |x− x̄| < δx̄,ε, |f(x)− f(x̄)| < ε.
This is not a uniform notion of continuity on I because δx̄,ε depends on x̄
as well as ε.

Example 32.9. Recall that in Example 32.5, we showed x2 is continu-
ous on (−∞,∞) with modulus of continuity δx̄,ε = ε/(2|x̄| + 1) for any
x and ε > 0.

Example 32.10. We show the function 1/x is continuous on (0,∞).
Choosing x, x̄ in (0,∞), we compute

∣
∣
∣
∣
1
x

− 1
x̄

∣
∣
∣
∣ =

|x − x̄|
|x||x̄| .

Things are a little complicated in this example because the right-hand
side depends on x as well as x̄ and |x − x̄|. We can get rid of the
dependence on x by assuming that x is restricted so |x − x̄| < |x̄|/2, or
in particular so x > x̄/2. Then

∣
∣
∣
∣
1
x

− 1
x̄

∣
∣
∣
∣ =

|x − x̄|
|x||x̄| ≤ 2|x − x̄|

|x̄|2 .

Given ε > 0, if we assume in addition that |x − x̄| < |x̄|2ε/2, then
∣
∣
∣
∣
1
x

− 1
x̄

∣
∣
∣
∣ ≤

2|x − x̄|
|x̄|2 < ε.

Hence, given any ε > 0, ∣
∣
∣
∣
1
x

− 1
x̄

∣
∣
∣
∣ < ε

for all x > 0 satisfying

|x − x̄| < δx̄,ε = min
{
|x̄|/2, |x̄|2ε/2

}
=

|x̄|
2

min {1, |x̄|ε} .

In the case when f is continuous on an interval I and we can find a
δx̄,ε = δε as above that is independent of x in I, we say that f is uniformly
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continuous on I. More precisely, f is uniformly continuous on an interval
I if for every ε > 0 there is a δ > 0 such that |f(x)−f(y)| < ε for all x and
y in I with |x − y| < ε. The important point is that the degree to which f
can vary with a given change in input is the same regardless of the location
of the input. The notion of uniform continuity was originally formulated
by Heine.3

Example 32.11. A linear function f(x) = ax + b is uniformly contin-
uous on (−∞,∞).

Example 32.12. We show that x2 is uniformly continuous on any
bounded interval [a, b]. Indeed, Example 32.5 shows this is true since
2|x̄| + 1 ≤ 2 max{|a|, |b|} + 1 for any x̄ in [a, b]. Note that x2 is not
uniformly continuous on (−∞,∞).

Example 32.13. The function x−1 is uniformly continuous on any
interval [a, b] with a > 0. Indeed from Example 32.10, given any ε > 0
if we choose δ = εa2, then for x and y in [a, b] with |x− y| < δ, we have

∣
∣
∣
∣
1
x

− 1
y

∣
∣
∣
∣ < ε.

However, x−1 is not uniformly continuous on any interval that has 0 as
an endpoint (see Fig. 32.2).

A function f that is Lipschitz continuous on an interval I is certainly
uniformly continuous on I since

|f(x) − f(y)| ≤ L|x − y| < ε

provided |x − y| < δ = ε/L. But, Lipschitz continuity is more restrictive
than uniform continuity in general because it places a limit on how quickly a
function can change with a change in input by requiring a linear relationship
between ε and δ. For general continuous functions, the dependence of δ on ε
can be more complicated. For example, we can make a useful generalization
of the notion of Lipschitz continuity due to Hölder4 by assuming a power
relationship between δ and ε. We say that f is Hölder continuous on an
interval I if there are constants L and α > 0 such that

|f(x) − f(y)| ≤ L|x − y|α for all x, y in I.

3Heinrich Eduard Heine (1821–1881) was a German mathematician. He discovered
some important results in analysis, including some fundamental properties of sets of real
numbers.

4Otto Ludwig Hölder (1859–1937) was a German mathematician whose main contri-
butions were in group theory. However, he was interested in Fourier series and discovered
the important inequality that bears his name.
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ε

ε

δ δ

1/x

FIGURE 32.2. The function 1/x is not uniformly continuous on any interval that
has 0 as an endpoint. The plot of 1/x indicates that a change in the value of 1/x
of size ε requires a smaller change of size δ in the value of x for smaller values of
x.

We call α the Hölder exponent of f . A Lipschitz continuous function is
Hölder continuous with exponent 1. A Hölder continuous function on I is
uniformly continuous on I since

|f(x) − f(y)| ≤ L|x − y|α < ε

as long as |x − y| < δ = L−1/αε1/α.

Example 32.14. As an example, we verify that x1/2 is Hölder contin-
uous with exponent 1/2 in [0,∞). For x and y in [0,∞), |

√
x − √

y| ≤
|
√

x +
√

y|. Multiplying by |
√

x − √
y|, we get |

√
x − √

y|2 ≤ |x − y|, or
in other words |

√
x−√

y| ≤ |x− y|1/2. Recall that x1/2 is not Lipschitz
continuous on [0,∞).

Some of the nice properties of Lipschitz continuous functions result from
the fact they are uniformly continuous. For example, recall that a function
that is Lipschitz continuous on a bounded interval is bounded. In fact, the
boundedness is a consequence of being uniformly continuous. Suppose that
f is uniformly continuous on a bounded interval I. We consider the case that
I = [a, b] is closed and leave the case when I is open as Problem 32.20. The
proof is based on constructing a mesh on [a, b]. Set x0 = a and fix ε > 0. By
assumption, there is a δ > 0, independent of x0, such that |f(x)−f(x0)| < ε
for all x0 ≤ x < x0 + δ. This means that

|f(x)| ≤ |f(x0)| + ε for x0 ≤ x ≤ x0 + δ.

We set x1 = x0 + δ and the same argument shows that

|f(x)| ≤ |f(x1)| + ε for x1 ≤ x ≤ x1 + δ.
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We continue this process to define the mesh. If we set n to be the integer
that is just greater than or equal to (b − a)/δ, so that (n − 1)δ < b ≤ nδ,
and define a mesh with xi = a + i × δ for i = 0, 1, · · · , n − 1 and xn = b.
Note that |xn − xn−1| ≤ δ. Now,

|f(x)| ≤ |f(xi)| + ε for xi ≤ x ≤ xi+1

for i = 0, 1, · · ·n − 1. We illustrate in Fig. 32.3. But this means that |f(x)|

x0 x1 x2 x3 xn-1 xn
...

f(x0)

f(x1)

f(x2)

f(xn-1)

ε

−ε

FIGURE 32.3. Illustration of the proof of Theorem 32.7.

is bounded by the maximum of {|f(x0)|+ε, · · · , |f(xn−1)|+ε}, which exists
since this is a finite set of numbers. Once the case of an open interval is
considered (Problem 32.20), we have proved the following theorem:

Theorem 32.7 A function that is uniformly continuous on a bounded in-
terval is bounded on the interval.

It is essential for this proof that the interval is bounded and that the
function is uniformly continuous.

Example 32.15. The function f(x) = 1/x is continuous on (0, 1) but
not uniformly continuous. Neither is it bounded.

Example 32.16. The function y = 2x is uniformly continuous on
(−∞,∞) but is not bounded.

We explore more properties of uniformly continuous functions below.

32.4 Differentiability and Strong Differentiability

We have defined both strong differentiability and differentiability of a func-
tion f . These are not equivalent. The definitions imply that if f is strongly
differentiable at x̄, it is necessarily differentiable. However, differentiability
does not imply strong differentiability.
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Example 32.17. The function f(x) = x4/3 is differentiable at 0 since
f ′(x) = 4

3x1/3 but is not strongly differentiable. For if we try to compute
the error of the linearization, we get

∣
∣
∣x4/3 − (0 + 0(x − 0))

∣
∣
∣ = |x|4/3.

Given any L > 0, |x|4/3 > L|x|2 for all x sufficiently small; hence, the
error of the linearization fails to be sufficiently small.

So it is interesting to compare and contrast the two kinds of differentiability.
If f is strongly differentiable at a point x̄, then it is “Lipschitz contin-

uous” at x̄ in the sense of Theorem 16.1. Similarly if f is differentiable at
x̄, then it is continuous at x̄. In fact, this follows immediately from the
definition because in order for

lim
x→x̄

f(x) − f(x̄)
x − x̄

= f ′(x̄)

to converge, limx→x̄ f(x) − f(x̄) = 0, which means f is continuous at x̄.
Next, we consider the smoothness of the derivative of a function that is

differentiable on an interval. It turns out that neither being differentiable
or strongly differentiable on an interval is sufficient to guarantee that f ′ is
continuous. We explain why with an example.

Example 32.18. Consider the continuous function

f(x) =

{
x2 sin(1/x), x �= 0,

0, x = 0.
(32.2)

We plot f in Fig. 32.4.

For x �= 0, f ′(x) = − cos(1/x) + 2x sin(1/x). While defined for x �= 0,
limx→0 f ′(x) is undefined because − cos(1/x) oscillates faster and faster,
taking on all values between −1 and 1, as x decreases.

However if we compute the derivative at 0 using the definition,

f ′(0) = lim
x→0

x2 sin(1/x) − 0
x − 0

= lim
x→0

x sin(1/x) = 0,

we find it is defined and f ′(0) = 0. Moreover, it is straightforward to
show that f is strongly differentiable at each x, including 0. Hence,
f is strongly differentiable on any interval containing 0 but f ′ is not
continuous on such an interval.

On the other hand, we also proved above that a function that is uniformly
strongly differentiable on an interval has a Lipschitz continuous derivative
on the interval. So the uniformity must convey some extra smoothness on
the derivative. To understand this, we add uniformity to the definition of
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FIGURE 32.4. Plot of f defined in (32.2).

differentiability. We say that f is uniformly differentiable on an interval
I if given any ε > 0 there is a δ > 0 such that

∣
∣
∣
∣
f(y) − f(x)

y − x
− f ′(x)

∣
∣
∣
∣ < ε for all x and y in I with |x − y| < δ.

This is the direct analog of the definition of uniform continuity. Note that
if f is uniformly strongly differentiable on an interval, then it is uniformly
differentiable on the interval, but the converse is generally not true.

Example 32.19. From the discussion above, it follows that x2 is uni-
formly differentiable on any bounded interval [a, b].

Example 32.20. The function 1/x is differentiable on (0, 1) but is not
uniformly differentiable on (0, 1).

We assume that f is uniformly differentiable on an interval I and com-
pute the change in f ′ between two points x and y in I,

|f ′(y) − f ′(x)| =
∣
∣
∣
∣f

′(y) − f(y) − f(x)
y − x

+
f(y) − f(x)

y − x
− f ′(x)

∣
∣
∣
∣

≤
∣
∣
∣
∣f

′(y) − f(y) − f(x)
y − x

∣
∣
∣
∣+
∣
∣
∣
∣
f(y) − f(x)

y − x
− f ′(x)

∣
∣
∣
∣ .

By assumption, given any ε > 0 we can find a δ > 0 such that each of the
two quantities on the right are smaller than ε/2 for any x and y in I with
|x − y| < δ. This proves the following:

Theorem 32.8 A uniformly differentiable function on an interval has a
uniformly continuous derivative on the interval.
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Note that this theorem does not guarantee that f ′ is Lipschitz continuous.
Some of the other nice properties of uniformly strongly differentiable

functions result from the uniformity. One of the most important is that the
Mean Value Theorem holds for uniformly differentiable functions.

Theorem 32.9 Mean Value Theorem Suppose that f is uniformly
differentiable on an interval [a, b]. There is at least one point c in [a, b]
such that

f(b) − f(a)
b − a

= f ′(c).

The proof of this using an algorithm for approximating the point c is nearly
the same as the proof for uniformly strongly differentiable functions. We
give this proof as an exercise (Problem 32.22).

Recall that uniformly strongly differentiable functions are also Lipschitz
continuous. This is also a consequence of the uniformity. Suppose that f is
uniformly differentiable on a closed interval [a, b]. The Mean Value Theorem
says that for any two points x and y in [a, b], there is a point c in [a, b] such
that

|f(x) − f(y)| = |f ′(c)| |x − y|.

Now f ′ is uniformly continuous on [a, b]. Theorem 32.7 implies that it is
bounded, i.e., there is an M such that |f ′(x)| ≤ M for all x in [a, b]. Hence,
|f(x) − f(y)| ≤ M |x − y| for all x and y in [a, b].

We summarize the results on the smoothness of a differentiable function
as a theorem.

Theorem 32.10 A function that is differentiable on an interval is contin-
uous on the interval. A function that is uniformly differentiable on a closed
interval is Lipschitz continuous on the interval.

32.5 Weierstrass’ Principle and Uniform
Continuity

In the discussion above, we saw that uniformity on an interval is a strong
condition with many good consequences. Therefore, the following theorem,
due to Dirichlet, is quite remarkable.

Theorem 32.11 Principle of Uniform Continuity A function that
is continuous in a closed, bounded interval is uniformly continuous in that
interval.

One good thing about this theorem is that it is often much easier to show
a function is continuous at each point in an interval than to show it is
uniformly continuous on the interval. But it is important to note that the
interval must be closed.
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FIGURE 32.5. Plot of some values of {(−1)n + 1/n}.

Example 32.21. The function f(x) = 1/x is continuous on (0, 1) but
is not uniformly continuous on (0, 1) (or on [0, 1] for that matter, but
then f is not defined at 0).

The proof of this theorem uses a remarkable and important fact about se-
quences of numbers called Weierstrass’ principle. The Weierstrass principle
is concerned with sequences that do not necessarily converge but nonethe-
less have some kind of regular behavior.

Example 32.22. The sequence {n2} does not converge because the
terms grow without bound as n increases; i.e., it diverges to infinity.

Example 32.23. The sequence {(−1)n + 1/n} = {0, 3/2,−2/3, 5/4,
−4/5, 7/6,−6/7, 9/8,−8/9, 11/10, · · · } also fails to converge since the
terms fail to approach a single number (see Fig. 32.5). On the other
hand, the odd terms {0,−2/3,−4/5,−6/7,−8/9, , · · · } do approach −1
while the even terms {3/2, 5/4, 7/6, 9/8, 11/10, · · · } approach 1.

Example 32.24. The sequence {sin(n)} clearly does not converge.
What exactly happens is hard to determine (see Fig. 32.6).

We want to distinguish sequences that have the property that some part
converges to a limit. Given a sequence {xn}∞

n=1, a subsequence is a se-
quence of the form {xnk

}∞
k=1 = {xn1 , xn2 , · · · } where n1 < n2 < n3 < · · ·

is a subset of the natural numbers. We also say that a subsequence is ob-
tained by extracting an infinite number of terms from the sequence {xn}.
We say that x is a limit point of a sequence {xn} if we can extract a
subsequence {xnk

} that converges to x in the usual sense.

Example 32.25. The sequence {n2} has no limit points because any
subsequence grows without bound.
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Example 32.26. The sequence {(−1)n + 1/n} = {0, 3/2,−2/3, 5/4,
−4/5, 7/6,−6/7, 9/8,−8/9, 11/10, · · · } has the two limit points −1 and
1 (see Fig. 32.5). The subsequence obtained by taking the odd terms
converges to −1 and the subsequence obtained by taking the even terms
converges to 1.

Another way to characterize a limit point is the following observation.

Theorem 32.12 A point x is a limit point of {xn} if and only if every
open interval that contains x contains a term in {xn} distinct from x.

Proving this is a good exercise (Problem 32.25).
Note that a limit point x of {xn} is not necessarily a limit of the sequence

{xn}, which indeed may not even converge as in the example above. On
the other hand, if {xn} converges to a limit x, then x is necessarily a limit
point of {xn}, and, in fact, every subsequence of {xn} necessarily converges
to x. We leave the proof as Problem 32.23.

Weierstrass’ principle talks about the existence of limit points:

Theorem 32.13 Weierstrass’ Principle Every bounded sequence has
at least one limit point, i.e., has at least one convergent subsequence.

The proof is a modification of the argument used for convergence of the
Bisection Algorithm. Since the sequence {xn} is bounded, the elements
are contained in a bounded interval [y1, Y1]. Starting with this interval, we
construct a sequence of nested intervals [yi, Yi] with |Yi−yi| = 1

2 |Yi−1−yi−1|
each of which contains infinitely many points of {xn}. We know that [y1, Y1]
contains infinitely many points of {xn}. Assume that we have [yi−1, Yi−1]
containing infinitely many points of {xn}. Define the midpoint mi−1 =
(Yi−1+yi−1)/2. At least one of the two intervals [yi−1, mi−1] or [mi−1, Yi−1]
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must contain infinitely many points of {xn}. We set [yi, Yi] to be that
interval.

Now the sequences {yi} and {Yi} are Cauchy sequences and therefore
converge to a common limit x. Any open interval containing x necessarily
contains all intervals [yi, Yi] for all sufficiently large i, and hence contain
infinitely many xn. Hence x is a limit point of {xn}.5

Example 32.27. Remarkably, the sequence {sin(n)} shown in Fig. 32.6
must contain at least one convergent subsequence.

Like the Mean Value Theorem, Weierstrass’ principle is useful for proving
many interesting facts. Though, it is often first recast into other equivalent
forms. For example, one useful consequence of Weierstrass’ principle is the
following theorem about non-decreasing sequences {xn} with x1 ≤ x2 ≤ · · ·
and non-increasing sequences {xn} with x1 ≥ x2 ≥ · · · .
Theorem 32.14 A bounded non-decreasing or non-increasing sequence {xn}
converges to a limit.

We leave the proof as an exercise (Problem 32.26).
Another important consequence has to do with the existence of “tightest”

bounds on a bounded set of numbers. Recall that in Chapter 8, we defined
a set of numbers A to be bounded with size less than or equal to b − a if
the numbers in the set are contained in a finite interval [a, b], and if we can
find the smallest interval [a, b] with this property, then we define the size
of A to be |A| = b−a. This begs the question of whether or not the smallest
interval that contains a bounded set of numbers can be determined. This
has two components: determining a and b. We call any number greater
than the members in a set an upper bound on the set and likewise any
number smaller than the members in a set a lower bound on the set. In
mathematical terms, a is a lower bound for a set A if a ≤ x for all x in
A, and b is an upper bound for a set A if x ≤ b for all x in B. If there is
a smallest upper bound on a set A, we call this number the least upper
bound or supremum of A and write it as sup A. Likewise, if there is a
largest lower bound on a set A, we call this number the greatest lower
bound or infimum of A and write inf A. Mathematically,

lower bounds x ≤ inf A ≤ y in A ≤ sup A ≤ upper bounds z.

5This proof of Weierstrass’ principle is rather deceptive in the sense that it does not
give an algorithm for computing the limit point despite its close resemblance to proof for
the Bisection Algorithm. The critical difference between the two proofs is the decision
process for choosing the subintervals. The point is that we cannot verify that a given
interval contains an infinite number of terms of a sequence by counting sequentially. We
always have to stop at some point in practice and at that point we do not know how
many might be left: a finite number or an infinite number. Recall that we pointed out
that a strict constructivist would raise a similar objection to the definition of a strict
inequality.
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If we can find inf A and supA, then the size of A is simply |A| = supA−
inf A. Note that if either supA or inf A exists, then it must either be a
member of A or the limit of some sequence of points in A. For example,
consider sup A. If it is not in A, then we must be able to find numbers in
A arbitrarily close to supA, since otherwise we could get upper bounds of
A smaller, then sup A. This means in particular, we can find a sequence
of numbers {xn} in A with | sup A − xn| < 1/n and so {xn} converges to
sup A.

Example 32.28. The set of numbers A = {1/n} for natural numbers
n is bounded with supA = 1 being a member of A and inf A = 0 not
in A.

When supA is in A, we call sup A the maximum of A and write supA =
max A. Likewise when inf A is in A, we call inf A the minimum of A and
write inf A = min A.

Weierstrass’ principle implies a result originally proved by Bolzano:

Theorem 32.15 Least Upper Bound Principle A bounded set of
numbers has a greatest lower bound and a least upper bound.

We prove the existence of the least upper bound and leave the greatest
lower bound as an exercise. Assuming that A is a bounded set, we define bn

to be the smallest rational upper bound on A with denominator 2n. Note
that only a finite number of numerators have to be checked to determine
bn. Then for any x in A, we have

x ≤ bn+1 ≤ bn ≤ b1 for all n ≥ 1.

The sequence {bn} is therefore bounded and non-increasing and thus must
have a limit b. Now b must be an upper bound for A because otherwise some
of the bn must fail to be upper bounds since the bn become arbitrarily close
to b. Moreover, b must be less than or equal to any other upper bound by
the construction of {bn}.

With these theorems in hand, we turn to proving some facts about con-
tinuous functions. To begin with, we use Weierstrass’ principle to prove
Theorem 32.11. Suppose that f is continuous in the bounded interval [a, b].
If f is not uniformly continuous, then there is an ε > 0 such that there
exist points x and y in [a, b] arbitrarily close together yet |f(x)−f(y)| ≥ ε.
In particular, given any natural number n we can find points xn and yn in
[a, b] for which |f(xn) − f(yn)| ≥ ε and |xn − yn| < 1/n.

The sequence {xn} is bounded since it is contained in [a, b] and The-
orem 32.13 implies that it contains a subsequence {xnk

} that converges
to a limit point x. We claim that x must be contained in [a, b]. Suppose,
for example, that x > b. Then |x − xnk

| ≥ |x − b| for any term xnk
and

hence {xnk
} could not converge to x.6 Because the terms in {yn} become

6It is essential for the interval [a, b] to be closed for this to be true.
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arbitrarily close to the terms in {xn} as n increases, there is a subsequence
{ymk

} of {yn} that also converges to x.
Since f is continuous on [a, b], we must have

lim
k→∞

f(xnk
) = lim

k→∞
f(ymk

) = f(x).

But this contradicts the assumption that |f(xn) − f(yn)| ≥ ε for all n.
By Theorem 32.7, it follows that a continuous function on a closed inter-

val is bounded. But we can say even more. Suppose that f is continuous
on the interval [a, b]. Then the set of numbers A = {f(x), a ≤ x ≤ b} is
bounded. It therefore has a least upper bound M = sup A and a greatest
lower bound m = inf A. By the comment above, M and m are the limits
of some sequences of points in A. For example, there is a sequence {xn}
with xn in [a, b] such that limn→∞ f(xn) = M . But, {xn}, being bounded,
must contain a convergent subsequence {xnk

} converging to a limit point
x, which is in [a, b]. By the continuity of f , f(x) = limk→∞ f(xnk

) = M . In
short, f actually takes the value supa≤x≤b f(x) at some point in [a, b]. Like-
wise, f also takes the value infa≤x≤b f(x) at some point in [a, b]. When f
takes the value supx in A f(x) we call this the maximum value of f on A.
Likewise, when f takes the value infx in A f(x) we call this the minimum
value of f on A. We have proved a result originally due to Weierstrass:

Theorem 32.16 Extremum Principle for a Continuous Function
A continuous function on a closed interval is bounded and attains its max-
imum and minimum values at some points in the interval.

Using this result, we can prove another version of the Mean Value The-
orem that applies to a larger class of functions, albeit at the expense of a
proof that does not give a computational algorithm. The theorem is:

Theorem 32.17 Mean Value Theorem Suppose f is continuous on an
interval [a, b] and differentiable on (a, b). Then there is a point c in (a, b)
such that

f ′(c) =
f(b) − f(a)

b − a
.

It is a good idea to compare this theorem to Theorem 21.1. As before, this
theorem follows from the nonconstructive form of Rolle’s theorem (Prob-
lem 32.28).

Theorem 32.18 Rolle’s Theorem Suppose g is continuous on an in-
terval [a, b], differentiable on (a, b), and g(a) = g(b) = 0. Then there is a
point c in (a, b) such that g′(c) = 0.

We prove Theorem 32.18. Since g is continuous on [a, b], it attains its
maximum M and minimum m values at some points in [a, b]. Since g(a) = 0,
we must have m ≤ 0 ≤ M . Now if m = M , it follows that g(x) = 0 for all
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x and so g′(x) = 0 for all x and we are done. So we suppose that M > 0
and we let c be the point in (a, b) with g(c) = M .7

Since g(x) ≤ g(c) = M for all x in [a, b], we have g(x) − g(c) ≤ 0 for all
x in [a, b]. Thus

g(x) − g(c)
x − c

{
≥ 0, x < c,

≤ 0, x > c.

Letting x approach c first from below and then from above, we conclude
that g′(c) ≤ 0 and g′(c) ≥ 0. Hence, g′(c) = 0 as desired.

32.6 Some Differentiability Equivalences

We conclude by using these results to find equivalences between the various
notions of differentiability.

Above, we show that if f is uniformly differentiable on an interval, then
f ′ is uniformly continuous on the interval. Now, we assume that f is dif-
ferentiable on an interval I and moreover f ′ is uniformly continuous on I.
For x and y in I, x �= y, we compute the error of the linearization

|f(x) − (f(y) + f ′(y)(x − y))| = |f(x) − f(y) − f ′(y)(x − y)|.

By Theorem 32.17, there is a point c between x and y such that

|f(x) − (f(y) + f ′(y)(x − y))| = |f ′(c)(x − y) − f ′(y)(x − y)|
= |f ′(c) − f ′(y)| |x − y|.

Division yields
∣
∣
∣
∣
f(x) − f(y)

x − y
− f ′(y)

∣
∣
∣
∣ = |f ′(c) − f ′(y)|.

Because f ′ is uniformly continuous on I, for any ε > 0 there is a δ > 0 such
that ∣

∣
∣
∣
f(x) − f(y)

x − y
− f ′(y)

∣
∣
∣
∣ = |f ′(c) − f ′(y)| < ε

for all x and y in I with |x − y| < δ.8 This shows that f is uniformly
differentiable and we have proved the following extension of Theorem 32.8:

Theorem 32.19 A function is uniformly differentiable on an interval if
and only if it is differentiable on the interval and the derivative is uniformly
continuous on the interval.

7Note that c �= a or b.
8This uses the fact that c is between x and y.
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As we said above, differentiability on an interval does not imply strong
differentiability on the interval. But we can prove the following equivalence.

Theorem 32.20 A function is uniformly strongly differentiable on an in-
terval if and only if it is uniformly differentiable on the interval and its
derivative is Lipschitz continuous on the interval.

We already know that if a function f is uniformly strongly differentiable,
then it is uniformly differentiable and its derivative is Lipschitz continuous.
The converse is a consequence of the Mean Value Theorem. Suppose the
Lipschitz constant of f ′ is K. We compute the error of the linearization at
a point x̄ in [a, b],

|f(x) − (f(x̄) + f ′(x̄)(x − x̄))| = |f(x) − f(x̄) − f ′(x̄)(x − x̄)|.

By the Mean Value Theorem, there is a point c between x and x̄ such that

|f(x) − (f(x̄) + f ′(x̄)(x − x̄))| = |f ′(c)(x − x̄) − f ′(x̄)(x − x̄)|
= |f ′(c) − f ′(x̄)| |x − x̄|.

The Lipschitz condition implies

|f(x) − (f(x̄) + f ′(x̄)(x − x̄))| ≤ K|x − x̄|2.

This gives the conclusion.
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Chapter 32 Problems

Problems 32.1–32.9 are concerned with the general notion of continuity.

32.1. Prove the claim about (32.1).

32.2. Prove that
√

x is continuous at 0 and at 1.

32.3. Prove that x3 is continuous at 2.

32.4. Prove Theorem 32.1.

32.5. Prove Theorem 32.2.

32.6. Prove Theorem 32.3.

32.7. Prove that
√

x is continuous on [0, ∞).

32.8. Prove that x3 is continuous on (−∞, ∞).

32.9. Suppose f is continuous on an interval [a, b] and only takes on rational
values. Prove f is constant.

Problems 32.10–32.20 have to do with continuity on an interval.

32.10. Prove Theorem 32.4.

32.11. Prove Theorem 32.6.

32.12. Verify the claims in Example 32.11.

32.13. Verify the claims in Example 32.12.

32.14. Verify the claims in Example 32.13.

32.15. Consider f(x) = 1/x on (0, 1). Given any ε > 0 show there are points x
and y in (0, 1) arbitrarily close such that |f(x) − f(y)| ≥ ε. Hint: Choose δ > 0.
Set x = δ/4 and y = 3δ/4. Show that |f(x)−f(y)| ≥ ε for all δ sufficiently small.

32.16. Prove that x3 is continuous on any bounded interval.

32.17. Prove that the function

f(x) =






1
log2 |x| , x �= 0,

0, x = 0,

is continuous but not Hölder continuous on [−.5, .5]. Hint: Consider what happens
at zero using the sequence xn = 2−n/α for α > 0.
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32.18. Assume that f(x) is defined on (−∞, ∞) and that

|f(x) − f(y)| ≤ (y − x)2

for all x and y. Prove that f is constant.

32.19. State and prove a theorem about the uniform continuity of the compo-
sition of two uniformly continuous functions.

32.20. Finish the proof of Theorem 32.7 by showing that it also holds for an
interval I = (a, b). Hint: The problem now is defining the initial mesh point
x0, which cannot be a. By assumption, given ε > 0 there is a δ > 0 such that
|f(x) − f(y)| < ε for all x and y in I with |x − y| < δ. Choose x0 to be a point in
(a, a + δ). Now define the rest of the mesh accordingly. Take care about defining
xn.

Problems 32.21 and 32.22 have to do with differentiability.

32.21. Show that f defined in (32.2) is strongly differentiable at every x.

32.22. Modify the proof of Theorem 21.1 to prove Theorem 32.9. Hint: The
crucial point is to prove that if g is uniformly differentiable on an interval [a, b]
containing a point y and g′(y) > 0 there is a point ỹ > y such that g(ỹ) > g(y).
Similarly, there is a point ỹ < y with g(ỹ) < g(y) and corresponding results when
g′(y) < 0. To show this, consider that for any ε > 0 there is a δ > 0 such that for
all ỹ > y and |ỹ − y| < δ,

∣
∣
∣
∣
g(ỹ) − g(y)

ỹ − y
− g′(y)

∣
∣
∣
∣ < ε.

From this deduce that for all such ỹ,

(g′(y) − ε)(ỹ − y) + g(y) < g(ỹ) < (g′(y) + ε)(ỹ − y) + g(y).

Now choose ε = g′(y)/2 and draw the conclusion.

Problems 32.23–32.30 have to do with Weierstrass’ principle and related
results.

32.23. Prove that if {xn} converges to a limit x, then x is necessarily a limit
point of {xn}, and, in fact, every subsequence of {xn} necessarily converges to x.

32.24. Draw the sequence of intervals generated by the proof of Weierstrass’
principle for the sequence {1 − 1/n}, n ≥ 1.

32.25. Prove Theorem 32.12.

32.26. Use Theorem 32.13 to prove Theorem 32.14.

32.27. Prove that a bounded set of numbers has a greatest lower bound.

32.28. Show that Theorem 32.17 follows from Theorem 32.18.
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32.29. Assume that f is continuous on [a, b] and differentiable on (a, b). Prove
that f ′(c) = 0 at any point c in (a, b) where f attains is maximum or minimum
value.

32.30. Prove the following theorem:

Theorem 32.21 Integral Mean Value Theorem Suppose f is continuous
on [a, b]. There is a point c in (a, b) such that

∫ b

a

f(x) dx = f(c)(b − a).

Explain that this means that a continuous function takes on its average value at
least once on an interval.

Problems 32.31–32.35 contain miscellaneous results for continuous func-
tions.

32.31. Suppose that g is differentiable on (−∞, ∞) with a bounded derivative;
i.e., there is a constant M such that |g′(x)| ≤ M for all x. Prove that for all
sufficiently small ε > 0, the function f(x) = x + εg(x) is invertible.

32.32. Suppose that f is a continuous function on an interval [a, b]. Show that
there is a function g that is continuous on (−∞, ∞) such that g(x) = f(x) for
a ≤ x ≤ b. Such a function is called a continuous extension of f . Show by
example that the result is false if the interval (a, b) is open instead.

32.33. A function f defined on an interval (a, b) is convex if for any x and y
in (a, b)

f(sx + (1 − s)y) ≤ sf(x) + (1 − s)f(y) for all 0 < s < 1.

Prove that a convex function is continuous.

32.34. Prove that a monotone function f on an interval [a, b] that takes on
every value between f(a) and f(b) as x varies between a and b at least once is
continuous. Why is monotonicity necessary?

32.35. Assume f is a continuous function on [0, 1] such that 0 ≤ f(x) ≤ 1 for
0 ≤ x ≤ 1. Prove that f(x) = x for at least one x in [0, 1].
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33
Sequences of Functions

When studying the solution of differential equations, we emphasized that
the solution of a differential equation can rarely be written down as an
explicit formula in terms of known functions. Instead, we try to approxi-
mate the solution using a sequence of relatively simple functions that con-
verge to the solution. Indeed, this was precisely the approach used to solve
y′(x) = f(x) on [a, b]1 for x in [a, b], in constructing a Cauchy sequence
of functions {YN} that converges uniformly to y. An important step in
this process was proving that y “inherits” some useful properties from the
sequence {YN}, such as being Lipschitz continuous.

In this chapter, we study the question of inherited properties for abstract
sequences of functions that converge to a limit. In other words, if {fn}
converges to a function f , what properties of the functions fn carry over
to the limit f? In general, we consider the sequence {fn} as a sequence
of successively more accurate approximations of the limit f , as in the case
of integration, but without specifying how the approximating sequence is
constructed.2

Following the trend in this part of the book, we begin by generalizing
the notion of convergence of a sequence of functions. Suppose {fn} is a
sequence of functions on an interval I such that the sequence of numbers
{fn(x)} converges for each x in I. We define the limit of {fn} to be the

1Which is equivalent to computing
∫ x

a f(s) ds.
2Recall that we adopted a similarly abstract attitude when discussing the properties

of real numbers.
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function f with the value

f(x) = lim
n→∞

fn(x) for each x in I.

