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Editors’ Preface

The idea of the present volume emerged in 2002 from a series of talks
by Frank Stephan in 2002, and John Case in 2003, on developments of
algorithmic learning theory. These talks took place in the Mathematics
Department at the George Washington University. Following the talks,
Valentina Harizanov and Michèle Friend raised the possibility of an exchange
of ideas concerning algorithmic learning theory. In particular, this was to be
a mutually beneficial exchange between philosophers, mathematicians and
computer scientists.

Harizanov and Friend sent out invitations for contributions and invited
Norma Goethe to join the editing team. The Dilthey Fellowship of the
George Washington University provided resources over the summer of 2003
to enable the editors and some of the contributors to meet in Oviedo (Spain)
at the 12th International Congress of Logic, Methodology and Philosophy of
Science. The editing work proceeded from there.

The idea behind the volume is to rekindle interdisciplinary discussion.
Algorithmic learning theory has been around for nearly half a century. The
immediate beginnings can be traced back to E.M. Gold’s papers: “Limiting
recursion” (1965) and “Language identification in the limit” (1967).

However, from a logical point of view, the deeper roots of the learning-
theoretic analysis go back to Carnap’s work on inductive logic (1950, 1952).
In the context of his goal to construct a system of inductive logic that may
take its rightful place beside the formal systems of deductive logic, Carnap
asked whether inductive procedures are less regulated by exact rules than
deductive procedures. In the Schilpp volume devoted to Carnap’s philosophy
(1963), Reichenbach’s student H. Putnam published his seminal article
“ ‘Degree of confirmation’ and inductive logic”. According to Carnap’s reply
to Putnam (included by Schilpp), the young critic had already advanced his
objections in conversation in 1953; the paper was written around 1955–6.

ix



x Editors’ Preface

Relying upon recursion theory, Putnam argued that Carnap’s project of
defining a quantitative concept of ‘degree of confirmation’ is completely
misguided. Thus, a radically new, alternative perspective on induction saw
the light for the first time. In the same year, Putnam published a second
article “Probability and confirmation” (1963). Relying on his previous
results, Putnam now called Carnap’s goal into question, on the ground that
his ‘universal learning machine’ is “a learning device of very low power”.
Nonetheless, Putnam concluded optimistically that even if present-day
“inductive logics are learning devices of very low power”, in the future, “the
development of a powerful mathematical theory of inductive inference, of
‘machines that learn’, and of better mathematical models for human learning
may all grow out of this enterprise”.

Much of the subsequent work done in the area of algorithmic learning
theory grows out of this spirit. Only two years later, Putnam published a third
important paper closely related to the new perspective on induction, entitled
“Trial and error predicates and a solution to a problem of Mostowski” (1965),
which coincidentally appears in the same issue of the Journal of Symbolic
Logic as Gold’s first paper.

The reaction to the paper from philosophers partly consisted in tempering
the imagination of popularisers of the technical work. The popularisers
had started making claims about computers learning, and that it followed
that computers have a brain, or something approaching free will. This led
to speculation about moral obligations towards computers (as autonomous
beings with rights). One can see, in retrospect at least, why these speculations
needed reining in. The mathematicians and computer scientists have moved
on. They have been mapping out the territory of limitations to learning,
developing definitions, combining ideas and changing the parameters of the
discussion to give an intricate and rigorous understanding of the phenomenon
we call “learning”.

There has been some serious philosophical work in the area since Putnam
and Gold published their papers, for instance, by K.T. Kelly, C. Glymour,
O. Schulte, and others. Otherwise, the thread of philosophical reactions to
the developments in the mathematical sphere has been much thinner than the
potential significance the work warrants. It is time to thicken the thread.

Harizanov, Goethe and Friend diagnosed that one of the contributing
factors to the lack of communication between the mathematical and philo-
sophical communities has been the plethora of technical terms which have
accompanied the development of the mathematics. We address this problem
here by giving some definitions explicitly in many of the papers. We hope
that this will help bridge the gap between the mathematicians and the
philosophers.



Acknowledgments

We should like to acknowledge the funding received from the Dilthey Faculty
Fellowship Award of the George Washington University. This is an award
whose primary purpose is to stimulate interdisciplinary work that requires
crossing disciplines to achieve an integrated perspective and analysis. The
funding was enough to spare Michèle Friend and Valentina Harizanov their
teaching duties in the summer of 2003. Norma B. Goethe should like to
acknowledge the support of her research by a grant of FONCyT (Buenos
Aires, Argentina).

We should also like to thank the contributors for their valuable and prompt
contributions, and all the reviewers. We should especially like to thank
John Case for his useful advice and support, especially at the beginning
of the project. We should like to thank Sarah Pingrey for help with the
final proofreading of several papers, and for her valuable assistance with
TEX and assembling the volume. Sarah Pingrey was partially supported by
Harizanov’s George Washington University UFF grant. We should also like
to thank Ed Canavan for his continuing support. Finally, Harizanov is most
grateful to her daughters, Sofija and Kalina, for their constant encouragement
and endless inspiration.

Washington, DC V. S. H., M. F.
Cordoba, R. A. N. B. G.
June 2006

xi



Contributors

Michèle Friend, Department of Philosophy, George Washington University,
Washingon DC 20052, USA, michele@gwu.edu

Clark Glymour, Department of Philosophy, Carnegie Mellon University,
Pittsburgh, PA 15213, USA, cg09@andrew.cmu.edu

Norma B. Goethe, School of Philosophy, National University of Cordoba,
5000 Cordoba, Argentina, ngoethe@ffyh.unc.edu.ar

Valentina Harizanov, Department of Mathematics, George Washington Uni-
versity, Washington DC 20052, USA, harizanv@gwu.edu

Iraj Kalantari, Department of Mathematics, Western Illinois University,
Macomb, IL 61455, USA, i-kalantari@wiu.edu

Kevin T. Kelly, Department of Philosophy, Carnegie Mellon University,
Pittsburg, PA 15213, USA, kk3n@andrew.cmu.edu

Brendan Larvor, School of Humanities, University of Hertfordshire, Hatfield
AL10 9AB, Hertfordshire, United Kingdom, b.p.larvor@herts.ac.uk

Eric Martin, School of Computer Science and Engineering, National ICT
Australia, UNSW Sydney, NSW 2052, Australia, emartin@cse.unsw.edu.au

Oliver Schulte, Department of Philosophy and School of Computing
Science, Simon Fraser University, Burnaby, B.C. V5A 1S6, Canada,
oschulte@sfu.ca

xii



Contributors xiii

Arun Sharma, Division of Research and Commercialisation, Queensland
University of Technology, 2 George Street, GPO Box 2434, Brisbane QLD
4001, Australia, Arun.Sharma@qut.edu.au

Frank Stephan, Department of Mathematics and School of
Computing, National University of Singapore, Singapore 117543,
fstephan@comp.nus.edu.sg



1

INTRODUCTION TO THE PHILOSOPHY
AND MATHEMATICS OF ALGORITHMIC
LEARNING THEORY

VALENTINA S. HARIZANOV1, NORMA B. GOETHE2

AND MICHÈLE FRIEND3

1Department of Mathematics, George Washington University, Washington,
D.C. 20052, U.S.A., harizanv@gwu.edu
2School of Philosophy, National University of Cordoba, 5000 Cordoba, Argentina,
ngoethe@ffyh.unc.edu.ar
3Department of Philosophy, George Washington University, Washington,
D.C. 20052, U.S.A., michele@gwu.edu

1 DESCRIPTION AND PURPOSE OF THE VOLUME

Algorithmic learning theory is a mathematically precise, general frame-
work for studying the existence of computational strategies for converging
to the truth in empirical questions. As such, algorithmic learning theory has
immediate implications for the philosophy of science and induction and for
empirical methodology in general. Indeed, the subject was independently
co-invented by E. Mark Gold [16], a mathematician/computer scientist and
by Hilary Putnam [44], a philosopher/logician. But it is fair to say that
the subject has seen the bulk of its development within mathematics and
computer science. The purpose of this volume is to bolster discussion among
mathematicians and philosophers, both to encourage the development of new
and more philosophically relevant theoretical results and to bring existing
results to a wider philosophical audience.

The volume was occasioned by two series of lectures on algorithmic
learning theory, one by Frank Stephan and one by John Case. It took

1

M. Friend, N.B. Goethe and V.S. Harizanov (eds.), Induction, Algorithmic Learning Theory, and
Philosophy, 1–24.
c© 2007 Springer.



2 Valentina S. Harizanov et al.

shape when Harizanov, Goethe and Friend invited philosophers, mathe-
maticians, and computer scientists to engage with the recent literature con-
cerning induction in algorithmic learning theory. The contributing authors
were asked primarily to focus on the interface between the mathematical
theory and traditional issues that arise in the philosophy of induction
and scientific inference. In fact, several of the authors have gone farther
than that to actually extend the standard framework of algorithmic learn-
ing theory to deeper philosophical applications. Accordingly, the volume
will appeal to a broad audience of computer scientists, mathematicians,
and philosophers—or anyone interested in a precise, mathematical inves-
tigation of the systematic connections between scientific method, truth,
and computability.

2 A BRIEF INTRODUCTION TO ALGORITHMIC
LEARNING THEORY

The basic situation studied by algorithmic learning theorists is simple.
The learner is situated in an environment that presents a potentially un-
ending stream of inputs. Computer scientists often think of a learner as
a Turing machine. We do not have to make this assumption. A learner
which is not a Turing machine is called a general learner. Some question
is posed (the theory does not ask how). In interesting empirical questions,
the right answer is not known in advance because the learner does not
know in advance which input stream he, or she, is receiving inputs from,
although he, or she, might have some background knowledge about its
nature. A learning function maps finite sequences of inputs to possible
answers to the question (or, more generally, to degrees of belief in pos-
sible answers). The learning functions entertained may be restricted either
by feasibility (e.g., Turing computability) or by method (e.g., production
only of answers consistent with the current data). Any such restriction is
called a strategy. A learning function converges to the truth in an input
stream just in case it stabilizes, in some specified sense, to the state
of producing the right answer to the question in that input stream. An
empirical problem consists in a choice of question and knowledge. A
learning function solves a given problem according to a given sense of
convergence just in case it converges (in the specified sense) to a correct
answer in each input stream that satisfies background knowledge. Solutions
to a problem can also be compared by efficiency, measured in terms of
number of errors, number of mind-changes (changes of output), or total
elapsed time prior to convergence to the truth, an idea already proposed by
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Putnam [45]. That’s all there is to it! Nonspecialists are urged to seek the
outlines of this simple picture through the mathematical publications in the
area.

For a simple illustration of how it all works, consider the computable
function identification paradigm, which was proposed as a model of inductive
inference by both Gold and Putnam. Intuitively, the aim is to stabilize to
a computer program that predicts the successive data one will encounter in
the future exactly. This paradigm models a kind of highly idealized, instru-
mentalistic science, in which the inferred program is a predictive procedure
which specifies, once and for all, every observation in the input stream. It also
models, again quite ideally, the practical problem of “automated computer
programming”, in which a computer tries to “synthesize” (produce) a correct
program by observing increasing amounts of the input-output behavior the
inferred program is supposed to have. In mathematical terms, the input
stream f is assumed to be a computable sequence of natural numbers in
which the i th entry is given by f (i). This is more general than it sounds,
since the numbers could effectively encode more “interesting” sorts of inputs
such as attribute values, state descriptions, rational-valued meter readings,
etc. Let ϕi denote the partial function computed by the Turing machine
with Gödel number i .1 Say that i is a correct answer for f just in case
i is a Gödel number (code) for a correct program for f (i.e., just in case
f = ϕi ). Background knowledge B is some collection of total, computable
functions. A learning function responds to each finite input sequence (of
natural numbers) with a Gödel code specifying some Turing machine. The
relevant sense of convergence is to eventually stabilize to some i such that
the actual input stream is the total computable function ϕi . Now each set B of
total computable functions determines a learning problem in the computable
function identification paradigm. If the corresponding problem is solvable in
the limit, we say that B is learnable.

Another heavily studied paradigm, also proposed by Gold in [16], is
the language learning paradigm, which was originally introduced to model
a child learning his, or her, native language.2 In the language learning
paradigm, a possible language is modeled as a computably verifiable set of

1 For a review of the relevant material concerning computable functions, cf. [40] or [50].
2 Gold’s project was motivated by Chomsky’s [10] conception of empirical linguistics.

Chomsky’s idea was that children cannot possibly learn the grammar of an arbitrarily
concocted language, since any finite amount of data would be consistent with infinitely
many languages. Therefore, there must be some constraint on the grammars children
can learn in principle and that constraint—universal grammar—is the nature of natural
language. In early implementations of the program, Chomsky proposed various compu-
tational formalisms as specifications of universal grammar and that raised a question of
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numbers (usually interpreted as effective code numbers for finite strings of
words) and the learner is required to infer a grammar (i.e., a computable
positive test). Note that the grammar inferred may be interpreted as a latent
disposition rather than as an occurrent belief state that the learner could
articulate. Gold distinguished two distinct formats for the data presented
to the learner. Presentation by text means that the learner receives an
input stream that lists all and only the code numbers of strings in the
language to be learned (as though a child were passively listening to
competent speakers converse). Presentation by an informant provides a list
of all possible strings, each of which is labelled with 1 or 0 indicating
membership or non-membership in the language. Sometimes text is called
positive information, whereas an informant is said to provide both pos-
itive and negative information. It turns out that learning certain sorts of
languages cannot be done from text; they can only be learned from an
informant.

The function and language learning paradigms have attracted a great deal
of attention in the algorithmic learning literature, partly because they both
appeared in Gold’s original presentation of the subject and partly because
they are extremely simple settings in which to investigate potentially deep
and complex interactions between learnability and computability. Other,
more flexible paradigms have been studied that may be more plausible
as models of scientific inference. For example, one can express empirical
questions as a relation between input streams and code numbers of potential
answers [24]. Then language learning and function identification are just
two examples of correct relations. In the logical paradigm [24], [31], the
problem is to infer the complete theory in some specified fragment of a
first-order language from observations drawn from an underlying model
of the language. In a similar spirit, Stephan and Ventsov [51] initiated the
study of the classes of natural algebraic structures. They showed that, in the
case of learning all algorithmically generated ideals of a computable ring,
learnability from text has strong connections to the algebraic properties of the
ring. Harizanov and Stephan [18] studied learning algorithmically generated
subspaces of a computable vector space. Here, it also turns out that the
notions of learnability from positive data, as well as from switching have
corresponding algebraic characterizations. On the other hand, learning from
an informant no longer has a nice algebraic characterization. The paper by

consistency: if arbitrary grammars expressible in such a formalism are not learnable even
in the limit, then children cannot do so in the short run either. However, Gold’s language
learning paradigm is too strict in some respects to make it plausible as a necessary check
on hypotheses regarding universal grammar.
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Harizanov in this volume addresses this interaction between learning theory
and algebra.

Once a paradigm is fixed, one can use the framework to address a number
of interesting methodological questions:

(i) Most concretely, one can ask what a learning function says at a given
time with respect to the inputs received by that time.

(ii) Generalizing with respect to time, one can ask whether a given learning
function converges to the truth on a given input stream.

(iii) Generalizing, further, with respect to input streams, one can ask
whether a given learning function solves a given problem.

(iv) Generalizing with respect to learning functions, one can ask whether a
given problem is solvable.

(v) Generalizing with respect to problems, one can ask whether two given
success criteria are equivalent (in terms of the problems solvable
according to each).

(vi) Generalizing with respect to criteria of success, one can ask what the
strongest feasible sense of success is that a given problem is solvable in
and, hence, whether a given solution solves it in the best feasible sense.

The normative and explanatory core of the theory centers on non-
learnability—as does the need for general mathematics. For it is a nice thing
to say that a method is guaranteed to converge to the truth in the limit, but
it is hardly a compelling recommendation, for one might hope to do better.
The justification for a truth-finding method is clinched, however, by showing
that no better performance is possible, which amounts to showing that the
problem is not solvable in stronger, more desirable, senses. For example,
suppose that the hypothesis is that a black box under observation will emit
exactly one zero at some unspecified time in the future. One can decide this
hypothesis in the limit with just two mind-changes: say “no” until the first
occurrence of a zero, say “yes” when exactly one zero has been observed,
and halt with “no” when a second zero is observed. One might hope to do
better, but no learning function can. For let an arbitrary learning function that
converges to the truth be given. By feeding it units forever, you can force it
to say “no” (on pain of not converging to the truth), after which it can be
shown a single zero followed by all units until it says “yes” (on pain of not
converging to the truth), after which one can feed it another zero followed by
all units, forcing it back to “no”. So the two retraction learning function is
optimal and, hence, justified, so far as finding the truth is concerned.

Non-learnability results are also crucial for comparing the relative strin-
gency of paradigms, which amounts to an objective comparison of the
relative informational value of disparate concepts of convergence or of
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different assumptions about how data are presented. For example, Gold
showed in [16] that it is harder to learn from text than from an informant.
Every countable collection of languages is at least ideally learnable by
informant. An ideal agent can use her ideal powers to enumerate a collection
of acceptance algorithms covering exactly the languages in the countable
collection of possible languages. She can then output, at each stage, the first
program in the enumeration that agrees with the labelled inputs so far. This
is called the enumeration method.3 Evidently, if the actual input stream is
an informant for one of the languages in the collection to be learned, then
there is some first position at which a correct program occurs. By some finite
stage, each preceding (incorrect) acceptance program is rejected, after which
the enumeration method converges to a correct acceptance program.

But now suppose that only positive information (text) is received and
the collection of possible languages includes all finite languages plus one
infinite language. Suppose, for the purposes of a reductio argument, that
some (ideal) learning function learns an arbitrary language in the collection.
You can enumerate the infinite language and present the first element x0 until
the learning function produces (on pain of failing to converge to the truth on
a text for a finite language) a positive test for finite language {x0}. Then you
can present x1 until the learning function produces a positive test for language
{x0, x1}, and so forth. In the limit, the learning function fails to converge on
a text for the infinite language in the collection. Contradiction.

A third sort of insight gained from non-learnability results concerns the
impact of computability on solvability, for it is often the case that problems
solvable ideally in the limit are not solvable by computable agents. Such
results are sober medicine for the venerable philosophical tradition of “ideal
agent” epistemology, where an ideal agent is assumed not to see the future
but to be capable of settling any formal question instantaneously. By way of
illustration, consider the very first unsolvability result in the subject, proved
independently by Gold [16] and essentially by Putnam [44]. The theorem
is that the set of all computable input streams is learnable by an ideal
(non-computable) learning function but is not learnable by any computable
learning function.

That the collection of total computable functions is ideally learnable
is quite intuitive: just ideally enumerate the set of all programs for total
computable functions and test them in sequence, as discussed above. But in
the case of computable learning functions, the situation becomes much more

3 Caution: philosophers often use the term “induction by enumeration” to refer to the straight
rule of probability estimation. In this case, the learning theoretic usage is more natural.
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interesting, so it is worth reviewing the argument.4 Suppose, for the purposes
of a reductio argument, that a computable learning function M identifies all
total computable functions in the limit. It suffices for contradiction to produce
an algorithm for an input stream ε on which the learning function M fails
to converge to any answer whatever. An effective procedure defines ε(n) as
follows. At stage 0, let e0 be the empty sequence. At stage n, finite input
sequence en of length k has been given. Any input stream that converges to
all 0s is computable (use a look-up table for the non-zero segment). Hence,
there is some number i of zeros we can add to en to get M to converge
to a program for en ∗ 0∞, which denotes en concatenated with an infinite
string of zeros. Hence, there is some number i of zeros we can add to en to
form en ∗ 0i on which M produces a program that predicts zero at position
k + i + 1 (the first position after the presented 0s). Hence, this program
halts with 0 on input k + i + 1 in some number j of computational steps.
Therefore, we can effectively enumerate all pairs of natural numbers and rest
assured that we will find the first pair (i, j ) such that upon seeing en ∗ 0i ,
the function M produces a program that halts in j steps with output 0 on
input k + i + 1. At that point, define en+1 = en ∗ 0i ∗ 1, so that the prediction
of M’s output program at k + i + 1 is wrong. Let ε be the input stream
defined by the preceding procedure in the limit. To compute ε(x), run the
preceding procedure until the x th position of ε is defined and then announce
it. Observe that, by construction, M produces incorrect programs infinitely
often along computable input stream ε. Contradiction. Hence, the set of all
total, computable input streams is ideally, but not computably, learnable.

A proof is a proof, but part of understanding a negative learning theoretic
argument is to try to do the impossible and to observe what breaks. Suppose,
for example, that you were to try to implement the enumeration method on
a computer. Testing total programs poses no difficulty—each total program
either produces outputs agreeing with the current data or disagreeing with
them, resulting in a crisp decision procedure for consistency with the data.
So it must be that simply enumerating a set of total programs covering all
the total computable input streams is computationally impossible. And that
is, indeed, a standard result in the theory of computability. So any attempt to
implement the enumeration method would either miss some possible input
streams (in which case it would fail to converge) or it would include some
partial programs (that would run forever when tested). Either way, the method
would fail to converge to the right answer. Hence, some empirical problems

4 The following argument is a refinement in [9] of Gold’s original version, which only
constructs an input stream on which the given learning function fails to converge to a
fixed hypothesis.
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are unsolvable simply because it is impossible to effectively consider the
right possibilities.5

Notice that the preceding proof shows more than the theorem claims,
namely, that an arbitrary, computable method can be forced to produce
mistaken programs infinitely often along some computable input stream.
Hence, there is no computable learning function that is guaranteed to
eventually produce correct programs (even if we do not require that it
stabilize to a unique, correct program). This weaker sense of convergence,
in which for all but finitely often the learner produces some correct program
or other is called BC- (for “behaviourally correct”) convergence. This type
of convergence was introduced by Case and Lynes [7] and independently by
Osherson and Weinstein [42]. By way of contrast, the requirement that there
exist a correct program that is produced all but finitely often is called E X -
(for “explanatory”) convergence. The difference is that E X -convergence re-
quires convergence to a unique program, whereas BC-convergence requires
convergence only to a correct input-output behaviour. The irrelevant allusion
to explanation in the E X moniker is unfortunate but unavoidably entrenched
in the literature—just treat E X as a technical abbreviation.

It is, therefore, natural to ask whether E X -identification is equivalent to
or harder than BC-identification for computable learners in the computable
function identification paradigm. This question is also answered affirmatively
(and ingeniously) in [9]. For consider the function identification problem in
which the relevant possibilities are the “almost self-describing data streams”.
A unit variant of a data stream is a partial computable function that is just
like the data stream except that it may disagree or be undefined in at most
one position. A data stream is almost self-describing just in case it is a
unit variant of the function computed by the program whose code number
occurs in the data stream’s first position. In other words, an “almost self-
describing” data stream “gives away” a nearly correct program, but it doesn’t
say where the possible mismatch might be. A BC-learner can succeed by
continually patching the “given away” program with ever larger lookup
tables specifying what has been seen so far, since eventually the lookup
table corrects the mistake in the “given away” program. But a E X -learner
would have to know when to stop patching, and this information was not
given away. The only remaining technical issue concerns the existence of
almost self-describing input streams, which is guaranteed by the fixed point

5 Putnam’s moral was to recommend enumeration procedures capable of receiving extra
hypotheses from some oracular source (e.g., “creative intuition”). But that raises further
questions about how one could determine whether “creative intuition” presents only total
programs—a worse problem than the one we started with [27].
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theorems of computability theory, which are often deployed in learning
theoretic arguments of this sort.6

In the problem just described, it is trivial to E X -identify an almost correct
program (just output the first datum) whereas no computable learner can
E X -identify an exactly correct program. Indeed, for each finite number of
allowed errors there is a learning problem that is computably solvable under
that error allowance but not with one fewer error. This result, known as the
anomaly hierarchy theorem [9], can be established by means of functions that
are self-describing up to n possible errors.

To continue this review of standard results would require a book in itself
(e.g., [22]). For the purposes of this introduction, however, it is time to turn
our attention to potential philosophical applications of the approach.

3 ALGORITHMIC LEARNING THEORY
AND THE PHILOSOPHY OF INDUCTION

It isn’t fair to speak of a “philosophical” approach to inductive inference,
since philosophy characteristically fosters a broad range of perspectives on
the subject including algorithmic learning theory. But there is, nonetheless,
a dominant viewpoint, which N.B. Goethe calls the classical perspective in
her paper in this volume, to which algorithmic learning theory constitutes a
radical alternative—an alternative whose full import will become all the more
apparent if the sorts of interdisciplinary avenues witnessed by the papers in
this volume are pursued.

According to the classical perspective, inductive rationality is a short-
run constraint on relations between the outputs of ones’ learning function
and the inputs from which they are generated. The name and precise
nature of this constraint depend upon which classical school one adheres
to (e.g., confirmation, Bayesian updating, abduction, belief revision, etc.).
It is taken as obvious that such rational conclusions are justified. The
nature of the connection between rationality and truth-finding is a more
troublesome question whose resolution is not at the top of the classical
agenda. In fact, it is often presupposed by the classical agenda. The hope
or vague promise is that rationality is a mark or sign of the truth, in the
sense that rational conclusions are somehow objectively correlated with
truth. But since the data themselves are compatible with infinitely many
alternative opinions in typical inductive problems (the problem of theoretical

6 One might plausibly object, however, that self-referential problems of the sort invoked to
prove the theorem are a far cry from any real problem science will ever encounter.



10 Valentina S. Harizanov et al.

underdetermination), this desired correlation must be explained, if at all, by
some hidden causal mechanism that we may never be in a position to know
(Providence according to Descartes and Leibniz or, more recently, the hidden
details of our evolutionary past [14]).7 Advocates of the classical viewpoint
prefer to downplay the question of truth in favor of the purely semantic
task of explicating inductive rationality, which is done by mining intuitive
reactions to concrete examples of scientific practice (i.e., case studies) and
by massaging away examples in which intuition runs generally counter to
the proposed theory. Of course, it is a delicate question when to trust one’s
explication of rationality and when to trust the intuitions that conflict with
it. Striking the right balance is called “reflective equilibrium” which means,
more or less, that you are satisfied with the resulting analysis in spite of the
counterexamples. For some, “reflective equilibrium” is a term of art. It is
neither an objective equilibrium, nor a settling on truth, except in the sense
of a revisable social construct.

Algorithmic learning theory, on the other hand, understands the rele-
vant objects of justification to be learning functions rather than particular
conclusions, and learning functions are justified entirely in terms of their
truth-finding efficacy. No further principles of short-run “rationality” play
any irreducible explanatory role. As long as a method solves a problem
efficiently and in the best feasible sense, it doesn’t matter how implausible it
sounds—novelty is all for the better as long as it is accompanied by stronger
performance. This fundamental difference cascades into what amounts to an
alternative conceptual scheme or paradigm for the philosophy of induction.
Let us consider the significance of the shift issue by issue.

3.1 Underdetermination as the Justification of Induction

As we have mentioned, the classical approach to inductive inference flirts
with the notion that rationality somehow indicates or is objectively correlated
with truth. The fact that many potential answers to an empirical question are
compatible with the available evidence (i.e., the underdetermination of the
correct answer by evidence) implies either that there is no such correlation
(if it is grounded on the data themselves) or that the correlation is grounded
in a mysterious, “pre-established harmony” between the true conclusion and
its rationality (by our lights). Hence, underdetermination is a problem for
the classical approach. One can redefine underdetermination in terms of

7 Philosophers are hardly unique in this respect, for some prominent texts in machine
learning (e.g., [34]) appeal to evolution to explain the efficacy of otherwise mysterious
methodological principles like Ockham’s razor.
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the existence of alternative conclusions rationally compatible with the data,
but that hardly explains how rationality sniffs out the truth, since, prima
facie, there is an infinite number of alternative possibilities compatible with
experience.

In algorithmic learning theory, underdetermination justifies induction,
rather than undermining it. Underdetermination can be explicated both in-
tuitively and with mathematical precision in terms of an empirical problem’s
intrinsic complexity, defined as the strongest sense in which the problem can
be solved [24]. The most strongly determined questions are those in which
one can halt with the correct answer (e.g., “is the current input zero?”). At
the next level of underdetermination, it is possible to halt, eventually, with
the right answer in light of further experience (e.g, “will the next input
be zero?”). In the preceding cases it is possible to succeed with no mind-
changes because the inputs eventually guarantee the truth of some answer.
Moving up a level, the problem may require at least one mind-change prior to
convergence to the truth (e.g., “will every input be zero?”). In such cases, the
data may never uniquely determine the correct answer (if the correct answer
is “yes”), but at least the answer “no” is crisply verifiable and the answer
“yes” is crisply refutable. Moving up another level, the question may require
two mind-changes (e.g., “will exactly one input be zero”). In this case, neither
“yes” nor “no” is either verifiable or refutable, so the connection between
experience and the correct answer is weaker than in the preceding cases. The
same is true of each successive number of mind-changes. Less determined
still are the answers to problems that cannot be solved under any finite bound
on mind-changes (e.g., “given that the input stream will converge to zero or
one, which will it converge to?”). Nor does underdetermination end there, for
some problems allow for convergence to the truth only for some answers and
not others (e.g., “will the input stream converge to some value in the limit?”).

Given the preceding, learning theoretic explication of empirical underde-
termination, it is underdetermination that justifies induction, for, if a problem
is not underdetermined at all, no mind-changes are necessary to solve it (wait
for the right answer to be determined uniquely), whereas methods that risk
inductive conclusions open themselves to extra mind-changes (i.e., are sub-
optimal solutions). But if the problem is underdetermined, then inductive
leaps beyond the current data are necessary to solve it and, as long as the
performance of the inductive learning function is optimal for the problem,
it is justified, along with its leaps, in the usual way that any procedure is
justified: as an optimal solution to the problem it is intended to solve. Thus,
algorithmic learning theory turns the usual argument for inductive skepticism
on its head: underdetermination justifies induction because underdetermined
problems require inductive inferences of their optimal solutions.
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3.2 The Logic of Discovery as a Logic of Justification

The classical notion that inductive conclusions are justified by a relation
of “rationality” between theory and evidence leads to the conclusion, familiar
in the philosophy of science, that there is no “logic of discovery”. The
argument for this vague and surprising doctrine is as follows [30]. Since (in
the classical view) justification is conferred by a relation of rational support
or confirmation holding between theory and evidence, any procedure for
producing justified conclusions does so in virtue of producing conclusions
that satisfy the relation with respect to the available data. Hence, the
philosophy of induction is over once that relation is satisfied. All that remains
is the engineering problem of how to search for a justified hypothesis in light
of the data.

The learning theoretic response is immediate [25]. Since justification is a
matter of a learning function’s truth-finding efficacy, justification pertains as
immediately to learning functions that solve decision problems (problems
with binary answers) as it does to discovery problems (problems with
multiple or even infinitely many possible answers). Indeed, the real aim of
science is to find a true theory, not to test a given theory, so in that sense,
discovery methods are more directly justified than testing methods, which
are usually embedded in a larger discovery enterprise.

Indeed, algorithmic learning theory has something precise to say about
when the existence of a test method suffices for a discovery method.
For example, the original Gold/Putnam result shows that the existence
of a procedure for testing total computer programs does not suffice for
the existence of an automatic programmer. More generally, there exists
a discovery procedure for a correctness relation just in case there is a
single, effective, limiting verification procedure for an effectively enumerable
collection of answers covering background knowledge. Hence, effective
refutability of individual answers is not necessary [24].

3.3 Relations of Ideas as Matters of Fact

Since the time of Hume [20], philosophers have distinguished sharply
between formal questions, which were thought to be decidable in principle,
and empirical questions, which were thought to preclude infallible decision
procedures due to the unavoidable dependence of truth on as-yet unseen
facts. Hume’s challenge was to find some other justification for induction, to
which the classical paradigm responds with a rational method that confers
justification (“confirmation” or “empirical support”) upon its outputs. So
there is a sharp, methodological bifurcation according to which the aim
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of formal inquiry is truth-finding, but the aim of empirical inquiry is to
produce rational (e.g., confirmed) outputs. Now we know that infinitely
many formal problems are noncomputable, so that halting with the truth
in such problems is no more realistic than in empirical problems. Even
in form, the two sorts of undecidable problems appear similar: (e.g., “the
computation will never halt” sounds for all the world like “a white raven
will never appear”). But the classical viewpoint responds to the problem of
inductive inference by proposing accounts of rationality (e.g., relations of
confirmation, Bayesian coherence and updating, and more recently, theories
of rational belief revision) that presuppose noncomputable idealizations like
logical omniscience. In the schizophrenic philosophy that results, empirical
undecidability is deemed an unavoidable and hence forgivable aspect of the
human condition whereas formal undecidability is a sin against rationality.

In algorithmic learning theory, computable agents who fall short of ideal
rationality are justified in drawing the conclusions that they do as long as
they find the truth as well as a computable agent possibly could. The same
is true of formal problems: if the problem is not solvable by a method that
infallibly halts with the right answer, seek the strongest sense in which the
problem is solvable in the limit, as in the empirical case. This approach to
formal and empirical undecidability is entirely evenhanded, in the sense that
both are analyzed in terms of the existence of procedures that converge to
the true answer (formal or empirical) in the best feasible sense [26]. There is
no noncomputable notion of inductive rationality in the background to cause
trouble for computable agents either. Hence, there is no problem of “logical
omniscience”.

3.4 The Truth-Conduciveness of Irrationality

The preceding discussion of uncomputability leads to one of the most
interesting and fruitful philosophical applications of algorithmic learning
theory: restrictiveness results. The classical viewpoint would have one
believe, on vague grounds, that rationality is “truth-conducive”. But for
algorithmic learning theorists, truth-conduciveness is a matter of solving a
given empirical problem in the strongest feasible sense. But a restriction
on learning functions couldn’t possibly make a given empirical problem
easier to solve, any more than restricting the possible movements of your
queen helps you win at chess. It might even impede the search for truth by
preventing you from selecting one of the best learning functions—a point
urged on purely historical grounds by the philosopher P. Feyerabend [12].
In a similar, and yet purely mathematical spirit, learning theorists say that
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a proposed constraint on learning strategies is restrictive just in case there
exists a learning problem solvable in a given sense that is no longer solvable
in that sense given that learning function satisfies the constraint. Insofar
as justification is a matter of truth-finding efficacy, any alleged notion of
“inductive rationality” that is determined to be restrictive not only fails to
justify its conclusions but is, itself, unjustified so far as truth-finding is
concerned. We illustrate with some examples from the literature.

Consistent learning. No methodological principle seems more obvious
than that one’s hypothesis should be consistent with the data currently
available. Indeed, for ideal learners, the principle makes perfectly good
sense, since an answer inconsistent with current information couldn’t be true
and any solution to a problem can (ideally) be converted into a consistent
solution by (ideally) weeding out and replacing the inconsistent outputs with
consistent ones. But consistent learning is very restrictive when algorithmic.
If a computably enumerable language is consistently E X -learnable by an
algorithmic learner, then it must be computable. Moreover, there exists a
hypothesis that can be computably decided with just one mind-change by
an inconsistent, computable learner, but that cannot be decided even in the
limit by a consistent, computable learner [24].

Reliable learning. A learner is reliable if it is not allowed to converge
incorrectly. That is, if we assume that a learner M learns a class L of
computably enumerable languages, we say that M is reliable if whenever
M converges on the text for some language L , it will give in the limit a
correct algorithm for L , even if L does not belong to L.8 The learner M
might never converge on the text for a language not in L. It is not hard
to show that the class of all finite languages can be E X -learned reliably.
However, it turns out that this notion of reliability is a very strong one,
since if a class L is reliably E X -learnable from text, then every language
in L must be finite. Thus, Minicozzi [33] further introduced the following
notion of reliability for classes C of (total) computable functions. A learner
M for such C is total-function reliable for C if, in addition to learning C, if M
converges on data for any computable function, M must converge accurately.
It can be shown that not every E X -learnable class of computable functions
can be learned by a total-function reliable learner. Note that this definition
of “reliable learning” is not the same as what Kelly refers to as “reliable
learning” in his work.

8 Philosophers baffled by this use of the term “reliable” might find some solace in
this: if “convergence” were replaced with “halting”, then “reliability” would amount to
infallibility. So “reliability” is a kind of convergent analogue of infallibility. Or, just
memorize the definition without taking the terminology too seriously.
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Refuting learning. This type of learning, introduced by Mikouchi and
Arikawa [37], is a sharpened version of reliable learning. A reliable learner
either converges to a correct program or diverges. In the refuting learning
paradigm, instead of diverging, which is an infinite process, the learner has
to give a special refutation symbol after finitely many steps. This symbol
signifies that the learner recognizes that the language underlying presented
data will be outside its learning capability. Since this notion turned out
to be rather restrictive, further variants of refuting learning were studied
by various researchers. Recently, Merkle and Stephan [32] introduced
limit-refuting learning as an intermediate notion, strictly between reliable
learning and refuting learning. While a refuting learner continues to output
the refutation symbol after it first outputs it, a limit-refuting learner is
allowed to output either guesses for languages or the refutation symbol
before starting to converge. Merkle and Stephan showed that for a class of
languages closed under subsets, limit-refuting learnability and the so-called
confident learnability coincide.

Popperian learning.This notion was introduced by Case and Ngo
Manguelle [8] for classes of total functions. Let f be a computable (hence
total) function. A learner is Popperian just in case it produces only total pro-
grams in response to any data. The intended connection to Popper is that Pop-
per insisted that scientists produce crisply falsifiable hypotheses. In the func-
tion learning paradigm, computable scientists can only crisply test programs
that halt with a prediction for each input. So a counterfactual Popper who
thought about the analogy between falsifiability of empirical hypotheses and
the testability of computer programs might have advocated the production of
total programs. Unlike partial computable functions, (total) computable func-
tions can be tested against finite sequences of data given to the learner, since
a total function is guaranteed to be defined on any input. It can be shown that
not every algorithmically E X -learnable class of computable functions can be
learned by a Popperian learner, so Popper’s recommendation, translated into
a computational context, is bad for computable learners.

Decisiveness prohibits a learner from re-introducing an answer rejected
in the past. It turns out that decisive E X -learning from text is not restric-
tive in the context of general learners. That is, every class of languages
E X -learnable from text by a general learner is E X -learnable by a decisive
general learner. Moreover, decisive E X -learning from text is not restrictive
for algorithmic E X -learners from text of computable functions. Namely,
Schäfer-Richter [48] showed that every class of computable functions learn-
able by an algorithmic E X -learner from text is learnable by a decisive
algorithmic E X -learner. For computably enumerable languages decisiveness
reduces the power of algorithmic learning from text, both for E X -learning,
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as shown by Baliga, Case, Merkle and Stephan [3], and for BC-learning, as
shown by Fulk, Jain and Osherson [13].

U-shaped learning. This notion, motivated by developmental and cog-
nitive psychology, was introduced by Baliga, Case, Merkle and Stephan
[3]. For example, there is a phenomenon observed by psycho-linguists
studying how children learn language. Apparently, children will usually
conjugate even irregular verbs correctly when they are first learning to speak
a language. They then go through a phase of treating irregular verbs as
regular (so they ‘forget’ how to conjugate), and then they start to conjugate
verbs correctly again. This is called U-shaped learning by psycho-linguists
and learning theorists, because the children learn, unlearn and learn again.
While non-U-shaped learning from text does not restrict E X -learning, it does
restrict BC-learning (see [3]). Recently, Carlucci, Case, Jain and Stephan [5]
obtained some surprising results concerning non-U-shaped learning.

3.5 Ockham’s Razor, Realism, and Truth

One of the most puzzling questions in the philosophy of science concerns
the truth-conduciveness of Ockham’s razor, the principle that one should
choose the simplest answer compatible with experience. Scientific realists
argue that the simplest answer is best confirmed, so belief in it is justified
[15]. Anti-realists [52] argue that more complex theories are also compatible
with experience and, hence, might also be correct, so belief in the simplest
answer is not justified. The debate is intractable because the realist and the
anti-realist both lack a clear conception of “truth-conduciveness” (cf. the
above discussion of underdetermination).

However, algorithmic learning theory has a natural such notion: con-
vergence as efficient as possible in the best possible sense. In his first
paper in this volume, Kelly shows that, under a plausible interpretation of
simplicity, the policy of never producing an answer other than the simplest
one compatible with the data is necessary for minimizing mind-changes
prior to convergence to the truth. In other words, no strategy that violates
Ockham’s razor is optimally truth-conducive. The idea is related to U-shaped
learning (discussed above), for Ockham methods never perform U-turns.
Moreover, violators can be forced to do so. Results of this kind not only
prescribe uniquely rational inductive methods but also explain them in terms
of the aim of finding the truth as efficiently as possible. By way of contrast,
the classical, Bayesian account of Ockham’s razor simply begs the question
at hand by presupposing that the prior probability of a complex world is
lower than that of a simple world, which amounts to saying that you should
use Ockham’s razor if you happen to be so inclined.
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3.6 Goodman’s New Riddle of Induction

Another outstanding puzzle in the philosophy of science concerns
Goodman’s [17] “grue” example. An emerald is observed to be grue[k] at
stage n just in case it is observed to be green at n and n ≤ k or it is observed
to be blue at n and n > k. The rub for the classical perspective on induction
is this: if anything seems rational, it is that after seeing sufficiently many (say
a billion) objects with property �, it is rational to conclude that all objects
have�. Thus, for example, after seeing that a billion emeralds are green, it is
rational to conclude that all emeralds are green. But a billion green emeralds
are also a billion grue[billion] emeralds. So it is also rational to conclude that
all emeralds are grue[billion], which implies that the next observed emerald
will be blue rather than green. And there is no point objecting that the grue
concept is more complex than the concept green, for a speaker of the grue
language would say the same of “green”, for “green at n can be defined as
‘grue up to k and bleen thereafter’ where ‘bleen’ means blue up to k and
green thereafter”. The example has led to widespread skepticism that there
is no principled sense to be made of empirical simplicity; much less that
simplicity could be truth-conducive.

According to Kelly’s learning theoretic account of simplicity, the sim-
plicity of an input stream is essentially relative to the question asked. In
some problems each world has a determinate simplicity degree (agreeing,
intuitively, with the number of “free parameters” it requires to be set by
the data), whereas in other problems the degrees of simplicity may be
quite different or even undefined. Indeed, if the problem is to identify the
input stream exactly (i.e., function identification), simplicity is undefined
and any enumeration method is as good as any other. But if the problem
resembles many concrete problems in science, such as finding the true form
of a polynomial law, then simplicity exists, agrees with the usual intuitions,
and must be favored on pain of inefficient convergence to the truth. So
the philosophical skeptics are right—but so are the scientists, since their
questions, unlike those constructed by the philosophers, determine a well-
defined notion of simplicity.

3.7 Collapsing the Naturalistic Inductive Regress

Naturalistic philosophers of science hold that the success of scientific
methods is itself a scientific question that science is in the best position to
answer (using scientific methods) [14]. This raises the specter of a circle
or regress of applications of scientific method and of explaining what the
point of such a circle or regress amounts to, so far as finding the truth is
concerned. In his second paper in this volume, Kelly provides a learning
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theoretic analysis of material regresses of this sort. Suppose that a learning
problem is unsolvable. Then an arbitrary learning function succeeds on some
input streams and fails on others. Call the set of all input streams on which
a learning function succeeds the empirical presupposition of the learning
function. Now the question arises whether the presupposition is true. In
response to that challenge, one can apply another, meta-learning function to
the problem of deciding the presupposition. But if that problem is unsolvable,
the meta-learning function succeeds only under some meta-presupposition,
and so forth. In that way, one builds a finite or infinite regress of methods
checking the presuppositions of methods, all the way down to the original
method that addresses the original problem. Kelly shows how to collapse
such infinite regresses of methods by showing that the existence of the regress
is equivalent to the existence of a single method that succeeds in a given
sense with respect to the original problem. For example, an infinite sequence
of refutation methods (learning functions that never retract more than once
and that never take back a rejection) in which each successive method has
a presupposition entailed by that of its predecessor is equivalent to a single
refutation method that succeeds over the disjunction of all the assumptions
of the learning functions in the regress. An infinite regress of verification
methods, on the other hand, is equivalent only to a single method that refutes
the original hypothesis in the limit, meaning that it converges to “no” if and
only if the original hypothesis is false. Philosophers are wont to say that
some regresses are vicious whereas others are not. Kelly suggests that vicious
regresses are regresses that cannot be collapsed into a single method with
the best feasible truth-finding performance. Thus, Kelly’s paper formulates a
crisp distinction between vicious and non-vicious regresses.

The preceding points provide a mere, introductory sample of how a
flexible approach to algorithmic learning theory can yield crisp results
directly relevant to central, contemporary issues in the philosophy of science
and induction. Much more remains to be done, however, and it is the hope
of Harizanov, Goethe and Friend, that this volume will serve to encourage
further mathematical and philosophical interaction.

4 SUGGESTED READING ORDER

The order of the papers in this volume suggests an order of reading.
However, each paper is self-contained, so none is a necessary pre-condition
for reading a second. The general introduction to the volume is followed
by four technical papers (Part I). The first three papers of Part I can be
read as introductory papers of three different, complementary, and mutually
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inspiring approaches. These papers can be read as introductions, in the sense
that the reader can still gain a good understanding of the overall subject of
learning theory; even if he/she ignores some of the technical details. The
fourth paper in this first section is devoted to extending the proof technique
of mathematical induction from the (countable) set of natural numbers to
the (uncountable) set of real numbers. The remaining papers in the second
section (Part II) serve to bring various philosophical problems into focus.
The following are summaries of the papers, in the order in which they appear
in the volume.

Harizanov’s paper presents many of the key learning theoretic concepts
and gives depth to knowledge of various parameters of a learning paradigm.
The paper first introduces basic concepts of computability theory and induc-
tive inference in the limit, such as computable and computably enumerable
languages, and learning from text (positive information). It then discusses
different convergence criteria used to determine learning success: explana-
tory learning versus behaviourally correct learning. The paper also presents
learning with negative information, in particular, learning from an informant,
and learning from switching, which has been only recently studied. The
second part of the paper is concerned with generalizing inductive inference
from sets, which are collections of independent elements, to mathematical
structures in which various elements are interrelated. This is a new direction
in formal learning theory [51, 18], which connects it with the theory of
algebraic structures.

The paper by Martin, Sharma and Stephan presents a unified logic
(parametric logic) for discussing the parameters of inference in algorithmic
learning theory. Parametric logic shows that deduction and induction are
not incompatible forms of reasoning, but can be embedded in a common
framework where they are particular instances of a generalized notion
of logical consequence, which is a function of a few parameters. For
some particular values of the parameters, this generalized notion of logical
consequence is the classical one, totally captured by deduction, and induction
is an “empty notion”. For other values of the parameters, the generalized
notion of logical consequence leaves scope not only to deduction and
induction, but also to more complex forms of reasoning, whose complexity
can be captured by a degree of uncertainty related to the notion of mind
change and classification in the limit from inductive inference, and to the
notion of difference and Borel hierarchies from topology. This paper should
be of interest to philosophers because it provides alternative definitions of
induction and deduction than those current in the philosophical literature.

The papers by Kelly provide novel learning theoretic solutions to two of
the most troublesome open questions in the philosophy of science. The first
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paper by Kelly (in Part I) discusses the relationship between simplicity and
truth in scientific inference. Kelly argues that a systematic preference for the
simplest theory compatible with experience does not point at or indicate the
truth, but nonetheless keeps science on the straightest path hereto.

Kalantari’s paper pursues the idea that induction, in essence, is a method
for proving a universal sentence over some well-founded, partially ordered
universe. When this partial order is “less than or equal to” over the natural
numbers, we have “ordinary induction”; when the partial order is over a
tree, we have “structural induction”; when the partial order includes infinite
ordinals, we have “transfinite induction”; when the partial order is over some
abstract universe we have (through the Axiom of Choice) “Zorn’s Lemma”.
The paper focuses on “induction over the continuum”, that is, “induction”
over a subinterval of the real line of the form “from a to b” (including a but
not b). The analogy between “induction over natural numbers” and its “well
ordering principle” carries over to “induction over the interval” and “the
greatest lower bound principle” for reals to reveal interesting similarities.
The new formulation of induction over the continuum is put to use to untangle
arguments and give transparent proofs (avoiding indirect reasoning) of results
in real analysis.

Schulte’s paper follows Kelly’s [24] work in presenting formal learning
theory as a general inductive epistemology and a foundation for the phi-
losophy of science. His paper offers a friendly introduction to the general
concepts and definitions of reliable convergence to the truth, which explains
Putnam’s conception of “empirical success” for inductive methods and
addresses some of the standard objections. Against this background, Schulte
discusses two leading examples, one of them Goodman’s Riddle of Induction,
to illustrate learning theoretic ideas and contrast them with other notions
familiar from philosophical epistemology.

Friend’s paper presents an explicitly philosophical investigation into the
limitations of method. Friend offers a philosophical assessment concerning
one of the types of learning identified by formal learning theorists as
“confident learning”. Such philosophical enquiry increases our sensitivity to
the parameters of learning, and counsels caution when making claims about
learning the truth.

The second paper by Kelly (in Part II) provides insight into the epistemic
significance of infinite regresses of methods. This paper answers the question
“what is an infinite regress worth” by collapsing regresses into single
methods and checking whether the collapsed method finds the truth in the
best feasible sense. Both papers by Kelly invoke the notion of retractions
prior to convergence, which was introduced by Putnam in [45], and thus may
be seen as a further development of these notions.
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Glymour’s paper considers trade-offs between the reliability and the
informativeness of inductive inference methods. Methods that give unam-
biguous conclusions often do so by imposing strong tacit assumptions,
implicitly sacrificing reliability, while more broadly reliable methods may
more often return no conclusion. Glymour proposes that these trade-offs,
while often tacit, are ubiquitous in science, for example, in computerized
data analysis in applied statistics. He illustrates his claims, and the thesis
that these trade-offs are clarified by placing them in the framework of formal
learning theory, through a series of hypothetical but nevertheless plausible
cases. Glymour does not claim that formal learning theory allows us to decide
among these trade-offs. Rather, his point is that having seen these trade-offs
articulated in formal learning theory we are better able to recognize them in
concrete cases.

Goethe’s paper discusses two approaches to inductive reasoning in phi-
losophy, hitherto largely distinct: the classical way of conceiving induction
and the formal learning theoretic perspective. In the first part of her paper
she presents modern discussions of knowledge acquisition and proof from
Hume through Kant as attempts to determine the cognitive bounds of
human cognition. In the second part of the paper, Goethe pays attention
to the origins of the formal learning theoretic approach, tracing it back
to seminal works by Carnap [6] and by Putnam [44, 45]. This approach,
as exemplified in Putnam’s work and further developed by Kelly [24, 25]
exploits three main ideas. First, it is based on an analogy between human
observation and algorithmic procedures and sees inductive reasoning as
a way of gaining knowledge by analyzing a stream of data. Second, it
conceives of inquiry as governed by means-ends imperatives rather than
categorical imperatives. Third, truth is identified with success in the limit
of inquiry, in a clear echo of pragmatist notions of truth. In so doing,
formal learning theory blurs together the descriptive and normative ques-
tions about induction inherited from the classical way of thinking about
induction.

In his paper Larvor argues that there cannot be a comprehensive account
of scientific enquiry, for two reasons. The first is that our understanding
of scientific enquiry depends on disciplines with incompatible standards of
rigour and modes of explanation: Formal Logic and Historiography. The
second reason is that the rigour and success of empirical science depend on
the particular features of: (i) domains of enquiry, and (ii) research programs.
Consequently, Larvor argues, our understanding of enquiry is more like a
wisdom-tradition than a science, to which formal learning theory may be
seen as a valuable addition.
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INDUCTIVE INFERENCE SYSTEMS FOR
LEARNING CLASSES OF ALGORITHMICALLY
GENERATED SETS AND STRUCTURES

VALENTINA S. HARIZANOV
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Abstract: Computability theorists have extensively studied sets A the elements of which
can be enumerated by Turing machines. These sets, also called computably
enumerable sets, can be identified with their Gödel codes. Although each
Turing machine has a unique Gödel code, different Turing machines can
enumerate the same set. Thus, knowing a computably enumerable set means
knowing one of its infinitely many Gödel codes. In the approach to learning
theory stemming from E.M. Gold’s seminal paper [9], an inductive inference
learner for a computably enumerable set A is a system or a device, usually
algorithmic, which when successively (one by one) fed data for A outputs a
sequence of Gödel codes (one by one) that at a certain point stabilize at codes
correct for A. The convergence is called semantic or behaviorally correct,
unless the same code for A is eventually output, in which case it is also
called syntactic or explanatory. There are classes of sets that are semantically
inferable, but not syntactically inferable.

Here, we are also concerned with generalizing inductive inference from sets,
which are collections of distinct elements that are mutually independent, to
mathematical structures in which various elements may be interrelated. This
study was recently initiated by F. Stephan and Yu. Ventsov. For example, they
systematically investigated inductive inference of the ideals of computable
rings. With F. Stephan we continued this line of research by studying inductive
inference of computably enumerable vector subspaces and other closure
systems.

In particular, we showed how different convergence criteria interact with
different ways of supplying data to the learner. Positive data for a set A
are its elements, while negative data for A are the elements of its com-
plement. Inference from text means that only positive data are supplied to
the learner. Moreover, in the limit, all positive data are given. Inference
from switching means that changes from positive to negative data or vice
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versa are allowed, but if there are only finitely many such changes, then
in the limit all data of the eventually requested type (either positive or
negative) are supplied. Inference from an informant means that positive and
negative data are supplied alternately, but in the limit all data are supplied.
For sets, inference from switching is more restrictive than inference from
an informant, but more powerful than inference from text. On the other
hand, for example, the class of computably enumerable vector spaces over
an infinite field, which is syntactically inferable from text does not change
if we allow semantic convergence, or inference from switching, but not both
at the same time. While many classes of inferable algebraic structures have
nice algebraic characterizations when learning from text or from switching is
considered, we do not know of such characterizations for learning from an
informant.

1 COMPUTABLY ENUMERABLE LANGUAGES

In theoretical computer science, inductive inference introduced by Gold
[9] in 1967 is a framework for learning theory. Learning is viewed as a
dialogue between a learner and a teacher. The learner is trying to learn
a family of computably enumerable sets of natural numbers. A set of
natural numbers A to be learned can be viewed as coding a language L by
identifying, in an algorithmic manner, the grammatically correct sentences of
L with the elements of A.

A set is computably enumerable if there is an algorithm, a computable
function, which generates it by enumerating (listing) its elements. Com-
putably enumerable sets are often abbreviated by c.e. They are often called
recursively enumerable and abbreviated by r.e. In other words, a language,
which is the set of all correct sentences in a certain alphabet, is c.e. if there is
an algorithmic grammar that generates all correct sentences. A c.e. language
is also called a Chomsky language. Chomsky languages are further classified
according to the restrictiveness of their grammars as regular, context-free,
context-sensitive, and unrestricted.

Regular languages have the most restrictive grammars and are context-
free. However, there are context-free languages that are not regular. Similarly,
context-free languages are context-sensitive, but not all context-sensitive
languages are context-free. There are unrestricted languages that are not
context-sensitive. These various classes of Chomsky languages also have
machine equivalents. While regular languages coincide with languages
recognized by finite automata, context-free languages coincide with those
recognized by push-down automata. Context-sensitive languages are the
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same as languages recognized by linear-bounded Turing machines. An
unrestricted language can be characterized as the domain of a partial
computable function. That is, for such a language there is a Turing machine
that on any input x halts (converges) if x is a correct sentence, and computes
forever (diverges) if x is an incorrect sentence.

All c.e. sets can be simultaneously algorithmically listed by systemati-
cally listing (coding) all Turing machines. Let

P0, P1, P2, . . . , Pe, . . .

be a fixed algorithmic (computable) enumeration of all Turing machines. For
a Turing machine Pe, let ϕe be the unary partial function it computes. Then

ϕ0, ϕ1, ϕ2, . . . , ϕe, . . .

is an algorithmic enumeration of all unary partial computable functions. As
we already mentioned, it can be shown that a set A is c.e. if and only if there
is a partial computable function ϕ such that the domain of ϕ is A. In other
words, the set of all outputs of an algorithm is the set of all inputs on which
some algorithm halts.

The domain of a partial computable function ϕe is the c.e. set denoted by
We. We call the index e its Gödel code. Thus,

W0,W1,W2, . . . ,We, . . .

is an algorithmic enumeration of all c.e. sets. We can also think of this
enumeration as an enumeration of all Chomsky languages. Every partial
computable function and every c.e. set have infinitely many Gödel codes,
because for every Turing machine there are infinitely many distinct Turing
machines that compute the same function. Hence knowing a c.e. language is
knowing one of its infinitely many Gödel codes. Similarly, every Chomsky
language is generated by infinitely many grammars. We say that such
grammars are equivalent.

In the next subsection, we introduce an important subclass of c.e.
languages: decidable, or computable languages. In Section 2, we discuss
learning classes of c.e. sets using positive and negative information, and also
using different convergence criteria. In Section 3, we generalize learning to
classes of c.e. algebraic structures. (We can think of sets as being special
algebraic structures with the identity relations only.) Many subsections
contain detailed proofs with explanations of the relevant computability
theoretic and algebraic facts.
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1.1 Computable and Noncomputable Sets

Some c.e. sets are computable, also called recursive or decidable. More
precisely, a set is computable if and only if both the set and its complement
are c.e. From these two computable (algorithmic) enumerations, we can
devise an algorithm (decision procedure) for recognizing the elements of the
set and, equivalently, the nonelements of the set. That is, a set is computable
exactly when it has a computable characteristic function. The characteristic
function of a set A is the function that outputs 1 on the elements of the set
A, and outputs 0 on the elements of the complement of A. Every context-
sensitive language is computable.

Clearly, the complement of a computable set is computable. On the
other hand, there are c.e. sets with complements that are not c.e., namely,
noncomputable c.e. sets. For example, the halting set K is c.e., but not
computable. The set K consists of all inputs e on which the Turing
machine with Gödel code e halts. Equivalently, K consists of those e that
appear in We:

K = {e : Pe(e) halts} = {e : ϕe(e) ↓} = {e : e ∈ We}.
The set K is c.e. because it is enumerated by the procedure that simultane-
ously runs

P0(0), P1(1), . . . , Pe(e), . . . ,

and enumerates those e for which Pe(e) converges, as soon as the conver-
gence occurs. Here, simultaneously means that, say, at each step we add
(activate) a new Turing machine and also run all activated machines for an
additional computational step.

The complement of K , the divergence set K , is not c.e. If K were c.e.,
then for some e0,

K = We0 = {e : e /∈ We}.
Hence, for this particular e0, we have

e0 ∈ K ⇔ e0 ∈ We0 ⇔ e0 /∈ We0 ,

which is a contradiction.
Computable sets can also be viewed as c.e. sets with elements that can be

algorithmically enumerated in an increasing order. Finite initial segments of
such an enumeration give additional negative information that certain “small”
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elements that have not been enumerated so far will never be enumerated into
the set.

A sequence of computable sets A0, A1, A2, . . . is uniformly computable
if there is a binary computable function f such that for every i , the unary
function g defined by g(x) = f (x, i) is the characteristic function of Ai . We
also write Ai (x) = f (x, i). For more on computability theory, see Odifreddi
[19] and Soare [23].

2 INDUCTIVE INFERENCE OF COMPUTABLY
ENUMERABLE LANGUAGES: IDENTIFICATION
IN THE LIMIT

Although we are mainly interested in algorithmic learners, which can be
thought of as Turing machines or computable functions, a learner can also
be general. A general learner can be thought of as a function (not necessarily
algorithmic) that maps finite sequences of numbers (coding sentences in a
language) to numbers (Gödel codes for c.e. languages). A learner receives an
infinite stream of data x0, x1, x2, . . . of a c.e. set A to be learned, and outputs
a sequence of hypothesized codes

e0, e1, e2, . . . , en, . . . ,

which, in case the learner successfully learns A, converges to a “description”
of the set A. In addition to Gödel codes, the learner is also allowed to output
a special non-numerical symbol, say “?”.

2.1 Learning from Text

One way to feed data for a c.e. set (language) to the learner is via a text.
A text t for a set A is any infinite sequence of its elements

t = a0, a1, a2, . . . ,

possibly with repetitions, such that A = {a0, a1, a2, . . .}. The set A is the
content of t . Hence every member (positive datum) of A appears in t at
least once, but no nonmember of A (negative datum) is in t . If A is finite,
then some element must appear infinitely often in t . One-element sets have
only one text, while any set with at least two elements has uncountably
many texts. A learner M converges on t if after every finite sequence of
data a0, . . . , an the learner outputs a code en , in symbols M(a0, . . . , an) =
en, such that eventually (i.e., after finitely many steps) every output en
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codes the correct language. In the strong sense, which is the assumption
we make in this subsection, eventually coding A means that for some n,
we have

en = en+1 = en+2 = . . . , where A = Wen .

A learner learns A from text if the learner converges on any text for
A. A learner learns a partial computable function ϕ if it learns its graph
{(x, ϕ(x)) : ϕ(x) halts}. Partial computable functions have c.e. graphs. A
learner learns a class L of languages if it learns every language A in L.
Clearly, if the learner learns a class L, then it also learns every subclass
L0 ⊆ L. In general, we do not care what happens to the languages that are
not in the class to be learned. On the other hand, we call a learner for L
confident if it always converges to some hypothesis, even when given a text
for a language that does not belong to the class L . However, the learner
does not have to converge accurately on the languages that are not in L.
Not every learnable class of c.e. languages can be learned by a confident
learner. Moreover, there is a class that is learnable by an algorithmic learner,
and is learnable by another confident learner, but cannot be learned by an
algorithmic and confident learner (see [21]). A learner for a class L is called
class-comprising if the learner always guesses a language in L.

A class consisting of a single language is always learnable since there is
a learning algorithm that always outputs the same index for the single set in
the class. An example of an infinite learnable class is the class of all finite
sets of natural numbers. It is learnable since the learner can guess that the
language consists exactly of the elements that are seen up to that point. Since
every language in the class is finite, the learner will be correct in the limit.
However, it can be shown that this learner cannot be confident (see [21]).
The class of all sets of natural numbers missing exactly one number is also
learnable. The learner guesses that the missing number is the least number
not seen so far. Again, clearly, such a learning strategy will be correct in the
limit.

For a sequence σ , the range of σ , rng(σ ), is the set of all elements of σ .
We use the symbol ^ for concatenation of sequences. A learner M from text is
consistent (Angluin [1]) if on every sequence σ of data, M guesses a c.e. set
with code M(σ ), which contains rng(σ ), that is, WM(σ ) ⊇ rng(σ ). A learner
M from text is conservative (Angluin [1]) if whenever M(σ^τ ) �= M(σ ),
then it must be that rng(σ^τ ) � WM(σ ) . Thus, a conservative learner makes
only justified changes to its hypotheses. While conservatism is not restrictive
for general learning, it does restrict algorithmic learning.

We can also allow blanks (pause symbols) in the texts—these are pauses
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in the presentation of data (see [3]). More precisely, we fix a new symbol,
�, and allow any number of occurrences of this pause symbol in a text. This
does not change learnability properties, but allows the teacher not to give any
data at certain steps. Furthermore, we can also assign the following text to
the empty language:
�, �, �, �, . . .

However, we agree that for a sequence σ that might contain the symbol �, the
set rng(σ ) does not contain �.

If we have a class of computable sets, then we may also want to consider
learning characteristic functions of these sets. That is, instead of guessing
codes for enumerating algorithms of the set to be learned, the learner tries to
guess a code (index) for its characteristic function.

2.2 Different Convergence Criteria

Gold [9] introduced a strong convergence criterion for identification in
the limit. Assume that the learner’s sequence of hypotheses for a c.e. set A is

e0, e1, e2, . . . , en, en+1, en+2, . . . .

The strong convergence criterion requires that after finitely many steps, the
hypotheses are the same and correct:

e0, e1, e2, . . . , e, e, e, . . . , and

A = We.

This convergence is also called syntactic. The corresponding learning is often
called intensional or explanatory, and is abbreviated by E X .

A weaker notion of convergence, introduced by Case and Lynes [4] and
independently by Osherson and Weinstein [20], allows the hypotheses to be
distinct, although they must be correct after finitely many steps. That is, there
is some n such that

A = Wen = Wen+1 = Wen+2 = . . . .

This convergence is also called semantic. The corresponding learning is often
called extensional or behaviorally correct, and is abbreviated by BC .

It can be shown that the class of all computable functions is E X -learnable
from text by a general learner. On a given finite subset of the graph of a
computable function to be learned, the learner guesses that it is the c.e. set
with the least index, which contains this finite set. On the other hand, Gold [9]
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proved that the class of all computable functions is not E X -learnable from
text by an algorithmic learner (see the introductory paper in this volume).

The identification in the limit does not require that the learner signals or
confirms convergence. However, it yields the following result for a general
E X -learner, due to L. Blum and M. Blum [3].

Proposition 2.1 (L. Blum and M. Blum) If an E X-learner can learn a c.e.
set A from text, then there is a finite sequence σ of elements of A, called a
locking sequence for A, onto which the learner “locks” its conjecture for A.
That is, if the learner outputs e after seeing σ , then A = We, and after seeing
any sequence of elements from A extending σ , the learner outputs e again.

For example, Proposition 2.1 implies that the class L of all finite sets
enlarged by adding the set N of all natural numbers is not E X -learnable. The
reason is that no learner will be able to distinguish between the set N and
the finite set given by the locking sequence for N, which also belongs to the
classL. A similar example of a class that is not E X -learnable is the collection
consisting of an infinite c.e. set together with all of its finite subsets. Hence,
as established by Gold [9], for example, the class of all regular languages and
the class of all computable languages are not E X -learnable.

The following result in [1] gives an important characterization of
E X -learnability from text for a general learner.

Theorem 2.2 (Angluin) Let L be a class of c.e. sets. Then L is E X-learnable
from text if and only if for every A in L, there is a finite set D ⊆ A such that
for no U in L we can have

D ⊆ U ⊂ A.

Proof. Assume that the class L is E X -learnable and that A is in L. Then the
corresponding set D will be the set of all elements of the locking sequence σ
for A. Now if U is the language in L containing D and contained in A, then
for any text for U extending σ , the learner will guess A, so U = A (thus, U
cannot be properly contained in A).

Conversely, assume that for every A in L, there is a finite set D ⊆ A
such that for no U in L we can have D ⊆ U ⊂ A. Choose such DA for
A ∈ L. Then, after receiving a finite subsequence σ of the text, the learner
outputs the least index of a language A in L such that DA is contained in
rng(σ ), and rng(σ ) is contained in A: DA ⊆ rng(σ ) ⊆ A. If such A does
not exist, the learner outputs an arbitrary fixed index. Note that the learner is
not necessarily algorithmic.
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We will now show that this learner identifies L. Let i be the least index
of a language A in L, such that its text t is fed to the learner. There is a
step n by which enough of t is given to the learner—a sequence σ so that
rng(σ ) contains DA but rng(σ ) is not contained in any language W j in L
among W0, . . . ,Wi−1 such that A � W j . We claim that the learner correctly
conjectures Wi at every step after n. The required condition for Wi is satisfied
for a corresponding τ :

DA ⊆ rng(σ ) ⊆ rng(σ^τ ) ⊆ A.

Furthermore, the learner will not conjecture any W j in L among
W0, . . . ,Wi−1, since otherwise, for some σ ′ extending σ , we have
DWj ⊆ rng(σ ′) ⊂ W j . Hence rng(σ ) is contained in W j , so A ⊂ W j .
Therefore,

DWj ⊆ rng(σ ′) ⊆ A ⊂ W j .

However, A ∈ L and this contradicts the choice of DWj . �

2.3 EX-Learnability is More Restrictive
than BC-Learnability

Clearly, E X -learnability implies BC-learnability. It can be shown, by
finding examples, that algorithmic E X -learnability is more restrictive than
algorithmic BC-learnability. We will now present one of the first such
examples for learning from text (see [21]).

Example 2.3 Recall that K is the halting set. Let L be the following class of
sets:

L = {K ∪ D : D is a finite set of natural numbers}.
The class L is algorithmically BC-learnable from text, but not algorithmi-
cally E X-learnable from text.

Proof. Let us first show that L is not algorithmically E X -learnable. To
obtain a contradiction, assume that L is E X -learnable via some algorithmic
learner M . Fix a locking sequence σ for K . We will use this locking sequence
to show that the complement K is c.e. Since K is c.e., we can fix its
algorithmic enumeration:

K = {k0, k1, k2, . . .}.
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Given an input n, if n ∈ K , then K = K ∪ {n}; otherwise, K �= K ∪ {n},
but the learner still correctly learns K ∪ {n} because it belongs to L. More
precisely, n is enumerated in K if and only if there is a sufficiently long
sequence k0, . . . , km such that the learner M converges on

σ^n^k0^ . . . ^km

to an index different from M’s hypothesis on σ . This is a contradiction, since
K is not c.e.

On the other hand, the class L is algorithmically BC-learnable from text
because, by the s-m-n Theorem of computability theory (Chapter 1, Theorem
3.5 in [23]), there is an algorithm which for every finite sequence a0, . . . , an

outputs a Gödel code for the c.e. set K ∪ {a0, . . . , an}. The outcome of this
algorithm depends on the code for K and on the sequence a0, . . . , an . For
some n0, the sequence a0, . . . , an0 will include a complete text for the finite
set D. However, we cannot algorithmically find such n0. �

BC-learnability is much more powerful than E X -learnability, even
when learning with anomalies (mistakes) is allowed, as showed by
Bardzin and independently by Case, Smith and Harrington (see [5]). Case,
Smith and Harrington established that a specific class of algorithmically
BC-learnable computable functions is not algorithmically E X∗-learnable,
where E X∗-learnability allows the learner to eventually guess a function
finitely different from the one for which the data (i.e., the elements of the
graph) are being fed to the learner.

2.4 Positive versus Negative Information. Learning
from Text versus Learning from an Informant

So far, we have considered only learning from text, that is, when the
learner requests only positive data (elements of the set to be learned), and
the teacher eventually provides all of them. Learning from text will be
abbreviated by Txt .

Learning from an informant is when the learner alternately requests
positive and negative data (negative data are elements of the complement
of a set, or incorrect sentences of a language), and the teacher eventually
provides every element (with type label 1) of the set to be learned, and every
element of its complement (with type label 0). Again, blanks (pauses) are
also allowed in the presentation of data. Learning from an informant will be
abbreviated by Inf .
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It can be shown, by finding examples, that learning from text is more
restrictive than learning from an informant. For example, the collection L
consisting of N together with all of its finite subsets can be learned from an
informant, but not from text. We already saw that L is not E X -learnable
from text. This class L is E X -learnable from an informant because the
learner, in addition to positive information, also obtains complete negative
information in the limit. Thus, the learner guesses that the set to be learned
is N, until the learner sees a nonelement. After that, the learner guesses that
the set to be learned is the finite set consisting of the elements given so far.
Moreover, Gold [9] showed that the class of all context-sensitive languages
is algorithmically learnable from an informant.

The class of all c.e. sets is learnable by a general learner from an
informant. On any finite sequence of positive and negative data, the learner’s
hypothesis is the least Gödel code of a c.e. set that is consistent with the
given sequence. On the other hand, Gold [9] proved that the class of all
c.e. sets is not algorithmically learnable from an informant. Hence general
learning from an informant is more powerful than algorithmic learning from
an informant.

In [22], Sharma showed that combining learning from an informant
with a restrictive convergence requirement that the first numerical (different
from ?) hypothesis is already the correct one implies learnability from text.
The convergence criterion where the learner is allowed to make only one
conjecture, which has to be correct, is known as finite identification (see
[9]). Since finite identification can be viewed as a model for batch learning,
Sharma’s result shows that batch learnability from both positive and negative
data coincides with incremental learnability (i.e., identification in the limit)
from positive data only. For more on learning theory of c.e. languages from
text or from an informant see Case and Smith [5], Osherson, Stob and
Weinstein [21], and Jain, Osherson, Royer and Sharma [13].

2.5 Learning from Switching Type of Data

Motoki [17], and later Baliga, Case and Jain [2] considered different ways
of supplying to the learners finite sets of negative data for a c.e. set A. For
example, there might be a finite set of negative data F ⊆ A such that the
learner succeeds in learning the set A from F , in addition to a text for A.
However, there is an algorithmic learner that learns all c.e. sets in this sense.
Thus, the following framework that Baliga, Case and Jain introduced in [2]
seems more interesting. There is a finite set F ⊆ A such that the learner
always succeeds in learning the set A from a text for A, plus a text for a set
C containing F and disjoint from A, that is, satisfying F ⊆ C ⊆ A. In any
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case, Baliga, Case and Jain established that these finite amounts of negative
information result in a strong increase of learning power, and also lead to
increased speed of learning.

In [12], Jain and Stephan treated positive and negative data symmetrically
and introduced several ways of learning from all positive and some negative
data, or from all negative and some positive data. We will focus on the
following framework in [12] and call the corresponding learning criterion,
abbreviated by Sw, learning from switching (type of data). The learner is
allowed to request positive or negative data for A, but when the learner after
finitely many switches always requests data of the same type, the teacher
eventually gives all elements in A (if the type is positive), or all elements in
its complement A (if the type is negative). If the learner switches its requests
infinitely often, then it still has to learn the language accurately.

One motivation for learning from switching comes from computability
theory, precisely, from the n-c.e. sets for n ≥ 1 (see p. 58 in [23]). Recall
that for a set A, we write A(x) = 1 if x ∈ A, and A(x) = 0 if x /∈ A. For
an n-c.e. set A, the function A(x) is limit-computable, A(x) = lim

s→∞ f (x, s)

for a binary computable function f (x, s), and, assuming that f (x, 0) = 0,
the limit must be achieved after at most n changes. Hence 1-c.e. sets are
exactly the c.e. sets, and 2-c.e. sets are the set-theoretic differences of two c.e.
sets. n-c.e. sets further generalize to α-c.e. sets for an arbitrary computable
ordinal α.

The following example, due to Jain and Stephan [12], shows that switch-
ing type of information provides more learning power than giving positive
information only. A set is co-finite if its complement is finite.

Example 2.4 Let L be the class of all finite and all co-finite sets of natural
numbers.

(i) The class L is not E X-learnable from text.
(ii) The class L is E X-learnable from switching.

Proof. (i) The class L is not E X -learnable from text since the subclass of
L consisting of all finite sets plus the set of all natural numbers (which is
co-finite) is not E X -learnable from text.

(ii) The following learner can learn L from switching. If the number of
positive data (elements) exceeds the number of negative data (nonelements)
given to the learner, then the learner requests a negative datum. Moreover, it
conjectures the co-finite set excluding exactly the nonelements given so far.
In the other case, the learner requests a positive datum, and conjectures the
finite set consisting of all elements given so far. The learner is correct in the
limit. �
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Jain and Stephan [12] also showed that learning from switching is weaker
than learning from an informant. The following result from [11] gives a
general sufficient condition for non-SwBC-learnability.

Theorem 2.5 (Harizanov and Stephan) Let L be a class of c.e. sets. Assume
that there is some set A in L such that for every finite set D, there are U,U ′
in L with:

U ⊂ A ⊂ U ′

(U approximates A from below, and U ′ approximates A from above), and

D ∩ U = D ∩ U ′

(U and U ′, and hence A, coincide on D). Then the class L cannot be BC-
learned from switching, even by a general learner.

Proof. Let M be a given general SwBC-learner. We will show that M cannot
learn L. More precisely, we will show that there is a way of presenting
data, according to the Sw-protocol, for a language in L on which M will
be confused and will not be able to BC-infer the correct language. We will
now describe such a sequence of data given to M .

(i) If the current hypothesis of M is a correct index for A, and there is a
finite sequence −→x = x1, x2, . . . , xk of data of some length k, corresponding
to the sequence of requests y1, y2, . . . , yk of M (y1, y2, . . . , yk ∈ {0, 1}), such
that after concatenating the sequence −→x to the current sequence of data pre-
sented to M , the hypothesis of M will become an incorrect index for A, then
the first datum x1 from one of the shortest such sequences will be given to
M . (After k steps for the least k, a whole such sequence will be given to M .)

(ii) If the current hypothesis of M is an incorrect index for A, and y is M’s
current data type request, then M is given the least x that has not yet appeared
in the data sequence and such that A(x) = y, where A(·) is the characteristic
function of A.

(iii) In the remaining case, we have that all future hypotheses of M ,
when given appropriate data (positive or negative) consistent with A, result
in hypotheses for A. We consider the following two subcases.

(a) If the pair U,U ′ has not been chosen yet, it will be chosen at this step
as follows. Let D be the set of positive data given so far to the learner
M . Choose U,U ′ so that:

U ⊂ A ⊂ U ′ and D ∩ U = D ∩ A = D ∩ U ′.

The learner will receive the pause symbol �.
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(b) If the pair U,U ′ has been chosen, take the least x that has not yet
appeared in the data sequence given to M , and which satisfies x ∈ U
in the case when the learner M requests a positive datum, and x /∈ U ′
in the case when M requests a negative datum. If such x does not exist
(when U = ∅ or U ′ = ω), then M is given the pause symbol �.

For the proof, we first assume that M infinitely often conjectures a
hypothesis incorrect for A. Then case (ii) applies infinitely often and M is
given either all elements of A, or all nonelements of A. Hence M fails to
BC-learn A from switching.

Otherwise, we assume that the learner M eventually ends up in case
(iii), and at a certain step, U and U ′ are chosen so that U ⊂ A ⊂ U ′. If
infinitely often M requests positive data, then M is given all elements of U
and some nonelements of U ′ (and hence nonelements of U ). If infinitely often
M requests negative data, then M is given all nonelements of U ′ and some
elements of U (and hence elements of U ′). In the first case, M is expected to
learn U , and in the second case, M is expected to learn U ′. However, in both
cases, M almost always conjectures an index for the set A. Hence M does
not learn L from switching. �

3 LEARNING CLASSES OF ALGEBRAIC
STRUCTURES

More recently, Stephan and Ventsov [24] extended learning theory from
sets to algebraic structures. They investigated learnability from text for
classes of c.e. substructures of certain computable algebraic structures.
In particular, they considered c.e. submonoids and c.e. subgroups of a
computable group, and c.e. ideals of a computable commutative ring. Several
of these learnable classes have nice algebraic characterizations. Stephan and
Ventsov also studied ordinal bounds on the learner’s mind changes when
learning classes of algebraic substructures from text. In addition, Stephan and
Ventsov showed that learnability of algebraic structures can greatly depend
on the semantic knowledge given at the synthesis of the learner. Since we deal
with structures, semantic knowledge may consist of programs that compute
structural operations. Harizanov and Stephan [11] further investigated learn-
ability of classes of c.e. vector spaces. Again, some learnable classes coincide
with natural algebraic classes. For these classes, in addition to learning from
text, Harizanov and Stephan also considered learning with negative data.
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3.1 Algebraic Structures

An algebraic structure is a nonempty set, called the domain, together
with some operations and relations satisfying certain axioms. We often use
the same symbol for a structure and its domain. A semigroup (G, ∗) is a
structure with the domain G and an associative binary operation ∗:

(x ∗ y) ∗ z = x ∗ (y ∗ z) for all x, y, z ∈ G.

A semigroup is abelian or commutative if its binary operation is commuta-
tive. A monoid is a semigroup (G, ∗) that contains an identity element e:

x ∗ e = e ∗ x = x for all x ∈ G.

It can be shown that the identity element is unique. An example of a monoid
is ({0, 1, 2, . . .},+). A group is a monoid (G, ∗) such that for every x ∈ G,
there exists an inverse element x−1 ∈ G:

x ∗ x−1 = x−1 ∗ x = e.

An example of a group is the additive structure of integers (Z ,+). Here,
e = 0 and x−1 = −x . The structure ({. . . ,−2, 0, 2, 4, . . .},+) is a subgroup
of (Z ,+). Another important example of a group is the multiplicative
structure of nonzero rationals (Q\{0}, ·). For this group, e = 1 and x−1 = 1

x .
A ring is a structure (R,+, ·) with two binary operations, usually called

addition and multiplication, such that (R,+) is a commutative group, the
multiplication is associative, and

x · (y + z) = x · y + x · z and (y + z) · x = y · x + z · x .

It can be shown that

x · 0 = 0 · x = 0.

If for a ring (R,+, ·) the multiplication · is commutative, then the ring
is said to be commutative. If there is an element 1 ∈ R such that for all
x ∈ R,

x · 1 = 1 · x = 1,

then (R,+, ·) is a ring with identity 1. If (R,+, ·) is a nontrivial (containing
at least two elements) commutative ring with identity and, in addition, every
nonzero element has an inverse with respect to multiplication, then (R,+, ·)
is a field. For example, the ring of integers (Z ,+, ·) is not a field, while the
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ring of rationals (Q,+, ·) is a field. There are finite fields (also called Galois
fields). For a prime number p, the ring (Z p,+p, ·p) of residue classes modulo
p is a field.

Let

R J = def {r · j : r ∈ R ∧ j ∈ J }.
A subring (J,+, ·) of (R,+, ·) is an ideal if and only if

R J ⊆ J ∧ J R ⊆ J.

For example, {. . . ,−2, 0, 2, 4, . . .} is an ideal of (Z ,+, ·). Two obvious
ideals of (R,+, ·) are the unit ideal—the ring itself, and the trivial ideal with
the domain {0}. A set D ⊆ J generates the ideal J , in symbols J = I (D),
if J is the smallest ideal (with respect to the set-theoretic inclusion) that
contains D. For more on rings and ideals, see [15].

A vector space over a field F is an additive commutative group (V,+),
together with scalar multiplications ·γ for every element γ ∈ F , which
satisfies additional axioms for vector addition + and scalar multiplication.
The scalar product of γ ∈ F and a vector x ∈ V is usually denoted by γ x.
The axioms are:

γ (x + y) = γ x + γ y,
(γ + δ)x = γ x + δx,
γ (δx) = (γ δ)x,
1x = x,

where x, y ∈ V and γ, δ, 1 ∈ F .
A basis for a vector space consists of a maximal set of linearly indepen-

dent vectors. All bases have the same size, called the dimension of the space.
An example of an important infinite dimensional vector space is the vector
space Q∞ over the field Q of rationals. We can think of the elements of Q∞,
the vectors, as infinite sequences of rational numbers with only finitely many
nonzero components. We have pointwise vector addition and pointwise scalar
multiplication, e.g.,

(6, 3,−4, 0, 0, . . .) + (−1, 4, 0, 0, 0, . . .) = (5, 7,−4, 0, 0, . . .),

and

6(1,
1

2
,−2

3
, 0, 0, . . .) = (6, 3,−4, 0, 0, . . .).

For example, the three vectors
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(1,
1

2
,−2

3
, 0, 0, . . .), (−1

2
, 2, 0, 0, 0, . . .), (5, 7,−4, 0, 0, . . .)

are linearly dependent since

6(1,
1

2
,−2

3
, 0, 0, . . .) + 2(−1

2
, 2, 0, 0, 0, . . .) = (5, 7,−4, 0, 0, . . .).

The following vectors

(1, 0, 0, 0, . . .), (0, 1, 0, 0, . . .), (0, 0, 1, 0, . . .), . . .

are linearly independent. They form a standard basis for Q∞.

3.2 Computable Structures and Their Computably
Enumerable Substructures

A countable structure is computable if its domain is a computable
subset of natural numbers, and its relations and operations are uniformly
computable. For example, a group (G, ∗) is computable if its domain G is
computable and the operation ∗ is computable. It then follows that the unary
function −1 assigning to each element g its inverse g−1 is also computable.
Clearly, every finite group is computable. Examples of computable infinite
groups include the additive group of integers (Z ,+), the additive group of
rationals (Q,+), and the multiplicative group of rationals (Q\{0}, ·), under
the standard representations, that is, coding of elements and operations by
the natural numbers. A ring (R,+, ·) is computable if the domain R is a
computable set and the binary operations +, · are computable. An example
of a computable ring is the ring of integers (Z ,+, ·) under the standard
representation.

Metakides and Nerode [16] showed that the study of algorithmic vector
spaces can be reduced to the study of V∞, an infinite dimensional vector
space over a computable field F , consisting of all finitely nonzero infinite
sequences of elements of F , under pointwise operations. Clearly, these
operations can be performed algorithmically. Every element in F can be
identified with its Gödel code, which is a natural number. Unless we
explicitly state otherwise, we will assume that F is infinite. In that case, we
can even assume, without loss of generality, that F is the field of rationals
(Q,+, ·) and identify V∞ with Q∞. A dependence algorithm for a vector
space decides whether any finite set of its vectors is linearly dependent.
Since the standard basis for V∞ is computable, V∞ has a dependence
algorithm.
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Roughly speaking, a c.e. vector space over a computable field is one
where the set of vectors is c.e., operations of vector addition and scalar
multiplication are partial computable, and the vector equality is a c.e.
relation. Metakides and Nerode [16] showed that any c.e. vector space is
isomorphic to the quotient space V∞

V , where V is a c.e. subspace of V∞. In
V∞
V , the equality of vectors is modulo V . That is, two vectors u and w are

equal if their difference u − w is 0 modulo V , i.e., belongs to V . Thus, the
class of all c.e. subspaces (substructures) of V∞

V can be viewed as the class
L(V ) of all c.e. subspaces of V∞ that contain V , the superspaces of V . Let
V0, V1, V2, . . . be an algorithmic list of all c.e. subspaces of V∞ indexed by
their Gödel codes. For example, we can assume that Ve is generated by the
c.e. set We of independent vectors in V∞, where W0,W1,W2, . . . is a fixed
algorithmic list of all c.e. subsets of independent vectors. This is possible
since V∞ has a computable basis, which can be identified with the set of
natural numbers.

3.3 Learning Classes of Ring Ideals from Text

A commutative ring with identity (R,+, ·) is Noetherian if it does not
have an infinite strictly ascending chain of ideals. Equivalently, (R,+, ·) is
Noetherian if and only if every ideal of (R,+, ·) is finitely generated (see
[15]). Hence every ideal of a computable commutative Noetherian ring is c.e.
It can be shown that it is even computable (see [25]). An example of a com-
putable commutative Noetherian ring with identity is the ring Q[x1, . . . , xn]
of polynomials with rational coefficients and variables x1, . . . , xn . On the
other hand, the ring Q[x1, x2, x3, . . .] of rational polynomials in infinitely
many variables is not Noetherian.

The following result from [24] algebraically characterizes
BC-learnability from text of ideals of a computable commutative ring.

Theorem 3.1 (Stephan and Ventsov) Let (R,+, ·) be a computable commu-
tative ring with identity. Let L be the set of all ideals of R. Then the following
two statements are equivalent.

(i) The ring (R,+, ·) is Noetherian.
(ii) The family L (of c.e. ideals) is algorithmically BC-learnable from text.

Proof. (i)⇒ (ii) For a given finite set D of positive data, the learner
hypothesizes a code for the ideal generated by D. There is a stage by which
the learner has seen all elements of a finite set that generates the ideal to be
learned. Hence, from that stage on the learner correctly guesses a code for
the ideal to be learned.
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(ii)⇒ (i) Assume that M is a BC-learner for L. We will show that
every ideal of (R,+, ·) is finitely generated. Let I be an ideal in L. Fix a
locking sequence σ for I . Consider the ideal J generated by rng(σ ). For any
sequence τ of elements in J , after seeing the sequence σ^τ of positive data,
the learner M guesses an index for I . Since J ∈ L and M learns L, it follows
that I = J . Hence I is generated by the finite set rng(σ ). �

For certain computable commutative Noetherian rings with identity, the
classes of their ideals are E X -learnable from text, even by well-behaved
learners. An example of such a ring is the polynomial ring Q[x1, . . . , xn]
under the standard representation. This example generalizes to the following
result (see [24]).

Theorem 3.2 (Stephan and Ventsov) Let (R,+, ·) be a computable commu-
tative Noetherian ring with identity. Let L be the set of all ideals of R. Then
the following two statements are equivalent.

(i) There is a uniformly computable sequence of all ideals in L.
(ii) The set L is E X-learnable from text by a class-comprising, consistent,

and conservative algorithmic learner.

Stephan and Ventsov [24] constructed a ring that allowed them to
establish the following negative result about E X -learnability.

Theorem 3.3 (Stephan and Ventsov) There is a computable commutative
Noetherian ring with identity (R,+, ·) for which the class of all ideals is
not E X-learnable from text. Moreover, this is also true for the class of all
ideals in every computable isomorphic copy of (R,+, ·).

Stephan and Ventsov [24] also constructed a computable ring (R,+, ·)
with the class of all ideals E X -learnable from text, while in some computable
isomorphic copy of (R,+, ·) the class of ideals is BC-learnable, but not E X -
learnable.

The following result from [24] gives a computability theoretic character-
ization of E X -learnability of Noetherian ring ideals. This characterization
is in terms of dominating time for enumeration of elements in the (finitely
generated) ideals.

Theorem 3.4 (Stephan and Ventsov) Let (R,+, ·) be a computable com-
mutative Noetherian ring with identity, and let L be the set of all ideals
of (R,+, ·). Then L is E X-learnable from text if and only if there is a
computable function f with the property that for every J ∈ L, there is a
finite set D such that J = I (D) and every x ∈ I (D) is enumerated in I (D)
within f (x) computation steps.
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A commutative ring is Artinian if it does not have an infinite strictly
descending chain of ideals. Every commutative Artinian ring with identity
is Noetherian. Hence every commutative Artinian ring with identity has a
finite length n, where n is the maximum number such that there is a chain of
(n + 1) ideals.

Theorem 3.5 (Stephan and Ventsov) Let (R,+, ·) be a computable commu-
tative ring with identity, and let L be the set of all ideals of (R,+, ·). Then L
is learnable from text with a constant bound on the number of mind changes
if and only if the ring (R,+, ·) is Artinian. The constant bound is exactly the
length of the ring.

Since every ideal of a computable commutative Noetherian ring is
computable, Stephan and Ventsov also investigated learning Gödel codes for
characteristic functions of these ideals (see [24]).

Theorem 3.6 (Stephan and Ventsov) Let (R,+, ·) be a computable commu-
tative Noetherian ring with identity. Let L be the set of all ideals of R.

(i) If the class L is E X-learnable from text, then the characteristic
function indices of the ideals in L can be E X-learned by a confident
learner.

(ii) If the characteristic function indices of the ideals in L are BC-
learnable from text, then these characteristic function indices can be also
E X-learned by a confident learner.

3.4 Characterizing Text-Learnable Classes
of Vector Spaces

We will show that the classes L(V ) of c.e. vector spaces that are
syntactically inferable from text have a nice algebraic characterization.
Moreover, this characterization does not change if we allow either semantic
convergence or inference by switching.

Theorem 3.7 (Harizanov and Stephan) Assume that the dimension of V∞
V

is finite. Then the class L(V ) is E X-learnable from text by an algorithmic
learner.

Proof. The learner guesses that the space to be learned is generated by
V ∪ {x0, . . . , xn−1}, where x0, . . . , xn−1 is the sequence of positive data given
to the learner so far. Hence this guess will change whenever the learner
receives a new element. However, since the dimension of V∞

V is finite, every
space A in L(V ) is generated by V ∪ D for some finite set D of elements
independent over V . If a text for such a space A is given to the learner, then
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for some m, the set {x0, . . . , xm−1} will include all of D. Thus, the learner
will syntactically identify A in the limit.

Now, we have to show that this can be done in an algorithmic manner.
Notice that, since the dimension of V∞

V is finite, the space V is computable. In
addition, there is an algorithm which checks for every finite set D of vectors
in V∞ and every vector v , whether v is in the linear closure of V ∪ D (i.e.,
in the space generated by V ∪ D). Such an algorithm exists, since V∞ has a
computable basis consisting of vectors from a (computable) basis for V plus
finitely many additional vectors.

Let i be a fixed index for a c.e. set of independent vectors that generates
V . Assume that at some stage the learner is given x0, . . . , xn−1. The learner
first algorithmically checks whether x0 belongs to V . If it does, the learner
omits it from the sequence, and next checks whether x1 belongs to V .
If x0 does not belong to V , then the learner keeps x0 in the sequence,
and algorithmically checks whether x1 belongs to the linear closure of
V ∪ {x0}. If it does, the learner omits it from the sequence, and next
checks whether x2 belongs to the linear closure of V ∪ {x0}. If x1 does not
belong to the linear closure of V ∪ {x0}, then the learner keeps x0, x1 in the
sequence, and algorithmically checks whether x2 belongs to the linear closure
of V ∪ {x0, x1}. After n rounds, the learner ends up with a subsequence
x ′

0, . . . , x ′
k−1 (k ≤ n), each element of which is linearly independent from

the previous ones together with V . Now the learner executes an algorithm
that on input (i, x ′

0, . . . , x ′
k−1) outputs a code e for the space Ve generated

by V ∪ {x0, . . . , xn−1}. Moreover, the learner changes its hypothesis only
when the space generated by V ∪ {x0, . . . , xn} properly contains the previous
space V ∪ {x0, . . . , xn−1}, where for n = 0 the previous space is V . Since the
sequence x ′

0, . . . , x ′
k−1 eventually stabilizes, the learner will keep outputting

the same code e and will E X -learn A. Thus, the number of mind changes
that the learner makes is bounded by the dimension of V∞

V . �

Theorem 3.8 (Harizanov and Stephan) Assume that the class L(V ) is BC-
learnable from text by an algorithmic learner. Then the dimension of V∞

V is
finite.

Proof. Let v0, v1, . . . be a computable enumeration of V∞. We define Un

for n ≥ 0 to be the vector space generated by V ∪ {v0, v1, . . . , vn}. Since
Un+1 = Un ∪ {vn+1}, the dimension of Un+1 is either the same as for Un or
increases by 1. Clearly, V∞ is the ascending union of all spaces Un:

V∞ = U0 ∪ U1 ∪ U2 ∪ . . . , and

U0 ⊆ U1 ⊆ U2 ⊆ . . . .
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If follows from a learning theoretic result that such a class L(V ) can be BC-
learned from text only if there are finitely many distinct sets in this ascending
chain. Hence, there is m such that

Um = Um+1 = Um+2 = . . . .

It follows that

V∞ = U0 ∪ . . . ∪ Um = Um .

Hence the dimension of V∞
V is at most m + 1, and thus finite. �

Theorem 3.9 (Harizanov and Stephan) Assume that the class L(V ) is E X-
learnable from switching by an algorithmic learner. Then the dimension of
V∞
V is finite.

Proof. Assume that V �= V∞. We will first prove the following claim.

Claim. If L(V ) is E X-learnable from switching by an algorithmic
learner, then V is computable.

Assuming the claim, we will now prove the theorem. To obtain a
contradiction, we suppose that V∞

V is infinite dimensional. Then, since V is
computable, we can find a computable basis {u0, u1, . . .} of a vector space U
such that U ∩ V = {0}. Recall that K denotes the halting set. Let W be the
linear closure of

V ∪ {un : n ∈ K }.
The space W is not computable, so it follows by the claim that L(W ) is
not E X -learnable from switching. Since W contains V , the class L(W ) is
contained in the class L(V ). Hence, L(V ) is also not E X -learnable from
switching, which is a contradiction.

To prove the claim, assume that M is an algorithmic SwE X -learner for
L(V ). Fix a computable ordering of the elements of V∞, as well as of all
finite sequences of these elements.

(i) If the current hypothesis of M is old (i.e., the index that M guesses
is the same as the previous one) and there is a finite sequence−→x = x1, x2, . . . , xk of data consistent with V , corresponding to
requests y1, y2, . . . , yk of M , such that M will change its hypothesis
after seeing −→x , then M is given the first datum x1 from the first shortest
such sequence.
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(ii) If the current hypothesis of M is new (i.e., the index that M guesses is
different from the previous one), then after M requests a datum of type
y (y ∈ {0, 1}), M is given the least x that has not yet been given to it
such that V (x) = y.

Clearly, the learning process either goes finitely or infinitely many times
both through case (i) and case (ii). First assume that the cases (i)–(ii) apply
infinitely many times. Then, it follows that the learner M has made infinitely
many different hypotheses. However, the learner has been given either all
elements of V (if M requests all type 1 data after some step), or all elements
of V (if M requests all type 0 data after some step). Thus, the learner is
given information about V according to the Sw-protocol without converging
syntactically. This contradicts the assumption of the claim. Thus, both (i) and
(ii) are executed finitely many times.

Since (i) is executed only finitely many times, there is a stage in the
learning process without M’s further mind change, provided M is given
data consistent with V (that is, elements of V upon requests of type 1,
and elements of V upon requests of type 0). We can even assume that M’s
hypothesis from some point on is a fixed index for V , since otherwise,
M would not E X -learn V when given information about V according
to the Sw-protocol. Now, with this assumption, we further consider two
cases.

(a) Assume that in every possible situation when the learner M requests a
datum of type 1, it is given an element of V such that at some later stage
M requests a datum of type 0. This allows us to take some proper c.e.
superspace W of V (since V �= V∞), and at every request of M for a
datum of type 0, give M the least element x in W , which M had not seen
so far. Then M does not infer the space W , although M is given data
for W .

(b) In the remaining possible case, M is fed finitely many data consistent
with V such that M never later requests any datum of type 0. Consider
the stage after which M requests only data of type 1. Let D be the
set of all data of type 0 given to M up to that stage. We can now
algorithmically enumerate V as follows: x ∈ V iff either M changes its
mind while being fed (positive) data from the linear closure of V ∪ {x},
or M requests a datum of type 0, or some element of D is enumerated
into the linear closure of V ∪ {x}. Hence V is c.e., and thus V is
computable. �

We can now summarize the previous results as follows.
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Corollary 3.10 The following statements are equivalent for a c.e. subspace
V of V∞.

(i) The dimension of V∞
V is finite.

(ii) The class L(V ) is E X-learnable from text by an algorithmic learner.
(iii) The class L(V ) is BC-learnable from text by an algorithmic learner.
(iv) The class L(V ) is E X-learnable from switching by an algorithmic

learner.

Proof. (i) ⇒ (ii), (iii) ⇒ (i) and (iv) ⇒ (i): These follow from the above
results.

(ii) ⇒ ((iii) & (iv)): These follow directly from the definitions, since
E X -learnability from text implies BC-learnability from text, as well as
E X -learnability from switching. �

Next, we will investigate the learnability of the class L(V ) when the
dimension of V∞

V is infinite.

3.5 Characterizing SwBC-Learnable Classes
of Vector Spaces

Assume that V is a c.e. subspace of V∞ such that the dimension of V∞
V is

infinite. Let k be a natural number, possibly 0. In [14], Kalantari and Retzlaff
introduced the following notion of a k-thin space.

Definition 3.11 A space V ∈ L(V∞) with infinite dimension of V∞
V is called

k-thin, k ≥ 0, if for every c.e. subspace W of V∞ such that W ⊇ V :

(i) either the dimension of V∞
W is at most k, or

(ii) the dimension of W
V is finite,

and there exists U ∈ L(V∞) such that the dimension of V∞
U is exactly k.

Kalantari and Retzlaff proved that for every k ≥ 0, there exists a k-thin
subspace of V∞.

Theorem 3.12 (Harizanov and Stephan) The following statements are equiv-
alent for a c.e. subspace V of V∞.

(i) The class L(V ) is BC-learnable from switching by an algorithmic
learner.

(ii) The dimension of V∞
V is finite, or V is 0-thin, or V is 1-thin.

Proof. To prove ¬(ii) ⇒ ¬(i), we will apply Theorem 2.5. Assume that
V∞
V has infinite dimension, and that V is neither 0-thin nor 1-thin. Then
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there is a c.e. space W such that V ⊂ W ⊂ V∞, the quotient space W
V has

infinite dimension, and V∞
W has dimension at least 2. In particular, there are

vectors x1, x2 such that x1 /∈ W , x2 /∈ W , and x1, x2 are linearly independent
over W . Now, for every finite set D of vectors, we can choose a positive
integer n such that none of the vectors in D − W is in the linear closure
of W ∪ {x1 + nx2}. Furthermore, the linear closure of V ∪ (W ∩ D) has
finite dimension over V , and thus is different from W . So the condition
of Theorem 2.5 is satisfied, and hence L(V ) is not BC-learnable from
switching.

To prove the converse, (ii) ⇒ (i), we have to consider only the cases
of 0-thin and 1-thin spaces, since Theorem 3.7 deals with the case when
the dimension of V∞

V is finite. In these two cases, there is a space W such
that V ⊆ W and W

V is infinite dimensional and the following conditions are
satisfied. If V is 0-thin, we have that W = V∞. If V is 1-thin, we have that
W ⊂ V∞, and there is no other such c.e. vector space U with the quotient
space U

V of infinite dimension. This property allows us to give the following
learning algorithm for L(V ).

� A learner M requests data of type 0 until such a datum is enumerated into
W . The learner’s hypothesis is V∞ as long as no datum of type 0 (except
the pause symbol ) is given, and W otherwise.

� If some datum of type 0 appears in W , then M requests data of type 1, and
guesses the linear closure of V ∪ E , where E is the set of all data of type
1 seen so far.

In the case when M guesses V∞ or W , the learner M requests only
data of type 0. If none are supplied, the hypothesis V∞ is correct, and if
some negative data are given, but they are in the complement of W , then
the hypothesis W is correct. Otherwise, the vector space to be learned is the
linear closure of V ∪ D for some finite set D. Since this space cannot contain
all of W , a datum of type 0 and in W shows up and causes that from that time
on M requests only data of type 1. So, the learner M is eventually given all
elements of the linear closure of V ∪ D. Since the space to be learned by
M is finite dimensional over V , beginning at some stage, D is contained in
the linear closure of V ∪ E , where E is the set of positive data given to M by
that stage. �

If the space V∞ is over a finite field, and V is a c.e. subspace of V∞,
then the quotient space V∞

V has a dependence algorithm. Hence we obtain
a different result on BC-learnablity from switching. On the other hand,
Corollary 3.10 remains the same since its proof does not depend on the fact
that the field is infinite.
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Proposition 3.13 (Harizanov and Stephan) Assume that V∞ is over a finite
field of scalars. Let V be a c.e. subspace of V∞, and let k be any natural
number. If V is k-thin, then L(V ) is BC-learnable from switching by an
algorithmic learner.

Learning from an informant does not have a nice algebraic characteriza-
tion, at least not one in terms of thin vector spaces, as the following result
from [11] shows.

Theorem 3.14 (Harizanov and Stephan)

(i) There is a 0-thin vector space V1 such that the class L(V1) is
E X-learnable from an informant by an algorithmic learner.

(ii) There is a 0-thin vector space V2 such that the class L(V2) is not
E X-learnable from an informant by an algorithmic learner.

4 CONCLUSION

We presented inductive inference of classes of c.e. sets, c.e. ring
ideals, and c.e. vector subspaces. With respect to the convergence criterion
for the learner’s hypotheses, we considered both syntactic inference
(E X -identification) and semantic inference (BC-identification). We also
considered different ways of giving positive and negative data to the learner.
For classes of ring ideals, we considered only inference from text, while for
classes of c.e. sets and c.e. vector spaces, we also considered inference from
switching, and inference from an informant. It will be interesting to also
study inference from switching and from an informant for classes of ring
ideals.

Furthermore, it would be worthwhile to systematically investigate induc-
tive inference of c.e. substructures for other important classes of computable
algebraic structures. Some specific results in this direction have already
been obtained. Stephan and Ventsov [24] studied inference of classes of
monoids. For example, they showed that for the standard representation of
the integers (Z ,+), the class of all submonoids of (Z ,+) can be E X -learned
from text with the learner’s mind change complexity ω2. Moreover, this
bound is optimal. Stephan and Ventsov also studied inference of classes
of closed sets of c.e. partially ordered structures. A structure (P, �) is a
partial ordering if the binary relation � is reflexive (x � x) and transitive
((x � y ∧ y � z) ⇒ x � z). A subset A of P is closed if for every x ∈ A
and y � x , we have y ∈ A. For example, Stephan and Ventsov showed that
there is a c.e. linear (i.e., without incomparable elements) ordering such that
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the family of closed sets is BC-inferable, but not E X -inferable from text.
Sets and vector spaces can be considered as examples of closure systems,

which are abstract mathematical structures with dependence relations satis-
fying certain axioms (see [7]). Such dependence relations generalize linear
dependence of vectors in vector spaces, and the identity of elements in sets.
Harizanov and Stephan [11] studied inference of classes of c.e. substructures
of computable closure systems. For example, Harizanov and Stephan showed
that there is a computable closure system with the class of all c.e. closure
subsystems that can be E X -learned from switching, but not with any bound
on the number of switches.

Learning with access to an oracle (external set with given information
about its elements and nonelements) is also important. Some results have
already been obtained. For example, Harizanov and Stephan [11] showed
that there is a computable closure system with the class of all c.e. subsystems
that can be BC-learned from switching with oracle for the halting set K , but
not with any oracle to which K is not Turing reducible. Stephan and Ventsov
also studied learning of ring ideals with access to an oracle. In particular, they
showed in [24] that the class of all ideals of any computable Noetherian ring
is E X -learnable from text with oracle K .

For inference from text or from switching, many classes of inferable
algebraic structures have natural algebraic characterizations. It would be
interesting to also find algebraic properties of structures, which exactly
correspond to the inferability from an informant, both for E X -learning and
BC-learning.
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Abstract: With parametric logic, we propose a unified approach to deduction and
induction, both viewed as particular instances of a generalized notion of logical
consequence. This generalized notion of logical consequence is Tarskian, in
the sense that if a sentence ϕ is a generalized logical consequence of a set T of
premises, then the truth of T implies the truth of ϕ. So in particular, if ϕ can
be induced from T , then the truth of T implies the truth of ϕ. The difference
between deductive and inductive consequences lies in the process of deriving
the truth of ϕ from the truth of T .

If ϕ is a deductive consequence of T , then ϕ can be conclusively inferred
from T with absolute certainty that ϕ is true. If ϕ is an inductive consequence
of T , then ϕ can be (correctly, though only hypothetically) inferred from T , but
will also be (incorrectly, still hypothetically and provisionally only) inferred
from other theories T ′ that might not have ϕ as an inductive consequence
(but that have enough in common with T to ‘provisionally force’ the inference
of ϕ). The hallmark of induction is that given such a theory T ′, ϕ can actually
be refuted from T ′: ¬ϕ can be inferred from T ′ with absolute certainty
that ¬ϕ is true.

As a consequence, deduction and induction are both derivation processes that
produce ‘truths,’ but the deductive process is characterized by the possibility of
committing no mind change, whereas the inductive process is characterized by
the possibility of committing one mind change at most. More generally, when
a sentence ϕ is a generalized logical consequence of a set T of premises, it
might be possible to infer the truth of ϕ from the truth of T with fewer than β
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mind changes, for the least nonnull ordinal β, or it might be possible to infer
the truth of ϕ from the truth of T in the limit, though without any mind change
bound, or it might be possible to discover the truth of ϕ from the truth of T
thanks to still more complex notions of inference. ‘Discovering with an ordinal
mind change bound’ and ‘discovering in the limit’ are concepts from formal
learning theory , an illustration of the fact that parametric logic puts together
fundamental notions from mathematical logic and formal learning theory . This
paper presents the model-theoretic foundations of parametric logic and some
of their connections to formal learning theory and topology.

1 INTRODUCTION

1.1 Objective

Since the early developments of formal logic, the question has been
addressed whether logical is an absolute notion. What should be the object of
investigation? logic or logics? From the perspective of artificial intelligence,
the debate seems to be closed: there are various modes of reasoning that can
only be formalized in distinct and often incompatible settings. Deduction
is monotonic whereas induction is not, hence it is not possible for a single
logical framework to account for both. In philosophy of science, there is no
definite point of view, but induction is still usually opposed to deduction; de-
duction and induction are not conceived as complementary aspects of a more
general logical concept. We present a framework where logical inferences
that are usually considered to be incompatible—in particular, deductive and
inductive inferences—can gracefully coexist. This framework also reconciles
the one versus many views on formal logic by defining a generic logic with
parameters. Setting the parameters to particular values amounts to defining
instantiations of the generic logic or, alternatively, to defining particular
logics.

1.2 The Tarskian Concept of Logical Consequence

It is instructive to get back to the sources, and more specifically, to
Tarski’s famous account of the concept of logical consequence. In [36],
Tarski first criticizes the proof-theoretic notion of logical consequence, based
on “[. . . ] few rules of inference that logicians thought exhausted the content
of the concept of consequence.” ([36], p. 410) Then Tarski reminds the
reader of Gödel’s incompleteness theorem, and infers: “[. . . ] this conjecture
[that we can finally succeed in grasping the full intuitive content of the
concept of consequence by the method sketched above, i.e. by supplementing
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the rules of inference used in the construction of deductive theories] is
untenable.”([36], p. 412) Tarski concludes that an alternative notion of
logical consequence is needed: “In order to obtain the proper concept
of consequence, which is close in essentials to the common concept, we
must resort to quite different methods and apply quite different conceptual
apparatus in defining it.” ([36], p. 413) The “proper concept of consequence”
is the model-theoretic notion we are familiar with:

(∗) “The sentence ϕ follows logically from the sentences of the class K
if and only if every model of the class K is also a model of the sentence
ϕ.” ([36], p. 417)1

In view of Gödel’s completeness theorem, proved in 1930, two points are
in order here.

1. (∗) is by no means revolutionary. As Feferman points out: “These [the
semantical notions] had been used quite confidently [. . . ] by a number
of Tarski’s contemporaries, including Skolem and Gödel.” ([12], p. 79)
The very statement of the completeness theorem would be meaningless
without a notion of logical consequence based on (∗) or on a close variant
of (∗). Tarski himself admits that“the proposed treatment of the concept
of consequence makes no very high claim to complete originality.”
([36], p. 414)

2. In the particular case of first-order languages, the “proper notion of
logical consequence” defined as (∗) is equivalent to the proof-theoretic
notion.

What is genuinely new in (∗) is that the concept of logical consequence
is not based on a particular language: the sentences mentioned in (∗) are not
assumed to be first-order. A proof-theoretic notion of logical consequence,
based on a well defined set of inference rules, presupposes the prior
commitment to a particular language, whereas it is possible to apply (∗) to a
whole range of logics that differ in their choice of language, or, in Tarski’s
words: “The concept of satisfaction—like other semantical concepts—must
always be relativized to some particular language.”

Barwise’s abstract model theory [4] is the most successful attempt to
apply (∗) to a class of languages and “achieve the necessary balance between
strength and manageability.” ([4], p. 222) Clearly, not every formal language
qualifies as a logical formal language. Barwise defines a logic as “an
operation which assigns to each set L of symbols a syntax and a semantics
such that:

1 What we denote by ϕ is denoted by X in Tarski’s paper.
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(1) elementary syntactical operations (like relativizing and renaming sym-
bols) are performable,

(2) isomorphic structures satisfy the same sentences.” ([4], p. 224)

The “elementary syntactic operations” are defined so that the class
of languages that Barwise has in mind, including, in particular, some
subsets of the infinitary language L∞ω, can be encompassed in the resulting
framework.2

1.3 Intended Interpretations

So both Tarski and Barwise envisioned different possible formal lan-
guages, but the notion of model of a sentence or model of a set of sentences
is fixed: it is the usual notion from classical model theory. Restrictions to
subclasses of the class of all structures have been proposed, that resulted
in new semantics. Of particular relevance to our work is Leblanc’s sub-
stitutional semantics [23]. In substitutional semantics, interpretations range
over the set of Henkin structures, i.e., structures all of whose individuals
interpret a closed term.3 Such structures often exhaust the class of legitimate
interpretations. For instance, a number theorist who has no inclination
towards nonstandard models of the natural numbers works with a unique
interpretation in mind, namely, the unique Henkin model of Peano arithmetic.
Most applications in artificial intelligence, once formalized into logical
theories T , have only Henkin interpretations as legitimate models of T ,
because every object in that part of reality being modeled has a name in the
formalizing language. The same remark applies to most physical theories.
More generally, it seems natural that various sets of structures be considered
in the logical foundations of many disciplines, ranging from philosophy of
science to artificial intelligence. There is also a need for various logical
languages in these disciplines, and listing each and every formal logical
language that has been developed would prove to be a difficult task. Contrary
to Barwise’s abstract model theory, which unifies a whole range of different
languages, no framework in artificial intelligence or epistemology unifies
various sets of structures. Parametric logic unifies sets of languages and sets
of structures in a common framework. But let us first examine what could be
the form of such a unification.

1. A class C1 of possible sets of sentences would be defined.
2. A class C2 of possible sets of structures would be defined.

2 A formula in L∞ω can contain conjunctions and disjunctions over sets of arbitrary
cardinality, but it cannot contain an infinite sequence of consecutive quantifiers.

3 A closed term is a term that does not contain any occurrence of a variable.
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3. Given a sentence ϕ in a selected member L of C1 and given a structure M
in a selected member W of C2, the notion ‘M is a model of ϕ’ would be
defined.

4. The Tarskian notion of logical consequence would be applied on the basis
of L and W . This would reinterpret (∗) as: a sentence ϕ in L follows
logically from a set K of sentences in L if and only if every model of K
in W is a model of ϕ.

1.4 Intended Models

Two questions would arise: (1) What should be the definition of C1?
Should it be the collection of languages formalized in Barwise’s abstract
model theory? (2) What should be the definition of C2? Should it be the
collection of the sets of structures considered in some existing frameworks?
Before even thinking of addressing these issues, a third question should take
precedence: (3) Would the proposed unification be of any relevance to a
significant number of important logic-based disciplines? The answer to (3)
is negative, for reasons that are essentially the same for many of the logic-
based disciplines we might choose to focus on. In this paper, we will closely
analyze the main concepts of formal learning theory (or inductive inference)
in order to justify in detail why the answer to (3) is negative, but the point
we want to make can be intuitively explained on the basis of many other
disciplines. Take for instance logic programming. The elementary part of
this discipline takes for C1 the class of definite clauses,4 and for C2 the set
of Herbrand structures, i.e., the set of particular Henkin structures all whose
individuals interpret a unique closed term. It is accepted that an intended
model of a subset K of C1—a definite logic program—is not any member of
C2 that makes all members of K true, but only the minimal Herbrand model of
K [10]. For another example, take the branch of artificial intelligence known
as nonmonotonic reasoning [25]. This discipline is developed on the basis of
semantic notions like preferential models [33] or aggregative models [22],
where an intended model of a set K of sentences taken from the set selected
from C1 is not any model of K in the set W of structures selected from C2,
but a model M of K in W such that no other model of K in W is “preferred”
to M. Logic programming, nonmonotonic reasoning and, as will be seen in
detail in this paper, inductive inference, share a notion of minimality that is
essential in order to define the set of intended models of a set of sentences.
The generic notion of logical consequence of parametric logic is based on a
generic minimality principle, aimed at providing the extra generality that is

4 A definite clause is the universal closure of a formula of the form ψ → α where α is an
atomic formula, and ψ is a conjunction of atomic formulas.
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essential to so many logic-based disciplines. We develop a modified version
of the previous plan that is characterized by the following key features.

1. A class C1 of possible sets of sentences is defined.
2. A class C2 of possible sets of structures is defined.
3. Given a sentence ϕ in a selected member L of C1 and given a structure M

in a selected member W of C2, the notion ‘M is a model of ϕ’ is defined.
4. Given a set K of sentences in L, the notion of intended model of K in W

is defined.
5. The notion of logical consequence is generalized from (∗) as follows. A

sentence ϕ in L follows logically from a set K of sentences in L if and
only if every intended model of K in W is a model of ϕ.

The notion of intended model of a set of sentences that we choose is
a particular case of preferential entailment that generalizes the notion of
minimal Herbrand model: whereas the latter applies a minimality principle
to the set of all atomic sentences, the former will apply the same minimality
principle to a set D of sentences, chosen from the set L of selected sentences.
The counterpart to D in the theory of preferential models is a binary relation
over the set W of selected structures.

1.5 Parameters

Two questions should be addressed: (1) How should C1 be defined? (2)
How should C2 be defined? There is no better guide than Barwise’s remark
that “the necessary balance between strength and manageability [should
be] achieved.” The formal developments of a theory should shape the basic
notions so that natural, elegant and fruitful structures can be revealed. In
parametric logic, C1 and C2 can be described as follows. Prior to the definition
of C1 and C2, a parameter V is introduced, that denotes an arbitrary countable
vocabulary (i.e., a countable set of predicate and function symbols). Then C2

is defined as the class of all nonempty sets of V-structures. Sets from three
classes of members of C2 play a fundamental role in our framework, for a
given choice of V :5

5 The requirement that members of C2 be sets and not proper classes is meant to simplify the
definition of further concepts. For example, we define a topology over the members of C2; if
these members could be proper classes, then we would have to modify the usual treatment
of topological spaces over sets. That would be an unworthy complication, because having
to assume that the members of C2 are sets is not really restrictive. In the particular case of
classical first-order logic, the Löwenheim-Skolem theorem enables us to consider a set of
countable structures rather than the class of all structures.
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� sets S of V-structures such that every countable V-structure is isomorphic
to some member of S (this corresponds without loss of generality to
classical first order logic);

� sets of Henkin V-structures (the set of all Henkin structures is the set
selected in substitutional semantics);

� sets of Herbrand V-structures (the set of all Herbrand structures is the set
selected in logic programming).

Choosing a member of C2 is achieved by giving the desired value to
some parameter. The definition of C1 also depends on the parameter V .
Let LV

ωω denote the set of first-order V-formulas, and let LV
ω1ω

denote the
extension of LV

ωω that accepts disjunctions and conjunctions over countable
sets of formulas. A fragment of LV

ω1ω
is a subset of LV

ω1ω
that is closed

under subformulas, finite boolean operators, quantification, and substitution
of variables by terms [26].6 In parametric logic, the class C1 consists of
the sets of closed members of the countable fragments of LV

ω1ω
. Choosing a

member of C1 is also achieved by giving the desired value to some parameter.
So, infinitary languages play a key role in our framework, as they do in
abstract model theory. Clearly, the set of closed members of LV

ωω is the
weaker language that can be selected from C1, and most notions can also
be motivated on the basis of this familiar language.

1.6 Departing from Tarski: Distinguishing Logical
and Deductive

Every choice of possible values for the parameters of parametric logic
determines a generic notion of logical consequence, in accordance with
the generalization of the Tarskian concept of logical consequence that 5.
in Section 1.4 suggests (at this stage, it is not necessary to specify which
parameters are involved in the generic notion of logical consequence of
parametric logic). Suppose that values have been assigned to the parameters,
with L denoting the language (the selected member of C1), and let Cn(K )
denote the set of members of L that are logical consequences of a subset
K of L w.r.t. the generic notion of logical consequence determined by
the values of the parameters. In [35], Tarski claims that “we have no
alternative but to regard the concept of consequence as primitive,” before
introducing “four axioms (Ax. 1–4) which express certain elementary prop-
erties of the primitive concepts and are satisfied in all known formalized
disciplines.” ([35], p. 63). Using the previous notation, these axioms are the
following.7

6 This definition will be recalled again more formally later, when needed.
7 We use ⊆ for inclusion between classes and ⊂ for strict inclusion.
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Ax. 1. V is countable.
Ax. 2. For all K ⊆ L, K ⊆ Cn(K ) ⊆ L.
Ax. 3. For all K ⊆ L, Cn(Cn(K )) = Cn(K ).
Ax. 4. For all K ⊆ L, Cn(K ) = ∪{Cn(D) | finite D ⊆ K }.

Are those axioms satisfied in parametric logic? Ax. 1 is satisfied pre-
cisely because parametric logic accepts any countable vocabulary, but no
noncountable vocabulary, as possible value of V . Ax. 2 will be trivially
satisfied. A variant of Ax. 3 will be satisfied, namely: for every subset K of L
that is a possible knowledge base, Cn(Cn(K )) = Cn(K ). Observe that in the
particular case of classical first-order logic, Ax. 3 can be replaced by Ax. 3’:
for all consistent K ⊆ L, Cn(Cn(K )) = Cn(K ). The possible knowledge
bases of parametric logic will be the counterpart to the consistent theories
of classical first-order logic. As such they will be in parametric logic the
only legitimate starting points for logical investigation, in the same way that
in classical first-order logic, the consistent theories are the only legitimate
starting points for logical investigation. Most interesting is Ax. 4, which
states that Cn is compact. Here is how Tarski justifies the axiom: “Finally,
it should be noted that, in concrete disciplines, the rules of inference with
the help of which the consequences of a set of sentences are formed are in
practice always operations which can be carried out only on a finite number
of sentences (usually even on one or two sentences).” ([35], p. 64) The
title of the paper mentions “deductive sciences,” whereas the passages that
have been quoted mention “all known formalized disciplines” and “concrete
disciplines.” The paper makes no distinction between “deductive sciences,”
“all known formalized disciplines” and “concrete disciplines” and it seems
that Tarski considers that the three expressions are interchangeable. Are
they really interchangeable? Also, in [36], Tarski discusses the “formalized
concept of consequence” in relation to “formalized deductive theories.” Can
formalized deductive theories be characterized as frameworks that formalize
the concept of consequence? Parametric logic does not identify logical
consequence and deductive consequence, but defines deductive consequence
as a particular case of logical consequence, w.r.t. the generic notion of logical
consequence, i.e., irrespectively of the setting of the parameters.

To clarify the issue, consider a set K of sentences in L and a sentence
ϕ in L such that ϕ follows logically from K , i.e., ϕ ∈ Cn(K ) where Cn is
the specific notion of logical consequence determined by the values of the
parameters, in particular, by the notion of intended model of K . By 5. in
Section 1.4, every intended model of K is a model of ϕ. In other words,
ϕ ∈ Cn(K ) is meant to capture that:

if all members of K are true, then ϕ is true.
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The previous statement expresses a relation between structures (abstrac-
tions of possible realities) and languages. It says nothing of how the truth
of ϕ could be discovered from the truth of K , nor even what is meant by
discovering the truth of ϕ from the truth of K . Deducing ϕ from K , on the
other hand, answers the how and what questions.

What: come to the conclusion, with certainty, that ϕ is true, under the
assumption that all members of K are true.

How: by carrying out finite operations on finitely many members of K , in a
finite number of steps.

Model-theoretically, the above can arguably be formalized as: ϕ is a
deductive consequence of K iff ϕ is a compact consequence of K . With this
view, Ax. 4 is not a characterization of the notion of logical consequence,
but it is a characterization of the notion of deductive consequence. Logical
consequence and deductive consequence are two equivalent notions iff the
notion of logical consequence itself is compact. Otherwise, the deductive
consequences of K should be precisely the logical consequences of K
that happen to be compact consequences of K . In classical first-order
logic, where, for a given choice of V , the selected member of C2 is
assumed to be the class of all V-structures8 and the selected member of
C1 is assumed to be the set of all first-order V-sentences, the notion of
logical consequence is compact. Hence it is possible, in this particular
case, to identify logical consequence with deductive consequence. But
the compactness of the predicate calculus is a property that follows from
choosing particular members of C1 and C2. So the usual claim that deduction
is captured by the predicate calculus amounts to the claim that deduction is
captured by:

� the Tarskian notion of logical consequence;
� a particular selection of language and class of structures for C1 and C2,

respectively.

We disagree with this claim. Choosing particular classes of languages and
structures is unrelated to the nature of deduction. When the selected member
of C2 is the class of all V-structures and when the selected member L of
C1 is the set of closed members of some countable fragment of LV

ω1ω
, the

8 As emphasized in Footnote 5, the selected member of C2 should actually be a set rather
than a proper class, and in the particular case of classical first-order logic, this can be done
without loss of generality thanks to the Löwenheim-Skolem theorem. In this paper, we
prefer not to clutter the text with inessential technicalities.
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compactness theorem usually fails. Still, such a choice for L is perfectly
justified both with respect to the Tarskian notion of logical consequence and
with respect to abstract model theory. Moreover, it encompasses classical
first-order logic, in case all members of the set K of premises as well as the
conclusion ϕ are finite sentences. In parametric logic, the notion of deductive
consequence is reinterpreted and subsumed under a generalized notion of
logical consequence, leaving room for more complex logical inferences, i.e.,
logical consequences that are not deductive, or compact, consequences of the
set K of premises.

1.7 Compactness and Weak Compactness

The previous considerations are relevant to epistemology. Ideally, and
very simplistically, physics can be described as a discipline whose aim is
the discovery of true laws, from a set of premises K consisting of theoretical
statements and sentences that record observations or experimental results,
assumed to be true. Here, what is meant by discovering the truth of law
ϕ from the truth of premises K receives an answer based on the notion of
inductive consequence, as opposed to deductive consequence. Whereas the
latter expects a certain conclusion of ϕ from K , the former can only expect
a plausible conclusion of ϕ from K . What should be meant by plausible
will be discussed at length, and will result in a formal notion of inductive
consequence. But we want to stress first that we advocate an approach where
deductive consequence and inductive consequence are complementary rather
than incompatible notions. Identifying deductive consequence with logical
consequence forbids any logical approach to induction, or at least, any unified
logical approach to deduction and induction. We claim that in the same
way that deductive consequence is a particular case of logical consequence,
inductive consequence is another particular case of logical consequence
(where both deductive and inductive consequences of a set K of premises
can conveniently be assumed to be the same in case the logical consequences
of K are exhausted by the deductive consequences of K ). Parametric logic
defines inductive consequences as a particular case of generalized logical
consequences. Like deduction, induction offers a particular answer to the
questions of what is meant by discovering the truth of ϕ from the truth of
K and of how the truth of ϕ could be discovered from the truth of K . Such
answers make sense for any choice of parameters, and are provided uniformly
in these parameters.

The compactness property expressed in Ax. 4 is the hallmark of
deduction; that does not imply that every generalized logical consequence
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of K that is not a compact consequence of K is an inductive consequence
of K . The how that characterizes inductive processes is the same as the how
that characterizes deductive processes: finite operations are carried out on
finitely many members of K , in a finite number of steps, to deduce ϕ from
K , or to induce ϕ from K . But both processes draw conclusions of distinct
qualities: the conclusion that ϕ can be deduced from K is certain, whereas
the conclusion that ϕ can be induced from K is just plausible. What should
be meant by plausible? We resort to a variant of Popper’s refutation principle
[31]: ϕ can be induced from K when it is certain that for all legitimate sets
of premises9 K ′ that contain a well chosen finite subset of K , if ϕ does not
logically follow from K ′ (in the general sense), then it should be possible to
refute ϕ from K ′. We interpret refute ϕ from K ′ as deduce the negation of ϕ
from K ′. In terms of the idealized and very simplistic view of physics we have
used before, being certain to be able to refute a hypothetical law means that
finitely many theoretical statements, observations and results of experiments
(all members of K ′) will allow to conclude with certainty that the law is
incorrect, if such is indeed the case. Hence ϕ is a plausible consequence
of K if:

1. ϕ is indeed a generalized logical consequence of K , and
2. it is possible, on the basis of a finite subset D of K , to conclude with

certainty that for all legitimate sets of premises K ′ that contain D, either
ϕ is a generalized logical consequence of K ′, or ¬ϕ can be deduced
from K ′.

The previous pair of statements can be seen as a property of weak
compactness. In case ϕ is an inductive but not a deductive consequence
of K , ϕ cannot be derived with certainty from a finite subset of K ; but
ϕ can still be derived with confidence from a finite subset of K , where
confidence is also defined in terms of finite sets of sentences. That is,
induction does not demand that inference rules be used with infinitely many
premises, since this would indeed, to use Tarki’s words, be at odds with
concrete disciplines. But induction demands giving up certainty for confident
belief.

Usually, deductive and inductive inferences of a set K of sentences do
not exhaust all logical consequences of K . In this paper, we shall examine
carefully how such inferences can be systematically defined and classified.
We shall show how these inferences are closely related to concepts from
formal learning theory.

9 A legitimate set of premises will be technically defined as a possible knowledge base—the
counterpart in parametric logic of a consistent theory in first-order logic.
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2 OVERVIEW OF PARAMETRIC LOGIC

2.1 The Parameters

Parametric logic is a family of (logical) paradigms, defined as sequences
P of five parameters.10 We will devote a lot of time defining and justifying
the raison d’être of these parameters, but for the impatient reader, we
summarize here some of the key aspects of parametric logic, many of which
will be discussed in this paper. The parameters are:

� a vocabulary V (a countable set of predicate and function symbols,
possibly with equality);

� a set W of possible worlds (a set of V-structures);11

� a language L (the set of closed members of a countable fragment of LV
ω1ω

,
with L equal to the set of first-order V-sentences as simplest case);12

� a set D of sentences (a subset of L) called set of possible data;
� a set A of sentences (another subset of L), disjoint from D, called set of

possible assumptions.

Intuitively, a possible datum (a member of D) will represent observations
or results of experiments. Given a legitimate set X of premises, a possible
datum ϕ will be either false in all intended models of X , or true in all intended
models of X . In the second case, ϕ will have to be a member of X : it will
be one of the premises and it will not need any logical investigation to be
discovered to be true. Even though a possible datum ϕ that is true in all
intended models of a legitimate set X of premises has to be a member of X ,
we can think of ϕ as an axiom that will eventually be discovered to be true
thanks to a ‘nonlogical’ or ‘physical’ enumeration procedure that generates
a stream of observations or results of experiments.13 In contrast, a possible

10 In full generality, there is a sixth parameter, namely, a countable nonnull ordinal κ ,
that represents the number of levels above the object level at which reasoning is being
formalized. In this paper, we assume for simplicity that κ takes the value 1.

11 When the countable nonnull ordinal κ is included as a sixth parameter, a notion of
κ-multistructure is defined, and W is replaced by a particular set of particular κ-
multistructures.

12 The notion of fragment of LV
ω1ω

will be precisely defined later. When the countable nonnull
ordinal κ is included as a sixth parameter, a notion of infinitary κ-statement is defined, and
L denotes the set of closed members of a countable fragment of the set of infinitary κ-
statements.

13 In classical logic, if a set X of axioms is not recursive, and especially if it is recursively
enumerable, then it is also legitimate to conceive of a member of X as a formula that will
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assumption (a member of A) will represent an axiom or a member of some
background knowledge. A possible assumption will possibly be false in some
intended models of a legitimate set of premises, and true in others. A possible
assumption will sometimes be true in all intended models of a legitimate set
of premises without being one of the premises, in which case it could still
be discovered to be true following some logical investigation. Parametric
logic does not impose any syntactic condition on possible data and possible
assumptions: any formula can be chosen as a possible datum or as a possible
assumption (but not both).

First-order logic is a particular paradigm of parametric logic, with the
parameters taking the following values:

� V is arbitrary;
� W is the class of all V-structures;
� L is the set of closed members of LV

ωω;
� D is empty;
� A is L.

Classical logic sets to A to L because every sentence is a potential
assumption: every sentence can be used as a premise, every sentence can be
a member of a set of axioms. As a consequence, since A and D are disjoint,
D has to be set to ∅, which is consistent with the fact that classical logic
incorporates no notion of observation or result of experiment.

2.2 The Generic Notion of Logical Consequence

A generic model-theoretic notion of logical consequence in P is defined.
When P is the paradigm of first-order logic, then the notion of logical
consequence in P is the classical notion of logical consequence. The latter is
compact. This means that for all theories T and sentences ϕ:

ϕ is a logical consequence of T iff there exists a finite subset D of T
such that ϕ is a logical consequence of D.