More precisely, for any x in I and ε > 0, there is a N such that for n > N ,

|f(x) − fn(x)| < ε.

We say that {fn} converges pointwise to f on I. Note that pointwise
convergence is not the same as uniform convergence. Recall that a sequence
of functions {fn} converges uniformly to f on an interval I if for every
ε > 0 there is an N such that for all x in I,

|fn(x) − f(x)| < ε for n ≥ N.

Example 33.1. The sequence {xn}∞
n=1 converges pointwise on [0, 1]

but not uniformly. In fact,

lim
n→∞

xn =

{
0, 0 ≤ x < 1,

1, x = 1.

However, given any n, there is an x in [0, 1) with xn arbitrarily close to
1 (see Fig. 33.1). So xn cannot converge uniformly to 0 for 0 ≤ x < 1.

0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

n increasing

FIGURE 33.1. Plots of the functions {xn} for n = 1, 2, · · · , 10.

In pointwise convergence, the sequences of numbers {fn(x)} may converge
at different rates for each x.

We are particularly concerned with the inheritance of continuity, differ-
entiability, and integrability from a convergent sequence of functions. In
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each of these cases, the question can be rephrased in terms of exchanging
the order of two limit processes. As an example, consider continuity. By
Theorem 32.1, if each element in {fn} is continuous at x̄, then

lim
x→x̄

fn(x) = fn(x̄) for each n.

If {fn} converges to f , then to show that f is continuous at x̄, i.e to show
that

lim
x→x̄

f(x) = f(x̄),

we have to verify that

lim
x→x̄

f(x) = lim
x→x̄

lim
n→∞

fn(x) = lim
n→∞

lim
x→x̄

fn(x) = lim
n→∞

fn(x̄). (33.1)

The question is therefore equivalent to whether the interchange in the order
of the limits in the middle of (33.1) is justified.

While intuition might suggest that taking multiple limits “should” be
independent of order, in fact this is a place where intuition can be very
misleading. In general, order does matter when taking multiple limits. A
simple example shows why.

Example 33.2. Consider the sequence with double indices
{

m

n + m

}∞

n=1, m=1
.

First we compute

lim
m→∞

lim
n→∞

m

n + m
= lim

m→∞
0 = 0.

Yet,
lim

n→∞
lim

m→∞

m

n + m
= lim

n→∞
1 = 1.

It is easy to understand the differences in the limits by listing the se-
quence first in order of increasing m while fixing n and then in order of
increasing n while fixing m.

It is not surprising that some additional assumptions on a convergent se-
quence of functions are required to guarantee that the limit inherits par-
ticular properties.

33.1 Uniform Convergence and Continuity

In fact, Example 33.1 already shows that continuity is not preserved in
general. In that case, the functions in {xn} are all uniformly continuous
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functions on [0, 1]; nonetheless, they converge to a discontinuous function,
which is 0 for 0 ≤ x < 1 and 1 at x = 1.

However, if the sequence {fn} converges uniformly , then continuity is
preserved. In particular, we prove the following theorem:

Theorem 33.1 Suppose {fn} is a sequence of continuous functions on an
interval I that converges uniformly to f on I. Then f is continuous on I.

Following the discussion above, for each x̄ in I,

lim
n→∞

fn(x̄) = f(x̄) and lim
x→x̄

fn(x) = fn(x̄),

while we need to show that

lim
x→x̄

f(x) = f(x̄).

We estimate3

|f(x) − f(x̄)| = |f(x) − fn(x) + fn(x) − fn(x̄) + fn(x̄) − f(x̄)|
≤ |f(x) − fn(x)| + |fn(x) − fn(x̄)| + |fn(x̄) − f(x̄)|.

By the uniform convergence, for any ε > 0, there is an N > 0 such that
n ≥ N implies

|f(x) − fn(x)| < ε/3 and |fn(x̄) − f(x̄)| < ε/3 for all x, x̄ in I.

For any n ≥ N , there is a δ > 0 such that if |x − x̄| < δ and x is in I, then

|fn(x) − fn(x̄)| < ε/3.

Hence, given any ε > 0 there is a δ > 0 such that if |x − x̄| < δ and x is in
I, then

|f(x) − f(x̄)| < ε/3 + ε/3 + ε/3 = ε.

It is important to note that while uniform convergence is enough to
guarantee that the limit of continuous functions is continuous, it is not
necessary.

Example 33.3. Consider the sequence {nxe−nx}. The first few terms
are shown in Fig. 33.2. For each x, fn(x) → 0 as n → ∞. Yet fn(1/n) =
e−1 for all n, hence the convergence cannot be uniform. So this is a se-
quence of continuous functions that converge pointwise to a continuous
function, but not uniformly.

3The strategy here is to take advantage of the facts that fn(x) approaches f(x) for
each x and fn(x) approaches fn(x̄) as x approaches x̄ for each n.
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FIGURE 33.2. Plots of the functions {nxe−nx} for n = 1, 2, · · · , 10.

33.2 Uniform Convergence and Differentiability

We next consider a sequence of functions {fn} that are differentiable on
an interval I which converges to a function f and try to determine if f is
differentiable and if {f ′

n} converges to f ′. Since f is differentiable at x̄ if

lim
x→x̄

f(x) − f(x̄)
x − x̄

= f ′(x̄)

converges, this question is equivalent to the question of whether the follow-
ing equality is true:

lim
x→x̄

lim
n→∞

fn(x) − fn(x̄)
x − x̄

= lim
n→∞

lim
x→x̄

fn(x) − fn(x̄)
x − x̄

.

Again it is necessary to assume something more than mere pointwise
convergence in general.

Example 33.4. The sequence {xn} on [0, 1] consists of strongly differ-
entiable functions, yet the limit is discontinuous at 1, so it is certainly
not differentiable there.

However, simply adding uniform convergence is not sufficient either.

Example 33.5. Consider the sequence of functions {sin(nx)/
√

n}.
The first few terms are shown in Fig. 33.3. This sequence converges
uniformly to f(x) = 0 on any interval since

∣
∣
∣
∣
sin(nx)√

n
− 0
∣
∣
∣
∣ ≤

1√
n

for all x.

Moreover, f is differentiable and f ′(x) = 0 for all x. Yet, f ′
n(x) =√

n cos(nx) and {f ′
n} does not converge for most values of x.
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FIGURE 33.3. Plots of the functions {sin(nx)/
√

n} for n = 1, 2, · · · , 8.

We prove the following theorem:

Theorem 33.2 Suppose that {fn} is a sequence of functions with contin-
uous derivatives {f ′

n} on [a, b], {fn(x̄)} converges for some x̄ in [a, b], and
{f ′

n} converges uniformly on [a, b]. Then {fn} converges uniformly to a
differentiable function f on [a, b] and {f ′

n} converges uniformly to f ′.

Note that the convergence of the sequence of derivatives {f ′
n} of terms in

a sequence {fn} is not sufficient to guarantee the sequence itself converges.

Example 33.6. Consider the sequence {n + x/n}, which does not
converge. The sequence of derivatives {1/n} converges uniformly to
zero.

We begin by showing that under the assumptions of Theorem 33.2, the
sequence {fn} converges uniformly on [a, b]. For indices n, m, we estimate

|fn(x) − fm(x)| = |fn(x) − fm(x) − (fn(x̄) − fm(x̄)) + (fn(x̄) − fm(x̄))|
≤ |fn(x) − fm(x) − (fn(x̄) − fm(x̄))| + |(fn(x̄) − fm(x̄))|

The Mean Value Theorem 32.17 applied to the function fn(x) − fm(x)
implies there is a c between x and x̄ such that

fn(x) − fm(x) − (fn(x̄) − fm(x̄)) = (f ′
n(c) − f ′

m(c))(x − x̄).

By the uniform convergence of {f ′
n}, for any ε > 0, there is an N1 such

that for n > N1

|f ′
n(c) − f ′

m(c)| <
ε

2(b − a)
for any c in [a, b].

Since |x − x̄| ≤ b − a, for any ε > 0 there is an N1 such that for n > N1,

|fn(x) − fm(x) − (fn(x̄) − fm(x̄))| <
ε

2(b − a)
(b − a) =

ε

2
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for all x and x̄ in [a, b].
On the other hand, since {fn(x̄)} converges, given any ε > 0 there is an

N2 such that for n, m > N2,

|(fn(x̄) − fm(x̄))| <
ε

2
.

Thus, given any ε > 0, there is a N = max{N1, N2} such that for n, m > N ,

|fn(x) − fm(x)| <
ε

2
+

ε

2
= ε for all x in [a, b].

Theorem 25.2 implies that {fn} converges uniformly.
Now {fn} converges uniformly to some function f and {f ′

n} converges
uniformly to some function f̃ on [a, b]. We want to show that f is differen-
tiable and f ′ = f̃ .

Fixing x̄ in [a, b], consider the sequence
{

fn(x) − fn(x̄)
x − x̄

}
(33.2)

defined for x in [a, b], x �= x̄. Note that

lim
x→x̄

fn(x) − fn(x̄)
x − x̄

= f ′
n(x̄).

We show this sequence converges uniformly by estimating for indices n, m.
∣
∣
∣
∣
fn(x) − fn(x̄)

x − x̄
− fm(x) − fm(x̄)

x − x̄

∣
∣
∣
∣ =

∣
∣
∣
∣
fn(x) − fm(x) − (fn(x̄) − fm(x̄))

x − x̄

∣
∣
∣
∣ .

Using the Mean Value Theorem as above, there is a c between x and x̄ such
that

∣
∣
∣
∣
fn(x) − fn(x̄)

x − x̄
− fm(x) − fm(x̄)

x − x̄

∣
∣
∣
∣ =

∣
∣
∣
∣
(f ′

n(c) − f ′
m(c))(x − x̄)

x − x̄

∣
∣
∣
∣

= |f ′
n(c) − f ′

m(c)|.

By the uniform convergence of {f ′
n}, given any ε > 0, there is an N such

that for n, m > N ,
∣
∣
∣
∣
fn(x) − fn(x̄)

x − x̄
− fm(x) − fm(x̄)

x − x̄

∣
∣
∣
∣ < ε for all x �= x̄ in [a, b].

Hence, the sequence in (33.2) converges uniformly for x in [a, b], x �= x̄.
The limit is

lim
n→∞

fn(x) − fn(x̄)
x − x̄

=
f(x) − f(x̄)

x − x̄
for x �= x̄.
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Now we estimate
∣
∣
∣
∣
f(x) − f(x̄)

x − x̄
− f ′

n(x)
∣
∣
∣
∣

≤
∣
∣
∣
∣
f(x) − f(x̄)

x − x̄
− fn(x) − fn(x̄)

x − x̄

∣
∣
∣
∣+
∣
∣
∣
∣
fn(x) − fn(x̄)

x − x̄
− f ′

n(x̄)
∣
∣
∣
∣ .

Given any ε > 0, there is an N1 such that for n > N1,
∣
∣
∣
∣
f(x) − f(x̄)

x − x̄
− fn(x) − fn(x̄)

x − x̄

∣
∣
∣
∣ <

ε

4
for all x �= x̄ in [a, b].

As for the second term, the Mean Value Theorem 32.17 implies there is a
c between x and x̄ such that

∣
∣
∣
∣
fn(x) − fn(x̄)

x − x̄
− f ′

n(x̄)
∣
∣
∣
∣ =

∣
∣
∣
∣
f ′

n(c)(x − x̄)
x − x̄

− f ′
n(x̄)

∣
∣
∣
∣

= |f ′
n(c) − f ′

n(x)|.

Now we estimate

|f ′
n(c) − f ′

n(x)| ≤ |f ′
n(c) − f̃(c)| + |f̃(c) − f̃(x)| + |f̃(x) − f ′

n(x)|.

By the uniform convergence of {f ′
n}, for any ε > 0 there is an N2 such that

for n > N2,

|f ′
n(c) − f̃(c)| <

ε

4
and |f ′

n(x) − f̃(x)| <
ε

4
for any x, c in [a, b].

Moreover, Theorem 33.1 implies that f̃ is continuous and there is a δ > 0
such that for all x in [a, b] with |x − x̄| < δ,

|f̃(c) − f̃(x)| <
ε

4
,

since c is between x and x̄. We conclude that given any ε > 0 there is a
δ > 0 and a N = max{N1, N2} such that for all n > N and x in [a, b],
x �= x̄, |x − x̄| < δ,

∣
∣
∣
∣
f(x) − f(x̄)

x − x̄
− f ′

n(x)
∣
∣
∣
∣ <

ε

4
+

ε

4
+

ε

4
+

ε

4
= ε.

Passing to the limit as n → ∞, we conclude that
∣
∣
∣
∣
f(x) − f(x̄)

x − x̄
− f̃(x)

∣
∣
∣
∣ < ε

for any ε > 0 and x sufficiently close to x̄. This proves the theorem.
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33.3 Uniform Convergence and Integrability

We finally consider a sequence of functions {fn} that are continuous on
an interval [a, b] which converges to a function f . Each fn as well as f
is integrable on [a, b] since all the functions are continuous. The question
is whether the integrals of {fn} converge to the integral of f . When f is
integrable on [a, b], then

∫ b

a

f(x) dx = lim
N→∞

2N
∑

i=1

f(xN,i−1)∆xN ,

where for each N , ∆xN = (b − a)/2N and xN,i = a + i × ∆xN for i =
0, 1, · · · , 2N . Hence, the question can be rephrased as whether the following
equality holds:

lim
N→∞

lim
n→∞

2N
∑

i=1

fn(xN,i−1)∆xN = lim
n→∞

lim
N→∞

2N
∑

i=1

fn(xN,i−1)∆xN .

Again, something more than pointwise convergence is needed.

Example 33.7. Consider the sequence {fn(x)} = {nx(1−x2)n}. A few
terms are shown in Fig. 33.4. For 0 < x ≤ 1,

0.0 0.2 0.4 0.6 0.8 1.0
x

0.4

0.8

1.2

n increasing

FIGURE 33.4. Plots of the functions {nx(1 − x2)n} for n = 1, 2, · · · , 10.

lim
n→∞

nx(1 − x2)n = 0

since |1 − x2| < 1. Also fn(0) = 0 for all n, and we conclude that
fn → f = 0 as n → ∞. However, the convergence is not uniform.
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Moreover, it is easy to verify that
∫ 1

0
nx(1 − x2)n dx =

n

2(n + 1)

and therefore

lim
n→∞

∫ 1

0
fn(x) dx =

1
2

�= 0 =
∫ 1

0
lim

n→∞
fn(x) dx.

We prove:

Theorem 33.3 Suppose that {fn} is a sequence of continuous functions
on [a, b] that converges uniformly to f on [a, b]. Then

∫ b

a

f(x) dx = lim
n→∞

∫ b

a

fn(x) dx.

This is not difficult. With the mesh notation above,

∣
∣
∣
∣
∣

∫ b

a

f(x) dx −
∫ b

a

fn(x) dx

∣
∣
∣
∣
∣
= lim

N→∞

∣
∣
∣
∣
∣
∣

2N
∑

i=1

(f(xN,i−1) − fn(xN,i−1))∆xN

∣
∣
∣
∣
∣
∣
.

By the uniform convergence, given any ε > 0, there is a N such that n > N
implies

|f(xN,i−1) − fn(xN,i−1)| <
ε

b − a

for all 1 ≤ i ≤ 2N . Hence, for any ε > 0, there is an N1 such that for
n > N1,

∣
∣
∣
∣
∣

∫ b

a

f(x) dx −
∫ b

a

fn(x) dx

∣
∣
∣
∣
∣
< lim

N→∞

ε

b − a

2N
∑

i=1

∆xN =
ε

b − a
(b − a) = ε.

This proves the theorem.

33.4 Unanswered Questions

The material on integration in Section 33.3 points to some serious short-
comings in the Riemann theory of integration. Example 33.7 shows that
integration and taking limits are not interchangeable; i.e.,

∫
lim fn dx does

not necessarily equal lim
∫

fn dx. In fact, a sequence of integrable func-
tions {fn} that converges on an interval does not necessarily converge to
an integrable function. Another shortcoming of the Riemann theory is that
integration is defined only on intervals, though in practice we may need to
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integrate over more complicated sets of numbers. This occurs frequently in
probability theory, for example.

There are several alternative definitions of integration that fix up the
shortcomings of the Riemann integral while reducing to the Riemann in-
tegral on continuous functions on intervals. Perhaps the most prominent
alternative theory is due to Lebesgue.4 See Rudin [19] for an introduction
to the Lebesgue integral.

4Henri Léon Lebesgue (1875–1941) was a French mathematician. He is best known
for his creation of measure theory and the Lebesgue theory of integration, which have
had a profound impact on analysis. He also made important contributions to Fourier
analysis, potential theory, and topology.
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Chapter 33 Problems

33.1. Let {sij}∞
i,j=1 have the following properties: limj→∞ sij = Si exists for each

i and limi→∞ sij = Uj converges uniformly for all j. Show that limi→∞ Si exists
and limi→∞ Si = limj→∞ Uj . In other words, limi→∞ limj→∞ sij = limj→∞ limi→∞ sij .
Discuss Example 33.2 in context with this result.

33.2. Compute the limit of {1/(1 + x2n)}. Is the limit continuous? Determine if
the convergence is uniform.

33.3. Suppose f(x) is a continuous function on [0, 1] with f(1) = 0. Show that
{f(x)xn} converges uniformly to 0.

33.4. Suppose that f is a uniformly continuous function on (−∞, ∞). For each
natural number n > 0 define fn(x) = f(x + 1/n). Show that {fn} converges
uniformly on (−∞, ∞).

33.5. For α > 0, 0 ≤ x ≤ 1, and integers n ≥ 2, define

fn(x) =






xnα, 0 ≤ x ≤ 1/n,
( 2

n
− x

)
nα, 1/n ≤ x ≤ 2/n,

0, 2/n ≤ x ≤ 1.

(a) Show that fn is continuous. (b) Show that limn→infty fn = 0. (c) Decide if
the convergence is uniform or not depending on the value of α.

33.6. For integers n > 1 and x ≥ 0, define

fn(x) =






0, 0 ≤ x ≤ 1/(n + 1),
sin2(π/x), 1/(n + 1) ≤ x ≤ 1/n,

0, 1/n ≤ x.

Show that {fn} converges to a continuous function but not uniformly.

33.7. Suppose that {fn} converges uniformly to f on [a, b] and g is a function
on [a, b]. Find conditions on g that guarantee that {gfn} converges uniformly to
gf on [a, b].

33.8. (a) Suppose that {fn} and {gn} converge uniformly to f and g for x
in an interval I and c is a number. Prove that {fn + gn} and {cfn} converge
uniformly and determine the limits. (b) Suppose in addition that {fn} and {gn}
are sequences of bounded functions and show that {fngn} converges uniformly
on I.

33.9. Prove that the limit of a uniformly convergent sequence of functions that
are uniformly continuous on an interval I is itself uniformly continuous.

33.10. Construct sequences {fn} and {gn} that converge uniformly on an inter-
val I such that {fngn} converges on I but not uniformly.
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33.11. Prove that a uniformly convergent sequence of bounded functions {fn}
on an interval I is uniformly bounded; i.e., there is an M such that |fn(x)| ≤ M
for all n and x.

33.12. (Hard) Remove the assumption that f ′
n is continuous in Theorem 33.2.

33.13. (a) Show that the sequence {x/(1 + nx2)} converges uniformly to a
function f . (b) Show that f ′(x) = limn→∞ x/(1 + nx2) for x �= 0 but not for
x = 0.

33.14. Define fn(x) = n2xe−nx for natural numbers n > 0 and real x. Prove
that {fn} converges pointwise to 0 and {f ′

n} also converges pointwise to 0, but
{f ′

n} does not converge uniformly.

33.15. For natural numbers n > 0 and real x, define

fn(x) =

{
1/n, |x| ≤ 1/n,

|x|, |x| ≥ 1/n.

Prove that {fn} converges to |x| uniformly on (−∞, ∞). Note that each fn is
differentiable at x = 0, but the limit |x| is not.

33.16. Let {fn} be a sequence of continuous functions that converges uniformly
to a function f for x in a set of numbers S. Prove that

lim
n→∞

fn(xn) = f(x)

for every sequence of points {xn} in S such that xn → x and x is in S. Is the
converse true?

33.17. (Hard) Suppose that {fn} is a sequence of continuous functions on a
bounded interval [a, b] that converges to a continuous function f . Prove that if
{fn(x)} is monotone increasing or monotone decreasing to f(x) for each x, then
{fn} actually converges uniformly to f on [a, b]. Hint: Assume the sequence is
decreasing. If the claim is not true, then there is an ε > 0 such that for each n
there is a natural number mn and a point xn in [a, b] with fmn(xn) > f(xn) + ε.
Get a contradiction.
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34
Relaxing Integration

No, this chapter does not contain the secret to integration that frees ev-
ery mathematics student to find peace with the world. Rather we apply
the ideas about functions in Chapter 32 and Chapter 33 to relax the as-
sumptions we used to prove that integration works in Chapter 25. In par-
ticular, we show that merely continuous functions can be integrated and
we use much more general meshes to compute the integral. We conclude
this chapter by applying these ideas to define and compute the length of a
curve.

34.1 Continuous Functions

The analysis of integration in Chapter 25 depends on the assumption of
Lipschitz continuity of the integrand. We show here that what is actually
important in that analysis is the uniform continuity of the integrand that
follows automatically from the assumption of Lipschitz continuity. Likewise
in Chapter 32, we saw that many nice properties of the Lipschitz continuous
functions are due to the uniform nature of Lipschitz continuity. The analysis
in this section follows the analysis in Chapter 25 closely, which means it
is filled with tedious details. A reasonable way to approach the material
is just to compare the proofs in this section and in Chapter 25 to see the
differences needed to handle uniform rather than Lipschitz continuity.

Note that it suffices to assume continuity, as opposed to uniform continu-
ity, because of Theorem 32.11, which says that a function that is continuous
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on a closed, bounded interval is uniformly continuous on the interval. So
we assume the function f is continuous on the bounded interval [a, b], and
we want to show that the initial value problem

{
y′(x) = f(x), a < x ≤ b,

y(a) = 0.
(34.1)

has a unique solution, which we write as

y(x) =
∫ x

a

f(s) ds,

that can be approximated to any desired degree of accuracy. Recall that
once we have solved (34.1) with initial value 0, we can easily solve a problem
with an arbitrary initial value y0.

Even though f may not be Lipschitz continuous, continuity suffices to
define the same approximate solution YN used above. We create a mesh
of equally spaced points {xN,i} in [a, b] by setting ∆xN = (b − a)/2N for
a natural number N and xN,i = a + i × ∆xN for i = 0, 1, · · · , 2N . Note in
particular that xN,0 = a and xN,2N = b. Solving the approximate initial
value problems (25.3), interval by interval, we compute the approximate
solution YN such that for xN,n−1 ≤ x < xN,n,

YN (x) =
n−1∑

i=1

f(xN,i−1)∆xN + f(xN,n−1)(x − xN,n−1), (34.2)

while the nodal value of YN at xN,n is

YN,n = YN (xN,n) =
n∑

i=1

f(xN,i−1)∆xN . (34.3)

We just have to show that {YN} forms a Cauchy sequence that converges
to a unique function that satisfies (34.1).

Using the same notation as before, we choose natural numbers M ≥ N
and we define µ(i) to be the set of indices j such that [xM,j−1, xM,j ] is
contained in [xN,i−1, xN,i] (see Fig. 34.1). We can write

YM (xN,n) =
n∑

i=1

∑

j in µ(i)

f(xM,j−1)∆xM

and

YN (xN,n) =
n∑

i=1

f(xN,i−1)∆xN =
n∑

i=1

∑

j in µ(i)

f(xN,i−1)∆xM .
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2
N

2
M

µ(i)

xN,i-1 xN,i

FIGURE 34.1. The definition of µ(i).

Estimating, we find

|YM (xN,n) − YN (xN,n)| ≤
n∑

i=1

∑

j in µ(i)

|f(xM,j−1) − f(xN,i−1)|∆xM .

By uniform continuity, for any ε > 0 there is a δ > 0 such that |f(xM,j−1)−
f(xN,i−1)| < ε if |xM,j−1 − xN,i−1| < δ. Since

|xM,j−1 − xN,i−1| < |xN,i − xN,i−1| for j in µ(i),

given any δ > 0 there is an N̄ such that for N > N̄ , |xM,j−1 − xN,i−1| < δ
for 1 ≤ i ≤ 2N and j in µ(i). We conclude that for any ε > 0, there is an
N̄ such that for M ≥ N > N̄ ,

|YM (xN,n) − YN (xN,n)| ≤ ε

n∑

i=1

∑

j in µ(i)

∆xM = ε(xN,n − xN,0) ≤ ε(b − a).1

So we can make the difference between YM and YN arbitrarily small at
nodes by taking M ≥ N sufficiently large. A similar argument works for
the values of x in between the nodes. Hence, {YN} is a uniform Cauchy
sequence that converges uniformly, limN→∞ YN (x) = y(x), for a ≤ x ≤ b.

Using a similar argument, we can show that YN is continuous on [a, b]
for each N and therefore the limit function y is continuous on [a, b] by
Theorem 33.1. We have to show that y is differentiable and satisfies (34.1).
Note that y(a) = 0.

As in Chapter 25, given x̄ and x > x̄ in [a, b], for each N we choose mN

so that xN,mN −1 < x̄ ≤ xN,mN
and nN so that xN,nN −1 < x ≤ xN,nN

(see
Fig. 34.2). By this choice,

x − x̄ = (x − xN,nN −1) +
nN −1∑

j=mN

∆xN − (x̄ − xN,nN −1)

and

lim
N→∞

xN,mN −1 = lim
N→∞

xN,mN
= x̄ and lim

N→∞
xN,nN −1 = lim

N→∞
xN,nN

= x.

1Compare this result to (25.12).
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xN,mN

x

xN,mN-1 xN,nN
xN,nN-1

...
x-

FIGURE 34.2. The choice of mN and nN .

Moreover,

YN (x̄) = YN (xN,mN −1) + f(xN,mN −1)(x̄ − xN,mN −1)

and

YN (x) = YN (xN,mN −1) +
nN −1∑

j=mN

f(xN,j−1)∆xN

+ f(xN,nN −1)(x − xN,nN −1).

Subtraction gives

YN (x) − YN (x̄) = f(xN,nN −1)(x − xN,nN −1) +
nN −1∑

j=mN

f(xN,j−1)∆xN

− f(xN,mN −1)(x̄ − xN,mN −1).

We can rewrite this as

YN (x) − YN (x̄) = f(x̄)(x − x̄)
+ (f(xN,nN −1) − f(x̄))(x − xN,nN −1)

+
nN −1∑

j=mN

(f(xN,j−1) − f(x̄))∆xN

− (f(xN,mN −1) − f(x̄))(x̄ − xN,mN −1),

and so

|YN (x) − YN (x̄) − f(x̄)(x − x̄)|
≤ |f(xN,nN −1) − f(x̄)| |x − xN,nN −1|

+
nN −1∑

j=mN

|f(xN,j−1) − f(x̄)|∆xN

+ |f(xN,mN −1) − f(x̄)| |x̄ − xN,mN −1|. (34.4)
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So far the analysis has followed steps (25.15)–(25.19) precisely. Now,
however, we estimate in (34.4) using the uniform continuity of f . Given
ε > 0, there is a δ > 0 such that |f(y)− f(x̄)| < ε for all y with |y − x̄| < δ.
Given this δ, we assume that |x−x̄| < δ/2 and choose N̄ so that ∆xN < δ/2
for all N > N̄ . We have |xM,nM −1 − x̄| < δ/2, |xN,i − x̄| ≤ |x − x̄| < δ/2
for nN ≤ i ≤ mN − 1, and |xN,mN

− x̄| ≤ |x− x̄|+ |xN,mN
−x| < δ. Hence,

|YN (x) − YN (x̄) − f(x̄)(x − x̄)| < 3ε|xN,nN
− xN,mN −1|.

Letting N → ∞, we get

|y(x) − (y(x̄) + f(x̄)(x − x̄))| < 3ε|x − x̄|.2 (34.5)

It is straightforward to treat the cases when x̄ > x and x̄ = a or b. Hence,
for any ε > 0, there is a δ > 0 such that

∣
∣
∣
∣
y(x) − y(x̄)

x − x̄
− f(x̄)

∣
∣
∣
∣ ≤ 3ε

for all x �= x̄ with |x− x̄| < δ/2. So y is differentiable at x̄ and y′(x̄) = f(x̄)
for a ≤ x̄ ≤ b.

We summarize this analysis as two theorems.3

Theorem 34.1 Fundamental Theorem of Calculus If f is a continu-
ous function on [a, b], there is a unique solution y of (34.1) that is approx-
imated by the function

YN (x) =
n−1∑

i=1

f(xN,i−1)∆xN + f(xN,n−1)(x − xN,n−1),

where ∆xN = (b − a)/2N for a natural number N , xN,i = a + i × ∆xN for
i = 0, 1, · · · , 2N , and xN,n−1 < x ≤ xN,n. The approximation is uniformly
accurate in the sense that given any ε > 0 there is a N̄ such that for all
N > N̄ ,

|y(x) − YN (x)| ≤ (b − a)ε for a ≤ x ≤ b. (34.6)

Rewritten as a result for integration, this theorem is:

Theorem 34.2 Fundamental Theorem of Calculus If f is a contin-
uous function on [a, b], then

∫ b

a

f(x) dx

2Compare this to (25.20).
3Compare these results to Theorem 25.4 and Theorem 25.5.
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x0 x1

a

=

b

=

∆x1

. . . x2

∆x2

xN-1 xN

∆xN

FIGURE 34.3. A nonuniform mesh for [a, b].

exists and given any ε > 0 there is a N̄ such that for N > N̄ ,
∣
∣
∣
∣
∣
∣

∫ b

a

f(x) dx −
2N
∑

i=1

f(xN,i−1)∆xN

∣
∣
∣
∣
∣
∣
≤ (b − a)ε,

where ∆xN = (b − a)/2N for a natural number N and xN,i = a + i × ∆xN

for i = 0, 1, · · · , 2N .

34.2 General Meshes

Next we relax the assumptions on the mesh used to compute the approxi-
mate solution YN to (34.1). We want to allow the sizes of the subintervals
to vary and to allow a choice of interpolation points inside the subintervals.
The main difficulty is figuring out how to compare approximations com-
puted on two different meshes when the meshes are no longer “nested.”

The main reason to use more general meshes is computational, so we
restrict the discussion to the computation of the definite integral

∫ b

a
f(x) dx,

where f is a continuous function on [a, b]. From the results in Section 34.1,
we know the integral is well-defined and can be approximated to any desired
degree of accuracy using uniform, nested meshes. We want to show that it
can also be approximated using more general meshes.

We partition [a, b] using a mesh TN determined by a set of N +1 nodes

TN = {x̄TN ,0, x̄TN ,1, · · · , x̄TN ,N} = {x̄0, x̄1, · · · , x̄N}

with
a = x̄0 < x̄1 < · · · < x̄N = b.

Unless absolutely necessary, we drop the subscript denoting the particular
mesh TN under discussion from any mesh-related quantity. Since the subin-
tervals [x̄n−1, x̄n] vary in length, we let ∆xn = x̄n − x̄n−1 (see Fig. 34.3).
To measure the “fineness” of TN , we use the size of the largest subinterval,

∆TN
= max

1≤n≤N
∆xn,

which we call the mesh size.
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f(x) f(x) f(x)

x
N,1

x
N,2 x

N,3
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N,4
x

N,1
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N,2 x
N,3

x
N,4

x
N,1
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N,2 x

N,3
x

N,4

FIGURE 34.4. Three piecewise constant interpolants of f . The interpola-
tion points xn in [x̄n−1, x̄n] are, respectively, xn = x̄n−1, xn = x̄n, and
xn = (x̄n−1 + x̄n)/2.

Finally, we choose an interpolation point xn in each subinterval [x̄n−1, x̄n],
1 ≤ n ≤ N . In the previous discussions, we used xn = x̄n−1. In Fig. 34.4,
we show three different interpolants of a function on a uniform mesh where
the interpolation points occupy the same position in the subintervals. We
can even vary the position of the interpolation points, as illustrated in
Fig. 34.5.

We construct the approximate solution YTN ,N = YN to (34.1) interval by
interval as before. On [x̄0, x̄1], we compute YN solving

{
Y ′

N = f(x1), x̄0 ≤ x ≤ x̄1,

YN (x̄0) = 0,

to get YN (x) = f(x1)(x − x̄0) for x̄0 ≤ x ≤ x̄1 with nodal values YN,0 =
Y (x̄0) = 0 and YN,1 = YN (x̄1) = f(x1)∆x1. Then given the nodal value
YN,n−1, we solve

{
Y ′

N = f(xn), x̄n−1 ≤ x ≤ x̄n,

YN (x̄n−1) = YN,n−1.

Continuing for 1 ≤ n ≤ N , we get the final formula for the approximation
of
∫ b

a
f(x) dx,

YN,N =
N∑

n=1

f(xn)∆xn. (34.7)

We interpret this result in terms of area under the curve f in Fig. 34.6.

Example 34.1. We repeat Example 25.4 using different interpola-
tion points. The problem is to compute the integral approximation
for f(x) = x on [0, 1] using a uniform mesh with N + 1 nodes. We
have ∆xN = 1/N and nodes x̄n = n/N , 0 ≤ n ≤ N . If we use the
interpolation point xn = x̄n on [xn−1, xn], then

YN,n =
n∑

i=1

i

N
× 1

N
=

1
N2

n(n + 1)
2

,
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f(x)

xn-2 xn-1 xn xn+1

xn-1 xn
xn+1

FIGURE 34.5. An interpolant of f on a nonuniform mesh where the interpolation
points in different subintervals are chosen in different locations.

f(x)

x1x2 x3 xN

FIGURE 34.6. The area underneath the piecewise constant interpolant of f . We
alternate the shading to distinguish contributions from neighboring rectangles.

and
YN,N = YN (1) =

1
2

+
1

2N
.

Using xn = (x̄n + x̄n−1)/2 instead gives

YN,n =
n∑

i=1

1
2

(
i

N
+

i − 1
N

)
1
N

=
1

N2

n2

2

and
YN,N = YN (1) =

1
2
.

Notice that this formula gives the exact answer for any N !

We want to show that there is a unique number such that if {TN}∞
N=1

is a sequence of meshes with ∆TN
→ 0, the sum (34.7) converges to this

number. Since one such sequence is made up of the uniform, nesting meshes
used above, this number must be

∫ b

a
f(x) dx.
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First, we compare YM and YN with M > N where TM is a refinement
of TN , which means that all the nodes in TN are nodes of TM . To avoid
double subscripts, we denote TM = {ȳ0, ȳ1, · · · , ȳM}, choose corresponding
interpolation points {yi}, and let

YM,M =
M∑

m=1

f(ym)∆ym,

where ∆ym = ȳm − ȳm−1, 1 ≤ m ≤ M .
Any two consecutive nodes x̄n−1, x̄n in TN are in TM so there are integers

i and j such that
x̄n−1 = ȳi−1 and x̄n = ȳj .

We illustrate in Fig. 34.7. We compare the contributions to the approximate

x0 x1 xn-1 xn xN

y0 y1 yi-1 yj yM

FIGURE 34.7. The nested meshes TM and TN .

integrals from [x̄n−1, x̄n], which are

j∑

l=i

f(yl)(ȳl − ȳl−1)

and

f(xn)(x̄n − x̄n−1) =
j∑

l=i

f(xn)(ȳl − ȳl−1).

Given ε > 0, there is a δ > 0 such that |f(yl) − f(xn)| < ε for all l with
|yl − xn| < δ. Since |yl − xn| ≤ |x̄n − x̄n−1| for i ≤ l ≤ j, the condition
holds provided ∆TN

< δ. If this is true, we get

∣
∣
∣
∣
∣

j∑

l=i

(f(yl) − f(xn))(ȳl − ȳl−1)

∣
∣
∣
∣
∣
≤

j∑

l=i

ε(ȳl − ȳl−1) ≤ ε(x̄n − x̄n−1).

Adding, we conclude that for any ε > 0 there is a δ > 0 such that for all
meshes TM and TN where TM is a refinement of TN and ∆TN

< δ,

|YM,M − YN,N | ≤ ε

N∑

n=1

(x̄n − x̄n−1) = ε(b − a).
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We have shown that the difference between the final nodal values of two
approximations computed on nested meshes can be made arbitrarily small
by insuring that the meshes are sufficiently refined, i.e., that the corre-
sponding mesh sizes are sufficiently small.

We finally want to remove the assumption that the meshes are nested.
We let TN and TM be any two meshes. To compare the corresponding
approximations, we use the mesh TN+M constructed by taking the union
of the nodes in TN and TM .4 We illustrate in Fig. 34.8. Without being

  N

  M

  N+M

FIGURE 34.8. Two meshes TM and TN and their “union” TN+M .

precise, we choose interpolation points {zi} in the subintervals of TN+M

and let YN+M denote the corresponding approximate solution.
Now we estimate

|YM,M − YN,N | ≤ |YM,M − YN+M,N+M | + |YN+M,N+M − YN,N |,

where YN+M,N+M is the final nodal value of YN+M . By the results above,
given any ε > 0 there is a δ > 0 such that if ∆TM

< δ and ∆TN
< δ,

|YM,M − YN,N | < 2ε(b − a).

Hence, the difference between the final nodal values of approximate solu-
tions computed on two different meshes can be made arbitrarily small by
insuring that the meshes are sufficiently refined.

We let {TN} be a sequence of meshes and {YN} the corresponding ap-
proximate solutions where ∆TN

→ 0 as N → ∞. In particular, given any
δ > 0 there is a N̄ such that ∆TN

< δ for all N > N̄ . Thus for any ε > 0
there is a N̄ such that

|YN,N − YM,M | < 2ε(b − a) for M > N̄ and N > N̄.

Hence, {YN,N} is a Cauchy sequence and limN→∞ YN,N = Y exists. We
claim this limit is independent of the sequence of meshes and interpolation
points.

4Note we are abusing notation because TN+M probably has fewer than N +M +2 =
N + 1 + M + 1 nodes. But we don’t have to be precise because we do not use TN,M to
compute an approximation. We only need its existence and the fact that it is a refinement
of both TN and TM .
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We let {T N} denote another sequence of meshes with ∆T N
→ 0 and

{ȲN} denote the corresponding approximations with limN→∞ ȲN,N = Ȳ .
Given any ε > 0 there is a N̄ such that

|YN,N − ȲN,N | < 2ε(b − a) for N > N̄.

Hence, |Y − Ȳ | < 2ε(b−a) for any ε > 0, i.e., Y = Ȳ . Since we could choose
the sequence of uniform meshes used above, we must have Y =

∫ b

a
f(x) dx.

We summarize as a theorem.5

Theorem 34.3 Fundamental Theorem of Calculus If f is a contin-
uous function on [a, b] and {TN} is a sequence of meshes on [a, b] with
∆TN

→ 0 as N → ∞, then
∫ b

a

f(x) dx

exists and given any ε > 0 there is a N̄ such that for N > N̄ ,
∣
∣
∣
∣
∣

∫ b

a

f(x) dx −
N∑

n=1

f(xn)∆xn

∣
∣
∣
∣
∣
≤ (b − a)ε,

where {xn} are the set of interpolation points for TN and {∆xn} are the
sizes of the subintervals.

34.3 Application to Computing the Length of a
Curve

In Chapter 27, we discussed two applications of integration, namely, defin-
ing and computing the area underneath a curve and the average value of
a function. In this section, we use integration to define and compute the
length of the curve formed by the graph of a function (see Fig. 34.9). The
length of a curve is important in physical applications. For example, we
are often interested in the total distance traveled by a particle that is con-
strained to move along a certain path that can be described as the graph
of a function. As in the other applications of integration, we have a strong
geometric intuition that the length of a curve is well-defined.6

This problem is a good application of the ideas in this chapter. Some-
times when doing analysis, we are forced to use certain subintervals and/or
interpolation points. This happens when defining the length of a curve for
example.

5The sixth and final version!
6But we require an analytic definition in order to achieve inner peace.
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length f(x)

a b

FIGURE 34.9. The length of the curve formed by the graph of a function.

(xn,f(xn))

f(x)

polygon

FIGURE 34.10. The length of a polygon approximating the graph of a function
by interpolation.

To define the length of a curve f on an interval [a, b], we use the idea
behind integration by first defining the length of a polygonal approximation
to the curve. We choose a mesh TN = {x̄0, x̄1, · · · , x̄N}, with a = x̄0 < x̄1 <
· · · < x̄N = b and subinterval lengths {∆xn}, and consider the length of
the polygon joining the points {(x̄0, f(x̄0)), (x̄1, f(x̄1)), · · · , (x̄N , f(x̄N ))}
(see Fig. 34.10).

By Pythagorean’s theorem (see Fig. 34.11), the distance between (x̄n−1,
f(x̄n−1)) and (x̄n, f(x̄n)) is

√
(x̄n − x̄n−1)2 + (f(x̄n) − f(x̄n−1))2.

By the Mean Value Theorem 32.17, there is a point xn in [x̄n−1, x̄n] such
that
√

(x̄n − x̄n−1)2 + (f(x̄n) − f(x̄n−1))2

=
√

(x̄n − x̄n−1)2 + (f ′(xn)(x̄n − x̄n−1))2

=
√

1 + (f ′(xn))2∆xn.

Summing all the lengths of all the straight segments of the polygon yields

N∑

n=1

√
1 + (f ′(xn))2∆xn. (34.8)
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(xn,f(xn))

(xn-1,f(xn-1))

FIGURE 34.11. The length of one segment of the polygon approximating the
graph of a function by interpolation.

If f ′ is continuous, then the Fundamental Theorem 34.3 implies that the
sum in (34.8) converges to a definite limit as the mesh is refined. This limit,
which we define to be the length of the curve defined by f from a to
b, is

∫ b

a

√
1 + f ′(x)2 dx = lim

∆TN
→0

N∑

n=1

√
1 + (f ′(xn))2∆xn.

Note that in the sum (34.8), we do not have control of the location of the
interpolation points {xn}.

Example 34.2. We compute the length of the curve of f(x) = 2x3/2

from x = 0 to x = 1. Since f ′(x) = 3x1/2, we compute

∫ 1

0

√
1 + (3x1/2)2 dx =

∫ 1

0

√
1 + 9x dx

=
1
9

∫ 10

1

√
u du =

2
27

(103/2 − 1)

There are actually very few functions for which the length of the corre-
sponding curve can be computed analytically. The sum (34.8) is imprac-
tical for computing approximations of the length with the interpolation
points {xi} given by the Mean Value Theorem. However, we simply choose
different interpolation points when we want to use (34.8) in practice.
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Chapter 34 Problems

34.1. Prove that given any ε > 0 there is a N̄ such that if M ≥ N > N̄ ,
|YM (x) − YN (x)| < ε for a ≤ x ≤ b, where YM and YN are the functions defined
in Section 34.1. We proved the result for nodal values of x.

34.2. Prove the function YN defined in Section 34.1 is continuous on [a, b].

34.3. Show (34.5) when x̄ > x and x̄ = a or b.

34.4. Explain why (34.6) is valid.

Problems 34.5–34.7 have to do with approximate integration on general
meshes.

34.5. Verify (34.7).

34.6. (a) Repeat Problem 25.5 and Problem 25.6 using xn = x̄n and a uniform
mesh with N + 1 nodes. (b) Repeat Problem 25.5 and Problem 25.6 using xn =
(x̄n + x̄n−1)/2 and a uniform mesh with N + 1 nodes.

34.7. Let {TN} be a set of meshes for [a, b] with ∆TN → 0 as N → ∞ and for
a mesh TN with nodes {x̄0, x̄1, · · · , x̄N}, where x̄0 = a < x̄1 < · · · < x̄N = b
and ∆xn = x̄n − x̄n−1 for 1 ≤ n ≤ N , let xn and yn be points in [x̄n−1, x̄n] for
1 ≤ n ≤ N . Assume f and g are continuous functions in [a, b]. Show that

lim
∆TN

→0

N∑

n=1

f(xn)g(yn)∆xn =
∫ b

a

f(x)g(x) dx.

Interpret this result in terms of computing weighted averages of functions. Hint:
Consider

N∑

n=1

f(xn)(g(yn) − g(xn))∆xn.

Problem 34.8 gives another way to establish the existence of the integral
which, in particular, applies to functions that are not necessarily continu-
ous.

34.8. Let f be a function on a finite interval [a, b] that is bounded, i.e., there is
a number M such that |f(x)| ≤ M for a ≤ x ≤ b. For a mesh TN on [a, b] with
nodes {x0, x1, · · · , xN}, where x0 = a < x1 < · · · < xN = b and ∆xn = xn−xn−1

for 1 ≤ n ≤ N , let Mn be the least upper bound of f on [xn−1, xn] and mn be
the greatest lower bound of f on [xn−1, xn]. Both of these bounds exist because
f is bounded on [a, b]. The upper sum of f on TN is

UN =
N∑

n=1

Mn∆xn,
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while the lower sum of f on TN is

LN =
N∑

n=1

mn∆xn.

(a) Prove that UN ≥ LN .

(b) Show that if a mesh is refined by the addition of nodes, then the
upper sum on the new mesh is either the same or smaller than the upper sum on
the old mesh and likewise the lower sum is either the same or greater than the
lower sum on the old mesh.

(c) The upper Darboux integral of f , denoted by M, is the greatest
lower bound of all upper sums UN of f for all meshes. Likewise, the lower
Darboux integral of f , denoted by L, is the least upper bound of all lower
sums LN of f for all meshes. If the upper and lower Darboux integrals of f exist
and are equal, we call the common value the Darboux integral of f .7 Prove
that if f is continuous, then the upper and lower Darboux integrals of f exist
and are equal and prove that the resulting Darboux integral is equal to the usual
integral of f .

(d) Note that the concept of the Darboux integral applies to functions
f that are merely defined and bounded on [a, b]; i.e., the functions may not
be continuous. Hence, we have given a definition of integrability that does not
depend on assuming continuity. Part (c) shows that this definition agrees with
the usual definition when the integrand is continuous. As an example to show
that the new definition is more general, prove that the Darboux integral of a
monotone bounded, though not necessarily continuous, function exists. Hint: It
is possible to get an explicit formula for the Darboux integrals of f on uniform
meshes.

(e) Either compute the Darboux integral of the step function I(x) (I(x) =
1 for 0 ≤ x ≤ 1 and 0 for all other x) on [−1, 2] or prove it does not exist. Do
the values of I(x) at x = 0 and 1 make a difference?

(f) Find an example of a function that does not have a Darboux integral.

Problems 34.9–34.13 involve computing the length of a curve.

34.9. Compute the length of the curve f(x) = x on [0, 1] both geometrically and
using integration.

34.10. Compute the length of f(x) = 1
3

(
x2 + 2

)3/2 from 0 to 2.

34.11. Compute the length of f(x) =
(
4 − x2/3)3/2 from 0 to 8.

34.12. Compute the length of f(x) = 1
6x3 + 1

2x−1 from 1 to 3.

34.13. Compute the length of f(x) from 1 to 2 where f(x) is any solution of the
differential equation y′ = (x4 − 1)1/2.

7Named after the French mathematician Jean Gaston Darboux (1842–1917), who
made important contributions to analysis and differential geometry. He was highly hon-
ored for his work during his lifetime.
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35
Delicate Limits and Gross Behavior

In this chapter, we examine some “delicate limits” of functions. In particu-
lar, we have so far avoided taking limits of functions as the inputs tend to
infinity and avoided considering functions that increase or decrease without
bound as the inputs tend to some limit. In other words, we have largely
avoided discussing limits of functions when infinity is involved. However,
knowing how a function behaves as the inputs increase in size or know-
ing that a function increases without bound as the inputs tend to some
limit is often important in practice. So we begin by extending the idea of
a limit to cover both situations in a way that is consistent with the usual
“finite” limits. After that, we derive a useful tool called L’Hôpital’s rule
for computing limits in situations that threaten to involve infinity. Finally,
we introduce some language that is very useful for discussing the rate at
which a function increases or decreases in value.

35.1 Functions and Infinity

We consider first “taking a limit at ∞.” We say that the function f
converges to L at ∞, and write

lim
x→∞

f(x) = L,

if the number L has the property that given any ε > 0 there is an m such
that

|f(x) − L| < ε for all x > m.
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In words, f(x) approaches L as x increases in size. Likewise, a function f
converges to L at −∞, and we write

lim
x→−∞

f(x) = L,

if the number L has the property that given any ε > 0 there is an m such
that

|f(x) − L| < ε for all x < m.

In words, f(x) approaches L as x decreases in size.

Example 35.1. We show that

lim
x→∞

(
1 +

1
x

)
= 1.

Given ε > 0, then ∣
∣
∣
∣
(
1 +

1
x

)
− 1
∣
∣
∣
∣ =

∣
∣
∣
∣
1
x

∣
∣
∣
∣ < ε

if x > 1/ε = m.

Example 35.2. The plot of sin (see Fig. 35.1), makes it clear that
limx→∞ sin(x) is undefined. Analytically, given any number y in [−1, 1]
there are arbitrarily large x with sin(x) = y.

2
−  

π
−
2

−π3π

−2π

π
−
2

π
2
−
3π

2π

−

−

1

−1

sin(x)

FIGURE 35.1. Plot of sin.

Note that we can think of the limit at ∞ as a one-sided limit from the
left, i.e.,

lim
x→∞

f(x) = lim
x↑∞

f(x),

and likewise the limit at −∞ as a one-sided limit from the right, i.e.,

lim
x→−∞

f(x) = lim
x↓∞

f(x).
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Next, we define “infinite limits.” We say that f converges to ∞ at a
number a, and write

lim
x→a

f(x) = ∞,

if for every M there is a δ > 0 such that

f(x) > M for all x with 0 < |x − a| < δ.

In words, f(x) can be made arbitrarily large by taking x sufficiently close
to a. Likewise, f converges to −∞ at a number a,

lim
x→a

f(x) = −∞,

if for every M there is a δ > 0 such that

f(x) < M for all x with 0 < |x − a| < δ.

Example 35.3. We show that limx→0 x−2 = ∞. Given any M > 0,
then

1
x2 > M

for all x with x2 < 1/M or |x| < 1/
√

M = δ.

This definition can be trickier to apply than it might appear. Consider
the two functions plotted in Fig. 35.2. Neither function is continuous at a.

a

f(x)

a

f(x)

FIGURE 35.2. Plot of two functions that become large in magnitude as x ap-
proaches a.

However, the function on the left converges to ∞ as x approaches a, while
the function on the right does not , because it behaves differently on either
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side of a. We often have to consider one-sided limits to evaluate an infinite
limit. Thus,

lim
x→a

f(x) = ∞ if and only if lim
x↑a

f(x) = ∞ and lim
x↓a

f(x) = ∞,

with the obvious definition of the one-sided limits.

Example 35.4. We show that limx→0 x−1 is undefined. For if x > 0,
then given any M > 0, 1/x > M as long as 0 < x < 1/M = δ. Yet, if
x < 0, then given any M < 0, 1/x < M as long as 1/M = δ < x < 0.
Hence, limx↑0 x−1 = −∞ and limx↓0 x−1 = ∞.

Of course, these different definitions can be combined. We say that f
converges to ∞ at ∞, and write

lim
x→∞

f(x) = ∞,

if for every M there is an m such that

f(x) > M for all x > m

and f converges to −∞ at ∞, and write

lim
x→∞

f(x) = −∞,

if for every M there is an m such that

f(x) < M for all x > m.

We leave it as an exercise (Problem 35.2) to define f converging to ∞ as x
approaches −∞ and so on.

Example 35.5. We show that limx→∞ x2 = ∞. For any M > 0,
x2 > M for all x with x >

√
M = N .

35.2 L’Hôpital’s Rule

The examples treated so far have been straightforward applications of the
definitions. However as is the case with the usual “finite” limits, limits that
involve or threaten to involve infinity can be difficult to evaluate. We have
dealt with some examples already. For example when differentiating sin,
we encountered the limit

lim
x→0

sin(x)
x

.

This is a difficult limit because both the numerator and denominator tend
to zero and it is unclear what their ratio does. We dealt with this by doing
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some complicated geometry. Another example of a relatively difficult limit
is

lim
x→∞

log(x3 + 1)
log(x2 + 5x)

.

In this case, both the numerator and the denominator increase without
bound and it is unclear what their ratio does.

These are both examples of what are called indeterminate forms. In-
determinate forms include limits of ratios of functions in which the numer-
ator and denominator both tend to zero or both tend to plus or minus
infinity. In an abuse of notation, these two cases are often labeled “0/0”
and “∞/∞,” though these two expressions are actually meaningless. In-
determinate forms also include limits of a product of two functions where
one function tends to zero and the other increases without bound and the
difference of two functions both of which tend to plus or minus infinity.
These are labeled “0 ·∞” and “∞−∞,” respectively. Other indeterminate
forms include “∞0,” “1∞,” and “00” with the obvious interpretations. We
discuss specific examples below.

In this section, we state and prove L’Hôpital’s rule, which is an often-
useful tool for evaluating indeterminate forms.1 Because it applies to several
different situations, the statement of the general result is neither easy to
read or understand. So we first give some motivation in the simplest case.

Suppose that f and g are differentiable functions in an open interval
containing a with f(a) = g(a) = 0 and that we want to compute

lim
x→a

f(x)
g(x)

.

We can rewrite this limit as

lim
x→a

f(x)
g(x)

= lim
h→0

f(a + h)
g(a + h)

.

Now for h small,

f(x + h) ≈ f(a) + hf ′(a) = hf ′(a)
g(x + h) ≈ g(a) + hg′(a) = hg′(a).

Hence, if f ′(a)/g′(a) is defined, then for h small,

f(x + h)
g(x + h)

≈ f ′(a)
g′(a)

,

1This result is named after the French mathematician Guillaume Francois Antoine
Marquis de L’Hôpital (1661–1704). L’Hôpital paid Johann Bernoulli for private lessons
on the calculus of Leibniz and the right to use some of Bernoulli’s results in his text-
book, which was the first textbook on differential calculus. L’Hôpital’s rule was almost
certainly discovered by Johann Bernoulli, though L’Hôpital himself was a reasonable
mathematician.
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suggesting that

lim
x→a

f(x)
g(x)

=
f ′(a)
g′(a)

.

This is essentially L’Hôpital’s rule, which in general replaces the limit of
the ratio of two functions by the limit of the ratio of their derivatives in
certain circumstances.

Theorem 35.1 L’Hôpital’s Rule Suppose f and g are differentiable
functions on (a, b) and g′(x) �= 0 for all x in (a, b), where −∞ ≤ a < b ≤ ∞.

1. Assume that

lim
x↓a

f ′(x)
g′(x)

= A

exists, where A may be finite or infinite. If (a) limx↓a f(x) = 0 and
limx↓a g(x) = 0 or (b) limx↓a g(x) = ±∞, then

lim
x↓a

f(x)
g(x)

= A.

2. Assume that

lim
x↑b

f ′(x)
g′(x)

= B

exists, where B may be finite or infinite. If (a) limx↑b f(x) = 0 and
limx↑b g(x) = 0 or (b) limx↑b g(x) = ±∞, then

lim
x↑b

f(x)
g(x)

= B.

This statement of L’Hôpital’s rule is framed in terms of one-sided limits.
If we want to apply this to evaluate limx→a f(x) where a is finite, then we
rewrite the limit as the common value of the one-sided limits from the left
and right of a.

Example 35.6. To compute

lim
x→0

sin(x)
x

,

note that sin(x) and x are differentiable everywhere, while (x)′ = 1 �= 0
for any x. Since (sin(x))′ = cos(x),

lim
x↓0

cos(x)
1

= lim
x↑0

cos(x)
1

= 1.

We conclude that

lim
x→0

sin(x)
x

= 1.
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Example 35.7. To compute

lim
x→∞

log(x3 + 1)
log(x2 + 5x)

,

note that the numerator and denominator are differentiable, while (log(x2+
5x))′ = (2x+5)/(x2 +5x) �= 0 for x > 0 and moreover limx→∞ log(x2 +
5x) = ∞. We compute

(log(x3 + 1))′

(log(x2 + 5x))′ =
3x2

x3+1
2x+5
x2+5x

=
3x4 + 15x3

2x4 + 5x3 + 2x + 5
.

Using a trick developed for rational functions, we conclude that

lim
x→∞

3x4 + 15x3

2x4 + 5x3 + 2x + 5
= lim

x→∞

(x−4)(3x4 + 15x3)
(x−4)(2x4 + 5x3 + 2x + 5)

= lim
x→∞

3 + 15x−1

2 + 5x−1 + 2x−3 + 5x−4 =
3
2
. (35.1)

However, we can also show (35.1) by repeated application of L’Hôpital’s
rule. This is just

lim
x→∞

3x4 + 15x3

2x4 + 5x3 + 2x + 5
= lim

x→∞

12x3 + 45x2

8x3 + 15x2 + 2

= lim
x→∞

36x2 + 90x

24x2 + 30x
= lim

x→∞

36x + 90
24x + 30

= lim
x→∞

36
24

=
3
2
,

where at each step the assumptions of the theorem hold as long as the
new limit exists.

We prove case 1 and leave case 2 as an exercise (Problem 35.8). The
proof is based on a generalization of the Mean Value Theorem 32.17.

Theorem 35.2 Generalized Mean Value Theorem If f and g are
continuous functions in [a, b] and differentiable in (a, b), then there is a c
in (a, b) such that

(
f(b) − f(a)

)
g′(c) =

(
g(b) − g(a)

)
f ′(c). (35.2)

We give the proof of this as an exercise (Problem 35.4). Note that the
standard non-constructive Mean Value Theorem 32.17 follows from this
result by taking g = x.

We begin by assuming (a) holds and treat three cases, beginning with
−∞ < A < ∞. By definition, for any ε > 0 there is an m > a such that

∣
∣
∣
∣A − f ′(t)

g′(t)

∣
∣
∣
∣ < ε for a < t < m.
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Choosing w and x with a < w < x < m, then because g′(s) �= 0 for any s
in (a, b), Theorem 35.2 implies there is a t in (w, x) with

f(x) − f(w)
g(x) − g(w)

=
f ′(t)
g′(t)

.

This means that ∣
∣
∣
∣A − f(x) − f(w)

g(x) − g(w)

∣
∣
∣
∣ < ε.

Letting w → a, we conclude that for any ε > 0 there is an m > a such that
∣
∣
∣
∣A − f(x)

g(x)

∣
∣
∣
∣ < ε for a < x < m.

This proves the result.
For the second case, we assume A = −∞. By definition, given any M > A

there is an m > a such that

A <
f ′(t)
g′(t)

< M for a < t < m.

Now repeating the argument above, we conclude that for any M > A there
is an m > a such that

A <
f(x)
g(x)

< M for a < x < m. (35.3)

We treat A = ∞ is a similar way. We leave the details of both arguments
as exercises (Problems 35.5 and 35.6).

Now we consider assumption (b), breaking the proof down into two cases,
beginning with −∞ ≤ A < ∞. We show the result using one-sided limits
assuming that g(x) → ∞. The case g(x) → −∞ follows directly.

Given any M > A, we choose M̃ such that A < M̃ < M . By definition,
there is an m > a such that

f ′(t)
g′(t)

< M̃ < M for a < t < m.

If a < x < y < m, then there is a t in (x, y) such that

f(x) − f(y)
g(x) − g(y)

=
f(y) − f(x)
g(y) − g(x)

=
f ′(t)
g′(t)

< M̃. (35.4)

Since g(x) increases without bound as x approaches a, by reducing m if
necessary, g(x) > 0 and g(x) > g(y) for all a < x < y < m. We multiply
(35.4) by (g(x) − g(y))/g(x) > 0 to get

f(x) − f(y)
g(x)

< M̃
g(x) − g(y)

g(x)
= M̃ − M̃

g(y)
g(x)
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or
f(x)
g(x)

< M̃ − M̃
g(y)
g(x)

+
f(y)
g(x)

.

Since g(x) → ∞ as x ↓ a, for fixed y and all x sufficiently close to a,

M̃ − M̃
g(y)
g(x)

+
f(y)
g(x)

< M.

Hence, we conclude that for any M > A there is an m > a such that

f(x)
g(x)

< M for a < x < m. (35.5)

Now if A = −∞, then the desired result has been proved. Otherwise, if
−∞ < A ≤ ∞, we use a very similar argument (Problem 35.7) to show
that for any N < A there is an n > a such that

N <
f(x)
g(x)

for a < x < n. (35.6)

This proves the result when A = ∞ directly, and together (35.5) and (35.6)
prove the result when −∞ < A < ∞.

We mentioned that the other indeterminate forms are treated by rewrit-
ing them as the indeterminate forms “0/0” or “∞/∞” and then using
L’Hôpital’s rule if necessary. We conclude this section by giving some ex-
amples.

Example 35.8. An example of the indeterminate form “∞ − ∞” is

lim
x→∞

x −
√

x2 + 1.

To evaluate this limit, we first write

x −
√

x2 + 1 =
(
x −

√
x2 + 1

)x +
√

x2 + 1
x +

√
x2 + 1

=
x2 − (x2 + 1)
x +

√
x2 + 1

= − 1
x +

√
x2 + 1

.

Since

lim
x→∞

1
x +

√
x2 + 1

= 0

we conclude that
lim

x→∞
x −

√
x2 + 1 = 0.
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Example 35.9. When considering the exponential function, we en-
countered the indeterminate form “1∞” in the form

L = lim
x→0

(1 + x)1/x.

Since the logarithm is a monotone increasing, continuous function,

log(L) = log
(

lim
x→0

(1 + x)1/x
)

= lim
x→0

log
(
(1 + x)1/x

)
,

provided the second limit exists. Now

log
(
(1 + x)1/x

)
=

log(1 + x)
x

.

We apply L’Hôpital’s rule to evaluate

lim
x→0

log(1 + x)
x

= lim
x→0

(1 + x)−1

1
= 1.

We conclude that log(L) = 1 or L = e.

35.3 Orders of Magnitude

We saw that L’Hôpital’s rule is a useful device for comparing the rates at
which two functions change values when both increase without bound or
both tend to zero as the input changes. In this section, we introduce some
useful language for comparing the rates of growth of two functions.

Consider two functions f(x) and g(x) that both tend to ∞ as x tends to
∞. We say that f becomes infinite at a higher order (rate) than g
if

lim
x→∞

∣
∣
∣
∣
f(x)
g(x)

∣
∣
∣
∣ = ∞.

This means that while both |f | and |g| increase without bound as x in-
creases, |f | increases more quickly.

Example 35.10. Clearly, x3 becomes infinite at a higher order than
x2.

Example 35.11. In Chapter 29, we proved that for any p, exp(x) be-
comes larger than xp for sufficiently large x, and likewise xp eventually
becomes larger than log(x). We can make these comparisons more pre-
cise.

First, we show that for any natural number n,

lim
x→∞

ex

xn
= ∞,
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by an inductive application of L’Hôpital’s rule,

lim
x→∞

ex

xn
= lim

x→∞

ex

nxn−1 = lim
x→∞

ex

n(n − 1)xn−2

= · · · lim
x→∞

ex

n(n − 1) · · · 1 = ∞. (35.7)

Now for any p > 0, let n be the largest natural number less than or
equal to p. Then for x > 1,

ex

xp
≥ ex

xp

xp

xn
=

ex

xn
. (35.8)

Hence for any p > 0,

lim
x→∞

ex

xn
= ∞ (35.9)

and therefore exp(x) becomes infinite at a higher order than xp for any
p > 0. Using this, it is straightforward to show that xp becomes infinite
to higher order than log(x) for any p > 0.

Likewise, if f(x) and g(x) tend to infinity as x → ∞, we say that f be-
comes infinite at a lower order (rate) than g if

lim
x→∞

∣
∣
∣
∣
f(x)
g(x)

∣
∣
∣
∣ = 0.

Finally, we say that f and g become infinite at the same order if
there are constants c1 < c2 such that

c1 <

∣
∣
∣
∣
f(x)
g(x)

∣
∣
∣
∣ < c2

for all sufficiently large x.

Example 35.12. In Example 35.7, we showed that log(x3 + 1) and
log(x2 + 5x) grow at the same order of magnitude.

Note that in the last case, the ratio of the functions need not tend to a
limit.

To complete the language, we say that xp has an order of magnitude
p as x → ∞. Any function that becomes infinite at the same order as xp

also has an order of magnitude p. The examples above show that exp(x)
has an order of magnitude larger than any p > 0 as x → ∞, while log(x)
has a lower order of magnitude than any p > 0.

While this notation is often useful, it cannot be used to compare the
rates of growth of any two functions.
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Example 35.13. We cannot compare the functions x2 sin2(x) + x + 1
and x2 cos2(x) + 1 using orders of magnitude. The ratio of these two
functions neither remains between two constants nor tends to zero or
infinity.

But on the other hand, it is not meant to compare all functions. For exam-
ple, knowing how one of the functions in Example 35.13 behaves gives no
useful information about how the other function behaves.

We can apply the idea of orders of magnitude to compare the rates that
two functions decrease to zero by using a change of variables, namely,

lim
x↓0

f(x) = lim
y→∞

f(1/y).

To compare two functions f(x) and g(x) as x ↓ 0, we compare f(1/y) and
g(1/y) as y → ∞. It follows that f vanishes at a higher order than g
if

lim
x↓0

∣
∣
∣
∣
f(x)
g(x)

∣
∣
∣
∣ = 0.

We say that f vanishes at a lower order than g if

lim
x↓0

∣
∣
∣
∣
f(x)
g(x)

∣
∣
∣
∣ = ∞.

Finally, we say that f and g vanish at the same order if there are
constants c1 < c2 such that

c1 <

∣
∣
∣
∣
f(x)
g(x)

∣
∣
∣
∣ < c2

for all sufficiently small x.
Consequently, we say that xp for p > 0 decreases or vanishes with order

of magnitude p as x ↓ 0, and we assign orders of magnitude to general
functions depending on how they compare to xp.

Example 35.14. In Example 35.11, we showed that log(x) vanishes
with a lower order of magnitude than xp for any p > 0 and likewise
exp(−1/x) vanishes with a higher order of magnitude.

Example 35.15. The function xp + x vanishes at the same order as x
if p > 1 and at the same order as xp if 0 < p < 1.

There is a succinct notation for discussing orders of magnitudes, called
the “big O” and “little o” notation, which is due to Landau.2 If the function
f is of lower order of magnitude than g, we write

f = o(g)

2The German mathematician Edmund Georg Hermann Landau (1877–1938) wrote
many papers in number theory, making fundamental contributions to analytic number
theory in particular.
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and say that f is “little o” of g. This means that

f

g
→ 0

when x → ∞ or x ↓ 0 as is relevant. We can abbreviate the results above
as simply

xp = o(xq) for p < q as x → ∞
log(x) = o(xp) for p > 0 as x → ∞

xp = o(ex) for p > 0 as x → ∞
xp = o(xq) for p > q as x ↓ 0

log(x) = o(1/xp) for p > 0 as x ↓ 0

e−1/x = o(xp) for p > 0 as x ↓ 0.

The “big O” notation is used to indicate that one function is, at most,
the same order of magnitude as the other. We say that f = O(g) if there
are constants c1 and c2 such that

c1 <

∣
∣
∣
∣
f(x)
g(x)

∣
∣
∣
∣ < c2

for all relevant values of x.