When T is consistent, the former condition is equivalent to:

ϕ is a logical consequence of T iff there exists a finite subset D of T
such that for all consistent theories T ′, if D ⊆ T ′ then ϕ is a logical
consequence of T ′.
In first-order logic, the theories of interest are those that are consistent, but

the notion of consistent theory turns out to be too weak for other paradigms of

eventually be discovered to be true thanks to a ‘nonlogical’ enumeration procedure, rather
than as a formula that is given prior to logical investigation.
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parametric logic. The generalization of consistent theories to other paradigms
will be the possible knowledge bases, derived from the parameters W , D and
A. In an arbitrary paradigm P , the possible knowledge bases play the role
of the consistent theories of first-order logic (the possible knowledge bases
are the consistent theories when P is the paradigm of first-order logic), in
the sense that they are the legitimate starting points for logical investigation.
So more generally, assuming that we have formalized the notion of logical
consequence in P , we say that this notion has the compactness property just
in case for all possible knowledge bases T and sentences ϕ:

ϕ is a logical consequence of T in P iff there exists a finite subset D
of T such that for all possible knowledge bases T ′, if D ⊆ T ′ then ϕ is
a logical consequence of T ′ in P .

Usually, for most paradigms P , the notion of logical consequence in P is
not compact. Let T be a possible knowledge base. When P is the paradigm
of first-order logic, the notion of logical consequence in P is the classical
notion of logical consequence; hence the following three clauses define the
same set.
� The sentences that are compact logical consequences of T in P .
� The sentences that are logical consequences of T in P .
� The sentences that are logical consequences of T .

2.3 The Logical Hierarchies

When the notion of logical consequence in P is not compact, the set of
sentences that are compact logical consequences of T in P can be viewed
as the set of ‘easy’ logical consequences of T in P . The main purpose of
this framework is to study the set of sentences that are “not easy” logical
consequences of T in P and to assess their degree of complexity (i.e., “not
easiness”). The bulk of the logical consequences of T in P can be captured
by a hierarchy H built over T , with sentences higher in H being of higher
complexity than sentences lower in H.14 The hierarchy H consists of levels
H1, H2, . . . The first level H1 of H is built using a refutation principle
that generalizes the compactness property to a property referred to as
β-weak compactness, where β is an ordinal. So H1 is made of layers H1,β ,
consisting of sentences that are defined as β-weak compact consequences
of T in P . Since the notion of 0-weak compact consequence in P turns out

14 Under reasonable assumptions, H will be complete, i.e., every logical consequence of T in
P will belong to H. However, in general, H will not be complete. Even so, all inferences
that may be of interest will occur in the lower part of the hierarchy.
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to be nothing but a reformulation of the notion of compact consequence in
P ,15 the first layer of the first level of H, i.e., H1,0, consists precisely of the
compact consequences of T in P . As a result, when P is the paradigm of
first-order logic , H = H1,0. In general, we view H1,0 as the set of deductive
consequences of T in P , and H1,1 as the set of inductive consequences of T
in P .16 The higher levels of H are obtained by β-weak compactness applied
to T and sentences in the lower levels of H. So H2 is made of layers H2,β ,
consisting of sentences that are defined as β-weak compact consequences
of T and H1 in P . The process is iterated: for all nonnull ordinals α and
for all ordinals β, we inductively define the set Hα,β of sentences that are
β-weak compact logical consequences of T and ∪0<γ<αHγ in P . So the
levels of H are indexed by a nonnull ordinal α, representing iterations of the
property of β-weak compactness that determines layer β of level α of H,
for any ordinal β. The higher a sentence ϕ occurs in the hierarchy H, i.e.,
the larger the values of α and β that characterize the first levels and layers
in H where ϕ occurs, the more complex the model-theoretic fact that ϕ is a
logical consequence of T in P . Hence we have a notion of logical complexity.

Figure 3.1. The levels of the logical hierarchies

15 The larger the value of β, the weaker the condition of β-weak compactness. The intuitive
meaning of ‘0-weak compactness’ is ‘no weak compactness,’ i.e., ‘compactness.’

16 This is because the property of β-weak compactness with β = 1 is a reformulation of the
property of weak compactness discussed in Section 1.7.
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Figure 3.2. The layers of the first level of the logical hierarchies

Figure 3.3. The layers of the second level of the logical hierarchies

2.4 The Other Notions of Complexity

The logical notion of complexity that emerges from the hierarchies of
logical consequences in P of a possible knowledge base have fundamental
relationships, that can even take the form of equivalences under some
reasonable assumptions, with the following notions of complexity.

� A notion of topological complexity, given by the Borel hierarchy and
the difference hierarchies over some topological space defined from W
and D.

� A notion of syntactic complexity, given by a normal form of sentences.
� A notion of learning-theoretic complexity, derived from the concepts of

classification in the limit, or classification with a bounded number of mind
changes.

A proof theory can be defined and completeness theorems can be
obtained, under some assumptions, from the relationships between the
various notions of complexity. Our aim in this paper is to introduce the main
learning-theoretic notions and use learning scenarios to both motivate and
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illustrate the main concepts of parametric logic. We will devote special atten-
tion to the notions of deductive and inductive consequence in paradigm P .

We focus on conceptual issues, and include only the arguments that are
essential for understanding these issues. Technical proofs are omitted, and
can be found in [29], with a preliminary version of some results in [28].

3 THE RELATIONSHIP BETWEEN LOGIC
AND LEARNING

3.1 The Need for Parameters

Consider the following expressions.

(A) ϕ is a logical consequence of T .
(B) ϕ is a deductive consequence of T .
(C) ϕ is an inductive consequence of T .

In the realm of first-order logic, (A) and (B) are synonymous whereas
(C) does not have any meaning. In other words, if first-order logic is
the framework that correctly formalizes the notion of logical/deductive
consequence, then ‘inductive consequence’ is not a logical concept, unless
it is formalized in a framework incompatible with first-order logic. More
specialized arguments lead to the same conclusion, e.g., the formal notion of
deductive consequence is monotonic, whereas induction falls in the field of
nonmonotonic reasoning. Despite such arguments, we would still like each of
(A), (B) and (C) to make sense in a common framework. What should be the
relation between (A), (B) and (C)? The three statements can be paraphrased
as below.

(A’) If all members of T are true, it can be concluded that ϕ is true.
(B’) If all members of T are true, it can be deduced that ϕ is true.
(C’) If all members of T are true, it can be induced that ϕ is true.

(A’) is about inference of ϕ from T ; (B’) and (C’) are special cases—
deduction and induction—of such an inference. Of these two mechanisms,
let us accept the view that deduction is more demanding than induction
because the attributes of the former are conclusiveness and certainty, whereas
the attributes of the latter are refutability—weaker than conclusiveness—and
believability—weaker than certainty. We can then claim that the relationship
between (A), (B) and (C) could be represented as follows.17

17 Actually, postulating that deductive consequences are particular cases of inductive con-
sequences would be mainly for convenience, though ϕ would be a ‘genuine’ inductive
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(B) ϕ is a deductive consequence of T
⇓

(C) ϕ is an inductive consequence of T
⇓

(A) ϕ is a logical consequence of T

The relation between (A), (B) and (C) as depicted above asks for a
redefinition of the classical notion of logical/deductive consequence into two
distinct notions, without postulating that the latter is equivalent to the former.
Though this would satisfy the desideratum that one framework provides a
formalization to each of (A), (B) and (C), it raises the issue that the notions
of logical and deductive consequences would be formalized differently in
incompatible frameworks, namely, in the new framework and in first-order
logic. We certainly have no intention to suggest that the way first-order logic
formalizes the notions of logical and deductive consequences, postulating
their equivalence, is wrong. The dilemma is easily solved by creating a
framework equipped with a list P of parameters, and defining the notions

(A”) ϕ is a deductive consequence of T in P ,
(B”) ϕ is an inductive consequence of T in P , and
(C”) ϕ is a logical consequence of T in P .

First-order logic would be a particular case of this framework when the
members of P take some particular values. With respect to those values, (A”),
(B”) and (C”) would just be equivalent notions, equivalent to the classical
notion of logical consequence.18 We call P a (logical) paradigm and define
the constituent parameters of P in the sequel.

3.2 Possible Worlds

Let us first adopt a convention to be used throughout the paper. If we
say that a vocabulary contains 0 and s, then 0 denotes a constant and s
a unary function symbol. Moreover, given a nonnull member n of the set
N of natural numbers, n is used as an abbreviation for the term obtained from

consequence of T in case it is an inductive consequence of T that is not a deductive
consequence of T . For further arguments for supporting the view that (C) implies (A),
see [7].

18 More precisely, the equivalence between (A”) and (B”) in the particular case where
P represents first-order logic requires a shift from ‘the notion of inductive conse-
quence is meaningless’—the classical view—to “the notion of inductive consequence is
degenerate”—the view of parametric logic. Both points of view are technically indistin-
guishable.
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0 by n applications of s to 0. ({n | n ∈ N} is the set of numerals.) Consider
a vocabulary that contains 0 and s. The following is a typical example of
what could reasonably be presented as an inductive inference in P , hence as
a logical inference in P , for some choice of P .19

(�)
P(0) P(1) P(2) P(3) P(4) . . .

∀x P(x)

Obviously, ∀x P(x) is not a logical consequence of {P(n) | n ∈ N} in the
classical sense. What could justify the claim that, in some sense, ∀x P(x) is
a logical consequence of {P(n) | n ∈ N}?
� First, the assumption that the underlying vocabulary contains no function

symbol except 0 and s, hence that the numerals exhaust all closed terms.
� Second, the assumption that the structures under consideration are such

that each of their individuals interprets a closed term; every individual has
a name, there is no nonstandard element.20

In the context of group theory, the class of intended interpretations
encompasses both standard and nonstandard structures. But in other contexts,
in particular in artificial intelligence, it is legitimate to assume that any
reasonable abstraction of that part of reality we are interested in consists
exclusively of structures all of whose individuals have a name. These are the
only intended interpretations.21 The class of intended interpretations might
as well consist exclusively of finite structures, etc. An intended interpretation
is not a fixed notion, but depends on the context of formalization, which
suggests rephrasing (C”) as:

(C	) every intended model of T is a model of ϕ.

The formal notion of logical consequence of first-order logic then appears
as a cautious formalization because it does not restrict whatsoever the class
of intended models of a set of sentences; it is the limiting case of an extended
notion of logical consequence that can accommodate various assumptions

19 This is an instance of the ω-rule. See [18] for an interesting discussion on whether it should
be considered as a logical rule. In parametric logic, whether it is logical or not depends on
the values of the parameters.

20 Indeed, (�) is not sound in the classical sense due to the existence of a model M of
{P( n ) | n ∈ N} whose domain contains some element x that does not have property P;
if the vocabulary contains no function symbol except 0 and s then x has to be nonstandard.
Of course, both assumptions discussed here are only sufficient (i.e., they are not necessary)
to support the view that in some sense, ∀x P(x) is a logical consequence of {P(n) | n ∈ N}.

21 See [7] for more detailed arguments of this claim.
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on the nature of the intended models of a theory. We have justified the
introduction of the first two parameters in P :

� a countable vocabulary V , i.e., a countable set of function symbols and
predicate symbols,22 with or without equality;23

� a set W of V-structures, referred to more simply as structures, of possible
interpretations, called possible worlds.

Let us introduce some terminology. A Henkin structure is a structure
all of whose individuals are nonempty sets of closed V-terms, referred to
more simply as terms, consisting precisely of those terms that they interpret.
A Herbrand structure is a Henkin structure all of whose individuals are
singletons. Hence every individual of a Herbrand structure interprets a unique
closed term, and is usually identified with it. We consider Herbrand structures
in case V is equality free, whereas we usually consider Henkin structures
otherwise. We say that a structure M is standard if either V contains equality
and M is Henkin, or V is equality free and M is Herbrand.

3.3 Numerical Learning Paradigms

If V and W were the only parameters in P , an intended model of a
set T of V-sentences24—referred to more simply as sentences—would be
a model of T that belongs to W . To examine further whether “member
of W” is good enough as a formal definition of “intended model,” we
now introduce some concepts from formal learning theory, or inductive
inference. This discipline offers a formal treatment of induction by defining
various learning paradigms. Most learning paradigms are expressed in a
numerical setting [19], while others are expressed in a logical setting [21],
[27]. The distinction, however, is not very relevant as virtually all numerical
learning paradigms can be formulated as logical learning paradigms. It
is howeveruseful to first understand learning paradigms in the numerical

22 In relation to (�) above, the choice of function symbols was crucial whereas the choice
of predicate symbols was irrelevant, but some developments of parametric logic are only
possible by choosing a specific set of predicate symbols.

23 We want to be able to consider both languages with equality and languages without
equality, and hence depart from the usual practice of including only nonlogical symbols
in vocabularies.

24 The notion of “V-sentence” is intentionally left formally unspecified here. It is meant to be
a closed V-formula, which we do not define now. A definition will be given after we have
addressed the question: “what should be a formula in parametric logic?” At this stage, it is
not clear why this question has to be addressed. Before the notion is fully formalized, the
reader can think of “first-order sentence” when reading “sentence.”
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setting. The next section will present the logical counterpart to the notions
discussed here.

A language is a recursively enumerable (r.e.) set of natural numbers. Such
a set can be conceived of as an abstract model of a natural language. Indeed,
assume that all finite strings of words over some alphabet (the Latin alphabet
for instance) are coded as numbers. At some abstraction level, a natural
language (English for instance) can be reduced to the set L of strings of
words that are grammatically correct, hence to some set of natural numbers
(those which code the grammatically correct strings) that can legitimately
be assumed to be recursive. A grammar in the theory of formal languages
is a procedure that generates a set of strings, hence a correct grammar for
L would generate precisely the members of L . The fact that the property
of being recursively enumerable captures the notion of effective generation
(by an unrestricted grammar) explains why languages are assumed to be r.e.
rather than recursive. One of the parameters of a numerical learning paradigm
is a set L of languages, that could be called the set of possible languages.
Intuitively, L represents a set of coded natural languages that a child might
be genetically programmed to learn, when the social context puts the child
in contact with one of these languages. For an example, we will consider the
learning paradigm where L = {N, N \ {0}, N \ {0, 1}, . . . ,∅}, i.e., L is the
set of final segments of N.

Let 
 be a symbol whose intuitive meaning is ‘no information,’ or
‘no datum.’ Given a language L in L, a (numerical) text for L is an ω-
sequence of members of L ∪ {
} in which each member of L occurs at
least once. For instance, (4, 3, 2, 
, 6, 5, 4, 
, 8, 7, 6, 
, . . .) is a numerical
text for N \ {0, 1}. Intuitively, a text for a language is an enumeration of all
(codes of) grammatically correct sentences of this language, that represents
a very idealized learning scenario where a child would be presented with
nothing but grammatically correct sentences, and all grammatically correct
sentences if no time restriction were imposed. Note that repetitions of
data are allowed, and that 
 is necessary to define the (only) text for the
empty language, assuming that ∅ is indeed a member of L. Two kinds of
learning scenarios will be considered: identification and classification. In
formal learning theory, paradigms of identification are much more common
subject of study than paradigms of classification.25 But in an uncomputable
setting, identification is a particular case of classification, as will be seen, and
classification is more closely related to parametric logic than identification,

25 The seminal work on identification in the limit for numerical paradigms is [17]. Identifica-
tion in the limit was extended to logical paradigms in [16]. For a study of classification in
numerical paradigms, see [15], [34].
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hence we will discuss both identification and classification, starting with the
former. The following notation is needed. Given a set X , a sequence e of
members of X , and a k ∈ N that, in case e is finite, is at most equal to the
length of e, we denote by e|k the initial segment of e of length k. Given a set
X , let X 	 denote the set of finite sequences of members of X . So (N ∪ {
})	
is the set of finite sequences of members of N ∪ {
}.

Assume that an acceptable enumeration (ϕi )i∈N of all partial recursive
functions has been fixed, and for all i ∈ N, denote by Wi the domain of ϕi (i
is said to be an r.e. index for Wi ). A (numerical) identifier is a partial function
from (N ∪ {
})	 into N—where an output i ∈ N is meant to represent the
language Wi .26 So an identifier is fed with longer and longer finite initial
segments of a text e for a language L in L, in response to which it possibly
outputs a hypothesis, a guess on what it thinks L might be. The aim of the
identifier is to discover or learn the particular L that generates e. What is
meant by ‘discover’ or ‘learn’ is formalized by a learning criterion. The
most common criterion is that of identification in the limit, that expects the
identifier to eventually converge to an r.e. index of the correct language.
Formally:27

Definition 3.1 A numerical identifier f is said to identify L in the limit from
texts iff for all L ∈ L and texts e for L, f (e|k) = f (e|k+1) and W f (e|k ) = L for
cofinitely many k ∈ N.

L is said to be identifiable in the limit from texts iff some numerical
identifier identifies L in the limit from texts.28

The criterion of identification in the limit from texts is a very simpli-
fied representation of children who learn their native language when they
eventually find out which language they get output from, and stick to this
correct hypothesis in the face of new data. The key point is that identifiers are
usually unable to know that they have hit the convergence point. Consider the
example for L given above. Let f be the numerical identifier that outputs a
fixed r.e. index for L in response to a member σ of (N ∪ {
})	, where L = ∅ if
no natural number occurs in σ , and where L = {n, n + 1, . . .} if some natural

26 Most learning paradigms require that identifiers are computable, and possibly satisfy some
extra conditions.

27 Let two sets X,Y and a partial function g from X into Y be given. Given two members
x, x ′ of X , we write g(x) = g(x ′) when both g(x) and g(x ′) are defined and equal; we write
g(x) �= g(x ′) otherwise.

28 This criterion is known in the literature as E X-identification (explanatory identification),
as opposed to BC-identification (behaviorally correct identification). In an uncomputable
setting, the distinction is irrelevant. The kind of data that is dealt with will play a crucial
role, hence we emphasize its importance in the terminology.
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number occurs in σ and n is the least such number. Obviously, f identifies L
in the limit from texts.

We now turn to classifiers. A (numerical) classifier is a partial function
from (N ∪ {
})	 into {0, 1}. So a classifier is also fed with longer and longer
finite initial segments of a text e for a language L in L, in response to
which it possibly guesses whether L does or does not have some given
property. The aim of the classifier is to discover whether the particular L
that generates e has that property. Here again, what is meant by “discover” is
subject to different formalizations. An important criterion is that of positive
classification in the limit. That is, the classifier eventually converges to 1
if and only if the language the classifier gets data from has the property of
interest. The property of interest can be identified with a subset X of the set
of possible languages, and having property X means being a member of X .
Formally:

Definition 3.2 Let a subset X of L be given.
A numerical classifier f is said to positively classify L in the limit, from

texts and following X iff for all L ∈ L and texts e for L, L ∈ X iff f (e|k) = 1
for cofinitely many k ∈ N.

L is said to be positively classifiable in the limit, from texts and following
X iff some numerical classifier positively classifies L in the limit, from texts
and following X.

For instance, if X = {N,N \ {0, 1},N \ {0, 1, 2, 3}, . . .} then the property
of interest is: the language is nonempty and its least element is even. Clearly,
L is positively classifiable in the limit, from texts and following X .

3.4 Logical Learning Paradigms

To represent a language (an r.e. subset of N) in a logical setting, we
consider a vocabulary V containing 0, s and a unary predicate symbol P ,
possibly plus equality and some extra predicate and function symbols. We say
that a structure represents a language L if it is the unique standard structure
ML such that:

� each of ML’s individuals interprets a unique numeral (i.e., the domain of
ML can be thought of as being N);

� the interpretation in ML of all function and predicate symbols in V except
P is fixed by some predicates and functions over N;

� for all n ∈ N, P(n) is true in ML iff n is a member of L .
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Note that ML is a Henkin structure. If V is equality free and contains no
function symbol except 0 and s, then ML is actually a Herbrand structure.
Clearly, ML is the counterpart in a logical setting to the language L of the
numerical setting. To represent in the logical setting the class L of possible
languages of the numerical setting, we define the set W of possible worlds to
be {ML | L ∈ L}. To every numerical text for L corresponds a (logical) text
for ML where the sentence P(n) replaces all occurrences of n, for all n ∈ N.
So the logical text associated with the previous example of numerical text is:

(P(4), P(3), P(2), 
, P(6), P(5), P(4), 
, P(8), P(7), P(6), 
, . . .).

Note that 
 can occur both in a numerical and in a logical text. As a
counterpart to the numerical identifiers, we then define a (logical) identifier
to be any partial function from the set of finite sequences of sentences and 
’s
into the set of sentences that have a unique standard model. A sentence ϕ in
the codomain of a logical identifier plays the role of a natural number i in the
codomain of a numerical identifier: ϕ refers to a standard structure via the
notion of model, whereas i refers to a language L via the notion of r.e. index.
As a counterpart to the numerical classifiers, we define a (logical) classifier
to be any partial function from the set of finite sequences of sentences and 
’s
into {0, 1}.29 For the logical analogue of Definition 3.1, we have to assume
that the property of being M, for any possible world M, is expressible by
a sentence in the logical language, which parallels the representation of a
language (an r.e. subset of N) by an r.e. index.

Definition 3.3 A logical identifier f is said to identify W in the limit from
texts iff there exists a family (ϕM)M∈W of sentences such that the following
holds for all possible worlds M.

1. For all possible worlds N, N |=ϕM iff N = M.
2. For all texts e for M, f (e|k) = ϕM for cofinitely many k ∈ N.30

W is said to be identifiable in the limit from texts iff some logical
identifier identifies W in the limit from texts.

29 Note that logical identifiers and classifiers are more general than their numerical coun-
terparts, because they are functions from a set that is more inclusive than ({P(n) |
n ∈ N} ∪ {
})	. This will turn out to be convenient when we generalize the notion of text
to a notion of environment, allowing for infinitely many variations on the kind of data
presented to logical identifiers and classifiers. This will include in particular the case where
{P(n),¬P(n) | n ∈ N} is the set of data, which is the counterpart to the notion of informant
of the numerical framework.

30 Recall that e|k denotes the sequence of the first k elements of e.
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For instance, with L = {N,N \ {0},N \ {0, 1}, . . . ,∅}, each of the possi-
ble languages to be identified in the limit is adequately represented by one
and only one member of

{∀x(P(x) ↔ n ≤ x) | n ∈ N} ∪ {∀x¬P(x)}.
So if V contains ≤, interpreted as expected, there is a logical learner that
does the same job as the numerical learner described in the previous section,
and identifies W in the limit. When working from a logical text for, say,
N \ {0, 1}, such a successful logical learner outputs cofinitely many times
the sentence ∀x(P(x) ↔ 2 ≤ x), or another sentence that represents MN\{0,1}
properly.

We define as follows the logical counterpart to Definition 3.2.

Definition 3.4 Let a subset X of W be given.
A logical classifier f is said to positively classify W in the limit, from

texts and following X iff for all M ∈ W and texts e for M, M ∈ X iff
f (e|k) = 1 for cofinitely many k ∈ N.

W is said to be positively classifiable in the limit, from texts and
following X iff some logical classifier positively classifies W in the limit,
from texts and following X.

Given a sentence ϕ, if X is the set of models of ϕ in W , then we say
‘following ϕ’ instead of ‘following X.”

As suggested in the last clause of the definition, we will be interested in
positive classification in the limit following definable subsets of W . Which
subsets of W (which properties of possible worlds) are definable depends
on the members of V except 0, s and P , and their interpretation; it also
depends on how we define the notion of a sentence. For instance, consider
again X = {N, N \ {0, 1}, N \ {0, 1, 2, 3}, . . .}. If V consists just of 0, s,
and P , then {ML | L ∈ X} is not definable by a first-order sentence. On
the other hand, if V also contains ≤ and × (interpreted as expected), then
{ML | L ∈ X} can be defined by

∃y∀x(P(x) ↔ x ≥ 2 × y).

As for formal learning theory in the numerical setting, we could impose
that logical identifiers and classifiers are computable. For logical classifiers,
we would then have to decide if we wanted convergence to the same output
on all texts for a given world (explanatory learning) or if we accepted
convergence to different representations of some world on different texts for
this world (behaviorally correct learning). Such considerations are irrelevant
here. In particular, we do not want to impose any computability condition
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since we are introducing the model-theoretic part of parametric logic. We
want to proceed as we do in first-order logic, where a notion of truth
is introduced, and it turns out to be computable (in the sense that the
set of all valid sentences is r.e.). Computability is not introduced at the
model-theoretic level.31 Finally, we note that due to the fact that Definitions
3.3 and 3.4 impose no computability condition, positive classification in
the limit is more general than identification in the limit, provided that
the set of possible worlds is countable—an assumption that holds for all
logical paradigms that represent numerical learning paradigms. Indeed, a
straightforward enumeration technique enables us to show the following.

Remark 3.5 Suppose that W is countable. Let (ϕM)M∈W be a family of
sentences such that for all M, N ∈W , N |= ϕM iff N = M. Then W
is identifiable in the limit from texts iff for all M ∈ W , W is positively
classifiable in the limit, from texts and following ϕM.

Some learning paradigms do not consider texts, but informants, i.e.,
sequences of positive or negative data, whereas texts may contain positive
data only. An informant for a language L is an enumeration of the graph of
the characteristic function of L (hence an enumeration of pairs of the form
either (n, 1) with n ∈ L or (n, 0) with n ∈ N \ L). For instance, one of the
numerical informants for the language N \ {0, 1} starts with

((4, 1), (3, 1), (2, 1), (1, 0), 
, (6, 1), (5, 1), (4, 1), (0, 0), 
).

In the associated logical informant, all occurrences of (n, 1) are replaced
by P(n), and all occurrences of (n, 0) are replaced by ¬P(n), for all
natural numbers n. So the logical informant that corresponds to the previous
numerical informant starts with

(P(4), P(3), P(2),¬P(1), 
, P(6), P(5), P(4),¬P(0), 
).

Whereas logical texts are sets of closed atoms (closed atomic formulas),
logical informants are sets of closed literals (closed atoms or negations
of closed atoms). The (numerical or logical) notion of identification in
the limit from informants, as well as the (numerical or logical) notion of
positive classification from informants, are modeled on the definitions above,
replacing texts by informants. We omit the formal details, since they are
straightforward.

31 Under reasonable assumptions, parametric logic also enjoys a computable proof-theoretic
characterization of its model-theoretic notions. The proof-theoretic aspects of parametric
logic will not be discussed in this paper.



Deduction, Induction and Beyond in Parametric Logic 81

3.5 Possible Data

We have explained how learning paradigms can be defined in a logical
setting. But what we are after is a deeper connection between formal learning
theory and logic. We want to examine the relation between learning and
some notion of logical consequence, by looking at the following issue. Let a
sentence ϕ, an M ∈ W , and

[∣∣ a text | an informant
∣
∣] e for M be given. Let

T be the set of sentences that occur in e.

� Let a logical identifier f be given. Assume that f identifies W in the limit
from

[∣∣ texts | informants
∣
∣]. If f (e|k) = ϕ for cofinitely many k ∈ N, is

every intended interpretation of T a model of ϕ?
� Let a logical classifier f be given. Assume that f positively classifies W

in the limit, from
[∣∣ texts | informants

∣
∣] and following ϕ. Is every intended

interpretation of T a model of ϕ iff f (e|k) = 1 for cofinitely many k ∈ N?

In other words, we want to know whether the sentence output by a logical
identifier that correctly converges on

[∣∣ a text | an informant
∣∣] e for T is

a logical consequence of T , in some sense of ‘logical consequence’. We
want to know whether a logical classifier correctly converges on

[∣∣ a text
| an informant

∣
∣] e for T just in case the sentence that defines the task of

positive classification is a logical consequence of T , in some sense of “logical
consequence”. If we asked the classifier to output either ϕ or ¬ϕ instead of
1 or 0, respectively, the similarity between both issues would become even
more apparent: is it the case that ϕ is logical consequence of T , for some
sense of “logical consequence”, iff a successful identifier or a successful
(modified) classifier ‘correctly’ outputs ϕ (in the limit) when it processes
T (working on one of the

[∣∣ texts | informants
∣
∣] generated by T )?

If ‘intended model of T ’ means “model of T that belongs to W”, the
answer to these questions is clearly yes if e is an informant, but no if e is a
text. For instance, consider ϕ = ∀x(P(x) ↔ x ≥ 2), and let L be defined as
in the previous sections. Since ϕ uniquely describes MN\{0,1} among the set of
structures ML , L ∈ L, any identifier that identifies W in the limit from texts
will converge in the limit to ϕ on any text for MN\{0,1}. And any classifier that
positively classifies W in the limit, from texts and following ϕ will converge
in the limit to 1 on any text for MN\{0,1}. The set of sentences occurring in e
is T = {P(2), P(3), P(4), . . .}. Obviously, MN and MN\{0} are models of T
in W , but they are not models of ϕ.

The problem is that T = {P(2), P(3), P(4), . . .} is not a faithful transla-
tion of a logical text for MN\{0,1}, or equivalently, of a numerical text for the
language L = N \ {0, 1}. A text for L contains occurrences of all members
of L , which means that since 0 and 1 do not occur in a text for L , then
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0 and 1 do not belong to L . This implicit condition on texts for L has no
counterpart in T when we consider the models of T in W . Defining the
intended models of T as the models of T that belong to W is too crude,
because such models can freely make P(0) and P(1) either true or false
instead of implicitly constraining both P(0) and P(1) to be false. A natural
approach is to include a new parameter in the definition of paradigm P ,
called the set of possible data, denoted by D. With the current example
and the notion of text, we would give D the value {P(n) | n ∈ N}. With
the current example and the notion of informant, D would take the value
{P(n),¬P(n) | n ∈ N}. More generally, D could be any set of sentences that,
intuitively, represent potential observations, or results of experiments. If the
possible datum P(1) does not occur in T , it indicates that the intended model
of T —in our example MN\{0,1}—makes P(1) false. This is an instance of the
closed world assumption [32], [24]. Intuitively, the closed world assumption
expresses that a fact can be inferred to be false if it cannot be logically derived
from an underlying set of hypotheses. Of course, this idea cannot be applied
carelessly; for instance, neither P(0) nor P(1) can be logically derived from
the hypothesis that P(0) ∨ P(1) is true, but it would be inconsistent to
conclude from that hypothesis and an incorrect interpretation of the closed
world assumption that both P(0) and P(1) are false. Theories of a specific
syntactic form can avoid this inconsistency issue and are good candidates to
apply a closed world assumption: for instance a set T of Horn clauses, e.g.,
a set of disjunctions of atomic formulas or their negations with at most one
positive (atomic) disjunct, has a model M where all closed atomic sentences
not logically implied by T are false in M. Leaving technical issues aside,
the previous discussion leads to a closed world assumption in the form of the
convention that if an observation or experimental result can be obtained from
a possible world M abstracting the reality under consideration, then such an
observation or experimental result should occur in any theory related to M.
Hence if a theory T does not contain some possible datum ψ , no intended
interpretation of T should be a model of ψ .

3.6 Logical Consequence in P
Armed with the parameters W and D, we can define the notion of

logical consequence in P . First we have to introduce some notation. Given
a structure M, we use DiagD(M) to represent the D-diagram of M, that is,
the set of all members of D true in M. Given a set of sentences T , we denote
by Mod(T ) the class of all models of T , and by ModW (T ) the class of all
models of T in W (ModW (T ) = Mod(T ) ∩ W).
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Definition 3.6 Let a set T of sentences and a structure M be given. We say
that M is a D-minimal model of T in W iff M ∈ ModW(T ) and for all N ∈
ModW (T ), DiagD(N) �⊂ DiagD(M).

Note that if W is the set of all Herbrand structures, D the set of all atomic
sentences, and T a set of definite clauses, then a D-minimal model of T in
W is what is known in the literature on logic programming as a minimal
Herbrand model of T . Given a set of sentences T , let us denote by ModD

W (T )
the class of all D-minimal models of T in W . By the discussion above, the
class of intended models of T is not ModW (T ), but ModD

W(T ). Note that
ModD

W (T ) and ModW (T ) are equal when D is semantically closed under
negation, which covers the case D = ∅. Consider for instance a theory T that
has four models in W , say M1, M2, M3 and M4, and for all i ∈ {1, 2, 3, 4},
denote by Zi the set of all sentences that are true in Mi . Figure 3.4 is a possi-
ble representation of Z1, Z2, Z3, Z4 and D. Here the D-minimal models of T
in W are M2 and M4; their D-diagrams are represented by the dashed areas.
The structure M2 is a D-minimal model of T in W because Z2 ∩ D does not
strictly contain Z1 ∩ D, Z3 ∩ D or Z4 ∩ D. Similarly, M4 is a D-minimal
model of T in W because Z4 ∩ D does not strictly contain Z1 ∩ D, Z2 ∩ D or
Z3 ∩ D. On the other hand, since Z2 ∩ D is strictly included in both Z1 ∩ D
and Z3 ∩ D, neither M1 nor M3 is a D-minimal model of T in W .

Since ModD
W (T ) is the class of intended models of T , the next definition

captures the notion of logical consequence in P introduced as (C”) in
Section 3.1 and rephrased as (C	) in Section 3.2.

Definition 3.7 Given a set of sentences T and a sentence ϕ, we say that ϕ is
a logical consequence of T in P iff ModD

W(T ) ⊆ Mod(ϕ).

Figure 3.4. Two D-minimal models out of four models
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3.7 Possible Assumptions

A logical paradigm that represents a learning paradigm usually takes for
W a countable set of standard structures, and the theories that should be the
starting point for logical investigation—because they are associated with a
text or with an informant for a member of W—are the D-diagrams of the
possible worlds. Such theories contain “data” only. Of course, they form an
extremely restrictive class of theories, more flexibility is needed. First-order
logic is purely axiomatic in the sense that it accommodates no notion of
observations or results of experiments. This means that first-order logic sets
D to the empty set. On the other hand, in first-order logic, any (consistent)
sentence can be part of a theory that would be the starting point for logical
investigation, any (consistent) sentence can be used as an axiom.

This justifies the addition of a fourth parameter to P , called set of possible
assumptions, denoted by A. Like D, A can be any set of sentences, provided
that it is disjoint from D. Technically, no real difference would result from
assuming that D is included in A, or that no a priori relation between D and
A exists. We require that A and D are disjoint because this sometimes allows
to slightly simplify some formal arguments. With this observation in mind,
the paradigms of formal learning theory we have examined before are such
that A is empty. With W , D and A in hand, what is the counterpart to the
classical notion of a consistent theory? Since the intended interpretations of
a theory T are the D-minimal models of T in W and since we assume that a
starting point for logical investigation consists of possible data and possible
assumptions only, a quick answer could be: any set X of sentences such that
X ⊆ D ∪ A and X has at least one D-minimal model in W . But among the
sets X of sentences that satisfy this condition, some have very bad properties,
as the next proposition shows.

Proposition 3.8 Suppose that V consists of infinitely many constants and a
unary predicate symbol. There exists a set W of standard structures such
that if W=W, D is the set of atomic sentences and X is the set of first-order
sentences that are logical consequences of ∅ in P , then ModD

W (∅) is a strict
subset of ModD

W (X ).

In the previous proposition, we would rather expect and prefer to have
ModD

W (∅) = ModD
W(X ). Also, remember that we justified the introduction

of D claiming that a possible datum ψ represents an observation or an
experimental result obtained from a possible world M abstracting the reality
under consideration, and that the absence of ψ from any theory T related to
M should mean that all intended interpretations of T make ψ false. In other
words, for any ‘reasonable’ theory T and for any intended interpretation M
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of T , the intersection of T with D should be equal to the D-diagram of M.
What makes ModD

W (∅) a strict subset of ModD
W (X ) in Proposition 3.8 is that,

in particular, no possible world has ∅ as D-diagram. These considerations
suggest the following definition.

Definition 3.9 A possible knowledge base is a set of the form DiagD(M) ∪
A where M is a member of W and A a subset of A all of whose members are
true in M.

We denote by B the set of all possible knowledge bases. Hence:

B = {DiagD(M) ∪ A | M ∈ W, A ⊆ A, M |= A}.
Let a possible world M be given, and let Z be the set of sentences that
are true in M. Figure 3.5 represents three possible knowledge bases of the
form DiagD(M) ∪ X with X ⊆ {ϕ ∈ A | M |= ϕ}. The leftmost theory T1

is the smallest knowledge base of this type: X is empty, and T1 is just the
D-diagram of M. The rightmost theory T3 is the largest knowledge base of
this type: T3 is the set of all members of D ∪ A that are true in M. The middle
theory T2 is an intermediate case, that includes only some of the members of
A that are true in M, besides the D-diagram of M.

Since B is fully determined by the parameters in P , B is not conceived
of as a primitive parameter of parametric logic, but as a derived one; the
primitive parameters are the members of P . First-order logic takes for A
the set of all first-order sentences, which, together with the fact that D is
set to ∅, implies that the set of possible knowledge bases is the set of all
consistent theories. So when casting first-order logic and paradigms of formal
learning theory into parametric logic, we obtain two limiting cases of logical
paradigms: D is equal to ∅ for the former, whereas A is equal to ∅ for the
latter.

Figure 3.5. Three possible knowledge bases
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3.8 Deductive Consequence in P

Let us get back to (A”), (B”) and (C”) as well as the inference

(�)
P(0) P(1) P(2) P(3) P(4) . . .

∀x P(x)

introduced in Sections 3.1 and 3.2. We have formalized (C”) as Definition
3.7, but (A”) and (B”) have still not been formally addressed. We can now
justify why (�) is a logical inference in P for natural choices of P . Indeed,
assume that the logical paradigm P we are working with is such that:

(i) V contains no function symbol except 0 and s;
(ii) {P(n) | n ∈ N} ⊆ D ⊆ {P(n),¬P(n) | n ∈ N};

(iii) W is a set of standard structures, and the D-diagram of some member
of W is equal to {P(n) | n ∈ N}.

Then {P(n) | n ∈ N} is a possible knowledge base and every D-minimal
model of {P(n) | n ∈ N} in W is a model of ∀x P(x), which shows that
∀x P(x) is a logical consequence of {P(n) | n ∈ N} in P . The assumptions
about P above are natural, and they are tacitly accepted when (�) is viewed
as some form of logical inference. But we have not examined why (�) can
moreover be conceived of as an inductive inference in P , for some choice of
P . Conditions (i)–(iii) make ∀x P(x) a logical consequence of {P(n) | n ∈ N}
in P . Do they also make ∀x P(x) an inductive consequence of {P(n) | n ∈ N}
in P , in a precise sense that still has to be formalized?

Before tackling (B”), we first examine how to formalize (A”). Note that
a logical consequence of T in the classical sense is a logical consequence
of T in P , since every D-minimal model of T in W is a model of T . Shall
we define the deductive consequences of T in P as the logical/deductive
consequences of T in the classical sense? It would be unnatural, having
defined a generic notion of logical consequence that depends, in particular, on
a set of possible worlds W possibly distinct from the class of all structures,
to have a model-theoretic interpretation of “deductive consequence in P”
that does not refer to the member W of P , but invariantly to the class of
all structures. We reminded the reader that the attributes of deduction are
certainty and conclusiveness. Why does an inference such as (�) not have
these attributes? Because no finite subset of the set of premises enables us to
conclude that ∀x P(x) is true. We suggest taking into account the fact that we
are not considering arbitrary sets of sentences, but possible knowledge bases
only, and accept the converse of the implication expressed in the previous
statement as the hallmark of deduction. Formally:
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Definition 3.10 Given T ∈ B and a sentence ϕ, we say that ϕ is a deductive
consequence of T in P iff there exists a finite subset D of T such that for all
T ′ ∈ B:

if T ′ includes D then ϕ is a logical consequence of T ′ in P .

In the case of first-order logic where the set of possible knowledge bases
is the set of consistent theories, the condition expressed in Definition 3.10 is
equivalent to the usual compactness property. This provides an illuminating
reason for the equivalence between logical and deductive consequences in
first-order logic: the compactness theorem. In the general case, it is easy
to verify that for all possible knowledge bases T and sentences ϕ, ϕ is
a deductive consequence of T in P iff there exists a finite subset D of
T such that ModW (D) ⊆ Mod(ϕ). Hence the only difference between the
compactness property of first-order logic and the compactness property
expressed in Definition 3.10 is that all structures are involved in the former,
and only the members of W in the latter.

Example 3.11 Assume that W = {ML | L ∈ L} where L is the set of final
segments of N. Set D = {P(n) | n ∈ N}, A = ∅, and let T = {P(n) | n ≥ 2}.
Then ϕ = ∀x P(s(s(s(x)))) is a deductive consequence of T in P . Indeed, T
contains P(3), and every model of P(3) in W is a model of ϕ. Note that
T � ϕ.

3.9 Inductive Consequence in P

Let us consider inference (�) again and examine under which conditions
it could be viewed as some form of induction. Because we want every
inductive consequence of a possible knowledge base T in P to be a logical
consequence of T in P (as explained in Section 3.1), we assume that
conditions (i)–(iii) above are satisfied: they are the natural hypotheses on
the basis of which we can infer that ∀x P(x) is a logical consequence of
{P(n) | n ∈ N} in P , as defined in Definition 3.7.
� First assume that D is equal to {P(n),¬P(n) | n ∈ N}. Working from

{P(n) | n ∈ N}, can we believe in ∀x P(x), supporting this belief on a
notion of refutability—the other attribute of induction? Yes because either
∀x P(x) is true, or a conclusive refutation of ∀x P(x) is guaranteed. More
formally, if T is any possible knowledge base then we have:

– either ∀x P(x) is a logical consequence of T in P (in which case T can
only be {P(n) | n ∈ N}), or

– ∃x¬P(x) is a deductive consequence of T in P (because T contains
¬P(n) for some n ∈ N).
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Then assume that D is equal to {P(n) | n ∈ N}. Still working from
{P(n) | n ∈ N}, can we also believe in ∀x P(x), supporting this belief on
a notion of refutability? No because if we were actually working from
{P(n) | n ≥ 2}, then we could not refute the hypothesis that ∀x P(x) is not
a logical consequence of {P(n) | n ≥ 2} in P : ∃x¬P(x) is not a deductive
consequence of {P(n) | n ≥ 2} in P . So for this choice of D, though
∀x P(x) is a logical consequence of {P(n) | n ∈ N} in P , we do not view
∀x P(x) as an inductive consequence of {P(n) | n ∈ N} in P .
Finally, assume that D = {P(n) | n ∈ N} ∪ {¬P(n) | n ≥ 2}. Once again
working from {P(n) | n ∈ N}, can we believe in ∀x P(x), supporting this
belief on a notion of refutability? Though the argument used for the first
choice of D cannot be used for this third choice of D, the answer is yes.
Indeed, once we have P(0) and P(1) in hand, then it becomes possible
to believe in ∀x P(x): if T is any possible knowledge base that contains
{P(0), P(1)} then we have:

– either ∀x P(x) is a logical consequence of T in P (in which case T can
only be {P(n) | n ∈ N}), or

– ∃x¬P(x) is a deductive consequence of T in P (because T contains
¬P(n) for some n ≥ 2).

Remember that the first choice of D is related to a positive classification
in the limit from informants, whereas the second choice of D is related
to a positive classification in the limit from texts. What the first two cases
express is that ∀x P(x) can be refuted—hence can be viewed as an inductive
consequence in P of every possible knowledge base from which it is logically
implied in P—by classifiers that positively classify W in the limit, from
informants and following ϕ, but not by classifiers that positively classify W
in the limit, from texts and following ϕ. The third choice of D indicates that
the notion of refutability described for the first choice of D can be made more
general. This more general notion turns out to be the right one. Formally, we
can give the following definition.

Definition 3.12 Given T ∈ B and a sentence ϕ, we say that ϕ is an inductive
consequence of T in P iff it is a logical consequence of T in P and there
exists a finite subset D of T such that for all T ′ ∈ B:

if T ′ includes D and ¬ϕ is not a deductive consequence of T ′ in P , then
ϕ is a logical consequence of T ′ in P .

Note that the condition in Definition 3.12 weakens the compactness
condition expressed in Definition 3.10: it can be seen as a property of weak
compactness. At this stage, the notions (A”), (B”) and (C”) of Section 3.1
have all been formalized.
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Example 3.13 Assume that V contains ≤, and let W , D, A and T be
defined as in Example 3.11. Then ϕ = ∀x(2 ≤ x ↔ P(x)) is not a deductive
consequence of T in P because for all finite D ⊆ T , some model of D in W
is not a model of ϕ. But ϕ is an inductive consequence of T in P . Indeed,
T contains P(2), and every T ′ ∈ B that contains P(2) but does not logically
imply ϕ in P is such that ¬ϕ is a deductive consequence of T ′ in P , since it
contains P(1).

3.10 Classification Generalized

Consider again the logical learning paradigm described in Sections 3.4
and 3.5 where W takes the value {ML | L ∈ L}, D is set to {P(n) |
n ∈ N}, and A is empty.32 We have seen in Section 3.9 that ∀x P(x) is
a logical consequence of {P(n) | n ∈ N} in P , but it is not an inductive
consequence of {P(n) | n ∈ N} in P . Still, some identifiers identify W in
the limit from texts, hence converge in the limit to ∀x P(x) on all texts for
MN, and some classifiers positively classify W in the limit, from texts and
following ∀x P(x), hence converge in the limit to 1 on all texts for MN,
and no others. This shows that the scope of formal learning theory goes
beyond what we have described as induction, if we accept that the informal
notion of induction is well captured by Definition 3.12. To investigate more
deeply the relationship between formal learning theory and the notion of
logical consequence in P , we first need to generalize the concept of positive
classification formalized in Definition 3.4, and then we must introduce the
concept of mind change bound.

Most learning paradigms, like the one described in Section 3.3, are cast
into logical paradigms where every possible world is uniquely determined
by its D-diagram. This property is obviously satisfied whenever W is a set
of standard structures and D contains all atomic sentences that do not have
a fixed interpretation in all members of W . When a possible world M is
uniquely determined by its D-diagram, the conditions ‘M is a model of ϕ’
and ‘ϕ is a logical consequence of DiagD(M) in P’ are equivalent. They
imply that for every possible knowledge base T and sentence ϕ, either ϕ or
¬ϕ is a logical consequence of T in P : P has complete possible knowledge
bases w.r.t. the notion of logical consequence in P . Paradigms whose possible
knowledge bases are complete in this sense play an important role in our
framework.

Definition 3.14 P is said to have complete knowledge bases iff for all T ∈ B
32 This logical paradigm was derived from the numerical learning paradigm described in

Section 3.3—with a set L of possible languages equal the set of final segments of N.
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and sentences ϕ, either ϕ or ¬ϕ is a logical consequence of T in P .

Though most learning paradigms are represented by paradigms of para-
metric logic having complete knowledge bases, having complete knowledge
bases is not fundamentally related to the notion of positive classification.
It is possible to generalize Definition 3.4 to any paradigm in a natural
way. The first step is to generalize the notions of text and informant.
Texts and informants correspond to particular choices of D (closed atoms—
atomic formulas—for the former, closed literals—atomic formulas or their
negations—for the latter). But D can be any set of sentences, corresponding
to other kinds of data. Moreover, if a possible knowledge base contains a
possible assumption (a member of A), there is no reason not to make it
accessible to the identifiers and to the classifiers. We have seen that the
distinction between a member of D and a member of A is essential in order
to define the set B of possible knowledge bases, but it can be ignored for the
purpose of generalizing the notions of text and informant, which is done in
the next definition.

Definition 3.15 Given a possible knowledge base T , we call an environment
for T (in P) an ω-sequence of members of T ∪ {
}in which every member of
T occurs at least once.

Suppose that A is empty. Depending on the choice of D, the enumeration
of a possible knowledge base (with 
 possibly occurring in the enumeration),
i.e., the enumeration of the D-diagram of a possible world, can correspond
to a text, or to an informant, or have no counterpart in inductive inference.
Generalizing further, we also consider enumerations of knowledge bases in
caseA is not empty. We use environment as a general term for an enumeration
of a possible knowledge base.

So environments are texts or informants when A = ∅ and D is set to the
right value. To generalize Definition 3.4 to arbitrary paradigms (including
paradigms that do not have complete possible knowledge bases), we must
exclude the unwanted situation where a classifier would converge to 0 on
an environment for a possible knowledge base that does not logically imply
in P the sentence that expresses the property that the classifier has to
discover:

Definition 3.16 Let a sentence ϕ be given.
A logical classifier f is said to positively classify B in the limit following

ϕ (in P) iff for all T ∈ B and environments e for T :

� ϕ is a logical consequence of T in P iff {k ∈ N | f (e|k) = 1} is cofinite.
� If {k ∈ N | f (e|k) = 0} is cofinite then ¬ϕ is a logical consequence of
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T in P .

B is said to be positively classifiable in the limit following ϕ (in P) iff
some logical classifier positively classifies B in the limit following ϕ.

3.11 Mind Change Bounds

The notion of mind change bound provides a measure of complexity for
functions defined on a set of finite sequences, hence it can be applied to
both numerical and logical identifiers, and to both numerical and logical
classifiers. Let us focus on logical classifiers. We first introduce some
terminology. Recall that a binary relation R on a class X is well-founded
iff for every nonempty set Y ⊆ X , Y contains an element x such that no
member y of Y satisfies R(y, x). Suppose that R is well-founded. We then
denote by ρR the unique function from X into the class of ordinals such that
for all x ∈ X :

ρR(x) = sup{ρR(y) + 1 | y ∈ X, R(y, x)}.

The length of R is the least ordinal not in the range of ρR . Note that the length
of R is equal to 0 iff X = ∅. For example, Figure 3.6 depicts a finite binary
relation R of length 5. In this diagram, an arrow joins a point y to a point
x iff R(y, x) holds. For all points x in the field of R, the value of ρR(x) is
indicated. The four points with no predecessor are mapped to 0 by ρR . All
other points x are mapped by ρR to the smallest n ∈ N such that one of x’s
predecessor is mapped to n − 1 and none of x’s predecessors is mapped to
an integer at least equal to n. Since 4 is the largest number in the range of ρR ,
the length of ρR is 5.

Figure 3.6. A finite binary relation of length 5
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Definition 3.17 Let a nonnull ordinal β, a sentence ϕ, and a logical classifier
f be given.

Let X be the set of all σ ∈ (D ∪ A ∪ {
})	 such that the set of formulas in
σ has a model in W and f (τ ) =↓ for some initial segment τ of σ . We denote
by R f the binary relation over X such that for all σ, τ ∈ X, R f (σ, τ ) holds
iff τ ⊂ σ and f (σ ) �= f (τ ).33

We say that f positively classifies B with fewer than β mind changes
following ϕ (in P) iff the length of R f is defined and smaller than or equal
to β, and f positively classifies B in the limit following ϕ.

We say that B is positively classifiable with fewer than β mind changes
following ϕ (in P) iff some classifier positively classifies B with fewer than
β mind changes following ϕ.

Rather than
[∣∣ ‘fewer than β + 1 mind changes’ | ‘fewer than 1 mind

change’
∣∣], we say

[∣∣ ‘at most β mind changes’ | ‘no mind change’
∣∣].

An equivalent definition is to equip f with an ordinal counter. Let us refer
to the outputs of f as hypotheses (on whether ϕ does or not logically follow
in P from the underlying knowledge base). When f first outputs a hypoth-
esis, the ordinal counter is set to an ordinal γ . Then every time f switches
from a hypothesis to another, or does not output any hypothesis, the ordinal
counter is decreased. Saying that the ordinal complexity of f is smaller
than an ordinal β is equivalent to saying that the behavior just described is
possible, and that the ordinal counter only uses ordinals smaller than β.

Straightforward modifications to the previous definition enable us to
define the notion of identification with fewer than β mind changes. In the
literature, the notion of identification with at most β mind changes is more
often found [1], [2]. Note that in case β is a limit ordinal, identification
with at most β mind changes means either identification with fewer than
β mind changes or identification with fewer than β + 1 mind changes, so
the “fewer than” formulation is a refinement of the “at most” one. Getting
back again to our favorite example, the numerical identifier described in
Section 3.3 identifies L with fewer than ω + 1 mind changes, but not with
fewer than ω mind changes. Indeed, as long as this identifier only gets 
’s, it
outputs the hypothesis ∅ and the ordinal counter is set to ω. Otherwise, the
identifier outputs the hypothesis {n, n + 1, . . .} where n is the least number
that has appeared so far, and the ordinal counter is set to n. It is easy to verify
that no numerical identifier can do better, as far as mind change bounds are

33 When a partial function f is not defined on an argument x , we write f (x) =↑; otherwise,
we write f (x) =↓. We use

[| ⊆ | ⊂ |] to denote that a finite sequence is a
[| subsequence |

strict subsequence |] of another sequence, either finite or infinite.
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concerned. Of course, some classes of languages are identifiable in the limit,
but with no mind change bound, e.g., the class of finite languages.

Thanks to the concept of mind change bound, we can perfectly character-
ize the notions of deductive and inductive consequence in P . Let a sentence
ϕ be given. Let a classifier f that positively classifies B with no mind change
following ϕ be given. Presented with members of an underlying possible
knowledge base T , f waits until enough sentences from T have appeared
that enable it to output ϕ with absolute confidence. If no such finite set of
sentences exists, then T does not logically imply ϕ in P , and f never outputs
any hypothesis. This observation shows that we have the following property.

Remark 3.18 For all sentences ϕ, the following are equivalent.

� For all possible knowledge bases T that logically imply ϕ in P , ϕ is a
deductive consequence of T in P .

� B is positively classifiable with no mind change following ϕ.

Similarly, it is easily verified that inductive consequences in P enjoy the
following characterization.

Remark 3.19 For all sentences ϕ, the following are equivalent.

� For all possible knowledge bases T that logically imply ϕ in P , ϕ is an
inductive consequence of T in P .

� B is positively classifiable with at most one mind change following ϕ.

3.12 Finite Telltales

We have observed in Section 3.10 that positive classification in the
limit in P goes beyond deductive and inductive consequences in P . Thanks
to Properties 3.18 and 3.19, we know exactly by how much. To continue
our investigation of the relationship between formal learning theory and
parametric logic, we turn to the characterization, in the numerical setting,
of the notion of identification in the limit from texts. It is know as the finite
telltale condition, and is expressed as follows [3]:

Proposition 3.20 A (countable) set L of languages is identifiable in the limit
from texts iff there exists a sequence (EL )L ∈L of finite subsets of N such that
for all L ∈ L, EL ⊆ L and no L ′ ∈ L satisfies EL ⊆ L ′ ⊂ L.

It is easy to generalize Proposition 3.20 to positive classification in the
limit in P , under the assumption that the set of possible knowledge bases is
countable (the counterpart to the hypothesis that the set of possible languages
is countable), and obtain the following result.
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Proposition 3.21 Suppose that B is countable. Let a sentence ϕ be given.
The following are equivalent.

� B is positively classifiable in the limit following ϕ.
� For all possible knowledge bases T that logically imply ϕ in P , there exists

a finite subset E of T such that for all T ′ ∈ B, if E ⊆ T ′ ⊆ T then T ′
logically implies ϕ in P .

To see that Proposition 3.21 generalizes Proposition 3.20, assume that V
satisfies the conditions stated in Section 3.4, and recall how a language L is
mapped to a structure ML that represents L . Let W be set to {ML | L ∈ L},
and let D take the value {P(n) | n ∈ N}. Assume that A = ∅. Finally, suppose
that for all L ∈ L, there exists a sentence ϕL such that for all L ′ ∈ L,
ML ′ |= ϕL iff L = L ′. So P is a logical paradigm that faithfully represents
the numerical learning paradigm of identification in the limit where L is the
set of possible languages. Recall from Property 3.5 that since W is countable,
identifying W in the limit from texts is equivalent to positively classifying
B in the limit, from texts and following ϕL , for all L ∈ L. Together with
Proposition 3.21, this shows that W is identifiable in the limit from texts iff
for all L ∈ L, there exists a finite subset EL of DiagD(ML ) such that for all
L ′ ∈ L, if EL ⊆ DiagD(ML ′ ) ⊆ DiagD(ML ), then DiagD(ML ′ ) logically
implies ϕL in P . We infer immediately that W is identifiable in the limit
from texts iff for all L ∈ L, there exists a finite subset EL of DiagD(ML )
such that no L ′ ∈ L satisfies EL ⊆ DiagD(ML ′) ⊂ DiagD(ML ). Obviously,
by the choice of D, this is equivalent to the finite telltale condition in
Proposition 3.20.

It is worth looking more carefully at the second clause in Proposition 3.21
under the assumption that A = ∅. Let T be a possible knowledge base that
logically implies ϕ in P . Let E be a finite subset of T such that for all T ′ ∈ B:

(∗) if E ⊆ T ′ ⊆ T then T ′ logically implies ϕ in P .

Condition (∗) says that in order to discover that ϕ holds in every intended
model of T , a classifier can proceed in two steps:

� First induce ∧{¬ψ | ψ ∈ D \ T }.
� Then ‘deduce’ ϕ from E and ∧{¬ψ | ψ ∈ D \ T }.

Indeed, ∧{¬ψ | ψ ∈ D \ T } is an inductive consequence of T in P , as
defined in Definition 3.12 where we can choose D to be empty: it is a logical
consequence of T in P , and if another possible knowledge base T ′ does not
logically imply ∧{¬ψ | ψ ∈ D \ T } in P , then T ′ has to logically imply in
P some member ψ of D \ T , and ψ is obviously a deductive consequence
of T ′ in P since it has to belong to T ′. Moreover, since A = ∅, any member
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T ′ of B logically implies ∧{¬ψ | ψ ∈ D \ T } in P iff it is included in T . It
then follows from condition (∗) that if a possible knowledge base T ′ contains
E and logically implies ∧{¬ψ | ψ ∈ D \ T } in P , then we can conclusively
infer that ϕ is a logical consequence of T in P . Admittedly, ϕ is probably
not a deductive consequence of T in P , as defined in Definition 3.10: there
is no reason why T would contain a finite subset D with the property that ϕ
is true in all intended models of any possible knowledge base that contains
D. But ϕ is obtained by a second level of deduction in P where the sentences
involved are both members of the underlying theory T (the members of
E ) and sentences generated from T by induction (only one such sentence
actually, namely, ∧{¬ψ | ψ ∈ D \ T }): it is possible to conclusively infer
that ϕ is true from the finite set E ∪ {∧{¬ψ | ψ ∈ D \ T }} of formulas all
of whose members belong either to level 0—the members of the subset E of
T —or to level 1—the inductive consequence ∧{¬ψ | ψ ∈ D \ T } of T in P .
This suggests:

positive classification = induction step, followed by deduction.

The meaning of “deducing” here is not captured by Definition 3.10. It is
still informal and refers to what we claim is the hallmark of deduction: the
ability to conclude with certainty on the basis of a finite set of sentences.
Finally, let us point out that the hypotheses that A = ∅ and B is countable
are by no means essential in the previous argument; we just used them for
simplicity. With no assumption on W , D and A, it is still possible to develop
the same kind of reasoning (despite the fact that Proposition 3.21 cannot be
used since B might be uncountable) and argue that a positive classification
in the limit can be decomposed as an induction followed by a deduction. We
will get back to this point later.

3.13 Languages

There is a slight problem with the argument developed in the previous
section. We said that is was possible to induce ∧{¬ψ | ψ ∈ D \ T }. But
∧{¬ψ | ψ ∈ D \ T } is not a first-order sentence. In some cases, there
might be a first-order sentence ϕ to which ∧{¬ψ | ψ ∈ D \ T } is logically
equivalent, or at least, such that for all possible knowledge bases T ′, T ′
logically implies ϕ in P iff T ′ logically implies ∧{¬ψ | ψ ∈ D \ T } in P .
This is not true in general, and is one of the many reasons why we have to
include in P a last parameter: a (possible) language.

Denote by LV
ωω the set of first-order formulas, i.e., expressions built

from V and a countable set of first-order variables using negation, dis-
junction and conjunction of (possibly empty) finite sets of formulas, and
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quantification. So for all finite D ⊆ LV
ωω, the disjunction of all members

of D, written ∨D, and the conjunction of all members of D, written ∧D,
both belong to LV

ωω. Denote by LV
ω1ω

the extension of LV
ωω that accepts

conjunctions and disjunctions of countable sets of formulas. So for all
countable X ⊆ LV

ω1ω
, the disjunction of all members of X , written ∨X , and

the conjunction of all members of X , written ∧X , both belong to LV
ω1ω

.34

It turns out that the right choice of parameter for languages is the set
of closed members of a countable fragment of LV

ω1ω
. Note that LV

ω1ω
is

uncountable. A fragment of LV
ω1ω

is a subset L of LV
ω1ω

with the following
properties.35

� All members of LV
ωω are in L .

� All subformulas of the members of L are in L .
� For all ϕ ∈ L , variables x and terms t , ϕ[t/x] is in L .
� For all ϕ ∈ L , ¬ϕ is in L .
� For all finite D ⊆ L , ∨D and ∧D are in L .
� For all ϕ ∈ L and variables x , ∃xϕ and ∀xϕ are in L .

(In the fourth clause above, ϕ[t/x] denotes a formula obtained from
ϕ by substituting all free occurrences of x in ϕ by t .) Clearly, LV

ωω

is the smallest fragment of LV
ω1ω

. It is easy to verify that given any
countable subset X of LV

ω1ω
, there exists a smallest fragment of LV

ω1ω

which contains X ; it is countable and is called the fragment of LV
ω1ω

generated by X . A (possible) language of parametric logic is the set of
closed members of a countable fragment of LV

ω1ω
. We now have all the

parameters in hand that make up our logical paradigm P . Let us put them
together.

Definition 3.22 A logical paradigm is a quintuple P consisting of:

� a countable vocabulary V;
� the set L of closed members of a countable fragment of LV

ω1ω
;

� a set of V-structures (possible worlds);
� a subset D of L (possible data);
� a subset A of L disjoint from D (possible assumptions).

34 LV
ω1ω

is a more natural extension of LV
ωω when disjunction and conjunction in LV

ωω are
defined as unary operators whose arguments are finite sets, rather than being defined
as operators taking two statements as arguments. It also simplifies many definitions and
proofs.

35 It is sometimes assumed that a fragment of LV
ω1ω

is also closed under a syntactic operator
∼ [5].
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Retrospectively as well as from now on, “sentence” means “member of
L.” For instance, Definitions 3.4 and 3.6 apply to the members of L, etc.
Let a possible knowledge base T be given. We denote by CnD

W (T ) the set of
sentences (members of L) that are logical consequences of T in P (as defined
in Definition 3.7).

4 LOGICAL AND TOPOLOGICAL HIERARCHIES

4.1 Introduction to the Logical Hierarchies

We have proposed model-theoretic counterparts to the notion of positive
classification with fewer than 2 mind changes, and a hint on how to define a
model-theoretic counterpart to the notion of positive classification in the limit
(an induction followed by a deduction). We now want to convert the hint into
a formal definition, and find a model-theoretic counterpart to the notion of
positive classification with fewer than β mind changes when β is an ordinal
greater than 2. Remember that deduction in P has been characterized by a
compactness property, whereas induction in P has been characterized by a
property of weak compactness. It is actually possible to generalize and unify
the compactness and weak compactness properties by defining a property
of β-weak compactness with compactness being 0-weak compactness, and
weak compactness being 1-weak compactness. Weaker and weaker forms of
compactness are obtained with larger and larger values of β. The property of
β-weak compactness will provide a model-theoretic counterpart to the notion
of positive classification with fewer than β mind changes.

Let a possible knowledge base T be given. Consider the set X1 of
sentences obtained from T by β-weak compactness, for all ordinals β.
It is then possible to apply the property of β-weak compactness from T
and X1 instead of T alone, and generate more sentences. The sentences
obtained from T and X1 by (0-weak) compactness will provide a model-
theoretic counterpart to the notion of positive classification in the limit.
More generally, for all ordinals α greater than 1, we can generate a set
Xα of sentences by applying the property of β-weak compactness from T
and ∪0<γ <α Xγ . This process will generate a hierarchy of sentences of the
following kind. The hierarchy has levels indexed by a nonnull ordinal α,
above T that sits on level 0. For every nonnull ordinal α, sentences that
occur on level α of the hierarchy over T are further stratified into layers
indexed by a second ordinal β. The sentences that occur on layer β of the
first level will be obtained by β-weak compactness from sentences on level 0
(all members of T ). The sentences that occur on layer β of the second level
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will be obtained by β-weak compactness from sentences on level 0 or on
level 1. The sentences that occur on layer β of the third level will be obtained
by β-weak compactness from sentences on level 0 or on level 1 or on level
2. Etc. A sentence that occurs on layer β of level α (where α, β are ordinals
with α �= 0) of the hierarchy over T also occurs on layer β ′ of level α′ of
that hierarchy if α < α′, or if α = α′ and β ≤ β ′. It is actually possible to
consider countable ordinals only, since there exists a least nonnull countable
ordinal λ such that all sentences that belong to the hierarchy over T occur
in that hierarchy below level λ, and below layer λ of any level that contains
that sentence. The higher the first pair (level, layer) that indexes a sentence ϕ
occurring in the hierarchy built over T , the less confidence we should place
in a derivation of ϕ from T . Ideally, all members of CnD

W(T ) would occur
in the hierarchy built over T but for some paradigms (for some values of the
parameters in P) and some possible knowledge bases T , some members of
CnD

W (T ) might be left out of the hierarchy built over T .

4.2 Definition of the Logical Hierarchies

Let us now describe the hierarchies more precisely. Let a nonnull ordinal
α and an ordinal β be given. Suppose that the hierarchies over all possible
knowledge bases have been built up to below layer β of level α. Suppose that
whenever a sentenceψ is a logical consequence in P of a possible knowledge
base T ′ (T ′ can be equal to T or it can be distinct from T ) that occurs below
layer β of level α of the hierarchy built over T ′, we can discover that ψ is
indeed a logical consequence of T ′ in P . Consider a sentence ϕ.

(†) Let finite K , H ⊆ L be such that K ⊆ T and all members of H occur
in the hierarchy over T below level α. Assume that for every possible
knowledge base T ′, if K ⊆ T ′, H ⊆ CnD

W (T ′) and ϕ /∈ CnD
W (T ′), then

¬ϕ occurs in the hierarchy over T ′ below layer β of level α. In that case
we can be sure, on the basis of K and H , that if ϕ were not a member of
CnD

W (T ), then we could discover it. And we put ϕ on layer β of level α
of the hierarchy over T .