Example 35.16.
√

x = O(
√

x + 1) for all x ≥ 0
√

x = O(x) for all x ≥ 1
log(x) = O(x) for all x ≥ 1
x = O(sin(x)) for all x ≤ 1.
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Chapter 35 Problems

In Problem 35.1, we ask you to use the definitions to compute the indi-
cated limits. The rest of the problems involving the computation of limits
should be tackled using L’Hôpital’s rule.

35.1. Compute the following limits using the definition, or show they are not
defined,

(a) lim
x→∞

x5 (b) lim
x→∞

2/(x + 1)

(c) lim
x→3

1/(x − 3)4 (d) lim
x→1

x/(x − 1) .

35.2. Write down a definition for a function to converge to ∞ as x → −∞.

35.3. Compute the following limits:

(a) lim
x→1

x3 + x2 − 2x

x3 − x2 + x − 1
(b) lim

x→0

x − sin(x)
x3

(c) lim
x→0

1 − cos(x)
x2 (d) lim

x→∞

x4 − 3000x + 1
x2 + 2x + 4

(e) lim
x→∞

log(x − 1)
log(x2 − 1)

(f) lim
x→∞

x log(x)
(x + 1)2

.

35.4. Prove Theorem 35.2. Hint: Consider the function

h(x) =
(
f(b) − f(a)

)
g(x) −

(
g(b) − g(a)

)
f(x) −

(
f(b)g(a) − f(a)g(b)

)
.

35.5. Verify (35.3).

35.6. Carry out the proof of case 1. of Theorem 35.1 under assumption (a) with
A = ∞.

35.7. Carry out the proof of case 1. of Theorem 35.1 under assumption (b) with
−∞ < A ≤ ∞.

35.8. Carry out the proof of case 2. of Theorem 35.1.

35.9. Compute the following limits:

(a) lim
x→0

(
sin(x) log(x)

)
(b) lim

x→1

(
1

log(x)
− x

x − 1

)

(c) lim
x→∞

x1/x (d) lim
x↓0

(log(1 + x))x.
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35.10. (a) Show that Newton’s method applied to a differentiable function f(x)
with f(x̄) = f ′(x̄) = 0, where x̄ is the root of f in question, converges at a
linear rate. Hint: Use L’Hôpital’s rule to show that limx→x̄ g′(x) = 1/2 where
g(x) = x − f(x)/f ′(x). (b) What is the rate of convergence of the following
variant of Newton’s method in the case of a double root: g(x) = x−2f(x)/f ′(x)?

35.11. Verify the details in (35.7).

35.12. Verify (35.8) and show this implies (35.9).

35.13. Show that xp becomes infinite to higher order than log(x) for any p > 0.

35.14. Verify the claims in Example 35.13.

35.15. Show that sin(x) = o(x) as x → ∞.

35.16. Verify the equations in Example 35.16.

35.17. Translate the results in Problem 35.3 into the “big O” and “little o”
notation.

35.18. Let f(x) be a differentiable function on an open interval containing 0
and suppose that both f(0) = f ′(0) = 0. Show that f vanishes to higher order
than x at x → 0.
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36
The Weierstrass Approximation
Theorem

Recall that the fundamental idea underlying the construction of the real
numbers is approximation by the simpler rational numbers. Firstly, num-
bers are often determined as the unknown roots of some equation and when
we cannot solve the equation explicitly, as is most often the case, then we
must compute approximate solutions. But even if we write down a real
number symbolically, like

√
2, for example, we cannot specify its numerical

value completely in general. In this case, we approximate the real number
to any desired accuracy using rational numbers with finite decimal expan-
sions.

The situation for functions is completely analogous. In general, functions
that are specified as the solutions of differential equations cannot be written
down explicitly in terms of known functions. Instead, we must look for good
approximations. Moreover, most of the functions that we can write down,
i.e., those involving exp, log, sin, and so on, are “complicated” in the sense
that they take on real values that cannot be written down explicitly. To
use these functions in practical computations, we must resort to using good
approximations of their values. Put it this way; when we press the ex key
on a calculator, we do not get ex, rather we get a good approximation.

This raises one of the fundamental problems of analysis, which is figuring
out how to approximate a given function using simpler functions. In this
chapter, we begin the study of this problem by proving a fundamental result
which says that any continuous function can be approximated arbitrarily
well by polynomials. This is an important result because polynomials are
relatively simple. In particular, a polynomial is specified completely by a
finite set of coefficients. In other words, the relatively simple polynomi-
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als play the same role with respect to continuous functions that rational
numbers play with real numbers.

The result is due to Weierstrass and it states:

Theorem 36.1 Weierstrass Approximation Theorem Assume that
f is continuous on a closed bounded interval I. Given any ε > 0, there is a
polynomial Pn with sufficiently high degree n such that

|f(x) − Pn(x)| < ε for a ≤ x ≤ b. (36.1)

There are many different proofs of this result, but in keeping with our
constructivist tendencies, we present a constructive proof based on Bern-
stein1 polynomials. The motivation for this approach rests in probability
theory. We do not have space in this book to develop probability theory,
but we describe the connection in an intuitive way. Later in Chapter 37 and
Chapter 38, we investigate other polynomial approximations of functions
that arise from different considerations.

Before beginning, we note that it suffices to prove Theorem 36.1 for the
interval [0, 1]. The reason is that the arbitrary interval a ≤ y ≤ b is mapped
to 0 ≤ x ≤ 1 by x = (a− y)/(a− b) and vice versa by y = (b − a)x+ a. If g
is continuous on [a, b], then f(x) = g((b − a)x + a) is continuous on [0, 1].
If the polynomial Pn of degree n approximates f to within ε on [0, 1], then
the polynomial P̃n(y) = Pn((a − y)/(a − b)) of degree n approximates g(y)
to within ε on [a, b].

36.1 The Binomial Expansion

One ingredient needed to construct the polynomial approximations is an
important formula called the binomial expansion. For natural numbers 0 ≤
m ≤ n, we define the binomial coefficient

(
n
m

)
, or n choose m, by

(
n
m

)
=

n!
m!(n − m)!

.

Example 36.1.
(

4
2

)
=

4!
2!2!

= 6,

(
6
1

)
=

6!
1!5!

= 6,

(
3
0

)
=

3!
3!0!

= 1

We can interpret n choose m as the number of distinct subsets with m
elements that can be chosen from a set of n objects, or the number of
combinations of n objects taken m at a time.

1The Russian mathematician Sergi Natanovich Bernstein (1880–1968) studied in
France before returning to Russia to work. He proved significant results in approxi-
mation theory and probability.
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Example 36.2. We compute the probability P of getting an ace of
diamonds in a poker hand of 5 cards chosen at random from a standard
deck of 52 cards. Recall the formula

P( event ) = probability of an event

=
number of outcomes in the event
total number of possible outcomes

that holds if all outcomes are equally likely. The total number of 5 card
poker hands is

(52
5

)
. Obtaining a “good” hand amounts to choosing any

4 cards from the remaining 51 cards after getting an ace of diamonds.
So there are

(51
4

)
good hands. This means

P =

(51
4

)

(52
5

) =
51!

4!47!
5!47!
52!

=
5
52

.

It is straightforward (Problem 36.3) to show the following identities,
(

n

m

)
=
(

n

n − m

)
,

(
n

1

)
=
(

n

n − 1

)
,

(
n

n

)
=
(

n

0

)
= 1. (36.2)

An important application of the binomial coefficient is the following the-
orem.

Theorem 36.2 Binomial Expansion For any natural number n,

(a + b)n =
n∑

m=0

(
n

m

)
ambn−m. (36.3)

Example 36.3.

(a + b)2 = a2 + 2ab + b2

(a + b)3 = a3 + 3a2b + 3ab2 + b3

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

The proof is by induction. For n = 1,

(a + b)1 = a + b =
(

1
0

)
a +

(
1
1

)
b.

We assume the formula is true for n − 1, so that

(a + b)n−1 =
n−1∑

m=0

(
n − 1

m

)
ambn−1−m,

and prove it holds for n.
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We multiply out

(a + b)n = (a + b)(a + b)n−1

=
n−1∑

m=0

(
n − 1

m

)
am+1bn−1−m +

n−1∑

m=0

(
n − 1

m

)
ambn−m.

Now changing variables in the sum,

n−1∑

m=0

(
n − 1

m

)
am+1bn−1−m =

n−1∑

m=1

(
n − 1
m − 1

)
ambn−m + anb0,

while
n−1∑

m=0

(
n − 1

m

)
ambn−m = a0bn +

n−1∑

m=1

(
n − 1

m

)
ambn−m.

Hence,

(a + b)n = a0bn +
n−1∑

m=1

((
n − 1
m − 1

)
+
(

n − 1
m

))
ambn−m + anb0. (36.4)

It is a good exercise (Problem 36.5) to show that
(

n − 1
m − 1

)
+
(

n − 1
m

)
=
(

n

m

)
. (36.5)

Using this in (36.4) proves the result.
We use the binomial expansion to drive two other useful formulas. We

differentiate both sides of

(x + b)n =
n∑

m=0

(
n

m

)
xmbn−m (36.6)

to get

n(x + b)n−1 =
n∑

m=0

m

(
n

m

)
xm−1bn−m.

Setting x = a and multiplying through by a/n,

a(a + b)n−1 =
n∑

m=0

m

n

(
n

m

)
ambn−m. (36.7)

Differentiating (36.6) twice (Problem 36.6) gives

(
1 − 1

n

)
a2(a + b)n−2 =

n∑

m=0

(
m2

n2 − m

n2

)(
n

m

)
ambn−m. (36.8)
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36.2 The Law of Large Numbers

The approximating polynomials used to prove Theorem 36.1 are constructed
by taking linear combinations of more elementary polynomials called bino-
mial polynomials. In this section, we explore the properties of the binomial
polynomials and their connection to probability.

We set a = x and b = 1 − x in the binomial expansion (36.3) to get

1 = (x + (1 − x))n =
n∑

m=0

(
n

m

)
xm(1 − x)n−m. (36.9)

We define the m + 1 binomial polynomials of degree n as the terms in
the expansion, so

pn,m(x) =
(

n

m

)
xm(1 − x)n−m, m = 0, 1, · · · , n.

Example 36.4.

p2,0(x) =
(

2
0

)
x0(1 − x)2 = (1 − x)2

p2,1(x) =
(

2
1

)
x1(1 − x)1 = 2x(1 − x)

p2,2(x) =
(

2
2

)
x2(1 − x)0 = x2

If 0 ≤ x ≤ 1 is the probability of an event E, then pn,m(x) is the
probability that E occurs exactly m times in n independent trials.

Example 36.5. In particular, consider tossing an coin with probability
x that a head (H) occurs and, correspondingly, probability 1 − x that
a tail (T ) occurs. The coin is “unfair” if x �= 1/2. The probability of
the occurrence of a particular sequence of n tosses containing m heads,
e.g.,

HTTHHTHTHTTHHHTHTHTTT · · ·T︸ ︷︷ ︸
m heads in n tosses

,

is xm(1 − x)m−n by the multiplication rule for probabilities. There are(
n
m

)
sequences of n tosses with exactly m heads. By the addition rule

for probabilities, pn,m(x) is the probability of getting exactly m heads
in n tosses.

The binomial polynomials have several useful properties, some of which
follow directly from the connection to probability. For example, we interpret

n∑

m=0

pn,m(x) = 1 (36.10)
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as saying that event E with probability x occurs either exactly 0, 1, · · · , or
n times in n independent trials with probability 1. Since pn,m(x) ≥ 0 for
0 ≤ x ≤ 1, (36.10) implies that 0 ≤ pn,m(x) ≤ 1 for 0 ≤ x ≤ 1, as it must
since it is a probability.

A couple more useful properties: (36.7) implies

n∑

m=0

mpn,m(x) = nx (36.11)

and (36.8) implies

n∑

m=0

m2pn,m(x) = (n2 − n)x2 + nx. (36.12)

An important use of the binomial polynomials is an application to the
Law of Large Numbers. Suppose we have an event E that has probability
x of occurring, such as the unfair coin from Example 36.5. But suppose
we don’t know the probability. How might we determine x? If we conduct
a single trial, e.g., flip the coin once, we might see event E or might not.
One trial does not give much information for determining x. However, if
we conduct a large number n � 1 of trials, then intuition suggests that E
should occur approximately nx times out of n trials, at least “most of the
time.”

Example 36.6. The connection between the probability of occurrence
in one trial and the frequency of occurrence in many trials is not com-
pletely straightforward to determine. Consider coin tossing again. If we
flip a fair coin 100, 000 times, we expect to see around 50, 000 heads
most of the time. Of course, we could be very unlucky and get all tails.
But the probability of this occurring is

(
1
2

)100000

≈ 10−30103.

On the other hand, it is also unlikely that we will see heads in exactly
half of the tosses. In fact, one can show that the probability of getting
heads exactly half of the time is approximately 1/

√
πn for n large, and

therefore also goes to zero as n increases.

A Law of Large Numbers encapsulates in some way the intuitive con-
nection between the probability of an event occurring in one trial and the
frequency that the event occurs in a large number of trials. A mathematical
expression of this intuition is a little tricky to state, however, as we saw
in Example 36.6. We prove the following version that is originally due to
Jacob Bernoulli.
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Theorem 36.3 Law of Large Numbers Assume that event E occurs
with probability x and let m denote the number of times E occurs in n
trials. Let ε > 0 and δ > 0 be given. The probability that m/n differs from
x by less than δ is greater than 1 − ε, i.e.,

P
(∣∣
∣
m

n
− x
∣
∣
∣ < δ

)
> 1 − ε, (36.13)

for all n sufficiently large.

Note that we can choose ε > 0 and δ > 0 arbitrarily small at the cost of
making n possibly very large, hence the name of the theorem. Also note that
while this result says that it is likely that event E will occur approximately
xn times in n trials, it does not say that event E will occur exactly xn
times in n trials nor does it say that event E must occur approximately xn
times in n trials. Thus, this result does not contradict the computations in
Example 36.6.

Phrased in terms of the binomial polynomials, we want to show that
given ε, δ > 0, ∑

0≤m≤n∣
∣m

n −x
∣
∣<δ

pn,m(x) > 1 − ε (36.14)

for n sufficiently large.
Consider the complementary sum

∑

0≤m≤n∣
∣m

n −x
∣
∣≥δ

pn,m(x) = 1 −
∑

0≤m≤n∣
∣m

n −x
∣
∣<δ

pn,m(x),

which we estimate simply as
∑

0≤m≤n∣
∣m

n −x
∣
∣≥δ

pn,m(x) ≤ 1
δ2

∑

0≤m≤n∣
∣m

n −x
∣
∣≥δ

(m

n
− x
)2

pn,m(x) ≤ 1
n2δ2 Sn

where

Sn =
n∑

m=0

(m − nx)2pn,m(x)

=
n∑

m=0

m2pn,m(x) − 2nx

n∑

m=0

mpn,m(x) + n2x2
n∑

m=0

pn,m(x).

(36.15)

Using (36.10), (36.11), and (36.12), we find Sn simplifies (Problem 36.9)
to Sn = nx(1−x). Since x(1−x) ≤ 1/4 for 0 ≤ x ≤ 1, Sn ≤ n/4. Therefore,

∑

0≤m≤n∣
∣m

n −x
∣
∣≥δ

pn,m(x) ≤ 1
4nδ2 (36.16)
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and ∑

0≤m≤n∣
∣m

n −x
∣
∣<δ

pn,m(x) ≥ 1 − 1
4nδ2 .

In particular, for fixed ε, δ > 0, we can insure that (4nδ2)−1 < ε by choosing
n > 1/(4δ2ε).

36.3 The Modulus of Continuity

In order to prove a strong version of Theorem 36.1, we introduce a useful
generalization of Lipschitz continuity.

First note that by Theorem 32.11, the continuous function f on [a, b] in
Theorem 36.1 is actually uniformly continuous on [a, b]. That is given ε > 0
there is a δ > 0 such that |f(x)−f(y)| < ε for all x, y in [a, b] with |x−y| <
δ.2 Now a Lipschitz continuous function f with constant L is uniformly
continuous because |f(x) − f(y)| ≤ L|x − y| < ε for all x, y with |x −
y| < δ = ε/L. On the other hand, uniformly continuous functions are not
necessarily Lipschitz continuous. They do, however, satisfy a generalization
of the condition that defines Lipschitz continuity called the modulus of
continuity.

The generalization is based on the observation that if f is uniformly
continuous on a closed, bounded interval I = [a, b], then for any δ > 0, the
set of numbers

{|f(x) − f(y)| with x, y in I, |x − y| < δ} (36.17)

is bounded. Otherwise, f could not be uniformly continuous (Problem 36.10).
But, Theorem 32.15 then implies that the set of numbers (36.17) has a least
upper bound. Turning this around, we define the modulus of continuity
ω(f, δ) of a general function f on a general interval I by

ω(f, δ) = sup
x,y in I
|x−y|<δ

{|f(x) − f(y)|} .

Note that ω(f, δ) = ∞ if the set (36.17) is not bounded. We can guarantee
that ω(f, δ) is finite if f is uniformly continuous and I is a closed interval,
but if f is not uniformly continuous and/or I is open or unbounded, then
ω(f, δ) might be infinite.

Example 36.7. We know x2 is uniformly continuous on [0, 1]. Now
consider the difference |x2 − y2| = |x − y| |x + y|, where |x − y| < δ.

2Uniformity refers to the fact that δ can be chosen independently of x and y.
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The values of |x − y| increases monotonically from 0 to δ, while the
corresponding largest values of |x + y| decrease monotonically from 2
to 2 − δ. The largest value of their product occurs when |x − y| = δ so
that ω(x2, δ) = 2δ − δ2.

Example 36.8. ω(x−1, δ) on (0, 1) is infinite.

Example 36.9. ω(sin(x−1), δ) = 2 on (0, 1) since for any δ > 0 we can
find x and y within δ of 0, and hence within δ of each other, such that
sin(x−1) = 1 and sin(y−1) = −1.

Note that the functions in Example 36.8 and Example 36.9 are not uni-
formly continuous on the indicated intervals. In fact, if f is uniformly con-
tinuous on [a, b], then ω(f, δ) → 0 as δ → 0 (Problem 36.14).

If f is Lipschitz continuous on [a, b] with constant L, then ω(f, δ) ≤ Lδ.
In this sense, the modulus of continuity is a generalization of the idea of
Lipschitz continuity.

36.4 The Bernstein Polynomials

To construct the approximating polynomial, we partition [0, 1] by a uniform
mesh with n + 1 nodes

xm =
m

n
, m = 0, · · · , n.

The Bernstein polynomial of degree n for f on [0, 1] is

Bn(f, x) = Bn(x) =
n∑

m=0

f(xm)pn,m(x). (36.18)

Note that the degree of Bn is at most n.
The reason that the Bernstein polynomials become increasingly accurate

approximations as the degree n increases is rather intuitive. The formula
for Bn(x) decomposes into two sums,

Bn(x) =
∑

xm≈x

f(xm)pn,m(x) +
∑

|xm−x| large

f(xm)pn,m(x).

The first sum converges to f(x) as n becomes large, since we can find
nodes xm = m/n arbitrarily close to x by taking n large.3 The second sum
converges to zero by the Law of Large Numbers. This is exactly what we
prove below.

Before stating a convergence result, we consider a couple of examples.

3Recall that any real number can be approximated arbitrarily well by rational num-
bers.
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Example 36.10. The Bernstein polynomial Bn for x2 on [0, 1] with
n ≥ 2 is given by

Bn(x) =
n∑

m=0

(m

n

)2
pn,m(x).

By (36.12), this means

Bn(x) =
(

1 − 1
n

)
x2 +

1
n

x = x2 +
1
n

x(1 − x).

We see that Bn(x2, x) �= x2 and in fact the error

|x2 − Bn(x)| =
1
n

x(1 − x)

decreases like 1/n as n increases.

Example 36.11. We compute B1, B2, and B3 for f(x) = ex on [0, 1],

B1(x) = e0(1 − x) + e1x = (1 − x) + ex

B2(x) = (1 − x)2 + 2e1/2x(1 − x) + ex2

B3(x) = (1 − x)3 + 3e1/2x(1 − x)2 + 3e2/3x2(1 − x) + ex3.

We plot these functions in Fig. 36.1.

0.0 0.2 0.4 0.6 0.8 1.0
x

1.0

1.5

2.0

2.5

exp(x)

B1(x)

B2(x)

B3(x)

FIGURE 36.1. The first three Bernstein polynomials for ex.

We prove:

Theorem 36.4 Bernstein Approximation Theorem Let f be a con-
tinuous function on [0, 1] and n ≥ 1 a natural number. Then

|f(x) − Bn(f, x)| ≤ 9
4
ω(f, n−1/2). (36.19)
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If f is Lipschitz continuous with constant L, then

|f(x) − Bn(f, x)| ≤ 9
4
Ln−1/2. (36.20)

Theorem 36.1 follows immediately since for ε > 0, we simply choose n
sufficiently large so that

|f(x) − Bn(f, x)| ≤ 9
4
ω(f, n−1/2) < ε.

Using (36.10), we write the error as a sum involving the differences be-
tween f(x) and the values of f at the nodes:

f(x) − Bn(x) =
n∑

m=0

f(x)pn,m(x) −
n∑

m=0

f(xm)pn,m(x)

=
n∑

m=0

(f(x) − f(xm))pn,m(x)

We expect that the differences f(x) − f(xm) should be small when x is
close to xm by the continuity of f . To take advantage of this, for δ > 0, we
split the sum into two parts

f(x) − Bn(x) =
∑

0≤m≤n
|x−xm|<δ

(f(x) − f(xm))pn,m(x)

+
∑

0≤m≤n
|x−xm|≥δ

(f(x) − f(xm))pn,m(x). (36.21)

The first sum is small by the continuity of f , since
∣
∣
∣
∣

∑

0≤m≤n
|x−xm|<δ

(f(x) − f(xm))pn,m(x)
∣
∣
∣
∣ ≤

∑

0≤m≤n
|x−xm|<δ

|f(x) − f(xm)|pn,m(x)

≤ ω(f, δ)
n∑

0≤m≤n
|x−xm|<δ

pn,m(x)

≤ ω(f, δ)
n∑

m=0

pn,m(x) = ω(f, δ).

We can get a crude bound on the second sum in (36.21) easily. Since
f is continuous on [0, 1] there is a constant C such that |f(x)| ≤ C for
0 ≤ x ≤ 1. Therefore,

∑

0≤m≤n
|x−xm|≥δ

(f(x) − f(xm))pn,m(x) ≤ 2C
∑

0≤m≤n
|x−xm|≥δ

pn,m(x) ≤ C

nδ2
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by (36.16). So we can make the second sum as small as desired by taking
n large.

To get a sharper estimate on the second sum in (36.21), we use a trick
similar to that used to prove Theorem 19.1. We let M be the largest integer
less than or equal to |x − xm|/δ and choose M uniformly spaced points
y1, y2, · · · , yM in the interval spanned by x and xm so that each of the
resulting M + 1 intervals have length |x − xm|/(M + 1) < δ.

Now, we can write

f(x) − f(xm) = (f(x) − f(y1)) + (f(y1) − f(y2)) + · · ·
+ (f(yM ) − f(xm)).

Therefore,

|f(x) − f(xm)| ≤ (M + 1)ω(f, δ) ≤
(

1 +
|x − xm|

δ

)
ω(f, δ).

We use this to estimate the second sum in (36.21),
∣
∣
∣
∣

∑

0≤m≤n
|x−xm|≥δ

(f(x) − f(xm))pn,m(x)
∣
∣
∣
∣

≤ ω(f, δ)
( ∑

0≤m≤n
|x−xm|≥δ

pn,m(x) +
1
δ

∑

0≤m≤n
|x−xm|≥δ

|x − xm|pn,m(x)
)

.

Using the fact that |x − xm|/δ = M ≥ 1,
∣
∣
∣
∣

∑

0≤m≤n
|x−xm|≥δ

(f(x) − f(xm))pn,m(x)
∣
∣
∣
∣

≤ ω(f, δ)
( ∑

0≤m≤n
|x−xm|≥δ

pn,m(x) +
1
δ2

∑

0≤m≤n
|x−xm|≥δ

(x − xm)2pn,m(x)
)

≤ ω(f, δ)
( n∑

m=0

pn,m(x) +
1
δ2

n∑

m=0

(x − xm)2pn,m(x)
)

≤ ω(f, δ)
(

1 +
1

4nδ2

)

by (36.11) and (36.12). So
∣
∣
∣
∣

∑

0≤m≤n
|x−xm|≥δ

(f(x) − f(xm))pn,m(x)
∣
∣
∣
∣ ≤ ω(f, δ)

(
1 +

1
4nδ2

)
.
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Putting the estimates on the sums back into (36.21),

|f(x) − Bn(x)| ≤ ω(f, δ)
(

2 +
1

4nδ2

)
.

Setting δ = n−1/2 proves the theorem.

36.5 Accuracy and Convergence

We can interpret Theorem 36.4 as saying that the Bernstein polynomials
{Bn(f, x)} converge uniformly to f(x) on [0, 1] as n → ∞. In other words,
the errors of the Bernstein polynomials Bn for a given function f on [0, 1]
tend to zero as n increases. This is a strong property; unfortunately, the
price is that the convergence is very slow in general.

Example 36.12. To demonstrate how slowly the Bernstein polyno-
mials can converge, we plot the Bernstein polynomial of degree 4 for
sin(πx) on [0, 1] in Fig. 36.2.

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

sin(x)

B4(x)

FIGURE 36.2. A plot of the Bernstein polynomial B4(x) for sin(πx).

If the error bound in (36.19) is accurate, i.e.,

|f(x) − Bn(x)| ≈ 9
4
ω(f, n−1/2) ≈ Cn−1/2 for some constant C,

then we have to increase n by a factor of 100 in order to see an improvement
of 10 (one additional digit of accuracy) in the error. This follows because
from the computation

|f(x) − Bn1(x)|
|f(x) − Bn2(x)| ≈ n

−1/2
1

n
−1/2
2

= 10−1
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we need n2 = 100n1.
The error can decrease more quickly in some cases. Above, we saw that

the error for x2 decreases like 1/n. But even this is relatively slow compared
to some other polynomial approximations and for this reason the Bernstein
polynomials are not often encountered in practice.

36.6 Unanswered Questions

We have shown that continuous functions can be approximated by poly-
nomials. But we have not really explained why polynomials are well-suited
for approximating functions. In other words, what are the properties of
polynomials that make them good approximations? Are there other sets of
functions that have similar approximation properties? Atkinson [2], Isaac-
son and Keller [15], and Rudin [19] have interesting material on these topics.



36.6 Unanswered Questions 523

Chapter 36 Problems

36.1. Evaluate
(

8
3

)
.

36.2. Explain the claim that
(

n
m

)
gives the number of ways that n objects can

be arranged in groups of m.

36.3. Prove (36.2).

36.4. Expand (a + b)6.

36.5. Prove (36.5).

36.6. Prove (36.8).

36.7. Verify (36.12).

36.8. Determine a formula for the probability of getting exactly n/2 heads when
tossing a fair coin n times, where n is even. Make a plot of the formula for a n
in the range of 1 to 100 and test the claim that it approaches

√
πn for n large.

36.9. Prove that Sn defined in (36.15) is equal to Sn = nx(1 − x).

Problems 36.10–36.15 have to do with the modulus of continuity. Sev-
eral of the proofs in this book could be generalized by using the modulus of
continuity instead of Lipschitz continuity.

36.10. Prove that if f is uniformly continuous on [a, b], then for any δ > 0 the
set of numbers (36.17) is bounded.

36.11. Evaluate

(a) ω(x2, δ) on [0, 2] (b) ω(1/x, δ) on [1, 2] (b) ω(log(x), δ) on [1, 2].

36.12. Verify Example 36.8.

36.13. Verify Example 36.9.

36.14. Prove that if f is uniformly continuous on [a, b], then ω(f, δ) → 0 as
δ → 0.

36.15. Prove that if f has a continuous derivative on [a, b], then ω(f, δ) ≤
max[a,b] |f ′|δ.

Computing Bernstein polynomial approximations can be tedious. You
might want to use MAPLE c© , for example, to do Problems 36.16–36.21.

36.16. Compute formulas for p3,m, m = 0, 1, 2, 3.
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36.17. Verify the computations in Example 36.11.

36.18. Compute the Bernstein polynomials for x on [0, 1].

36.19. Compute and plot the Bernstein polynomials for exp(x) on [1, 3] of degree
1, 2, and 3.

36.20. (a) Compute a summation formula for the Bernstein polynomial for x3

on [0, 1] for degree ≥ 3. (b) Find an explicit formula for the Bernstein polynomial
from (a) that does not involve summation. (c) Write down a formula for the error.

36.21. Compute and plot the Bernstein polynomials for sin(πx) on [0, 1] of degree
1, 2, 3, and 4.

We have shown that the Bernstein polynomials approximate a differen-
tiable function, which is continuous of course, uniformly well. In Prob-
lem 36.22, we ask you to show that the derivative of the function is also
approximated by the derivatives of the function’s Bernstein polynomials.

36.22. If f(x) has a continuous first derivative in [0, 1], prove that the derivatives
of the Bernstein polynomials {P ′

n(f, x)} converge uniformly to f ′(x) on [0, 1].

Hint: First, verify the formulas

p′
n,m = n(pn−1,m−1 − pn−1,m) for m = 1, · · · , m − 1

p′
n,n = npn−1,n−1, p′

n,0 = −npn−1,0.

Then find a summation formula for the error f ′(x) − P ′
n(x) and rearrange the

sum in terms of pn−1,m for m = 0, 1, · · · , n − 1.

36.23. If f is continuous on [0, 1] and if
∫ 1

0
f(x)xn dx = 0 for n = 0, 1, 2, · · · ,

, then prove that f(x) = 0 for 0 ≤ x ≤ 1. Hint: This says that the integral of the
product of f and any polynomial is zero. Use Theorem 36.1 to first prove that

∫ 1

0
f2(x) dx = 0.

We say that the real numbers R are separable because any real num-
ber can be approximated to arbitrary accuracy by a rational number. The
analogous property holds for the space of continuous functions on a closed,
bounded interval, which is the content of the theorem we ask you to prove
in Problem 36.24.

36.24. Prove the following extension of the Weierstrass Approximation Theorem:

Theorem 36.5 Assume that f is continuous on a closed bounded interval I.
Given any ε > 0, there is a polynomial Pn with rational coefficients with finite
decimal expansions and of sufficiently high degree n such that

|f(x) − Pn(x)| < ε for a ≤ x ≤ b.

Hint: Use Theorem 36.1 to first get an approximate polynomial and then analyze
the effect of replacing its coefficients by rational approximations.



37
The Taylor Polynomial

In Chapter 36, we saw that a continuous function can be approximated
arbitrarily well by polynomials. Unfortunately, the Bernstein polynomials
used to prove this result converge slowly. Consequently, obtaining even a
moderately accurate approximation of a function can require a high degree
polynomial and many function values.

This motivates the search for other methods for computing polynomial
approximations of a given function. We begin this search by generalizing the
idea of the linearization of a function at a point introduced in Chapter 16.
Recall that the linearization of a function at a point is a linear polynomial
that has the same value of the function at a point and whose graph is
tangent to the graph of the function. We show how to generalize this idea
to find a polynomial approximation of a function of arbitrary degree given
that the function is sufficiently smooth.

37.1 A Quadratic Approximation

As motivation, we start by extending the idea of linearization to compute
a quadratic approximation of a function. Namely, we look for a quadratic
polynomial of a function f near x̄ with the property that its error is cubic
in |x − x̄|. Note for |x − x̄| small, the error of the quadratic approximation
is smaller than the error of the linear approximation.

Mathematically, we look for an approximation satisfying
∣
∣f(x) −

(
f(x̄) + m1(x − x̄) + m2(x − x̄)2

)∣∣ ≤ |x − x̄|3Kx̄, (37.1)
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for x close to x̄, where m1, m2, and Kx̄ are constants . For |x − x̄| small,
|x − x̄|3|Kx̄| is much smaller than either m1|x − x̄| or m2|x − x̄|2.

Example 37.1. We compute the quadratic approximation to 1/x at
x̄ = 1. We look for m1, m2, and K1 so that

∣
∣
∣
∣
1
x

−
(
1 + m1(x − 1) + m2(x − 1)2

)
∣
∣
∣
∣ ≤ |x − 1|3K1

for x near 1. We expect to have to keep x away from 0. We simplify the
expression on the left and pull out a common factor to get
∣
∣
∣
∣
1
x

−
(
1 + m1(x − 1) + m2(x − 1)2

)
∣
∣
∣
∣ = |x − 1|

∣
∣
∣
∣
1
x

+ m1 + m2(x − 1)
)
∣
∣
∣
∣ .

So limx→1
∣
∣ 1
x −

(
1 + m1(x − 1) + m2(x − 1)2

)∣∣ = 0 for any m1 and m2.
Extending the ideas behind (16.6) and (16.7), we also want

lim
x→1

∣
∣ 1
x −

(
1 + m1(x − 1) + m2(x − 1)2

)∣∣

|x − 1|

= lim
x→1

∣
∣
∣
∣
1
x

+ m1 + m2(x − 1)
∣
∣
∣
∣ = 0.

This forces m1 = −1, which is the derivative of 1/x at 1. Next we want

lim
x→1

∣
∣ 1
x −

(
1 − (x − 1) + m2(x − 1)2

)∣∣

|x − 1|2 = lim
x→1

∣
∣
∣
∣
1
x

− m2(x − 1)
∣
∣
∣
∣ = 0,

forcing m2 = 1. Using the same kinds of computations, we estimate the
error as

∣
∣
∣
∣
1
x

−
(
1 + m1(x − 1) + m2(x − 1)2

)
∣
∣
∣
∣ ≤ |x − 1|3 1

x
. (37.2)

We can bound 1/x by some K1 provided x is restricted to an interval
I1 containing 1 and bounded away from zero.

We conclude that the quadratic approximation to 1/x at 1 is

1
x

≈ 1 − (x − 1) + (x − 1)2

for all x �= 0. We plot the approximation in Fig. 37.1.

37.2 Taylor’s Representation of a Polynomial

While the idea behind linearization can be extended to compute a polyno-
mial approximation of arbitrary degree as above, the procedure is clumsy.1

1And that is being polite about it.
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1_
x

1-(x-1)+(x-1) 2

FIGURE 37.1. The quadratic approximation 1−(x−1)+(x−1)2 of 1/x at x̄ = 1.
Compare to the linear approximation shown in Fig. 16.11.

We are after a formula for the approximation that is “easy” to compute as
well as a useful expression for the error of the approximation.

We begin by considering the case of a polynomial of degree n,

p(x) = c0 + c1x + · · · + cnxn,

where c0, c1, · · · , cn are some numbers. In the spirit of linearization near a
point a, we want to rewrite p(x) to better reflect its behavior for values of
x near a. We suppose that x = a + h where h is small, and substitute to
find

p(a + h) = c0 + c1(a + h) + · · · + cn(a + h)n.

Now expanding all the powers and collecting terms, we see there are coef-
ficients c̄0, · · · , c̄n depending on c0, · · · , cn and a such that

p(a + h) = c̄0 + c̄1h + · · · + c̄nhn. (37.3)

The natural question is what are the values of {c̄i}? Taylor’s representa-
tion of a polynomial is the realization that

c̄i =
1
i!

p(i)(a) for 0 ≤ i ≤ nm, (37.4)

where p(i) = dip/dxi. For i = 0, substituting h = 0 into (37.3) gives

p(a) = c̄0.

The proof of (37.4) in the general case is based on the observation that
if two functions satisfy f(x) = g(x) for all x in an open interval, then all
of their derivatives are equal in the interval. Differentiating both sides of
(37.3) with respect to h, the Chain Rule implies

p′(a + h) = c̄1 + 2c̄2h + 3c̄3h
2 + · · · + nc̄nhn−1.
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At h = 0, p′(a) = c̄1.
Differentiating i times yields an expansion of the form

p(i)(a + h) = i(i − 1) · · · 1c̄i + (i + 1)(i − 1) · · · 2c̄i+1h + · · ·
+ n(n − 1) · · · (n − i + 1)c̄nhn−i+1.

Substituting h = 0 gives (37.4).
For later use, we write out Taylor’s representation of a polynomial

in compact form

p(a + h) = p(a) +
p′(a)
1!

h +
p(2)(a)

2!
h2 + · · · +

p(n)(a)
n!

hn. (37.5)

Example 37.2. We compute the Taylor representation of p(x) = x −
2x3 near a = 1. We have

p(1) = −1, p′(1) = 1 − 6 × 12 = −5, p(2)(1) = −12 × 1, p(3) = −12,

so
p(1 + h) = −1 − 5h − 12h2 − 12h3.

37.3 The Taylor Polynomial for a General Function

The formula (37.5) can be applied to an arbitrary function that has a suf-
ficient number of derivatives. Of course if the function is not a polynomial,
we cannot expect to get equality in the expansion. Given a function f that
has n continuous derivatives in an open interval containing the point a, the
Taylor polynomial of degree n at a of f is

Tn(a, x) = Tn(f, a, x) = f(a) + f ′(a)(x − a) +
f (2)(a)

2!
(x − a)2 + · · ·

+
f (n)(a)

n!
(x − a)n. (37.6)

Note that this is (37.5) with h = x − a usually considered to be small.
We define the remainder of the Taylor polynomial of f to be the

error
Rn(a, x) = Rn(f, a, x) = f(x) − Tn(f, a, x), (37.7)

so
f(x) = Tn(f, a, x) + Rn(f, a, x).

Example 37.3. We compute the Taylor polynomial of f(x) = log(x)
of degree n at a = 1.
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n f (n)(x) f (n)(a)
0 log(x) 0
1 x−1 1
2 −x−2 −1
3 2x−3 2
4 −6x−4 −6
...

...
...

n (−1)n+1(n − 1)!x−n (−1)n+1(n − 1)!

So

Tn(log(x), 1, x) = 0 + (x − 1) − (x − 1)2

2
+

(x − 1)3

3

− (x − 1)4

4
+ · · · +

(−1)n+1(x − 1)n

n
(37.8)

or

Tn(log(x), 1, x) =
n∑

i=1

(−1)i+1(x − 1)i

i
. (37.9)

Example 37.4. We compute the Taylor polynomial of f(x) = ex of
degree n at a = 0.

n f (n)(x) f (n)(a)
0 ex 1
1 ex 1
2 ex 1
3 ex 1
...

...
...

n ex 1

So

Tn(ex, 0, x) = 1 + x +
22

2!
+

x3

3!
+ · · · +

xn

n!
. (37.10)

or

Tn(ex, 0, x) =
n∑

i=0

xi

i!
. (37.11)

Example 37.5. We compute the Taylor polynomial of f(x) = sin(x)
of degree 2n − 1 for n even and 2n + 1 for n odd at a = 0.
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n f (n)(x) f (n)(a)
0 sin(x) 0
1 cos(x) 1
2 − sin(x) 0
3 − cos(x) −1
4 sin(x) 0
5 cos(x) 1
...

...
...

n even (−1)n/2 sin(x) 0
n odd (−1)(n−1)/2 cos(x) (−1)(n−1)/2

So

Tn(sin(x), 0, x) = 0 + x + 0 − x3

3!
+ 0 +

x5

5!
+ · · · (37.12)

or

Tn(sin(x), 0, x) =
ñ∑

i=0

(−1)ix2i+1

(2i + 1)!
, ñ =

{
n − 1, n even,
n, n odd.

(37.13)

37.4 The Error of the Taylor Polynomial

Since the Taylor polynomial of an arbitrary function is unlikely to be exact,
it is important to analyze the remainder Rn(f, a, x) so as to understand
when it is small. We do this by deriving a couple of exact formulas for
Rn(f, a, x) under the assumption that f has n + 1 continuous derivatives,
i.e., at least one more than the degree of the Taylor polynomial we are
using.

First, we consider the error of the linearization of a function. Recall
that if f is strongly differentiable at a, then there is an open interval Ia

containing a and a constant Ka such that
∣
∣f(x) −

(
f(a) + f ′(a)(x − a)

)∣∣ ≤ (x − a)2Ka for all x in Ia. (37.14)

We show that if f has two continuous derivatives in an open interval con-
taining a and x, then (37.14) holds automatically.

In this case,

R1(a, x) = f(x) −
(
f(a) + f ′(a)(x − a)

)
.

Now we fix x and consider a as the variable. Since f(a) and f ′(a) are
differentiable, R1(a, x) is differentiable with respect to a, and using the
Product Rule,

R′
1(a, x) =

d

da
R1(a, x) = f ′(a) − f ′(a) + f ′′(a)(x − a),
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or
R′

1(a, x) = f ′′(a)(x − a).

At a = x, the remainder R1(x, x) = 0. Hence,

R1(a, x) = R1(a, x) − R1(x, x) =
∫ a

x

R′
1(s, x) ds = −

∫ x

a

R′
1(s, x) ds,

and so

R1(a, x) =
∫ x

a

(x − s)f ′′(s) ds. (37.15)

This is the integral form of the remainder of Taylor’s polyomial.
There is another formula for the remainder that is very useful in practice.

We can derive it from (37.15) using the following Mean Value Theorem for
integration, which generalizes Problem 32.30.

Theorem 37.1 Generalized Integral Mean Value Theorem Sup-
pose that f(x) and ω(x) are continuous on [a, b] and moreover ω(x) ≥ 0
for a ≤ x ≤ b and

∫ b

a
ω(x) dx > 0. Then there is a point c in [a, b] such that

∫ b

a

f(x)ω(x) dx = f(c)
∫ b

a

ω(x) dx. (37.16)

Recall that

f̄ =

∫ b

a
f(x)ω(x) dx
∫ b

a
ω(x) dx

is the weighted average of f with respect to ω over [a, b]. So Theorem 37.1
says that f takes on its weighted average f̄ at some point c provided the
weight function is positive.

The theorem follows immediately from the Intermediate Value Theo-
rem 32.5 if f̄ is between the minimum m and maximum M values of f on
[a, b]. Recall that f attains its minimum and maximum values on [a, b] be-
cause it is continuous. The Intermediate Value Theorem says that f takes
on all the values, including f̄ , between m and M at least once in [a, b].

If we multiply the inequality

m ≤ f(x) ≤ M

by the nonnegative number ω(x), we get

mω(x) ≤ f(x)ω(x) ≤ Mω(x) for all a ≤ x ≤ b.

Integration gives

m

∫ b

a

ω(x) dx ≤
∫ b

a

f(x)ω(x) dx ≤ M

∫ b

a

ω(x) dx,
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or by dividing,
m ≤ f̄ ≤ M.

Now consider (37.15) when x > a. This means that x−s ≥ 0 for a ≤ s ≤ x
and we can apply Theorem 37.1 to assert that there is a point a ≤ c ≤ b
such that

R1(a, x) = f ′′(c)
∫ b

a

(x − s) ds =
f ′′(c)

2
(x − a)2. (37.17)

This is called the Lagrange form of the remainder of the Taylor
polynomial. It is easy to show that (37.17) also holds when x < a.

Note that (37.17) implies (37.14) with Ka = |f ′′(c)|/2.

Example 37.6. We estimate the remainder for the linear Taylor poly-
nomial for ex at a = 0. By (37.17), there is a c between a and x such
that

|ex −
(
1 + x

)
| = |R1(0, x)| =

ec

2
x2.

The fact that c is unknown is annoying, but we can replace ec by an
upper bound. For example if x < 0, then ec < e0 so |R1(0, x)| ≤ x2/2,
and if 0 < x < 1, then R1(0, x) ≤ ex2/2.

We can apply exactly the same argument to estimate Rn(a, x) assuming
that f (n+1) is continuous at a. We start with the definition

Rn(a, x) = f(x) − f(a) − f ′(a)(x − a) − f (2)(a)
2!

(x − a)2 − · · ·

− f (n)(a)
n!

(x − a)n.

We fix x and consider a as the variable. By assumption, Rn(a, x), like the
right-hand side, has at least one continuous derivative with respect to a.
Differentiating with respect to a,

R′
n(a, x) = −f ′(a) + f ′(a) − f ′′(a)(x − a) + f ′′(a)(x − a) + · · ·

− f (n)(a)
(n − 1)!

(x − a)n−1 +
f (n)(a)
(n − 1)!

(x − a)n−1

− f (n+1)(a)
n!

(x − a)n

= −f (n+1)(a)
n!

(x − a)n.

As before Rn(x, x) = 0, so

Rn(a, x) = −
∫ x

a

R′
n(s, x) ds =

∫ x

a

f (n+1)(s)
n!

(s − a)n ds.
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Also as before, we can apply Theorem 37.1 to conclude there is a point c
between a and x such that

Rn(a, x) = f (n+1)(c) =
∫ x

a

(s − a)n

n!
ds =

f (n+1)(c)
(n + 1)!

(x − a)n+1.

We summarize these results as a theorem.

Theorem 37.2 Error Formulas for Taylor Polynomials Suppose f
has n + 1 continuous derivatives in an open interval I containing a point
a. Then for all x in I,

f(x) =
n∑

i=0

f (i)(a)
i!

(x − a)i + Rn(a, x),

where

Rn(a, x) =
∫ x

a

f (n+1)(s)
n!

(s − a)n ds. (37.18)

There is a point c between a and x such that

Rn(a, x) =
f (n+1)(c)
(n + 1)!

(x − a)n+1. (37.19)

Example 37.7. We compute the remainder for the Taylor polynomial
for log(x) around a = 1 computed in Example 37.3. Since f (n+1)(x) =
(−1)nn!x−n−1,

Rn(1, x) = (−1)n

∫ x

1
s−n−1(x − s)n ds

or

Rn(1, x) =
(−1)nc−n−1

n + 1
(x − 1)n+1 for some c between 1 and x.

Example 37.8. We compute the remainder for the Taylor polynomial
for ex around a = 0 computed in Example 37.4. Since f (n+1)(x) = ex,

Rn(0, x) =
1
n!

∫ x

1
es(x − s)n ds

or
Rn(0, x) =

ec

(n + 1)!
xn+1 for some c between 0 and x.

Example 37.9. We compute the remainder for the Taylor polynomial
for sin(x) around a = 0 computed in Example 37.5. When n is even,
f (n+1)(x) = (−1)n/2 cos(x) and

Rn(0, x) =
(−1)n/2

n!

∫ x

1
cos(s)(x − s)n ds
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or

Rn(0, x) =
(−1)n/2 cos(c)

(n + 1)!
xn+1 for some c between 0 and x.

When n is odd, f (n+1)(x) = (−1)(n+1)/2 sin(x) and

Rn(0, x) =
(−1)(n+1)/2

n!

∫ x

1
sin(s)(x − s)n ds

or

Rn(0, x) =
(−1)(n+1)/2 sin(c)

(n + 1)!
xn+1 for some c between 0 and x.

37.5 Another Point of View

The importance of Taylor’s Theorem 37.2 for analysis cannot be overstated.
It is therefore a good idea to understand the result on as many levels as
possible. In this section, we give an alternate derivation of the Lagrange for-
mula for the remainder that shows that Taylor’s theorem is a generalization
of the Mean Value Theorem.

Indeed when n = 0, (37.19) implies

f(x) = f(a) + f ′(c)(x − a)

or
f(x) − f(a)

x − a
= f ′(c)

for some c between a and x. This is nothing more than the Mean Value
Theorem 32.17.

For a fixed x �= a, let r be the number defined by

f(x) = Tn(x) + r(x − a)n+1.

We want to show that r = f (n+1)(c)/(n + 1)! for some c between a and x.
We set

g(t) = f(t) − Tn(t) − r(t − a)n+1

for t between a and x. Because the degree of Tn is n, it follows that

g(n+1)(t) = f (n+1)(t) − (n + 1)!r

for all t between a and x. If there is a c between a and x such that
g(n+1)(c) = 0, then we are done.

By construction of the Taylor polynomial, g(a) = 0. By the choice of
M , g(x) = 0 as well. Hence by the Mean Value Theorem 32.17, there is a
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c1 between a and x such that g′(c1) = 0. Now g′(a) = 0, hence another
application of the Mean Value Theorem shows there is a number c2 between
a and c1 such that g′′(c2) = 0. Then we can repeat the argument to find
c3 in (a, c2) with g(3)(c3) = 0. In fact, we can repeat this argument n + 1
times in fact to conclude there is a number c = cn+1 between a and cn,
hence between a and x, such that g(n+1)(c) = 0.

37.6 Accuracy and Convergence

A convergence result for the Taylor polynomial would say that the Taylor
polynomials Tn for a given function f on a given interval [a, b] become more
accurate as n increases. This is certainly desirable because it takes more
computational work to compute Tn. Consider the Lagrange form of the
remainder (37.19),

|f (n+1)(c)||x − a|n+1

(n + 1)!
.

The denominator (n+1)! increases very quickly with n, so that really helps
out. If |x − a| < 1, then |x − a|n+1 is also small for sufficiently large n. In
fact, it decreases in size exponentially as n increases. On the other hand,
if |x − a| > 1, then |x − a|n+1 increases exponentially as n increases. We
have to balance both of these factors against the size of |f (n+1)(c)|. If f
for example has the nice property that all of its derivatives are uniformly
bounded, then taking more derivatives doesn’t hurt anything. If, however,
successive derivatives of f increase in size, then this has a negative impact
on the size of the remainder.

Example 37.10. We estimate the maximum size of the remainder for
the Taylor polynomial for log(x) at a = 1 computed in Example 37.7.
Taking absolute values,

|Rn| =
1

n + 1

(
|x − 1|

c

)n+1

.

If 1 ≤ c ≤ x, then 1 ≥ c−1 ≥ x−1, so

x − 1 ≥ x − 1
c

≥ x − 1
x

and (
1 − 1

x

)n+1

≤
(

x − 1
c

)n+1

≤ (x − 1)n+1.

If 1 ≤ x < 2, the remainder must decrease exponentially as n increases.
If x = 2, the remainder decreases at least like 1/(n + 1). If x > 2, the
remainder can increase exponentially as n increases.
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In a similar way, we can show that if .5 < x < 1, the remainder must
decreases exponentially as n increases. If x = .5, the remainder must
decrease like 1/(n + 1). If x < .5, the remainder can increase exponen-
tially.

Example 37.11. We estimate the remainder of the Taylor polynomial
for ex at a = 0 computed in Example 37.8. Now

|Rn| ≤ ex

(n + 1)!
|x|n+1.

From this it follows that for any fixed x, limn→∞ |Rn| = 0. Given x, let
ñ be the largest integer smaller than x. Then

|x|n+1

(n + 1)!
=

|x|
1

|x|
2

|x|
3

· · · |x|
ñ

× |x|
ñ + 1

· · · |x|
n + 1

.

Now
|x|
1

|x|
2

|x|
3

· · · |x|
ñ

≤ |x|ñ,

while
|x|
i

≤ 1, ñ + 1 ≤ i ≤ n.

Hence,
|x|n+1

(n + 1)!
≤ |x|ñ+1

n + 1
.

Since ñ is fixed, this shows that |Rn| → 0 as n → ∞.

In general, determining the size of the remainder of the Taylor polynomial
can be very complicated. As a rule, we can only expect Tn(f, a, x) to be a
good approximation of f(x) if f (n+1) is continuous near a and |x − a| is
sufficiently small, and conversely, we can expect the error to get larger as
|x − a| increases.

Example 37.12. The Taylor polynomial of degree 2n for 1/(1 + x2)
at a = 0 is

T2n(x) = 1 − x2 + x4 − x6 + · · · ± x2n. (37.20)

We plot a few of the Taylor polynomials in Fig. 37.2. All of the approx-
imations are accurate for x near a = 0, but become inaccurate quickly
as x moves away from 0. In fact, if we tried to plot these approxima-
tion on the interval [0, 2], we would have to use a vertical scale in the
hundreds because the Taylor polynomials become so large.

Note that if for some n, f (n+1)(x) fails to exist at x = a or at some nearby
point, then this can severely impact the accuracy of the Taylor polynomial
Tn.
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FIGURE 37.2. Some Taylor polynomials for 1/(1 + x2) at a = 0.

Example 37.13. We compute the Taylor polynomial T1 of f(x) = x−1

at a = .1. Here, of course, f(x) and its derivatives are undefined at
x = 0.

n f (n)(x) f (n)(a)
0 x−1 10
1 −x−2 −100
2 2x−3

So
T1(x−1, .1, x) = 10 − 100(x − .1)

with remainder

R1(.1, x) = c−3(x − .1)3 for some c between x and .1

If 0 < x < .1, then the remainder can be very large! We can see this
reflected in the plot of T1 shown in Fig. 37.3. The error of T1 increases
very rapidly as x < .1 decreases.

So as far as a convergence result goes, if f has uniformly bounded deriva-
tives of any order on a sufficiently small interval [a, b], then the error of Tn

on [a, b] decreases to 0 as n increases. This is not a very satisfactory result.
In particular, requiring f to have uniformly bounded derivatives of any
order is very restrictive. In general, we cannot expect such a convergence
result to hold.

We conclude with an observation on the cost of computing the Taylor
polynomial of a function. In the case that f has uniformly bounded deriva-
tives near a and |x − a| is small, the accuracy of the Taylor polynomials of
f at a is truly fantastic. The cost of this accuracy is a great deal of infor-
mation about the function f at the point a, namely, the values of f and
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FIGURE 37.3. The Taylor polynomial T1 for x−1 at a = .1.

its derivatives at a. Compare this to the Bernstein polynomial of degree
n+1, which requires only n+1 values of f at n+1 points. In other words,
computing a Bernstein polynomial requires evaluating one function, while
computing a Taylor polynomial requires evaluating many functions.

37.7 Unanswered Questions

In Examples 37.10 and 37.11, we saw that indeed the Taylor polynomials
for those functions become more accurate as the degree increases. Yet for
other functions, this is not true. This raises the natural question: what
kind of functions have the property that their Taylor polynomials become
increasingly accurate approximations as the degree increases? Another way
to phrase this question is, what kind of functions have a convergent Taylor
series, obtained as the limit of the sequence of Taylor polynomials as the
degree increases?2 It turns out that this question lies at the heart of the
analysis of smooth functions and is the starting point for what is called
the theory of analytic functions. These issues are discussed in detail in the
subject of complex analysis, which could be described roughly as the cal-
culus of complex-valued functions of complex-valued variables (see Ahlfors
[1] for more details).

2We can think of Taylor polynomials as the partial sums of the Taylor series.
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37.8 Some History of Taylor Polynomials

The history of Taylor series and polynomials is difficult to sort out. Taylor
series for specific functions were known well before Leibniz and Newton
and those two made heavy use of such expansions in deriving calculus.
Taylor3 is credited with writing down one of the earliest general formula-
tions of Taylor series, perhaps because this appeared in a heavily influential
textbook he wrote. Leibniz and Johann Bernoulli also derived the Taylor
series independently around the same time, while Maclaurin4 described a
special case that is sometimes given his name. Lagrange gave the first for-
mula for the remainder of the finite order Taylor polynomial and also first
emphasized the significance of Taylor series and polynomials for analysis.

3Brook Taylor (1685–1731) was an English mathematician. He made fundamental
discoveries in physics and astronomy, founded the theory of finite differences, and discov-
ered integration by parts and Taylor series. Moreover, he wrote two influential textbooks.
Unfortunately, the latter part of his life was marred by several personal tragedies.

4Colin Maclaurin (1698–1746) was a Scottish mathematician who was personally
close to Newton. Maclaurin made fundamental contributions to calculus, geometry, and
physics, as well as helping to establish the foundations of actuarial science. Maclaurin
wrote the first general textbook describing Newton’s results in calculus. He was also very
concerned about the foundations of calculus and attempted to put Newton’s results on
a more rigorous foundation in his book.
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Chapter 37 Problems

37.1. Verify (37.2).

37.2. Prove that m1 = f ′(x̄) in the quadratic approximation (37.1).

37.3. Compute the quadratic approximation for (x + 2)2 at x̄ = 1.Hint: Look
for a lazy way to do this.

37.4. Compute Taylor’s representation for the polynomial p(x) = 3+x−2x2+4x4

near a = 1 and a = −2.

You have to use some clever induction to find a formula for the general
Taylor polynomial for a given function, as you discover in Problem 37.5.

37.5. Compute the Taylor polynomials of degree n of the following functions at
the indicated points a:

(a) log(x + 1), a = 0 (b) e2x, a = 0 (c) ex, a = 1

(d) sin(2x), a = 0 (e) cos(x), a = 0 (f) cos(x), a = π/2 .

The point of Problems 37.6–37.9 is that it is also possible to “cheat”
and find Taylor polynomials for a complicated function by using the Taylor
polynomials of simpler functions.

37.6. Compute the first three nonzero terms in the Taylor polynomial for sin2(x)
at a = 0 by squaring a Taylor polynomial for sin(x).

37.7. Compute the Taylor polynomial of degree n for sin−1(x) at a = 0 by using
the formula,

sin−1(x) =
∫ x

0

dt√
1 − t2

.

37.8. Compute the Taylor polynomial of degree n for
∫ x

0
e−s2

ds

at a = 0.

37.9. Derive (37.20) by using the formula for the Taylor polynomial and by using
polynomial long division.

In Problems 37.10-37.12, we ask you to find bounds on the errors of
Taylor polynomials.

37.10. Estimate the maximum size of the remainder of the Taylor polynomial of
degree n for log(x) at a = 1 in the case that 0 < x < 1 following the argument
in Example 37.10.
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37.11. Estimate the maximum size of the remainder of the Taylor polynomial of
degree n for sin(x) at a = 0. Hint: See Example 37.11.

37.12. Estimate the sizes of the remainders for the Taylor polynomials computed
in Problem 37.5.

37.13. Uniqueness of a Taylor polynomial. Suppose we have an expansion

f(x) = a0 + a1x + · · · + anxn + Rn(x),

where a0, · · · , an are constants, Rn is n times continuously differentiable, and
Rn(x)/xn → 0 as x → 0. Show that

ak =
f (k)(0)

k!
, k = 0, · · · , n.

In Problems 37.14–37.15, we ask you to find different ways to derive
formulas for the remainder of the Taylor polynomial.

37.14. (a) Suppose g(h) has continuous derivatives of order n+1 for 0 ≤ h ≤ H.
If g(0) = g′(0) = · · · = g(n)(0) = 0 while |g(n+1)(h)| ≤ M for 0 ≤ h ≤ H, show

|g(n)(h)| ≤ Mh, |g(n−1)(h)| ≤ Mh2

2!
, · · · , |g(h)| ≤ Mhn

n!
, 0 ≤ h ≤ H.

(b) Assume f is smooth on a ≤ x ≤ b. Apply (a) to g(h) = Rn(f, a, a + h) =
f(a + h) − Tn(f, a, a + h) to obtain a rough estimate of the remainder of the
Taylor polynomial for f .

37.15. Derive the integral formula for the remainder Rn by applying integration
by parts repeatedly to

f(a + h) − f(a) =
∫ h

0
f ′(x + s) ds.

In Problems 37.16 and 37.17, we present two applications of Taylor poly-
nomials.

37.16. Suppose f has three continuous derivatives on [a, b]. Prove that

lim
h→0

f(x + h) − 2f(x) + f(x − h)
h2 = f ′′(x)

for all a < x < b.

37.17. Suppose f (2) is continuous on [a, b] and f ′′(x) ≥ 0 for a ≤ x ≤ b. Show
that for any x̄ in [a, b], f(x) is never smaller than the value of the tangent line of
f at x̄.
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38
Polynomial Interpolation

So far we have described two ways to approximate a given function f by
polynomials. The Bernstein polynomial approximation uses values of f at
n + 1 equally spaced points in an interval to produce an approximating
polynomial of degree n + 1. The Taylor polynomial approximation uses
the n + 1 values of f and its first n derivatives at a common point to
produce an approximating polynomial of degree n. However, both of these
approximations have disadvantages. While uniformly accurate on an inter-
val, the Bernstein polynomial can require very many values of f to obtain
even moderate accuracy, while the Taylor polynomial requires f and its
derivatives and, moreover, can only be expected to be accurate near one
point.

So we are still motivated to look for other polynomial approximations
of a function. We introduce another approach in this chapter called in-
terpolation. The (polynomial) interpolation problem for a function f
on an interval [a, b] is to find a polynomial p that agrees with f at n + 1
points a = x0 < x1 < · · · < xn = b, called the interpolation nodes. In
other words, p(xi) = f(xi), i = 0, 1, · · · , n. The polynomial p is called the
polynomial interpolant of f and is said to interpolate f at the nodes.

The polynomial interpolation problem is natural from a couple of view-
points. First, we use values of the function f in an interval to compute
the polynomial, as does the Bernstein polynomial approximation, but we
specify the polynomial is exact at the nodes, which follows the idea behind
the Taylor polynomial. Second, the interpolation problem arises naturally
when conducting physical experiments. In many situations, we know the-
oretically that two quantities y and x are related by an unknown function
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y = f(x) but in the laboratory we are only able to measure values of the
function at specific points x0, x1, · · · , xn.

Example 38.1. After ignition, the temperature inside an engine in-
creases as a smooth function of the time since ignition. Experimentally,
we can record the temperature perhaps every few seconds manually,
and every few tenths of a second electronically.

In this situation, we would like to find a smooth function through the points
x0, x1, · · · , xn to use in place of f , which is unknown, so we can predict
values between the nodes or perhaps differentiate to get a instantaneous
rate of change or integrate to get the average change. The interpolation
problem is one way to do this.

38.1 Existence and Uniqueness

We start by showing that there is a unique solution to the polynomial
interpolation problem in a specific sense. In particular given x0 < x1 <
· · · < xn, we show there is a unique polynomial pn of degree n such that

pn(xi) = f(xi), 0 ≤ i ≤ n.

Recall that a polynomial of degree n is specified by n + 1 coefficients,

p(x) = a0 + a1x + · · · + anxn. (38.1)

In the context of computing a polynomial approximation of a function, we
call these coefficients the degrees of freedom of the polynomial approx-
imation because we are free to choose the coefficients in order to compute
the approximation. We claim there is a unique polynomial interpolant with
the property that the number of degrees of freedom is the same as the num-
ber of function values.

We first prove that there is at least one polynomial interpolant of degree
n and then that there is only one. To do this, we use a special way to write
polynomials of degree n that is different than the standard form (38.1).

We call the monomials {1, x, · · · , xn} a basis for the set of polynomials
of degree n and less because every polynomial of degree n and less can be
written as a linear combination of these monomials in a unique way, as in
(38.1).1 We call {a0, · · · , an} the coefficients of p in (38.1) with respect
to the basis {1, x, · · · , xn}.

It turns out that there are many sets of basis polynomials for the set of
polynomials of degree n and less.

1Recall that we prove this in Example 7.7.
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Example 38.2. For example, 1 and x are the standard basis of mono-
mials for the linear polynomials. But 1 and x+2 are another basis. For
if p(x) is a linear polynomial with p(x) = a0 × 1 + a1 × x, we can also
write

p(x) = a0 + a1x = a01 + a1(x + 2) − 2a1

= (a0 − 2a1) × 1 + a1 × (x + 2)

Thus, we have written p(x) as a linear combination of 1 and x + 2.
Moreover, and this is very important, the coefficients are unique because
the original coefficients a0 and a1 are unique.

Example 38.3. It is a good exercise to prove that the set of polynomials

1, (x − c), (x − c)2, · · · (x − c)n

is a basis for the polynomials of degree n and less, where c is any fixed
number.2 The basis of monomials is just the special case with c = 0.

But not every set of polynomials is necessarily a basis.

Example 38.4. The polynomials {1, x + x2} are not a basis for the
polynomials of degree 2 and less because there are not enough functions.
For example, we cannot write x as a linear combination of 1 and x+x2.

Example 38.5. The set of polynomials {1, x, 2 + x, x2} is not a basis
for the polynomials of degree 2 and less because there are too many
functions and consequently uniqueness is lost. For example, we can
write 2x + 1 in two different ways,

2x + 1 = 1 × 1 + 2 × x = −3 × 1 + 2 × (2 + x).

We use a particular basis for the polynomials of degree n and less to solve
the polynomial interpolation problem. Given the points x0, x1, · · · , xn, the
Lagrange basis {ln,0(x), ln,1(x), · · · , ln,n(x)} for the polynomials of degree
n and less is defined like this; for 0 ≤ i ≤ n,

ln,i(x)

=
(x − x0)(x − x1) · · · (x − xi−1)(x − xi+1) · · · (x − xn)

(xi − x0)(xi − x1) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)
. (38.2)

Note that ln,i has degree n for every i and also that

ln,i(xj) =

{
1, i = j,

0, i �= j,
for 0 ≤ i, j ≤ n. (38.3)

In other words, a Lagrange basis function is 1 at one particular node and
0 at all the rest.

2Recall that we use these polynomials to define the Taylor polynomial.
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Example 38.6. The Lagrange basis for the polynomials of degree 1
and less is

{l1,0(x), l1,1(x)} =
{

x − x1

x0 − x1
,

x − x0

x1 − x0

}
.

We plot these functions in Fig. 38.1.

x0 x1

1
l1,0 l1,1

FIGURE 38.1. The Lagrange basis for the polynomials of degree 1 and less.

Example 38.7. The Lagrange basis functions for the polynomials of
degree 2 is

{l2,0(x), l2,1(x), l2,2(x)}

=
{

(x − x1)(x − x2)
(x0 − x1)(x0 − x2)

,
(x − x0)(x − x2)

(x1 − x0)(x1 − x2)
,

(x − x0)(x − x1)
(x2 − x0)(x2 − x1)

}
.

We plot the basis corresponding to the nodes x0, x1 = (x0 +x2)/2, and
x2 in Fig. 38.2.

x0 x1

1
l2,0 l2,2

x2

l2,1

FIGURE 38.2. The Lagrange basis for the polynomials of degree 2 and less with
nodes x0, x1 = (x0 + x2)/2, and x2.
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By the way, we have not proved that the Lagrange basis is indeed a basis,
but that follows as soon as we show the interpolant is unique.

Because of (38.3), we can solve the interpolation problem quickly. In fact,
the polynomial pn of degree n that interpolates f at the nodes x0, · · · , xn

is simply

pn(x) = f(x0) ln,0(x) + f(x1) ln,1(x) + · · · + f(xn) ln,n(x).

We just have to check that for 0 ≤ i ≤ n,

pn(xi) = f(x0) ln,0(xi) + f(x1) ln,1(xi) + · · · + f(xi) ln,i(xi)
+ f(xi+1) ln,i+1(xi+1) + · · · + f(xn) ln,n(xi)

= f(x0) × 0 + f(x1) × 0 + · · · + f(xi) × 1
+ f(xi+1) × 0 + · · · + f(xn) × 0

= f(xi).

Example 38.8. The linear polynomial that interpolates ex at x = 0
and x = 1 is

p1(x) = e0 x − 1
0 − 1

+ e1 x − 0
1 − 0

= 1 + (e1 − 1)x.

Example 38.9. The quadratic polynomial that passes through (0, 1),
(1, 0), and (2, 2) is

p2(x) = 1 × (x − 1)(x − 2)
2

+ 0 × (x − 0)(x − 2)
1

+ 2 × (x − 0)(x − 1)
2

.