In case β = 0, (†) can be rewritten as follows.

(‡) Let finite K , H ⊆ L be such that K ⊆ T and all members of H occur
in the hierarchy over T below level α. Assume that for every possible
knowledge base T ′, if K ⊆ T ′ and H ⊆ CnD

W(T ′), then ϕ ∈ CnD
W (T ′).

In that case we can be sure, on the basis of K and H , that ϕ belongs to
CnD

W (T ). And we put ϕ on layer 0 of level α of the hierarchy over T .
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We can view (‡) as a compactness property: a finite amount of infor-
mation—data and axioms (subset of the underlying theory T ) and hypotheses
(sentences that have been ‘discovered’ before to belong to CnD

W (T ))—
enables us to conclude that ϕ is a logical consequence of T in P . More gen-
erally, we can view (†) as the description of a β-weak compactness property:
a finite amount of information—of the same kind as before—enables us to
conclude that it is easier to discover that ϕ fails to be a logical consequence
of T in P , than it is to discover that ϕ is a logical consequence of T in P .
Intuitively, the property of β-weak compactness allows to believe in the cor-
rectness of ϕ with a degree of disbelief measured by β. The case β = 0 means
no disbelief, or total confidence, in accordance with the fact that the compact-
ness property allows to conclude with certainty that ϕ is correct. Of course,
“certainty” or “disbelief” are not absolute notions, they are relative to that
part of the hierarchy which lies below the pair (level, layer) which is currently
built. Only the sentences on layer 0 of level 1 of the hierarchy over T can be
discovered to be logical consequences of T in P with absolute certainty.

Given ordinals α, β, α′, β ′, we write (α, β) < (α′, β ′) iff (α, β) is lexi-
cographically smaller than (α′, β ′): α < α′, or α = α′ and β < β ′. Given a
nonnull ordinal α, an ordinal β and a possible knowledge base T , denote
by �P

α,β(T ) the set of all sentences that occur on layer β of level α of the
hierarchy built over T . In accordance with the description above, a sentence
ϕ belongs to �P

α,β(T ) iff it belongs to T or there exists a finite K ⊆ T and a
finite H ⊆ ∪(α′, β ′)<(α,0)�

P
α′, β ′(T ) such that ϕ belongs to�P

α,β(T ) on the basis
of K and H , meaning that:

(†) for all T ′ ∈ B, if K ⊆ T ′, H ⊆ CnD
W (T ′) and ϕ /∈ CnD

W (T ′), then
¬ϕ ∈ ∪γ<β�P

α,γ (T ′).

In case β = 0, (†) can be rewritten as follows:

(‡) for all T ′ ∈ B, if K ⊆ T ′ and H ⊆ CnD
W (T ′), then ϕ ∈ CnD

W (T ′).

Condition (‡) expresses that it is possible to infer conclusively, on the
basis of K and H , that ϕ is a logical consequence of T in P ; such an inference
can be viewed as a deduction, at level α. For α = 1, (‡) is equivalent to the
condition in Definition 3.10, which shows that �P

1,0(T ) consists precisely
of the deductive consequences of T in P . For α = 1 and β = 1, (†) is
equivalent to the condition in Definition 3.12, which shows that �P

1,1(T )
consists precisely of the inductive consequences of T in P .
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4.3 Logical Complexity

We can now introduce a model-theoretic notion of logical complexity. Let
a sentence ϕ and nonnull ordinals α, β be such that ϕ occurs below layer β
of level α of the hierarchy built over T , for every possible knowledge base
T that logically implies ϕ in P . Then (α, β) is a natural upper bound on
the logical complexity of ϕ in P . If (α, β) is the least pair of ordinals (for
the lexicographic ordering on the class of pairs of nonnull ordinals) having
that property, then (α, β) can be thought of as the logical complexity of ϕ
in P . For a reason similar to what has been discussed in relation to positive
classification with a bounded number of mind changes, the condition “below
layer β of level α” is preferable to the alternative condition “on layer β of
level α” for the case where β is a limit ordinal. If a sentence ϕ does not
occur in the hierarchy built over T for some possible knowledge base T that
logically implies ϕ in P , then we consider that the logical complexity of ϕ in
P is undefined. In summary:

Definition 4.1 Let a sentence ϕ and a nonnull ordinal α be given.
For all nonnull ordinals β, we say that ϕ is �P

α,β iff for all possible
knowledge bases T that logically imply ϕ in P , ϕ ∈ ∪γ<β�P

α,γ (T ).
We say that ϕ is �P

α if it is �P
α,1.

We will see shortly that there are good reasons for adopting the notation
�P
α,β . Remember that first-order logic is the particular paradigm where L ⊆

LV
ωω (equivalently, L is the set of closed members of LV

ωω), W is the class of
all structures, D = ∅, and A = L. It is immediately verified that first-order
logic, or more generally, any instance of the weak generalization of first-order
logic where A can be chosen arbitrarily, is a limiting case in the sense that
all hierarchies of logical consequences collapse to the first layer of the first
level. This is due to the compactness of first-order logic, and accounts to the
fact that first-order logic is a purely deductive paradigm:

Remark 4.2 If L ⊆ LV
ωω, W is the class of all structures and D = ∅, then

every sentence is �P
1 .

Let us get back to the general case. It is possible to show that positive
classification with a bounded number of mind changes is actually equivalent
to the model-theoretic notion of logical complexity formalized in Definition
4.1, applied to α = 1:

Proposition 4.3 For all nonnull ordinals β and ϕ ∈ L, ϕ is �P
1,β iff B is

positively classifiable with fewer than β mind changes following ϕ.
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Note that Properties 3.18 and 3.19 are the particular cases of Proposition
4.3 where α = 1 and β = 2, respectively. It is easy to see that for all
sentences ϕ, if ϕ is �P

2 then B is positively classifiable in the limit following
ϕ. The converse holds provided that L is rich enough, which is captured by
the next proposition.

Proposition 4.4 For all countable subsets L of LV
ω1ω

, there exists a countable
fragment L ′ of LV

ω1ω
that extends L with the following property. Suppose that

L is the set of closed members of L ′. Then for all sentences ϕ, ϕ is �P
2 iff B

is positively classifiable in the limit following ϕ.

Proposition 4.4 still does not enable us to formally justify the equation:

positive classification = induction step, followed by deduction.

We will do this after we have introduced the notion of topological
complexity, and stated a result stronger than Proposition 4.4.

4.4 Borel Hierarchies

The study of the hierarchies of logical consequences in P is greatly
facilitated by their close relationship to the Borel hierarchy and the difference
hierarchies over the topological space that we define next. Remember that
a possible datum ϕ represents some elementary information, or elementary
fact, about the underlying world. Hence the models in W of a possible
datum represent an elementary subset of W . It is then natural to consider the
topology generated by the set X of these elementary subsets of W , i.e., the
topology whose open sets are the countable unions of the finite intersections
of the members of X .

Definition 4.5 We denote by W the topological space over W generated by
{ModW(ϕ) | ϕ ∈ D}.

Recall that the Cantor space is the set {0, 1}N of all ω-sequences of 0’s
and 1’s. The usual topology over the Cantor space is the topology generated
by the sets of members of {0, 1}N of the form Xσ , where σ is a finite
sequence of 0’s and 1’s and Xσ is the set of all ω-sequences of 0’s and
1’s that extend σ .36 Then W is a generalization of the usual topology over
the Cantor space. Indeed, suppose that V is equality free, and that there are
infinitely many closed atoms. Fix a repetition free enumeration (ϕ)i∈N of the

36 More precisely, the sets Xσ , where σ ranges over the set of finite sequence of 0’s and 1’s,
constitute a basis for this topology: an open set for this topology is a countable union of
sets of the form Xσ .
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set of closed atoms. Assume that W is the set of all standard structures and
D is the set of all closed literals. Let f : {0, 1}N → W map a member �c
of {0, 1}N to the unique member M of W such that for all i ∈ N, M |= ϕi

iff �c(i) = 1. Obviously, f is a homeomorphism from W into {0, 1}N. For
instance, the set of all �c ∈ {0, 1}N such that �c(0) = 0, �c(1) = 0 and �c(2) = 1
(that is, the set of members of {0, 1}N that extend (0, 0, 1), represented by the
leftmost crisscrossed triangle in Figure 3.7), the set of all �c ∈ {0, 1}N such
that �c(0) = 0 and �c(1) = 1 (that is, the set of members of {0, 1}N that extend
(0, 1), represented by the other crisscrossed triangle in Figure 3.7), and the set
of all �c ∈ {0, 1}N such that �c(0) = 1, �c(1) = 1 and �c(2) = 1 (that is, the set of
members of {0, 1}N that extend (1, 1, 1), represented by the shaded triangle
in Figure 3.7), are all open sets of {0, 1}N that correspond, respectively, to the
three open sets of W described as:

� O1 = {M ∈ W | M �|= ϕ0, M �|= ϕ1 and M |= ϕ2},
� O2 = {M ∈ W | M �|= ϕ0 and M |= ϕ1}, and
� O3 = {M ∈ W | M |= ϕ0, M |= ϕ1 and M |= ϕ2}.

But if D is the set of all closed atoms, then only O3 (corresponding to the
shaded triangle in Figure 3.7), is an open set of W; neither O1 nor O2 is open
in W. When D is neither the set of closed literals nor the set of closed atoms,
then the relationship between W and the Cantor space can be much more
complicated. The definition of W is quite general and makes no assumption
on V , W or D.

The Borel hierarchy over W provides a notion of topological complexity
for some subsets of W . It is built as follows. We call the sets built from
{ModW(ϕ) | ϕ ∈ D} by finite unions and finite intersections the �0 Borel
sets of W. The sets built from the complements in W of the members of
{ModW(ϕ) | ϕ ∈ D} by finite unions and finite intersections are called the
�0 Borel sets of W. The �α and �α Borel sets of W, where α is a nonnull

Figure 3.7. Some open sets
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ordinal, are defined inductively as follows. A subset of W is �α Borel in W
iff it is built from the �β Borel subsets of W , where β ranges over the class
of ordinals smaller than α, by countable unions. A subset of W is �α Borel
in W iff it is built from the �β Borel subsets of W , where β ranges over
the class of the ordinals smaller than α, by countable intersections. Given
an ordinal α, a subset of W is said to be �α Borel in W iff it is both �α
and �α Borel in W. Note that if a subset Z of W is �0 Borel in W then Z
is not necessarily �1 Borel in W, and if Z is �0 Borel in W then Z is not
necessarily �1 Borel in W. When D is semantically closed under negation,
the �0 Borel sets of W are the �0 Borel sets of W, the �0 Borel sets of W
are �1 Borel in W, and the �0 Borel sets of W are �1 Borel in W.

4.5 Difference Hierarchies

A refinement of the Borel hierarchy is given by the difference hierarchies.
More precisely, every nonnull ordinal α determines a difference hierarchy,
built from the class of�α or�α Borel sets of W, that consists of sets that are
all � α+1 Borel in W.37 Here is one way to define the difference hierarchies.
Let a nonnull ordinal α and a subset Z of W be given. We say that Z is �α,1
Borel in W iff Z is �α Borel in W. We say that Z is �α,1 Borel in W iff Z
is �α Borel in W. Let an ordinal β greater than 1 be given. We say that Z is
�α,β Borel in W iff there exists two families (Ai )i∈N and (Zi )i∈N of subsets
of X and a family (βi )i∈N of nonnull ordinals smaller than β such that the
following holds.

(i) For all i ∈ N, Ai is �α Borel in W and Zi is �α,βi Borel in W.
(ii) For all i, j ∈ N and x ∈ Ai ∩ A j , x ∈ Zi iff x ∈ Z j .

(iii) Z = ∪i∈N(Ai ∩ Zi )

We say that Z is�α,β Borel in W iff there exists two families (Ai )i∈N and
(Zi )i∈N of subsets of X and a family (βi )i∈N of nonnull ordinals smaller than
β such that the following holds.

(i) For all i ∈ N, Ai is �α Borel in W and Zi is �α,βi Borel in W.
(ii) For all i, j ∈ N and x ∈ Ai ∩ A j , x ∈ Zi iff x ∈ Z j .

(iii) Z = ⋂
i∈N

(Ai ∪ Zi ).

37 Since W is a Polish space—a separable completely metrizable space, see [20]—the class
of sets that belong to the difference hierarchy built from the class of �α or �α Borel sets
of W is precisely equal to the class of sets that are �α+1 Borel in W.
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Intuitively, when building level β for a nonnull ordinal β, the difference
hierarchies are defined like the Borel hierarchies, but consider families of[∣∣ �α,γ | �α,γ

∣
∣], γ < β, sets that are ‘quasi-separated’ by

[∣∣ �α | �α

∣
∣]

sets instead of arbitrary families of
[∣∣ �γ | �γ

∣
∣], γ < β, sets. Indeed,

both conditions (ii) above are trivially satisfied when (Ai )i∈N is a family
of pairwise disjoint sets: for instance, if (Zi )i∈N is a family of �α Borel
sets of W and if (Ai )i∈N is a family of pairwise disjoint �α Borel sets
of W such that for all i ∈ N, Zi ⊆ Ai , then ∪i∈N Zi is not only �α+1

Borel in W, but also �α,2 Borel in W. Conditions (ii) above generalize
disjointness to a condition of ‘quasi-disjointness.’ The definition of the
difference hierarchies we have presented is well suited to our purposes, but it
is not the standard one [20]. The next proposition expresses the equivalence
between the standard definition and the notion we take as primitive. Recall
that the parity of an ordinal α is either even or odd: it is is even if α is of the
form λ+ 2n where λ is either 0 or a limit ordinal and n is a finite ordinal; it
is odd otherwise.

Proposition 4.6 For all nonnull countable ordinals α, β and subsets Z of
W , Z is �α,β Borel in W iff there exists a ⊆-increasing sequence (Yγ )γ<β of
�α Borel subsets of W with the following property. For all x ∈ X, x ∈ Z iff
x ∈ ∪γ<βYγ and the parity of the least γ < β such that x ∈ Yγ is opposite
to the parity of β.

The characterization offered by Proposition 4.6 is illustrated in Figure 3.8,
which depicts a �α,4 and a �α,5 Borel set, that are both members of the
difference hierarchy built from the set of subsets of W that are �α or �α

Borel in W. The former is represented as the crosshatched part of the diagram
on the left, that shows a ⊆-increasing sequence of �α Borel subsets of W of
length 4; the latter is represented as the crosshatched part of the diagram on
the right, that shows a ⊆-increasing sequence of �α Borel subsets of W of
length 5.

Figure 3.8. �α,4 and �α,5 Borel sets
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4.6 Topological Complexity in Parametric Logic

Now that we have the topological background, we can define the topo-
logical complexity of a sentence ϕ, in terms of the Borel subset Z of W
that ϕ represents, in case there is indeed such a set Z . Given an ordinal α, a
sentence ϕ certainly represents a �α Borel set A of W if the set of models of
ϕ in W is equal to A. But a stronger, hereditary, notion of representation is
needed. Assume that α > 0. The set A is defined as the union of a countable
set X of subsets of W each of which is �β Borel for some ordinal β < α.
For at least one such set X , it should be possible to represent each member of
X by some sentence. And so on. Alternatively, the following definition of a
sentence being�L

α or�L
α Borel in W parallels the definition of a set being�α

or �α Borel in W, with countable
[∣∣ disjunctions | conjunctions

∣
∣] replacing

countable
[∣∣ unions | intersections

∣
∣]. But such countable disjunctions or

conjunctions might not belong to L, in which case L should contain at
least one sentence having the same class of models in W as the countable
disjunction or conjunction being considered:

Definition 4.7 Let a sentence ϕ be given.
We say that ϕ is

[∣∣�L
0 |�L

0

∣
∣] Borel in W iff ModW (ϕ) is

[∣∣�0 |�0

∣
∣] Borel

in W.
Let a nonnull ordinal α be given. We say that ϕ is

[∣∣ �L
α | �L

α

∣
∣] Borel in

W iff there exists a set X of sentences each of which is
[∣∣ �L

β | �L
β

∣
∣] Borel in

W for some β < α such that ModW(ϕ) is equal to

[∣∣ ModW(∨X ) | ModW (
∧

X )
∣
∣].

The previous definition is immediately generalized to a notion of hered-
itary representation of a �α,β Borel set of W, where α and β are nonnull
ordinals.

Definition 4.8 Let a nonnull ordinal α and a sentence ϕ be given.

We say that ϕ is
[∣∣ �L

α,1 | �L
α,1

∣
∣] Borel in W iff ϕ is

[∣∣ �L
α | �L

α

∣
∣] Borel

in W.
Given an ordinal β greater than 1, we say that ϕ is

[∣∣ �L
α,β | �L

α,β

∣
∣] Borel

in W iff there exists two sequences (ψi )i∈N and (ϕi )i∈N of sentences and a
family (βi )i∈N of nonnull ordinals smaller than β such that the following
holds.

� For all i ∈ N, ψi is
[∣∣ �L

α | �L
α

∣∣] Borel in W.
� For all i ∈ N, ϕi is

[∣∣ �L
α,βi

| �L
α,βi

∣
∣] Borel in W.
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� For all i, j ∈ N, ModW(ψi ∧ ψ j ) ⊆ ModW (ϕi ↔ ϕ j ).
� ModW (ϕ) is equal to

[∣∣ModW (∨i∈N(ψi ∧ ϕi )) | ModW(
∧

i∈N

(ψi ∨ ϕi ))
∣∣].

4.7 Relationships between Logical and Topological
Complexities

In all logical paradigms, the logical complexity of a sentence is a lower
bound of its logical complexity.

Proposition 4.9 For all nonnull ordinals α, β and sentences ϕ, if ϕ is �L
α,β

Borel in W then ϕ is �P
α,β .

For sentences that are decided in P by every possible knowledge base,
logical and topological complexity are actually equivalent notions.

Proposition 4.10 Let a sentence ϕ be such that every possible knowledge
base logically implies either ϕ or ¬ϕ in P . For all nonnull ordinals α, β, ϕ
is �P

α,β iff ϕ is �L
α,β Borel in W.

Now we can state the result which expresses that provided the language
is rich enough,

positive classification = induction step, followed by deduction.

Indeed, it is immediately verified that every sentence that is �L
1 Borel in

W, is�L
1,2 Borel in W. By Proposition 4.9, every sentence χ that is�L

1,2 Borel
in W, is an inductive consequence in P of every possible knowledge base that
logically implies χ in P (which by Property 3.19, is equivalent to B being
positively classifiable with at most one mind change following the sentence
ϕ). The proposition below then expresses that B is positively classifiable in
the limit following ϕ iff for every possible knowledge base T that logically
implies ϕ in P , ϕ can be discovered from T by a deductive step from a finite
subset of T and a sentence that, being �L

1 Borel in W, can be induced from
T in P .

Proposition 4.11 For all countable subsets L of LV
ω1ω

, there exists a count-
able fragment L ′ of LV

ω1ω
that extends L with the following property. Suppose

that L is the set of closed members of L ′. For all ϕ ∈ L, the following are
equivalent.

� B is positively classifiable in the limit following ϕ.
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� For all T ∈ B that logically imply ϕ in P , there exists a finite subset K of
T and χ ∈ CnD

W (T ) such that χ is �L
1 Borel in W and for all T ′ ∈ B, if

K ⊆ T ′ and χ ∈ CnD
W(T ′) then ϕ ∈ CnD

W (T ′).

Example 4.12 Suppose that V = {=, 0, s, R} where R is a binary predicate
symbol. Let W be the set of Herbrand structures where R is interpreted as
a total ordering. Let D be equal to the set of atomic sentences, and assume
that A = ∅. Set

ϕ = ∃x∃y(x �= y ∧ R(x, y) ∧ ∀z(x = z ∨ R(y, z))).

So ϕ expresses that the ordering has a first and a second element. It is
easily verified that B is positively classifiable in the limit following ϕ, but
not with any mind change bound. Let M ∈ W have a first element, namely
4, and a second element, namely 2. So DiagD(M) logically implies ϕ in P .
Note that

χ = ¬R(0, 2) ∧ ¬R(1, 2) ∧ ¬R(3, 2) ∧ ∀x¬R(s(s(s(s(s(x))))), 2)

is �L
1 Borel in W. Set K = {R(4, 2)}. Then K ⊆ DiagD(M) and for all

T ∈ B, if K ⊆ T and χ ∈ CnD
W (T ) then ϕ ∈ CnD

W (T ): ϕ can be discovered
from DiagD(M) by first inducing χ , and then deducing ϕ from R(4, 2)
and χ .

Thanks to Propositions 4.4 and 4.11, we know that provided that the
language is rich enough, being of logical complexity �P

2 is equivalent to
B being positively classifiable in the limit following ϕ, which is equivalent
to: the truth of ϕ can be discovered in two steps, a first step which involves
an induction (positive classification with at most one mind change ), and
a second step which involves a second level of deduction (a conclusive
inference on the basis of a finite set of premises consisting of members of
the underlying theory plus the sentence induced at the first step). Thanks to
Proposition 4.3, we know that being of logical complexity �P

1,β is equivalent
to B being positively classifiable with fewer than βmind changes following
ϕ. Moreover, Propositions 4.9, 4.10 and 4.11 relate logical complexity and
learning-theoretic complexity to topological complexity .38 Corollaries of
these results can be obtained that relate:

38 Relationships between topological complexity and learning complexity have first been
investigated in [11].
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� ϕ being � P
α,β , meaning that both ϕ and ¬ϕ are �P

α,β ;
� ϕ being � L

α,β Borel in W, meaning that both ϕ and ¬ϕ are �L
α,β Borel in

W;
� B being classifiable in the limit following ϕ, with or without a bounded

number of mind changes, where the task of a classifier is to discover
whether a possible knowledge base logically implies ϕ or ¬ϕ in P .

5 CONCLUSION

The relation “every D-minimal model of T in W is a model of ϕ,” where
D is a set of sentences and W a set of structures, is a generalization of the
classical notion of logical consequence “every model of T is a model of ϕ”
that expands the scope of the first-order logic (of deduction) to induction
and learning. Strong connections are made explicit between a notion of
logical complexity, the Borel and difference hierarchies over a topological
space simply defined from W and D. These are explicitly connected to
concepts from formal learning theory, and other notions (including a notion
of syntactic complexity not discussed in this paper) provide strong evidence
that the framework is natural and powerful. In this paper we focused on the
model-theoretic aspects of the framework, and stated model-theoretic results
that pave the way to a proof theory and a declarative extension of Prolog to the
realm of scientific discovery [30].
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HOW SIMPLICITY HELPS YOU FIND
THE TRUTH WITHOUT POINTING AT IT

KEVIN T. KELLY
Department of Philosophy, Carnegie Mellon University, Pittsburg, PA 15213,
U.S.A., kk3n@andrew.cmu.edu

Abstract: It seems that a fixed bias toward simplicity should help one find the truth, since
scientific theorizing is guided by such a bias. But it also seems that a fixed bias
toward simplicity cannot indicate or point at the truth, since an indicator has
to be sensitive to what it indicates. I argue that both views are correct. It is
demonstrated, for a broad range of cases, that the Ockham strategy of favoring
the simplest hypothesis, together with the strategy of never dropping the
simplest hypothesis until it is no longer simplest, uniquely minimizes reversals
of opinion and the times at which the reversals occur prior to convergence to
the truth. Thus, simplicity guides one down the straightest path to the truth,
even though that path may involve twists and turns along the way. The proof
does not appeal to prior probabilities biased toward simplicity. Instead, it is
based upon minimization of worst-case cost bounds over complexity classes of
possibilities.

1 THE SIMPLICITY PUZZLE

There are infinitely many alternative hypotheses consistent with any
finite amount of experience, so how is one entitled to choose among
them? Scientists boldly respond with appeals to “Ockham’s razor”, which
selects the “simplest” hypothesis among them, where simplicity is a vague
family of virtues including unity, testability, uniformity of nature, mini-
mal causal entanglement, and minimal ontological commitment. The de-
bate over “scientific realism” in the philosophy of science hinges on the
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propriety of this response. Scientific realists view simplicity as a legitimate
reason for belief and anti-realists do not. More recently, the ques-
tion has spread to computer science, where the widespread adoption of
simplicity-biased learning and data-mining software makes it all the more
unavoidable [15].

Scientific realists infer from the rhetorical force of simplicity arguments
that the simpler theory is better “confirmed” and, hence, that belief in
the simpler theory is better justified [5]. Anti-realists [21] concede the
rhetorical force of simplicity arguments, but wonder why they should be so
compelling.1 Presumably, epistemic justification is supposed to direct one
toward the truth and away from error. But how could simplicity do any such
thing? If you already know that the truth is simple or probably simple, then
Ockham’s razor is unnecessary, and if you don’t already know that the truth
is simple or probably simple, then how could a fixed bias toward simplicity
steer you toward the true theory? For a fixed bias can no more indicate the
truth than a compass whose needle is stuck can indicate direction.

There are answers in the literature, but only irrelevant or circular ones.
The most familiar and intuitive argument for realism is that it would be a
“miracle” if a complex, disunified theory with many free parameters were
true when a unified theory accounts for the same data. But the alleged
miracle is only a miracle with respect to one’s personal, prior probabilities.
At the level of theories, one is urged to be even-handed, so that both the
simple theory and its complex competitor carry non-zero prior probability.
Then since the complex theory has more free parameters to tweak than the
simple theory has, each particular setting of its parameters has lower prior
probability than does each of the parameter settings of the simple theory.
So the miracle argument amounts to an a priori bias in favor of simple
parameter settings over complex parameter settings. But that is just how a
Bayesian agent implements Ockham’s razor; the question under consider-
ation is why one should implement it, so far as finding the true theory is
concerned [12].

Another standard argument is that simple explanations are “better” and
that one is entitled, somehow, to infer the “best” explanation [7]. But even

1 Van Fraassen focuses on the problem of theories that are not distinguished even by all the
evidence that might ever be collected. There is no question of simplicity guiding you to
the truth in such cases, since no method based only on observations possibly could. On
the other hand, it is almost always the case that simple and complex theories that disagree
about some future observations are compatible with the current data and the simpler one
is preferred (e.g., in routine curve-fitting). I focus exclusively on this ubiquitous, local
problem of simplicity rather than on the hopelessly global one.
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assuming that the simplest explanation is best, that sounds like wishful
thinking [21], for one may like strong explanations, but liking them doesn’t
make them true. The same objection applies to the view that simplicity is
just one virtue among many [13]. An apparently more promising idea is
that simple or unified theories compatible with the data are more severely
tested or probed by the data and, hence, are better “corroborated” [16]
or “confirmed” [5]. But if the truth isn’t simple, then the truth is less
testable than falsehood, so why should one presume that the truth is simple?
Either considerations like testability and explanatory power are irrelevant
to the question at hand or one must assume, circularly, that the world
is simple in order to explain why one is entitled to prefer more testable
theories.

Another idea [20] is that if a simple theory is false, future data will lead
to its retraction, so a simplicity-biased, rational agent will converge to the
truth in the limit of inquiry. But the question at hand is not merely how
to overcome one’s simplicity bias. If Ockham’s razor is truly helpful, as
opposed to merely being a defeasible impediment, it should facilitate truth-
finding better than competing biases. But since other biases would also be
over-ruled by experience eventually, mere convergence to the truth does not
explain why simplicity is a better bias than any other, so this approach is
irrelevant to the realism debate.

Perhaps the most interesting of the standard arguments in favor of
simplicity is based upon the concept of “overfitting” [2]. The idea is that
predicting the future by means of an equation with too many free parameters
compared to the size of the sample is more likely to produce a prediction
far from the true value. But that argument has more to do with the size of
the sample than with the nature of reality, for the same argument against
overfitting still favors use of a simple theory for prediction from small
samples even when you know that the true theory is very complex. So
although this argument is sound and compelling, so far as using an equation
for predictive purposes is concerned, it is also irrelevant to the question at
hand, which concerns finding the true theory rather than using a false theory
for predictive purposes.

Taking stock of the standard answers, it appears that the anti-realist’s
objection is insuperable, for it can only be met by showing how a fixed
simplicity bias helps one find the truth even when the truth is complex.
That sounds hopeless, for in complex worlds simplicity points in the wrong
direction. Nonetheless, it is demonstrated below that simplicity is the best
possible advice for a truth-seeker to follow, in a certain sense, no matter how
complex the truth might be.
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2 THE FREEWAY TO THE TRUTH

It is no fault of simplicity that it fails to point out or indicate the true
theory, since nothing possibly could. General theories or models can always
be overturned in the future by the discovery of subtle effects missed earlier
even by the most diligent probing. So science is not an uneventful voyage
along a compass course to the truth. It is more like an impromptu road
trip through the mountains, with numerous hairpin twists and detours along
the way. Taking this more appropriate metaphor seriously is the key to the
simplicity puzzle.

Suppose that, on your way to a distant city, you exit the freeway for a rest
stop and become lost in the neighboring town. If you ask for directions, you
will be told the shortest route back to the freeway entrance ramp even before
you say which city you are headed to, because the freeway is the best route
to anywhere a stranger might wish to go (Figure 4.1). That remains true even
if the shortest route to the entrance ramp takes you west for a few miles when
your ultimate destination is east.

Suppose that you disregard the local resident’s advice. You find yourself
on small dirt tracks headed nowhere and, after enough of this, you make a U-
turn and head back toward the entrance ramp. Your hubris is rewarded by the
addition of one gratuitous course reversal to your route before you even begin
the real journey on the freeway, with all of its unavoidable curves through the
mountains. So even if directions to the freeway take you directly away from
your ultimate goal at first, you ought to follow them.

The journey to the truth likewise occasions reversals and detours: revolu-
tions or revisions in which one theory is retracted and replaced by another
and the textbooks are rewritten accordingly [13]. Some retractions are
unavoidable in principle given that one finds the truth at all, since accepting a
general theory always occasions a risk of being surprised by an unanticipated
anomaly later. In that case, retracting the theory is not merely excusable
but virtuous—the alternative would be dogmatic commitment to error for

start here

destination

80

Figure 4.1. Entrance ramp
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eternity, as Popper [16] emphasized. But gratuitous reversals in the course of
inquiry are another matter entirely: it would be better to avoid them.2

Suppose that you violate Ockham’s razor by selecting a theory more
complex than experience requires. Then the simple experience up to now can
be extended for eternity with equally uniform, simple experience, devoid of
“effects” whose detection would indicate the need to postulate more causes
or free parameters. If you refuse ever to retract to a simple hypothesis, you
never arrive at the truth at all, so you have to take the bait, eventually, and
fall back to the simplest theory. Now you are essentially where you would
have been had you never violated Ockham’s razor, except that you have
already retracted once; and you are still subject to the future appearance of
any number of subtle empirical effects that could not be detected at current
sample sizes or using current instrumentation. Each such effect may occur
sufficiently late to result in an unavoidable retraction. So you are stuck with
an extra retraction at the outset added to all of these. Therefore, always
presuming that the world is simple keeps you on the straightest path to the
truth even though the truth may be arbitrarily complex! So both the realist
and the anti-realist are right, since simplicity keeps one on the straightest
path to the truth, but the straightest path may point in the wrong direction
for the time being and for any finite number of times in the future as well,
assuming that you converge to the truth at all.

3 ILLUSTRATION: COUNTING MARBLES

Suppose that you are studying a marble-emitting device that occasionally
emits a marble (a new empirical effect). Your job is to determine how many
marbles it will ever emit (how many free parameters the true theory has).
You know nothing about when the marbles will be emitted (empirical effects
may be arbitrarily small and hard to notice) but you do know on general
grounds that at most finitely many marbles will be emitted (every theory
under consideration has at most finitely many free parameters). Call the
situation just described the counting problem.

In this simplistic setting, it seems that when exactly k marbles have
been seen so far, k is the simplest answer compatible with experience. First,

2 Retractions have been studied extensively in computational learning theory. For a review
cf. [9]. The first version of the U-turn argument, albeit restricted to problems in which
at most k marbles may be seen, is presented in [17]. An infinite ordinal version of the
argument, based loosely on ideas in [3] is presented in [10], but that idea still can’t handle
the marble counting problem described below.
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k posits the fewest entities among all answers compatible with experience,
which accords with the standard formulation of Ockham’s razor. Second, k is
satisfied by the most uniform (i.e., eternally marble-free) course of future
experience, for alternative answers involve discrete “kinks” in experience
(i.e., each time another marble is seen). Third, k has the fewest free
parameters (for answer k + k′ leaves the appearance time of each of the extra
k′ posited marbles unspecified). Fourth, k is the best explanation of the data,
since k + k′ leaves each of the k′ appearance times unexplained.3 Fifth, k is
most testable, for if k is false, it is refuted, eventually, but answer k + k′ is
false but never strictly refuted if the truth is less than k + k′.

A strategy for solving the counting problem examines the current marble
history at each stage and returns either a natural number k indicating the total
number of marbles or the skeptical response “?”, which indicates a refusal to
guess. Such a strategy solves the counting problem in the limit if and only if
it converges, on increasing data, to the true count k, no matter what the true
k happens to be and no matter when the k marbles happen to appear.

Now suppose that you solve the counting problem in the convergent sense
just defined. Suppose, further, that no marbles have appeared yet, so the
Ockham answer is 0, but you violate Ockham’s razor by guessing some k
greater than 0 (Figure 4.2). Everything you have seen is consistent with the
possibility of never seeing any marbles. Since you converge to the truth, it
follows that if the truth is 0, you must eventually converge to 0, so you
retract k and revise to 0 at some point. Now it is possible for you to see a
marble followed by no more marbles. Since you converge to the truth, you
retract 0 eventually and replace it with 1, and so forth. So each answer k is
satisfied by a world compatible with the problem’s background assumptions

Figure 4.2. U-turn

3 One might object that if the k marbles have appeared at each stage so far, then one would
expect them to continue appearing forever, but that violates the background assumption
that they will stop appearing eventually.
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in which you retract k + 1 times. But had you always produced the Ockham
answer at each stage, you would have retracted at most k times in an arbitrary
world satisfying answer k. So your worst-case retractions are worse than the
Ockham strategy’s over each answer. Your initial retraction is analogous to
the initial U-turn back to the entrance ramp being added to all the course
reversals encountered on one’s journey home after getting on the freeway.

Another natural consequence of the U-turn argument is that, after having
selected answer 0, you should never retract it until it ceases to be simplest.
Call this property stalwartness. For suppose that no marbles have been seen
and that you follow Ockham’s advice by choosing answer 0. Suppose, later,
that you retract this answer in spite of the fact that no marble has been
observed (for general, skeptical reasons, perhaps). Then if you converge to
the truth, this initial retraction gets added to all the others you perform,
regardless of which answer is true. So your worst-case retraction bound in
answer k is k + 1, whereas a stalwart Ockham strategy can converge to the
truth with just k retractions in answer k.

As simple as it is, the preceding logic has applications to real scientific
questions. For example, consider the case of finding the polynomial degree
of the true law, assuming that the law is polynomial. It is plausible to
assume that larger samples or improvements in instrumentation allow one
to progressively narrow in on the true value of the dependent variable y
for any specified, rational value of the independent variable x over some
closed, bounded interval as time progresses. Any finite number of such
observations for a linear law is compatible with the discovery of a small
quadratic effect later. Then any finite amount of such data for a quadratic
law is compatible with the discovery of a small cubic effect later, etc.4

The occasional appearances of these arbitrarily small (i.e., arbitrarily late),
higher-order effects are analogous to the occasional appearances of marbles
and polynomial degree k is analogous to seeing exactly k marbles for eternity.

4 ITERATING THE ARGUMENT

To this point, the U-turn argument has been applied only in cases in
which no marble (anomaly) has yet been detected. But suppose that a marble
appears after you say 0 but you stubbornly retain the answer 0 (Figure 4.3).
Suppose, further, that when the second marble appears you violate Ockham’s

4 Popper [16] had a similar idea, except that he assumed exact measurements and counted
the number of distinct measurements required to refute a given curve. In science, the
observations are never exact and the logic is as I have described.
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Figure 4.3. Ockham violator who is efficient ex ante

razor by producing 3. Thereafter, you follow Ockham’s advice. The U-turn
logic rehearsed above does not distinguish your performance from that of the
natural strategy that just counts the current marbles, for although guessing
3 opens you to the risk of retracting back to 2 later, that extra retraction is
concealed by the retraction you saved by not retracting 0 to 1 earlier. So you
converge to the truth and match the Ockham strategy’s performance in terms
of overall, worst-case retractions within each answer.

The preceding analysis is carried out at the onset of inquiry (i.e., ex ante).
The situation changes if your efficiency is assessed ex post, at the moment
you first violate Ockham’s razor by over-counting; e.g., by saying 3 upon
seeing the last entry in input sequence e = (e0, . . . , en) in which only two
marbles are presented. At that very moment, the input data e are already fixed,
as is the sequence b = (B0, . . . , Bn−1) of answers you chose at each stage
along e− = (e0, . . . , en−1). So only worlds that present e and only strategies
that produce b along e− should count when your efficiency is assessed at the
moment e has been presented.

Now the U-turn argument rules out over-counting even after some
marbles have been seen (Figure 4.4). For suppose that you over-count for
the first time at the end of e. Consider the hybrid strategy σ that agrees
with you along e− and that returns the current count thereafter. Strategy σ
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Figure 4.4. Inefficiency exposed ex post
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converges to the right answer (by counting up to it). Like you, strategy σ
saves a retraction by not noticing the first marble (which appears in e−), but
σ produces the current count k at the end of e rather than the over-count you
produce. Moreover, σ never retracts again if the truth is k and, in general,
retracts at most k′ times after the end of e if the truth is k + k′. But if you
converge to the truth, you eventually retract your over-count at e to k if the
truth is k (the initial U-turn back to the freeway to the truth) and then retract
k to k + 1 if another marble is presented thereafter, etc., so you retract k′ + 1
times after the end of e in answer k + k′ (the initial U-turn gets added to
the k inevitable hairpins along the freeway to destination k + k′). Since σ
acts just like you along e−, both you and σ retract the same number of times
(say r ) along e−. Since e is your first over-count, you retract at e, so you
retract r + 1 times along e, so your worst-case bound over answer k + k′
is r + k′ + 2. Even if σ retracts at e, the worst-case retraction bound for σ
over answer k + k′ is at most r + k′ + 1. So if you over-count for the first
time at e, then for each answer k + k′, your worst-case retraction bound over
k + k′ exceeds that of σ . So you are strongly beaten by σ at e, in the sense
that σ agrees with you along e− and over each answer k compatible with e,
your worst-case bound over worlds compatible with e in answer k is worse
than that of σ . If σ does as well as you in each answer k and worse in some
answer, then say that you are weakly beaten by σ at e.

The same argument works at each e at which you (a) fail to repeat the
answer you produced at the immediately preceding stage e− and (b) choose
any answer other than the current count. For in that case you retract at e, do
no better than the hybrid method along e−, and do worse in the worst case
after e (due to having to retract back to k if no more marbles are seen after e).
Say that a lagged Ockham strategy is a strategy that only violates Ockham’s
razor by retaining the answer it selected at the preceding stage. So an arbitrary
solution is strongly beaten at each violation of the lagged Ockham property.

By a similar argument, if you solve the problem then you are strongly
beaten by the hybrid strategy σ at an arbitrary e at which you fail to be
stalwart. For if you are not stalwart at e, you drop the answer B you selected
at e− even though B is Ockham at e, so your stalwart clone σ also produces B
at e− (because it is a clone) and does not drop B at e (by stalwartness). Then,
as before, σ retracts no more than you after e in each answer compatible with
e, so σ beats you at e.

Being strongly beaten is no sin if every solution suffers that fate. To clinch
the U-turn argument, each stalwart, lagged Ockham solution σ (e.g., the
strategy that always returns the current count) is efficient at each e in the
sense that over each answer compatible with e, solution σ does as well in
worst-case retraction performance as an arbitrary solution σ ′ agreeing with
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σ along e−. For let e be given and let σ ′ be just like σ along e−. Then both
σ and σ ′ retract the same number of times r along e− and both produce the
current count k at e−. If σ retracts at e, then since σ is stalwart, it follows
that a marble was presented at e and σ produces the current count k + 1 at
e. So if no more marbles are ever presented, σ ′ also has to retract to k + 1
eventually in order to converge to the truth. So σ ′ achieves no better retraction
bound than σ in answer k + 1. Finally, σ retracts no more than k′ times after
e in answer k + k′ and σ ′ can be forced to retract at least k′ times after e
in answer k + k′ by presenting each of the remaining k marbles and waiting
until σ ′ converges to the current count. So σ does at least as well as σ ′ in
answer k + k′.

So the following has been shown.

Proposition 4.1 Let σ solve the counting problem. Then for each finite input
sequence e:

1. if σ violates either the lagged Ockham property or stalwartness at e then
σ is strongly beaten in terms of retractions at e;

2. if σ satisfies stalwartness and the lagged Ockham property at e, then σ is
efficient in terms of retractions at e.

It is clear from the definitions that being strongly beaten implies being
weakly beaten which implies inefficiency, so it follows that:

Corollary 4.2 Let σ be a solution to the counting problem and let the cost
be retractions. Then the following are equivalent:

1. σ is efficient at each e;
2. σ is weakly beaten at no e;
3. σ is strongly beaten at no e;
4. σ is stalwart and has the lagged Ockham property at each e.

So the set of all solutions to the counting problem is neatly partitioned into
the efficient solutions and the strongly beaten solutions, where the former are
precisely the stalwart, lagged Ockham solutions. That is hardly obvious from
the definitions of efficiency and beating, themselves. It reflects a substantive
interaction between the criteria of evaluation and convergence to the truth.

Say that a method is a constraint on strategies, so the stalwart, lagged
Ockham property is a method. Since violating this method results in being
beaten at each violation, it follows that no matter what you did in the past,
following the stalwart, lagged Ockham method will always look better at
each stage (in terms of worst-case retractions) than violating it (given that
you aim to converge to the truth). Thus, one may say that the stalwart, lagged
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Ockham method is stably retraction efficient for agents who wish to converge
to the truth in a retraction-efficient manner. Stability is crucial for explaining
the history of science, for it has frequently occurred that a complex theory
is selected because the simple theory has not yet been conceived or has
been rejected on spurious grounds (e.g., Ptolemaic astronomy vs. Copernican
astronomy or wave optics vs. Newtonian optics). If Ockham’s razor is to
explain the subsequent revision to the simpler theory, the rationale for
preferring simpler theories must survive past violations.

The preceding results respond to an additional anti-realist challenge.
Suppose that you have already seen n − 1 marbles at awkward, distant in-
tervals and that after seeing each marble you came to believe, eventually, that
you had seen all the marbles there are. The “negative induction” argument
against realism [14] recommends the conclusion that one more marble will
appear, since you were fooled each time before. But that policy would risk
a gratuitous retraction, according to the preceding argument. So the realist
wins, no matter how many times Ockham’s razor led to disaster in the past!5

5 TIMED RETRACTIONS

Retraction efficiency does not prohibit a solution from hanging onto
its previous answer in spite of the appearance of new marbles, since no
retraction is incurred thereby. Mere consistency with experience rules out
under-counting, so consistency together with retraction efficiency entails that
one never return a value other than the correct count. But that response is
not sufficiently general, for suppose that the question is modified so that if
the true number of marbles is even, all you have to say is “even”.6 When the
first marble is seen, the right answer seems to be 1 rather than “even”, but
the lagged Ockham property together with consistency does not imply this
conclusion, for “even” is consistent with any possible experience.

Here is a more general and unified explanation. Suppose that you hang
on to answer “even” to save a retraction when the first marble is seen. Nature
can withhold further marbles until you converge to answer 1. The obvious
Ockham strategy would drop “even” immediately and would eventually gain
enough confidence to say 1 later, so if the answer is 1, both you and the

5 On the other hand, enough surprises might push one to rethink the problem by adding
the answer “infinitely many marbles will appear”. The U-turn argument concerns only the
problem as presented, not other possible problems one might take one’s self to be solving
instead.

6 Worst-case bounds must still be taken over total marble counts rather than over answer
“even”. The general theory of simplicity developed below works the same way.
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Ockham strategy retract once, but you retract later than the Ockham strategy.
That is worse, for one’s state after the retraction is more enlightened than
one’s state prior to it (think of the Newtonians before and after they lost
their faith that an ether drift would be detected) and needlessly delaying a
retraction allows more subsidiary conclusions to accumulate that must be
flushed when it finally occurs.

So instead of simply counting retractions, let the cost of inquiry in a given
world w be represented by a possibly empty, finite sequence of ascending
natural numbers (r1, . . . , rk) such that the strategy retracts exactly k times in
w and for each i from 1 to k, the strategy retracts at moment ri . It is necessary
to rank such cost sequences. It would be unfortunate if Ockham’s razor were
to depend upon some fussy weighting of time against overall retractions so
that, say, (9) > (1, 2). Happily, it suffices in the following argument to restrict
attention to weak Pareto dominance with respect to overall retractions and
the times of occurrence thereof, which yields only a partial order over cost
sequences. Accordingly, if c, c′ are both cost vectors, let c ≤ c′ if and only if
there exists a sub-sequence d of c′ whose length matches that of c such that
the successive entries in d are at least as great as the corresponding entries
in c. Then define c < c′ if and only if c ≤ c′ but c′ � c. For example:

(1, 3, 8) < (1, 5, 9) < (1, 2, 5, 9).

Refer to the cost concept just defined as timed retractions.
Next, consider bounds on sets of timed retraction cost sequences. Recall

that ω is the least (infinite) ordinal upper bound on the natural numbers. A
potential timed retraction bound is the result of substituting ω from some
point onward in a cost sequence: e.g., (1, 2, ω, ω). If S is a set of cost
sequences and b is a potential bound, then b bounds S (written S ≤ g) if and
only if for each c in S, c ≤ b. Thus, (1, ω) bounds the set of all sequences
(1, k) such that k is an arbitrary natural number.

Finally, say that a strategy is Ockham just in case it never chooses an
answer other than the current count (or possibly ‘?’). Then one obtains the
following, strengthened result.

Proposition 5.1 Let a solution to the counting problem be given. Then:

1. if the solution violates either the Ockham property or stalwartness at e,
then the solution is strongly beaten in terms of timed retractions at e;

2. if the solution satisfies stalwartness and the Ockham property at e, then
the solution is efficient in terms of timed retractions at e.
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Proof. Suppose that you over or under count at e, which presents exactly
k marbles. As before, let hybrid strategy σ be just like you along e− and
then always return the current count from e onward. Consider answer k + k′,
where k′ is an arbitrary natural number. Suppose that you retract at e if σ
does. Then the cost sequence for σ along e is no worse than yours, which is,
say, (c1, . . . , cr ). Then since σ retracts at most once, for each of the additional
marbles that appear after e in answer k + k′, the worst-case cost bound for σ
over answer k + k′ is at most (c1, . . . , cr , ω, . . . , ω), with k′ repetitions of ω.
Nature can withhold marbles after e until you eventually retract your answer
(say, at stage i) in preparation for convergence to k. Furthermore, after you
converge to k, nature can continue to withhold marbles until you say k an
arbitrary number of times before presenting another marble. Eventually, you
drop k in preparation for convergence to k + 1, etc. So your bound in answer
k + k′ is at least (c1, . . . , cr , i, ω, . . . , ω), with k′ repetitions of ω. That is
worse than the bound for σ because the bound for σ is a proper sub-sequence
of your bound.

Now suppose that you don’t retract at e but σ does. Then let your
cost through e be (c1, . . . , cr ), in which case the cost of σ through e is
(c1, . . . , cr , i), where i is the length of e. Then since σ retracts at least
once, arbitrarily late, for each of the additional marbles that appear after e
in answer k + k′, the worst-case cost bound for σ over answer k + k′ is at
most (c1, . . . , cr , i, ω, . . . , ω), with k′ repetitions of ω. But since you do not
produce k at the end of e, nature can withhold marbles until (say, at stage
i ′ > i) you retract your answer at e in preparation for convergence to k. Then
nature can exact one retraction out of you, arbitrarily late, for each of the
k′ marbles that appears after e in answer k + k′. Hence, your worst case
bound is at least (c1, . . . , cr , i ′, ω, . . . , ω), where i ′ > i . So your bound is
worse than that of σ . The beating argument for stalwartness and the efficiency
argument for stalwart, Ockham solutions are similar.7 �

So when retraction delays are taken into account, every solution is either
efficient, stalwart, and Ockham or strongly beaten. Again, there is no middle
ground.

Corollary 5.2 Let σ be a solution to the counting problem and let the cost
be timed retractions. Then the following are equivalent:8

1. σ is efficient at each e;
2. σ is weakly beaten at no e;

7 In any event, more general arguments are provided in the appendix for propositions 12.2
and 12.4 below.

8 Corollary 5.2 is an instance of corollary 12.5 below.
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3. σ is strongly beaten at no e;
4. σ is stalwart and Ockham at each e.

6 GENERALIZING THE ARGUMENT

In order to argue, in general, that Ockham’s razor is necessary for
minimizing timed retractions, one must say, in general, what Ockham’s
razor amounts to. That may seem like a tall order compared to counting
marbles. First, simplicity has such manifold characteristics—e.g., unifor-
mity, unity, testability, and reduction of free parameters, causes, or on-
tological commitments—that one wonders if there is a single notion that
underlies them all. Second, it seems that some aspects of simplicity are
a mere matter of description. For example, if one describes inputs as
marbles or non-marbles, then marble-free worlds are most uniform. But
if an “n-ble” is a marble at each time other than n, when it is a non-
marble, then uniformly marble-free experience is not uniformly n-ble free
experience. Nor can one complain that the definition of n-ble is strange,
since marbles are n-bles at each stage but n, when they are non-n-bles
(Goodman [6]). So with respect to the syntactic complexity of definitions,
the situation is entirely symmetrical. These sorts of observations have led to
widespread skepticism about the prospects for a general, unified, objective
account of simplicity . But the skepticism is premature, for in the marble
counting problem, the question at hand concerns marbles rather than n-
bles and simplicity may depend upon the structure of the problem one
is trying to solve. Indeed, if simplicity is to have anything to do with
efficiency, it must somehow reflect the structure of the problem one is trying
to solve.

In the marble counting problem, answers positing more marbles are more
complex. Presumably, then, worlds that present more marbles are more
complex, assuming that simpler answers are answers satisfied by simpler
worlds. One might plausibly say that each marble is an anomaly relative
to the counting problem, since the previously simplest (best) explanation is
no longer simplest after the marble appears. Some insight is gained into the
nature of anomalies by characterizing the occurrence of a marble entirely in
terms of the structure of the marble counting problem, itself.9

One structural feature of the marble counting problem is that, prior to
seeing a third marble, nature can force an arbitrary solution to the problem
to produce successive answers 2, 3, 4, . . . by presenting no marbles until the

9 For a critique of this idea and a response, see [1] and [19].



How Simplicity Helps You Find the Truth without Pointing at it 125

solution converges to 2, one marble followed by no more until the method
converges to 3, and so forth. But after seeing the third marble, nature can only
force the solution to produce successive answers 3, 4, 5, . . .. So as a working
hypothesis, it seems that an anomaly occurs when the sequence of answers
nature can force is truncated (from the front). This might be expressed by
saying that an anomaly occurs when nature uses up an opportunity to force
the scientist to change her mind or, more colorfully, when nature leads the
scientist one exit further down the freeway to the truth.

Nature may be capable of taking more than one step down the freeway
at a time (e.g., modify the marble counting problem so that several marbles
can be emitted at one time), in which case nature takes two steps down the
forcible path (0, 1, 2, . . .) when two marbles are presented at one time, for
after these marbles are seen, only (2, 3, 4, . . .) is forcible.

Also, there may be more than one freeway to the truth, in which case
there may be several simplest answers to select among. For example (Figure
4.5), modify the counting problem so that marbles come in two colors, white
and black, and you have to determine (i, j ), where i is the total number of
white marbles and j is the total number of black. If no marbles have been
seen so far, then patterns of form ((0, 0), (1, 0), . . .) and ((0, 0), (0, 1), . . .) are
forcible. Suppose you now hear a rumble in the machine, which guarantees
that another marble is coming, but you don’t see the color. Now (0, 0) is
no longer forcible (the rumble can’t be “taken back”) so only patterns of
form ((1, 0), . . .) and ((0, 1), . . .) are forcible. That is a step by nature down
both possible paths, so the rumble constitutes an anomaly. Suppose that
the announced marble is black. Now only patterns of form ((0, 1), . . .) are
forcible. No step is taken down path ((0, 1)), however, so seeing the black
marble after hearing the noise is not an anomaly— intuitively, the anticipated
marble has to have some color or other. The same is true if a black marble
is seen. So no world in which just one more marble is seen presents any
anomalies after the sound, so all such worlds are maximally simple in light of

rumble! equally simple
worldsanomaly

Figure 4.5. Nature chooses a path without stepping down it
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the sound. Hence, answers (1, 0) and (0, 1) are both simplest after the sound,
whereas answers that entail more than one marble are more complex than
necessary. That is intuitive, since Ockham’s razor seems to govern number
rather than color in this example.10

As it is usually formulated, Ockham’s razor requires that one never
presume a more complex hypothesis than necessary, which allows for
selection among simplest answers when the noise is heard: e.g., (3, 3) over
(2, 4). Answers positing extra marbles—e.g., (3, 4000) are plausibly ruled
out. But there is still something odd about guessing one color rather than
another before seeing what the color is: after the noise, it seems that one
should simply wait to see what color the announced marble happens to be.
Indeed, the problem’s future structure is entirely symmetrical with respect to
color, so there could be no efficiency advantage in favoring one color over
another until one sees which color it is. Say that a method has the symmetry
property at a given stage if it produces no answer other than the uniquely
simplest answer at that stage.

In the counting problem, worst-case cost bounds were assessed over
possible answers to the question. In the general theory presented below,
worst-case bounds are assessed over complexity classes of worlds. One
reason for this is to “break up” coarse answers sufficiently to recover
the U-turn argument. For example, recall the problem in which you must
count the marbles if the total count is odd and must return “even” if the
total count is even. In this problem, Ockham violators are not necessarily
strongly beaten because the retractions of an arbitrary solution are unbounded
in answer “even”, both in terms of retractions and in terms of timed
retractions. In the general theory, the answer “even” is partitioned into
anomaly complexity classes corresponding to each possible even count and
retractions are bounded over these complexity classes so that the strong
beating arguments rehearsed earlier for the counting problem can be lifted
to this coarser problem. This agrees with standard practice in the theory of
computational complexity, in which one examines an algorithm’s worst-case
resource consumption over sets of inputs of equal size [4].

10 That is because color does not lead to unavoidable retractions in the example under
discussion. If each white marble could spontaneously change color, just once, from white
to black at an arbitrary time after being emitted, then white would be simpler than black.
The same is true if a continuum of gray-tones between white and black is possible and
marbles never get brighter. Then Ockham should say “presume no more darkness than
necessary”.
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7 EMPIRICAL SIMPLICITY DEFINED

It remains to state the preceding ideas with mathematical precision. An
empirical problem is a pair (K ,�), where K is a set of infinite sequences
of inputs and � partitions K . Elements of K are called worlds and cells in
� are called potential answers. A scientific strategy is a mapping from finite
sequences of inputs to answers in� (or to “?”, signalling a refusal to choose).
A solution is a strategy that converges to the true answer in each world in K .
Let Ke denote the set of all elements of K that extend finite input sequence
e and let �e denote the set of all answers A in � such that A is compatible
with e (i.e., such that Ke shares an element with A). Finally, say that e is
compatible with K just in case some world in K extends e.

All of the following definitions are relative to a given problem (K ,�),
which is suppressed to avoid clutter. Say that an answer pattern is a finite
sequence of answers in which no answer occurs immediately after itself. Let
g be an answer pattern. The g-forcing game given finite input sequence e
compatible with K is played between the scientist and nature as follows.
The scientist plays an answer (or “?”), nature plays an input, and so forth,
forever.11 In the limit, the two players produce an infinite play sequence
p, of which pN is the infinite subsequence played by nature and pS is the
infinite subsequence played by the scientist. Let i be the length of e and let
pS − i denote the result of deleting the first i entries from the beginning
of pS. Then nature wins the game if and only if pn is in Ke and either
pN does not converge to the answer true in pN or g is a subsequence of
pS − i .

Strategies for the scientist have already been defined. A strategy for
nature maps finite sequences of answers (or “?”) to inputs. A strategy for
the scientist paired with a strategy for nature determines a play sequence. A
strategy is winning for a player if it wins against an arbitrary strategy for the
other player. Say that g is forcible given e if and only if nature has a winning
strategy in the g-forcing game given e. The g-forcing game is determined
just in case one player or the other has a winning strategy. The assumption
of determinacy for forcing games is so useful formally that I will restrict
attention to such problems.

Restriction 1 (determinacy of forcing games) The following results are
restricted to problems such that for each pattern g, the g-forcing game is
determined.

11 Cf. (Kechris 1991) for a general introduction to the pivotal role of infinite games in
descriptive set theory.
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The restriction turns out not to matter in typical applications, for
D. Martin’s Borel determinacy theorem (1975) has the following
consequence:

Proposition 7.1 (determinacy of Borel forcing games) If (K ,�) is solv-
able and if K is a Borel set and e is a finite input sequence, then for all
answer patterns g, the g-forcing game in (K ,�) is determined given e.

Since unsolvable problems are irrelevant to the results that follow, it
suffices for determinacy of forcing games to assume that K is Borel. That
is weaker than saying that K can be stated with some arbitrary number of
quantifiers over observable predicates, which covers just about any empirical
problem one might encounter in practice.12 The antecedent of the proposition
is not a necessary condition for the consequent, so the scope of the following
results is broader still.

Say that answer pattern g is backwards-maximally forcible at e if and
only if g is forcible given e and for each forcible answer pattern g′ given e,
if g is a sub-sequence of g′ then g is an initial segment of g. Let �e denote
the set of all answer patterns that are backwards-maximally forcible at e. The
backwards-maximality property is crucial to the results that follow. The point
is to eliminate gaps from all the sequences in �e. For example, in the marble
counting problem, if e presents no marbles, then �e looks like:

()

(0)

(0, 1)

(0, 1, 2)

(0, 1, 2, 3)
...

whereas the forcible sequences include all (gappy) sub-sequences of these,
such as (4, 7, 9).

It is not necessarily the case that each forcible pattern b at e can be
extended to a backwards-maximally forcible pattering at e. For example,
suppose that tomorrow you may see any number of marbles and that any of
the marbles may disappear at any time thereafter. At the outset, each finite,
descending sequence of marble counts is forcible, so each forcible pattern
can be extended at the beginning to a forcible pattern. The following formal
development is simplified by, frankly, ignoring such problems.

12 A typical sort of K (e.g., for marble counting and for inferring polynomial degree) says
that there exists a stage such that for each later stage, no further empirical effects are
encountered. That involves only two quantifiers, so the restriction is easily satisfied.
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Restriction 2 (well-foundedness of forcibility) If pattern b is forcible at e,
then there exists pattern b′ of which b is a sub-pattern such that b′ is in �e.

One would expect that if (A, B,C) is in �e, then there should be further
experience e′ such that (B,C) is in �e; but that is not necessarily the case.13

It simplifies the following theory to ignore those cases as well. Let ∗ denote
concatenation.

Restriction 3 (graceful decrementation) If A ∗ B ∗ c is in �e, then there
exists proper extension e′ of e compatible with K such that B ∗ c is in �e′

and exactly one anomaly occurs along e′ properly after the end of e.

If g is an answer pattern, let g ∗ �e denote the set of all g ∗ g′ such that
g′ is an element of �e. Say that an anomaly occurs at finite, non-empty input
sequence e compatible with K if and only if there exists a non-empty, finite
answer pattern A ∗ g such that:

1. A ∗ g ∗ �e ⊆ �e− ;
2. no g′ in �e begins with answer A.

Suppose that two marbles are seen simultaneously at stage e in the
counting problem. This anomaly is represented in figure (Figure 4.6).The
fact that answer pattern A ∗ g is non-empty ensures that nature moves down
some path in �e. Thus, seeing a black marble is not an anomaly after the
noise that announces it.

If w is a world in K , then let c(w, e) denote the number of anomalies
that occur along w properly after e. If A is an answer, let c(A, e) denote the
least c(w, e) such that w is in Ke ∩ A. Call c(w, e) the conditional anomaly
complexity of w (or of A) given e, and similarly for c(A, e).

(0, 1)
(0, 1, 2)
(0, 1, 2, 3)
(0, 1, 2, 3, 4)

()
(2)
(2, 3)
(2, 3, 4)... ... ...

()
(0)
(0, 1)
(0, 1, 2)
(0, 1, 2, 3)
(0, 1, 2, 3, 4)

(0, 1) * =

e e_

Figure 4.6. Simultaneous observation of two marbles

13 Suppose that you have to determine the total number of marbles and the time of the first
marble if the total count is 2. If no marbles appear in e yet, then we have that (0, 1, 3) is in
�e. But upon seeing the first marble at stage k in e′, (1, (2, k), 3) is in �e′ , so (1, 3) is not
in �e′ .
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Then let unconditional anomaly complexity be given by c(w) = c(w, ())
and c(A) = c(A, ()), where () is the empty input sequence.

Marbles are still anomalies in the marble-counting problem, but the
preceding definitions don’t see the marbles; they see only the structural
“shadow” each marble occurrence casts against the branching topology of
the marble counting problem. The noise announcing a marble is anomalous,
but seeing a marble after the noise is not. Seeing two marbles after the noise
is anomalous, however. If several marbles are visible and some of them
might disappear permanently at any time, then disappearances of marbles
count as anomalies and simple worlds have more marbles than complex
ones. Refutations of lower polynomial degrees and the discovery that a linear
function depends upon an independent variable also count as anomalies in
the corresponding problems (assuming that the data consist of ever-tighter
open intervals around the dependent variable).

8 OCKHAM’S RAZOR, SYMMETRY,
AND STALWARTNESS

Answer A is simplest at e if and only if

c(A, e) = min
B∈�e

c(B, e).14

A method satisfies Ockham’s razor at e just in case the answer output by
the method at e is ‘?’ or is simplest at e. Symmetry at e requires that the
method output at e either “?” or the unique answer that minimizes c(A, e).
Stalwartness at e requires that if the scientist’s output A at e− is uniquely
simplest at e, then the scientist produces A also at e.

Ockham’s razor may be defined in terms of simplicity rather than
complexity, using a standard rescaling trick familiar from information theory.
Define conditional simplicity as:

s(A, e) = exp(−c(A, e)).

This definition reveals an interesting connection between Ockham’s razor
and Bayesian updating, for it follows immediately from the definition of
c(A, e) that:

c(A, e) = c(A ∩ Ke) − c(Ke).

14 In light of lemma 14.7 in the appendix, this condition is equivalent to c(A, e) = 0.
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Applying the definition of s(A, e) to both sides of the preceding equation
yields:

s(A, e) = s(A ∩ Ke)

s(Ke)
,

which is the usual definition of Bayesian updating. Then Ockham’s razor
requires that one choose the uniquely simplest hypothesis, where simplicity
degree is updated by conditionalization. Nothing about coherence or prob-
ability has been presupposed, however, so Bayesians who seek Ockham’s
razor in prior probabilities updated by conditioning put the arbitrary cart
before the essential horse.

9 SYMMETRICAL SOLVABILITY

Not every problem has a symmetrical solution. For example, suppose that
the problem is to say not only how many marbles appear, but when each of
them appears. In this problem, every answer compatible with e is simplest
at e, since only patterns of unit length are forcible. That may seem counter-
intuitive, since particle counts are analogous to free parameters and times of
appearance are analogous to settings of those parameters, so it would seem
that answers involving more free parameters are more complex. But it must
be kept in mind that the same possibilities could be parameterized in different
ways, and simplicity depends upon which parametrization the question asks
about. If the problem is to count marbles, then worlds with more marbles
are more complex, whenever the marbles arrive. If it is to count n-bles, then
worlds with more n-bles are more complex, regardless of when the marbles
arrive. If the problem is to identify particular worlds, the parametric structure
of the problem disappears and complexity is flattened. Examples of the latter
sort are excluded from consideration by the following restriction.

Restriction 4 (symmetrical solvability) Only problems with symmetrical
solutions are considered in the results that follow.

In typical applications, restriction 4 can be sidestepped by coarsening
or refining the question in a manner that disambiguates the intended
parametrization. It is also worth mentioning that restrictions 2 and 4 are
logically independent given restriction 1.15

15 The problem of identifying individual worlds in which at most finitely many marbles occur
satisfies the determinacy assumption (restriction 1) and the well-foundedness assumption
(restriction 2) but not the symmetrical-solvability assumption (restriction 4), whereas
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10 EFFICIENCY DEFINED

Let Ce(n) denote the set of all worlds in Ke such that c(w, e) = n. Refer to
Ce(n) as the nth anomaly complexity class at e.16 Complexity classes depend
only on the structure of the problem to be solved, so they are not mere matters
of description.

Let σ be a solution to (K ,�) and let e be compatible with K . Let
the worst-case timed retractions over Ce(i) be the supremum of the timed
retraction costs incurred by σ over worlds in Ce(i). As mentioned above, the
idea is to examine worst-case bounds over anomaly complexity classes rather
than over answers. Accordingly, define:

1. solution σ is efficient at e with respect to a given cost if and only if for
each solution σ ′ that agrees with σ along e− and for each n, the worst
case cost bound of σ over Ce(n) is less than or equal to that of σ ′;

2. solution σ is strongly beaten at e with respect to a given cost if and only
if there exists solution σ ′ that agrees with σ along e− such that for each n
such that Ce(n) is non-empty, the worst case cost bound of σ over Ce(n)
is greater than that of σ ′;

3. solution σ is weakly beaten at e with respect to a given cost if and only
if there exists solution σ ′ that agrees with σ along e− such that for each
n, the worst case cost bound of σ ′ over Ce(n) is less than or equal to that
of σ and there exists n such that the worst-case cost bound of σ ′ over
Ce(n) is less than that of σ .