So we have found at least one polynomial interpolant of degree n for f
with respect to the nodes x0, · · · , xn. We just have to show there is only
one such polynomial. This follows in fact from elementary properties of
polynomials. Recall that if a polynomial p(x) has a root r, then (x − r)
divides evenly, i.e., without remainder, into p(x). Suppose there are two
polynomials pn(x) and qn(x) of degree n that agree at x0, · · · , xn. Their
difference dn(x) = pn(x) − qn(x) is a polynomial of degree m, 0 ≤ m ≤ n,
with n+1 distinct roots x0, · · · , xn. Using polynomial division for the roots
x0, · · · , xm−1, we can write

dn(x) = c(x − x0)(x − x1) · · · (x − xm−1)

for some constant c. But if we substitute xm,

dn(xm) = 0 = c(xm − x0)(xm − x1) · · · (xm − xm−1).

Since xm − x0 �= 0, · · · , xm − xm−1 �= 0, c = 0. In other words, dn(x) = 0
for all x and therefore pn = qn.



548 38. Polynomial Interpolation

This also implies that the Lagrange basis is indeed a basis. For given
distinct points x0, · · · , xn, every polynomial p of degree n and less can be
written uniquely as

p(x) = p(x0) ln,0(x) + p(x1) ln,1(x) + · · · + p(xn) ln,n(x).

We can interpret this result as the fact that the interpolating polynomial
of degree n for a polynomial P of degree m with m ≤ n is simply P , i.e.,
P = pn for any polynomial P with deg(P ) ≤ n.

Example 38.10. Recall that the Bernstein polynomial of degree n ≥ 2
for x2 on [0, 1] is Bn(x) = x2 + 1

nx(1−x). The interpolating polynomial
of degree n ≥ 2 for x2 on [0, 1] is pn(x) = x2.

We summarize this discussion as a theorem:

Theorem 38.1 Existence of the Polynomial Interpolant There is a
unique polynomial pn(x) of degree n or less that takes on the n + 1 values
f0, f1, · · · , fn at the n + 1 distinct points x0, x1, · · · , xn, respectively. The
polynomial pn is given by

pn(x) = f0 ln,0(x) + f1 ln,1(x) + · · · + fn ln,n(x). (38.4)

38.2 The Error of a Polynomial Interpolant

In the case that the interpolating polynomial pn is computed using n + 1
values of a function f(x0), f(x1), · · · , f(xn), it is natural to wonder about
the size of the error

e(x) = f(x) − pn(x)

at any point x in [a, b]. We know that e(x0) = e(x1) = · · · e(xn) = 0,
the question is what happens in between? If we assume that f has n + 1
continuous derivatives in [a, b], then it is possible to obtain a precise formula
for the error.

To do this, we use yet another generalization of Rolle’s Theorem 32.18.

Theorem 38.2 General Order Rolle’s Theorem If f(x) has contin-
uous derivatives of order n+1 in [a, b] and vanishes at n+2 distinct points
in [a, b] there is a point c in (a, b) such that f (n+1)(c) = 0.

We use induction to prove this. Suppose the zeroes of f are x0 < x1 <
· · · < xn+1. Since f(xi) = f(xi+1) for 0 ≤ i ≤ n, Rolle’s Theorem 32.18
implies there is a point in (xi, xi+1) at which f ′ is zero for each such i. In
other words, f ′ is zero at n+1 distinct points in [a, b]. The same argument
now applies to show that there are n distinct points in [a, b] at which
f ′′ = (f ′)′ is zero. Induction proves the theorem.



38.2 The Error of a Polynomial Interpolant 549

Now consider the function

E(x) = e(x) − K(x − x0)(x − x1) · · · (x − xn)

for a constant K. First we note that E(x) vanishes at the n + 1 dis-
tinct points x0, · · · , xn. Moreover if y is any point in (a, b) distinct from
x0, · · · , xn, we can choose K so that E(y) = 0. Namely, we set

K =
e(y)

(y − x0) · · · (y − xn)
.

Hence, E(x) vanishes at the n+2 distinct points x0, · · · , xn, y and moreover
has n + 1 continuous derivatives by assumption. Thus, there is a c in (a, b)
such that E(n+1)(c) = 0.

Since E(n+1)(x) = f (n+1)(x) − K(n + 1)!, we conclude that f (n+1)(c) −
K(n + 1)! = 0 or

K =
f (n+1)(c)
(n + 1)!

.

Now we set y = x for some x in [a, b]. Using E(x) = 0, we conclude the
following theorem:

Theorem 38.3 Error Formula for Interpolation Assume f(x) has
n + 1 continuous derivatives on [a, b] and a = x0 < x1 < · · · < xn = b are
n + 1 distinct nodes. There is a point c in (a, b) such that

e(x) =
f (n+1)(c)
(n + 1)!

(x − x0) · · · (x − xn). (38.5)

Example 38.11. We compute quadratic interpolants to sin(x) and
cos(x) on [0, π] using x0 = 0, x1 = π/2, and x2 = π. We get

sin(x) ≈ p2(x) =
4
π2 x(x − π)

and
cos(x) ≈ p2(x) = 1 − 2

π
x.

For the errors, we note that sin(3)(c) = − cos(c) and cos(3(c) = sin(c).
Therefore the error of the error of the approximation for sin satisfies

e(x) =
− cos(c)

6
x(x − π/2)(x − π),

while the error of the approximation for cos satisfies

e(x) =
sin(c)

6
x(x − π/2)(x − π).

We plot the approximations and their errors in Fig. 38.3.
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FIGURE 38.3. Plots of the quadratic interpolating polynomials for sin and cos
on [0, π] along with their errors.

38.3 Accuracy and Convergence

Theorem 38.3 gives an exact formula for the error at each point x. But there
are some disadvantages to this result. First, even though we only use values
of f to compute the polynomial interpolant, we require pointwise values of
the n + 1st derivative of f to estimate the error. This is difficult to obtain
at best, and in the case of experimentally determined data, impossible to
get. Second it gives a bound at each point x in the interval [a, b]. In other
words, we have to evaluate the estimate for each x where we wish to know
the error.

The standard way to deal with these two issues is to derive an error
bound from the estimate (38.5). A bound is typically bigger than the error
but, being cruder, typically requires less information. It is a good exercise
to prove the following bound using Theorem 38.3.

Theorem 38.4 Error Bound for Interpolation Assume f(x) has n+1
continuous derivatives on [a, b] and a = x0 < x1 < · · · < xn = b are n + 1
distinct nodes. Assume further that |f (n+1)| is bounded by a constant M
on [a, b]. Then

max
a≤x≤b

|e(x)| ≤ M

(n + 1)!
max

a≤x≤b
|x − x0| · · · |x − xn|. (38.6)
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This gives a bound on the maximum value of the error on [a, b], hence we
only need to compute the bound once, even if we want the error at several
points, and it only requires knowledge of some bound on f (n+1) rather than
pointwise values.

Example 38.12. In Example 38.11, we computed the quadratic in-
terpolating polynomials for cos and sin on [0, π]. Since | cos(c)| ≤ 1
and | sin(c)| ≤ 1 for any c, we obtain a bound on the error for both
polynomials of

max |e| ≤ 1
6

max
[0,π]

|x||x − π/2||x − π| ≤ 1/4.

In fact, the error of the interpolating polynomial for sin is much smaller
while the bound is not too far off for the error of the polynomial for
cos.

Example 38.13. Consider the interpolating polynomial pn of ex using
n+1 equally distributed nodes in [0, 1]. Now dn+1ex/dxn+1 = ex while
max[0,1] |x − x0| · · · |x − xn| ≤ 1n+1. We conclude that

max
0≤x≤1

|e(x)| ≤ e1

(n + 1)!
.

Note that this implies that the error of pn tends to zero as n increases.

It is useful to consider some special general cases.

Example 38.14. Consider the constant interpolant p0(x) = f(a) for
all a ≤ x ≤ b. The bound (38.6) is

max
a≤x≤b

|e(x)| ≤ (b − a) max
a≤x≤b

|f ′(x)|. (38.7)

Example 38.15. Consider the linear interpolant p1(x) using the nodes
x0 = a and x1 = b. The bound (38.6) is

max
a≤x≤b

|e(x)| ≤ 1
8
(b − a)2 max

a≤x≤b
|f ′′(x)|. (38.8)

To get (38.8), we compute

max
a≤x≤b

|x − a||x − b|.

The maximum of this occurs at the maximum or minimum of q(x) =
(x − a)(x − b). The extreme values of this function occur either where
q′(x) = 0 or x = a or x = b. The last two give q(a) = q(b) = 0 while
q′(x) = 2x− (a+ b) = 0 at x = (a+ b)/2, and q((a+ b)/2) = (b−a)2/4.
Putting this in (38.6) gives (38.8).
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Example 38.16. Consider the quadratic interpolant p2(x) using the
nodes x0 = a, x1 = (a + b)/2, and x1 = b. The bound (38.6) is

max
a≤x≤b

|e(x)| ≤
√

3
216

(b − a)3 max
a≤x≤b

|f (3)(x)|. (38.9)

From (38.6), we conclude that if all of f ’s derivatives are uniformly
bounded by a constant M and if b − a is small, then increasing the or-
der of the interpolating polynomial leads to a smaller error. But if b − a is
large, then (38.6) does not imply the error is small. In fact, the factor

(x − x0)(x − x1) · · · (x − xn)

in (38.5) is zero when x is equal to one of the nodes, but if x is not equal
to any node and b−a is large, then we have to expect some of the terms to
be large and some to be small. When b − a is large, it is difficult to make
general statements about the error of the polynomial interpolant even when
the function has uniformly bounded derivatives of any order.

In fact, the error of the interpolant can be very large even for moderate
n, as the next example shows.

Example 38.17. We interpolate f(x) = e−8x2
at nine equally spaced

nodes x0 = −2, x1 = −1.5, · · · , x8 = 2 in [−2, 2]. We plot p8(x) together
with f(x) in Fig. 38.4. The error away from the interpolation nodes is
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FIGURE 38.4. Plots of the e−8x2
and p8(x) computed using nodes x0 = −2,

x1 = −1.5, · · · , x8 = 2.

clearly large. Using MAPLE c© , we can see that |f (9)(x)| is bounded by
8 × 107 on [−2, 2] while max |x + 2| |x + 1.5| · · · |x − 2| ≤ 10. The error
bound (38.8) says that max |e(x)| ≤ 2205, which is not much help!
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A convergence result for interpolation would imply that the error of the
interpolating polynomials pn for a given function f on a given interval [a, b]
tend to zero as n increases. The discussion above implies that such a result
holds if f has uniformly bounded derivatives of all orders and the interval
[a, b] is sufficiently small. But we cannot expect such a convergence result
to hold in general. This is similar to the situation for Taylor polynomials.

38.4 A Piecewise Polynomial Interpolant

While we cannot expect to get convergence for the polynomial interpolants
of a general function on a large interval as the degree increases, interpola-
tion does provide a way to generate a method of approximating a function
that does have nice convergence properties. The idea is to divide the large
interval into subintervals and then use piecewise polynomial interpolants
with respect to this subdivision. Recall that we first used the idea of piece-
wise polynomial approximations when studying integration for essentially
the same reason.3

Given a function f(x) and a set of nodes a = x0 < x1 < · · ·xn = b,
the piecewise linear interpolant of f on [a, b] with respect to the mesh
{x0, · · · , xn} is the function P (x) that is linear on each subinterval [xi−1, xi]
for 1 ≤ i ≤ n and satisfies P (xi) = f(xi) for 0 ≤ i ≤ n. We illustrate in
Fig. 38.5

f(x)

x0 xn

P(x)

FIGURE 38.5. The piecewise linear interpolant of f .

Some facts follow immediately. First, there is a unique piecewise linear
interpolant of f . This follows from the uniqueness of the linear polyno-

3The subject of piecewise polynomial approximation is extremely important in many
applications of mathematics. However, it is better to study that subject after learning
about some other kinds of background material, such as linear algebra, that we cannot
cover in this book. So we do not present a general discussion of piecewise polynomial
approximations. We just consider an especially simple example that nonetheless shows
the power of this technique (see Atkinson [2] and Eriksson, Estep, Hansbo, and Johnson
[10] for further information).



554 38. Polynomial Interpolation

mial interpolant since the piecewise interpolant is just a linear polynomial
interpolant on each subinterval. On [xi−1, xi], P (x) is given by

P (x) = f(xi−1)
x − xi

xi−1 − xi
+ f(xi)

x − xi−1

xi − xi−1
.

Moreover, the piecewise linear interpolant of a continuous function is also
continuous.

Lastly, we can derive a formula and a bound for the error from The-
orem 38.3. Again because the piecewise linear polynomial is just a linear
interpolant on each subinterval, if we choose x in [a, b], then x is in [xi−1, xi]
for some i. We apply Theorem 38.3 on [xi−1, xi] to assert there is a point
c in (xi−1, xi) such that

e(x) =
f ′′(c)

2
(x − xi−1)(x − xi).

If |f ′′| is bounded by M on [a, b], then we find that if xi−1 ≤ x ≤ xi,

|e(x)| ≤ M

2
max

xi−1≤x≤xi

|x − xi−1||x − xi| ≤ M

8
(xi − xi−1)2

and
max

a≤x≤b
|e(x)| ≤ M

8
max

1≤i≤n
(xi − xi−1)2. (38.10)

If the nodes are uniformly spaced so xi − xi−1 = ∆x = (b − a)/n for
1 ≤ i ≤ n, then

max
a≤x≤b

|e(x)| ≤ M

8
∆x2 =

M(b − a)
8n2 .

These bounds imply that the error of the piecewise linear interpolant of
a given function on a given interval tends to zero as the mesh sizes tend to
zero provided only that f has a bounded second derivative on the interval.
If the mesh points are distributed uniformly, then the error decreases like
1/n2 where n is the number of mesh points. Recall that the error of the
Bernstein polynomials decreases like 1/

√
n, which is much slower.

Example 38.18. If we use (38.10) to bound the error of the piecewise
linear interpolant of e−8x2

on [−2, 2], we find

∆x = .5 =⇒ max
[−2,2]

|e| ≤ 1

∆x = .25 =⇒ max
[−2,2]

|e| ≤ .25

∆x = .125 =⇒ max
[−2,2]

|e| ≤ .0625

...
...
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This is a vast improvement over computing higher and higher order
polynomial interpolants using the same sets of nodes!

Note that it is considerably cheaper to write down the piecewise linear
interpolant of a function using n nodes than the corresponding Bernstein
polynomial. We do, however, need to make a decision (i.e., decide on the
correct subinterval) in order to evaluate the function.

38.5 Unanswered Questions

We have described three different ways to produce an approximation of a
given function and have shown that each method can produce an accurate
approximation given the right conditions. Unfortunately, we have also seen
that each method has some serious shortcomings in other circumstances.
So this leaves open the search for good ways to approximate continuous
and smoother functions. This search falls under the rubric of approxima-
tion theory, which is a centrally important topic in analysis and numerical
analysis.

Among other methods for computing polynomial approximations, we
want to mention an important technique called orthogonal projection. This
is similar to the idea of polynomial interpolation; however, the polynomial
approximation is chosen to have the same weighted average values (see
Section 27.2) as the function in question with respect to a certain choice
of weights.

We also point out that we could look for approximations using other
sets of approximating functions chosen to better “match” the behavior
of the given function. For example, in Problem 38.8 we ask you to solve
the interpolation problem that uses a set of exponential functions, which
would be well suited to approximate an exponentially growing function. On
the other hand, if we want to approximate a continuous periodic function,
it would be natural to seek approximations using sets of trigonometric
functions.

Atkinson [2] and Isaacson and Keller [15] contains more material on these
subjects.
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Chapter 38 Problems

Problems 38.1–38.5 have to do with the idea of a basis for polynomials.
We have not developed the theory of vector spaces, so we could not give a
complete explanation of the idea of a basis. But if you do these problems,
then at least you can develop an intuitive understanding.

38.1. Prove that {2 + x, x} is a basis for the linear polynomials.

38.2. Either prove the following sets are a basis for the quadratic polynomials
or prove they are not a basis:

(a) {1, 2 − x − x2, x}
(b) {x2, x2 + x, x2 − 2x}
(c) {1, 2 − x2, x + x2, 1 + x2}.

38.3. Verify the claim in Example 38.3.

38.4. Prove that for any n ≥ 1,

n∑

i=0

ln,i(x) = 1 for all x.

38.5. Draw rough sketches of the Lagrange basis polynomials for the polynomials
of degree 3 and less on [a, b] with equally-spaced nodes x0 = a, x1 = a + (b −
a)/3, x2 = a + 2(b − a)/3, x3 = b.

38.6. Compute the following polynomial interpolants:

(a) p2(x) interpolating log(x) at {1, 2, 3}
(b) p3(x) interpolating

√
x at {0, .25, .64, 1}

(c) p2(x) interpolating sin(x) at {0, π, 2π}
(d) p3(x) passing through points (−1, 1), (0, 2), (1, −1), (2, 0) .

To tackle Problems 38.7–38.9, either try to use Theorem 38.1 directly,
or use some of the ideas behind in its proof.

38.7. Find the degree of the polynomial passing through the points (−3, −5),
(−2, 0), (−1, −1), (0, −2), and (1, 3).

38.8. Prove that the following interpolation problem has a unique solution. Given
f(x) and nodes a = x0 < x1 < · · · xn = b, find a function

en(x) = c0 + c1e
x + c2e

2x + c3e
3x + · · · + cnenx

such that
en(xi) = f(xi) for 0 ≤ i ≤ n.

Hint: Rewrite the problem as a polynomial interpolation problem.
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38.9. Consider a rational interpolation problem: Given a function f(x) and dis-
tinct nodes a = x0 < x1 < x2 = b, find a rational function

q(x) =
c0 + c1x

1 + c2x

such that
q(xi) = f(xi) for 0 ≤ i ≤ 2.

Does this problem have a unique solution? This may require some assumptions
or restrictions!

38.10. (a) Use Theorem 38.3 to find an expression for the error of the quadratic
interpolant of log(x) at the nodes {1, 1.5, 2}. (b) Derive a bound on the error
using Theorem 38.4.

38.11. Use Theorem 38.3 to find an expression for the error of the polynomial
interpolant of degree 4 of ex at five equally spaced nodes in [0, 1]. (b) Derive a
bound on the error using Theorem 38.4.

38.12. Assume that f(x) has continuous derivatives of order three and less
on [a, b] and let p2(x) be the quadratic interpolant at the nodes {x0 = a, x1 =
(a + b)/2, x2 = b}.

(a) Derive a formula for the error f ′(x) − p′
2(x) for a ≤ x ≤ b.

(b) Derive special formulas for the errors f ′(xi) − p′
2(xi) for i = 0, 1, 2.

38.13. Prove Theorem 38.4.

38.14. Consider the third degree Taylor polynomial computed at a = 1 and the
third degree interpolant with nodes {1, 4/3, 5/3, 2} of log(x).

(a) Using Theorem 38.4, compare the bounds on the errors of both
approximations on [1, 2].

(b) Plot the errors of the both approximations on [1, 2].

38.15. Verify (38.9).

38.16. For f(x) = 1/(1 + x2) computing p10(x) using 11 equally spaced nodes
in [−5, 5]. Plot the both f(x) and pn(x) in the same plot and also plot the error.
Hint: This problem should be programmed using for example MATLAB c© .

38.17. Write a MATLAB c© function that returns the piecewise linear interpolant
of a user-specified function f(x) defined by a user-specified set of nodes a = x0 <
x1 < · · · < xn = b.

38.18. Use a symbolic manipulation package like MAPLE c© to verify the com-
putations in Example 38.18.

38.19. Define a piecewise constant interpolant Q(x) of a function f(x) with
respect to a set of nodes a = x0 < x1 < · · · < xn by

Q(x) = f(xi) for xi−1 ≤ x < xi, 1 ≤ i ≤ n − 1
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and
Q(x) = f(xn−1) for xn−1 ≤ x ≤ xn.

(a) Prove that Q is unique. Is Q continuous in general?

(b) Find an exact expression for the error e(x) = f(x) − Q(x) at any
a ≤ x ≤ b assuming f has a continuous derivative.

(c) Find a bound for maxa≤x≤b |e(x)| assuming f has a bounded first
derivative. Simplify the bound under the assumption that the mesh points are
uniformly distributed.

38.20. Define a piecewise quadratic interpolant Q(x) of a function f(x) with
respect to a set of nodes a = x0 < x1 < · · · < xn, where n is even, by grouping the
nodes in threes as {x0, x1, x2}, {x2, x3, x4}, · · · , {xn−2, xn−1, xn} and computing
quadratic interpolants of f on each subinterval [x0, x2], [x2, x4], · · · , [xn−2, xn].

(a) Find a formula for Q(x) for any a ≤ x ≤ b.

(b) Prove that Q is unique and continuous.

(c) Find an exact expression for the error e(x) = f(x) − Q(x) at any
a ≤ x ≤ b assuming that f has a continuous third derivative.

(d) Find a bound for maxa≤x≤b |e(x)| assuming f has a bounded third
derivative. Simplify the bound under the assumption that the mesh points are
uniformly distributed.

(e) Plot the piecewise quadratic and piecewise linear interpolants of
sin(x) on [0, π] computed using three equally spaced nodes in [0, π].



39
Nonlinear Differential Equations

We finish this introduction to analysis with a brief glimpse into the world
of nonlinear differential equations. This is a perfect way to end the book
because on one hand, it uses nearly every idea considered so far, and on
the other, it is a springboard into the many areas of analysis that remain
ahead.

The problem we consider is this: given a point a, an initial value ya,
and a function f(x, y), find a point b > a and a function y(x) that is
differentiable on [a, b] satisfying the initial value problem

{
y′(x) = f(x, y(x)), a ≤ x ≤ b,

y(a) = ya.
(39.1)

See Chapter 23 for a discussion of the relevance of (39.1) for modeling. We
consider the components a, ya, and f(x, y) as data for the initial value
problem. In typical applications, they are determined by the model. Spec-
ifying a final point b might also be part of the application. But as we see
later, we might not be able to find a solution on any arbitrary interval.

Example 39.1. In Example 29.1, we propose a simple linear model of
population growth, P ′(t) = kP (t). Realistically, we might expect that
a more complicated relation, P ′(t) = f(P (t)), holds in most situations.
For example, the linear model does not take into account the limita-
tions on population size that exist because of the environment, e.g., the
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physical size of a petri dish in the case of trapped bacteria.1 There is
also competition for food and mates, and in the case of humans, energy
and medicine.

Thus, it is not surprising to find out that the linear population model
is only valid for populations that are “small” relative to the available
resources. In order to model population growth over long time intervals,
we need more realistic models. As a first step, we might consider adding
a “competition” term to the linear model that lowers the growth rate
when the population becomes large. We could expect that competition
is determined by the number of encounters between members of the
species being modeled. Statistically, the average number of encounters
between two members per unit time is proportional to the population
squared. This leads to the initial value problem for the logistic equa-
tion, {

P ′ = k1P − k2P
2, 0 ≤ t ≤ b,

P (0) = Pa,
(39.2)

where k1 > 0 and k2 > 0 are constants. This was introduced by the
Dutch mathematician Verhulst in 1837 and is the continuous analog of
the discrete Verhulst model discussed in Section 4.4.

When modeling populations, k1 determines the linear birth rate of the
species at small populations, while k2 is determined by the available
resources. In general, we expect k2 to be much smaller than k1, so when
the population P is small, the term −k2P

2 is negligible compared to
k1P and the population grows approximately at an exponential rate as
predicted by the linear model. However, when the population becomes
sufficiently large, then −k2P

2 is no longer negligible and significantly
lowers the rate of growth.

Example 39.2. The spruce budworm is a serious threat to the health
of balsam firs in the Rockies. One well-studied model for the popula-
tion is a modification of the logistics equation that takes into account
predation by birds. The model has the form

{
P ′ = k1P − k2P

2 − k3
P 2

1+P 2 , 0 ≤ t ≤ b,

P (0) = Pa,
(39.3)

where k1, k2, and k3 are positive constants. The constant k1 is deter-
mined by the linear birth rate of the spruce budworm, while k2 is deter-
mined by the density of foliage. The new predation term −k3P

2/(1+P 2)
is chosen to mimic the measured predation effects. It approaches a con-
stant rate when the population becomes large, but falls off quickly to

1Or the state of our poor mistreated Earth in the case of humans.
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zero when the population is small as birds tend to move away when
food becomes scarce. We plot an example in Fig. 39.1.
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FIGURE 39.1. A plot of the predation term k3P
2/(1+P 2) in the spruce budworm

model with k3 = .05.

Recall that we derived the theory of integration in Chapter 25 as a way
of solving a special case of (39.1), namely,

{
y′(x) = f(x), a ≤ x ≤ b,

y(a) = ya,
(39.4)

where f does not depend on the unknown solution y. There is a tremendous
difference between (39.1) and (39.4) arising from the possibly nonlinear
dependence on the unknown. The analysis of (39.4), as complicated as that
is, is consequently much simpler than the analysis of (39.1).

To solve and analyze (39.1), we have to develop tools to handle non-
linearity: just as finding numeric roots of nonlinear equations leads to the
Bisection Algorithm, fixed point iteration, differentiation, and Newton’s
method. In fact, all of the issues encountered in the solution of nonlinear
equations for numbers are reflected in the solution of nonlinear differential
equations.2

We describe two approaches to solving (39.1). However, before doing
that, we first describe some questions that have to be addressed. To be-
gin with, it is important to realize that the solution of (39.1) can almost
never be written down in closed form, i.e., as a combination of the usual
functions.3 This raises four fundamental questions:

2This has motivated some of the most important and interesting developments in
analysis over the last two centuries.

3In fact, this claim can be made very precise (see Braun [4]).
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1. Does the solution of (39.1) exist? Existence is generally an abstract
quality given that we cannot write down the solution.

2. Can there be more than one solution of (39.1)? Recall that nonlinear
equations for numbers often have more than one solution.

3. How can we approximate values of the solution in the general case
when we cannot write it down?

4. How can we determine properties of the solution in the general case
when we cannot write it down.

An analysis of a nonlinear differential equation is generally aimed at
addressing one or more of these questions. Of course, we answered the
same questions when we considered the solution of the simpler problem
(39.4) by integration. They just take on more urgency now because finding
the solution is more difficult.

Based on the experience with (39.4), it is not surprising that we have to
make assumptions on f in order to answer the questions above. After all, we
have only solved (39.4) when f(x) is continuous in x. We likewise assume
that f(x, y) behaves continuously with respect to x. But what about its
behavior with respect to y?

Example 39.3. It turns out that we can solve the logistics equation
(39.2) in closed form because it is separable.4 We rewrite the differential
equation using differential notation as

dP

k1P − k2P 2 = dt.

Integrating both sides, on the right from 0 to t and on the left corre-
spondingly from Pa = P (0) to P (t), we find that P (t) is determined
from ∫ P (t)

Pa

dP

k1P − k2P 2 =
∫ t

0
dt = t.

Now we use partial fractions to write

1
k1P − k2P 2 =

1
P (k1 − k2P )

=
1/k1

P
+

k2/k1

k1 − k2P
,

so ∫ P (t)

Pa

dP

k1P − k2P 2 =
1
k2

∫ P (t)

Pa

dP

P
+

k2

k1

∫ P (t)

Pa

dP

k1 − k2P
.

4It is convenient to have an interesting nonlinear example with a known solution. We
use the logistics problem to test our approaches to solving (39.1).



39. Nonlinear Differential Equations 563

By computing each of the integrals on the right5 and collecting terms
using properties of the logarithm, we find

1
k1

log
(

P (t)
Pa

∣
∣
∣
∣

k1 − k2Pa

k1 − k2P (t)

∣
∣
∣
∣

)
= t.

It is not hard to show that

k1 − k2Pa

k1 − k2P (t)
> 0 for t > 0,

and after some tedious algebra, we obtain

P (t) =
k1Pa

k2Pa + (k1 − k2Pa)e−k1t
for t ≥ 0. (39.5)

From this formula, we conclude the solution exists for all t ≥ 0 and that
P (t) → k1/k2 as t → ∞ for any Pa. If Pa < k1/k2, then P (t) < k1/k2
for all t, while if Pa > k1/k2, then P (t) > k1/k2 for all t. We plot some
solutions in Fig. 39.2.
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FIGURE 39.2. Two solutions of the logistic equation (39.2) with k1 = 1 and
k2 = .1. The solution corresponding to Pa = 1 has the characteristic “s”-shape
associated with solutions of the logistics problem.

In this example, the function f(P ) = k1P − k2P
2 is smooth and there is a

solution for all time. Yet, a seemingly small change can lead to completely
different behavior.

5This technique is called separation of variables.



564 39. Nonlinear Differential Equations

Example 39.4. It is easy to show that the unique solution of
{

y′(x) = y2, 0 ≤ x,

y(0) = 1,

is y(x) = 1/(1−x) using separation of variables. This function is defined
for 0 ≤ x < 1 but “blows up” as x approaches 1.

In the second example, the function f(y) = y2 is also perfectly smooth, yet
we do not have a solution for all x.

If we consider functions that are less smooth, other interesting things
can happen. We recall Example 23.13.

Example 39.5. The functions y(t) = 0 for all t ≥ 0 and

y(t) =






0, 0 ≤ t ≤ c,
(t − c)2

4
, t ≥ c,

for any c ≥ 0 solves {
y′ =

√
y, 0 ≤ t,

y(0) = 0.

In other words, there are an infinite number of different solutions.

In the last example, f(y) =
√

y is continuous for y ≥ 0 but only Lipschitz
continuous for y ≥ δ for any δ > 0.

We can provide partial answers to the questions 1–4 above for a general
investigation of (39.1) under the assumption that there are constants B >
a and M > 0 such that f is continuous in x and locally uniformly
Lipschitz continuous in y in the sense that there is a constant L > 0
such that

|f(x, y2) − f(x, y1)| ≤ L|y2 − y1|
for all (x, y) in the rectangle �̄ described by a ≤ x ≤ B and −M + ya ≤
y1, y2 ≤ ya + M (see Fig. 39.3). The “uniformity” refers to the fact that
the Lipschitz constant L is independent of x in [a, B].6

These continuity assumptions on f turn out to guarantee existence of a
unique solution at least for some x > a. It works like this: we can use the
Lipschitz condition on f with respect to y as long as (x, y(x)) remains in
�̄. But y(x) is continuous and starts with the value ya at x = a, (x, y(x))
remains inside �̄ for at least some x > a. We call such existence results
short time existence.

6Of course if f(x, y) is Lipschitz continuous for all y uniformly with respect to all x,
i.e., f is globally uniformly Lipschitz continuous, then it is locally uniformly Lipschitz
continuous on any such rectangle. But we recall that there are few nonlinear functions
that are Lipschitz continuous on R.
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FIGURE 39.3. The rectangle 
̄ = {(x, y) : a ≤ x ≤ B, −M + ya ≤ y ≤ ya +M}.

Of course, once (x, y(x)) leaves �̄, we have no idea what happens. In
Example 39.4, f(y) = y2 is Lipschitz continuous on any finite interval
[ya − M,ya + M ] but not on the entire set of reals. In that problem, the
solution eventually becomes larger than any fixed number and the local
existence analysis breaks down. Consequently, we can find a solution that
exists for x up to 1 but not for all x.

On the other hand, Lipschitz continuity is not required to get a unique
solution. But the following example shows that weakening the Lipschitz
continuity to a less strong version of Hölder continuity can lead to prob-
lems.

Example 39.6. Assuming that

|f(x, y2) − f(x, y1)| ≤ L|y2 − y1|α

for all (x, y) in a rectangle �̄, where 0 < α < 1, is not sufficient to
guarantee that a unique solution exists. For example, both y(x) = 0
and

y(x) =

{
0, 0 ≤ x ≤ c,
(
ε(x − c)

)1/ε
, x ≥ c,

for any c > 0, solve
{

y′ = y1−ε, 0 ≤ x,

y(0) = 0,

for 0 < ε < 1.



566 39. Nonlinear Differential Equations

39.1 A Warning

We conclude with a warning.7 It is important to distinguish a general anal-
ysis of (39.1), in which we do not specify a particular f but rather only
assume some general conditions like continuity, and a specific analysis of
(39.1) for a particular function f . A general analysis is aimed at finding
conditions on the problem under which questions 1–4 above can be an-
swered. This is important in order to understand the “structure” of the
problem. But a general analysis does not preclude being able to answer
these questions for particular functions f that fail to satisfy the assump-
tions of the general analysis. Consider Example 39.4 and Example 39.1.
The respective functions f(y) = y2 and f(P ) = k1P − k2P

2 are equivalent
in general terms like being Lipschitz continuous. But they force completely
different behavior on the solutions of the respective initial value problems,
with the solution corresponding to f(y) = y2 blowing up at t = 1, and the
solution corresponding to f(P ) = k1P − k2P

2 existing for all time.
It is a great mistake to learn the general theory for differential equations

and then to believe that this theory covers all the interesting cases or even
necessarily has much to do with any particular case.

7Why is it older people want to warn off younger people from having the same kinds
of fun they had when they were young?
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Chapter 39 Problems

39.1. Verify the details of Example 39.4.

39.2. Verify the claims in Example 23.13.

39.3. Show that there is more than one solution of
{

y′(x) = sin(2x)y1/3, 0 ≤ x,

y(0) = 0.

Hint: y ≡ 0 is one solution. Ignore the initial condition and use separation of
variables to find others.

39.4. Verify the details of Example 39.3.

39.5. Verify the claims in Example 39.6.
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40
The Picard Iteration

In the first approach1 to solving (40.1),

{
y′(x) = f(x, y(x)), a ≤ x ≤ b,

y(a) = ya,
(40.1)

we reformulate the problem as a fixed point problem and then use a con-
traction map to generate a sequence that converges to the solution. This
is the direct analog of our approach to solving fixed point problems for
numbers.2 There is one important difference, however: the fixed point we
are seeking is now a function, not a number.