Notice that there is no imposed bias or weighting, probabilistic or
otherwise, in favor of lower complexity classes or simple worlds in the
preceding definitions. There are just dominance relations over worst-case
bounds on structurally motivated complexity classes. That is as it must be if
the efficiency argument for Ockham’s razor is to avoid the narrow circularity
of standard, Bayesian explanations.

11 NESTED PROBLEMS

The marble counting problem and the problem of finding the true
polynomial degree of a curve both have the attractive feature that there exists

the disappearing marble example described earlier satisfies restrictions 1 and 4 but not
restriction 2, for a symmetrical solution could simply wait until tomorrow to see how many
marbles there are and could then guess the current number of marbles at each stage.

16 The complexity classes are sets (subsets of K ).
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a uniquely simplest answer for each possible evidential circumstance e. But
there may be more than one maximally simple answer, as in the black and
white marble counting problem when the noise is heard. Accordingly, say
that a problem is nested if there exists a uniquely simplest answer at each
e compatible with K . Nested problems allow for branching paths, but have
the property that there is a uniquely simplest answer at each stage of inquiry,
as in the two-color counting problem when no noise is heard prior to seeing
the marble. In that case, nature can choose which color to present at each
stage, but the current count is always the uniquely simplest answer. Other
familiar scientific questions with this structure include finding the set of all
independent variables a linear equation depends upon and the inference of
conservation laws in particle physics [18].

12 THE MAIN RESULTS

For brevity, these assumptions govern all the results that follow. All proofs
are presented in the appendix.

1. (K ,�) is a problem satisfying restrictions 1–4;
2. the cost under consideration is timed retractions;
3. e is a finite input sequence compatible with K .

The main result is that, in general, every deviation from Ockham’s razor
incurs a strong beating. Hence, the argument for Ockham’s razor is stable, in
the sense that you always have a motive to return to Ockham’s fold no matter
how prodigal you have been in the past.

Proposition 12.1 (efficiency stably implies Ockham’s razor) If solution σ
violates Ockham’s razor at e, then σ is strongly beaten in terms of timed
retractions at e.

The same is true of stalwartness.

Proposition 12.2 (efficiency stably implies stalwartness) If solution σ
violates stalwartness at e, then σ is strongly beaten in terms of timed
retractions at e.

Symmetry is a stronger principle than Ockham’s razor and its general
vindication is correspondingly weaker: violating symmetry results in a weak
beating at the first violation rather than a strong beating at each violation.17

17 For example, suppose at e that a curtain will be opened tomorrow that reveals either a
marble emitter or nothing at all. The question is whether there is an emitter behind the
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Proposition 12.3 (efficiency implies symmetry) If solution σ violates
symmetry at e, then σ is weakly beaten at the first moment e′ along e at
which symmetry is violated.

Again, being beaten is no sin if every solution is beaten. To clinch the
argument, stalwart, symmetrical solutions are efficient. That amounts to
an existence proof, given that the problem is symmetrically-solvable, since
every symmetrically solvable problem is solvable by a stalwart, symmetrical
method.18 The efficiency is also stable if the problem under consideration is
nested.

Proposition 12.4 (symmetry and stalwartness imply efficiency)

1. If the problem is nested and σ is a stalwart, Ockham solution from e
onward, then σ is efficient at e.

2. If σ is a stalwart, symmetrical (and, hence, Ockham) solution at every
stage, then σ is efficient at every stage.

In nested problems, all solutions are partitioned into the strongly beaten
ones and the stalwart Ockham ones. This duplicates the situation in the
counting problem.

Corollary 12.5 If the problem is nested and σ is a solution, then the
following statements are equivalent:

1. σ is efficient at each e;
2. σ is weakly beaten at no e;
3. σ is strongly beaten at no e;
4. σ is stalwart and Ockham at each e.

More generally, the possibility of weakly beaten, non-symmetrical methods
must be allowed.

curtain and if so, how many marbles it will emit. The no-emitter world and the marble-free
emitter world are both simplest in this example, so symmetry requires that one suspend
judgment between the corresponding answers until the curtain is opened. Suppose that you
flout symmetry and guess that you are in the marble-free emitter world. Had you refrained
from choosing, you would have had no retractions in complexity class Ce(0), but you have
incurred at least one retraction in class Ce(0), so you are weakly beaten (every solution,
including you, retracts at least k times after e in the worst case in class Ce(k)). You are not
strongly beaten, however, because you do as well as possible in each class Ce(k) such that
k exceeds zero.

18 For a symmetrical solution converges to the uniquely simplest answer in each world and
is not prevented from doing so by hanging onto a uniquely simplest answer until it is no
longer uniquely simplest.
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Corollary 12.6 If σ is a solution, then the following statements are equiva-
lent.

1. σ is efficient at each e;
2. σ is weakly beaten at no e;
3. σ is stalwart and symmetrical (and, hence, Ockham) at each e.

13 CONCLUSION AND PROSPECTS

A very general, structural theory of simplicity and of Ockham’s razor has
been presented, according to which Ockham’s razor does not point at the
truth, but keeps one on the most direct route thereto. Indeed, choosing only
the uniquely simplest hypothesis compatible with experience and hanging
onto it until its uniquely simple status is undermined is demonstrably
equivalent to minimizing timed retractions prior to convergence to the truth.
This result provides a relevant, non-circular connection between simplicity
and finding the true theory. No standard, alternative account of simplicity
does so.

The results suggest that the scientific realism debate is not a genuine
debate. The anti-realist is correct that simplicity cannot function as a magical
divining rod for truth. The realist is correct that simplicity, nonetheless,
provides the best possible advice for finding the truth, because it keeps one
on the straightest possible path thereto. The results also provide some solace
for scientists who employ off-the-shelf data-mining procedures that employ a
wired-in prior bias toward simplicity. Such methods really are more efficient
at finding the truth, even though they cannot be said to divine or point at the
truth.19 Finally, the results reverse the common impression that convergence
considerations impose no constraints on the course of inquiry in the short
run. It has been demonstrated that timed retraction efficiency leaves just
one choice open to a convergent scientist: how long to wait for evidence
to accumulate before leaping to the uniquely simplest hypothesis in light of
the data. Which answer to choose and when to drop it are both uniquely
determined.

Like all new ideas, the proposed account of Ockham’s razor suggests
a range of potential improvements and generalizations. (1) Efficiency with
respect to total number of erroneous answers produced prior to convergence

19 Simulation studies suggesting the contrary notwithstanding. When an Ockham procedure
seems to have a higher chance of producing the true answer in a randomly chosen example
than non-Ockham procedures, the underlying sampling distribution over worlds is biased
toward simple worlds. That is just a motorized version of the circular Bayesian argument.
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is equivalent to the symmetry principle and, hence, entails Ockham’s razor.
The same is true if efficiency is defined in terms of weak Pareto-dominance
with respect to timed retractions and errors jointly. Other combinations of
costs can be considered. (2) Penalizing total retracted content rather than
just retractions yields the intuitive result that one should only retract to
“one black or one white” when the noise announcing a new marble is
heard. (3) It remains to apply the preceding ideas with equal rigor and
generality to statistical and causal inference (see [12] for some preliminary
ideas). (4) It also remains to explore realistic recommendations when
finding the Ockham hypothesis is computationally infeasible (see [11] for
more preliminary ideas). (6) Finally, the symmetrical solvability and well-
foundedness restrictions can and should be weakened.

14 APPENDIX

In the following results, (K ,�) is assumed to be an empirical problem
satisfying restrictions 1–4, and e, e′ range over finite input sequences. Also,
let ω[k] denote the sequence (ω, . . . , ω) in which ordinal ω is repeated
exactly k times.

Proof of proposition 7.1. Let p be a play sequence in the g-forcing
game in problem (K ,�) at e. Let pS be the sub-sequence consisting of the
scientist’s plays, and let pN be the corresponding sub-sequence for nature.
Let W be the winning condition for nature. In light of Martin’s (1975)
theorem, it suffices to show that W is a Borel set. Then p ∈ W if and only if:

1. pN ∈ Ke and
2. (a) ¬((∃n)(∀m ≥ n) pS(m) �=‘?’ and pN ∈ pS(m)) or

(b) g is a sub-sequence of pS .

Condition pN ∈ Ke is Borel because K is assumed to be Borel and the
condition of extending e is clopen. Condition pS(m) �=‘?’ is clopen. Since
(K ,�) is solvable, each cell in � is �0

2, since w is in answer A if and only
if there exists a time such that for each later time the solution converges to
A. Hence, the condition that pN ∈ pS(m) is �0

2 Borel. Finally, the condition
that g is a sub-sequence of pS is open. Borel conditions are preserved under
first-order quantification and Boolean connectives, so W is Borel. �

Proof of proposition 12.1. Let σ be a solution that violates Ockham’s
razor at e (which need not be the first violation). So σ (e) = A, where A
is not a simplest answer compatible with e. Let σ ′ agree with σ along e
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and then produce the simplest answer compatible with e′ if it exists and ‘?’
otherwise, for each e′ properly extending e. Since (K ,�) is symmetrically
solvable (restriction 4), σ ′ solves (K ,�), because σ ′ converges, in each
world, to whatever the assumed symmetrical solution converges to in that
world. Let r be the timed retraction cost common to both methods σ and σ ′
along e− (recall that r is a finite, ascending sequence of natural numbers).

Suppose that Ce(k) is non-empty. There exists a pattern B ∗ b of length at
least k + 1 in �e (by lemma 14.3). Since A is not a simplest answer, B �= A
(by lemma 14.5). There exists w in B ∩ Ke along which B ∗ b remains
forcible after e (by lemma 14.4). Since σ is a solution, σ retracts A after e
along w, say at e′ of length j . Now B ∗ b is still forcible given e′, so there
exists w′ in Ce′(k) along which σ can be made to repeat each successive
entry in B ∗ b an arbitrary number of times (by lemma 14.9). Since B ∗ b
is forcible at e′ and B ∗ b is in �e, no anomaly occurs along e′ after e (by
lemma 14.1). Hence,w′ is in Ce(k). So the worst-case timed retraction bound
for σ over Ce(k) is at least r ∗ j ∗ ω[k], where it will be recalled that ω[k]
denotes the sequence (ω, . . . , ω), with ω repeated k times and ∗ indicates
concatenation. But since σ ′ retracts after e only at anomalies (by lemma
14.8), the worst-case timed retraction bound for σ ′ over Ce(k) is at most
r ∗ i ∗ ω[k], where i < j is the length of e. Since r ∗ i ∗ ω[k] < r ∗ j ∗ ω[k]
and Ck is an arbitrary, non-empty complexity class, σ ′ strongly beats σ at e
in terms of timed retractions. �

Proof of proposition 12.2. Let σ be a solution that violates stalwartness
at e (which need not be the first violation). So for some answer A that
is uniquely simplest at e, σ (e−) = A but σ (e) �= A. Let σ ′ be a solution
constructed as in the proof of proposition 12.1, and let r be the timed
retraction cost incurred along e− by both σ and σ ′. Let i be the length of
e. Then σ incurs timed retraction cost r ∗ i along e, but σ ′ incurs only r .
Let Ce(k) be non-empty. So there exists a pattern b in �e of length at least
k + 1 (by lemma 14.3). There exists w in Ce(k) along which σ can be made
to repeat each successive entry in b an arbitrary number of times (by lemma
14.9). So the worst-case timed retraction bound for σ over Ce(k) is at least
r ∗ i ∗ ω[k]. Since σ ′(e−) = A and σ ′ is stalwart at e and A is simplest at
e, σ ′(e) = A, so the timed retraction cost of σ ′ along e is just r . Since σ ′
retracts after e only at anomalies (by lemma 14.8), the worst-case timed
retraction bound for σ ′ at e is at most r ∗ ω[k]. Since r ∗ ω[k] < r ∗ i ∗ ω[k]
and Ck is an arbitrary, non-empty complexity class, σ ′ strongly beats σ at e
in terms of timed retractions. �

Proof of proposition 12.3. Suppose that σ is a solution that violates the
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symmetry principle (somewhere). Then there exists finite input sequence
e compatible with K such that σ violates symmetry at e, but not at any
proper sub-sequence of e. So σ (e) = A, where A is not the uniquely
simplest answer compatible with e. Let σ ′, r , and ω[k] be as in the proof of
proposition 12.1.

Since A is not uniquely simplest at e, there exists world w in C0(e) such
that w satisfies some answer B �= A (by lemma 14.7). Since σ is a solution,
σ converges to B in w, so there exists some e′ properly extending e and
extended by w such that σ (e′) �= A. So the timed retractions of σ along e′ are
at least r ∗ j , where j is the length of e′. So the worst case timed retractions
of σ over Ce(0) are at least r ∗ j . Let w′ be an arbitrary element of Ce(0).
Then σ ′ never retracts in w after e (by lemma 14.8). It is possible that σ ′
retracts at e. So the worst case timed retractions of σ ′ over Ce(0) are less than
or equal to r ∗ i , where i < j is the length of e. Observe that r ∗ i < r ∗ j .

Now consider non-empty complexity class Ce(k), for arbitrary k ≥ 0 and
let w be in Ce(k). Then there exists pattern b in �e of length at least k + 1
(by lemma 14.3).

Case A: σ retracts at e if σ ′ does. Then the worst case timed retractions
of both methods along e are exactly the same, say r ′, and the worst-case
timed retraction bound for σ ′ over Ce(k) is no worse than r ′ ∗ ω[k]. Also,
there exists w′ in Ce(k) along which σ produces the successive entries along
b after e with arbitrarily many repetitions (by lemma 14.9). Hence, the worst-
case timed retractions of σ after e are at least as bad as ω[k], so the worst-
case timed retraction bound for σ over Ce(k) is at least r ′ ∗ ω[k]. But since
σ ′ retracts after e only at anomalies (by lemma 14.8), the worst-case timed
retraction bound for σ ′ over Ce(k) is at most r ′ ∗ ω[k].

Case B: σ ′ retracts at e and σ does not. Since e is the first symmetry
violation by σ and σ (e−) = σ (e), answer A = σ (e) is uniquely simplest at
e− but not at e. So there exists w in Ce(0) − A such that w is not in Ce−(0)
(by lemma 14.7). So c(w, e) = 0 but c(w, e−) > 0. Hence, e is an anomaly.
So there exists pattern B ∗ d such that no pattern in �e begins with B and
B ∗ d ∗ �e ⊆ �e− . Since the uniquely simplest hypothesis A at e− begins
each forcible sequence in �e− (by lemma 14.6), B = A, so no pattern in �e

begins with A. So pattern b begins with some answer D �= A. So there exists
world w′ ∈ D ∩ Ke such that for each e′ extending e and extended by w′, b
is forcible at e′ (by lemma 14.2). Since σ is a solution, σ converges to D
in w′ and, hence, retracts A at some e′ properly extending e and extended
by w′. Let j be the length of e′, so j > i , where i is the length of e. Then
b is still forcible at e′, so there exists w′′ in D ∩ Ce′(k) along which the
successive entries in b are produced with arbitrary repetitions (by lemma
14.9). Since b is still forcible at e′ and b is in �e, no anomalies occur after
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e along e′ (by lemma 14.1), so w′′ is also in Ce(k). Hence, the worst-case
timed retraction bound for σ over Ce(k) is at least r ∗ j ∗ ω[k]. But since
σ ′ retracts after e only at anomalies (by lemma 14.8), the worst-case timed
retraction bound for σ ′ over Ce(k) is at most r ∗ i ∗ ω[k] < r ∗ j ∗ ω[k]. �

Proof of proposition 12.4.1. Let σ ′ be a solution to a nested problem
that is Ockham and stalwart from e onward. Since the problem is nested, σ ′
is also symmetrical from e onward. Let σ agree with σ ′ along e−. Suppose
that Ce(k) is non-empty. There exists a pattern b of length at least k + 1 in
�e (by lemma 14.3).

Case A: σ retracts at e if σ does. Then let r denote the identical costs
of σ and σ ′ along e. Since σ ′ is symmetrical and stalwart from e onward,
the worst-case timed retraction bound for σ ′ over Ce(0) is less than or equal
to r ∗ ω[k] (by lemma 14.8). There exists w′ in Ce(k) along which σ can be
made to repeat each successive entry in b an arbitrary number of times (by
lemma 14.9), so the worst-case timed retraction bound for σ over Ce(0) is at
least r ∗ ω[k].

Case B: σ ′ retracts at e and σ does not. Since (K ,�) is nested, there
exists a uniquely simplest answer B at e. So every pattern in �e begins
with B (by lemma 14.6), so b begins with B. Let i be the length of e. Then
since σ ′ retracts only at anomalies after e (by lemma 14.8), the worst-case
timed retraction bound for σ ′ over Ce(k) is less than or equal to r ∗ i ∗ ω[k].
Since σ ′ is stalwart at e and retracts at e, answer A = σ ′(e−) = σ (e−) is not
uniquely simplest at e, so A �= B. There exists w in B ∩ Ke along which
b remains forcible after e (by lemma 14.4). Since σ is a solution, σ must
retract A in w after e, say by e′. Now b is still forcible given e′, so there
exists w′ in Ce′(k) along which σ can be made to repeat each successive
entry in b an arbitrary number of times (by lemma 14.9). Since b is forcible
at e′, no anomaly occurs along e′ after e (by lemma 14.1). Hence, w′ is in
Ce(k). So letting j > i be the length of e′, the worst-case timed retraction
bound for σ over Ce(k) is at least r ∗ j ∗ ω[k] > r ∗ i ∗ ω[k]. �

Proof of proposition 12.4.2. Let σ ′ be a stalwart, symmetrical solution at
every e. Let σ agree with σ along e−. Now consider non-empty complexity
class Ce(k), for arbitrary k > 0 and let w be in Ce(k). Then there exists
pattern b in �e of length at least k + 1 (by lemma 14.3).

Case A: σ retracts at e if σ ′ does. Follow the argument for case A in
the proof of proposition 12.3, observing that a stalwart, symmetrical solution
retracts only at anomalies (by lemma 14.8).

Case B: σ ′ retracts at e and σ does not. Since σ ′ is always symmetrical
and stalwart and σ ′ retracts at e, answer A = σ ′(e−) = σ (e−) is uniquely
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simplest at e− but not at e. Pick up from here in case B of the proof of
proposition 12.3, again observing that a stalwart, symmetrical solution
retracts only at anomalies (by lemma 14.8). �

Proof of corollary 12.5. (1) implies (2) implies (3) by definition. (3)
implies (4) by propositions 12.1 and 12.2. (4) implies symmetry and
stalwartness since the problem is nested. Symmetry and stalwartness imply
(1) by proposition 12.4.1. �

Proof of corollary 12.6. (1) implies (2) by definition. (2) implies (3)
by propositions 12.3 and 12.2. (3) implies (1) by proposition 12.4.2. �

Lemma 14.1 (anomaly freedom) Let b be in �e and let b be forcible at
e′ properly extending e. Then for all e′′ properly extending e and extended
by e′:

1. b is in �e′′ and
2. e′′ is not an anomaly.

Proof. Suppose that b is in �e and b is forcible at e′ properly extending e.
Let e′′ properly extend e and be extended by e′. Then b is forcible at e′′ since
b is still forcible at e′. Suppose for contradiction that b is not in �e′′ . Then
since b is forcible at e′′, there exists b′ forcible at e′′ such that b is a sub-
sequence of b′ but b is not an initial segment of b′. But then b′ is forcible at
e, so b is not in �e. Contradiction. So b is in �e′ . Again, let e′′ be an arbitrary
input sequence properly extending e and extended by e′. Then it has just been
shown that b is in both �e′′ and �e′′− . Suppose that e′′ is an anomaly. Then
there exists A ∗ g such that A ∗ g ∗ �e′′ ⊆ �e′′− and no element of �e′′ begins
with A. So A ∗ g ∗ b is in �e. But b does not begin with A, so b is not an
initial segment of A ∗ g ∗ b. Hence, b is not in �e. Contradiction. �

Lemma 14.2 (forcibility is asymptotic) Let A ∗ a be forcible given e. Then
there exists a world w in Ke ∩ A extending e such that for each finite initial
segment e′ of w, A ∗ a is forcible given e′.

Proof. Suppose A ∗ b is forcible given e. Suppose for contradiction that the
consequent of the lemma is false. Then for each w in A ∩ Ke there exists e′
extending e and extended by w such that A ∗ b is not forcible given e′. For
each w in A ∩ Ke, let ew be the shortest such e′. For each ew, A ∗ b is not
forcible at ew, so since the forcing games in (K ,�) are all determined (by
restriction 1), there exists a solution σw for (Kew ,�ew ) that never produces
A ∗ b after ew. Let σ solve (K ,�) and let σ ∗ be just like σ except that control
is shifted permanently to σw when ew is encountered. So σ ∗ is a solution that
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never produces A ∗ b after seeing some ew. Let σ † be like σ ∗ except that
σ † produces “?” along each ew and at each e not extended by some ew such
that σ returns A at e. Then σ † is still a solution, since σ ∗ converges to the
truth over Ke ∩ A (the question marks eventually end in each w in Ke ∩ A)
and over Ke − A (σ does not converge to A in any such world, so again,
the question marks end eventually in each w in Ke − A). But σ † doesn’t
produce A ∗ b after e along any e′ extending e. So A ∗ b is not forcible
given e. Contradiction. �

Lemma 14.3 (forcible pattern existence) Suppose that Ce(n) is non-empty.
Then there exists a finite pattern in �e of length at least n + 1.

Proof. Letw be in Ce(0). In the base case, nature can force the answer A true
inw from an arbitrary solution. For induction, suppose thatw is in Ce(n + 1).
Let e′ be the first anomaly alongw after e. So there are n anomalies occurring
in w after e′. By the induction hypothesis, there exists pattern a in �e′ of
length at least n + 1. Since e′ is an anomaly, there exists pattern A ∗ b such
that A ∗ b ∗ a is a pattern in �e′− . Hence, A ∗ b ∗ a has length at least n + 2.
Since A ∗ b ∗ a is forcible at e′−, A ∗ b ∗ a is forcible at e as well. So there
exists some pattern d in �e of which A ∗ b ∗ a is a sub-pattern (by restriction
2), so d has length at least n + 2. �

Lemma 14.4 (nature’s starting point) Let A ∗ a be in �e. Then there exists
a world w in Ce(0) ∩ A such that for each finite initial segment e′ of w that
extends e, A ∗ a is in �e′ .

Proof. Let A ∗ a be in �e. So A ∗ a is forcible given e. By lemma 14.2, there
exists w in Ke ∩ A such that A ∗ a is forcible along each initial segment of
w extending e. Let e′ properly extend e and be extended by w. Then A ∗ a is
in �e′ and e′ is not an anomaly (by lemma 14.1). Hence, w is in Ce(0). �

Lemma 14.5 (simplest answer forcible first) Let answer A be the first entry
in some pattern in �e. Then A is a simplest answer.

Proof. Suppose that A ∗ b ∈ �e. Then there exists w in A ∩ Ce(0) (by
lemma 14.4). So c(A, e) = 0. �

Lemma 14.6 (uniquely simplest answer and forcibility) Let answer A be
uniquely simplest at e. Then each pattern in �e begins with A.

Proof. Suppose that for some answer B �= A, pattern B ∗ a is in �e. Then
by lemma 14.5, B is simplest at e. So A is not uniquely simplest. �

Lemma 14.7 (simple world existence) Let Ke be non-empty. Then there
exists a world w in Ce(0).
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Proof. Suppose there existsw in Ke. If c(w, e) = 0, we are done. So suppose
c(w, e) = k > 0. Then (by lemma 14.3) there exists A ∗ a in �e of length
k + 1. So there exists w′ in A ∩ Ce(0) (by lemma 14.4). �

Lemma 14.8 (simplest answer defeated only by anomalies) Let Ke be non-
empty, let e be non-empty, and let A be an answer in� such that A is uniquely
simplest at e− and A is not uniquely simplest at e. Then e is an anomaly.

Proof. Let Ke, e be non-empty. Then Ke− is non-empty, so by lemma 14.7,
Ce−(0),Ce(0) are non-empty. So since A is uniquely simplest at e− but not at
e, we have Ce−(0) ⊆ A but Ce(0) �⊆ A. So there exists w in Ce(0) − Ce−(0).
Hence, c(w, e−) > 0 and c(w, e) = 0, so e is an anomaly. �

Lemma 14.9 (forcing lemma) Let σ be a solution and let pattern a of length
at least k + 1 be in �e and let m be a natural number. Then there exists w in
Ce(k) such that after e, σ produces a0 successively for m times and then a1

successively for m, times, . . . and finally ak successively for m times.

Proof. Let natural number m be given. In the base case, let pattern (A) be
in �e. Then there exists world w ∈ A ∩ Ce(0) such that (A) remains in w
from e onward (by lemma 14.4). Since A is true in w and σ is a solution, σ
converges to A in w, so σ produces A at least m times in succession after e
in w.

For induction, let A ∗ a, be forcible at e, where a is a finite answer pattern
of length k + 1. There exists a world w in A ∩ Ke such that A ∗ a is in �e′ ,
for each finite, initial segment e′ of w extending e (by lemma 14.4). Since σ
is a solution, σ converges to A in w. Nature can wait m steps after the onset
of convergence until σ produces A at least m times after e in w. Let e′ extend
e such that a is in �e′ and exactly one anomaly occurs along e′ after e (by
restriction 3). So by the induction hypothesis, there exists w′ in Ce(k) such
that, after e, σ produces a0 successively for m times and then a1 successively
for m, times, . . . and finally ak successively for m times. Hence, σ produces
A successively for m times followed by a0 for m times, etc. Since exactly
one anomaly occurs along e′ after the end of e and k anomalies occur along
w after e′, w′ is in Ce(k + 1). �
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Abstract: We exploit the analogy between the well ordering principle for nonempty
subsets of N (the set of natural numbers) and the existence of a greatest lower
bound for non-empty subsets of [a, b) 1 to formulate a principle of induction
over the continuum for [a, b) analogous to induction over N. While the gist of
the idea for this principle has been alluded to, our formulation seems novel. To
demonstrate the efficiency of the approach, we use the new induction form to
give a proof of the compactness of [a, b]. (Compactness, which plays a key role
in topology, will be briefly discussed.) Although the proof is not fundamentally
different from many familiar ones, it is direct and transparent. We also give
other applications of the new principle.

1 INTRODUCTION

When teaching a first course in analysis recently, I formulated a proof
of the Heine-Borel Theorem. Upon a search of archives, I learned that
W. L. Duren Jr. [4] had a close and similar idea, except that his analogy
(and formulation) is to Zorn’s Lemma as applied to a chain of intervals to
get a maximal element, while the present analogy (and formulation) is to
ordinary induction (and so perhaps more easily accessible). When several
other theorems of analysis readily found proofs through this “inductive
approach”, I thought to share the idea.

1 For real numbers a and b, [a, b) is the set of real numbers between a and b, including a
and excluding b; [a, b] is the set of real numbers between a and b, including a and b.
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While ordinary induction on N and transfinite induction on ordinals both
hinge upon the underlying well ordering structures present, and while Zorn’s
Lemma, the Axiom of Choice, or the well ordering principle for every set
can play interrelated roles with those induction forms, we confine the focus
of this paper to ordinary induction and induction on the continuum.

In Section 2, we state and show equivalence between some principles
involving induction over the set of natural numbers. The proofs are presented
to help carry the analogy for the similar principles involving induction over
the continuum presented in Section 3. After briefly discussing compactness
in Section 4, we prove the Heine-Borel theorem in Section 5, and give further
applications of the new principle in Section 6. Some brief historical remarks
and miscellanea are presented in Sections 7 and 8.

2 ORDINARY INDUCTION

When we wish to establish the truth of an assertion ∀n P(n), where n
ranges over N = {0, 1, 2, · · · }, and P(n) is a predicate about n, we may
define S = {n ∈ N : P(n)} and seek to demonstrate that S = N by exploiting
the principle of:

Induction Over N (ION). For any S ⊆ N, if

(1) 0 ∈ S, and
(2) ∀k[ k ∈ S ⇒ k + 1 ∈ S ],

then S = N.

In using ION, we find efficiency and satisfaction on a few counts. For
example, demonstrating (1) is often a simple verification, and establishing
(2) is a boot-strapping process propelled by the assumption of k ∈ S in
pursuit of concluding k + 1 ∈ S. Furthermore, when the predicate P(n) is
free of quantifiers, we seem to avoid the ‘magic’ of a proof by contradiction
which often masks and mystifies some mathematically meaningful underly-
ing processes.

The dual principle for N, ordered under “≤”, sometimes used to explain
the truth of ION, as well as used for an indirect proof of ∀n P(n), is the
following:

Well Ordering Principle (WOP). If T ⊆ N and T �= ∅, then T has a
least element.

Because we wish to find conceptual parallels, we restate ION for S ⊆ N
in the following equivalent form (known as strong induction):
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ION. If
(1) ∃k[ (k ≥ 0) ∧ ([0, k) ⊆ S) ], and
(2) ∀k[ [0, k) ⊆ S ⇒ (∃l > k)[0, l) ⊆ S ],
then S = N.

Here we have [0, k) = def{j ∈ N : 0 = j ∨ j < k}. (So [0, 0) = {0}.)
At this stage, we make the following familiar observation.

Theorem 2.1 WOP iff ION.

Proof. (⇒) Assume WOP. Further suppose that S, a subset of N, satisfies
the properties (1) and (2) of ION. Presume S �= N. Then S′ = N − S, the
complement of S, is a nonempty subset of N. Applying WOP to S′, let z be
the least element of S′; note 0 < z by (1) of ION. Clearly, [0, z) ∩ S′ = ∅. So
[0, z) ⊆ S, and by (2) of ION, there is y > z such that [0, y) ⊆ S. Thus z is
not the least element of S′; a contradiction. Hence our presumption is false
and S = N.

(⇐) Assume ION. Further let T ⊆ N and presume T does not have a
least element. We will show T = ∅. Consider T ′ = N − T . Clearly 0 ∈ T ′
because otherwise 0 would be in T and its least element, contradicting the
hypothesis. Thus T ′ satisfies condition (1) of ION. Next, for arbitrary k,
assume [0, k) ⊆ T ′. But then k cannot belong to T as otherwise it would
be T ’s least element. So k ∈ T ′. So, for some l > k, [0, l) ⊆ T ′. (Here l is
possibly just k + 1.) So T ′ satisfies condition (2) of ION. Thus, ION applies
to T ′ and T ′ = N. Thus T = ∅. �

The proofs above are trivial but they are included to help carry the
intended analogy that will follow next.

3 INDUCTION OVER THE CONTINUUM

We also recall a familiar property for nonempty, bounded subsets of R
(the set of real numbers) under the ordering “≤”, for any reals a, b ∈ R
with a < b:

The Greatest Lower Bound Principle (GLBP). If T ⊆ [a, b) and
T �= ∅, then T has a greatest lower bound (in [a, b)).

Consider the interval [a, b) with a, b ∈ R, a < b, and S ⊆ [a, b). We
formulate an “induction scheme” over [a, b) as follows.

Induction Over the Continuum (IOC). If
(1) ∃x(x ≥ a) ∧ ([a, x) ⊆ S), and
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(2) ∀x[ [a, x) ⊆ S ⇒ (∃y > x)[a, y) ⊆ S ],
then S = [a, b).

Here, we have [a, x) = def{t ∈ [a, b) : a = t ∨ t < x}. So [a, a) = {a}.
Similarly to the case for ION, we establish the next two results.

Theorem 3.1 If GLBP, then IOC.

Proof. Assume GLBP. Further suppose that S, a subset of [a, b), satisfies
the properties (1) and (2) of IOC. Presume S � [a, b). Then S′ = [a, b) − S
is a bounded, non-empty subset of [a, b). Applying GLBP, let z be the
greatest lower bound of S′; note a < z < b by (1) of IOC. Clearly,
[a, z) ∩ S′ = ∅. So [a, z) ⊆ S, and by (2) of IOC, there is y > z such that
[a, y) ⊆ S. Thus z is not the greatest lower bound of S′; a contradiction.
Hence our presumption is false and S = [a, b).2 �

Theorem 3.2 If IOC, then GLBP.

Proof. Assume IOC. Further let T ⊆ [a, b) and presume T does not have
a greatest lower bound. We will show T = ∅. Consider T ′ = [a, b) − T .
Clearly a ∈ T ′ because otherwise a would be in T and its greatest lower
bound, contradicting the hypothesis. Thus T ′ satisfies condition (1) of IOC.
Next, for arbitrary x , assume [a, x) ⊆ T ′. But then x is a lower bound for
T and is not, by hypothesis, its the greatest lower bound. So there exists y
with y > x such that y is a lower bound for T . Consequently, [a, y) ⊆ T ′. So
T ′ satisfies condition (2) of IOC. Thus, IOC applies to T ′ and T ′ = [a, b).
Thus T = ∅. �

Theorems 3.1 & 3.2 combined and compared to Theorem 2.1 demonstrate
the analogy: WOP is to ION as GLBP is to IOC. As GLBP is logically
equivalent to the completeness of [a, b], IOC could be assumed as an axiom
in place of the completeness axiom.

2 As ION often is metaphorically described through “domino theory”, it seems that the
motion of a “curling stone” can serve as a metaphorical description for IOC. Indeed it
was surprising to excogitate the following quatrain, which seems to capture the idea of
IOC closely:

The Curling Stone slides; and, having slid,
Passes me toward thee on this Icy Grid,
If what’s reached is passed for’ll Crystals amid,
Th’Stone Reaches thee in its Eternal Skid.

By Harak A’Myomy (12th century), translated by Walt Friz De Gradde (1897).
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4 COMPACTNESS

The theorem of our central interest in this paper, which is about the
compactness of [a, b], helped streamline the development of analysis and
topology. It could be said that compact is to pursuits in topology as finite
is to pursuits in set theory. In the theory of sets, finite sets behave more
tamely than infinite sets; in topology, compact sets behave more tamely than
noncompact sets. For that reason, the concept was pursued mathematically
in several different planes (including mathematical logic) simultaneously or
independently during the last two centuries.

Definition 4.1 A subset of R, K , is compact if whenever a (possibly infinite)
family O of open subsets of R covers K (that is the union of members of O
contains K ), there is a finite subfamily of O that covers K .

To motivate this concept as well as the focus of this paper, the Heine-Borel
Theorem (in the next section), we recall the following result:

A function which is continuous 3 on [a, b] is uniformly continuous 4 there.
Clearly, continuity of a function at x ∈ [a, b], is an ε, δ process where δ

depends both on x and ε. However, uniform continuity guarantees a δ which
depends on ε but applies to any point x in [a, b].

While the proof of the above result using IOC is directly possible, we
delay that until the subsequent section. In the following section, we prove the
Heine-Borel Theorem, which is traditionally used to derive the above result
and many other fundamental theorems of analysis.

5 THE HEINE-BOREL THEOREM

The fact that [a, b] is a compact subset of R is established in what
appears to be three distinct ways: through “there is a finite subcover for every
infinite open cover”; through “an indirect proof to get a nested sequence of
intervals leading to an application of Cantor’s Nested Interval Theorem”; or
through “every bounded sequence has a convergent subsequence”. In the first
mentioned (and the more frequently presented) type of proof, there seems to
be a few “twists” necessitated by the indirect approach (see, for example,

3 f : R → R iscontinuous on L ⊆ R if

(∀x ∈ L)(∀ε > 0)(∃δ(x,ε) > 0)(∀y ∈ L)[ |x − y| < δ(x,ε) ⇒ | f (x) − f (y)| < ε ].
4 f : R → R is uniformly continuous on L ⊆ R if

(∀ε > 0)(∃δε > 0)(∀x ∈ L)(∀y ∈ L)[ |x − y| < δε ⇒ | f (x) − f (y)| < ε ].
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Royden’s Real Analysis, [11]); although the proof below is quite similar,
twists are absent.

Theorem 5.1 (Heine-Borel) For any a, b ∈ R with a < b, the interval [a, b]
is compact.

Proof. Let O be an open cover for [a, b]. Set

S = {t : t ∈ [a, b) and [a, t] is contained in a finite cover from O}.
Firstly, there exists x ≥ a such that [a, x) ⊆ S, as a ∈ Va ∈ O for some open
Va . Secondly, assume [a, x) ⊆ S. Since, x ∈ Vx for some open Vx ∈ O, there
exist y > x and x ′ < x with x ∈ (x ′, y) ⊆ Vx ∩ [a, b]. As x ′ ∈ S, the finite
cover for [a, x ′] together with Vx confirm that [a, y) ⊆ S.

Thus the two statements in IOC’s hypothesis are satisfied and accordingly
we have S = [a, b). Finally, as b ∈ Vb ∈ O for some open Vb, there exists a
b′ < b with b′ ∈ Vb ∩ S; so [a, b] is contained in the finite cover comprised
from the finite cover for [a, b′] together with Vb. So [a, b] is compact. �

6 OTHER APPLICATIONS

In this section, we use IOC to prove a sample of familiar theorems of
elementary analysis.

Theorem 6.1 (Heine) If f , a function from [a, b] to R, is continuous, then it
is uniformly continuous.

Proof. Assume f is continuous on [a, b]. To show f is uniformly continuous
there, let ε > 0 be given. Also, let

S = {t : t ∈ [a, b) ∧ (∃δε > 0)(∀u, v ∈ [a, t])[ |u − v| < δε ⇒ | f (u)

− f (v)| < ε ]}.
We first use IOC to show S = [a, b). Since f is continuous at a, f (a) is
defined and we have, trivially,

(∃δε > 0)(∀u, v ∈ [a, a))[ |u − v| < δε ⇒ | f (u) − f (v)| < ε ].

So [a, a) = {a} ⊆ S and S satisfies condition (1) of IOC.
Next, for an arbitrary x ∈ [a, b), assume [a, x) ⊆ S. We wish to show, for

some y > x , we have [a, y) ⊆ S. Consider x and ε
2 . Since f is continuous

at x , there exists δ(x, ε2 ) > 0, such that, for any x ′, if |x − x ′| < δ(x, ε2 ),
then | f (x) − f (x ′)| < ε

2 . (Assume δ(x, ε2 ) is smaller than x − a and b − x .)
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Consider t = x − 1
2δ(x, ε2 ). Since t ∈ S, we have, there exists δε > 0 such that,

for any u, v ∈ [a, t], if |u − v| < δε, then | f (u) − f (v)| < ε.
Further let y = x + 1

2δ(x, ε2 ). We claim that [a, y) ⊆ S. We will actually
show [a, y] ⊆ S. To establish this fact, we note that since t ∈ S and a ≤ t ′ < t
imply t ′ ∈ S, we need only show y ∈ S. To see this claim, for the given ε > 0,
we offer δ∗

ε to be the minimum of δε and 1
2δ(x, ε2 ). Next, consider arbitrary

u, v ∈ [a, y] with |u − v| < δ∗
ε . If u, v are both in [a, t] ⊆ S, since δ∗

ε ≤ δε ,
by hypothesis we have:

| f (u) − f (v)| < ε.

If either u or v is in (t, y], then both u and v are closer than
δ∗
ε ≤ 1

2δ(x, ε2 ) < δ(x, ε2 ) to x , and so the continuity of f at x applies and (invoking
the triangle inequality) we have:

| f (u) − f (v)| =| f (u) − f (x) + f (x) − f (v)|< | f (u) − f (x)| + | f (x)

− f (v)|<ε.
This completes the proof of the claim, and so condition (2) of IOC is satisfied
also. Thus, by IOC, S = [a, b). Hence for any t with a ≤ t < b we have

(∃δε > 0)(∀u, v ∈ [a, t])[ |u − v|<δε ⇒ | f (u) − f (v)|<ε ].

A similar argument applied to continuity of f at b shows that the same is true
for t = b. Since this is true for any given ε > 0, f is uniformly continuous
over [a, b]. �

Theorem 6.2 (Cousin) Let C be a collection of closed subintervals of [a, b]
such that for every x ∈ [a, b] there is a corresponding ‘fineness’ rx > 0, such
that C contains every subintervals of [a, b] with length smaller than or equal
to rx and containing x. Then there exist x0 = a < x1 < x2 < · · · < xn = b
such that [xi , xi+1] belongs to C for every 0 ≤ i < n; that is, C contains a
partition of [a, b].

Proof. Let S = {t : t ∈ [a, b) and C contains a partition of [a, t]}. Since ra

exists, for every nonnegative t ′ < ra, [a, a + t ′], which is in C, is a partition
of itself, putting each a + t ′ in S. Thus [a, ra) ⊆ S. Next, assume [a, x) ⊆ S
for x ∈ [a, b). Working with rx , and applying the induction hypothesis to
[a, x − rx

2 ], find a partition of [a, x − rx
2 ] in C, add to that partition the interval

[x − rx
2 , x + ε], for any 0 < ε ≤ rx

2 , and end up with a partition for [a, x + ε]
in C. Thus [a, x + rx

2 ) ⊆ S.
It is now clear that S satisfies the hypothesis for IOC, and therefore

S ⊇ [a, b) ⊇ [a, b − rb]. Since (b − rb) ∈ S and [b − rb, b] ∈ C, we have the
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desired partition for [a, b]. �

Theorem 6.3 (A form of the Intermediate Value Theorem) Let f be a
continuous function over [a, b] with no roots, and f (a) > 0. Then f (x) > 0
for all x ∈ [a, b].

Proof. Let S = {t : t ∈ [a, b) and f is positive over [a, t]}, and apply
IOC.�

The reader can apply IOC to similar theorems to find similar proofs.

7 THE RELEVANT (TELEGRAPHIC) HISTORY

It was E. Heine [7] who first (1872) implicitly proved what is now called
the ‘Heine-Borel’ theorem while showing if f is continuous on [a, b], then
f is uniformly continuous there. Later (1895), Cousin [3] proved similar
findings and he too implicitly used the Heine-Borel result. It was Borel [1]
who made this result explicit in his covering theorem that any countably
infinite open cover for a bounded and closed interval of R can be replaced
with a finite subcover. Finally, Lebesgue [8] and Lindelöf [9] independently
showed Borel’s result is also true in case the original cover is uncountably
infinite.

O. Veblen [14] proved [a, b] is compact iff [a, b] is closed (he did not use
the term ‘compact’). Later, in [15] he defined a linear continuum, without
the use of a metric, and observed that the same method of [14] can apply to
linear continua to draw similar conclusions.

Weierstrass’s theorem, a continuous function over [a, b] attains its
maximum at some point of [a, b], is one of the important results of analysis
and related to compactness. The term compact was first used by Frèchet in
his thesis [6] in which, motivated to generalize Weierstrass’s theorem (above)
for abstract topological spaces, he described a certain phenomenon which is
closely related to the modern usage of the word “compact”.

Most classic textbooks that prove the Heine-Borel Theorem as
a ‘covering’ theorem use a proof similar to the one in Royden’s;
I have not seen an elementary textbook that has adopted Duren’s
method [4]. The advanced (and comprehensive) textbook, Real Analysis
by Bruckner-Bruckner-Thomson [2], starts with Cantor’s Nested Interval
Theorem & Cousin’s Theorem, and considers the concepts of “full” and
“additive” for a collection of closed intervals to pave the way for establishing
the basic results of elementary analysis.

It should be noted that Duren attributes the origin of his approach to
L.R. Ford [5] who examines proofs for “statements” that are “interval-
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additive”; that is, those properties that hold in the union of two overlapping
intervals whenever they hold in each of the two intervals. Shanahan [12, 13]
rediscovers the same “additive” approach.

Moss and Roberts [10] also isolate a theme common among elementary
analysis theorems akin to the approaches by Ford, Duren, Shanahan, or
through IOC. Namely, they establish results when they find a common theme
of a transitive relation on [a, b] which links the points from a to b through
neighborhoods whenever the relation is such that every x ∈ [a, b] has a
neighborhood whose every point to the left of x is related to its every point
to the right of x .

8 MISCELLANEA

It should be clear that IOC, seen as a form of increasing induction, can be
modified to yield a form of decreasing induction over (a, b] with equivalent
results. To formulate a similar form of IOC for [a, b], the second clause has
to be altered to permit x = b, and all mentioned intervals of the form [a, y)
for y > x would have to be intersected with [a, b] before being required to be
included in S. Furthermore the proof for the principle will have to carry the
burden of two cases: when x < b and when x = b. In that event, the proofs
for some of the applications will be shorter as the last ‘capping’ step will be
already in the principle and not needed as an additional step. However, the
analogy to ordinary induction would be lost.

Our heuristic observation above has been that in the context of linear
orderings on N and R: WOP is to ION as GLBP is to IOC. Perhaps
the reader can find other interesting analogies or other applications for the
formulation of IOC in this paper.

9 EPILOGUE

Finally, purely for efficiency and concision, we note that we could
define [0, k) = def{j : 0 ≤ j < k)} (so [0, 0) = ∅), and similarly define
[a, x) = def{t : a ≤ t < x)} (so [a, a) = ∅), and state ION and IOC in the
following condensed form: if S, a subset of the universe, has some ‘inductive
expansion’ property, then as ∅ ⊆ S, S is all of the universe. Formally:

ION. If ∀k[ [0, k) ⊆ S ⇒ (∃l > k)[0, l) ⊆ S ], then S = N.
IOC. If ∀x[ [a, x) ⊆ S ⇒ (∃y > x)[a, y) ⊆ S ], then S = [a, b).
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INFERENCE

OLIVER SCHULTE
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University, Burnaby, B.C. V5A 1S6, Canada, oschulte@sfu.ca

Abstract: This paper is an overview of formal learning theory that emphasizes the
philosophical motivation for the mathematical definitions. I introduce key
concepts at a slow pace, comparing and contrasting with other approaches to
inductive inference such as confirmation theory. A number of examples are
discussed, some in detail, such as Goodman’s Riddle of Induction. I outline
some important results of formal learning theory that are of philosophical
interest. Finally, I discuss recent developments in this approach to inductive
inference.

1 INTRODUCTION: CONVERGENCE
TO THE TRUTH

The purpose of this article is to provide a brief, philosophically engaging
discussion of some of the key mathematical concepts of formal learning
theory. Understanding these concepts is essential for following the philo-
sophical and mathematical development of the theory. The reader may find
further discussion and defence of the basic philosophical ideas in this volume,
as well as in sources such as [22, 33, 12, 14, 39, 41].

Learning theory addresses the question of how we should draw conclu-
sions based on evidence. Philosophers have noted since antiquity that if we
are interested in questions of a general nature, the evidence typically does
not logically entail the answer. To start with a well-worn example, any finite
number of black ravens is logically consistent with some future raven not
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being black. In such cases, logical deduction based on the evidence alone
does not tell us what general conclusions to draw. The question is what
else should govern our inferences. One prominent idea is that we should
continue to seek something like a logical argument from evidence as premises
to theory as conclusion. Such an argument is not guaranteed to deliver a
true conclusion, but something other than truth. For example, we may seek
a type of argument to the effect that, given the evidence, the conclusion is
probable, confirmed, justified, warranted, rationally acceptable etc.1

Formal learning theory begins with an alternative response to the un-
derdetermination of general conclusions by evidence. Empirical methods
should reliably deliver the truth just as logical methods do. But unlike
deduction, inductive inquiry need not terminate with certainty. In the
learning-theoretic conception of inductive success, a method is guaranteed
to eventually arrive at the truth, but this does not mean that after some
finite time, the method yields certainty about what the right generalization
is: An inquirer can be in the possession of the truth without being certain
that she is. A philosophical forerunner of this idea is Peirce’s notion that
science would find the truth “in the limit of inquiry”, but need never yield
certainty [31]. As his fellow pragmatist William James put it, “no bell tolls”
when science has found the right answer [20]. Reichenbach’s pragmatic
vindication of induction applied this conception of empirical success to
the problem of estimating probabilities (interpreted as limits of relative
frequencies) [34]. Reichenbach’s student Hilary Putnam showed how the
idea could be developed into a general framework for inductive inference
[32, 33].2 The notion of success in the limit of inquiry is subtle and requires
some getting used to. I will illustrate it by working through two simple
examples.

2 FIRST EXAMPLE: BLACK RAVENS

Consider the problem of investigating whether all ravens are black.
Imagine an ornithologist who tackles this problem by examining one raven
after another. There is exactly one observation sequence in which only black
ravens are found; all others feature at least one nonblack raven. Figure 6.1
illustrates the possible observation sequences.

1 For a fairly detailed but brief comparison of formal learning theory with various ways of
cashing out this idea, see [25].

2 The cognitive scientist Mark Gold independently developed the same conception of
inductive inference as Putnam to analyze language acquisition [15].
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...

all ravens are black

not all ravens
are black

not all ravens
are black

not all ravens
are black

at this point either a black or a nonblack
raven is observed

Figure 6.1. Data sequences and alternative hypotheses for the raven color problem

If the world is such that only black ravens are found, we would like
the ornithologist to settle on this generalization. (It may be possible that
some nonblack ravens remain forever hidden from sight, but even then the
generalization “all ravens are black” at least gets the observations right.) If
the world is such that eventually a nonblack raven is found, then we would
like the ornithologist to arrive at the conclusion that not all ravens are black.
This specifies a set of goals of inquiry. For any given inductive method that
might represent the ornithologist’s disposition to adopt conjectures in the
light of the evidence, we can ask whether that method measures up to these
goals or not. There are infinitely many possible methods to consider; we will
look at just two, a sceptical one and one that boldly generalizes. The bold
method conjectures that all ravens are black after seeing that the first raven
is black. It hangs on to this conjecture unless some nonblack raven appears.
The skeptical method does not go beyond what is entailed by the evidence.
So if a nonblack raven is found, the skeptical method concludes that not all
ravens are black, but otherwise the method does not make a conjecture one
way or another. Figure 6.2 illustrates both the generalizing and the skeptical
method.

Do these methods attain the goals we set out? Consider the bold method.
There are two possibilities: either all observed ravens are black, or some
nonblack raven is found. In the first case, the method conjectures that all
ravens are black and never abandons this conjecture. In the second case, the
method concludes that not all ravens are black as soon as the first nonblack
raven is found. Hence no matter how the evidence comes in, eventually the
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at this point either a black or a nonblack
raven is observed

...

ìall ravens
 are black”

“all ravens
 are black”

“all ravens
 are black”

all ravens are black

not all
ravens
are black

not all
ravens
are black

not all
ravens
are black

not all
ravens
are black

not all
ravens
are black

not all
ravens
are black

the generalizing method the skeptical method

? = no conclusion yet

...

?

?

?

all ravens are black

Figure 6.2. The generalizer and the skeptic in the raven color problem

method gives the right answer as to whether all ravens are black and sticks
with this answer.

The skeptical method does not measure up so well. If a nonblack raven
appears, then the method does arrive at the correct conclusion that not all
ravens are black. But if all ravens are black, the skeptic never takes an
“inductive leap” to adopt this generalization. So in that case, the skeptic fails
to provide the right answer to the question of whether all ravens are black.

This illustrates how means-ends analysis can evaluate methods: the bold
method meets the goal of reliably arriving at the right answer, whereas the
skeptical method does not. Note the character of this argument against the
skeptic: The problem, in this view, is not that the skeptic violates some canon
of rationality, or fails to appreciate the “uniformity of nature”. The learning-
theoretic analysis concedes to the skeptic that no matter how many black
ravens have been observed in the past, the next one could be white. The issue
is that if all observed ravens are indeed black, then the skeptic never answers
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the question “are all ravens black?”. Getting the right answer to that question
requires generalizing from the evidence even though the generalization could
be wrong.

3 SECOND EXAMPLE: THE NEW RIDDLE
OF INDUCTION

Let us go through a second example to reinforce the notion of reliable
convergence to the right answer.

Nelson Goodman posed a famous puzzle about inductive inference known
as the (New) Riddle of Induction [16]. Our next example is inspired by his
puzzle. Goodman considered generalizations about emeralds, involving the
familiar colors of green and blue, as well as certain unusual ones:

Suppose that all emeralds examined before a certain time t are
green... Our evidence statements assert that emerald a is green,
that emerald b is green, and so on... Now let me introduce another
predicate less familiar than “green”. It is the predicate “grue” and
it applies to all things examined before t just in case they are green
but to other things just in case they are blue. Then at time t we have,
for each evidence statement asserting that a given emerald is green,
a parallel evidence statement asserting that emerald is grue.

The question is whether we should conjecture that all emeralds are green
rather than that all emeralds are grue when we obtain a sample of green
emeralds examined before time t , and if so, why.

Clearly we have a family of grue predicates in this problem,
corresponding to different “critical times” t; let’s write grue(t) to denote
these. Following Goodman, I refer to “projection rules” in discussing this
example. A projection rule succeeds in a world just in case it settles on
a generalization that is correct in that world. Thus in a world in which
all examined emeralds are found to be green, we want our projection rule
to converge to the proposition that all emeralds are green. If all examined
emeralds are grue(t), we want our projection rule to converge to the
proposition that all emeralds are grue(t). Note that this stipulation treats
green and grue predicates completely on a par, with no bias towards either. As
before, let us consider two rules: the “natural” and the “gruesome” projection
rules. The natural projection rule conjectures that all emeralds are green as
long as only green emeralds are found; if a blue emerald is found, say at
stage n for the first time, the rule conjectures that all emeralds are grue(n).
The “gruesome” rule keeps projecting the next grue predicate consistent with
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the available evidence. Expressed in the green-blue vocabulary, the gruesome
projection rule conjectures that after observing some number of n green
emeralds, all future ones will be blue. Figures 6.3 and and 6.4 below illustrate
the possible observation sequences and the two methods mentioned in this
model of the New Riddle of Induction.

How do these rules measure up to the goal of arriving at a true generaliza-
tion? Suppose for the sake of the example that the only serious possibilities
under consideration are that either all emeralds are green or that all emeralds

…

“all
green”

“all
green”

“all
green”

all emeralds are green

“all grue(3)” “all grue(3)”

“all grue(2)” “all grue(2)”

“all grue(1)” “all grue(1)”

all emeralds
are grue(2)

all emeralds
are grue(1)

all emeralds
are grue(3)

First
mind change

First
mind change

“all grue(t)”= “all emeralds are grue(t)”
“all green” = “all emeralds are green”

the conjectures of the natural projection rule

…
…

…

At this stage, either a green or a blue emerald
may be observed

Figure 6.3. The natural projection rule in the new riddle of induction
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…

“all
grue(4)”

“all
grue(3)”

“all
grue(2)”

all  emeralds are green

“all grue(3)” “all grue(3)”

“all grue(2)” “all grue(2)”

“all grue(1)” “all grue(1)”

all emeralds
are grue(2)

all emeralds
are grue(1)

all emeralds
are grue(3)

“all grue(t)” = “all emeralds are grue(t)”

the conjectures of the gruesome projection rule

…
…

…

At this stage, either a green or a blue emerald
may be observed

Figure 6.4. The gruesome projection rule in the new riddle of induction

are grue(t) for some critical time t . Then the natural projection rule settles on
the correct generalization no matter what the correct generalization is. For
if all emeralds are green, the natural projection rule asserts this fact from
the beginning. And suppose that all emeralds are grue(t) for some critical
time t . Then at time t , a blue emerald will be observed. At this point
the natural projection rule settles on the conjecture that all emeralds are
grue(t), which must be correct given our assumption about the possible
observation sequences. Thus no matter what evidence is obtained in the
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course of inquiry—consistent with our background assumptions—the natural
projection rule eventually settles on a correct generalization about the color
of emeralds.

The gruesome rule does not do as well. For if all emeralds are green,
the rule will never conjecture this fact because it keeps projecting grue
predicates. Hence there is a possible observation sequence—namely those on
which all emeralds are green—on which the gruesome rule fails to converge
to the right generalization. So means-ends analysis would recommend the
natural projection rule over the gruesome rule. Some comments are in order.

(1) As in the previous example, nothing in this argument hinges on argu-
ments to the effect that certain possibilities are not to be taken seriously
a priori. In particular, nothing in the argument says that generalizations
with grue predicates are ill-formed, unlawlike, or in some other way a
priori inferior to “all emeralds are green”.

(2) The analysis does not depend on the vocabulary in which the evidence
and generalizations are framed. For ease of exposition, I have mostly
used the green-blue reference frame. However, grue-bleen speakers
would agree that the aim of reliably settling on a correct generalization
requires the natural projection rule rather than the gruesome one, even
if they would want to express the conjectures of the natural rule in
their grue-bleen language rather than the blue-green language that I have
used. (For more on the language-invariance of means-ends analysis see
[37, 38].)

(3) Though the analysis does not depend on language, it does depend on
assumptions about what the possible observation sequences are. The
example as I have described it seems to comprise the possibilities that
correspond to the color predicates Goodman himself discussed. But
means-ends analysis applies just as much to other sets of possible
predicates. Schulte [38] and Chart [7] discuss a number of other versions
of the Riddle of Induction, in some of which means-ends analysis favors
projecting that all emeralds are grue on a sample of all green emeralds.

4 RELIABLE CONVERGENCE TO THE TRUTH:
GENERAL CONCEPTS AND DEFINITIONS

Now that we have seen two examples of the basic idea, let us encapsulate
it more generally in a mathematical definition. I begin with the description of
an inductive or learning problem, which involves a specification of possible
observations, alternative hypotheses and which hypotheses count as correct



Logically Reliable Inductive Inference 165

given a total body of evidence. Then I define the concept of an inductive
method, and finally specify Putnam’s and Gold’s notion of empirical success
for inductive methods.

4.1 Inductive Problems: Observations, Data Streams,
Hypotheses, Background Knowledge and Correctness

In both examples, we have a set of possible hypotheses that an inquirer
could adopt in the course of inquiry. In the ravens example, the set is {“all
ravens are black”, “not all ravens are black”}. In the Riddle of Induction,
the (infinite) set of hypotheses is {“all emeralds are green”, “all emeralds are
grue(1)”, “all emeralds are grue(2)”, . . . , “all emeralds are grue(n)”, . . . }.
In realistic examples, the hypotheses may be considerably more complex.
For instance, in language learning models the set of alternatives is the set of
all grammars that may govern the language spoken in the learner’s (child’s)
native environment [30]. In models of scientific inquiry, the alternative
theories could be sets of conservation principles [40], or models of cognitive
functioning [13, 4].

Another part of the specification of a learning problem is a set of evidence
items. In the raven example, there are two kinds of evidence items “a
black raven is observed”, or “a nonblack raven is observed”. In the Riddle
of Induction, the set of evidence items is {green emerald, blue emerald}.
In more realistic applications, we have many more, even infinitely many,
evidence items. For example, an evidence item may be a measurement
of a quantity, or set of quantities, in a physical experiment. In studying
particle dynamics, the set of evidence items comprises all interactions among
elementary particles that we may observe in particle accelerators [40]. In
cognitive psychology, an evidence item could be the behavior profile of a
subject in an experiment [13].

A data stream is an infinite sequence of evidence items. We write ε for a
typical data stream, εi for the i th datum observed in the data stream ε, and
ε|n for the first n data observed along ε. For example, if ε is the data stream
along which only green emeralds are observed, then εi = “green” for all i ,
and ε|n is <“green”, “green”,. . . ,“green”> for n repetitions of “green”. If
ε is the data stream on which all emeralds are grue(1), then ε1 = “green”,
εi = “blue” for all i > 1, and ε|n = <“green”, “blue”, . . . , “blue”> with
n − 1 repetitions of “blue”.

An inquirer may have background knowledge relevant to the question
under investigation. For example, a particle physicist may assume that all
particle reactions satisfy relativity theory. In a language learning problem,
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we may restrict attention only to languages with computable (total recursive)
grammars. In such cases, the inquirer may be willing to rule out certain
observations a priori. We can model the inquirer’s background assumptions
as a set K of data streams that represents the set of all infinite observation
sequences that may arise for all the inquirer knows.

Definition 4.1 (Evidence Items and Empirical Background Knowledge)
Let E be a set of evidence items.

1. A data stream ε is an infinite sequence of evidence items. That is, εn is a
member of E for each n.

2. The initial sequence comprising the first n observed data along ε is
denoted by ε|n.

3. The inquirer’s background knowledge is represented by a set of data
streams K that may occur for all the inquirer knows.

In applications of learning theory, we assume that for every data stream
there is a hypothesis that is correct for the data stream. For example,
the hypothesis “all emeralds are green” is correct for the data stream on
which only green emeralds are observed. The hypothesis “not all ravens
are black” is correct on any data stream on which some nonwhite raven is
observed. The correctness relation between data streams and hypotheses is
part of the specification of the inductive problem. Learning theory is agnostic
about what correctness is. In the examples we have considered, correctness
amounts to empirical adequacy: the goal is to find a generalization that makes
the right predictions about what will be observed when. Correct hypotheses
may be the true ones, or the simplest true ones, or simply the empirically
adequate hypotheses. Another way to put it is that the correctness relation C
expresses the inquirer’s goals: if the total (infinite) observational data were
such and such, as found in a data stream ε, then the inquirer wants to adopt a
hypothesis H such that C(H, ε) holds. Thus learning theory per se does not
recommend to an inquirer what hypotheses she should view as correct for
a total body of evidence. Rather, the theory helps the inquirer find a correct
hypothesis from the partial body of evidence actually available at a given
stage of inquiry.

Without going into details, it may be useful to indicate how the model of
inquiry I have outlined so far corresponds to the language learning models
much studied in formal learning theory. In language learning models [19],
the evidence items are called “strings” and the counterpart of a data stream is
a “text”. The alternative hypotheses are (indices for) “languages”; a language
is a set of evidence items, which models the view of a language as a set of
strings.
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10 5

evidence encoded as  natural numbers empirical theory

δ0

inductive method

Figure 6.5. An inductive method takes as input an evidence sequence and outputs a
hypothesis. Discrete evidence items can be generically represented by natural numbers (e.g.,

0 for “black raven”, 1 for “white raven”

4.2 Inductive Methods and Inductive Success

After observing a finite sequence of evidence items, an inquirer produces
a hypothesis—her guess as to the right answer. Mathematically, this cor-
responds to a function that assigns a hypothesis to a finite data sequence.
We also allow an inquirer to refrain from adopting an answer, which is
indicated by a “?” for “no guess yet”. Such a function is a mathematical
representation of an inquirer’s disposition to output guesses in response to
evidence. Following some philosophical tradition, we refer to such a function
as an inductive method, or method for short. Figure 6.5 illustrates the notion
of a method.

Definition 4.2 (Inductive Methods) Let E∗ denote the set of finite evidence
sequences, and let H be a collection of alternative hypotheses. An inductive
method is a function δ : E∗ → H ∪ {?} such that for each finite data
sequence E, the output δ(E ) is either a hypothesis H or the vacuous output ?.

Some comments will clarify the concept of a method in relation to other
concepts and terminology.

(1) Philosophers often discuss functions from evidence to belief without
calling them methods. A fairly common alternative term is “rule”. For
example, Goodman discusses “projection rules” for generalizing from
observed emeralds. In his analysis of knowledge, Nozick does use the
term “method” for a doxastic disposition [29]. Learning-theoretic anal-
ysis applies to any disposition that gives rise to belief given evidence,
whether such a disposition is called “method” or not. An alternative term
for method in learning theory is simply “learner”, and recently the term
“scientist” has come into use [19, 28].

(2) The notion of method as given in Definition 4.2 is neutral about the
interpretation of adopting a hypothesis: “outputting” a hypothesis can
model various epistemic attitudes that an inquirer may take towards her
theory, such as belief, full belief, posit, acceptance, entertaining, etc. In
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fact, learning theory is even more agnostic about the concept of belief
than Definition 4.2 suggests because the framework can accommodate
just about any concept of belief, including degrees of belief as in
a probabilistic theory, or degrees of confirmation as in confirmation
theory. For example, Putnam investigated whether Carnap’s inductive
methods (his “c-functions”) arrive at the right answer, in the sense that
whatever the true generalization is, eventually the true generalization
always receives degree of confirmation greater than 1/2 [32]. Or we
can ask whether the degree of belief of a Bayesian agent in the true
generalization will come arbitrarily close to 1 ([21]; [9] Ch. 9.6; [28],
Sec. 3.6.9).
In general, to apply learning theory it suffices to have a notion of an
(epistemic) state s and a correctness relation Correct(ε, s) that specifies
the correct states for the agent to be in, given that the total observational
facts are as described by the data stream ε. The point is that learning
theory does not presuppose, and hence does not depend on, a particular
analysis of belief or epistemic attitudes. Rather, the theory addresses the
question of how best to change one’s belief, however understood.

(3) The notion of method as given in Definition 4.2 is agnostic about internal
facts concerning how the agent arrives at her hypothesis. In effect, the
definition views a method as a black box, as suggested in Figure 6.5.
Learning theory focuses on the behavior and performance of epistemic
dispositions, not on their internal structure. As a consequence, learning
theoretic analysis applies to any recommendation for how we should
reason from evidence to theory: whether the proposal is to follow a
certain style of argument (e.g., probabilistic), seek a certain kind of
conformation (e.g., Carnap’s c-functions [5] or Glymour’s bootstrap
confirmation [16]), or adopt some set of normative criteria for rational
belief formation: we can always ask whether those ways of producing
belief would lead an inquirer to the correct hypothesis (cf. [39]).

With Definitions 4.1 and 4.2 in hand, we are ready to define Putnam’s and
Gold’s conception of empirical success.

Definition 4.3 (Reliable Convergence to the Correct Hypothesis) Let
E be a set of evidence items, H a set of alternative hypotheses, C a
correctness relation that specifies which hypotheses are correct for each data
stream ε comprising observations drawn from E.

1. A method δ converges to, or identifies, a correct hypothesis H on a
data stream ε ⇐⇒ H is correct for ε and there is a stage n such that
δ(ε|n′) = H for all stages n′ ≥ n.
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2. A method δ is reliable for, or identifies, H given background knowledge
K ⇐⇒ for all data streams ε consistent with K (i.e., ε in K ), the
method δ converges to a correct hypothesis on ε.