Based on the discussion in Chapter 39, we assume that there are con-
stants B > a and M > 0 such that f is continuous in x and locally uni-
formly Lipschitz continuous in y in the sense that there is a constant
L > 0 such that

|f(x, y2) − f(x, y1)| ≤ L|y2 − y1|

for all (x, y) in the rectangle �̄ described by a ≤ x ≤ B and −M + ya ≤
y1, y2 ≤ ya + M (see Fig. 39.3).

1Historically, the method of successive approximations, or Picard’s iteration, was
discovered after Euler’s method and infinite series were used to prove existence and
uniqueness of solutions.

2It is a good idea to review the material in Chapter 15.
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40.1 Operators and Spaces of Functions

We begin by describing the basic ingredients for posing a fixed point prob-
lem whose solution is a function.

An operator is a function whose inputs are functions and whose output
consists of functions, i.e., a function on functions. The fixed point problems
we study in this chapter are for operators.

The idea of operators may seem like a hard concept- and it is- but we
are familiar with a number of examples.

Example 40.1. Any fixed number c is associated naturally with an
operator A defined by A(f(x)) = cf(x) for any function f . This is a
linear operator since for any functions f, g and number d, A(df(x) +
g(x)) = c(df(x) + g(x)) = dcf(x) + cg(x) = dA(f(x)) + A(g(x)).

Example 40.2. Any fixed function g(x) defines an operator G via
composition on the set of functions that have values in the domain of
g. Namely, G(f(x)) = g(f(x)). Note that this is not generally defined for
all functions. For example when g(x) =

√
x, G is defined on functions

with nonnegative values.

Example 40.3. Differentiation is a linear operator that is defined on
functions that have a derivative. Sometimes D is called the differential
operator and we write D : f(x) → f ′(x).

Example 40.4. Integration is a linear operator defined on the set of
continuous functions.

Recall that an important ingredient of a Fixed Point Iteration for com-
puting a fixed point of a function is that the function should map an interval
into itself. The operator analog of this property is that the operator should
map a set of functions into itself. The fixed point is located in this set of
functions. So we have to consider sets, or spaces, of functions in order to
talk about a fixed point problem for an operator.

There are very many spaces of functions and studying the various exam-
ples would be a huge and difficult task. We settle for discussing a particular
example that is well suited for our purpose. Given a finite interval [a, b] and
a natural number q ≥ 0, we define the space Cq([a, b]) to be the set of con-
tinuous functions that have continuous derivatives of order q and lower on
[a, b]. When q = 0, then this is just the space of continuous functions on
[a, b].

These spaces have several nice properties. For one thing, if f, g are in
Cq([a, b]) for q ≥ 0 and c is a number, then f + cg is in Cq([a, b]). The zero
function f(x) ≡ 0 is also in Cq([a, b]) for all q.3 Another important property

3In the language of linear algebra, Cq([a, b]) is a vector space.
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is that Cq([a, b]) is contained in Cq−1([a, b]) for q ≥ 1. Finally, the space of
continuous functions C0([a, b]) is well suited for the purpose of studying the
convergence of a Fixed Point Iteration because of the important fact that
a uniformly convergent sequence of continuous functions is continuous.4

In other words, a uniformly convergent sequence of functions in C0([a, b])
converges to a function in C0([a, b]).5

However, to use this last property, we must deal with an operator that
maps continuous functions into continuous functions. Finding such opera-
tors is not straightforward.

Example 40.5. The operator A defined by A(f) = cf , where c is a
number, maps Cq([a, b]) into Cq([a, b]) for any q ≥ 0.

Example 40.6. If g(x) is continuous and its domain is all real num-
bers, then the composition operator G(f) = g ◦ f maps C0([a, b]) into
C0([a, b]).

Example 40.7. Differentiation maps Cq([a, b]) into Cq−1([a, b]) for q ≥
1.

Example 40.8. Integration maps Cq([a, b]) into Cq+1([a, b]) and hence
into Cq([a, b]) for q ≥ 0.

40.2 A Fixed Point Problem for a Differential
Equation

Example 40.7 suggests that it might be difficult to pose a fixed point prob-
lem for a differential equation in a space Cq([a, b]) since differentiation does
not map Cq([a, b]) into itself. We get around this by rewriting the differential
equation (40.1) into an equivalent form that does not have this difficulty.

The new formulation is based on the Fundamental Theorem 34.1, which
implies in particular that

∫ x

a

y′(x) dx = y(x) − y(a)

for any differentiable function y. Hence, any solution of (40.1) also solves
the integral equation

y(x) = ya +
∫ x

a

f(s, y(s)) ds for a ≤ x ≤ b. (40.2)

4See Theorem 33.1.
5The analogous fact for numbers, i.e., that a convergent sequence of numbers in a

closed interval converges to a limit in the interval, is crucially important for the previous
fixed point results.



572 40. The Picard Iteration

We call (40.2) the integral form, or weak form, of (40.1) because it does
not involve an explicit derivative of y.

Conversely, we can take (40.2) as the fundamental problem and look for
a function y that is continuous on [a, b] and satisfies (40.2) for a ≤ x ≤ b.
Now we can see the meaning of “weak,” namely, (40.2) does not require
its solution to be differentiable. The solution merely has to be continuous
in order that the integral be defined. This follows because f is uniformly
Lipschitz continuous in y. Since y is continuous on [a, b], by decreasing b if
necessary, we can guarantee that |y(x) − ya| ≤ M for a ≤ x ≤ b. After all,
y(a) = ya and it cannot move too far away for x near a. But this means
that f(x, y(x)) is continuous on [a, b] since |f(x2, y(x2)) − f(x1, y(x1)))| ≤
L|y(x2)−y(x1)| for x1, x2 in [a, b]. The difference on the right can be made
as small as desired by taking x2 close to x1. Therefore, the integral in (40.2)
is defined for a ≤ x ≤ b.

This raises a fundamental issue: do (40.1) and (40.2) have the same solu-
tions?6 We have already shown that any solution of (40.1) solves (40.2), so
we have to show that a solution of (40.2) solves (40.1). The key observation
is that y(x) and therefore f(x, y(x)) are continuous on [a, b], which means
that

y(x) = ya +
∫ x

a

f(s, y(s)) ds

is differentiable for a ≤ x ≤ b. In other words, even though the solution
y(x) of (40.2) is only required to be continuous, it is actually differentiable.
Moreover,

y′(x) =
d

dx

∫ x

a

f(s, y(s)) ds = f(x, y(x)) for a ≤ x ≤ b

and so y solves (40.1).
From the point of view of formulating a fixed point problem, Exam-

ple 40.8 explains what is gained by rewriting the differential equation (40.1)
as the integral equation (40.2). Namely, if we define the integral operator
L on C0([a, b]) by

L(g(x)) = ya +
∫ x

a

f(s, g(s)) ds, (40.3)

then L maps C0([a, b]) into C0([a, b]) and moreover any fixed point of L is
a solution of (40.2). Thus, we have reformulated the initial value problem
(40.1) into the fixed point problem

L(y) = y (40.4)

on the set of continuous functions for the integral operator (40.3).

6Of course, we want to answer yes.
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Note that the discussion in this section is an example of a priori analysis.
We derive properties of the solution assuming that it exists. We have yet
to show that the solution actually does exist.

40.3 The Banach Contraction Mapping Principle

We state and prove a contraction mapping principle that applies to a fixed
point problem for a general operator. In Section 40.4, we show that the fixed
point problem (40.4) for a differential equation satisfies the assumptions of
this theorem.

The abstract fixed point problem for an operator A defined on a space of
functions S is to find y in S such that A(y) = y. The Fixed Point Iteration
is:

Algorithm 40.1 Fixed Point Iteration Choose y0 in S and for i = 1,
2, · · · , set

yi = A(yi−1). (40.5)

The following theorem says that the Fixed Point Iteration converges under
the right assumptions on S and A.

Theorem 40.1 Banach Contraction Mapping Principle Let S be a
nonempty space of functions defined on an interval [a, b] and A an operator
defined on S satisfying:

1. Every function g in S is uniformly bounded on [a, b].

2. Every uniform Cauchy sequence in S converges to a limit in S.

3. A maps S into S.

4. There is a constant 0 < K < 1 such that

sup
a≤x≤b

|A(g(x)) − A(g̃(x))| ≤ K sup
a≤x≤b

|g(x) − g̃(x)| (40.6)

for all g, g̃ in S.

Then there is a unique solution y(x) in S of the fixed point problem A(y) =
y and the Fixed Point Iteration {yi} generated by Algorithm 40.1 converges
uniformly to y on [a, b] for any y0 in S.

Assumptions 1 and 2 put conditions on S that guarantee that a sequence
of functions in S that converges has a limit in S. If the limit were not in
S, then we might have trouble for example applying the operator A to the
limit. Assumptions 3 and 4 put conditions on A that guarantee the Fixed
Point Iteration converges. An operator A satisfying 3 and 4 above is said
to be a contraction map on S.



574 40. The Picard Iteration

The proof of Theorem 40.1 follows the basic plan of the proof of Theo-
rem 15.1. We first show that the Fixed Point Iteration is a uniform Cauchy
sequence. We begin by estimating the difference between two successive
members. By assumption 3, yi is in S for all i. Therefore, we can use
the contraction assumption 4 inductively to conclude that for i ≥ 2 and
a ≤ x ≤ b,

|yi(x) − yi−1(x)| = |A(yi−1(x)) − A(yi−2(x))| ≤ K|yi−1(x) − yi−2(x)|
≤ Ki−1|y1(x) − y0(x)|.

By assumption 1, |y1(x) − y0(x)| is uniformly bounded by a constant C.
Hence,

sup
a≤x≤b

|yi(x) − yi−1(x)| ≤ CKi−1, 2 ≤ i. (40.7)

Since K < 1, the difference between yi and yi−1 can be made uniformly
small by taking i large.

To show that {yi} is a Cauchy sequence, we have to show the same holds
for supa≤x≤b |yi(x) − yj(x)| for any j ≥ i sufficiently large. For j > i, we
expand

|yi(x) − yj(x)| = |yi(x) − yi+1(x) + yi+1(x) − yi+2(x)
+ · · · + yj−1(x) − yj(x)|

≤
j−1∑

k=i

|yk(x) − yk+1(x)|.

We use (40.7) on each term in the sum to get

|yi(x) − yj(x)| ≤
j−1∑

k=i

CKk = CKi 1 − Kj−i

1 − K

by the formula for the geometric sum. Since K < 1, 1 − Kj−i ≤ 1 and
therefore

|yi(x) − yj(x)| ≤ CKi

1 − K
, a ≤ x ≤ b.

Since Ki approaches 0 as i increases, supa≤x≤b |yi(x) − yj(x)| with j ≥ i
can be made as small as desired by taking i large. In other words, {yi}
is a uniform Cauchy sequence in S and, by assumption 2, converges to a
function y in S.

Next, we have to verify that the limit y of {yi} is a fixed point of A. By
the way, since y is in S, it makes sense to write A(y). By assumption 4,

sup
a≤x≤b

|A(y(x)) − A(yi(x))| ≤ K sup
a≤x≤b

|y(x) − yi(x)|.

Since {yi} converges uniformly to y, {A(yi)} converges uniformly to A(y).
We take the limit as i → ∞ in yi = A(yi−1) to conclude y = A(y).
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Finally, we show there is a unique fixed point in S. If y and ỹ are two
fixed points, then assumption 4 implies

sup
a≤x≤b

|y(x) − ỹ(x)| = sup
a≤x≤b

|A(y(x)) − A(ỹ(x))| ≤ K sup
a≤x≤b

|y(x) − ỹ(x)|.

Since K < 1, we must have y = ỹ.

40.4 Picard’s Iteration

The fixed point iteration Algorithm 40.1 applied to the integral operator
L in (40.3) is called Picard’s iteration or the method of successive
approximations. This technique was first used by Liouville7 to solve a
specific second order differential equation and Picard8 generalized the tech-
nique.

Before computing some examples, we first verify that the fixed point
problem (40.4) satisfies the assumptions 1–4 of Theorem 40.1 for some b
with a < b < B. For a < b < B to be chosen, we let � denote the “sub-
rectangle” of �̄ described by a ≤ x ≤ b and −M + ya ≤ y1, y2 ≤ ya + M .
We take S to be the set of continuous functions on [a, b] whose graphs lie
in � and A = L defined by (40.3).

1. Continuous functions are bounded on closed, finite intervals by The-
orem 32.16.

2. The limit of a uniform Cauchy sequence of continuous functions is
continuous by Theorem 33.1. The graph of the limit of a uniformly
convergent sequence of continuous functions whose graphs lie in �
must also lie in �.

3. Showing that L maps S into S requires a little work. Certainly, L
maps continuous functions into continuous functions. We have to ver-
ify that it maps a function with a graph in � into another function
with a graph in �. The important observation is that f(x, ·) is itself
uniformly bounded on S. Let z be a function in S. For any a < b ≤ B
and a ≤ x ≤ b,

|f(x, z(x)) − f(x, ya)| ≤ L|z(x) − ya| ≤ LM,

7Joseph Liouville (1809–1882) was a French mathematician. Liouville wrote many
papers, making important discoveries in analysis, astronomy, differential equations, dif-
ferential geometry, and number theory.

8Charles Emile Picard (1856–1941) was a French mathematician. He made funda-
mental discoveries in algebraic geometry, analysis, differential equations, and the theory
of functions. He also studied applications in elasticity, electricity, and heat.
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since the graph of z lies in � by assumption. Therefore,

|f(x, z(x))| ≤ LM + sup
a≤x≤b

|f(x, ya)| = M̃,

since f is continuous with respect to x and supa≤x≤b |f(x, ya)| is
finite. But then for z in S,

|L(z) − ya| =
∣
∣
∣
∣

∫ x

a

f(s, z(s)) ds

∣
∣
∣
∣ ≤ M̃(x − a) ≤ M̃(b − a). (40.8)

This says that the image of the integral operator L applied to a
function in S is contained in the triangular region inside �̄ between
the lines with slopes ±M̃ passing through (a, ya) (see Fig. 40.1). The
desired result holds if we choose b > a so that

b ≤ a +
M

M̃
(40.9)

and define � accordingly.
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b

L(z)

z

FIGURE 40.1. The image of the integral operator L applied to a function in S
is contained in the triangular shaded region inside 
̄ between the lines through
(a, ya) with slopes ±M̃ .

4. Let z and z̃ be in S. Then for b in (40.9), the uniform Lipschitz
continuity of f implies that

|L(z(x)) − L(z̃(x))| =
∣
∣
∣
∣

∫ x

a

(
f(s, z(s)) − f(s, z̃(s))

)
ds

∣
∣
∣
∣

≤ L

∫ x

a

|z(s) − z̃(s)| ds

≤ L(x − a) sup
a≤s≤x

|z(s) − z̃(s)|.



40.4 Picard’s Iteration 577

Taking the sup for a ≤ x ≤ b and decreasing b if necessary to insure
0 < K = L(b − a) < 1, i.e., choosing

b < a + min
{

1
L

,
M

M̃

}
, (40.10)

proves the desired result.

We summarize as a theorem.

Theorem 40.2 Picard Existence Theorem Suppose that f(x, y) is
continuous in x and uniformly Lipschitz continuous in y for all (x, y) in the
rectangle �̄ described by a ≤ x ≤ B and −M +ya ≤ y ≤ ya+M . Then there
is a b with a < b ≤ B such that (40.1) has a unique solution for a ≤ x ≤ b
and the Picard iteration converges to this solution for any continuous initial
iterate whose graph is contained in the rectangle � described by a ≤ x ≤ b
and −M + ya ≤ y ≤ ya + M .

We compute some examples.

Example 40.9. We compute the Picard iterates for
{

y′ = y, 0 ≤ x,

y(0) = 1,

which has solution y(x) = ex. In this case, f(y) = y and f ′(y) = 1, so
L = 1. If |y − 1| ≤ M , then M̃ = 1 + M . So convergence is guaranteed
for all

b ≤ M

1 + M

by (40.10). In other words, we can guarantee convergence on [0, 1).

Starting with y0 = ya = 1,

y1(x) = 1 +
∫ x

0
1 ds = 1 + x

and

y2(x) = 1 +
∫ x

0
(1 + s) ds = 1 + x +

x2

2
.

Inductively,

yi(x) = 1 +
∫ x

0
yi−1(s) ds = 1 +

∫ x

0

(
1 + s + · · · +

si−1

(i − 1)!

)
ds

= 1 + s + · · · +
si

i!
.

Therefore, yi(x) is nothing more than the Taylor polynomial for ex

around 0 of degree i! We have now given a second proof that this Taylor
polynomial converges to ex as the degree increases for 0 ≤ x < 1.
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Since we know that for x in any bounded interval, the Taylor polynomial
for ex converges as the degree increases (see Example 37.11), we see that
(40.10) may be pessimistic in terms of predicting the length of the interval
on which the Picard iteration converges.

Example 40.10. We compute the Picard iterates for the logistics equa-
tion (39.2) with k1 = k2 = 1 and Pa = 1/2 and solution

P (t) =
1

1 + e−t
for t ≥ 0.

Now f(P ) = P − P 2. For |P − 1/2| ≤ M ,

L = max
|P−1/2|≤M

|1 − 2P | = |1 − 2(
1
2

+ M)| = 2M.

Here M̃Pa − P 2
a + LM = 1/4 + 2M2 and by (40.10), we can guarantee

convergence for

b =
M

1
4 + 2M2

=
4M

1 + 8M2 .

The formula for b is concave up and its smallest value occurs when

d

dM

4M

1 + 8M2 = 0 =⇒ M =
1√
8
.

Hence, there is convergence at least for x up to b = 1/
√

2.

Starting with P0 = Pa = 1/2, we use MAPLE c© to compute

P0 =
1
2

P1(t) =
1
2

+
t

4

P2(t) =
1
2

+
t

4
− t3

48

P3(t) =
1
2

+
t

4
− t3

48
+

t5

480
− t7

16128

We plot these functions along with P in Fig. 40.2. Note that the Picard
iterates are very accurate on [0, 1/

√
2] but are not accurate on much

larger intervals.

40.5 Unanswered Questions

We can use Theorem 40.1 to guarantee that a unique solution of (40.1)
exists on some short time interval (a, b). Example 39.4 shows that indeed
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FIGURE 40.2. Plots of the solution P (t) of the logistic equation along with the
first four Picard iterates.

there are problems for which a solution exists for some time but there is
a time at which the solution “blows up” and ceases to exist. However, in
most applications, we require that the solution exist over some given time
interval that may not be short and often is very long. Such existence results
are called global existence. In these cases, an important question is how
to show that a solution of (40.1) exists over the required time interval? It
is possible to find general conditions on (40.1) that guarantee a solution
exists for all time (see Problem 40.9), but these are so onerous that they
apply to very few real models. Instead, we generally need to use analysis
that is specialized to a particular model and its properties to prove a global
existence result.
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Chapter 40 Problems

40.1. Let g(x) = 1/x and let G(f) be the operator G(f) = g ◦ f . Describe a
subset of the continuous functions on which G is defined. Does G map this subset
into itself?

Problems 40.2–40.8 have to do specifically with the Picard iteration for
solving an initial value problem. It is a good idea to use MAPLE c© or
another symbolic manipulation package to help do the problems.

40.2. Compute the Picard iterates yi, i = 0, · · · , 4, for the problem y′ = x + y
for 0 ≤ x using both initial values ya = 0 and ya = 1 with initial iterate y0 = ya.
Plot the results in both cases.

40.3. Compute the Picard iterates yi, i = 0, · · · , 4, for the problem y′ = y2 for
0 ≤ x using the initial value ya = 1 and initial iterate y0 = ya and plot the
results. Compare to the expected behavior of the true solution.

40.4. Compute the Picard iterates yi, i = 0, · · · , 4, for the problem y′ = 1−y3 for
0 ≤ x using both initial values ya = 0 and ya = 1 with initial iterate y0 = ya in
both cases. Plot the results in both cases. Explain the results when ya = y0 = 1.

40.5. Compute the Picard iterates yi, i = 0, · · · , 4, for the problem y′ = y1/2 for
0 ≤ x using the initial value ya = 0 and two different initial iterates y0 = 0 and
y0 = 1. Explain your results.

40.6. Compute the Picard iterates yi, i = 0, · · · , 4, for the problem y′ = y − y3

for 0 ≤ x using the initial value ya = 1 and two different initial iterates y0 = 1
and y0 = 1 − x. Plot the results in both cases.

40.7. Find intervals [a, b] on which the Picard iteration is guaranteed to converge
via (40.10) for Problem 40.2, Problem 40.3, Problem 40.4, and Problem 40.5.

40.8. Compute the Picard iterates Pi, i = 0, 1, 2, for the spruce budworm model
(39.3) with k1 = 1, k2 = .1, and k3 = .05 for 0 ≤ t using the initial value Pa = 1/2
and initial iterate P0 = 1/2. Plot the results.

40.9. Assume f(x, y) is continuous in x for a ≤ x < ∞, |f(x, y)| ≤ M̃ for
a ≤ x < ∞ and −∞ < y < ∞, and |f(x, y) − f(x, z)| ≤ L|y − z| for a ≤ x < ∞
and −∞ < y < ∞. Show the solution of

{
y′ = f(x, y), a ≤ x,

y(a) = ya,

exists for all x ≥ a.

Problems 40.10–40.13 are applications of Theorem 40.1 to fixed point
problems for various kinds of operators.
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40.10. Consider the operator A(f) = cf , where c is a number. Let S = Cq([a, b]).
Find conditions on c that guarantees the Fixed Point Iteration converges for y0

in S. What is the fixed point of A?

40.11. Consider the operator G(f) = g ◦ f where g(x) = x2/4. Let S = the set
of continuous functions whose values are between −1 and 1. Verify that Theo-
rem 40.1 applies. What are the fixed points of G? Which fixed point is found by
the Fixed Point Iteration for initial iterates in S?

40.12. Does Theorem 40.1 apply to G(f) = g ◦ f , where g(x) =
√

x and S = the
set of continuous functions whose values are between 0 and 1?

40.13. (a) Consider the general integral equation: find y in C0([a, b]) such that

y(x) = f(x) + λ

∫ x

a

exsy(s) ds, a ≤ x ≤ b,

where λ is a number and f(x) is a continuous function on [a, b]. Define an appro-
priate operator and then find conditions on b, f , and λ that allow Theorem 40.1
to guarantee a solution exists. (b) Do the same for C0([a, b]) such that

y(x) = f(x) + λ

∫ x

a

sin(x + s)y(s) ds, a ≤ x ≤ b.

(c) Finally, consider the general integral equation

y(x) = f(x) + λ

∫ x

a

K(x, s)y(s) ds, a ≤ x ≤ b.

K(x, s) is called the kernel. Find conditions on b, f , λ, and K(x, y) that allows
Theorem 40.1 to guarantee a solution exists.

Problem 40.14 is an application of Theorem 40.1 to prove an important
generalization of the Inverse Function Theorem called the Implicit Func-
tion Theorem. The situation is a model in which there is a parameter that
can vary, so any solution of the model naturally changes as the parameter
changes. The Implicit Function Theorem gives conditions under which we
can guarantee that the solution of the model depends continuously on the
parameter. To prove the most general result, we have to consider functions
of several variables, which we avoid doing in this book. But, the following
special case gives the flavor of the theorem.

40.14. Prove the following theorem.

Implicit Function Theorem Let f(x, y) be defined for a ≤ x ≤ b and −∞ <
y < ∞. Suppose f(x, y) is continuous with respect to x, differentiable with respect
to y, and furthermore there are constants m, M such that

0 < m ≤ d

dy
f(x, y) ≤ M < ∞

for a ≤ x ≤ b and −∞ < y < ∞. Then

f(x, y) = 0
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has a unique solution y(x) for each x in [a, b] such that y(x) is a continuous
function.

Hint: Let S = C0([a, b]) and consider the operator

A(z(x)) = z(x) − 1
M

f(x, z(x)).

Use Theorem 40.1. By the way, the Mean Value Theorem for f looks like

f(x, y) − f(x, ỹ) =
d

dy
f(x, c)(y − ỹ)

for some ỹ < c < y.



41
The Forward Euler Method

In Chapter 40, we prove that there is a unique solution y of
{

y′(x) = f(x, y(x)), a ≤ x ≤ b,

y(a) = ya,
(41.1)

by using a Fixed Point Iteration that theoretically produces a sequence
of increasing accurate approximations to y. In practice, it turns out that
computing the Picard iterates requires evaluating a succession of increas-
ingly complicated integrals. Consequently, we cannot compute very many
iterates in general. Unfortunately, the Picard iteration may converge very
slowly.

So, we are still left with the problem of devising a practical method for
approximating the solution of (41.1) to a desired accuracy. In this chapter,
we construct such a method that is closely related to the approach used for
defining and computing the integral.1

41.1 The Forward Euler Method

As in Chapter 40, we use the equivalent integral or weak form of (41.1):
find a function y that is continuous on [a, b] and satisfies

y(x) = L(y) = ya +
∫ x

a

f(s, y(s)) ds for a ≤ x ≤ b. (41.2)

1It is a good idea to review Chapters 25 and 34.
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In Section 40.2, we discuss the integral operator L and, in particular,
prove that (41.2) and (41.1) are equivalent in the sense that a solution of
one problem is also a solution of the other problem.

We define an approximate solution by considering f(x, y(x)) as a function
of x and applying the rectangle quadrature rule to approximate the integral
in (41.2). We choose a mesh T = {x0, x1, · · · , xN} with a = x0 < x1 <
· · · < xN = b and step sizes ∆xn = xn − xn−1, 1 ≤ n ≤ N . We use the
maximum step size ∆xT = ∆x = max1≤n≤N ∆xn as the measure of the
“fineness” of the mesh T .

The approximation is a piecewise linear, continuous function with respect
to the mesh T . We use capital letters to denote the approximation. The
nodal values {Yn}N

n=0 are determined via the following algorithm.

Algorithm 41.1 Forward Euler Method Set Y0 = ya and for 1 ≤
n ≤ N ,

Yn = Y0 +
n∑

k=1

f(xk−1, Yk−1)∆xk. (41.3)

Correspondingly, for xn−1 ≤ x ≤ xn, the approximation is given by

Y (x) = Y0 +
n−1∑

k=1

f(xk−1, Yk−1)∆xk + f(xn−1, Yn−1)(x − xn−1). (41.4)

This is called the forward Euler approximation because the left-hand end-
point is used to define the integral approximation on each interval [xn−1, xn].
An important consequence is that the equations determining {Yn} are lin-
ear . In contrast, for example, if we use the right-hand endpoint on each
interval, the resulting equations for the nodal values are nonlinear (see
Problem 41.6).

Example 41.1. We compute the forward Euler approximations for
{

y′ = y, 0 ≤ x,

y(0) = 1,
(41.5)

which has solution y(x) = ex. We use uniform meshes on [0, 1] with
5, 10, 20, and 40 intervals and plot the resulting approximations in
Fig. 41.1. Compare to the results of the Picard iteration in Exam-
ple 40.9.

Example 41.2. We compute the forward Euler approximations for the
logistics equation with k1 = k2 = 1,

{
P ′ = P − P 2, 0 ≤ t,

P (0) = 1/2,
(41.6)
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FIGURE 41.1. Plots of forward Euler approximations for (41.5) with 5, 10, 20,
and 40 uniformly spaced nodes in [0, 1] along with the true solution.

which has solution P (t) = 1/(1+ e−t). We use uniform meshes on [0, 3]
with 5, 10, 20, and 40 intervals and plot the resulting approximations
in Fig. 41.2. Compare to the results of the Picard iteration in Exam-
ple 40.10.
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FIGURE 41.2. Plots of forward Euler approximations for (41.6) with 5, 10, 20,
and 40 uniformly spaced nodes in [0, 3] along with the true solution.

Example 41.3. We compute the forward Euler approximations for the
model of the spruce budworm with k1 = k2 = k3 = 1,

{
P ′ = P − P 2 − P 2/(1 + P 2), 0 ≤ t,

P (0) = 1/2.
(41.7)
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We use uniform meshes on [0, 3] with 5, 10, 20, and 40 intervals and
plot the resulting approximations in Fig. 41.3. In this case, it is difficult
to compute more than a couple Picard iterations (see Problem 40.8).

30

0.25
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P10

P20

P40

0 1 2

FIGURE 41.3. Plots of forward Euler approximations for (41.7) with 5, 10, 20,
and 40 uniformly spaced nodes in [0, 3]. On the top, we plot the results on the
same scale used in Fig. 41.2 so that the effects of the predation can be seen. On
the bottom, we change scale to make the effect of changing the mesh more clear.

We can interpret the forward Euler method as a way of approximately
solving a sequence of initial value problems. On [x0, x1], Y solves

{
Y ′(x) = f(x0, Y0), x0 ≤ x ≤ x1,

Y (x0) = ya,

and for 1 ≤ n ≤ N , given the last nodal value Yn−1,
{

Y ′(x) = f(xn−1, Yn−1), xn−1 ≤ x ≤ xn,

Y (xn−1) = Yn−1.

This means that on [xn−1, xn], Y (x) is the linearization of the function ỹ
solving {

ỹ′(x) = f(x, ỹ(x)), xn−1 ≤ x ≤ xn,

ỹ(xn−1) = Yn−1,

at xn−1 (see Fig. 41.4). ỹ is called the local solution on [xn−1, xn]. In Prob-
lem 41.7, we ask you to show that ỹ exists. The term “forward” is suggestive
of extrapolating the value of f(x, Y (x)) from xn−1 over [xn−1, xn].

41.2 Equicontinuity and Arzela’s Theorem

We have constructed a collection, or family, of potential approximations
{Y } of y corresponding to all of the possible meshes {T }, of which there are
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FIGURE 41.4. On [xn−1, xn], the forward Euler approximation Y (x) is the lin-
earization of the local solution ỹ at xn−1.

very many! We want to show that the solution y exists and that it is possible
to approximate y to any desired accuracy using {Y }. We can formulate
these results as follows. Assume that we have a sequence of meshes with
the property that the corresponding maximum step sizes tend to zero. Then
the corresponding approximations form a uniform Cauchy sequence on [a, b]
that converges to a limit, which is the solution y, as n → ∞. This is what
we prove.

We used the same strategy to show the rectangle rule approximation
converges to the integral of a continuous function in Chapter 25. However,
when considering integration, we use a specific sequence of uniform meshes
that makes it relatively easy to compare approximate solutions correspond-
ing to different meshes. In this setting, we avoid specifying anything about
the sequence of meshes other than the fact that their maximum size tends
to zero. We could modify the argument used for integration in Chapter 25
to handle arbitrary meshes (see Problem 41.23). However, we take a differ-
ent approach in this chapter.

To show that Euler’s method converges, we use a theorem about func-
tions that is the analog of Weierstrass’ principle (Theorem 32.13), which
says that every bounded sequence of numbers contains a convergent sub-
sequence. We show that the family of Euler approximations {Y } contains
a subsequence that converges uniformly to the solution.

We begin by assuming that we have a family of functions F = {g} defined
on a finite interval [a, b] that are uniformly bounded. So there is a constant
B such that for all g in F ,

|g(x)| ≤ B for a ≤ x ≤ b.

This is the analog of having a bounded set of numbers.
However, the intended application to solving the integral equation (41.2)

requires more. Namely, the family F has to consist of continuous functions
in order for the integral in (41.2) to be defined. Indeed, the family of Euler
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approximations are continuous. We also require the limit of a sequence in
F to be continuous in order that (41.2) and (41.1) be equivalent.

So the question is: under what conditions can we prove that a uniformly
bounded family of continuous functions has a subsequence that converges to
a continuous limit? We already have a hint at the answer in Section 33.1,
where we investigated sequences of continuous functions. A sequence of
continuous functions that converges to a function does not have to have
a continuous limit. We got around this difficulty in Theorem 33.1 by as-
suming that the sequence converges uniformly. Recall that a sequence {gn}
converges uniformly to g on [a, b] if given ε > 0 there is an N such that for
all n > N ,

|g(x) − gn(x)| < ε for a ≤ x ≤ b.

The uniformity refers to the fact that the convergence happens at a min-
imum rate for all a ≤ x ≤ b. A sequence of continuous functions that
converges uniformly has to converge to a continuous function.

Hence if we determine conditions under which a uniformly bounded fam-
ily F of continuous functions has a uniformly convergent subsequence, then
we know that the subsequence has a continuous limit. This requires some
additional assumption on F , as the next example illustrates.

Example 41.4. Define the family of functions F = {gn} on [0, 1] by

gn(x) =
x2

x2 + (1 − nx)2
n = 1, 2, 3, · · · .

Now, |gn(x)| ≤ 1 for all 0 ≤ x ≤ 1 and n ≥ 1, so F is uniformly
bounded. All the functions gn are continuous, and therefore uniformly
continuous on [0, 1], and for 0 ≤ x ≤ 1,

lim
n→∞

gn(x) = 0,

so {gn} converges to a continuous function. However, gn(1/n) = 1 for
n ≥ 1, hence no subsequence of {gn} can converge uniformly.

The sequence in Example 41.4 fails to have a uniformly convergent sub-
sequence even though it converges. The reason is that even though each
function in the sequence is uniformly continuous in x, the functions are
not uniformly continuous with respect to n. We can avoid this difficulty by
assuming a sort of “double” uniform continuity on F . A family F = {g} of
functions g defined on [a, b] is equicontinuous on [a, b] if for every ε > 0
there is a δ > 0 such that

|g(x) − g(z)| < ε

for all g in F and x, z in [a, b] with |x − z| < δ. Equicontinuity says the
family F is uniformly continuous in both input and in the functions.
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Example 41.5. Consider F = {x2+x/n} for n ≥ 1 defined on [0, 1]. It
is straightforward to show that these functions are Lipschitz continuous
uniformly with respect to n. For x, z in [0, 1],

∣
∣
∣x2 +

x

n
−
(
z2 +

z

n

)∣∣
∣ =

∣
∣
∣
∣(x + z) +

1
n

∣
∣
∣
∣ |x − z| ≤ 2|x − z|.