To illustrate this definition, we verified in Section 6.3 that the natural
projection rule reliably identifies a true generalization about emerald colors
given the set of alternatives {“all green”, “all grue(1)”, . . . .}. The gruesome
method that keeps predicting that the next emerald is blue fails to converge
to “all emeralds are green” on the data stream featuring only green emeralds.
Definition 4.3 envisions a method converging to a single hypothesis; in
algorithmic learning theory, this corresponds to “E X -learning”—see the
introductory paper in this volume.

Part of the traditional concept of a method, for example in Mill and
arguably in Aristotle, is that a method should be a step-by-step reasoning
procedure. The definition above does not require that a method should be
easy to follow. In modern terms, a step-by-step procedure of the sort sought
by traditional philosophers corresponds to an algorithm which by Church’s
thesis can be implemented on a Turing machine. It is therefore natural to
require that methods should be algorithmic or computable. Such an algorithm
provides a step-by-step procedure for following the method. Much of formal
learning theory studies algorithmic methods, so much so that the subject is
often referred to as algorithmic learning theory (as in the title of this volume)
or computational learning theory.

Some striking results in algorithmic learning theory examine what norms
of inductive reasoning help agents with bounded cognitive powers and
which hinder them in attaining the aims of inquiry. The point is not the
trivial one that the deductive abilities of agents limited to the reasoning
powers of a Turing machine fall short of ideal logical omniscience. Rather,
it turns out that computable inquiry sometimes requires fundamentally
different strategies than inquiry by idealized agents. In such cases, try-
ing to approximate or “get as close as possible” to the ideal norm can
be a bad strategy for computable agents seeking to identify a correct
hypothesis.

For example, consider the seemingly banal consistency principle: do
not accept a hypothesis that is inconsistent with the data (see for example
Hempel’s “conditions of adequacy” for a definition of scientific confirmation
[17]). Kelly and Schulte describe an inductive problem with an empirical
hypothesis H such that a step-by-step reasoning procedure can reliably
identify in the limit whether or not H is correct, but inductive methods
even with infinitely uncomputable reasoning powers cannot do so—if they
are required to satisfy the consistency principle. (For another restrictiveness
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result along these lines, see ([28], Prop. 60)). Intuitively, the main reason why
the consistency principle restricts the potential of computable inquiry is that
an agent with bounded logical powers cannot immediately recognize when a
hypothesis is inconsistent with the data, but must first gather more data. The
consistency principle rules out this inductive strategy because it mandates
that an agent should reject a hypothesis as soon as it is refuted. For further
discussion of the differences between methodology for logically omniscient
agents and those with bounded deductive abilities, see [24]; [22], Ch. 6, 7,
10; [28].

5 ADDITIONAL EPISTEMIC GOALS:
FAST AND STABLE CONVERGENCE
TO THE TRUTH

The seminal work of Putnam and Gold focused on reliable convergence
to a correct hypothesis. A major extension of their approach is to consider
cognitive desiderata in addition to finding a correct hypothesis (such desider-
ata are called “identification criteria” in the computer science literature [6]).
In this section, I consider two epistemic aims that have received considerable
attention from learning theorists: stable and fast convergence to a correct
theory.

The motivation for examining convergence speed is that other things
being equal, we would like our methods to arrive at a correct theory sooner
rather than later. A venerable philosophical tradition supports the idea that
stable belief is a significant epistemic good. Since Plato’s Meno, philosophers
are familiar with the idea that stable true belief is better than unstable
true belief, and epistemologists such as Sklar [43] have advocated similar
principles of “epistemic conservatism”. Church’s thesis tells us that a major
reason for conservatism in paradigm debates is the cost of changing scientific
beliefs [26]. In this spirit, learning theorists have examined methods that
minimize the number of times that they change their theories before settling
on their final conjecture.

As it turns out, the idea of adding cognitive goals in addition to finding a
correct hypothesis addresses a long-standing objection to identification in the
limit. Reichenbach’s student Salmon criticized his teacher’s pragmatic vin-
dication of induction on the grounds that the vindication, even if successful,
leaves belief underdetermined in the short run [35]. The reason is that while
Reichenbach’s straight rule is guaranteed to approach the true probability of
an event, so are infinitely many other rules. For example, consider a rule δ
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that estimates the probability of a coin coming up heads to be 1 for 1, 000
tosses no matter what the outcome of the tosses is. After 1, 000 tosses, δ
switches to following the straight rule. Thus in the limit of inquiry, the rule δ
converges to the same answer as the straight rule does.

From this example it is easy to see the general pattern: Suppose that δ is
a reliable method; let e be any evidence sequence, and H be any hypothesis.
Then there is a method δ′ that outputs H on e and follows the reliable method
δ on any other evidence. So δ′ converges to the same hypothesis as δ and
thus δ′ is reliable. This shows that any conjecture H on any evidence e is
consistent with long-run reliability.

The situation changes drastically if we take into account other aspects of
empirical success. Several general recent results show that maximizing stable
belief, or minimizing mind changes, strongly constrains the conjectures of
optimal inductive methods in the short run. I will illustrate the power of
additional epistemic goals in the two simple traditional examples already
considered.

First, we need to define what it is for an inductive method to succeed with
respect to an epistemic goal. For a given epistemic desideratum, a method
may perform well in some circumstances but not in others. To compare the
performance of methods with regard to a range of possible ways the world
might be—more precisely, with regard to all the data streams consistent
with background knowledge—we may apply two familiar principles from
decision theory: admissibility and minimax. A method is admissible iff it is
not dominated. In general, an act A dominates another act A′ if A necessarily
yields results at least as good as those of A′, and possibly better ones,
where a given collection of “possible states of the world” determines the
relevant sense of necessity and possibility. An act A minimaxes if the worst
possible outcome from A is as good as the worst possible outcome from any
other act.

For the two epistemic desiderata of minimizing time-to-truth and re-
versals of opinion, applying the two decision-theoretic criteria of ad-
missibility and minimax yields 2 × 2 = 4 identification criteria. It turns
out that two of these, admissibility for mind changes and minimaxing
convergence time, are feasible only for empirical questions that pose no
genuine problem of induction; more precisely, they are feasible only if
the data are eventually guaranteed to entail which hypothesis is correct.
(For the details see [37].) Thus learning theorists have focused on min-
imaxing theory changes and admissibility with respect to convergence
time. I will discuss minimizing reversals of opinion in the remainder of
this section and the next and then return to admissibility with respect
to time-to-truth.
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5.1 Stable Convergence to a Correct Hypothesis

We say that a method δ changes its mind on a data sequence
e1, ..., en, en+1 if the method’s output on the previous data e1, ..., en is
not? (i.e., δ(e1, ..., en) 	=?) and differs from its output at stage n + 1 (i.e.,
δ(e1, ..., en) 	= δ(e1, ..., en, en+1)). No mind changes occur on the empty data
sequence.

Definition 5.1 (Stable Belief: Minimizing Mind Changes) Suppose that δ
is a reliable discovery method for alternative hypothesesH given background
knowledge K .

1. The number of mind changes of δ on data stream ε is given by
MC(δ, ε) ≡ |{n : δ changes its mind on ε|n}|.

2. The method δ succeeds with at most n mind changes given K ⇐⇒
MC(δ, ε) ≤ n for all data streams ε consistent with K .

3. The method δ minimaxes mind changes given hypotheses H, back-
ground knowledge K ⇐⇒ there is no other reliable method δ′ for H
such that the maximum number of times that δ might change its mind,
given background knowledge K , is greater than the same maximum
for δ′.

The New Riddle of Induction turns out to be a nice illustration of
minimizing mind changes. Consider the natural projection rule (conjecture
that all emeralds are green on a sample of green emeralds). If all emeralds
are green, this rule never changes its conjecture. And if all emeralds are
grue(t) for some critical time t , then the natural projection rule abandons
its conjecture “all emeralds are green” at time t—one mind change—and
thereafter correctly projects “all emeralds are grue(t)”. Hence the natural
projection rule changes its mind at most once in the New Riddle of Induction
(see Figure 6.3). Remarkably, rules that project grue rather than green do not
do as well. For example, consider a rule that conjectures that all emeralds
are grue(3) after observing one green emerald. If two more green emeralds
are observed, the rule’s conjecture is falsified and it must eventually change
its mind, say to conjecture that all emeralds are green (suppose that green
emeralds continue to be found). But then at that point, a blue emerald may
appear, forcing a second mind change. This argument can be generalized
to show that the aim of minimizing mind changes allows only the green
predicate to be projected on a sample of all green emeralds ([37], Prop. 11).
Figure 6.6 illustrates in a typical case how an unnatural projection rule may
have to change its mind twice or more. From the insight illustrated in Figure
6.6, we can establish the optimality of the natural projection rule.



Logically Reliable Inductive Inference 173

…

“all
green”

“all
grue(3)”

“all
grue(3)”

all  emeralds are green

“all grue(3)” “all grue(3)”

“all grue(2)” “all grue(2)”

“all grue(1)” “all grue(1)”

all emeralds
are grue(2)

all emeralds
are grue(1)

all emeralds
are grue(3)

the conjectures of a reliable projection rule
that fails to minimize mind changes

…
…

…
First
mind change

Second
mind change

“all
green”

“all grue(3)” “all grue(3)”
all emeralds
are grue(3)…

“all grue(t)” = “all emeralds are grue(t)”
“all green” = “all emeralds are green”

At this stage, either a green or a blue emerald
may be observed

Figure 6.6. A reliable projection rule that projects a grue predicate on an all green sample of
emeralds can be forced to change its mind twice

Proposition 5.2 Let δ be any projection rule (inductive method) that reliably
identifies a true generalization about emerald colors in the Riddle of
Induction and changes its conjecture at most once. Let e be any finite
sequence featuring only green emeralds (i.e., e is of the form <green
emerald, green emerald, . . .>. Then either δ(e) = ?—the method makes no
guess—or δ(e) = “all emeralds are green”.

Less formally, the proposition says that after observing a sequence of
emeralds consistent with “all emeralds are green”, an optimal method must
conjecture “all emeralds are green” or else withhold opinion. The criteria of
reliable convergence to the truth and stable belief do not determine how many
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instances exactly are required for inference to “build up enough confidence”
and “take an inductive leap”. These goals do determine that (1) a reliable
method must eventually take an inductive leap, and (2) when the method
does adopt a universal generalization in the Riddle of Induction, on a sample
of all green emeralds that generalization must be “all emeralds are green”.

In the ravens example, the results of the analysis are similar. A reliable
method that minimaxes retractions may withhold opinion on a sample of all
black ravens, but if it does generalize beyond the data, it must conjecture
that all ravens are black rather than that some nonblack raven will appear
in the future. Our two examples illustrate the typical pattern for methods
that achieve as much stable belief as possible: minimizing mind changes
determines the what of inductive generalizations, but not the when. (For more
precise statements and proofs of this principle, see [27, 45].)

5.2 Fast Convergence to a Correct Hypothesis

Let us return to the idea of minimizing time-to-truth. Formally, we may
develop this success criterion as follows. Define the convergence point
of a method δ on a data stream ε to be the time at which the method
starts to converge to an answer. That is, C P(δ, ε) ≡ the least n such that
δ(ε|n) = δ(ε|n′) for all n′ ≥ n. For a set of alternative hypotheses H and
given background knowledge K , an inductive method δ dominates another
inductive method δ′ with respect to convergence time ⇐⇒
1. background knowledge K entails that δ converges no later than δ′ does

(i.e., C P(δ, ε) ≤ C P(δ′, ε) for all ε ∈ K ), and
2. there is some data stream, consistent with background knowledge K ,

on which δ converges before δ′ does (i.e., there is ε ∈ K such that
C P(δ, ε) < C P(δ′, ε)).

A method δ is data-minimal given K if no other reliable method for H
dominates δ with respect to convergence time ([22], Ch. 4.8; see also [28],
Def. 28).

There is a theorem that characterizes the properties of data-minimal
methods [38], Th. 8; [28], Ex. 39. A consequence of the theorem is that data-
minimal methods always adopt a definite belief—that is, they never output
“?”. Intuitively, suspending belief loses time, because the method could have
begun converging to a true belief instead. For our examples, it follows that the
natural projection rule in the Riddle of Induction and the bold generalizer in
the ravens problem are the only reliable data-minimal methods that minimax
retractions.
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6 FURTHER EXTENSIONS AND APPLICATIONS

This section indicates some further extensions and developments of the
theory of reliable inquiry with additional epistemic values.

(1) Many problems do not allow a finite bound on mind changes, although
there is still an intuitive sense that some methods achieve stable belief
more than others. Freivalds showed how the notion of a finite mind
change bound can be extended to an ordinal or transfinite bound [11].
This well-studied criterion considerably enhances the range of inductive
problem in which the goal of minimizing mind changes is feasible [19].

(2) Although problems such as the Riddle of Induction and generalizing
about black ravens may appear very different on the surface, there is
a common structure to problems that can be solved with at most 1 mind
change, as Figures 6.1 and 6.3 suggest. This holds true for any finite
and even transfinite mind change bounds. The common deep structure
of problems solvable with a given mind change bound can be explicated
in terms of point-set topology (cf. [38, 22], Ch. 4; [27], Sec. 3). For
language and function learning problems, which are commonly studied
in Computational Learning Theory, the mind change complexity of
an inductive problem is characterized by Cantor’s classic concept of
accumulation order ([2]; [27], Th. 1).

The fact that the goals of true and stable belief place such strong
constraints on inductive inference allows us to evaluate specific inference
methods with respect to how well they serve these goals. Pursuing this
question almost always leads to insights into the inductive problem under
investigation, increases our understanding of known learning methods, and
can lead to the development of new methods. I conclude this introduction
with some brief illustrations of applying this kind of learning-theoretic
analysis in some fairly realistic inference problems.

(1) An inductive problem that arises in particle physics is to find a set
of conservation laws that correctly predict which reactions among
elementary particles are possible [40]. A prominent type of conservation
law consists of additive conservation laws , also known as selection
rules. It can be shown that there is a unique optimal method for inferring
selection rules [40]. It turns out that the standard set of laws that particle
physicists have actually adopted makes exactly the same predictions as
the output of the learning-theoretically optimal method [42].

(2) Angluin introduced the well-known concept of a “pattern” for describing
a set of strings [1]. For example, the pattern 0xx1 describes such strings
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as 0001, 0111, 000001, 011111. A one-variable pattern is a pattern that
contains at most one distinct variable, such as 0xx1. Angluin provided
an inference algorithm for identifying a one-variable pattern in the limit
that does not, however, minimize mind changes ([27], Sec. 5). Luo
and Schulte describe a different algorithm that is mind change optimal
(moreover, their algorithm requires time only linear in the length of a
data sequence e to produce a conjecture for e).

(3) Kelly has generalized the idea of reliable inference with bounded mind
changes to settings of statistical inference concerned with statistical
theories that determine the distribution of observed variables [23], Sec.
11. In that setting Kelly argues that the standard practice of testing
statistical point hypothesis testing is mind change optimal. Another
application of Kelly’s analysis are problems of causal inference. In
causal inference, a basic problem is to find which variables are directly
causally linked to each other (e.g., there is a direct connection between
“tar content in lung” and “lung cancer” which mediates the indirect
connection between “smoking” and “lung cancer”). Standard methods
for causal inference conjecture that there is no direct link between two
variables unless and until a direct connection is conclusively verified (by
statistical tests). Kelly argues that this inference method is mind change
optimal ([23], Sec. 11).

In conclusion, formal learning theory provides a rich set of concepts
for analyzing the complexity of inductive problems and the performance
of inductive methods. In applications, these analytical tools have yielded
insights into the learning problem, validated existing learning methods and
led to the development of new ones. One goal of this article was to lay out
some of the basic concepts and techniques that underlie learning-theoretic
analysis to invite the development of further applications.
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SOME PHILOSOPHICAL CONCERNS
ABOUT THE CONFIDENCE
IN ‘CONFIDENT LEARNING’
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Abstract: A learner is engaged in “confident learning” when we are guaranteed that
the hypotheses put out by the learner will converge in the limit. Whence the
word “confidence”? We are confident that the learner will eventually learn.
The question raised in the paper is: what does the learner really learn? Friend
applies the Putnam permutation argument to the scenario of confident
learning to undermine our confidence.

It is true that the learner learns an equivalent algorithm to that put out by the
informant. However, it only has to be equivalent in some respects, in order to
converge. That is, the algorithm does not have to be identical to the algorithm
put out by the informant. As a result, the learning is somewhat superficial. Our
confidence can only be placed at a superficial level of learning, which might be
alright for some purposes, but not for others.

1 INTRODUCTION

There are six sections in this paper: this introductory section, a discussion
about what confident learning is which will mainly consist in definitions, a
general philosophical presentation of the problem, a discussion about a result
from model theory which underpins the problem with “confident learning”,
and finally, a section on some questions which arise in the philosophy of
language from the above discussion concerning the metaphor of “learning”.

Much of the work in the early sections is exploration of the concepts, and
the vocabulary used to discuss those concepts. This is necessary since there
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is a lot of slip and ambiguity in the language used in learning theory and its
surrounding disciplines.

We shall narrow the discussion by considering a scenario wherein a
learner is presented with a class of (formal) first-order languages, and some
data (example well-formed formulas) from one of the languages. The learner
then has to guess which language, or class of languages, the data comes from.
The scenario could be re-expressed in terms of a learner learning a set or
learning a function. Using this terminology, we are thinking of particular
first-order languages as functions, and of the class of first-order language
as a class of functions. A learner has the task of learning a function from a
set of data in the form of n-tuple arguments and single values. The apparent
limitations imposed, by the scenario discussed here, will be expanded in the
fifth section because it is worth exploring the parameters of the philosophical
problem.

2 CONFIDENT LEARNING

This section is mainly composed of definitions, with a few interjections
for giving the intuitive, or less formal, idea behind the definitions. Through
the examination of the definitions we can distil a clear picture of the notion of
confident learning. Apologies are made in advance for tedium of style. Terms
in bold are the ones being defined. Terms which are italicized, will receive a
definition subsequently.

A learner is engaged in “confident learning” when we are guaranteed
that the hypotheses put out by the learner will converge in the limit. What
does all this mean?

A “learner” is thought of as a Turing machine with some classes of
algorithm for generating grammars. “Grammars” are names for languages
([3], p. 449).

This is non-standard terminology in some circles, so it is worth discussing
the point of using the vocabulary this way. Grammars can be thought of as
elaborate functions which allow the learner to discriminate the “good” from
the ‘bad’ data, which is given to the learner by the informant. “Good data”
will be well-formed formulas. “Bad data” will be ill-formed formulas.

A “language” is always a formal language, or rather, can be expressed
as a formal language. We shall be interested in classes of first-order formal
languages. A “class of first-order languages” is a class whose members
each contain a list of vocabulary and a function for generating well-formed
formulas. What counts as “Vocabulary for a first-order language”? The vo-
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cabulary will be taken from the following: brackets,1 logical connectives and
operators. Operators modify the meaning of whole expressions or sentences
in some way, as opposed to just being components in the sentence. Familiar
examples of operators are the universal quantifier over object-level variables,
the existential quantifier over object-level variables and modal operators over
well-formed formulas. The vocabulary will also include first-order variables,
proposition variables, first-order predicate variables, first-order function vari-
ables and first-order relation variables. The vocabulary also possibly includes
constants: first-order constants, predicate constants, function constants and
relation constants.

An example of a first-order constant is a number, such as 0. An example
of a first-order predicate constant is “is a number”. An example of a function
constant is addition. An example of a relation constant is identity. Intuitively,
first-order languages spread out from first-order monadic logic, with no
constants, to its extensions to make a class of languages. We can extend
first-order monadic logic by adding more first-order operators, such as
“provability” or “logical necessity”. We can also extend first-order monadic
logic by adding polyadic relation or function variables or constants. We might
extend first-order monadic logic to, say, first-order group theory or to first-
order arithmetic. “Logical connectives” minimally include negation plus one
binary connective chosen from: conjunction, disjunction, implication and
the biconditional. Equivalently, we can have negation plus several binary
connectives. A minimal version of “first-order monadic logic” contains
only: brackets,2 logical connectives, the universal first-order quantifier, an
infinite supply of first-order variables and an infinite supply of predicate
letters. We now have a precise idea of the class of first-order languages. It
is a subclass of this which our learner learns confidently. The learner learns
on the basis of data given out by an informant.

An “informant” is usually thought of as a Turing machine. An informant
might not be a Turing machine. The intuitive idea is that the informant is
a little like a teacher in a class room, or like an adult teaching a child how
to speak correctly. An informant will give out both positive and negative
data. The informant tells the learner whether the data is positive or negative.
A “positive datum” is an ordered n-tuple which is a member of the class

1 Strictly speaking these are “structural”, and should not really be included in the “vo-
cabulary”, however, the distinction between structural, and meaningful, vocabulary is not
important here.

2 Strictly speaking, we can dispense with brackets or parentheses by adopting a convention
about ordering of the vocabulary, as was developed by the Poles. The system is known as
‘Polish notation’. It is provably equivalent to the more usual use of brackets or parentheses.
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to be learned. The n-tuple consists in a string of symbols taken from the
vocabulary. If the data is given by an informant, then there will also be
a label informing the learner whether the datum is a member of the class
of languages to be learned or not. If the datum is not from the class
to be learned, then it is negative datum. The data are not necessarily
presented in any order. However, it is understood that no data is missed out
in the limit.

The learner begins by “listening” that is, by just sending out question
marks. Each question mark solicits a new datum from the informant. Based
on the information received, at some point the learner will start to generate
hypotheses. The hypotheses concern the generation of data. The hypotheses
can take the form of a definition of a function, a definition of a class of
functions, or simply a series of data. Usually, all three types of hypothesis
can be compared to the information which the teacher has.3

The intuitive idea comes from thinking of a child who learns to speak.4 At
first the child is simply exposed to examples of good speech, and then later
initiates speech. In the mathematical modeling of this sort of scenario, we
can make a simplifying assumption about the learner not initiating speech,
but simply learning to discriminate positive from negative examples. Here,
we shall adopt this simplifying assumption, since the added complication
of a learner initiating data is unnecessary for the future philosophical
considerations.

We shall be using some vocabulary in a different way from how it is
used in learning theory. In our scenario, the learner is trying to guess a
class of grammars of first-order theories. We need some definitions here
too, in order to make our example precise. A “well-formed formula” is a
string of vocabulary symbols which can be attributed a truth value, given an
interpretation. To be a candidate for truth-value attribution, a well-formed
formula has to be generated according to the following rules.

3 This might not be the case if the teacher, say, is a native speaker of a language, and the
learner hypothesises a rule of grammar with which the teacher is unfamiliar. The rule
might be correct, but this can only be checked by an outside observer, or if the teacher
learns some grammar rules (a way of articulating the algorithm the teacher is using to
generate the data).

4 The “intuitive idea” comes from modelling the psychological data. “Learning theory”
in computer science started as an attempt to computationally model the psychological
data. There is now a healthy dialogue between psychological learning theory and com-
putational learning theory. This exchange of ideas is already aluded to in Gold ([3],
pp. 447–448).
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1. A proposition variable or constant is a well-formed formula.
2. A predicate letter followed by an object constant (name) is a well-formed

formula.
3. An n-place relation or function letter followed by n object constants is a

well-formed formula.
4. A predicate letter immediately followed by an object variable which falls

within the scope of a first-order quantifier is a well-formed formula.
5. A negated predicate letter immediately followed by an object variable

which falls within the scope of a first-order quantifier is a well-formed
formula.

6. A well-formed formula falling within the scope of an operator is a well-
formed formula.

A string of symbols of the vocabulary of the first-order theory with free
variables is not well-formed, because we cannot attribute a truth value to it.
So we shall call this a formula. A “formula” is understood to be a string of
symbols from the vocabulary of the theory which would be well-formed iff
the first-order variables were either all replaced by object constants (names)
or were bound by quantifiers, or other operators.

7. The negation of a formula, where all the object-level variables are bound,
is a well-formed formula.

8. The conjunction, disjunction, implication or biconditional of two well-
formed formulas, is a well-formed formula.

9. An n-place function or relation letter followed by n variables or
constants, such that the variables all fall within the scope of a first-order
quantifier, is a well-formed formula.

10. The negation of a well-formed formula is a well-formed formula. Note:
the difference between 6 and 10 is simply to allow negation within the
scope of a quantifier and to allow a formula whose main operator is a
quantifier to be negated.

11. A binary connective between two well-formed formulas is a well-formed
formula.

12. Brackets are arranged in the following way: between any pair of brackets
there is to be only one main connective. Not more than one connective in
any well-formed formula may appear without a pair of brackets around
it.

13. Nothing else is a well-formed formula.

A “specified class of formal languages” is a class of formal languages.
It is specified in the sense that the teacher has a definition of this class. The
learner’s task is to pick out one member, or a subclass, of the class, namely a
particular language or class of languages.
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Allow me to introduce a new character: a judge. A “judge” is the one
who pronounces that confident learning is taking place, or that the learner
has converged on the data being fed to it by the informant.5 There are several
techniques for determining whether or not convergence has been reached.
The techniques are applied independent of the activity of the learner or
the teacher. We can imagine the techniques being applied by the computer
scientist as he, or she, observes the learning process. Less dramatically, the
techniques are incorporated into the mathematical description of the learning
scenario.

Before we discuss the notion of convergence any further, we should be
aware that there is a difference between how the philosopher uses the terms
“syntax” and “semantics” and how the learning theorist uses these terms.
The learning theorist associates semantics with data and syntax with rules
or algorithms. The learning theorist distinguishes semantics from syntax by
means of presentation of the material. The form, or grammar, of a language
might be presented axiomatically, but need not, one could simply give a list
of examples. If one simply gave a list of examples then this would count as
semantics for the learning theorist. Thus, specifying a class of languages can
be done syntactically or semantically.

In contrast, the philosopher associates semantics with meaning and syntax
with form or grammar. Exactly where the difference is carved out, even in a
presentation of a formal language such as first-order logic, is a source of
controversy amongst philosophers. The philosopher distinguishes semantics
from syntax by means of aspects of a language. For the philosopher, the
distinction between syntax and semantics is intensional. For the learning
theorist, the distinction is extensional.

The intension of a defined term is the definition by which we pick out
the extension. For example, I can give a definite description which allows
me to pick out an extension, such as “the people presently in this room”. The
extension of ‘the people presently in this room’ is the singleton set {Michèle
Friend} at the time and place of writing.

In our learning scenario, the learner is guessing the intension behind
the extension being fed to it. That is, the learner is given data in the form
of correct or incorrect examples. From this list, the learner tries to piece
together a function or description which will generate all and only positive
data. Matching vocabulary: the extension of “the grammar of first-order

5 We are not interested in how it is that the judge makes his judgment. This is a mathematical
problem. Moreover, it is the stuff of learning theory to determine under what conditions
this judgment can or cannot be made.
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language λ” is the set of all well-formed formulae of the first-order language
λ. The intensional description of the grammar is set of rules for forming well-
formed formulae together with the vocabulary of the language. The informant
gives the learner the extension of the “grammar of the first-order language λ”,
i.e., example formulae. The learner is trying to guess the grammar. This will
allow the learner to discern formulae belonging to the first-order language λ
from formulae which do not belong to that language. For example, a formula
with a constant which does not belong to the first-order language λ will be
one which does not belong to the language λ.

In our scenario, we are only interested, at this stage, with a learner
learning to discriminate between well, and ill, formed formulae for a
particular language λ, or between those of a class of first-order languages.
When the learner has learned to do this, we say that “the learner has
converged on the data”. In learning theory, convergence is reached when
the hypotheses put out by the learner are the same as those put out by the
teacher. Note that there is no order to the data being put out. Therefore,
we can only really know that the data matches in the limit. Matching of
data occurs under BC-learning. “BC” stands for “behaviourally correct”.
Intuitively, this phrase is very appealing. The learner can perfectly imitate the
teacher, in respect of the data set it is producing. In the constrained context
of this paper, we can take this to mean that the learner works out what are,
and what are not, well-formed formulae of the language. That is, the learner
which has converged (on the data) can recognise all and only the positive
(correct) data being fed to it as complying with its hypothesised grammar
(algorithm for generating well-formed formulae of the first-order language
λ), or class of languages.

That is, the learner is generating an algorithm for the grammar of the
first-order language λ. Also, in the language adopted here, the learner is
developing an intensional definition of the set of well-formed formulae of
the language. The hypothesised grammar is a means of testing whether
or not a formula supplied by the informant is part of the language.
When the learner is given a new datum, it checks whether or not it
could generate the supplied sentence using its hypothesised grammar. The
judge judges that “convergence” is reached when a datum and all future
positive data can be discriminated by the algorithm hypothesized by the
learner.

If a learner is engaged in confident learning, then it is guaranteed to
converge in the limit. A learner converges “in the limit” if it converges after
a finite amount of time. The finite amount of time could be very long, longer
than the age of the physical universe (assuming this is finite).
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3 THE PROBLEM

We can now utter our first important philosophical point: we might be
tempted to think that when convergence is reached, the learner has guessed
the true grammar. For, this would give us an explanation as to how it is that
the learner can recognise all and only the right sentences (the positive data
supplied by the informant).

However, we should question our temptation, and ask whether or not
extensional convergence implies intensional identity. For, this is what we
suppose when we say that “the learner has guessed the true grammar”.

Here are some problems. The obvious one, which has an apparently
easy solution, has to do with identifying grammars. Two presentations of
a grammar might be equivalent, but not identical, because the presentations
are in a different order. So, really what we want is for the learner to guess
a member of the equivalence class of presentations of grammars for a
first-order language λ. In natural language we can think of different texts
explaining Finnish grammar. They are not identical in their presentation, but
insofar as they are correct and thorough, they all belong to the equivalence
class of grammars of Finnish, assuming that there are no open problems
in Finnish grammar. So, it seems reasonable to require that the learner’s
algorithm for discriminating well-formed from ill-formed formulae to be
equivalent to that of the informant. We all understand what we mean by
equivalent in this context, so we have solved the problem.

However, things are not so simple. The learner may learn a member of
the equivalence class of grammars, at one level, but not at another level.
The learner might still have an incorrect grammar (in an intensional sense).
The slide between what is “correct” and what is “incorrect” exploits the
gap between equivalence and identity, and that between “extensional” and
“intensional”. This problem, which is much harder to dismiss, concerns a
result from model theory which, famously, was used by Putnam against the
philosophical position called “metaphysical realism” [8, 9]. We shall not be
interested in Putnam’s use of the arguments against metaphysical realism.
Instead, we are interested in what the arguments have to say about “confident
learning”, and learning a language. To be precise we need more definitions.

Two grammars are identical if they are the same in all intensional
and extensional properties. This is not to say that they share all possible,
or all conceivable, properties. However, the properties not captured by
intensionality and extensionality are going to be mathematically incidental,
if not to say bizarre.

For example, consider two copies of the “same” text book. That is,
the two copies are by the same author, printed by the same publisher, in the
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same year, are of the same edition. The only distinguishing feature is spatio-
temporal remove. The properties which distinguish them will have to do with
their separate interactions with people, book shelves, desk tops, bags and so
on. To say that ‘the’ first word cited in the first book is different from the first
word in the second book because of their different relations to humans and
their different locations in space and time is just bizarre. More importantly,
it is not a mathematical difference. It is a socio-historical spatio-temporal
difference. These bizarre differences are not of concern to us here.

Two grammars are “equivalent” if they share a (hopefully) specified set
of properties. Often which properties are salient is not specified because
this is not important, since the context makes it clear which properties are
important and which are not. To be precise we should say that two grammars
are equivalent in such and such respects, rather than simply “equivalent”.

There are two arguments which make precise in what respects two
grammars might be equivalent but not identical in a sense which matters.
One argument comes from the Downward Löwenheim-Skolem theorem.
The other has been called, by Putnam and others, “the permutation argu-
ment”. I shall rehearse the permutation argument, and then discuss what
philosophical conclusions we should draw from the argument. More impor-
tantly, I shall discuss who should be worried by the argument. For, it is not
clear that computer scientists should feel in the least bit threatened by the
argument; in fact, there is a sense in which the computer scientist is aware of
it anyhow. He, or she, does not dwell on the argument precisely because the
argument does not affect his, or her, immediate concerns.

I shall only briefly discuss the Löweheim-Skolem argument. In this, we
use the Downward Löweheim-Skolem property, which applies to first-order
theories (of first-order arithmetic or first-order set theory). A formal theory
has the Downward Löweheim-Skolem property iff every set of well-formed
formulae of the formal theory which have a model, has a countable model.
Using the Downward Löweheim-Skolem property, we can generate non-
standard models of the theory. That is, we can give a semantics which satisfies
all the axioms of the theory. The model is non-standard in the sense that,
viewed from another model, it has a different size than it reports to have
from within the model. For example, a set might be called “uncountable”
from within the non-standard model, but within the standard model, “the
same set” is countable ([5], pp. 275–282). It turns out that in a theory which
is first-order, the cardinal notions of ‘uncountable’ or ‘finite’ are relative
to the model of the universe which is given. We only notice the relativity
from outside the model: from within another model, or from a second-
order perspective. A second-order theory is categorical. That is, there is no
relativity of size. Cardinality is invariant across models satisfying the second-
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order axioms (of arithmetic or set theory). Another way of putting this is that,
in a second-order theory, sets are picked out uniquely up to isomorphism,
where the isomorphism function includes a measure of cardinality of set. We
have to be philosophically careful here, since isomorphism is an equivalence
relation, and equivalence relations fall short of identity, so there will still be
some features which are missed out. These might, or might not, be important
for our purposes. To show this discrepancy between the equivalence relation
and identity, we should turn to the permutation argument which has wider
application than the argument which uses the Downward Löwenheim-
Skolem property, since the Downward Löwenheim-Skolem property is a
property of first-order theories, not of full second-order theories.

4 RESULTS FROM MODEL THEORY

The permutation argument applied to confident learning runs: consider
the grammar guessed by the learner. Imagine that the learner has reached
convergence. That is, the learner is recognising all and only well-formed
formulae of the first-order language the learner was supposed to learn.
In this case, the judge (of what is happening between the teacher and the
leaner) judges that the learner has learned a member of an equivalence class
of grammars of the first-order language. That is, the learner has learned,
to all intents and purposes (uniquely up to isomorphism which defines
an equivalence class), the same grammar as the intended grammar the
teacher conveys by giving extensional examples. The learner has achieved
BC-learning. The problem is that we cannot tell, from the fact that the
learner has converged on the extension of the grammar, that the learner
has learned the intended grammar (the right intension),6 or even a member
of the intended class of grammars. So, the learner might not have learned
the true grammar.

We’ll begin with the argument, and then discuss an example. Take the
grammar used by the informant to generate the positive data. Call this
grammar the intended grammar. Introduce a function π which switches
two constants (so for us, these have to be a particular object, predicate,
relation or function constant, or a logical connective such as “∨”) in the
language. Call the constant to be switched “a”. π takes “a” as an argument
and gives the value π (a). π is a one-to-one function from the vocabulary of

6 Note that the extensions of the grammars of the informant and the learner will be in the
same equivalence class. Where the difference lies is in the grammars (at the intensional
level).
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the language onto the same vocabulary. So if ‘a’ belongs to the vocabulary so
does π (a). In our case, π has to switch two symbols of the same type around.
For example, π might switch two binary connectives, or two object-level
constants. Consider an n-place function f in the intended grammar which
gives a rule for forming well-formed formulae. In the case of f this will be
given in the intended grammar or derived from the intended grammar. In the
case of f π , this will not be derived, but will be a perverse permutation (on
the rules for forming well-formed formulae). Define a new function f π by:

f π (π (a1), . . . π (an)) iff (a1, . . . an).

Be careful about the biconditional. This is not the biconditional of truth.
Rather it says that if one side is a well-formed formula, then so is the
other side. Remember that in this learning scenario, we are simply inter-
ested in recognising well-formed formulae, not truth-functionally equivalent
formulae.

We can guarantee that π (a) is different from ‘a’ in at least one of the
places of f . Consider an f π where “a” can occupy the kth place, but where
π (a) is different from “a”. This is enough to guarantee the difference between
f and f π . The names “a” and π (a) denote different vocabulary symbols.
The intended grammar can be permuted by replacing f in the intended
grammar by f π . Call this the permuted grammar. All and only well-
formed formulae will be recognised by the learner and the teacher. The judge
judges that the intended and the permuted grammars are the same. They have
converged. So the extension of the intention is equivalent (by the bicondi-
tional statement above). However, the two grammars: the intended grammar
and the permuted grammar, are different in the conditions under which the
formulae are true. The learner might learn a permuted grammar rather than
the intended grammar, and there will be perfect convergence in extension.

You might think that finding such a permuting function is impossible.
However consider, for example, “ f π” to be a disjunction of implications
such as: if the third binary connective in a well-formed formula is ∨, read
it as an ∧, or if the third binary connective in a well-formed formula is ∧,
read it as an ∨. If we add this rule, or function, to the rules for making well-
formed formulae, the learner will recognise all the well-formed formulae of
the first-order language. Indeed, the learner has (as its hypothesised permuted
grammar) an algorithm for recognising, and even for generating, all and
only the well-formed formulae of the first-order language, but the learned
grammar is aberrant. The class of well-formed formulae recognised by the
learner will be isomorphic to the intended grammar, but the meaning of a
fraction of the well-formed formulae will be different. This seems puzzling.
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The judgment that the meaning is different is important. The learner will
exhibit BC-learning. It will have converged with the data being fed to it by
the teacher. The judge tells us that if the learner has converged, then we
can be confident that it will continue to recognise, or generate, all and only
well-formed formulae of the intended first-order language. So what is the
problem?

The problem will come later with theorem recognition and the recognition
of tautologies. It is the satisfaction conditions which will be different for
the class of formulae which have been recognised using the function which
produces an unintended interpretation. So on one level, the learner has
learned the intended first-order language. On another level the learner has not
really learned the language since language learning also involves satisfaction
of formulae; and it is the satisfaction of formulae which the philosopher
identifies with meaning, i.e., semantics.

At this stage, one might think that the problem will go away if we ask
the learner to learn not just formulae but tautologies or theorems. However,
a similar perversion of the intended class of learned material can be created
at those levels too.

Say the learner was meant to discriminate all the tautologies of the
language instead. Then the particular function constant we chose would
not do. There would be a discrepancy between the data of the informant
and that of the learner. This would probably eventually show up, but
until it did, the judge would not allow us to say with confidence that
the learner had confidently learned. So we need to find another permuting
function.

Keep the biconditional above for f and f π . This time we have tautologies
on either side of the biconditional so the biconditional reads: “ f is a
tautology if and only if f π is a tautology”. Now consider: if a well-
formed formula is syntactically proved or semantically proved, (so is a
theorem or tautology), and contains one negated bracketed conjunction to
the left of the main binary connective, then switch this to a disjunction,
each disjunct of which is negated, and vice versa. This is just an ap-
plication of part of DeMorgan’s laws to a sub-formula of a theorem or
tautology.

After careful consideration, we find that the tautology, or theorem, will
remain so, so the extension of the equivalence class of theorems the teacher
generates, will be the equivalence class of theorems recognised by the
learner. But the two classes are still intentionally different. The shape of the
proof (whether semantic or syntactic) will be different; and this is a difference
in intension, but not in extension.

What can we learn from this?
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5 PHILOSOPHICAL REMARKS

The immediate problem of learning theorems or tautologies will affect
those philosophers who think that we understand a connective by means of its
introduction and elimination rules in natural deduction. Many constructivists
argue for this.7 Following Wittgenstein, the associated slogan is: “meaning is
use”, and the constructivists interpret this to mean that using the connectives
is what gives them meaning. Use of the connectives is entirely constrained by
the introduction and elimination rules, that is, by the proof theory. To borrow
from Wittgenstein again: it is enough, for full understanding, to “play the
language game”. To put the immediate problem in Wittgenstinian: the learner
will have learned to play the language game; but there is still a lingering
sense in which it will not have really learned the language. So, perfect skills
in discriminating well, from ill, -formed formulae is not enough to show that
we are using the right rules. Similarly, perfect skills in recognising theorems
or tautologies is not enough to guarantee that a learner has the right (intended)
introduction and elimination rules.

It gets worse. The realist does not fare any better. Even if someone
is thought to understand the connectives by means of their truth-table
definitions; we see that the full truth tables will be quite elaborate, and
perverse, in the case of the permuted “ f ”, i.e., f π . Thus, the learner will not
have learned the correct meaning of ∨, ∧ and negation. So, again, it is outside
the confines of the learning task that we discover the discrepancy between the
intended description behind what is being learned, and the extension of the
intended function, algorithm or language.8

Alarmingly, for the philosopher, the problem generalises quite a lot. The
permutation argument can be applied to any circumstances which can be
described as BC-learning which is a convergence measure on Confident
learning. That is, provided that the way of testing that something has been
learned is through some sort of recognition, or generation, of a class of
objects, such as sentences, then the permutation problem appears. Thus the
permutation argument can be applied to less formal circumstances, and to
any language: formal or natural. The lesson being learned here is not, as
Putnam argues, that metaphysical realism is wrong, although the problems
are related, but rather that the gap between intended function, algorithm,

7 This is the basis of the sequent calculus developed by Dag Prawitz in [6, 7].
8 It should be obvious that this is very close to the problems raised by Kripke in his

interpretation of Wittgenstein’s rule following considerations. This is also related to
what Quine, Dummett and Putnam have called “the inscrutability of reference”. See the
bibliography at the end for references.
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grammar, or whatever, and its extension is not necessarily visible from within
a context,9 but might only be detected from outside (at a meta-level (relative
to the context)), by articulating the function, algorithm or grammar. The
philosophical reason why the learning theorist is not affected by these results
is that he, or she, stops at the judgment made by the judge. Convergence in
the limit is enough, as judged within the chosen context. The judge does not
step out of the context to pronounce judgment.

The learning theorist stays within the context, as it were. Or, insofar
as he, or she, departs from it, all he, or she, has to do is register the
fact that the function, algorithm or grammar being learned by the learner
might be wrong in some way other than behaviourally! The learning theorist
recognises when it is that confident learning is taking place. He, or she, has
set parameters for this. There will be applications where confident learning is
sufficient for the task at hand, and furthermore, it will be possible, in the right
circumstances to design systems (sets of algorithms) which confidently learn.
This is the philosophical reason why the learning theorist is not affected by
this problem.

Nevertheless, it is instructive to explore explicitly what are the limitations
of confident learning. That is, it is worth exploring exactly how the learner
might still get something wrong even when it is exhibiting BC-learning.

Let us return to the alarmed philosopher. There is the problem articulated
above about some different philosophical positions. What is common to
all of them is pinning down what it is that captures meaning. If we want
to discuss meaning, we should keep with philosophical tradition and re-
introduce the notions of semantics and syntax, for the extension of these
terms is ambiguous. Semantics (for the philosopher) has to do with meaning.
Syntax (for the philosopher) has to do with form.

Above, we had two theses: that the meaning of the connectives is
completely contained in the manipulation rules. This is the constructivist
position. This is contrasted to the realist position which claims that the
meaning of the connectives is contained in their truth-table definitions. For
the realist, semantic proofs in first-order logic are either proofs constructed
by means of truth tables or semantic tableaux and syntactic proofs are
natural deduction proofs. For the constructivist, the form and the meaning
merge. Manipulation rules for the symbols give them their meaning. The
understanding is through the form, and nothing else. Natural deduction
proofs give the meaning of the connectives. There is no difference in
appearance between syntactic proofs and semantic proofs.

9 This point about “inside” and “outside” a context is discussed very nicely in Hallett:
“Putnam and the Skolem Paradox” in [1], pp. 66–97.
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Sliced either the realist way or the constructivist way, the philosopher’s
distinction between syntax and semantics will not help with meaning or
understanding. For, neither explanation is enough to block aberrant or
perverse (permuted) understanding. For, permuted understanding is not really
understanding. Meaning has not been conveyed, if there is a perversion
somewhere en route. So both positions are missing something in their
account of meaning. That is, we can no longer simply state that the semantic
part of a first-order theory is the interpretation (a domain for the variables to
range over, together with a designation for the constants), and the syntactic
part of the theory is the grammar. We can no longer blithely say such
things because the learner can behave as though it understands, and yet at
another level, it clearly does not. That is, there is a shortfall in our account
of meaning, or understanding, or learning, of a formal system. Call this the
‘inadequacy of our account of learning’ problem.

The problem, for the philosopher, is that the extension of the function
or language being learned is not uniquely determined by an equivalence
class of intensional descriptions of that function or language. Thus, the
notions of intensional description and extension of the description are not
absolute. They are relative to a context. Quine calls this the “indeterminacy of
translation” ([10], p. 27). However, as we saw above the problem regenerates
from task to task: learning to recognise well-formed formulae can be made
precise if we also ask the learner to learn about the truth conditions of
formulae. But it might still have an aberrant way of understanding the
truth conditions and how they are generated. So, this problem goes beyond
the inscrutability of reference, since the problem regenerates whenever
there is a gap between equivalence and identity. Equivalence is not enough
for understanding; only identity is. Call this the “equivalence falls short”
problem.

More broadly: consider what the learning theorist calls “general learners”.
These are learners whose Turing machine capacities set up for generating
hypothesised algorithms are unknown. Examples of general learners are
people, who, for example, learn languages. People learn languages without
necessarily having a thorough background in grammar. This will certainly be
the case in English. In French one learns a good deal of grammar, whether
one is a native or not.10 We know from the above result that there are probably
cases of something quite close to confident learning when ordinary people
learn a language. We have to leave a little leeway since language changes over
time, but let us ignore this. Is semantic (extensional) correctness sufficient

10 Traditionally, in France, until they go to Lycée, children spend just under half their
classroom time explicitly learning grammar, spelling and general language skills.
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for communication? Probably, it is in most circumstances. However, rather
grave misunderstandings can be had due to a small aberration in a rule, or in
an algorithm.

So maybe we should turn the question around. When will confident
learning of a language be shown to be inadequate? Answer: when we have
disagreements about a language. That is, when we adopt a more general
(meta-) perspective on a language. In other words, the meta-perspective is
essential to (directly proportional to) depth of understanding. We cannot be
certain to communicate, or learn, if we are only prepared to stick to one
level—the object level.

Lesson: even if a group of people has learned to speak a language
perfectly: in terms of vocabulary and structure of sentences (so no one
utters ungrammatical or categorical nonsense) then they might still have
a job agreeing on, for example, the class of grammars which formalise
the language. Thus, there is no unique standard for fully capturing the
grammatical structure of a natural language which we can lift from use of
the language (under the plausible hypothesis that we engage in confident
learning). The same applies to sophisticated computers trying to come up
with a grammar for a language. In fact, there are an infinite number of
perverted grammars for any one extension in the form of an infinite stream
of data. For this reason it would be a miracle (have a probability zero)
that we should get the true grammar. Call this the “many perversions”
problem.

6 CONCLUSION

For the conclusion, let us be explicit about how our three problems above
are related to each other, and then discuss solutions. The solutions are reached
by playing the Modus Ponens/Modus Tollens11 game where we turn a modus
tollens argument into a modus ponens argument.

The “many perversions” problem is just an expansion on the “equivalence
falls short” problem. The former tells us that equivalence does not only
just fall sort. It completely misses the mark. It would be a miracle (has a
probability of 0) for a learner engaged in confident learning (whose possible
algorithms is unknown or an open set) to converge and get the intended

11 There is a saying in philosophy that “one person’s Modus Ponens is another person’s
Modus Tollens”. This is just a factor of solutions which do not sit easily with everyone.
By discussing arguments under their Modus Ponens versions and their Modus Tollens
versions, we increase our understanding.
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function, algorithm or grammar; where the intended function, algorithm or
grammar is that which underpins (or is used to generate) the data being fed
by the teacher to the learner.

So who does this affect? Answer: anyone who is concerned about the
“inadequacy of our account of learning” problem. The problem will trouble
anyone who thinks that meaning, or understanding, are absolute notions; even
if he, or she, thinks that these notions are only absolute in ideal cases, such
as logic. This group of people includes anyone who thinks, along with Frege
and others, that logic is pure and untarnished. For example, we are told, by
Frege and others, that logic is free from ambiguity and vague expressions.
However, the permutation argument shows that meaning or understanding
of a formal language (in an absolute sense of “meaning”) cannot be located
either in the proof theory or in the model theory of the language exclusive of
anything else. We need, and intuitively have, a further component in the form
of a meta-perspective. So, in particular, meaning is not located in what the
philosophers call the “semantics of a language”. There is a residual ambiguity
guaranteed by the gap between the equivalence class of some extension and
the identity of the intentional description which generates the extension.

To see some solutions, let us play the Modus Ponens/Modus Tollens
game. The Modus Ponens version of the solution to the “inadequacy in our
account of learning” problem will be to say something like: “we need to
consider not only the proof theory and the model theory of a language to
find the meaning, but also the relationship between the two”. In other words,
to find meaning, we also have to step outside the system itself, to move to
a meta-level. Of course, the problem will occur again at the next level, but
maybe this will be enough for now. Meaning is relatively stable. But to say
that “this is enough for now” is to give up on an absolute or unique notion of
meaning. For many philosophers this is intolerable.

The Modus Tollens version of the solution to the “inadequacy in our
account of learning” problem will be to say right away that meaning is simply
not an absolute notion. We can now join up with the other two problems.
What counts, in the end, is communicating well enough. That is, it is usually
enough to get the right equivalence class.12 Furthermore, if, later, we find that
there is a problem, then we can seek to clarify by moving to a meta-level, or
by looking at what we have learned from without. In other words, the Modus

12 It amuses me to think here of the many empty conversations one has, where one simply
goes through the motions of prompting agreeing, qualifying etc. without really taking an
interest about the truth or content of what is being said. Socially, it is often enough to
communicate at a primitive social level, instead of a more scientific quest for “truth and
understanding”.
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Tollens thinker will end up with a relativistic position saying something about
learning being a process, not an object, and being quite grateful that we
happen to move so deftly to meta-levels when communicating.

The Modus Ponens thinker, who here is being associated with a more
realist stance, or absolutist stance might acknowledge that there is a problem
whenever there is a gap between equivalence and identity. Then there are two
possible routes to take. One is to bite the bullet and say that indeed there
are an infinite number of ways in which we might still go wrong even if
we have the extension of a function, algorithm or grammar right, and it is
just good luck that we get things right at the level of the function too. In
other words a miracle takes place. Zero probability of an event occurring
does not imply that the event does not take place. This is intolerable because
positing miracles as explanations is not “good form” in philosophy. The other
route is to say that at some point up the meta-levels we will reach identity.
Thus, meaning is absolute, but not at ground level. Furthermore, there is a
direction to pursue to increase our understanding. Furthermore, it might even
be (ideally?) possible for us to get there. Temporarily, this will be a more
comfortable solution than the relativistic one of the Modus Tollens thinker.
However, the comfort will be short lived because we have to make explicit
what we mean by “ideally possible”, and this is not obvious.

In short, confident learning is only judged in terms of BC-learning,
or extensionally correct learning. A learner engaged in confident learn-
ing, which has converged, might be far from intensionally correct in its
learning. Thus, there is no way that we can be confident that in confident
learning the learner has learned the unique underlying function or language.

REFERENCES

[1] Clark, P. and Hale, B. (eds.) (1994). Reading Putnam, Oxford: Basil Blackwell.
[2] Glymour, C., Kelly, K. and Juhl, C. (1994). “Reliability, Realism, and Relativism”, in

Clark, P. and Hale, B. [1], 98–160.
[3] Gold, E.M. (1967). “Language Identification in the Limit”, Information and Control 10,

447–474.
[4] Hallett, M. (1994). “Putnam and the Skolem Paradox”, in Clark, P. and Hale, B. [1],

66–97.
[5] Machover, M. (1996). Set Theory, Logic and their Limitations, Cambridge: Cambridge

University Press.
[6] Prawitz, D. (1965). Natural Deduction: A Proof-Theoretical Study, Stockholm: Almqvist

and Wiksell.
[7] Prawitz, D. (1974). “On the Idea of a General Proof Theory”, Synthese 27, 63–77.
[8] Putnam, H. (1975). “‘Degree of Confirmation’ and Inductive Logic”, Mathematics,

Matter, and Method, Cambridge: Cambridge University Press, 270–292.



Confident Learning 197

[9] Putnam, H. (1981). “A Problem About Reference” and “Appendix”, in Reason, Truth
and History, Cambridge: Cambridge University Press, 22–48, 217–218.

[10] Quine, W.V.O. (1960). Word and Object, Cambridge (Mass.): MIT Press.



8

HOW TO DO THINGS
WITH AN INFINITE REGRESS

KEVIN T. KELLY
Department of Philosophy, Carnegie Mellon University,
Pittsburg, PA 15213, U.S.A., kk3n@andrew.cmu.edu

Abstract: Scientific methods may be viewed as procedures for converging to the true
answer to a given empirical question. Typically, such methods converge to the
truth only if certain empirical presuppositions are satisfied, which raises the
question whether the presuppositions are satisfied. Another scientific method
can be applied to this empirical question, and so forth, occasioning an empirical
regress. So there is an obvious question about the point of such a regress. This
paper explains how to assess the methodological worth of a methodological
regress by solving for the strongest sense of single-method performance that
can be achieved given that such a regress exists. Several types of regresses
are “collapsed” into corresponding concepts of single method performance in
this sense. The idea bears on some other issues in the philosophy of science,
including Popper’s falsificationism and its relationship to Duhem’s problem.

1 CONFIRMATION AND NATURALISM

Here is a familiar but unsatisfying approach to the philosophy of science.
Science seeks to “justify” empirical hypotheses. Usually, evidence does not
and never will entail them, so they must be “justified” in some weaker
way. So there must be a relation of “partial support” or “confirmation” or
“empirical rationality” falling short of full (deductive) support that justifies
them. The principal task of the philosophy of science is to “explicate” the
relation of empirical justification from practice and from historical examples.
Any feature of scientific method or procedure that is not derived from this
relation is extraneous to the philosophy of science per se, although it may be
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of tangential psychological, sociological, or purely computational interest.
Thus, virtues such as confirmation, explanation, simplicity, and testing
are normatively and philosophically relevant, but the logic of discovery
(procedures for inventing new hypotheses) and procedural efficiency are
beside the point (e.g., [13]).

The trouble with this approach is that explicating the justification relation
(supposing it to be possible at all) does not begin to explain why justification
should be as it is rather than some other way. Convincing, a priori answers
are not forthcoming and attempts to provide them are no longer in fashion.
One responds, instead, with the naturalistic view that if scientific standards
are to be justified, that justification must itself be scientific (i.e., empirical).
The next question is how scientific reasoning can justify itself. Circular
justifications are more popular than infinite regresses of justification in the
philosophical literature (somehow an infinite regress of justifications never
“fires” or “gets started”), but it is hard to explain what the point of circles
or regresses of justification could possibly be without first knowing what
the point of justification, itself, is. And the familiar, confirmation-theoretic
philosophy of science under consideration provides no such explanation.

2 A PROCEDURAL PARADIGM

Consider an alternative paradigm for the philosophy of science, according
to which scientific methods are procedures aimed at converging to correct an-
swers rather than relations between hypotheses and finite bodies of evidence.
Procedures are justified not by embodying some abstract relation of empirical
justification between theory and evidence at every stage, but because they
find correct answers both reliably and efficiently. Computational efficiency
is relevant, since it brings one to the truth faster. The logic of discovery
is also relevant, because the concept of convergence to a correct answer
applies as much to methods producing hypotheses as to methods assessing
given hypotheses. This is the perspective of computational learning theory,
an approach to inductive inference proposed by Hilary Putnam ([19, 20])
and E.M. Gold ([2, 3]) and subsequently developed largely within computer
science.1

Here is a more precise formulation of the idea. Empirical methods
are procedures or dispositions that receive successive inputs from nature
and output successive guesses in response. Like computational procedures,

1 For book-length reviews of the technical literature, cf. [17, 6]. For attempts to relate the
ideas to the philosophy of science, cf. [14], [7], [9], and [11].
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inductive methods may be judged as solutions to problems. An empirical
problem is not a particular situation but a range of serious possibilities over
which the method is required to succeed. Success in a possibility means
converging to a correct answer on the stream of inputs that would be received
if that possibility were actual. Correctness may be truth or something weaker,
such as empirical adequacy. It may also involve pragmatic components,
such as being a potential answer to a given question; or, following Thomas
Kuhn, it might be something like ongoing puzzle-resolving effectiveness
in the unbounded future. The precise choice of the correctness relation
is not the crucial issue. What does matter is that there is a potentially
endless stream of potential inputs and that the standard notions of correctness
transcend any finite amount of data. So achieving correctness reliably—in
each of a broad range of cases—occasions the problem of induction: that
no answer unverified by a finite sequence of inputs is guaranteed to be
correct.

There are several different senses of convergent success, some of which
are more stringent than others (cf. [7]). Let a hypothesis be given. It would
be fine if a scientific procedure could eventually halt with acceptance or
rejection just in case the hypothesis is respectively correct or incorrect.
Call this notion of success decision with certainty. But some hypotheses
are only verifiable with certainty (halt with acceptance if and only if the
hypothesis is correct) or refutable with certainty (halt with rejection if and
only if the hypothesis is false). Other hypotheses are only decidable in the
limit, meaning that some method eventually stabilizes to acceptance if the
hypothesis is correct and to rejection otherwise. There are also hypotheses for
which it is only possible to stabilize to acceptance just in case the hypothesis
is correct (verification in the limit) or to stabilize to rejection just in case the
hypothesis is incorrect (refutation in the limit). Between decision in the limit
and verification and refutation with certainty, one may refine the notion of
success by asking how many retractions are necessary prior to convergence.2

Kuhn and others have emphasized the tremendous social cost of retracting
fundamental theories and, furthermore, the number of retractions required
prior to convergence may be viewed as a notion of convergent success in
its own right that bridges the concepts of certainty and limiting convergence
with an infinite sequence of refined complexity concepts.

A given, empirical problem may be solvable in one of the above senses
but not in another. The best sense in which it is solvable may be said to be its
empirical complexity. This is parallel to the theory of computability and com-
putational complexity. In fact, the complexity classes so defined are already

2 Cf. [11] for an explanation of Ockham’s razor in terms of retraction minimization.
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familiar objects in analysis and computability theory [4]. In the philosophy
of science, one speaks vaguely of underdetermination of theory by evidence.
Elsewhere, I have proposed that degrees of underdetermination correspond
to degrees of empirical complexity ([7], [9]). That yields a comprehensive
framework for comparing and understanding different inference problems
drawn from different contexts, as well as a unified perspective on formal and
empirical inquiry ([7], Chapters 6, 7, 8, and 10; [10]), something that has
bedeviled the confirmation-theoretic approach from the beginning.

Many methodological ideas familiar to philosophers of science emerge
naturally from the procedural framework just described (cf. [11]). One such
idea is Duhem’s problem, which turns on the observation that individual
hypotheses in a scientific theory are refutable only in the context of other
“auxiliary hypotheses”. The problem is how to assign credit or blame to
a hypothesis when falsifying instances may be due to a false auxiliary
hypothesis with which the hypothesis has been forced to keep company.
Here is how the problem looks from the perspective of learning theory. A
hypothesis that is not refutable with certainty may be refutable with certainty
given some other auxiliary hypotheses, which is the same as saying that the
conjunction of the hypothesis with the other hypotheses is refutable with
certainty. Indeed, there may be many potential sets of auxiliary hypotheses
that make a given hypothesis refutable with certainty.

One can enumerate the possible systems of auxiliaries thought of so far
and accept H as long as the first system of H+ auxiliaries consistent with
receipt of the current inputs is not refuted. If the first such system is refuted,
then H is rejected and one selects the first such system consistent with the
data and with H . If new systems of auxiliaries are thought of, they can be
added to the end of the queue of auxiliaries thought of already. This procedure
verifies H in the limit so long as “creative intuition” eventually produces
systems of auxiliaries covering all relevant possibilities admitted by H . So
verifiability in the limit corresponds to the intuitive epistemic perplexity
occasioned by Duhem’s problem. That is important, because many issues in
the philosophy of science (realism, conventionalism, observability, theory-
ladenness, and paradigms) cluster around Duhem’s problem.

One can (and, I suggest, should) think of the Kuhnian [12] distinction
between “normal” and “revolutionary” science along similar, procedural
lines. A “paradigm” is a hypothesis that is not refutable in isolation but
that becomes refutable when “articulated” with auxiliary hypotheses. Normal
science involves the selection of auxiliary hypotheses compatible with the
paradigm and with experience that make the paradigm refutable. Revolution-
ary science involves choice among paradigms. The crisp, stepwise solvability
of “normal” problems reflects the constraints imposed by the presumed
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paradigm. Revolutionary science is far less crisp, since each paradigm can
be articulated in an infinite variety of ways.3

The preceding points are illustrated naturally and concretely when the
hypothesis in question concerns a trend. Questions about trends often
generate controversy, whether in markets or in nature, because any finite
set of evidence for the trend might be a local fluctuation around an un-
known equilibrium. This sort of ambiguity permeated the debate between
uniformitarian and progressionist geologists in the nineteenth century (cf.
Ruse [21]). Progressionists4 held that geological history exhibits progress
due to the cooling of the Earth from its primordial, hot state, whereas
Lyell reinterpreted all apparent trends as local fluctuations on an immensely
expanded time scale. If progressionism is articulated with a particular
schedule of appearance for finitely many fossils, it can be decided with
two retractions starting with “no”. Just say “no” until all the fossil types
are seen to appear in the fossil record as early as anticipated (remember
that it may take arbitrarily long to find a fossil that appears as early as
anticipated); then say “yes” until some fossil type is observed to appear
earlier than expected, after which say “no” again.5 In historical fact, Lyell
claimed to have refuted progressionism when the Stonesfield mammals were
found in Jurassic strata, prior to progressionist expectations, but it was
open to the progressionists simply to “re-articulate” their paradigm with
an accelerated schedule accommodating the new find, so progressionism is
not really refutable with certainty. In fact, the progressionists were free to
accelerate their schedule repeatedly, and no finite set of fossils could possibly
refute all possible schedules, so without further reframing, the debate allows
for a potentially endless give-and-take. To verify progressionism in the limit,
do the following: enumerate the possible schedules of progress (assuming

3 Much more can be said about this [9]. For example, one can also provide a naturalistic
account of theory-laden data in learning theoretic terms.

4 The progressionists were called “catastrophists” because the early cooling of the Earth was
supposedly accompanied by catastrophic changes unobserved nowadays.

5 Attentive readers may have noticed that if the progressionists were to always posit exactly
the currently observed earliest appearances for each fossil type then at most one retraction
is required per re-articulation. That would be true if progressionism were flexible enough
to articulate with arbitrary schedules. But the progressionist paradigm also included prior
ideas about which fossil forms were more “advanced” than others, so if a “rudimentary”
form were to appear earlier than expected, still more rudimentary forms would have to
appear even earlier than that, and it is possible that no such examples had yet been found.
In that case, progressionists would have to set a new schedule in which some rudimentary
forms are expected earlier than the earliest known examples. And then the right rule is to
say “no” until such examples are found, “yes” after they are found, and “no” after still
earlier examples are found.
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them to be presented as discretely presented rules). Apply the preceding
two-retraction method to each schedule. If the first schedule for which the
method says “yes” does not change when a new observation is made, say
that progressionism is true. Otherwise, say that progressionism is false. If
progressionism is true, it is true in virtue of some schedule. Eventually, all
the fossil types appear as soon as predicted and no fossil type ever appears
earlier, so from that point onward the two-retraction method stabilizes to
“yes” on the true schedule. For each schedule prior to the true one, the method
eventually stabilizes to “no” (either because no fossil of a given type ever
appeared early enough or because some fossil type is seen too early). So the
enumeration method converges to “yes” when the first true schedule’s method
has stabilized to “yes” and all prior schedules’ methods have stabilized to
“no”. If progressinism is false, then every schedule’s method eventually
converges to “no”, so the enumeration method outputs “no” infinitely often.

Uniformitarianism, on the other hand, is refutable in the limit: it looks
bad as long as the two-retraction method says “yes” for a fixed schedule and
looks good when the current schedule is refuted.

Global warming [1] provides a more recent example of an awkward
trend question. Is the current warming trend a chaotic spike no greater than
historical spikes unaccompanied by corresponding carbon dioxide doses or is
it larger than any historical spike unaccompanied by current carbon dioxide
levels? Newly discovered high spikes in the glacial record make us doubt
global warming and increasing temperatures higher than discovered spikes
in the glacial record make us more confident that carbon dioxide levels are
the culprit.

In a different domain, the cognitivist thesis that human cognition is
computable is verifiable in the limit, for similar reasons. Each finite chunk
of behavior is compatible with some computer program (cognitive theory),
but each such theory is outrun eventually by uncomputable behavior. To
verify the hypothesis of computability, enumerate all possible computable
accounts and reject the computability hypothesis only when the first program
compatible with human behavior is refuted. If behavior is computable,
eventually the right program is first and the method converges to “yes”.
Otherwise, each program is eventually refuted and the method says “no”
infinitely often.

3 PROCEDURAL REGRESSES

The procedural outlook just described is subject to its own empirical
regress problem. Many empirical problems are solvable, even in the limit,
only if certain empirical presuppositions are satisfied. For example, knowing
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that a curve is polynomial allows one to infer its degree in the limit (from
increasingly precise data), but if the question is expanded to cover infinite
series, the answer “infinite degree” is only refutable in the limit. If empirical
presuppositions are necessary for success, how can one determine whether
they are satisfied? By invoking another method with its own empirical
presupposition? And what about that one? So it seems that one is left with
a regress of methods checking the presuppositions of methods checking the
presuppositions of methods.... The point of a method guaranteed to converge
to the truth is fairly clear. But what is the point of a regress of methods, each
of which succeeds only under some material presupposition that might be
false?

The basic idea developed in this article is a methodological no free lunch
principle: the value of a regress can be no greater than the best single-method
performance that could be achieved by looking at the outputs of the methods
in the regress rather than at the data themselves. If the performance of the
best such procedure is much worse than what could be achieved by looking at
the data directly, one may justifiably say that the regress is methodologically
vicious. If the best method that looks only at the outputs of the methods in
the regress succeeds in the best feasible sense, then the regress is optimal.

4 FINITE REGRESSES

Consider the empirical problem (H0, K ) of determining the truth of
a given hypothesis H0 over serious possibilities K . Fix a given sense of
success (e.g., refutation with certainty, verifiability in the limit, etc.). Every
method M0 directed at assessing H0 succeeds in the given sense over some
set (possibly empty) of serious possibilities (input streams). The empirical
presupposition H1 of a given method M0 for assessing H0 is just the set of all
serious possibilities (input streams) over which M succeeds (i.e., H1 is just
the empirical proposition “M0 will succeed in the specified sense”). So let
meta-method M1 be charged with assessing the presupposition H1 of method
M0. Meta-method M1 reads from the same input stream as M0, but instead
of trying to determine the truth of the original hypothesis H0, M1 tries to
determine the truth of H1, the empirical presupposition of M0. With respect
to the question H1, M1 has its own empirical presupposition H2, of which M2

determines the truth value of H1 under empirical presupposition H2, and so
forth.

For example, let H0 denote Lyell’s uniformitarian hypothesis, discussed
earlier. After the Stonesfield find, Lyell declared victory for H0, which
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might be interpreted as halting definitively with “yes”.6 Lyell would also
have had a reason to scoff at the progressionists if fossil types expected
by a certain epoch (e.g., “missing links”) stubbornly refused to appear.
On the other hand, perfect correspondence between the proposed schedule
of progress and the actual fossil record would hardly be happy news for
Lyell. So one might crudely reconstruct Lyell’s method M0 as something
like the following: until the currently fashionable schedule is instantiated
(i.e., the earliest geological appearance of each fossil type matches the
schedule exactly), scoff at the “anomalies” in the progressionist paradigm
and say “yes” to uniformitarianism without halting.7 While the currently
fashionable schedule is instantiated but not refuted, concede “no” without
halting. Finally, when the schedule is refuted outright by a fossil that appears
ahead of the current schedule (as the Stonesfield find did), announce victory
(i.e., halt with “yes”). So M0 retracts at most twice, starting with “yes”,
as the geological data pour in. But no possible strategy converges to the
truth about uniformitarianism with just two retractions, since any number of
successively accelerated schedules of first appearance for the various fossil
types might appear perfectly instantiated for arbitrarily long periods of time
before being shot down by a new find ahead of schedule. So M0 finds the truth
only under some empirical presupposition H1. Assuming that the serious
possibilities K at the time were just those compatible with uniformitarianism
and progressionism and that the earliest time of appearance in the fossil
record is eventually observed for each fossil type, the presupposition H1 of
M0 is that progressionism implies A1 (where A1 is the auxiliary hypothesis
that fossil types will first appear according to the currently fashionable
schedule) and, hence, that uniformitarianism is true if A1 is not (i.e.,
H1 = H0 ∨ A1). For given H1, M0 really does converge to the truth with just
two retractions in the worst case and if H1 is false, M0 converges to the false
conclusion that uniformitarianism is true.

In Kuhnian terms, the auxiliary hypothesis A1 is an “articulation” of the
progressionist paradigm and in the face of the uniformitarian competitor, the
Stonesfield find constituted an anomaly for this particular articulation. As
Kuhn takes pains to emphasize, the anomaly does not logically compel rejec-
tion of progressionism, since the schedule can be revised to accommodate the

6 Of course, I oversimplify. He declared victory for a tangle of reasons that would defy any
elegant logical representation, but the Stonesfield find seems to have been a significant
rhetorical blow to progressionism (Ruse [21]).

7 More realistically, output “?” until the “anomalous” failure to find the missing fossils
percolates into a “crisis”. That detail doesn’t really change anything in the following
analysis.
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anomaly. But Lyell’s method M0 halts with “yes” when A1 is refuted, so M0

fails to find the truth when progressionism is true in virtue of some revised
schedule.

When the progressionists responded by revising their schedule to a new
schedule A2, Lyell’s method was called rhetorically into question, for if the
new schedule were true, his method would halt with “yes” even though
progressionism is true. Since H1 is an empirical hypothesis, Lyell might have
responded to the challenge with a meta-method M1 that checks the truth
of H1. With A2 on the table, it would be rhetorically pointless for Lyell to
respond with a method that still presupposes H1; he must at least entertain
the revised schedule A2 as a serious possibility, so that the presupposition of
the meta-method M1 is

H2 = H1 ∨ A2 = H0 ∨ A1 ∨ A2.

Now over these extended possibilities, in which possibilities does M0

succeed? Only in possibilities in which the revised schedule A2 is false,
since Lyell’s premature halting with “yes” upon the refutation of A1 would be
rescued by the falsity of A2. So M1 should say “yes” until A2 is instantiated,
followed by “no” until A2 is refuted, and should halt with “yes” as soon
as A2 is refuted. Notice that meta-method M1 is pretty similar in spirit to
Lyell’s original method since it still ungenerously entertains only finitely
many possible schedules of progress. And like the original method, the meta-
method converges to the truth with two retractions starting with “yes”, given
that its empirical presupposition is true. The regress can be extended to any
finite length, where meta-method Mi has presupposition Hi+1 = Hi ∨ Ai .

Say that a finite regress (M0, . . . ,Mn) succeeds regressively (relative to
empirical problem (H0, K )) in a given sense (e.g., verification with certainty)
just in case there exist propositions H1, . . . , Hn such that for each i no greater
than n:

1. Hi+1 is the presupposition of Mi with respect to Hi according to the
specified sense of success and

2. K entails Hn .

So assuming that the relevant possibilities in the geological example are
exhausted by Hn , the Lyellian regress may be said to succeed regressively
concerning the uniformitarian question over serious possibilities K = Hn in
the sense of convergence with two retractions starting with “yes”.

But sequential success is a far different matter from success with respect
to the original question. How are the two related, if at all? The worry is that
infinite regresses, like circles, do nothing at all but beg or forestall the original
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question under consideration. One way to answer this question is to construct
a regress collapsing function �(a1, . . . , an) = a that takes a sequence of n
possible answers to a single answer. The collapsing rule � may be thought
of as converting the regress (M0, . . . ,Mn) into a single method M∗ such that
for each finite input history e,

M�(e) = �(M0(e), . . . ,Mn(e)).

Then if M∗ succeeds in some ordinary, single-method sense in problem
(H0, K ), one can say that the regress is no worse in value than a single
method that succeeds in that sense. In other words, the methodological value
of a regress is the best single-method performance that could be recovered
from the successive outputs of the constituent methods in the regress without
looking at the inputs provided to these methods. The regress is vindicated if
the best single method performance that can be achieved by collapsing it is
also the best possible single method performance. Otherwise, the regress is
vicious (a term often employed with no clear sense). Viciousness now comes
in well-defined degrees, depending on how far short of optimal performance
the best-performing regress collapse falls.

For illustrations of vindication and viciousness, turn once again to the
Lyellian regress (M0,M1) of length 2. Assuming that K = H2, this regress
succeeds regressively with two retractions starting with “yes”, since that
is what each method achieves given its presupposition. Now consider the
best sort of method one could build from this regress without peeking
at the inputs. Let e be an arbitrary, finite data history compatible with
K. When M1(e) converges to “yes”, whatever M0(e) converges to is true
and when M1(e) converges to “no”, whatever M0(e) converges to is false.
So it is sensible to define the collapsing rule so that the first answer
a1 is repeated or reversed, depending on whether M1 answers “no” or
“yes”:

�(a1, “yes”) = a1;

�(a1, “no”) = reverse(a1).

Over possibilities in K = H2, the following histories may occur:

1. neither schedule is instantiated;
2. schedule A1 is instantiated but not schedule A2;
3. schedule A1 is refuted but schedule A2 is not instantiated;
4. schedule A1 is refuted and schedule A2 is instantiated;
5. both schedules are refuted.
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In such an input stream, method M∗(e) = �(M0(e),M1(e)) retracts at
most four times, starting with “yes”. Notice that this is the sum of the
worst-case retractions of the constituent methods in the regress (suggesting
a general pattern) and that the initial answer is the same as that of the
constituent methods.

Does M∗ achieve the best possible single-method performance in the
problem under consideration? Let M be an arbitrary method that converges
to the truth about uniformitarianism over serious possibilities in K = H2.
Nature can withhold instantiation of both schedules until M is forced (on
pain of failing to converge to the truth) to say “yes”, since otherwise both
schedules are false, so according to H2, uniformitarianism is true. At that
point, Nature is free to continue to present data instantiating but never
refuting schedule A1 until M concludes “no”, since otherwise A1 is true
and implies that uniformitarianism is false. Nature is free to continue to
present data refuting schedule A1 without instantiating schedule A2 (since
A2 is faster than A1) until M concludes “yes”. Nature is now free to continue
to present data refuting schedule A2 and instantiating schedule A2 without
refuting it until M concludes “no”. Finally, Nature is free to continue to
present data refuting A2, forcing M to conclude “yes”. So an arbitrary
method that converges to the true answer in the problem also requires at
least four retractions starting with “yes”. Starting with “no” would require
yet another retraction and starting with “?” would still require four (even
not counting the change from “?” to “yes” (by arguments similar to the
one just given). So the best possible single method performance in this
problem is four retractions starting with “yes”. Hence, Lyell’s regress is
vindicated, since it can be collapsed into a single method with the best
possible performance.

Vindication is not trivial. For example, Lyell might have been a lunatic
who reversed his answer every day, whereas his meta-method (physician)
might have been perfectly rational and said “no” a priori concerning insane
Lyell’s success. This regress succeeds regressively in the strongest possible
sense (each method succeeds over its respective presupposition with no
retractions) but it is entirely vicious because both methods ignore the data
entirely, precluding all attempts to collapse the regress into a method that
even converges to the truth in the limit.

The preceding example illustrates that even extremely strong regressive
success does not suffice for vindication. That is because the crazy method
fails in an unnatural way. Real science loves to “frame” messy questions
to appear crisper than they really are by specifying evidential triggers for
when to reject a hypothesis or paradigm that is not really refuted (as in the
case of Lyell’s identification of progressionism with a particular schedule
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of progress). This opens the door to some failures to converge to the truth,
since the trigger for halting may be premature. But in spite of this obvious
risk of failure, reliance on determinate empirical “triggers” for rejection
or acceptance has a silver lining: it ensures that failure of the method
occurs in an orderly way that has implications concerning the truth of the
original hypothesis. In the jargon coined above, reliance on evidential triggers
links mere regressive success to genuine methodological value, as in the
Lyell example. In that example, the trigger for dumping progressionism is
refutation of schedule A1, which fails only when progressionism is true
(over serious possibilities K = H0 ∨ A1 ∨ A2). Hence, the meta-method’s
determination that the method fails has a bearing on the original question
and that information is exploited by the collapsing function. This is a new
explanation of why induction should proceed by means of crisp triggers
or defaults, for otherwise empirical regresses would be methodologically
worthless, as in the case of the insane regress.

More generally, say that method M converges with at most n retractions
starting with “yes” just in case M never starts with any other answer and
never retracts more than n times in any possible input stream in K . Due to
its reliance on concrete, empirical “triggers”, Lyell’s method converges with
at most two retractions starting with “yes” over all possibilities in K , even
though it does not converge to the truth in all of these possibilities.

For concreteness, the discussion so far has focused on a particular
example, but the conclusions drawn are far more general, depending only
on the logical relationships between the various success criteria. To lift the
discussion to this more general, methodological level, let R be a relation
between regresses and problems (e.g., convergence and regressive success in
a given sense) and let Q be a relation between single methods and problems
(e.g., success in some other sense).

Relation R is methodologically collapsible to relation Q if and only if
for each problem p and for each regress (M0(e), . . . ,Mn(e)) satisfying
R with respect to p, there exists a collapsing function � such that the
single method M∗(e) = �(M0(e), . . . ,Mn(e)) satisfies Q with respect
to p.

It is also interesting to turn tables and investigate whether single-
method success can be stretched into some notion of regressive success and
convergence. A stretching function is a mapping �(a) = (a1, . . . , an) from
answers to sequences of answers. The stretching of method M by � is the
regress defined by:

(M0(e), . . . ,Mn(e)) = (�(M(e))0, . . . , (�(M(e))n ).
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Then relation Q is methodologically stretchable to relation R if and only
if for each problem p and for each method M satisfying Q with respect to p,
there exists a methodological stretching function � such that the regress

(M0(e), . . . ,Mn(e)) = (�(M(e))0, . . . , (�(M(e))n )

satisfies R with respect to p.
Now one can define methodological equivalence between regressive and

single-method performance as follows:

R for regresses is methodologically equivalent to Q for single methods
if and only if R is collapsible to Q and Q is stretchable to R.

For example, a regress of two methods that converge and succeed
sequentially with one retraction starting with “yes” (i.e., a regress of two
refuters) is methodologically equivalent to one method that succeeds with
two retractions starting with “yes”.8 More generally, the pattern hinted at
earlier amounts to this:

Proposition 4.1 The following are methodologically equivalent.9

� Regressive success and convergence under a finite retraction bound ni for
each constituent method Mi .

� Single method success under the sum of the bounds ni starting with “no”
if an even number of the Mi start with “no” and starting with “yes”
otherwise.

That settles the matter for finite regresses of methods with bounded
retractions. Moving on to weaker senses of convergence, it is easy to see
that any finite regress of methods that succeed regressively and converge
in the limit is equivalent to a single method that decides in the limit:

8 Here’s the trick. Both methods start out with “yes”. Let the constructed method M start
with “yes” because M1 will succeed and M1 currently says that M0 will succeed and M0

now says “yes”. If M1 ever says “no”, then let M reverse whatever M0 says because M1

is right in saying that M0 is wrong (since M1 has already used its one retraction and has
therefore converged to the truth). At worst, both retract and M retracts once each time.
So M retracts at most twice, starting with “yes”. Methodological equivalence requires that
one can also produce a regress of two refuters M0, M1, from an arbitrary method M that
succeeds with two retractions starting with acceptance. Here’s how to do it. Let M0 say
“yes” until M retracts once and say “no” thereafter. Let M1 say “yes” until M retracts
twice and say “no” thereafter. Let H1 be the proposition that M0 successfully refutes H0

with certainty. That is true just in case M retracts at most once. Thus, M1 really succeeds
in refuting H1 with certainty over all possibilities M succeeds over, as required.

9 The proofs of all the propositions may be found in [8].
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just accept if an even number of the methods in the sequence reject and
reject otherwise. Regresses of methods that verify in the limit or refute
in the limit are not reducible to any of our notions of success and may
be thought of as a natural way to build methodological success criteria
applicable to more complex hypotheses. The situation simplifies when all
of the presuppositions of methods in the regress are entailed by H0 or by
its complement. Then one may speak of an H0-entailed or co-H0-entailed
regress, respectively.

Proposition 4.2 The following are methodologically equivalent:

� An H0-entailed regress (M0,M1) such that M1 refutes [verifies] in the limit
the presupposition H1 of M0 as a limiting refuter [verifier];

� A single method M that refutes [verifies] H0 in the limit.

Proposition 4.3 The following are methodologically equivalent:

� A co-H0-entailed regress (M0,M1) such that M1 verifies [refutes] in the
limit the presupposition H1 of M0 as a limiting refuter [verifier];

� A single method M that refutes [verifies] H0 in the limit.

5 INFINITE REGRESSES

Suppose it is required that every challenge to an empirical presupposition
be checked empirically, so that there is a potentially infinite regress of
methods testing the assumptions of methods. . . The point of such practice
is far less obvious than that of finite regresses, since finite regresses are
“anchored” or “founded” by genuine success of the terminal meta-method.
infinite regresses have no final “court of appeals” in this sense to anchor them.
Are they, therefore, necessarily vicious? This is no longer a matter of mere
philosophical opinion. It is a logically precise question about methodological
equivalence that will now be explored.

Recall that in the Lyellian regress, each method covers more possibilities
than its predecessor, for a method that did not cover more possibilities would
hardly be an effective rhetorical response to skeptical objections. Say that
such a regress is nested, since the presuppositions of the successive meta-
methods get ever weaker.10 Then

Proposition 5.1 The following are methodologically equivalent:

� An infinite, nested regress (M0, . . . ,Mn, . . .) of sequential refuters;
� A single method M that decides H0 with at most two retractions, starting

10 This does not imply that H0 entails H1, since H0 is not a presupposition.
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with acceptance, over the disjunction (H1 ∨ . . . ∨ Hn ∨ . . .) of all the
presuppositions of the methods in the regress.

In the special case in which the infinite refuting regress is H0-entailed, it
is equivalent to a single method that really refutes H0 over the disjunction
of presuppositions of constituent methods in the regress. More generally, if
M0 succeeds with n retractions, the refuting regress is equivalent to a single
method that succeeds with one more retraction, starting with the same initial
conjecture as M0.

Several points should be emphasized. First, the collapsing construction
used to prove the preceding results is not a single, infinitary collapsing func-
tion �(M0(e), . . . ,Mn(e), . . .) that looks at the outputs of all the methods in
the regress at once. It is, rather, a sequence of finitary collapsing functions of
increasing arity that are invoked at successive stages of inquiry

�0(M0(())),

�1(M0((e0)),M1((e0))),

�2(M0((e0, e1)),M1((e0, e1)),

.

.

.

so the collapsed output at a given stage of inquiry is constructed out of
only finitely many of the outputs of the methods in the regress. Hence,
the equivalences hold even if the infinite regress is built up through time
in response to specific, skeptical challenges, instead of being given all at
once. Second, no method in the regress has a presupposition as weak as
the presupposition of the regress itself, so appealing to a regress is a way
to weaken presuppositions of inquiry overall after a method with given
presuppositions has been chosen. Third, although such regresses yield greater
reliability, they are feasible only for hypotheses that are decidable with two
retractions, which falls far short of dealing with Duhem’s problem, which
gives rise to problems that are only verifiable in the limit.

The last point is ironic for Popper’s [18] “falsificationist” philosophy
of science. Popper started with the common insight that universal laws are
refutable but not verifiable. But his “falsificationist” philosophy was not
that naïve. He was aware of Duhem’s problem of blame-assignment and
of the fact that an isolated hypothesis can be sustained come-what-may
by twiddling other auxiliary hypotheses. He held that this “conventionalist
stratagem” of preserving a pet hypothesis at the expense of changes
elsewhere is a bad idea because it ensures convergence to the wrong answer
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if the hypothesis is false. Better, he thought, to stipulate crisp conditions
under which the (non-refuted) hypothesis should be rejected in advance. Of
course, the stipulation involves another hypothesis: that the rejection is not in
error. But one can also set up falsification conditions for that hypothesis, etc.
Carried to its logical conclusion, this recommendation amounts to an infinite
refutation regress. I am unaware whether Popper somewhere addressed the
question of nesting, but it would be quite natural for someone vaguely
concerned with truth-finding to add this requirement. Now the whole point of
Popper’s philosophy was to find the truth in the face of Duhem’s problem. But
the preceding result shows that Popper falls far short. Questions involving
even concrete auxiliary hypotheses like unformitarianism’s schedules of
progress are not even decidable in the limit, but an infinite Popperian regress
of nested refuters exists only when the question is decidable with just two
retractions.

The irony is worse than that. For Popper, the falsificationist, could have
addressed Duhem’s problem had he been a regressive verificationist rather
than a regressive falsificationist. Say that a convergence concept converges
to rejection if and only if (1) the concept entails refutation in the limit and
(2) allows for rejections to be retracted. Verification with certainty converges
to rejection. Indeed, among the success concepts under discussion that entail
refutation in the limit, the only one that does not converge to rejection is
refutation with certainty.

Proposition 5.2 The following are methodologically equivalent:

� An infinite, directed regress (M0, . . . ,Mn, . . .) of methods that converge
and succeed in senses that converge to rejection.

� A regress (M0,M) such that M0 succeeds regressively in the same sense
as before and M refutes the presupposition H1 of M0 in the limit over the
disjunction (H2 ∨ . . . ∨ Hn ∨ . . .) of all the other presuppositions in the
regress.

Recall that regresses of limiting methods are irreducible to simpler
success criteria. If the regress is H0-entailed or co-H0-entailed, however, then
one obtains the following, cleaner results.

Proposition 5.3 The following are methodologically equivalent:

� An infinite, H0-entailed, directed regress (M0, . . . ,Mn, . . .) of methods
that converge and succeed in senses that converge to rejection.

� A single method M such that M refutes H0 in the limit over the
disjunction (H2 ∨ . . . ∨ Hn ∨ . . .) of all the other presuppositions in the
regress.
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Proposition 5.4 The following are methodologically equivalent:

� An infinite, co-H0-entailed, directed regress (M0, . . . ,Mn, . . .) of methods
that converge and succeed in senses that converge to rejection.

� A single method M such that M verifies H0 in the limit over the
disjunction (H2 ∨ . . . ∨ Hn ∨ . . .) of all the other presuppositions in the
regress.

To illustrate proposition 5.3, recall Lyell’s uniformitarian hypothesis.
Extending the finite regress discussed earlier without end, one obtains an
infinite regress in which Mn says “yes” for Hn if the (n + 1)st schedule
of progress is not instantiated, “no” if the schedule is instantiated but non-
refuted, and “yes” otherwise, thereby presupposing Hn = H0 ∨ A1 ∨ . . . ∨
An+1. This is, evidently, an H0-entailed nested regress of methods that
converge and succeed regressively with two retractions starting with “yes”
and, hence (by proposition 5.3), is equivalent to a single limiting refutation
procedure M for H0 that succeeds over the disjunction of the presuppositions,
which is in turn equivalent to the disjunction of the two competing paradigms
(i.e., uniformitarianism ∨ progressionism). Here is how to construct M in
this particular case. Method M maintains a queue of the methods added to the
regress so far. Each time a new method is added to the regress, it gets added to
the end of the queue (the regress is only “potentially” infinite). If the method
at the head of the queue says “yes”, it is placed at the end of the queue (ahead
of any new methods added at that stage). Each time the method at the head
of the queue is shuffled to the back, M says “yes”. Otherwise, M says “no”.
Suppose that some proposition Hi is true. Let Hn be the first such. Suppose
that n > 0, so that H0 is false. Then Hn−1 is false. Since Hn is true, Mn

converges correctly to “no”. If k < n, then Hk−1 is false and Hk is false, so
Mk converges incorrectly to “yes”. If k > n, then Hk−1 is true and Hk is true
(by nesting), so Mk converges correctly to “yes”. Hence, Mn is the unique
method in the sequence that converges to “no”. So eventually Mn comes to
the head of the queue after it has converged to “no” and M converges to
“no” at that stage, as required, since H0 is false. Now suppose that n = 0,
so that H0 is true. Then all of the presuppositions are also true, by nesting,
and the hypothesis H0 is true, so all of the methods converge correctly to
“yes”. Hence, M says “yes” infinitely often. So M refutes uniformitarianism
in the limit, in accordance with proposition 5.3. Proposition 5.4 is illustrated
by progressionism in the same example, if one exchanges “yes” with “no”.

Observe how the collapsing construction in this example unwinds the
rhetorical game of sequentially responding to challenges with methods that
entertain more possibilities into a single, ongoing process of inquiry that finds
the truth over all the possibilities covered by the constituent methods in the
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regress. This is a new and interesting model of how rhetorical and reliabilist
conceptions of science can be reconciled and systematically compared.

6 CONCLUSION

Scientific method may be conceived as a justifying argument or as a
procedure aimed at finding a correct answer. Both conceptions raise a natural
question about the propriety of infinite empirical regresses, whether of
“evidential justification” or of methods checking methods checking methods.
Since it is hard to say what evidential justification is for, it is hard to bring
the notion of infinite regresses of justification under firm theoretical control.
The procedural concept of methodological equivalence, on the other hand,
allows one to “solve” for the best single-method performance that a given
kind of regress is equivalent to. Some motivated conditions on regresses
result in nontrivial regresses that achieve sufficient power to address Duhem’s
problem.
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TRADE-OFFS
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Abstract: Statistical inference turns on trade-offs among conflicting assumptions that
provide stronger or weaker guarantees of convergence to the truth, and
stronger or weaker measures of uncertainty of inference. In applied statistics—
social statistics, epidemiology, economics—these assumptions are often hidden
within computerized data analysis procedures, although they reflect broader
epistemological issues. I claim that the content of the trade-offs, and of the
epistemological issues they manifest, is clarified by placing them within the
framework of formal learning theory.

My concern here is not with any formal application of learning theory, or with
presenting any new learning theoretic results—which is a good thing, since
I have none. Rather, I want to show the heuristic value of the distinctions
the framework makes, with how they help us to think about the trade-offs
facing scientists in practice, and how the framework of learning theory
develops the half of epistemology neglected in philosophy. In the tradition
of philosophy, I will do some defining but no proving. I will start with three
made-up but realistic examples of difficult decisions illustrating these trade-
offs, remark on how the decisions are implicit even when the trade-offs are
not recognized, describe a general framework for learning theory, and suggest
how the methodological ideas of learning theory can help to clarify, if not to
resolve, the trade-offs, and I will claim that the cases illustrate more general
trade-offs in epistemology.

1. Scientist A and scientist B, in possession of the same data, are each
out to discover the effects of smoking on lung disease. Scientist A has
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a strategy of estimation from finite data samples that is guaranteed to
converge (as the data increase without limit) to a correct estimate under
assumptions for which neither A nor B has good warrant. Scientist B has
a strategy of estimation from the same data samples which is guaranteed
to converge either to a correct estimate or to no answer at all, under
assumptions that are much weaker than those used by A, and that both
regard as warranted. On the present data, B’s procedure returns no
answer. Which procedure should be used? What attitude ought A and
B and anyone else have towards estimates of the effect by A’s method?

2. Scientists C , and D, in possession of the same data, have respective
strategies they wish to apply to discover the influence of poverty
on crime. C has a procedure that converges to the truth and yields
confidence intervals for the estimates, but under assumptions for which
C has no good warrant. D’s procedure provably converges to the truth
under weaker assumptions that all of the scientists regard as warranted,
but it provides no confidence intervals and no degrees of belief. Which
procedure should be used? What attitude ought the scientists or anyone
else have towards estimates of the effect?

3. Scientists E and F are interested in whether among nations political
development, indicated by a number of measures, causes economic
development, indicated by a number of other measures, or vice versa.
They have different strategies for obtaining detailed models, methods
that apply under the same assumptions. To compare their strategies, they
apply them to a number of simulated data sets. E ’s strategy always
produces a unique model, but is correct only 14% of the time; F ’s
strategy produces an average of three alternative models, but contains
the true one 90% of the time. Which strategy is to be preferred?

These are not idle questions. Usually without explicit formulation, they
are answered every day in applied science, and lives and health and the
fortunes of nations turn on the way they are answered. Science goes on
amidst conflicting desires, and the hard, logical fact that the desires cannot
be reconciled. One conflict is between the desire to articulate and proceed
by methods that yield justified beliefs—or their degrees or probabilities—
now, and another desire, to articulate and proceed by methods that guarantee
true results eventually. The conflict would dissolve if there were methods
guaranteed to yield true results now, on present data, or on any finite sample
one could specify and obtain, but almost always there are not. A second
conflict is between the desire for informative answers and the desire to
avoid false answers. It, too, would dissolve if there were methods that are
both informative and known to be correct, and sometimes there are, but
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in many problems there are not, and we are forced to choose. A third is
a conflict between the desire to proceed by methods that converge on the
truth eventually under the weakest assumptions possible, and the desire to
have measures of the uncertainty of our conjectures along the way. The
same conflicts are at the heart of philosophical disputes over knowledge:
the skeptic believes nothing on the grounds that nothing is certain, or even
probable; the realist makes assumptions (e.g., that there is an external world),
on the grounds that without assumptions nothing can be learned or predicted;
the dogmatist believes everything with certainty on the grounds, roughly, of
why not?

We implicitly resolve many of these conflicts by the adoption of a method
of inference, almost always nowadays by a computerized method whose
properties are themselves a matter of estimation. Given data on whatever—
to take a very simple example, let us suppose the subject is ophthalmology
and the data are from the reflectance properties of laser light bouncing off
layers of retinal tissue—I will suppose the scientist wants to discover a rule
to separate cases with glaucoma from cases without. (Examples in which
the goal is to identify causal relations rather than merely to classify will
follow later.) To do so she uses a program, usually a “statistical” classifier,
that has definite properties, and thereby her inquiry becomes limited by those
properties. What sorts of properties?

The program and the computer apply a mathematical function. The input
to the function is a list of cases, in our example each case is a list of
variable values, one of which is a yes/no variable that specifies whether the
subject described by the case has glaucoma. The output of the function is,
normally, another function, and usually some numbers. This second function
is from the values of some or all of the listed properties to the value of the
glaucoma variable; it constitutes the prediction rule found by the program.
The significance of the numbers output by the program varies with the
particular program; typically, the function output is described by values of a
set of parameters, and the numbers output indicate probability features of the
estimates of the parameters, or probability facts about the result of applying
the rule to the cases that are input. Typically, too, for some inputs the program
may give no output at all, or give a rule but fail to give numbers representing
probability features.

The program has known (to experts, anyway) and unknown (to anyone)
convergence properties. Consider all mathematically conceivable infinite
sequences of cases. There are of course many probability measures on
various sets of such sequences. For some of these probability measures, it is
known that the program, if applied forever, will with probability 1 converge
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to a rule that separates the glaucoma and non-glaucoma cases as well as can
be done by any rule, or by any of some general class of rules. For most other
probability measures, nothing of the kind is known.

The program has (or may have) finite sample statistical properties, the
probabilities or confidence intervals attached to the parameter values of
the output rule. These probabilities are almost always calculated on the
assumption that the probability distribution on the various subsets of the
set of infinite sequences of cases is among a family of distributions with
the known convergence properties. The program also has what I will call
independence properties: for example, for most such programs, the output
does not depend on the order in which the cases are listed; it may depend on
what the output of the program would be on subsets of the sample.1 And of
course the program has procedural properties. For example, unlike people,
such programs are seldom incremental, that is, they do not learn what they
can from the first (or first and second, or first and second and third, etc.) case,
then forget the case but remember the conclusion, and go on to the next case.
Again, all programs have computational complexity properties, and so on.

Almost always, the scientist has a vague rule that says that if the numbers
are within some range of values, then publish. The justification, the rationale,
for doing so must be based on the properties of the program. Some of
these properties, such as the computational complexity of an algorithm and
its independence properties, are absolute, but many of them, such as the
convergence properties, are conditional—if the data of a class has such
and such features, then the program output has various other features.
Essential to the rationale, then, is the grounds for paying attention to
some of these conditional properties, and for endorsing their antecedents.
To do so requires considering the goals and sub-goals of inquiry, and
their interaction with methods of truth seeking and their limitations. The
statistical literature addresses special cases of these questions, specifically
convergence properties of various estimation procedures, assuming various
families of probability distributions, and the finite sample properties of such
probabilities. For a more general viewpoint, we must turn to another subject,
formal learning theory.

The motivation for formal learning theory is a general picture of inquiry,
idealized to be sure, but no more so than is common in methodological tracts
in many disciplines. A scientific community observes the world and treats
some of its happenings as data relevant to an inquiry. Data comes in discrete
lumps in a sequence over time. Data can be passively observed or produced
by experimental interventions, which do not change the world but do change

1 As with cross-classification procedures that test rules against various subsets of the data.
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the data observed. The data can sometimes be erroneous, a complication
accounted for in some learning theory frameworks, but which I will ignore.
The sequences of data may be finite or infinite. Hypotheses purport to
describe features of the world, and they imply restrictions on the possible data
sequences. Inquiry proceeds by some method, which conjectures hypotheses,
or sets of hypotheses, or probabilities for sets of hypotheses, based on the
data seen so far, and then investigators may conduct experiments to produce
novel data. There is not simply one set of possible streams of data, but many
separate ones, for separate problems of inquiry. For any particular problem,
the scientific community makes assumptions that limit the set of alternative
hypotheses and their connections with the data, assumptions that may also
impose another structure, for example probability measures on hypotheses, or
probability distributions for finite samples of data given various hypotheses.
Different problems may be closely related, differing only in the assumptions
made—as by different members of the community. There are standards
of success in inquiry, although different investigators may have different
standards, but all of them have something to do with eventually conjecturing
the right answer and sticking with that conjecture. The task of learning theory
is to formalize this picture, and to investigate mathematically the relations
between assumptions, methods, and criteria of success.

Here is a rather more formal version.

A problem is given by the following structures: (1) a set T of possible
trees (in the graph theoretic, not the botanical, sense), each vertex of
which is an element from a common countable vocabulary. Each tree is
a world. (A tree is a representation of possible data sequences of some
kind in a world; a path through the tree is a possible data sequence of that
kind in that world.) (2) With each vertex in a tree there is a parameter,
p, coding the branches at that node. (3) A set H of hypotheses: each
hypothesis is associated with a probability distribution on subsets of T .
(Very often, the probability distribution is 0/1 valued, that is, a hypothesis
allows a particular set of trees, and disallows all trees not in that set.) The
set of such trees corresponding to a subset J of H will be denoted T (J ).
A course is a path through a tree.

A method, M , for a problem specifies, probabilistically (and again, 0/1
measures are allowed) for each such initial segment of each tree in the
problem a value of the parameter p for the last vertex in the segment.
(p is the parameter by which a method decides after each datum is
received what experiment next to make, if any.) A course of M through
a tree is any path through T determined by the root of the tree and the
values M assigns to p at each vertex. The set of courses through a tree
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allowed by the values of p assignable by M is the M range of the tree.
Further, M specifies a random (in the sense that its output is given by
a probability measure) partial function from all finite initial segments of
courses in the M ranges of trees in T to a probability measure on sets of
H , measurable in some specified measure. A strategy is a mapping from
problems to methods.

Intuitively, the method is applied to a problem in some (unknown) world
or other, and, in particular, there is some set of jointly true hypotheses
in that world. Initial segments of one of the sequences for these true
hypotheses are fed to the method, which in response produces a sequence of
conjectures, which may be probability assignments to hypotheses, or passes,
and the method determines a next experiment—a branch of the tree at that
vertex. There is no restriction on logical connections among the hypotheses,
although most of the mathematical results in the subject are for sets of
mutually incompatible hypotheses. A hypothesis can be a full fledged theory
of some kind, or merely a set of sequences. Logical or probabilistic structure
can be imposed on the hypotheses. The data sequences (courses) can have any
structure one pleases; they can be recursive or recursively enumerable, for
example, or not. The sequences that are courses within a tree are unrestricted
in order and in length, although commonly they are thought of as infinite.
The mechanism of methods is unrestricted in the framework; it could, for
example, consist of many separate sub-methods conjecturing and voting by
some rule; it could use Bayesian updating on probability measures imposed
on the hypotheses; it could have a random feature, for example the output in
some circumstances could be determined by whether a particular atom has or
has not decayed.

With this simple set-up we can consider various powers and limitations
for methods and strategies, we can consider a variety of success criteria
for inference, we can if we like impose measures on the sets of trees,
and we can compare properties of methods and problems with regard to
various success criteria. Consider first some possible powers and limitations
of methods. The most interesting methodological power is to influence the
initial segments presented as arguments to the method. Formally, this requires
no change to the set-up just sketched; informally, we can think of the
method as having an internal device that selects experiments based on the
data available, and the selection changes the continuation of the sequence.
The most radical version of this power—the sort that philosophers who
talk of conceptual schemes and relativism perhaps have in mind—requires
a generalization in which a method can take an initial sequence fed to it
from one world to an initial sequence of another world, and by doing so
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can change which hypotheses are true. The limitations of methods are of two
kinds: computational and methodological. Computational restrictions restrict
a method to some computational complexity class, for example to Turing
computable functions, or primitive recursive functions, or finite automata
or to somewhere above Turing computability in the arithmetical hierarchy.
From my perspective, the most interesting limitations of this kind are those
that are reasonable idealizations of least upper bounds on our computational
abilities, aided by machines, that is, something like finite automata, but
certainly methods limited by Turing computability. There is nothing we
can compute, and arguably nothing we can do, in science that exceeds
Turing computable bounds, while more limited models (e.g., a specific
automata model or lower complexity bounds) may be violated by algorithms
or technological developments, or may just be arbitrary. Methodological
limitations are the kind of methodological injunctions that philosophers of
science advocate. Consistency, for example, says that the output of a method
on an initial segment must always be consistent with H and the initial
segment. Conservatism says that a hypothesis, h, once conjectured on an
initial segment s, must continue to be conjectured on all extensions of s that
are consistent with h. Determinacy excludes random methods. Singularity
requires that 0/1 probability measures be output. When the hypotheses
are not mutually exclusive, but some are logical consequences of others,
closure requires that the output of the method be deductively closed over
H . Informativeness limitations restrict the range of determinate methods, for
example to singletons. And so on.

Success criteria are various desiderata one might have in inquiry, prop-
erties of pairings of methods and problems. For example: Finite decidability
is satisfied by a method M for a problem hypotheses if and only if for all
hypotheses h of the problem, all sequences w for h, and all initial segments s
of w, M(s) is undefined or is h, and for some initial segment s of w, M(s) is
h, and for all extensions s ′ of the first such s in w, M(s ′) is h. Decidability in
the limit is satisfied, under similar conditions with the same quantifiers, if the
output of M is h for all but a finite number of initial segments of w. Special
cases arise where there are but two hypotheses, h and ~h, in which case one
can distinguish the verifiability and falsifiability of h, both finitely and in the
limit. Various of these and other definitions have been shown to correspond
to complexity classes of hypotheses. When hypotheses specify probability
measures on initial sequences, or when methods assign probabilities to
hypotheses, various probabilistic convergence criteria can constitute success
criteria, and these are the subject of conventional convergence theorems in
probability theory, including Bayesian convergence. When the method can
result in a change of worlds, a number of alternative success criteria are
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possible, for example, one can require that eventually only true hypotheses
always be output, but that the worlds may change and never stabilize. Many
other success criteria are possible. Indeed, it would be possible to form
success criteria that merely required convergence to a probability for the
true hypothesis greater than some value less than 1 and greater than 1

2 , or
sufficiently greater than that for any false hypothesis.

A problem is said to be solvable by a success criterion subject to a
limitation if there exists a method satisfying that limitation that also satisfies
the success criterion for that problem. The fundamental facts of inductive
life are mathematical relations between problems and their solvability or
unsolvabilty by various success criteria. We would, most of us, like a method
of inquiry to come with a guarantee that for a specified sample size, N , the
method will return the truth from a sample of size N , or, failing that, to have
a guarantee of an objective frequency of truth for each such N . For many
problems that is simply impossible as a matter of logic. The alternatives
are therefore to accept weaker success criteria—convergence in the limit for
example, with a guarantee that the truth will be reached and kept sometime,
but no guarantee as to when—or to change the problem, commonly by
excluding alternative hypotheses without good grounds. These are some of
the trade-offs of inquiry, but not all of them.

A success criterion amounts to a preference relation among strategies,
but there are other desiderata besides success. One is informativeness of
methods. Suppose we are considering methods that are determinate, p is
constant, and the success criterion is convergence in the limit to a set of
hypotheses containing the true one. Given two methods M and N for the
same problem, M is the more informative if the output of M never has larger
cardinality than that of N on the same data, and is sometimes smaller. Other
conceptions are clearly possible, e.g., in terms of inclusion relations on the
output sets from the same data, and the definition can be generalized to
methods for different problems, most naturally if the hypothesis space for
one problem is a proper subset of that of another. Another, quite different,
but in practice quite influential, desideratum is a measure of uncertainty for
hypotheses conjectured by determinate methods. The most familiar measures
of this kind are statistical confidence intervals.

For any specified success criteria and other desiderata, and for specified
limitations on methods, many of the great questions of epistemology become
purely mathematical issues—many of which, for a framework as general as
this, are unsolved, but many of which are solved for various specializations
of the framework and variants of it. When is a problem underdetermined by a
methodological restriction—that is, when are there incompatible hypotheses
in the problem such that no method in accord with the limitations exists
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that can separate the hypotheses, satisfying the success criterion for one of
them and not the other according to which is true and which not? When do
alternative strategies solve (according to a specified success criterion) the
same class of problems? When do alternative strategies solve the same class
of problems, but each according to different criteria of success? Are various
limitations on methods, whether computational or methodological, restrictive
in the sense that there are problems that can be solved (according to whatever
success criteria) but cannot be solved by any methods in accord with the
limitations? There is a wealth of answers to these questions for particular
cases, some of them shocking to philosophical consciences, but there are
better reviews of the literature than I can provide. Back to the problems of
my alphabetic scientists.

Consider the task of inferring whether one variable X is a cause of
another, Y , in the sense that manipulations that vary the first will reliably
produce co-variations in the second variable. We will suppose that other
variables, Z1, . . . , Zn , with unknown causal connections are also measured.
X is correlated with some of the Z variables. We will suppose that the data
are such that the values of these variables have a probability distribution for
each case, each patient or subject, and the probability distributions for any
two cases are the same and the probability of any value (or measurable set
of values) of any variable for any one case is independent of the values
of any variables for any other case or cases. Let us further suppose that
the probability distributions are all Normal. Scientist A has a strategy:
perform a simultaneous regression of Y on X and Z , . . . , Zn , determine
if the regression coefficient2 for X is statistically significant (i.e., if the
hypothesis that the regression coefficient is zero is rejected by a statistical
test at some conventional level, say .05), and if it is significant, estimate its
value by a method known to converge with probability 1 to the true value,
e.g., maximum likelihood. Scientist A gets results. Scientist B, on the other
hand, reasons as follows: Scientist A has assumed a family of probability
distributions on samples—initial sequences. Given that assumption, for many

2 Informally, a regression of variable Y on variable X for a finite set of data points gives
the function of the form Y = aX that minimizes the sum of squared differences between
Y and aX . The real number a is the regression coefficient. In multiple regression, Y is
estimated by a linear function of several variables and the values of linear coefficients
that minimize the sum of squared differences between Y and its predicted values, and
the values of those linear coefficients are the partial regression coefficients. In logistic
regression the variable to be predicted is binary and the prediction rule is a linear function
of the prediction variables specifying a function of the ratio of the probabilities of the two
values of the binary variable. For proofs of the claims made subsequently about regression
methods, and the description of alternative methods with the properties claimed, see [1].
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problems, the strategy of scientist A does not, with probability 1, converge to
the correct answer about the causal relations—the success criterion–between
X and Y in the limit as the sample size increases without bound. Indeed,
for some problems the strategy of scientist A converges with probability 1
to the wrong conclusion (a failure criterion!). This can happen in several
ways. For example, suppose that X influences Y only through Z1, so that if
an intervention held Z1 constant while varying X (an experiment that could
conceivably be done at any point, but is not part of A’s method), Y would not
covary with X . In the large sample limit, multiple regression would almost
surely yield the false result that X is not a cause of Y . B has another objection.
Suppose there is an unmeasured variable G that influences both X and Y ,
but X does not cause Y . Then multiple regression of Y on X and the other
measured variables will yield (again, large sample limit, almost surely) a
significant regression coefficient for X , and A will conclude, wrongly, that
X causes Y . B goes on: even if he and A were quite sure, now or eventually
with more data, that there is no variable such as G, suppose X and Z1 are
correlated, either because X causes Z1 or because they have an unrecorded
common cause, and either Y causes Z1 or Z1 and Y have an unrecorded
common cause. In this case, again, multiple regression will result in the
judgement that X causes Y , even if there is no such causal connection. B’s
reasoning is in fact correct.

A and B are essentially debating what kind of discovery problem they
face. If it is assumed that there are no unrecorded variables that influence
any of the recorded variables, and that none of X or the Z variables are
influenced by Y , and X does not influence Y through its influence on any
of the Z variables, then A’s procedure solves the problem by A’s and B’s
success criteria. Without those assumptions, it does not. B proposes another
strategy, which solves problems with weaker assumptions and a weaker
success criterion. B’s procedure will not assume that there are no unrecorded
common causes, and it will not assume that Y does not cause any of the
other recorded variables. It does assume, in addition to A’s distribution
assumptions, only that the causal relations among the variables do not
perfectly cancel their effects, so that X is uncorrelated with Y even though
X causes Y . Under those assumptions, B claims, correctly, methods that
instantiate the strategy will return a class of causal hypothesis, almost surely
(again in the large sample limit) including the true hypothesis. Furthermore,
B claims, again correctly, that no alternative strategy that solves the problem
is more informative than hers for this class of problems—no alternative
strategy will converge in every problem of this kind to a set of hypotheses,
with the true hypothesis as a member, that is never larger, and in some cases
smaller, than that produced by the strategy B recommends. Unfortunately,
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B admits, in some cases the method will return a class that includes the
hypothesis that one variable causes another, and the hypothesis that it does
not. So they try it, with the result that B’s method cannot determine in this
problem whether X causes Y . Should they go with the results of A’s method,
or with B’s, that is, pass?

Wittingly or not, this is a conundrum faced every day by myriad social
scientists and epidemiologists, a conundrum one can think about most
clearly, I suggest, by placing statistical/causal inference in the context of
learning theory. I have presented it as a problem about linear regression, but
it applies with many other assumptions about the probability distributions,
and many other methods of regression and data analysis. Almost universally,
the choice among social scientists is to go with A’s strategy, sometimes
because they do not know of its limitations, sometimes because they do not
know of B’s alternative, sometimes because, well, they want some result.
Since most social science data is ignored, that may do no harm. But social
science conclusions are often used for political ends—as they should be if
they are sound—and epidemiological conclusions affect lives and health.
The mistaken conclusions about hormone replacement therapy, obtained
essentially by methods akin to A’s, are a sad example. So are those of the
famous, or infamous, book by Murray and Herrnstein (1994) arguing that
intelligence tests measure innate abilities.

Scientists C and D have a different but related difficulty. In this case,
scientist C uses multiple regression, and obtains a conclusion: X causes Y .
Scientist D uses B’s strategy and obtains the same conclusion. Scientist C
prefers her analysis, because her method produces confidence intervals: given
her estimate of the parameters, she can specify an interval of possible values
for the influence of X on Y such that 95% of the samples of the same size
will give estimates of that influence within that interval. Further, her method
of estimating confidence intervals will almost surely reduce the width of the
confidence intervals to 0 as the sample size increases without bound. B’s
strategy by contrast, produces no such confidence intervals, and provably
no strategy exists that solves the problem under B’s assumptions, with
the informativeness of B’s strategy, and that will produce such confidence
intervals. Scientist D prefers B’s strategy because it gives the conclusion
under much weaker assumptions.

This kind of difficulty also arises outside of causal inference, for example
in classification problems, where methods that allow confidence intervals
(logistic regression, for example) vie with methods that converge to the
truth under weaker assumptions (neural nets, for example) but for which
no confidence intervals are available. In causal inference, scientists almost
always choose the methods that allow confidence intervals; in classification,
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that is not the favored choice. The preference for confidence intervals in
causal inference is largely due, I think, to the emphasis of traditional statistics
on measuring the uncertainty of inferences. But those measures are only
obtained under restrictive assumptions that are dispensed with in strategies
that do not yield such measures. Assumptions have no measure, but they
contribute, or ought to contribute, to uncertainty.

Scientists E and F have the most direct problem: they are faced with a
trade-off between reliability and informativeness, on the same assumptions.

I have no resolution of the first two conundrums, only preferences:
I prefer methods that are asymptotically reliable and in many cases informa-
tive under weak assumptions to methods that are almost always informative
under much stronger assumptions. I prefer methods that converge to the truth
under weaker assumptions but give no measures of uncertainty to methods
that converge to the truth only under much stronger assumptions and, under
those assumptions, give measures of uncertainty. Caution before counting. In
the third example, where there are no prior probabilities for the hypotheses,
the sensible thing would seem to be to compare the methods by dividing the
percentage of correct outputs for F ’s methods by the number of alternative
hypothesis contained in their outputs, which in the story would result in a
clear preference for F ’s strategy.

Learning theory shows that what philosophers too often describe as a
single issue typically resolves into a plethora of distinct questions, with dif-
ferent success criteria, different problems, different limitations, and different
results. That’s progress. Learning theory, in part the creation of a philosopher,
ought to be at home in the drawing room of philosophy of science rather
than, as it is, lost in the philosophical wilderness. By and large, the reaction
of philosophers to the subject, or at any rate of those who know of it, has
been either that learning theoretic questions are too abstract, too idealized,
to be of interest, (although one must suspect the real objection is that too
much mathematical effort is required to answer them: the philosophers make
no such objection to statistics), or that the real issue is how hypotheses are
invented (the news that vast classes of hypotheses can be searched without
being explicitly formulated seems not to have arrived in many philosophy
departments), or else that only probabilistic methods are of interest. Interest
is a matter of the interested, and 20th and 21st century philosophers have
increasingly narrowed what they take to be the interests of philosophy, but
remarkable theoretical and practical facts are thereby ignored, and heuristics
that ought to aid philosophical assessment of the sciences are neglected. The
Bayesian strategy, for example, is restrictive for Turing computable learners.
Again, there are real scientific problems that have a Bayesian solution but
that can be solved by other methods more easily without any recourse to
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probabilities and their calculation.
The practical questions of life and science are always what to believe

now and what to do now. We can make up probabilities, assume a finite
set of alternatives and the costs of each action under each alternative, and
apply a decision theoretic rule, but we may be wrong or disappointed if our
assumptions are false. We can form beliefs according a rule of inquiry that
is certain to be correct under a set of assumptions, but we may be wrong
(and, absent luck, will be) if the assumptions are false. We can settle for
forming beliefs according to a rule of inquiry that is guaranteed to converge
to the truth eventually, with no guarantee when, under a set of assumptions,
which again may be false. We can conjecture by some rule without caring
whether it finds the truth. We can use no rule, no procedure, of inquiry, but
form beliefs and choose actions on whim. Traditionally, philosophy has been
in the business of developing positions on these questions. Skeptics reject all
assumptions, and hence doubt everything. Plato claims there is nothing to be
learned: all that we know we are born knowing, and we need only to have our
recollection stimulated. Kant, on one reading, claims we can only experience
worlds in which specific assumptions are true. Realists such as Herman
Helmholtz and, in his later work, Bertrand Russell, urge that we in fact do and
must make the minimal assumptions necessary to learn about the world with a
rather small sample. Limiting theorists, such as Richard Von Mises and Hans
Reichenbach, claim we should conjecture by procedures that converge in the
limit to the truth under the weakest possible assumptions. Methodologists,
such as Karl Popper and innumerable philosophers of science, claim we
should form beliefs or conjectures according to rules or constraints that
have nothing to do with finding the truth, but may have to do with avoiding
falsehood. Relativists, such as Thomas Kuhn, claim truth, and even meaning,
change according to our conjectures, and conclude there is no sense to finding
the truth or to getting closer to it. Scientists, too, take positions on answers
to these questions, but more often less reflectively, because the positions
are built into their data analysis procedures and standards of practice and
publication.

The wonderful contribution of learning theory is to explore the trade-
offs implicit in general procedures for believing and acting—trade-offs of
truth finding, of timing of truth finding, of changes of beliefs or conjectures,
of informativeness. Facts about trade-offs will disappoint those who are
uninterested in hypothetical reasoning about inquiry, those who only want to
know, now or real soon, what is and is not true. I have sometimes lectured to
philosophical audiences about learning theoretic trade-offs about relativism,
giving results due to Kevin Kelly, Cory Juhl and myself, that show that there
are strategies that are guaranteed to converge to the truth in various senses
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in problems in which the truth depends in specified ways on the conjectures
produced by those very methods. Always, I find great disappointment: the
philosophers want to know what version of relativism is true, and why, not
what the trade-offs may be. Epistemology has but two aspects, religion and
mathematics. The philosophers want to know the true religion and want a
justification for it—is there an external world, are there other minds, is true
relative to belief, what is the best method of inquiry, what can we know?
So do we all. But any reflective judgement on such matters should consider
the ambiguities of the questions and the trade-offs implicit in endorsing one
set of answers as against others. That is the mathematics, and it is learning
theory.
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Abstract: Inductive inference has always been a major concern in philosophy. This
paper considers two different ways of thinking about induction: the classical
way and the new, learning-theoretic way. After a brief introduction, I discuss
the classical style of thinking about induction, which conceives of inductive
inference as an extension of deductive argumentation. Then, I focus on the
new, alternative learning-theoretic approach which sees induction as a type
of computational process that converges to the truth. I conclude the paper
by considering some of the important philosophical consequences of this
fundamental shift in the metaphor through which philosophers conceive of
inductive reasoning.

1 INTRODUCTION

Formal learning theory, also known as “algorithmic learning theory”
or “computational learning theory”, is nothing more or less than a gen-
eral framework for studying the difficulty of finding or converging to the
empirical truth, in much the same way that the theory of algorithms and
computability concerns the difficulty of computing the true answer to a
formally posed problem. The idea is to determine, for a given empirical
question involving the testing of a given theory or the choice among a
possibly infinite range of alternative theories, the best sense in which an
empirical or computational method could converge to the true answer and the
most efficient possible methods that achieve that sort of success. The novelty
compared to standard computability theory is that the correct theory is not
uniquely determined by any finite sequence of input data, so that finding the
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truth demands “inductive leaps” beyond the data that nonetheless converge
or stabilize to the correct answer in the limit of inquiry. As such, formal
learning theory may be viewed as an extension of the practice and ethos of
theoretical computer science to inductive inferences in the empirical domain.
The concept of “learner” is, therefore, very abstract and might be more aptly
expressed as “inductive method” or “empirical procedure”. (The reference to
“learning” may, therefore, be more confusing than helpful in fields outside of
computer science. More apt terms include “computational epistemology” or
“convergent methodology”, but I shall follow convention by employing the
original moniker.)

As such, formal learning theory would seem to be of deep and immediate
relevance to such traditional philosophical topics as the underdetermination
of theory by evidence, the justification and character of inductive method,
the prospects for scientific success, the structure of scientific revolutions, the
relevance of probabilistic reasoning to scientific justification, and so forth.
And yet the reception of the subject within philosophy has been slower than
one might expect.

One obvious impediment to the exchange of ideas is the highly formal-
ized presentation characteristic of much of the learning-theoretic literature,
which freely presupposes standard results from the theories of computable
functions, computational complexity, probability theory, and topology. This
is to some extent unavoidable as far as the proofs of the theory’s results
are concerned, but the basic motivation and import of the results is readily
conveyed with no more formalism than is routine in philosophical dis-
cussions of confirmation theory or the philosophy of biology or physics.
Furthermore, there are now readily available informal expositions of the basic
results.1

Another explanation for philosophical inattention is the usual sort of
terminological confusion occasioned by alternative disciplines confronting
the same subject matter. For example, statisticians call methods that converge
to the truth in the limit “consistent”, whereas learning theorists reserve
this term for methods that never output answers contradicting the input
data. Learning theorists use the term “explanatory” to refer to methods
that converge to a particular, correct program, as opposed to “behaviorally
correct” inference, which eventually produces only correct programs without
necessarily stabilizing to a particular one. Philosophers would contrast
explanatory theories with instrumental or predictive theories, placing both
explanatory and behaviorally correct inference on the side of instrumen-
talism. Other notational issues in the learning-theoretic literature include

1 See, for instance, [26, 27, 31] and [37].
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fanciful or non-standard use of such terms as “Popperian”, “reliable”, and
“paradigm”. But by and large, the notational divergences are so flagrant as
to pose little in the way of subtle, interpretive difficulty for the interested
reader and there are already presentations of the subject that employ more
philosophically familiar terminology.2

A more important motive for philosophical caution is the insensitivity
of some of the formal learning literature to the nuances of real scientific
problems. In a typical, rather stylized setting, the input stream is generated
by a Turing machine and the aim is to converge to the program of any such
machine. Call this the recursive (computable) function identification setting.
On the surface, one can imagine that the Turing machine is a theory and that
the numerical inputs encode scientific data, but the fit with actual scientific
problems is inexact and metaphorical. There is no sense in which the gears
and wheels in a conjectured Turing machine are true of the world. There is
no explication of scientific explanation in terms of such gears and wheels.
There is no attempt to relate explanatory power to truth, so results in the
function identification paradigm do not address the debate over scientific
realism. There is no attempt to model in real time what happens when the
background assumptions of the function identification problem come into
question. Real scientific theories admit of infinitely many solutions, whereas
a Turing machine computes a unique input stream. There is an extensive
discussion on “theory-laden” data in the philosophical literature, but the
recursive function identification paradigm assumes a clear-cut input protocol
and a fixed relation of empirical adequacy for Turing programs with respect
to the input stream of natural numbers. Perhaps the most telling concern
among philosophers is that philosophers are interested in justifying particular
theoretical preferences in the short run, whereas long-run convergence to
the truth is compatible with any particular short-run preference.3 But these
interesting and legitimate concerns can and have been answered by means
of some deft tweaks to the original function identification paradigm.4 And

2 See, for instance, [47] and [29].
3 See [62] and [8].
4 For example, the learning problem can be modeled in a logical language, in which the aim

is to find an axiomatization of the complete truth or, more generally, to find the true cell
in a set-theoretically definable partition over the set of possible input environments. See
[47] and [29]. Questions regarding background assumptions can be modeled as requests
for methods that check the empirical presuppositions of methods that check the empirical
presuppositions of methods. . . . (See Kelly’s paper “How to Do Things with an Infinite
Regress” in this volume.) Convergence to the truth from theory-laden data can be modeled
in a paradigm in which truth and experience are functions of the state of the learner. See
[33], and [36]. Short-run principles of rational belief revision can be criticized from a
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in any event, such substantive concerns constitute a portal for fruitful
engagement, rather than reasons for ignoring the subject altogether.

However, there remains a deeper and more questionable source of
philosophical reluctance: formal learning theory constitutes a shift in
the fundamental metaphor through which contemporary philosophers
conceive of inductive reasoning. According to what I shall call the classical
conception, inductive inferences are justified by arguments from evidential
premises to theoretical conclusions. Since the conclusions of such arguments
outrun the premises provided, they are invalid by the standards of deductive
logic. Therefore, there must be an extended logic called inductive logic
or confirmation theory that explicates the notion of empirical or inductive
justification. Whereas deductive logic justifies its conclusions completely,
inductive logic does so only to a degree reflecting the imperfection of the
evidence. The justification conferred by inductive arguments is an end or
duty in itself. Learning theory, on the other hand, conceives of inductive
methods as procedures that produce theoretical conclusions in response to
increasing evidence and understands such methods to be justified insofar as
they converge to the truth efficiently, reliably, and in the best possible sense.
Hence, methods are means rather than ends in themselves.5 And whereas
inductive logic is sought in intuitions primed by the consideration of well-
chosen examples of good and bad science, learning-theoretic justification is
no more subject to intuitive feelings of propriety than is the correctness of
a computational procedure—all that matters is the mathematical structure of
the method and of the problem it is applied to.

I shall argue that much of the philosophical reluctance toward to the
learning-theoretic literature can be explained as the usual sort of resistance
that arises when the dominant paradigm [38] of a subject is challenged.
Indeed, the classical paradigm is so thoroughly entrenched in contemporary
philosophy of science as to be in a position to define the very scope of
philosophical concern. In consequence, formal learning theory is not so much
recognized as a serious competitor as merely dismissed as irrelevant. In this
paper, I trace the historical roots of this curious situation from Hume and

learning-theoretic viewpoint by showing that there are problems in which the principles of
rationality cripple the truth-finding powers of computational or, sometimes, even arbitrary
agents. See [47], [29], and [30]. Furthermore, recent learning-theoretic results explain in
a novel way how a short-run preference for simple theories is necessary for minimizing
retractions of opinion en route to the truth, something Bayesian philosophy can explain
only by circular appeal to prior probabilities biased in favor of simplicity. See Kelly’s
paper “How Simplicity Helps You Find the Truth without Pointing at It” in this volume.

5 See [64] for a focused discussion of the difference between categorical vs. hypothetical
imperatives.
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Kant to the seminal work of Hilary Putnam, and close with some general
morals about the relationship between formal learning theory and philosophy.

2 THE CLASSICAL WAY OF THINKING
ABOUT INDUCTION:
THE “PROPOSITIONAL APPROACH”

The classical way of thinking about induction conceives of it as analogous
to, but weaker than, deductive reasoning (Carnap [2], p. 205). Both sorts of
reasoning are understood to be (logical) relations between propositions. Both
allow one to form arguments from premises to conclusions. But in opposition
to deductive reasoning, inductive reasoning is ampliative in the sense that the
conclusion goes beyond the content of the premises, whereas the conclusion
of a correct deductive argument is only either as strong as, or weaker than,
the premises.6

According to the classical scheme, deductive reasoning seems uninter-
esting from the point of view of acquiring new knowledge, but it has the
advantage of being “truth-preserving”, and in this sense it is “logically
reliable”: if the premises are true the conclusion is guaranteed to be true;
while in the case of inductive reasoning, the premises only support or
corroborate the conclusion making it more or less probable, at a given time,
but leaving some (empirical) uncertainty as to the truth of the conclusion
at some future time. Accordingly, what came to be known as “the problem
of induction”, or “Hume’s problem”, often read as a form of empirical
skepticism concerning the logical validity of our empirical generalizations,
is nothing but the fact that inductive inferences are not logically reliable,
i.e., truth-preserving. As Peirce [51] and Carnap [2] point out, there are
many kinds of inductive inferences.7 However, the “universal inference”,
i.e., the inference from particular instances (given data) to a hypothesis
of universal form (empirical extrapolation), has often been regarded by
philosophers as the most important kind of inductive inference, so that the
term “induction” was often restricted to this kind of inference. Philosophers
also speak of the “underdetermination” of an empirical generalization by
the evidence gathered at a given time. So, in this sense, one might also say
that the conclusion of an inductive argument remains underdetermined by

6 For an exposition of this view of induction, see [62]. See also [42].
7 Among some of the most important kinds of inductive inference, Carnap ([2],

pp. 207–208) considers the universal inference, the direct inference, the predictive
inference, the inference by analogy, and the inverse inference.
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the premises, which hold only at a particular time for all we know. This
is what is meant by saying that in an inductive argument, the premises
only offer support or warrant for the conclusion relative to the data
gathered at the moment, but fall short of guaranteeing its truth. Thus, in
the classical view of inductive inference, the price to pay for learning,
i.e., acquiring new knowledge, is empirical uncertainty concerning future
predictions.

A more radical reading of Hume is that one can’t learn anything at all.
That is because one is not entitled to make inductive inferences, as some of
Hume’s reflections in the Enquiry seem to indicate:

Thus the observation of human blindness and weakness is the result of all
philosophy, meets us at every turn, in spite of our endeavors to elude or
avoid it. (Sec. IV, Part I, p. 26)

Most modern philosophical thought about induction and scientific en-
quiry is still gripped by Hume’s “problem of induction”. However, were
these conclusions drawn by Hume concerning the supreme goal of modern
inquiry, the advancement of learning? It is worth noting that in Hume’s
case, the so-called “problem of induction” itself appeared as the outcome
of the strictures imposed by the deductive paradigm underlying the clas-
sical view of scientific demonstration. Against this background, Hume’s
arguments may be viewed as a critical challenge to the classical scheme
rather than as an argument for skepticism. Moreover, such a challenge is
the culmination of an important critical movement that acquired force in the
early 17th century.8 In order to make this point, let us turn briefly to the
history of the classical view of science from the perspective of some of its
critics.

2.1 The Advancement of Learning as the Goal of (Modern)
Inquiry and the Strictures Imposed by the Classical
View of Science

On the Aristotelian view of science, scientific knowledge is justified
by its internal, deductive structure. It is part of this “classical” view that
scientific knowledge ought to be demonstrative. Indeed, the paradigmatic
examples of “genuine” demonstrations were to be found in the formal
sciences, where the proofs were required to be ostensive (i.e., direct). This
requirement was important. Only direct proofs follow the classical “a priori
order of reasoning” from axioms (general principles/causes) to conclusions

8 In the formal sciences such critical movement started much earlier. See, for instance, [45].



Two Ways of Thinking about Induction 239

(particular instances/effects). Such proofs (called “causal proofs”) possess
a certain epistemic virtue in the sense that they are truly explanatory. Four
different notions of cause were in play and this terminology was also
applied to mathematical demonstrations.9 To discuss the virtues of certain
types of mathematical proofs in terms of the “causality” of proofs was
still common usage among 17th century mathematicians such as Wallis and
Descartes.10

In order to satisfy the said requirements, the classical view of science
needs to make two basic assumptions. Firstly, there is the assumption
of a deductive, explanatory order of truths (axioms/general principles)
that can be taken as “ultimate reasons” underlying “causal proofs”, i.e.,
from causes to effects. Secondly, there is the assumption of an “ideal-
ized cognitive agent” who is able to comprehend the crucial deductive
relations.