Hence, F is equicontinuous.

Example 41.6. Consider F = {nx2} for n ≥ 1 defined on [0, 1]. Now
for x, z in [0, 1],

|nx2 − nz2| = n(x + z)|x − z|.
To insure that

|nx2 − nz2| < ε

for some ε > 0, we have to restrict the size of |x − z| to be smaller
than ε/(n(x + z)), and for x, z �= 0, this involves n. Hence, F cannot
be equicontinuous.

Assuming that the family F is uniformly bounded and equicontinuous,
it is sufficient to show that it contains a uniformly convergent subsequence.
The proof, like the proof of the Weierstrass’ principle, appears to be con-
structive. However, each step requires deciding whether a given region con-
tains the graphs of an infinite number of functions, something that cannot
be checked by a computer.

We let B be a uniform bound on the functions in F . Since F is equicon-
tinuous on [a, b], given any ε > 0 there is a δε > 0 such that

|g(x) − g(z)| < ε for g in F , x, z in [a, b] with |x − z| < δε.

Let εi = B/2i for i = 1, 2, 3, · · · and let δi = δεi .
Consider the rectangle � described by a ≤ x ≤ b and −B ≤ g ≤ B.

We show the rectangle in Fig. 41.5. We construct a sequence of regions
{bn} contained in � such that bn is contained in bn−1, bn spans [a, b] in
width, but has decreasing “height”, and each bn contains an infinite number
of functions from F . The functions in {bn} form a uniformly convergent
Cauchy sequence.

We construct the sequence {bn} inductively. We begin by dividing up �
into a checkerboard pattern of smaller rectangles of width δ1, or possibly
smaller in the case of rectangles on the right-hand edge, and height ε1. We
denote the vertical “strips” of rectangles in a column by S1, S2, · · · , Sr.

No function g in F can have a graph that spans more than two adjacent
rectangles in S1 because of the equicontinuity condition and the choice of
δ1. Therefore, at least two adjacent rectangles in S1 must contain an infinite
number of functions in F . We shaded two such rectangles in S1.

The graph of any function g in F that is in the shaded rectangles must
pass through one of four adjacent rectangles that overlap the shaded region
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R

FIGURE 41.5. The first rectangle checkerboard pattern used in the proof of
Arzela’s theorem. The height of the smaller rectangles is ε1 and the width is δ1

except possibly for the rectangles on the right-hand edge, which may have smaller
width. The shaded band b1 contains the graphs of an infinite number of functions
in S.

in S2 because of continuity. Again, the graph of such a function cannot
span more than two adjacent rectangles. Hence, one of the adjacent pairs
of rectangles from among these four must contain an infinite number of
functions in F .

Continuing in the same way, we obtain a “band” b1 of height 2ε1 spanning
[a, b] containing the graphs of an infinite number of functions in F . We
shade an example of such a band in Fig. 41.5. We let {g(1)} denote the
infinite family of functions from F whose graphs lie in b1. We choose a
particular member and call it ḡ1.

Next, we treat the family {g(1)} and the band b1 in the same way using
ε2 and δ2. See Fig. 41.6. We divide up the rectangles in b1 into rectangles

a
b

ε2

ε2

-B

B

δ2 δ2
0

R

FIGURE 41.6. The second rectangle checkerboard pattern used in the proof of
Arzela’s theorem. The height of the smaller rectangles is ε2 and the width is δ2

except possibly for the rectangles on the right-hand edge, which may have smaller
width. The shaded band b2 contains the graphs of an infinite number of functions
in {g(1)}.
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of height ε2 and width δ2, except possibly for rectangles on the right-hand
edges of the strips in b1, which might be smaller in width. Arguing as for
b1, we obtain a band b2 of height 2ε2 contained in b1 that contains the
graphs of infinitely many of the functions in {g(1)}. We let {g(2)} denote
the infinite family of functions from F whose graphs lie in b2 and ḡ2 be a
particular member of this family.

Repeating, we get a sequence of bands {bn} such that bn has height 2εn,
width b−a, and bn is contained in bn−1. We also get a sequence of functions
{ḡn} from F with the graph of ḡm contained in bn for m ≥ n. We conclude
that {ḡn} is a uniform Cauchy sequence of continuous functions that must
therefore converge uniformly to a continuous limit.

We summarize as an important theorem, named after Arzela.2

Theorem 41.1 Arzela’s Theorem A uniformly bounded, equicontin-
uous family of functions on [a, b] contains a subsequence that converges
uniformly to a continuous function on [a, b].

Equicontinuity seems like a rather strong condition. But we can prove
a sort of converse to Theorem 41.1. Suppose that we have a uniformly
convergent sequence of continuous functions {gn} on [a, b] and suppose
ε > 0 is given. Since {gn} is a uniform Cauchy sequence, there is an N such
that for n > N ,

|gn(x) − gN (x)| < ε, a ≤ x ≤ b.

Since continuous functions on a bounded interval are uniformly continuous
on the interval by Theorem 32.11, there is a δ > 0 such that for 1 ≤ n ≤ N ,

|gn(x) − gn(z)| < ε, x, z in [a, b] and |x − z| < δ.

Note that even though this looks like the condition for equicontinuity for the
family, it is not because we are only guaranteeing the continuity of a finite
number of the functions, namely, g1, g2, · · · , gN . A finite set of uniformly
continuous functions is always equicontinuous (see Problem 41.9).

If n > N and x, z in [a, b] with |x − z| < δ, then

|gn(x) − gn(z)| ≤ |gn(x) − gN (x)| + |gN (x) − gN (z)| + |gN (z) − gn(z)|
≤ 3ε.

The first and last terms on the right are small because of the uniform
convergence of g and the middle term on the right is small because of the
uniform continuity of gN . Since we can also make the difference |gn(x) −
gn(z)| less than ε for n ≤ N , we have proved:

Theorem 41.2 Suppose {gn} is a sequence of continuous functions on
[a, b] that converges uniformly to g on [a, b]. Then {gn} is equicontinuous
on [a, b].

2Cesare Arzela (1847–1912) was an Italian analyst.
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This result says that even if the original family F is not equicontinuous,
any subsequence of F that converges uniformly is equicontinuous.

41.3 Convergence of Euler’s Method

We use Arzela’s Theorem 41.1 to show that Euler’s method converges.
We assume that we have a sequence of meshes with the property that
the maximum step sizes tend to zero. Then we use Arzela’s theorem to
conclude that the family of corresponding Euler approximations F contains
a uniform Cauchy subsequence on [a, b] that converges to a continuous limit,
which is the solution y, as N → ∞.

Guaranteeing that F is uniformly bounded and equicontinuous requires
assumptions on f . Based on the discussion in Chapter 39, we assume that
there are constants B > a and M > 0 such that f is continuous in x and
locally uniformly Lipschitz continuous in y in the sense that there is
a constant L > 0 such that

|f(x, y2) − f(x, y1)| ≤ L|y2 − y1|

for all (x, y) in the rectangle �̄ described by a ≤ x ≤ B and −M + ya ≤
y1, y2 ≤ ya + M (see Fig. 39.3).

Recall that this implies that f(x, ·) is uniformly bounded on the set of
continuous functions whose graphs lie in �̄. Let z be such a function. Then
for any a < b ≤ B and a ≤ x ≤ b,

|f(x, z(x)) − f(x, ya)| ≤ L|z(x) − ya| ≤ LM,

since the graph of z lies in �̄ by assumption. Therefore,

|f(x, z(x))| ≤ LM + sup
a≤x≤b

|f(x, ya)| = M̃,

since f is continuous with respect to x and therefore supa≤x≤b |f(x, ya)| is
finite.

We show that the family F of Euler approximations is uniformly bounded
and equicontinuous on an interval [a, b] where a < b ≤ B is to be chosen.
We let � denote the “sub-rectangle” of �̄ described by a ≤ x ≤ b and
−M + ya ≤ y ≤ ya + M . Evaluating the integral operator L applied to a
continuous function z whose graph is contained in �, we find

|L(z) − ya| =
∣
∣
∣
∣

∫ x

a

f(s, z(s)) ds

∣
∣
∣
∣ ≤ M̃(x − a) ≤ M̃(b − a).

This says that the image of the integral operator L applied to z is contained
in the triangular region inside �̄ between the lines with slopes ±M̃ passing
through (a, ya) (see Fig. 41.7). We choose b > a so that
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FIGURE 41.7. The image of the integral operator L applied to a continuous
function whose graph is contained in 
̄ is contained in the triangular shaded
region inside 
̄ between the lines through (a, ya) with slopes ±M̃ .

b ≤ a +
M

M̃
.

This means that the image of a continuous function whose graph is in �
under L is another continuous function whose graph is in �.

We choose a mesh from {F} and denote the nodes {x0, x1, · · · , xN} and
the corresponding Euler approximation by Y . By (41.4),

|Y (x) − Y0| ≤
n−1∑

k=1

|f(xk−1, Yk−1)|∆xk + |f(xn−1, Yn−1)|(x − xn−1) (41.8)

for xn−1 ≤ x ≤ n, 1 ≤ n ≤ N . First consider x0 ≤ x ≤ x1, where

|Y (t) − Y0| ≤ |f(x0, Y0)||x − x0| ≤ M̃(x − x0) ≤ M̃(b − a) ≤ M.

Assume that we have proved |Y (x) − Y0| ≤ M for xn−2 ≤ x ≤ xn−1. Then
for xn−1 ≤ x ≤ xn, (41.8) implies

|Y (x) − Y0| ≤ M̃

n−1∑

k=1

∆xk + M̃(x − xn−1) = M̃(x − x0)

≤ M̃(b − a) ≤ M. (41.9)

Hence, F is uniformly bounded on [a, b] with bound M .
Next, we show that F is equicontinuous. In fact, the Euler approxi-

mations in F are all Lipschitz continuous with constant M̃ uniformly with
respect to their respective meshes. Choose a mesh TN and denote the nodes
{x0, x1, · · · , xN} and the corresponding Euler approximation by Y . Next,
choose points a ≤ x̄ < x ≤ b. If x and x̄ are in the same subinterval
[xn−1, xn] for 1 ≤ n ≤ N , then immediately

|Y (x) − Y (x̄)| ≤ |f(xn−1, Yn−1)||x − x̄| ≤ M̃ |x − x̄|.
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Otherwise, assume that xm−1 ≤ x̄ ≤ xm and xn−1 ≤ x ≤ xn for some
1 ≤ m < n ≤ N . Then

Y (x) − Y (x̄) = (Y (x) − Y0) − (Y (x̄) − Y0)

=

(
n−1∑

k=1

f(xk−1, Yk−1)∆xk + f(xn−1, Yn−1)(x − xn−1)

)

−
(

m−1∑

k=1

f(xk−1, Yk−1)∆xk + f(xm−1, Ym−1)(x̄ − xm−1)

)

.

(41.10)
We expand the first sum on the right-hand side as

m−1∑

k=1

f(xk−1, Yk−1)∆xk

+ f(xm−1, Ym−1)(x̄ − xm−1) + f(xm−1, Ym−1)(xm − x̄)

+
n−1∑

k=m+1

f(xk−1, Yk−1)∆xk + f(xn−1, Yn−1)(x − xn−1),

(with the convention that the second sum is empty if m=n-1). So (41.10)
means

Y (x) − Y (x̄) = f(xm−1, Ym−1)(xm − x̄) +
n−1∑

k=m+1

f(xk−1, Yk−1)∆xk

+ f(xn−1, Yn−1)(x − xn−1). (41.11)

By the uniform bound on f , we conclude that

|Y (x) − Y (x̄)| ≤ M̃

(

(xm − x̄) +
n−1∑

k=m+1

∆xk + (x − xn−1)

)

≤ M̃ |x − x̄|.

(41.12)
Hence, the Euler approximations in F are equicontinuous.

By Arzela’s Theorem 41.1, we conclude that F contains a subsequence
of Euler functions that converges to a continuous function y(x). We denote
this subsequence by {Y (n)} and the corresponding maximum step sizes by
{∆x(n)}. We next argue that the limit y is a solution of the differential
equation (41.1).

We do this by first showing that the Euler approximations {Y (n)} “al-
most” solve the differential equation. Specifically, we choose x̄ in [a, b] and
show that for any ε > 0,

∣
∣
∣
∣
Y (n)(x) − Y (n)(x̄)

x − x̄
− f(x̄, ȳ)

∣
∣
∣
∣ < ε (41.13)
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for |x − x̄| sufficiently small and n sufficiently large, where ȳ = y(x̄).
We require some information on how f(·, ·) behaves as both inputs change

simultaneously. Note that ya − M ≤ y(x) ≤ ya + M for a ≤ x ≤ b. We
assume that a < x̄ < b and ya − M < ȳ < ya + M and leave the case that
x̄ or ȳ is one of the endpoints of the respective intervals as Problem 41.16.

Now for x in [a, b] and z in [ya − M,ya + M ],

|f(x, z) − f(x̄, ȳ)| ≤ |f(x, z) − f(x, ȳ)| + |f(x, ȳ) − f(x̄, ȳ)|
≤ L|z − ȳ| + |f(x, ȳ) − f(x̄, ȳ)|.

Hence given ε > 0, there is a δ > 0 such that

|f(x, z) − f(x̄, ȳ)| < ε (41.14)

provided |x − x̄| < 2δ and |z − ȳ| < 4M̃δ. For δ sufficiently small, this
defines a rectangle �̃ contained in � (see Fig. 41.8).

y
a

y
a
+4Mδ

R

x

y
~

y
a
-4Mδ

~

(x,y)

-δ -δ δ δ

y(x)

Y(n)(x)

Mδ

Mδ

~

FIGURE 41.8. The rectangle 
̃ defined by |x − x̄| < 2δ and |z − ȳ| < 4M̃δ.

We choose N sufficiently large that n > N implies ∆x(n) < δ and

|y(x) − Y (n)(x)| < M̃δ for a ≤ x ≤ b.

Then both (x, Y (n)(x)) and (x, y(x)) are in �̃ for |x − x̄| < 2δ. The first
claim follows from (41.12), since

|Y (n)(x) − ȳ| ≤ |Y (n)(x) − Y (n)(x̄)| + |Y (n)(x̄) − ȳ| ≤ 2M̃δ + M̃δ,

and the second claim from

|y(x) − ȳ| ≤ |y(x) − Y (n)(x)| + |Y (n)(x) − Y (n)(x̄)| + |Y (n)(x̄) − ȳ|
≤ 4M̃δ.



596 41. The Forward Euler Method

Assuming that xm−1 ≤ x̄ ≤ xm and xn−1 ≤ x ≤ xn for some 1 ≤ m ≤ n ≤
N , (41.11) implies

Y (x) − Y (x̄) = f(xm−1, Ym−1)(xm − x̄) +
n−1∑

k=m+1

f(xk−1, Yk−1)∆xk

+ f(xn−1, Yn−1)(x − xn−1)

if m < n and
Y (x) − Y (x̄) = f(xn−1, Yn−1)(x − x̄)

if m = n. Since ∆x(n) < δ, x − x̄ < δ implies that xm−1, · · · , xn−1 are
within 2δ of x̄. Therefore, (41.14) implies that

(f(x̄,ȳ) − ε)(xm − x̄)

+
n−1∑

k=m+1

(f(x̄, ȳ) − ε)∆xk + (f(x̄, ȳ) − ε)(x − xn−1)

≤ Y (x) − Y (x̄)
≤ (f(x̄, ȳ) + ε)(xm − x̄)

+
n−1∑

k=m+1

(f(x̄, ȳ) + ε)∆xk + (f(x̄, ȳ) + ε)(x − xn−1).

Simplifying,

(f(x̄, ȳ) − ε)(x − x̄) ≤ Y (x) − Y (x̄) ≤ (f(x̄, ȳ) + ε)(x − x̄). (41.15)

A similar result holds if x < x̄ (see Problem 41.17) and we get (41.13).
Passing to the limit in (41.13) as n → ∞ shows that for any ε > 0,

∣
∣
∣
∣
y(x) − y(x̄)

x − x̄
− f(x̄, y(x̄))

∣
∣
∣
∣ < ε

for |x − x̄| < δ in [a, b].3 This shows that y(x) is a solution of (41.1).

41.4 Uniqueness and Continuous Dependence on
Initial Data

Now we know that F contains a subsequence of Euler approximations that
converges to some solution of (41.1). We next show that (41.1) must have
a unique solution. In fact, we know this already from Chapter 40, but we
give a different proof here using what is called a Gronwall argument.

3With a suitable interpretation if x̄ = a or b.
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Suppose that we have two solutions y(x) and z(x) of y′ = f(x, y) for
a ≤ x ≤ b with y(a) = ya and z(a) = za and whose graphs are contained in
�. We obtain an estimate on |z(x)−y(x)| in terms of the difference between
the data |za−ya|. Subtracting the integral forms of the differential equations
for z and y,

z(x) = za +
∫ x

a

f(s, z(s)) ds and y(x) = ya +
∫ x

a

f(s, y(s)) ds,

we get

z(x) − y(x) = (za − ya) +
∫ x

a

(f(s, z(s)) − f(s, y(s))) ds.

Since the graphs of z and y are contained in � for a ≤ x ≤ b, we can use
the Lipschitz continuity of f to obtain

|z(x) − y(x)| ≤ |za − ya| + L

∫ x

a

|z(s) − y(s)| ds.

We define the continuous function u(x) = |z(x)−y(x)| with ua = |za −ya|,
so that

u(x) ≤ ua +
∫ x

a

u(s) ds. (41.16)

We assume that ua �= 0 and leave ua = 0 to Problem 41.18. If we set

v(x) = L

∫ x

a

u(s) ds,

then v is differentiable on [a, b], and by the Fundamental Theorem 34.1,
v′(x) = Lu(x). Hence, (41.16) implies

dv

dx
≤ Lua + Lv, a ≤ x ≤ b.

We separate variables,

dv

ua + v
≤ Ldx, a ≤ x ≤ b,

and integrate from a to x, using v(a) = 0, to get

log(ua + v(x)) − log(ua) ≤ L(x − a).

Some easy algebra gives

v(x) ≤ uaeL(x−a) − ua.
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Putting this into (41.16) yields u(x) ≤ uaeL(x−a) for a ≤ x ≤ b. We
summarize this last result as a theorem, named after Gronwall.4

Theorem 41.3 Gronwall’s Lemma Suppose that ua ≥ 0 and u(x) is a
nonnegative continuous function a ≤ x ≤ b that satisfies

u(x) ≤ ua +
∫ x

a

u(s) ds, a ≤ x ≤ b.

Then
u(x) ≤ uaeL(x−a), a ≤ x ≤ b. (41.17)

Gronwall’s Lemma implies that the solution of (41.1) depends contin-
uously on the initial data. In particular if za = ya, we conclude that
z(x) = y(x) for a ≤ x ≤ b. In other words, if (41.1) has a solution whose
graph lies in �, then that solution is unique. We give this result as a sepa-
rate theorem.

Theorem 41.4 Uniqueness for an Ordinary Differential Equation
Suppose that f(s, y) is continuous in x and uniformly Lipschitz continuous
in y for (x, y) in the rectangle � given by a ≤ x ≤ b and |y − ya| ≤ M .
There can be at most one solution of (41.1) on a ≤ x ≤ b whose graph is
contained in �.

41.5 More on the Convergence of Euler’s Method

Now we have shown that a family of Euler approximations corresponding
to a sequence of meshes with decreasing step sizes contains a subsequence
that converges uniformly to the unique solution of (41.1). We want to show
that in fact the entire family of Euler approximations converges to the
solution.

Given ε > 0, we argue that at most a finite number of Euler approxi-
mations {Y } in F can have graphs that lie outside the region enclosed by
x = a on the left, x = b on the right, y(x) − ε below, and y(x) + ε above.
See Fig. 41.9. Indeed, suppose an infinite number of the Euler approxima-
tions, do lie outside this region. Denote these approximations by {Y (n)}
and the corresponding step sizes by {∆x(n)). Since ∆x(n) → 0, we can use

4Hakon Tomi Grönvall, or Thomas Hakon Gronwall, (1877–1932) was born in Swe-
den, educated in Sweden and Germany, and worked and died in the United States. He
was a powerful mathematician as well as a good physical chemist and civil engineer. In
mathematics, he made important contributions to algebra, differential equations, math-
ematical physics, number theory, and real and complex analysis. Substantial parts of his
career were spent as a consulting mathematician for engineers and chemists. A colorful
personality; there is a legend (told to the author by Lars Wahlbin) that Gronwall did
not die in 1932. Instead, he quit the mathematical rat race, made a lot of money in the
stock market, bought an island in the South Pacific, and retired there happily.
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y(x)+ε

y(x)-ε
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FIGURE 41.9. The region bounded by x = a on the left, x = b on the right,
y(x) − ε below, and y(x) + ε above.

the argument above to show that there is a subsequence that converges to
a solution of (41.1), and that solution cannot equal y(x) by assumption.
But this is impossible by Theorem 41.4.

We summarize as a theorem that we credit to the first three people to
prove versions of the result.5

Theorem 41.5 Existence Result of Cauchy, Lipschitz, and Peano
Suppose that f(x, y) is continuous in x and uniformly Lipschitz continuous
in y for all (x, y) in the rectangle �̄ described by a ≤ x ≤ B and −M +ya ≤
y ≤ ya + M . Then there is a b with a < b ≤ B such that (40.1) has a
unique solution for a ≤ x ≤ b. Moreover, any sequence of forward Euler
approximations corresponding to a sequence of meshes whose maximum
step sizes tend to zero converge to this solution.

41.6 Unanswered Questions

Theorem 41.5 implies that under the right assumptions, the forward Euler
method can be used to approximate the solution to any desired accuracy.
But it does not give any indication of the accuracy of a specific approxima-
tion. This gives rise to a slew of questions. How quickly does the forward
Euler approximation approach the true solution as the mesh size decreases?
How can we estimate the error of a particular approximation in order to
decide whether it is sufficiently accurate or not? If we have an approxima-
tion that is not sufficiently accurate, how should we refine the mesh, i.e.,
decrease the mesh steps, in order to improve the accuracy.

5Cauchy gave the first general existence result for a first order nonlinear differential
equation y′ = f(x, y). He proved that Euler’s method, which had been described earlier
by Euler, converges under the assumption that f is differentiable both with respect
to x and y. Lipschitz proved the same result under the weaker assumption that f is
continuous with respect to x and Lipschitz continuous with respect to y. Peano proved
the most general result by assuming that f was merely continuous in (x, y), though
Peano’s result does not give uniqueness (see Problem 41.22).
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See Braun [4], Eriksson, Estep, Hansbo, and Johnson [10], Henrici [13],
and Isaacson and Keller [15] for more on these topics.
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Chapter 41 Problems

In problems 41.1–41.5, you are asked to compute forward Euler approxi-
mations on uniform meshes for specific initial value problems. An efficient
way to do these problems is to write a program in MATLAB c© , for exam-
ple, that accepts the nonlinearity f , the interval [a, b], the initial value ya,
and the number of mesh points, and computes and plots the corresponding
approximation.

41.1. Compute the forward Euler approximations for the problem y′ = x + y for
0 ≤ x ≤ 1 using both initial values ya = 0 and ya = 1 and uniform meshes with
N = 5, 10, 20, 40. Plot the results in all cases.

41.2. Compute the forward Euler approximations for the problem y′ = y2 for
0 ≤ x ≤ .9 using the initial value ya = 1 and uniform meshes with N =
40, 80, 160, 320. Plot the results in all cases. Compare to the expected behav-
ior of the true solution.

41.3. Compute the forward Euler approximations for the problem y′ = 1 − y3

for 0 ≤ x ≤ 1 using both initial values ya = 0 and ya = 1 and uniform meshes
with N = 5, 10, 20, 40. Plot the results in all cases. What is the error of the
approximations when ya = 1?

41.4. Compute the forward Euler approximations for the problem y′ = y1/2 for
0 ≤ x ≤ 5 using the initial values ya = 0 and ya = .0001 and uniform meshes with
N = 20, 40, 80, 160. Plot the results in all cases. We could think of the second
initial condition as “zero” plus some experimental error. Which solutions of this
problem are found by the forward Euler approximations?

41.5. (a) Compute the forward Euler approximations for the problem y′ = 2xy
for 1 ≤ x ≤ 2 using the initial value ya = e and uniform meshes with N =
10, 20, 40, 80. Plot the results in all cases and compare to the true solution y(x) =
ex2

. (b) This solution also satisfies y′ = 2y
√

log(y) and y(1) = e. Repeat the
computations for this new problem and compare the accuracy of the forward
Euler approximations to those obtained for the first problem. (c) Compare the
two different problems if we solve them on [0, 1] with ya = 1. Do you anticipate
difficulties with one of the problems?

41.6. The backward Euler method is constructed using the right-hand end-
point on each subinterval. The nodal values {Yn}N

n=0 are determined by a set of
nonlinear equations. First, we set Y0 = ya. The equation for Y1 is

Y1 = Y0 + f(x1, Y1)∆x1,

and in general for 1 ≤ n ≤ N ,

Yn = Y0 +
n−1∑

k=1

f(xk, Yk)∆xk + f(xn, Yn)∆xn.



602 41. The Forward Euler Method

By using the Contraction Mapping Principle Theorem 15.1, prove the equation
for Yn has a unique solution for sufficiently small time step ∆xn. Describe the
set of valid initial iterates. Hint: You will need to use the continuity assumption
on f .

41.7. Provided (xn−1, Yn−1) is inside 
, prove the local solution ỹ of
{

ỹ′(x) = f(x, ỹ(x)), xn−1 ≤ x ≤ xn,

ỹ(xn−1) = Yn−1,

exists for all sufficiently small ∆xn. Hint: Use Theorem 40.2 or Theorem 41.5.

Problems 41.8–41.14 have to do with equicontinuity and Arzela’s Theo-
rem 41.1.

41.8. Decide if the following families are equicontinuous or not, and give a reason
for your answer.

(a)
{

sin
(
x +

1
n

)
}

on [0, π] (b) {xn} on [0, 1]

(c)
{

nx

1 + nx2

}
on [0, 1] (d)

{
x2 + sin(n)x

}
on [0, 1].

41.9. Prove that a finite set of uniformly continuous functions is equicontinuous.

41.10. Suppose that {gn} is a family that is uniformly Lipschitz continuous on
[a, b] in the sense that there is a constant L such that |gn(x2)−gn(x1)| ≤ L|x2−x1|
for a ≤ x1, x2 ≤ b and all n. Show that {gn} is equicontinuous.

41.11. Suppose g is continuous on R. Suppose the family of functions {gn} on
[0, 1], with gn(x) = g(nx), is equicontinuous. What can you say about g?

41.12. Suppose that {gn} is equicontinuous on [a, b] and converges pointwise on
[a, b]. Prove {gn} converges uniformly on [a, b].

41.13. Construct the first three bands b1, b2, b3 used in the proof of Arzela’s
Theorem 41.1 for the family {x2 + x/n} on [0, 1]. Hint: Use the fact that x2 ≤
x2 + x/n ≤ x2 + x for 0 ≤ x ≤ 1.

41.14. Suppose that {gn} is a uniformly bounded family of continuous functions
on [a, b]. Define

Gn(x) =
∫ x

a

gn(s) ds for a ≤ x ≤ b.

Prove there is a subsequence of {Gn} that converges uniformly on [a, b].

Problems 41.15–41.21 have to do with the proof of Theorem 41.5.

41.15. Verify (41.9).
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41.16. Verify that (41.13) holds when x̄ = a, x̄ = b, ȳ = ya − M , and/or
ȳ = ya + M .

41.17. Verify (41.17) when x < x̄.

41.18. Prove (41.17) holds when ua = 0. Hint: Using the same v as in the proof
of (41.17) when ua > 0, multiply v′ − Lv ≤ 0 by the integrating factor e−Lt.
Show that

d

dt

(
e−Ltv

)
=
(
v′ − Lv

)
e−Lt.

Then use this fact.

41.19. State and prove a more general Gronwall Lemma for a nonnegative con-
tinuous function u satisfying

u(x) ≤ ua +
∫ x

a

g(s)u(s) ds, a ≤ x ≤ b,

where ua ≥ 0 and g(x) is a positive continuous function on [a, b].

41.20. As part of proving Theorem 41.5, we show that the Euler approximation
Yn approximately solves the differential equation in the sense of (41.13) and then
pass to the limit to show that limit y does solve the differential equation. As an
alternative, prove that the limit y solves the integral equation (41.2). Hint: Show
that ∣

∣
∣
∣

∫ x

a

f(s, y(s)) ds − Y (x)
∣
∣
∣
∣

can be made uniformly small for a ≤ x ≤ b.

41.21. What goes wrong in the proof of Theorem 41.5 if we drop the assump-
tion that the sequence of meshes corresponding to the family of forward Euler
approximations F have their maximum step sizes tend to zero?

Peano’s proof that the forward Euler method converges to the solution
uses weaker continuity assumptions on f than we assume in Theorem 41.5,
and his version of the theorem gives convergence even when there is not a
unique solution. However, his proof requires defining continuity for func-
tions of several variables and using some properties of such functions. The
uniform Lipschitz assumption in Theorem 41.5 is actually sufficient to give
a constructive proof that does not resort to Arzela’s theorem. In the next
two problems, we ask you to prove Peano’s original result and to give a
constructive proof that the Euler method converges.

41.22. Peano’s version of Theorem 41.5 holds for functions f(x, y) that are merely
continuous. f(x, y) is continuous at (x1, z1) if for any ε > 0 there is a δ > 0
such that |f(x2, z2) − f(x1, z1)| < ε for any (x2, z2) with |x2 − x1| < δ and
|z2 −z1| < δ. It is possible to prove that a function that is continuous on a closed,
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bounded rectangle 
̄ is uniformly continuous and uniformly bounded on 
̄, with
the obvious definitions of these notions.6

Assume that f(x, y) is continuous on a rectangle 
̄ defined by a ≤ x ≤ B and
|y − ya| ≤ M . Prove that there is a b with a < b ≤ B such that any family of
forward Euler approximations defined on a sequence of meshes on [a, b] whose
mesh sizes tend to zero converges to a solution of (40.1). This result does not
give uniqueness!

Hint: Define b as in the proof of Theorem 41.5, where M̃ is a bound on f(x, y) on

̄. Follow the same arguments with appropriate modifications using the uniform
continuity and boundedness of f on 
.

41.23. Modify the analysis of the rectangle rule for integration in Chapters 25
and 34 to give a constructive proof of Theorem 41.5.

6This result is not really harder to prove than the analog for one dimension discussed
in Chapter 32. However, it requires some geometric notions that we have decided to
avoid in this book. Otherwise, we could have proved Peano’s version, which is just a
modification of the proof of Theorem 41.5 given above.
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It did not seem right to finish with a conclusion since this book is only an
introduction to the vast subject of analysis. Instead, we finish by discussing
where to go after reading this book.

The sources listed in the References are a good starting point for further
explorations. The books by Courant and John [6] and Lay [17] discuss real
analysis at roughly the same level as this book. However, Courant and John
focus more on calculus, while Lay adopts a more abstract approach. The
calculus text by Bers [3] also contains some rigorous analysis. The book
by Rudin [19] is the classic introductory text in real analysis. It is more
abstract than this book and goes further in some aspects of analysis. It
is the next book on analysis to read after this book. Thomson, Bruckner,
and Bruckner [20] cover much of the same material as Rudin but in a more
modern style. The author consulted all of these books frequently while
writing this text.

Complex analysis, which is the analysis of functions of complex numbers,
is one of the most beautiful areas in mathematics. It should be studied right
after real analysis. A standard text is Ahlfors [1], which indeed is a classic
book in mathematics.

Grinstead and Snell [12] is a favorite introduction to probability.
Two general textbooks on numerical analysis are Atkinson [2] and Isaac-

son and Keller [15]. These books also offer material on general analysis not
often discussed in standard analysis texts. These two books discuss New-
ton’s method and the solution of ordinary differential equations, but these
subjects are sufficiently complicated to warrant their own books. Dennis
and Schnabel [9] is a great source for learning about the solution of nonlin-
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ear equations. The textbook by Braun [4] and the classic book by Henrici
[13] discuss many interesting aspects of differential equations and their nu-
merical solution. For a more modern perspective, the reader might consult
Eriksson, Estep, Hansbo, and Johnson [10], which explains how many en-
gineers look at the numerical solution of differential equations.

As far as the history of mathematics is concerned, there are some good
sources [5, 7, 11, 16, 18] listed in the references. All students of mathematics
should eventually read the classic books by Kline [16]. Mathematicians
should also read Davis and Hersh [8] when they reach that point when
they begin to question what they do and why.

It is reasonable to guess that those who have found their way through
most of this book are likely to have more adventures and discoveries in
analysis awaiting them. Whether these lie in mathematics, science, or engi-
neering, whether future investigations consist of proofs or computations, or
whether the goal is to model the physical world or to seek out mathematical
truths, remember that it is all analysis.
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triangle inequality, 25
truncated decimal expansion, 44

error, 100
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convergence, 323, 464
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differentiable, 450
Lipschitz continuous, 326
strongly differentiable, 251
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equation, 292
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sion, 111

Uniqueness for an Ordinary Dif-
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unknown, 8
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upper

bound, 454
Darboux integral, 491
estimate, 87
limit, 62, 312

variable, 52
dependent, 53
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independent, 53
velocity, 241
Verhulst, 46, 560
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Wallis, 44, 436
weak form of a differential equa-

tion, 572
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Weierstrass Approximation The-

orem, 510
Weierstrass’ Principle, 453
Weierstrass’s Characterization

of a Limit of a Function,
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weight, 287
weight function, 352
weighted average
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weights, 352
Weyl, 20

Zeno, 122
zero polynomial, 62