The relationship between inductive and deductive reasoning, often entan-
gled with discussions of analysis and synthesis, relates to complex issues
in the history of science, though the latter terms have a knotty history of
their own.11 Let us focus here on the discussion as it appears in the early
17th century, when such methodological issues were of relevance to the
development of analytic geometry, and the emergence of the new science.
The topic of the advancement of learning and discovery was indeed one of the
most important methodological issues being debated at the time. Descartes,
for instance, argued against the Aristotelian view of science and logic. His
goal was to establish methodological norms for the direction of a new type
of “ideal inquirer” in the search after truth. Such rules were conceived
of as methodological procedures for the resolution of problems by means
of analysis. Descartes criticized both the axiomatic method of the ancient
geometers for not providing insight into the actual procedure of inquiry used
by them, and traditional logic for teaching rules that were unable to offer
any useful guide in the search for truth. On Descartes’ view, the norms
of traditional methodology were but an impediment for those interested in
learning. In particular, like Wallis and other 17th century mathematicians, he
complained that the axiomatic (also called “synthetic”) form of presentation

9 According to Aristotle, the paradigm of scientific demonstration was to be found in the
formal sciences. See [46].

10 For a discussion of mathematical practice and its critics in the 17th century, see Man-
cosu [45].

11 Timmermans [66] discusses the way analysis and synthesis were related to the notions of
a posteriori and a priori reasoning in medieval methodology until Zabarella’s teaching at
the School of Padua. See also Garber [11].
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of classical textbooks of geometry did not show the “true way of discovery”,
the method of analysis, which had been used for generating new results.12

What was thus being called into question at the time is the epistemic
primacy of deductive structure in mathematical practice and scientific expo-
sition. Descartes, in particular, refused to use the axiomatic form of textbook
presentation in his Géométrie (1637), claiming that his analytical “proofs”
did not require “synthetic” validation.13 According to Descartes, such proofs
are truly explanatory given that they show “the true way of discovery” which
is what is required for understanding mathematical results. Much to the
confusion of scholars, he decided to turn around the classical terminology
and call his analytical proofs “a priori” and “causal proofs” while in the
classical terminology “analysis” was associated with induction, that is to say,
the a posteriori, “nondemonstrative” order of reasoning.14

To sum up, the different lines of attack launched by the 17th century
critics were united by the perception that the classical deductive scheme
was useless for those interested in learning and acquiring new knowledge.15

This critical movement reached its culmination in the next century when,
against the background of Newton’s contributions to the new science of
nature, Hume renewed the attack. His main target was twofold. On the
one hand, he calls into question the idea of a causal-explanatory order
of true principles—“waiting to be discovered” by an ideally omniscient
agent. On the other hand, he radically challenges the assumption of an
“unbounded cognitive agent” able to “reliably” relate to such objective
principles establishing “necessary connections” which would be required for
learning and understanding science.

Note that Hume does not explicitly speak of “the problem of induction”.16

When first presenting his challenge to the classical viewpoint in his early
work, the Treatise, he attacks the classical conception of general principles
as “ultimate reasons” (causes) which may be “discovered” without consulting
any form of “experience”.

To begin with, Hume [20] makes it clear that from the perspective
of cognitively bounded agents like us “all causes are of the same kind”
(Book I, Part III, Sec. XIV, p. 171). In particular, there is no foundation

12 For a discussion of the originality of Descartes’ view of analysis as method of discovery,
see [66].

13 For a discussion of this issue, see Gaukroger [12].
14 See ([66], pp. 434–438).
15 For the different lines of attack against traditional logic in the 17th century, see [44].
16 Note that the expressions “induction” and “inductive inference” do not appear in the

Analytical Index of Hume’s Enquiry prepared by L.A. Selby-Bigge, editor of the 2nd
edition [21].
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whatsoever for us to distinguish between “efficient causes and causes sine
qua non”. Secondly, Hume argues against the possibility of establishing
reliable relations between “causes and effects” by mere scrutiny of the
isolated samples found in observation (here and now), i.e., without grounding
our judgments on what has been learned from experience so far. This is of the
greatest importance concerning our knowledge of nature, for we would never
be able to predict future events without consulting past observation, which
teaches us about the regularities and connections of events. For cognitively
bounded agents like us, such connections between events are always given in
time and are never “observed” or grasped at a glance. Thirdly, Hume insists
time and again that there is no strictly logical (i.e., demonstrative) argument
“why we should extend that experience beyond those particular instances,
which have fallen under our observation” in the past (Book I, Part III,
Sec. VI, p. 91). This is a case of “predictive inference”, that is, the inference
from given data to another set of data not overlapping with the former.17

Hume’s main objection against tradition is that “causal relations” (in
general) were conceived of as a type of logical relation of deducibility.18

At this early stage of his career, however, Hume seems to pose his radical
challenge to the traditional inquirer tout court, for there is no reason to
assume that “perceptually bounded” agents like us should have “unbounded”
access to the formal domain of inquiry. (I shall say more on this issue in Sec.
3.2.)19

17 In Carnap’s view ([2], p. 208), this is the most fundamental kind of inductive inference.
It is more important than the universal inference, not only from the point of view of our
practical decisions, but also from that of scientific reasoning. Carnap points out that a
“singular predictive inference”, the special case where the predicted data consist of only
one individual, stands in close relation to the estimation of relative frequency.

18 Hume [20] objected to the traditional way of conceiving reasoning. This requires the
recourse to a third idea or “middle term.” (See Book I, Part III, Sec. VII, pp. 96–97,
n. 1.) He calls into question “a very remarkable error,. . . universally received by all
logicians. (. . . ) This error consists in the vulgar division of the acts of the understanding
into conception, judgment and reasoning, and the definitions we give of them”. In his view,
reasoning does not need to be mediated by a third idea: “we infer a cause immediately
from its effect; and this inference is not only a true species of reasoning, but the strongest
of all others, and more convincing than when we interpose another idea to connect the two
extremes”.

19 In his early work, Hume suggests the radical idea that establishing “necessary connections”
in both empirical and formal inquiry ought to be seen as nothing but a form of experience,
which is the “bounded” determination of cognitive agents like us. See Hume ([20],
Book I, Part II, Sec. IV and Part III, Sec. XIV). See the editor’s introduction to Hume
([21], pp. xiii–xvii).
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Later in his career, Hume [21] summarizes this challenge to the
(traditional) inquirer, selectively reinforcing his early arguments as specifi-
cally applied to the study of nature, when he writes in the Enquiry:

Were any object presented to us, and were we required to pronounce
concerning the effect, which will result from it, without consulting past
observation; after what manner, I beseech you, must the mind proceed in
this operation? It must invent or imagine some event, which it ascribes to
the object as its effect; and it is plain that this invention must be entirely
arbitrary. The mind can never possibly find the effect in the supposed
cause, by the most accurate scrutiny and examination. (Sec. IV, Part I,
p. 25, emphasis added)

Given that the “effect” is totally different from the “cause”, Hume insists
again, we cannot expect to “discover” a future effect by analyzing the notion
of the supposed cause without relying upon what we learned from past obser-
vation. Moreover, there can be no a priori demonstrative argument to prove
that the effect follows from a mere analysis of (the notion of) the cause so
as to “reliably deliver” the correct prediction. Let us focus on what Hume is
saying here. On the one hand, the traditional inquirer into nature who insists
upon defending his scheme will have to concede that his “science of nature”
is on an equal footing with works of fiction. However, scientific innovation
and our predictions in general (in science and everyday life) are not arbitrary
inventions as works of fiction might be; neither are they strictly derived from
some “abstract general principles” following the rules of deductive reason-
ing. If we take such general principles to be modern “laws of nature”, Hume
will ask his question again: how do we come up with them (“without consult-
ing past observation”)? By “past observation” he means to include reasoning
by analogy, experience and observation. Moreover, and perhaps more impor-
tantly, there is no further question to be asked as to the “ultimate” causes of
our generalizations (i.e., laws of nature), as Hume writes in the Enquiry:

(T)he utmost effort of human reason is to reduce the principles, productive
of natural phenomena, to a greater simplicity, and to resolve the many
particular effects into a few general causes, by means of reasoning by
analogy, experience, and observation. But as to the causes of these general
causes, we should in vain attempt their discovery; nor shall we satisfy
ourselves (...) Elasticity, gravity, cohesion of parts, communication of
motion by impulse; these are probably the ultimate causes and principles
which we shall ever discover in nature. (Sec. IV, Part I, emphasis added)

On the other hand, once we grant Hume’s point that there is no learning
about the world “without consulting past observation”—a trivial point for
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us today, but far from trivial for the modern inquirer trying to shake off
tradition—we are still faced with another challenge. For, whenever we
draw conclusions based upon available data (past observations), if we seek
something like a deductive argument from the given data to a prediction,
deductive reasoning will fail us in the discovery of any reliable link between
“past observations and future events”. (This part of Hume’s argument is what
present-day philosophers call the “underdetermination” of theories by given
evidence. However, note that the argument is as old as Sextus Empiricus (II,
Ch. XV); it is therefore misleading to call it “Hume’s problem”.)

How is it possible, from the observations we have made, reliably to
draw any conclusions beyond those past instances of which we have had
experience? How should we reason based on past observations? Hume
simply asks, “Why one prediction rather than another?” A reasonable
prediction is one that accords with past regularities, which have established
an expectation in us. The prediction we thus choose accords with our deeply
entrenched beliefs and expectations. So, what is wrong with Hume’s answer?

Our understanding of Hume’s critical challenge is deeply influenced by
Kant’s reaction to Hume’s answer. In the opening sections of the Critique of
Pure Reason Kant shows a characteristic ambivalence between science and
the philosopher’s reflection on science when he suggests that the scientific
enterprise itself was put at risk by Hume’s arguments.20 The issue of
learning, as conceived by Hume, is on this view deeply problematic. Thus
Kant took it upon himself to resolve a problem, which he thought Hume
left unresolved. His solution is to distinguish between issues related to
origination, learning and discovery, on the one hand, and the philosophically
sanctioned justification for scientific knowledge on the other.

Kant introduces a sharp distinction between two sets of questions: on the
one hand there is the empirical question concerning the origination of our
knowledge claims (quid facti) and on the other hand there is the normative
question concerning the justification of knowledge (quid juris)21. From this
moment, the problem of justifying induction and, in particular, the question
of our license for making predictions in natural science, becomes sharply
dissociated from the problem of describing the way we draw inductive
inferences. Accordingly, Hume’s answer offers a description of the way we
engage in our inductive practices; however, to trace origination does not
amount to providing insight into the grounds for validity. As N. Goodman
[16] once put it, Kant’s distinction makes it appear that Hume was simply
missing the point.

20 In his Critique, when facing Hume’s arguments Kant also speaks as if the true business of
philosophy were at risk. See note 34 below.

21 See Kant ([24], A84–85, B116–117).
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On Kant’s view, the relevant philosophical question to ask about
both formal and empirical inquiry is not how to acquire or generate
knowledge—issues concerning the advancement of learning, discovery and
the growth of knowledge are merely historico-psychological questions—but
how to ground scientific knowledge by offering reasons (“begründen”). Kant
diagnosed that Hume, like the great mathematician-philosophers of the 17th
century, failed to distinguish these issues, beginning with Descartes’ famous
methodological pronouncements.22 In particular, Kant diagnosed that the
roots of psychologism in (general) logic are to be found in the confusion
between empirical and normative questions concerning the rules of deductive
reasoning.23

This “Kantian” perspective became canonical for much of our contem-
porary reading of modern epistemology.24 Moreover, as I shall argue in the
concluding section of the paper, the sharp distinction that Kant introduced
is still with us today as the classical/propositional approach to inductive
inference which manifests itself variously in philosophy, statistics, and
economics as confirmation theory, belief revision theory, Bayesianism, and
rational choice. The persistence of Kant’s distinction, I shall argue, is one
of the main obstacles that stand in the way of the philosophers adopting the
learning theory approach to induction which on this view provides a means
for acquiring new knowledge, not a “justification”, or rational warrant, for
that knowledge that is an end in itself.

2.2 A New Approach to “the Old Problem
of Induction and Probability”

In 1950, R. Carnap published his work on “inductive logic”, a logical
theory of induction. Although his work is no longer seriously entertained,
it is fair to say that all philosophical work on induction since 1950 is,

22 In his lecture notes, Kant ([25], p. 3) emphasizes that logic is a science that “cannot be an
organon of truth or an art of discovery, but only a canon of truth”. The logical principle of
truth is consistency, which “can only serve for criticism or correction” not for discovery.

23 Note that the distinction between “the empirical/subjective” and “the logical/objective”,
which is often traced to Frege’s arguments against psychologism in logic, underlies Kant’s
characterization of the laws of logic as discussed in his logic lectures. See Kant ([25], pp.
4–6). Carnap [2] has his own up-to-date version of the distinction between “logical” and
“psychological” issues. The distinction between the objective or logical and the subjective
or psychological also plays a role in Popper [54]. For a contemporary version of this
distinction, see Worrall ([67], pp. 28–29).

24 Like Carnap, the young Russell thought that Kant did not altogether escape from the
ambiguity between “purely logical” and “psychological” questions. See, for instance, [13].
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to some extent, either a response to or a development of Carnap’s basic
perspective. Carnap’s work on induction falls squarely within the classical
paradigm or “propositional approach”. Carnap’s goal is the construction of
“a (formal) system of inductive logic that can take its rightful place beside
the modern, exact systems of deductive logic”. The idea is that inductive
arguments are approximations of deductive arguments, so that inductive logic
is an extension of deductive logic. In a deductively valid argument, every
world in which the premises are true also makes the conclusion true. In a
good inductive argument that is no longer the case, but the set of worlds in
which the premises are true and the conclusion false is sufficiently “small”
that one can say that the premises confirm or partially entail the conclusion
to the degree given by the conditional probability of the conclusion given the
premises. The project is not how best to engineer methods for generating new
knowledge but to consult intuition to explicate the concept of confirmation,
which is the sole source of inductive justification—a Kantian end in itself.
Since the theorems and principles of the resulting inductive logic hinge upon
an explication or conceptual analysis, they are no less analytic than the
principles of deductive logic.

Carnap’s system was not merely the apotheosis of the classical con-
ception of induction; it provoked the invention of a bold, new perspective
that ultimately turns the classical paradigm on its head: the learning-
theoretic way.

3 THE NEW, ALTERNATIVE WAY OF THINKING
ABOUT INDUCTION: AGAINST THE BACKDROP
OF COMPUTATION

The formal learning-theoretic conception of induction is based not upon
the metaphor of partial support or justification, but upon the concept of a
procedure for effectively computing the true answer to a question. As such,
it may be viewed as a mathematically rigorous reversion to the pre-Kantian
conception of logic as a truth-finding organon. In a pleasantly appropriate
historical nexus, the idea was first proposed by Hilary Putnam [55] in
direct response to Carnap’s classically-motivated inductive logic in Schilpp’s
Festschrift celebrating Carnap’s life work.

In his critique of Carnap’s inductive logic, which includes reflections
on the role of simplicity in inductive inference, Putnam argues that “one
can show that no definition of degree of confirmation can be adequate or
can attain what any reasonably good inductive judge might attain without
using such a concept” (Putnam [55], p. 270). These lines might suggest that
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Putnam’s criticism contains an implicit defense of “informal rationality”.
But Putnam is explicit about his aim in the paper. He intends to show
that the actual inductive procedure of scientists has features that cannot be
represented by a “quantitative concept of degree of confirmation”, of the sort
proposed by Carnap (i.e., an a priori probability distribution of a particular
type, called a “measure function” by Carnap [2]).

Putnam concedes that one should never abandon a logical project solely
because of philosophical arguments, and the philosopher, he claims, “mis-
construes his job when he advises the logician (or any scientist) to stop what
he is doing” (Putnam [55], p. 287). However, he insists, it is not part of
wisdom to continue with a logical venture, when relevant considerations can
be advanced against it. Since Carnap’s project is a logical venture, so must be
the considerations advanced against it! Putnam intends to provide strict proof
that there are basic features of the inductive judgments the scientist routinely
makes that cannot be “modeled” by any measure function whatsoever.
The logical considerations he advances against Carnap’s theory of logical
induction rely heavily upon considerations familiar to the mathematical
theory of computability. In order to make his point, Putnam states (a) a
condition of adequacy for induction; and shows that (b) no inductive method
in Carnap’s sense can satisfy it; however, (c) some methods “which can be
precisely stated” can satisfy it (Putnam [55], p. 270).

Only a few months later, Putnam published a second article entitled
“Probability and Confirmation” [56]. In light of his previous results, he
discusses again some of the shortcomings of “the most recent work on
the mathematical study of induction”, that is, Carnap’s system of inductive
logic. This time he refers to Carnap’s project as a design for a computing or
“learning machine” in the following terms:

We may think of a system of inductive logic as a design for a ‘learning
machine’: that is to say, a design for a computing machine that can
extrapolate certain kinds of empirical regularities from the data with
which it is supplied. Then the criticism of the so-far-constructed ‘c-
functions’ is that they correspond to ‘learning machines’ of very low
power. (Putnam [56], p. 297)

Already Carnap [2] had made use of the notion of a “learning machine”,
though rather marginally. It is only with Putnam’s work that the idea of a
“learning system” in the sense of a conceptual computing machine began to
take shape. In the concluding remarks of his second paper, Putnam insists
upon the limitations of Carnap’s conception of inductive logics as learning
devices or “machines that learn”. Here, he is particularly insightful when he
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emphasizes the importance of developing more sophisticated mathematical
models for human learning:

In this paper I have stressed the idea that the task of inductive logic is
the construction of a ‘universal learning machine’. Present-day inductive
logics are learning devices of very low power (...) In the future, the
development of a powerful mathematical theory of inductive inference,
of ‘machines that learn’, and of better mathematical models for human
learning may all grow out of this enterprise. (Putnam [56], pp. 303–304,
emphasis added)

Carnap’s reply to Putnam in the Schilpp Volume does not acknowledge
that a “radically new perspective” on the mathematical treatment of induction
is being born, although he concedes that Putnam’s mathematical arguments
are ingenious.

While some philosophers take Putnam’s [55] conclusions to contain
negative philosophical morals about “mechanically” following computable
prediction methods in science, formal learning theorists regard Putnam’s
article as a pioneer piece for having made a lasting contribution to this
new field of research. What was his point?25 We find three main themes in
Putnam’s arguments against Carnap that are relevant in this context. Firstly,
Putnam exploits an important analogy between the concepts of computability
and induction, which had thus far been ignored by most philosophers.
Secondly, Putnam provides a pragmatic means-ends critique of Carnap’s
logical theory of inductive inference. In particular, he asks how well Carnap’s
method would perform at finding regularities in the data. More specifically,
Putnam requires as a goal that if an inquirer sees an unbounded sequence
of instances of a universal generalization, he should eventually adopt the
generalization; and the more generalizations on which the inquirer succeeds,
the better. Thirdly, his approach invokes the pragmatist idea of “convergence”
on the truth in the limit of inquiry, i.e., arriving at the truth without arriving
at certainty.

To formal learning-theorists, Putnam’s results show how the study of
effective rules of inductive inference can be fruitfully approached from a
recursion-theoretic perspective without recourse to probability or degrees of
confirmation as Carnap ([2,3]) proposed to do. Independently of Putnam,
the cognitive scientist E.M. Gold ([14,15]) developed the formal learning-
theoretic approach to induction to analyze the learnibility by children of
various classes of grammars.

25 Detailed discussions of the precise import of Putnam’s argument may be found in [8]
and [36].
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3.1 A Way of “Acquiring Knowledge” by Analyzing Data
and the Bounded Perspective of Human Learning

Let us focus briefly upon the three principal themes just mentioned.
First, the relationship between induction and computation draws upon the
important idea that both induction and deduction constitute ways of gaining
knowledge. In sharp contrast, recall that the classical view conceives of
inductive inference as embedded in the activity of advancing arguments,
i.e., as something “like a logical argument” from given data (as premises)
to empirical generalizations (as conclusions), albeit an argument that is not
truth-preserving.

In opposition to the classical view of induction, formal learning theory
understands inductive inference as “a way of gaining knowledge by analyzing
data”, that is to say, by a step-by-step procedure which is conceived of
as algorithmic or computable. In particular, a unified formal treatment of
induction and computability offers an alternative response to what present-
day philosophers call the “underdetermination” of empirical generalizations
by given data. This alternative response is guided by means-ends considera-
tions concerning the putative goal of inquiry: truth-finding. That is Putnam’s
second idea. How should one reason from evidence (given data) to theoretical
hypothesis in order to attain the aims of inquiry? What are the most useful
norms of scientific inquiry for “cognitively bounded agents” like us? Are
there any norms which may hinder us in successfully attaining the goals of
inquiry? These are some of the questions formal learning theory examines.

In particular, the new conception of learning emphasizes that both
computability and induction make assumptions concerning the existence of
certain “epistemic limitations” in cognitive agents following an algorithmic
procedure. From the point of view of our perceptual capacities, we are
cognitively bounded agents, i.e., our inductive abilities will always be limited
because the evidence (“data stream”) we are presented with can only be
observed one glance at a time. If the entire evidential future could be
seen so-to-speak “all at once”, empirical prediction would never pose a
problem and induction as a form of “gaining knowledge by analyzing data”
would terminate with certainty. There would be no successive moments of
observation and thus no problem of “foreseeing the future”. Similarly, a
computing machine’s computational abilities are also limited by its inability
to write upon or scan an infinite memory store at once. As Kelly and Schulte
[35] point out, Turing’s 1936 results concerning computable functions follow
precisely from such assumptions about the perceptual limitations of human
agents following an algorithm. In 1936 Turing himself makes this analogy
between machine learning and human observation explicit, when he writes:



Two Ways of Thinking about Induction 249

(T)he computation is carried out on one-dimensional paper, i.e., on a tape
divided into squares. I shall also suppose that the number of symbols
which may be printed is finite. ...The difference from our point of view
between the single and compound symbols is that the compound symbols,
if they are too lengthy, cannot be observed at one glance.

The behavior of the computer at any moment is determined by the
symbols which he is observing, and his “state of mind” at that moment. We
may suppose that there is a bound B to the number of symbols or squares
which the computer can observe at one moment. If he wishes to observe
more, he must use successive observations. (1936, emphasis added)26

The computer is fed more and more data, and the computer’s potentially
infinite, ever extendable memory can be seen as a second, internalized data
presentation, only some finite segment of which can be “observed” at one
glance, at a given time.

Finally, following the third theme exemplified in Putnam’s work, both
formal computability and induction can be conceived of as operating with
“criteria of success” or “convergence to the truth” (the “right answer”). One
of the leading ideas of the new conception of induction is that inductive
inference, just as deductive inference, is based upon a methodology that
“reliably” converges to the truth.27 According to the new way of thinking
about induction, some scientific methods of inquiry are guaranteed to
eventually converge to the truth, but unlike deductive inference, inductive
procedures need never terminate in finite time with the right answer; in other
words, there is no guarantee that after some finite time the inquirer will be
certain that she is in possession of the truth. As Schulte writes in this volume,
“An inquirer can be in possession of the truth without being certain that she
is”. The idea of truth as “success in the limit of inquiry” (“convergence to the
right answer”) echoes Peirce’s suggestion that “all the followers of science”
aim at finding the truth “in the limit of inquiry”, simply because:

It is unphilosophical to suppose that, with regard to any given question
(which has any clear meaning), investigation would not bring forth a
solution of it, if it were carried far enough. (Peirce [50], p. 58, emphasis
added)

26 I owe this quotation to Kelly and Schulte ([35], p. 160).
27 What philosophers call here “logically reliable inductive inference” corresponds to the

computer scientist’s notion of “BC-learning”. (See the second section in the introduction
to this volume; see also Schulte’s paper “Logically Reliable Inductive Inference” in this
volume). The computer scientist’s notion of “reliable” learning is quite different—another
example of cross-disciplinary notational pitfalls.
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On the other hand, Putnam was Reichenbach’s student, and Reichen-
bach’s “pragmatic vindication of induction” most likely also played a role in
motivating Putnam’s work on the methodology of inquiry.28 (For a discussion
of the general concepts and definitions of reliable convergence to the truth,
which takes into account Putnam’s conception of “empirical success” for
inductive methods, and for some of the standard objections, see Schulte’s
paper “Logically Reliable Inductive Inference” in this volume.)

3.2 The “Empirical” and the “Formal Domain” of Inquiry

The new way of thinking about induction is clearly not committed to
the distinction between the empirical and the formal domains of inquiry
underlying the classical paradigm. Accordingly it is free of the Kantian
distinction between “empirical questions” and “questions of justification”
where the first concerns how we acquire new knowledge, and the other
concerns the philosophically approved grounds for or justification of that
knowledge.

The classical understanding of inductive inference has long had difficulty
coming to grips with formal uncertainty. Even in its most recent, Bayesian
incarnation, the classical paradigm attributes formal omniscience to its
ideally rational agents but empirically ignorant agents, in spite of the fact that
uncomputable problems (will the computation never halt?) look for all the
world like problems occasioning Hume’s problem of induction (will bread
continue to nourish?). Indeed, Hume himself offers support for this idea
when, late in his career, he seems to adopt the classical view of demonstrative
science in the Enquiry: “Of the first kind are the sciences of Geometry,
Algebra, and Arithmetic; in short, every affirmation which is either intuitively
or demonstratively certain”. This is so, Hume now claims, because the formal
sciences make no reference to facts:

Though there never were a circle or triangle in nature, the truths demon-
strated by Euclid would for ever retain their certainty and evidence.
(Sec. IV, Part I)

At this stage of his career, Hume also affirms a sharp dichotomy between
two kinds of objects of inquiry, “relations of ideas” and “matters of fact”
which fits squarely into the classical perspective:

28 In the context of his interpretation of probability, Reichenbach takes into account Peirce’s
idea that inquiry might converge on the truth without providing a clear sign that this is the
case. See [27].
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All reasonings may be divided into two kinds, namely demonstrative
reasoning, or that concerning relations of ideas, and moral reasoning, or
that concerning matters of fact and existence. (Sec. IV, Part II, emphasis
added)

(In seventeenth century terminology, “moral reasoning” refers to proba-
bilistic reasoning, and “moral certainty” designates the kind of certainty that
may be attained by “cognitively bounded agents” like us when engaged in
“moral reasoning”.)

However, the view that the “cognitively bounded perspective” belongs
only to the empirical domain, while in the formal domain of inquiry we
operate with the notion of an “ideal agent” does not seem to apply to the
younger author of the Treatise. Interestingly enough, it does not even apply
to the great mathematician Leibniz, who is associated with the culmination
of rationalist epistemology.29

Note that Hume introduces the sharp dichotomy between “relations of
ideas” and “matters of fact” late in his career, so to speak, “as a last minute
solution” at the same time that he drops his early analysis of the notions
of (the infinite divisibility of) space and time, in spite of the central role
the notion of time (“successive observations”) plays for inductive reasoning.
(And it is precisely with the notion of “infinity” that the bounded perspective
becomes an issue for human learning.)30

It should be noted, however, that when in the Treatise Hume inquires
about our foundation for establishing reliable (“necessary”) connections in
reasoning, his critical considerations do seem to apply to both the formal and
the empirical domains of inquiry:

Upon the whole, necessity is something, that exists in the mind, not in
objects; (...). Either we have no idea of necessity, or necessity is nothing
but that determination of thought. (Book I, Part III, Sec. XIV, emphasis
added)

In this early work Hume’s arguments suggest the radical idea that
establishing “reliable relations” in both empirical and formal inquiry ought
to be seen as nothing but a form of “experience”, a determination of
thought deeply marked by our bounded perspective (outer and inner expe-
rience, respectively). This radical idea deeply influenced Kant’s intellectual

29 For a discussion of the “bounded perspective” of the human agent and the idea of “limits”
in Leibniz see [61]; for Leibniz’s reflections on this idea see [41].

30 See Hume ([20], Book I, Sec. IV) for a discussion of the infinite divisibility of space and
time. For a discussion of Hume’s early views on mathematical notions, see also Cassirer
([4], Ch. V.I). See also Larvor [39].
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development, for it motivated him to question his pre-critical views of an
“ideal agent” with unbounded cognitive capacities. But Hume needed to
be set right. It is part of our received view that Kant proposed a synthesis
between “empiricist” epistemology and “formal inquiry”. All forms of
human learning start with “experience”: Kant agrees with Hume that this
is how learning originates. But the grounds of objectivity and thus rational
justification ought to be “independent of experience”. Such a requirement
is at the basis of Kant’s own negative characterization of the notion of “a
priori”. Kant thus breaks with the traditional terminology, while holding fast
to the classical ideal of a priori certainty.31

The learning-theoretic viewpoint breaks with both Hume and Kant by rec-
ognizing that uncomputability is a sort of internalized instantiation of Hume’s
problem that arises because an algorithmic reasoner’s finitely bounded
attention does not extend to the future of the uncompleted computation it
directs [32]. The purely formal question whether a computation will never
halt is, therefore, quite analogous in this respect to the empirical question
whether bread will always nourish. In the formal learning-theoretic literature,
this analogy is deftly handled in a uniform way using the concepts and
techniques of the modern theory of computable functions. Some learning
problems are unsolvable due purely to empirical underdetermination, some
are unsolvable for purely formal reasons and some are unsolvable due to
an interaction between both sorts of considerations. Relations of ideas are
simply matters of internal fact.

4 WHAT STANDS IN THE WAY OF ADOPTING
THE LEARNING-THEORETIC WAY
OF THINKING ABOUT INDUCTION
IN PHILOSOPHY?

In order to understand what stands in the way of adopting the new
learning-theoretic way of thinking about induction in philosophy, I shall
begin by summing up some of the assumptions underlying the classical
conception.

First, inductive reasoning is fundamental for gaining knowledge and, thus,
for the “advancement of learning”.

31 We recall here that the classical scheme is supposed to guarantee the “a priori order
of reasoning”, a movement from principles/axioms to consequences, i.e., from causes to
effects.
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Second, as with deductive reasoning, inductive reasoning is conceived of
as being embedded in the activity of advancing arguments.

Third, deductive reasoning (strictly speaking, a priori demonstrative
reasoning), in turn, is conceived of as embedded in the activity of sci-
entific explanation. On the classical view of science, scientific knowledge
ought to be demonstrative. Classical geometry is the paradigmatic example
of a priori demonstrative science. The mode of textbook presentation
of classical geometry, often called “the synthetic mode” of presentation,
is axiomatic.

Finally, against the backdrop of the new science of nature (in the 18th
century), Hume’s radical challenge concerning the ultimate foundation of our
inductive practices calls into question the classical, “deductive paradigm”.

Kant’s attempt to take into account Hume’s challenge without giving
up the classical paradigm consists in the introduction of a sharp distinction
between the empirical issue of “learning” about the world (the questions of
“discovery” in science, and the “origin of ideas” in the case of individual
cognitive development) and, the normative issue of “grounding” knowledge
by offering reasons for truth.

We can place Carnap’s attempt to construct a system of inductive
logic, “a new approach to the old problem of induction” as fitting into
the Kantian concern to reconcile the empiricist view of learning with the
formal requirement of certainty. Carnap’s project is motivated by the goal
to do for inductive reasoning what Frege had accomplished for deductive
reasoning by the design of a system of deductive logic. Frege’s goal to ground
mathematical knowledge by offering purely logical proofs also motivated
Carnap’s previous projects aimed at grounding empirical knowledge. Frege’s
mathematical treatment of deductive inference is axiomatic. It is with
his pioneering work in mathematical logic that the classical paradigm
underlying scientific inquiry witnessed a powerful revival. Moreover, the idea
of justification, that is, of grounding knowledge by proof becomes central.
Frege’s project was influential: it was a leading motivation for Carnap’s
conception of a (formal) system of inductive logic, as well as of Carl
Hempel’s theory of confirmation.32

It is with this line of research that the Kantian distinction between
the ways of learning (origination/discovery) and the ways of grounding
knowledge witnessed a powerful revival. Popper [54], for instance, claims

32 Between 1910 and 1914 Carnap was a student at the University of Jena where he attended
Frege’s lectures on logic and mathematics, which he recorded in his Jena Notes [1]. See
also Reck & Awodey [59], Introductory Essay. Carnap’s Jena Notes include his lecture
notes on Frege’s course “Logic in Mathematics” taught in 1914.
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that the ways theories are generated “neither call for logical analysis” nor are
susceptible of it and also quotes Kant’s distinction between the quid facti and
the quid juris.33

In sharp opposition to the classical picture, the “new way of thinking”
about induction, on the other hand, is guided by three principal ideas
exemplified in Putnam’s criticism of Carnap.

First, the learning-theoretic way of understanding induction draws upon
the mathematics of computational theory. Second, this new way of thinking
conceives of inquiry as ongoing processes governed by means-ends consid-
erations. Putnam, for instance, gave a pragmatic or means-ends critique of
Carnap’s logical theory of inductive inference. Third, it gives up the idea of
being certain about something in the short run, and in this sense, it illustrates
the pragmatist idea of arriving at the truth without arriving at certainty.
As to this third theme, among Putnam’s philosophical forerunners are the
American pragmatists Ch. S. Peirce [50] and W. James [23], who explicitly
advocated this idea.

We finally return to the question with which we began: what is it that
stands in the way of philosophers adopting the learning theory way of
understanding induction in philosophy? Much of contemporary philosophy
of science was born out of a dialectical sequence of responses to the classical
views of Carnap. Formal learning theory, the new way of thinking about
induction, does not fit into the classical scheme. Indeed, the move from
the classical conception to the learning-theoretic one shares many of the
features of a Kuhnian [38] paradigm shift [34]. First, significant conceptual
retooling is required, for the classical stress upon analysis of the concept of
confirmation gives way to objective mathematical analyses of convergence
and efficiency in specific empirical problems. Since some philosophers view
conceptual analysis as the very raison d’etre of their discipline, this shift in

33 Popper ([54], pp. 31–32) explicitly refers to Kant, when presenting his view on the role
of logic in scientific inquiry. (See also notes 21–23 above.) Contemporary philosophers
of science retain a similar distinction. The quid juris of scientific belief is called the
context of justification, whereas the quid facti is called the context of discovery. Note
that the terminology was coined in a somewhat different sense by H. Reichenbach (1938).
According to Reichenbach’s own account, the context of discovery invites “rational
reconstruction”, an exercise in which the successive cognitive stages of discovery are
chained together or “intercalated” with justified inferences. Hence, there could be a logic of
discovery in Reichenbach’s sense. Indeed, it is ironic that Reichenbach should be viewed
as an advocate of the doctrine that there is no logic of discovery, as his entire (normative)
theory of induction was based upon a rule for discovering chances (the so-called “straight
rule of induction”). He thought all legitimate scientific reasoning could be reduced to that
rule. See ([26, 27]). See note 28 above.
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the requisite skill set is more than a matter of inconvenience or inertia: it is a
basis for judgments of philosophical irrelevance.34 Second, the very data to
be explained are colored by the respective paradigms. In the classical picture,
one sees theories in need of empirical justification. Learning theorists, on
the other hand, see strategies or methods whose truth-finding effectiveness
are at issue. Third, there is a characteristic difference in emphasis or fore-
ground vs. background. If justification is something like inductive logic or
confirmation, then rules for generating hypotheses—logics of “discovery”—
must be superfluous to justification, itself, which is a relation between
theory and evidence.35 But if justification is just a method’s truth-finding
efficacy, then justification applies to discovery methods and testing methods
equally (just as computational analysis applies equally to testing the relation
x + y = z and to computing x + y).36 Finally, and perhaps most importantly
in this case, is the fact that the classical paradigm has come to define
the legitimate domain of philosophical discourse about inductive inference:
e.g., “One must ask what is specifically philosophical about studying the
genesis of theories?” (Laudan [40], p. 182)37 So thoroughly has the classical
paradigm established itself as the arbiter of philosophical relevance that
formal learning theory is not even recognized as a potential competitor—it is
viewed as something else, like empirical psychology, even though it has no
more kinship with the peculiarities of specifically human thought than does
the efficiency analysis of a long division algorithm in a computer science
class.38

34 For a related point, see Larvor’s paper “Between History and Logic” in this volume. In
his work, Larvor focuses on the way philosophers are currently drawn away from formal
models by history of science and science studies. He also (in private correspondence)
suggests that they are afraid of losing their field of research. His idea is as follows: a
historian can never lose his topic of research. Renaissance diplomatic history may go out
of fashion, but it is still there to study. But a philosopher could be left without any expertise
if his chosen problem is superseded in the course of a problem-shift. Does this idea seem
too farfetched? Note that this seems to come very close to Kant’s deep concerns about the
future of philosophy when faced with Hume’s destructive arguments. As we read in the
Introduction to the Critique of Pure Reason, such concerns were a leading motivation for
this work.

35 See [40].
36 See Kelly ([26, 28]).
37 See Kelly ([29], Ch. 9) for a discussion of discovery from the perspective of formal learning

theory.
38 Interestingly, Popper [54] objected, along similar lines, that the Logical Positivists had no

category for inductive rules or strategies that are neither psychological generalizations nor
analytically valid logical truths.
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It is true that initial confrontations between traditional philosophy and
formal learning theory occasion substantial challenges of notation, of tech-
nical background, and of modeling real scientific questions with the new
machinery. But these difficulties are surmountable and are dealt with to some
extent by the papers in this volume. The deeper difficulty is the grip that
the traditional way of thinking about inductive reasoning has maintained on
philosophical thought, from Aristotle to Hume through Kant and the logical
positivists to present-day confirmation theory; understanding learning theory
requires breaking free from this philosophical picture.
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Abstract: In this paper, I argue that there cannot be a general and comprehensive account
of scientific enquiry, for two reasons. The first is that our understanding of
scientific enquiry depends on disciplines with incompatible standards of rigour
and modes of explanation. I focus on logic and history. The second reason
is that the rigour and success of empirical science depends on the particular
features of a) domains of enquiry and b) research programmes. Consequently,
our understanding of enquiry is more like a wisdom-tradition than a science, to
which formal learning theory is a valuable addition.

Some people think that normative philosophy of science is finished.
That is, the project of identifying correct methods for empirical enquiry is
simply unfeasible. On the other hand, formal learning theory is a rigorous
investigation of the formal constraints on empirical enquiry (both self-
conscious enquiry by scientists and spontaneous learning by children). In
this paper I shall explore the relationship between formal learning theory and
the fin de méthode view.

I shall argue that reports of the death of normative philosophy of science
are exaggerated. However, what we cannot hope for is a science of science,
that is, a wholly general and unified account of enquiry as such. This is partly
because our understanding of enquiry must draw on a variety of disciplines
that have incompatible standards of rigour and therefore cannot be unified
into a single discipline (here I shall discuss logic and history, though we
could easily include psychology and sociology). Partly, it is because enquiries
are too diverse to constitute the domain of a science.

First, I shall review the arguments that are supposed to have done for
normative philosophy of science. Then I shall briefly examine some familiar
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arguments (made by Wesley Salmon, Larry Laudan and Clark Glymour)
about Bayesianism. These show that Bayesianism cannot be the whole story
about scientific enquiry. Finally, I shall examine formal learning theory in
the light of our prior experience with philosophy of science in general and
Bayesianism in particular. I shall argue that much of our accumulated wisdom
about enquiry makes essential reference to features that vary in structure
from case to case, and therefore cannot be abstracted into a general account.
The same points tell against any general logic of enquiry. Consequently,
normative philosophy of science has to be a tradition of methodological
wisdom rather than a science of enquiry. Success, for formal learning theory,
means finding a place in that tradition.

This plan requires quite a long run-up before I get to say anything directly
about formal learning theory. However, in inter-disciplinary discussions, a
review of the journey to here taken by one of the disciplines can prevent
a lot of talk at cross purposes. Since much of what follows will have a
rather deflationary tone, let me make clear from the outset that in my view
formal learning theory is a Good Thing. Others in this volume explain
why it is a Good Thing. My aim is to explore its limits and its relations
with some of the other Good Things in the philosophy of science larder.
However, this voluntary division of labour does not mean that there are no
disagreements in this volume. Clark Glymour ends his contribution with
the slogan “Epistemology has but two aspects: religion and mathematics”.
He argues this claim by reporting that philosophers, when they hear about
formal learning theory, usually want to set it aside and return to ‘religious’
(that is, familiar philosophical) questions.1 I do not doubt that his report
is true—because it sounds like the reaction that philosophers tend to give
to any alternative to their familiar topics. They may not want to hear
about mathematical epistemology, but they are scarcely more ready to hear
about the history of science and mathematics, except of the most anecdotal
1066 And All That variety. Epistemology has many aspects—of which
mathematics is one.

1 THE END OF THE MYTH OF METHOD

Very few philosophers of science now believe that there is a single logical
shape called ‘the scientific method’ that distinguishes science from other
kinds of enquiry and accounts for its successes and failures. The collapse

1 “Is there an external world, are there other minds, is truth relative to belief, what is the
best method of enquiry, what can we know?” (see Glymour’s paper “Trade-Offs” in this
volume).
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of the myth of method is popularly associated with Kuhn and Feyerabend but
it is less widely appreciated that what was, in their hands, a scandalous heresy
has become an orthodoxy. The basic claim was made in a very sober form at
the 1974 meeting of the Philosophy of Science Association. At that time the
point was still widely contested, so the author had to proceed carefully, “It
may sound strange, if not heretical to suggest, as I wish to do, that there is no
such thing as the rationality of science. At best we can talk about rationalities
of science.” ([28], p. 191) Two decades later the cautious tone had given way
(in another writer) to something close to sarcasm:

. . . there was a view of science that commanded widespread popular
and academic assent... I shall call it “Legend”. . . Champions of Leg-
end acknowledge that there have been mistakes and false steps here
and there, but they saw an overall trend toward the accumulation
of truth, or, at the very least, of better and better approximations to
truth. Moreover, they offered an explanation of both the occasional
mistakes and for the dominant progressive trend: scientists have
achieved so much through the use of SCIENTIFIC METHOD.
([13], p. 3)

Kitcher’s sarcasm is directed at the Myth of Method (“Legend”), not at
science itself. His book is subtitled “Science without Legend, Objectivity
without Illusions”, and aims to show how we can understand progress in
science without having to subscribe to this “Legend”.2 Examples of similarly
dismissive attitudes to “Legend” could be multiplied without difficulty, not
least because the story of the fall of the myth of method has become standard
material for writers of undergraduate textbooks.3

How did this shift happen, and why did it happen just then, in the
second half of the twentieth century, twenty-three centuries after Posterior
Analytics and three and a half centuries after Bacon and Descartes? The
crucial development seems to be the coming to maturity of the historiography
of science. This is a twentieth-century development.4 There were historians

2 The motto of Kitcher’s book is Shakespeare’s Sonnet 130 “My mistress’ eyes are nothing
like the sun”.

3 For example John Losee’s Historical Introduction to the Philosophy of Science [21] ends
in a debate over the very possibility of normative philosophy of science. Larry Laudan’s
1987 article [19] reverses the rhetoric of Skolimowski’s 1974 piece [28]; in arguing
that philosophers should continue to seek the scientific method, Laudan consciously sets
himself against the grain of current opinion. It should be noted that “philosophy of science”
here means philosophy of science written in English. The French, for example, have never
really forgotten the lessons taught by Duhem and Bachelard.

4 See [15] for an indication of the rate of growth of research in the history of science.
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of science in earlier centuries, but they were isolated and did not constitute
a discipline. Perhaps as a consequence, their work tended to be synoptic and
lacked consistent attention to detail. Moreover, such histories were rarely
philosophically disengaged. Think, for example, of Whewell’s History of the
Inductive Sciences [30]. It is certainly philosophically-motivated (a decade
earlier Whewell wrote The Philosophy of the Inductive Sciences, Founded
Upon Their History [29]). Since his history covered the entire history of
empirical science in two volumes it could not hope to pay close attention
to the fine detail of every episode. Only in the last century have we seen
the establishment of degree programmes, peer-reviewed journals and the rest
of the institutional apparatus that allows pioneering and programmatic work
to give way to normal research. Only under these circumstances is it likely
that scholars will devote themselves to the intense study of narrow domains.
And when present-day historians write synoptic histories, they can root their
accounts in the monographs and articles of specialists on this science in that
period. No such specialist literature existed in Whewell’s day.

How did the development of the history of science as a mature discipline
tell against the Legend of Method? This is a large question since neither
the history nor the philosophy of science is a monolith, so the story of
their encounter cannot be simple. As the case of Whewell shows, they
were tangled up together before the history of science emerged as an
independent discipline (and indeed before normative methodology became
a specialism). Among the philosophers, there was little understanding that
history is a separate discipline with its own characteristic standards of
rigour. The most naïve philosophers hoped that a simple appeal to the
facts of history would bear out their models of the logic of science.
Others were more sophisticated—Lakatos, for example, drew on his earlier
life as a Marxist to argue that every historical narrative presupposes an
ideology (or in the case of the history of science, a methodology), so
the competition between methodologies becomes a competition between
their respective associated historical narratives.5 On the whole, though,
most English-speaking philosophers of science had little to say about the
philosophy of history. Those who engaged with the philosophy of history
at all usually assumed that historical explanations are like explanations in
natural science or, if they are not, they ought to be.6 Others seemed to believe

5 “History of Science and its Rational Reconstructions” in Lakatos ([17], vol. 1).
6 See for e.g., Hempel [11]. Of course, Hempel did not thoughtlessly assume that historical

explanations must appeal to “covering laws”. Rather, he formed a view about explanation
in general that drew its most compelling examples from natural science, and then insisted
that historical explanations must be of this same sort. In doing so (I think) he articulated
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that historians do no more than set facts in chronological order, ready for
philosophers to use.7 This naivety about the nature of historiography may
explain the optimistic hope that the history of science could serve as an
objective test-bed for philosophical theory. If an account of method fails to
capture the practice of the greatest scientists in history (went the thought),
then it cannot be correct. After all, the great scientists must have been doing
it right—the philosophers’ job is to work out the logic of what they were
doing. Thus, history was to supply philosophy with an objectivity that it is
usually supposed to lack. History would teach philosophy by examples. For
most English-speaking philosophers of science, this ‘historical turn’ became
problematic in the shape of Thomas Kuhn.8

Kuhn claimed that there is something in the very activity of history-
writing that is incompatible with the traditional quest of normative philoso-
phy of science for general methodological precepts. His account of historical
method is rather sketchy, and the majority of his critics in philosophy of
science had little interest in the philosophy of history. It is hardly surprising,
therefore, that Kuhn’s attempt to argue the incompatibility of rigorous history
and normative methodology generated more heat than light. Nevertheless,
from Kuhn and his sources I extract the following.

First, historians treat events, including scientific developments, in their
own terms rather than as preparations for the present. Further, they under-
stand as good humanists9 that a word or deed means what it means in virtue
of what is said and done around and about a given occasion of speech or
action. This entails that we cannot extract antique theories from their contexts
for the purpose of comparison with later theories, because when so extracted
they cease to be themselves. We cannot, for example, compare what Aristotle
had to say about bodies under gravity with what Newton thought because
Aristotelian bodies, strictly speaking, do not encounter gravity. It does not
follow that meaningful comparisons cannot be made, but they require such a
labour of translation and explication that we do not get from them regimented
data suitable for testing philosophical theses. All we get is a plausible account
of the journey from there to here. So we cannot, for example, do a statistical

and defended the tacit assumption of most English-speaking philosophers of science at the
time.

7 Example [19].
8 I argue for my reading of Kuhn in [18].
9 That is to say, academics with the mental habits characteristic of the traditional “humane”

disciplines of history, literature and philosophy. Good humanists in this sense need not be
humanitarians, nor need they be atheists.



264 Brendan Larvor

survey of past science to see what logical approaches have worked best.10 To
do so, we would have to decontextualise episodes in the history of science to
such a degree that they would become unrecognisable to the historians who
know them best. Such surveys of ‘the historical record’ are not on because
the historical record is not and cannot be a body of regular, standardised data
like Wisden.

Second, making sense of the science of the past often consists in setting
it in its proper time and place. In other words, historians of science typically
deny internalism (the view that the growth and trajectory of science can
be explained without reference to anything except the encounter between
argument and evidence). For example, in the most recent edition of Isis11

the leading article is “Wonderful Secrets of Nature: Natural Knowledge and
Religious Piety in Reformation Germany” by Kathleen Crowther-Heyck.
Internalist philosophers of science would insist that the effects of religious
piety on German science must have been short-lived, inessential and probably
regrettable. Historians would consider it unrigorous to approach the question
with such prejudices in hand (perhaps religious piety played an essential,
long-lasting and laudable role). To take another leading history of science
journal, History of Science, the March 2003 edition contained the following
major articles: “‘Purifying’ Science: E.C. Slater and Postwar Biochemistry
in the Netherlands” (Ton van Helvoort); “Herbert Spencer and the Disunity
of the Social Organism” (James Elwick); and “‘Men of Science’: Language,
Identity and Professionalization in the Mid-Victorian Scientific Community”
(Ruth Barton). The rejection of internalism is less obvious from these titles
(though the scare quotes around “purifying” and “men of science” are
significant12). Nevertheless, it is clear that van Helvoort, Elwick and Barton
are not simply recording successive encounters between hypotheses and data.
These examples were chosen arbitrarily (simply by taking the most recent
editions at the time of writing) and could easily be multiplied.

Third, historians are wont to historicise everything, including the logical
categories that philosophers need in order to do normative methodology.

10 I have in mind Laudan’s suggestion in his [19]. He proposes treating methodological
precepts as hypothetical imperatives, so that the differing cognitive goals of present-day
and historical scientists are taken into account.

11 June 2003. George Sarton founded Isis, an international journal dedicated to the history of
science, in Belgium in 1912. After World War I, Sarton and the journal moved to the United
States. Today, Isis is edited by Margaret Rossiter at Cornell University, and published and
distributed quarterly by the University of Chicago Press.

12 “Men of science” is the nineteenth-century transitional phrase between “natural
philosopher” and “scientist”.
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Here is Kuhn on distinctions such as that between the contexts of discovery
and justification13:

For many years I took them to be about the nature of knowledge,
and I still suppose that, appropriately recast, they have something
important to tell us. Yet my attempts to apply [these distinctions]
even grosso modo, to the actual situations in which knowledge
is gained, accepted, and assimilated have made them seem ex-
traordinarily problematic. Rather than being elementary logical
or methodological distinctions, which would then be prior to the
analysis of scientific knowledge, they now seem to be integral parts
of a traditional set of substantive answers to the very questions upon
which they have been deployed.14

Any historian worthy of the name will want to know how the tradition
that Kuhn mentions (“a traditional set of substantive answers”) arose and
developed, in response to what and against what opposition. In this his-
toricist light, the apparently innocent distinctions employed by philosophers
suddenly seem question-begging. Kuhn’s importance, in my view, is to have
articulated (however obscurely) the stance of professional historians towards
the objects of their studies.

Historicism may be natural to historians but it is alien to most philoso-
phers of science, and, more importantly, inimical to their philosophical
projects. Some philosophers embraced historicism: history (they insist)
teaches that everything is relative to its moment, to its place in the great
flux. The search for timeless abstractions called “correct methods of enquiry”
is therefore pointless or perhaps even impossible. However, this historicist,
relativist, quietist line fails to acknowledge that questions about scientific
procedure and propriety are not mere philosophical cobwebs. Sometimes,
scientists (and science funding bodies) have decisions to make that involve
normative methodological judgments. We cannot be content to say “Do
the done thing for your time and place”, because current practice may be
mistaken or undetermined. It is precisely in cases of underdetermination or
doubt that normative issues become pressing. Then there are those occasions
when scientific controversy achieves a wider public significance, such as
the struggles over creationism, food safety and global warming. In such

13 In the ‘context of discovery’ hypotheses are invented; in the “context of justification” they
are evaluated. In the twentieth century it was widely held (by Popper and most of the
Vienna Circle, for example) that there is no logic of hypothesis-invention but there is a
logic of hypothesis-evaluation.

14 [14], p. 9
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disputes, each side inevitably accuses the other of being unscientific and
these accusations are not always empty or philosophically naïve. What is
more, philosophers have accumulated a rich store of methodological ideas
plus some impressive formal theories (such as formal logic, probability and
the formal learning theory discussed in this volume). It is trite to dismiss all
this with a single historicist gesture. The Legend of the One True Method
may have been discredited, but the original question remains: how should we
enquire?

The history of science, then, is not the friendly source of methodological
morality tales for which normative methodologists once hoped. On the
contrary, historians deride such tales as “whiggism”. If methodologists are
to address the enduring questions about the nature of enquiry, they must first
disengage themselves from the history of science, at least as it is written
up by professional historians. This is relatively easy to do. Notice first
that the historicist dictum—that historical phenomena owe their identities
to their places in the great flux, and must therefore not be abstracted for
fear of distortion—is not a conclusion of historical enquiry. It is, rather,
a methodological precept. Since philosophers do not share the aims of
historians, they need not share all of the historians’ premises and methods.
Historians usually want to know why this scientist at this time and place
wrote, spoke and acted as he did. Philosophers have no professional interest
in such specifics—their interest is in the argument as such (if such a thing
can be identified). In any case, the history of science may not be as relevant
as philosophers once thought. Larry Laudan argues that methodological
precepts should be read as hypothetical (rather than categorical) imperatives:
‘If you have cognitive goals {A, B, C}, then use method {a, b, c, d...}’. Most
of the great scientists of history had different cognitive goals to scientists
of the present day (Newton and Boyle, for example, saw the construction
of a natural theology as a central task of science).15 Consequently, the
successes and failures of their methods are irrelevant to us. This allows
Laudan to square our intuition that the great scientists of the past were
instrumentally rational (that is, they effectively matched means to ends)
with Feyerabend’s observation that they rarely acted in conformity with
methodological precepts that seem compelling to us. In any case, there is no
a priori reason to suppose that the best methods of enquiry lie in the recorded
past at all. Perhaps they have not yet been discovered.

Disengagement from the history of science returns methodologists to
the problem that reference to the historical record was supposed to solve.
How are methodological questions to be resolved? Philosophical argument

15 These examples, and the argument here reported, are taken from [19].
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rarely resolves anything, and philosophical intuitions are hardly objective.
The history of science was supposed to provide an objective test-bed for
philosophical theories. If the history of science is not suitable for this
purpose, then where is normative methodology to find its objectivity? Studies
of present-day scientific practice are unsuitable for many of the same reasons
that prevent history from grounding philosophical arguments. One attractive
option is to abandon the search for empirical-historical tests of method-
ological theory altogether, in favour of an a priori account. Philosophers
cannot, nowadays, pretend to offer substantive a priori knowledge. But
mathematicians can. We come at last (by a lengthy but, I hope, dialectically
satisfying route) to the present popularity of formal accounts of enquiry.

2 THE FORMAL TURN: BAYESIANISM

Insofar as normative methodology is turning to mathematical models of
enquiry, it is returning to where it was before its dalliance with history.
English-speaking philosophers of science used to look to formal logic and
mathematical accounts of induction in their attempts to specify the “logic of
science”.16 Then, from Kuhn and others, we learned to suspect such models.
These logics seemed so abstract as to have lost sight of actual scientific
practice altogether, and depended for their intelligibility on a set of arbitrary
and question-begging distinctions. Now, having learned that it is hard to sleep
with historians without catching their historicist fleas, many philosophers
of science seem ready to turn back to mathematics. Dialectical journeys
often lead back to a more sophisticated and acutely self-aware version of the
starting-point. The trick, of course, is not to forget what was learned enroute.

The most popular mathematical model of enquiry at the time of writing
seems to be Bayesianism.17 It is worth taking a glance at Bayesianism, since
its difficulties are typical of those suffered by formal accounts of enquiry.

16 And in the case of the Vienna Circle, German-speaking philosophers too.
17 Bayes’ theorem allows us to evaluate the conditional probability P(T/E .B) that a given

hypothesis T is true provided both our background beliefs B and some new piece of
evidence E are true:

P(T/E .B) = P(T/B)×P(E/B.T )
P(E/B)

To use (even this simple version of) the theorem, we must know: (i) the conditional
probability of the hypothesis being true given only the background beliefs; (ii) the
conditional probability of the evidence E given that both the background beliefs B and
the hypothesis T are true; and (iii) the conditional probability of the evidence E given that
the background beliefs B are true.
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Moreover, the sort of argument that I wish to make with respect to formal
learning theory has already been made in the case of Bayesianism by Wesley
Salmon, Larry Laudan and Clark Glymour, among others.18

In order to use Bayes’ theorem one must have identified a small (or
at any rate, a finite) number of “serious” or “plausible” hypotheses. One
must already know what counts as a plausible explanation, what counts as
relevant evidence and what counts as background belief. These judgments
of relevance and plausibility are only possible if one already knows (or
at least, believes that one knows) a great deal about the domain under
investigation. In case anyone should suppose that relevance and plausibility
can be decided by pre-scientific common sense, recall that only a few
centuries ago, serious, intelligent people thought that the number of planets
is related to the number of holes in the human head. In other words, the
infinity of possible worldviews and underlying metaphysical schemes must
somehow be cut down to a manageable handful before the Bayesian story can
start. Therefore, Bayesianism cannot supply a complete account of scientific
enquiry.19 Salmon suggests that the Bayesian algorithm be supplemented
with a Kuhnian account of how relevance and plausibility are fixed. Indeed,
Salmon hoped for a synthesis between the historical and logical sides of
philosophy of science. In the end, though, the Kuhnian supplement comes to
dominate the Bayesian element in his account: “The [Bayesian] algorithms
are trivial; what is important is the scientific judgment involved in assessing
the probabilities that are fed into the equations.”20

Laudan’s argument21 focuses on just one methodological thought: a
good theory ought to address all the phenomena in its field. Other things
being equal, it is a shortcoming in a theory T to say nothing about
some phenomenon p in its domain of enquiry. In Bayesian terms, T says
nothing about p if the conditional probability of p given T equals the prior
probability of p. In this case, the likelihood of T in the face of p is exactly
the same as its probability prior to p. That is to say, a true Bayesian’s
confidence in T will be unaffected by T ’s failure to address p, even though p
is among the phenomena that a good theory in this domain ought to address.
A Bayesian might reply that T could still be true—but we do not want
scientific theories that are merely true, we want ones with deep explanatory
power. Of course, T may offer such significant explanatory benefits on some

18 [7, 20, 26]
19 Bayesians know this. Most Bayesians regard Bayesianism as no more than a set of rational

norms on belief formation and modification.
20 [25], p. 287
21 [20], p. 173
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other front that it effectively re-defines the domain so that p falls outside
it. Then T ’s failure to address p ceases to be an issue. This, though, is not
a judgment that Bayesianism can formalise. What loss of scope is a price
worth paying for a gain in explanatory power? Like Salmon’s judgments
of relevance and plausibility, this part of scientific thinking falls outside of
the Bayesian account. It remains to be seen whether any formal account can
model such judgments.22

Clark Glymour offers a generalised version of Laudan’s argument.
Glymour maintains that:

There are a variety of methodological notions that an account
of confirmation ought to explicate and methodological truisms
involving these notions that a confirmation theory ought to explain:
for example, variety of evidence and why we desire it, ad hoc
hypotheses and why we eschew them, what separates a hypothesis
integral to a theory from one ‘tacked on’ to the theory, simplicity
and why it is so often admired, why ‘de-Occamized’ theories are
so often disdained, what determines when a piece of evidence is
relevant to a hypothesis. . . 23

Glymour goes on to explain that, in his view, Bayesianism can explicate
some but not all of the items in this list, and that “There are elementary
but perfectly common features of the relation between theory and evidence
that the Bayesian scheme cannot capture at all without serious—and perhaps
not very plausible—revision.”24 He goes on to explain that he considers
Bayesianism pertinent for statistical reasoning and that it captures some
principles of ordinary reasoning. I report his view here but not his arguments
for it, since these would put off consideration of formal learning theory even
further.

My point is that contemplation of actual scientific practice, for all it
led philosophers to an unwelcome brush with historicism, did leave us
with a fund of methodological wisdom. Not the One True Method, but a
collection of methodological “notions and truisms”, together with a respect
for the sensitivity to the particular situation that is required to use them
well. Bayesianism cannot be a comprehensive account of scientific reason
unless it can model and account for all these notions and truisms. This
point tells only against those who imagine that Bayesianism is the whole

22 In this volume, Clark Glymour argues that formal learning theory can articulate some of
these trade-offs, even if it cannot calculate them.

23 Glymour in [25], p. 293.
24 Glymour in [25], p. 294.
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story—no-one denies that it has something important to say. Most Bayesians
regard Bayesianism as a set of constraints on the relative strengths with
which we hold our beliefs, but insist that how those beliefs are formed and
evaluated within these constraints is another question. Bayesianism cannot
by itself explain scientific successes (though it may explain those failures in
which its formal constraints are violated) nor can it offer advice about the
choice of concepts, tools, background metaphysics, problems to address and
experiments to attempt.

3 FORMAL LEARNING THEORY

The simple claim that I have just made with respect to Bayesianism
seems to come for free in the case of formal learning theory. For, learning
theory asks under what conditions a problem is solvable “in the limit”, that
is, does the sequence of conjectures produced by a given scientist-function
stabilise in the long run? This question matters to us even though “in the
long run we’re all dead”, because “if you can’t know the truth in the long
run, you can’t know it in the short run either.”25 So learning theory offers
us constraints of the form: learners with these computational bounds will
never solve problems of that logical type. It might seem that we could stop
here with the conclusion that learning theory provides theorems about what
is possible in the limit that leave a lot of latitude for the exercise of informal
expertise (like Salmon attempt to yoke Bayes and Kuhn together). However,
this will not do, first because learning theory does not entirely respect the
short-run/long-run distinction, in the sense that it considers questions of
efficiency (which scientist-functions stabilise quickest?). Second, learning
theory is able to formalise some of our common stock of methodological
notions and maxims (such as consistency, conservativeness and decisiveness,
for example) in order to assess their effects in the limit. An obvious question
arises: can it formalise all of them? If not, what part of our accumulated
methodological wisdom escapes formalisation, and why?

To make the question more pointed, consider this programmatic passage
from Martin & Osherson Elements of Scientific Inquiry:

Whatever the motives for studying inquiry, we must begin by
appreciating the complexity of the subject matter. As a form of
human behavior, science involves a wide range of activities, both
in and out of laboratories. Surely such a phenomenon cannot be
understood without substantial idealization. By limiting attention to

25 [8], p. 282
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just a few, salient aspects of science we may hope to understand
their interaction within the larger scheme, and eventually illuminate
further variables that can be added to our model at a later stage.26

We are given no reason to suppose that enquiry (considered as a complex)
has a logically modular structure that would allow us to isolate and model
some of its ‘elements’ without reference to the whole activity—notice that
this atomism is incompatible with the holism proper to historical studies. Nor
is it obvious that anything recognisable as human enquiry remains after the
‘substantial idealization’ required for formalisation. Indeed, it may be that
a mathematically precise model of enquiry falsifies the phenomenon. Some
case-studies seem to show that ambiguity is necessary for progress.27

To return to our question, let us see if there are any methodological
notions and precepts that cannot be included in a sequence of progressively
more complex formal models as envisaged by Martin & Osherson.

The first thing that leaps out of the literature on formal learning theory
is the notion of a “paradigm”. This term is clearly owed to yet distinct
from the concept introduced by Kuhn.28 One reason to adopt this Kuhnian
terminology is this: learning theory has from its inception tacitly accepted
the Kuhnian view that enquiry can only get going when there is a consensus
on all the hard metaphysical and methodological questions. In Gold’s [9],
published only five years after The Structure of Scientific Revolutions, the
class of possible languages is specified in advance. In later expositions,
enquiry is modelled as a game played between Nature and a scientist. The
players are given a set of possible realities. Nature chooses one of these
possibilities as the actuality, and the scientist has to identify this from the
data-stream, or “environment” supplied by Nature. Technically, a “paradigm”
in formal learning theory has five elements: the set of potential realities; a
problem; for each possible world a set of data-streams or “environments”;
some scientist-functions; and a criterion of success.29 All this has to be fixed

26 [22], p. 1. Notice that this title suggests more than a study of formal constraints on inquiry.
27 I have in mind [16], in which the elasticity of concepts is essential to the growth

of mathematical knowledge. Also, see Grosholz [10], who argues that mathematical
knowledge sometimes grows by hybridisation, and that these hybrids “often admit an
instability or inconsistency that is however held in place or made tractable by the rational
relatedness provided by the abstract structure that holds the domains together” (p. 88). Her
case study suggests that instability or inconsistency may be more than regrettable flaws;
they may be essential for progress.

28 I am tempted to label this new sense of “paradigm” thus: paradigm23, in honour of the
twenty-two senses of the term that Margaret Masterman discerned in [14].

29 [22], pp. 2–3
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in advance, as in Kuhnian normal science (and Bayesianism: recall the seven
stars/seven apertures). There is an important difference, in that in Kuhnian
normal science the paradigm is socially agreed rather than explicitly stated.
Moreover, the social agreement is not a set of rules but rather a collection
of paradigmatic examples; and the question of the similarity of new cases to
these examples is forever open-ended. Nevertheless, the Kuhnian view that
scientists have to fix their methods and metaphysics before they can do any
science is unusual among formal accounts of enquiry.

However, learning theory says nothing about the central Kuhnian ques-
tion: how do we get from a failing paradigm to a more promising one? Of
course, philosophy of science does not have an agreed, established answer
to this question. It does, however, have some methodological notions and
truisms. One we have already had from Laudan is that a theory (or paradigm
or research programme or tradition of enquiry—the exact unit of analysis is
not important) is in trouble if it cannot explain phenomena that clearly lie
within its domain.30 Such problematic phenomena need not contradict the
theory; they need only embarrass it by showing that its scope is insufficiently
broad. This, as we noted in the case of Bayesianism, raises the whole problem
of the unity and limits of a domain of enquiry. How do we establish the
domain-boundaries that allow us to say that a theory fails to address some of
its proper objects? For to do so, we must have some way of identifying the
domain that is independent of the theory in hand.

This question is especially knotty because domain-boundaries can shift
under the influence of a dramatically successful new theory. For example,
Galileo at once narrowed an Aristotelian domain, as he separated the science
of motion from the general problem of change; but at the same time he
unified the physics of the Earth and the Heavens. Nevertheless, insofar as
a domain of enquiry is a natural unit, it is so in virtue of commonalities and
connections in its subject matter. There is a science of physics in virtue of
commonalities among physical processes. There is a science of primatology
in virtue of commonalities among primates. It seems to me unlikely that we
will ever have a general logical account of the unity of domains because the
commonalities that unify a domain are inevitably specific to that domain. The
commonalities that unite primates into a domain of enquiry seem to be of a
quite different sort from the commonalities among physical processes that
render a science of physics possible. If I am right about this, then no formal
theory of enquiry can ever fully articulate those methodological notions and
truisms that refer to the borders between domains of enquiry. Those borders

30 Laudan calls these “non-refuting anomalies” [20], p. 166; Lakatos calls them “heuristic
falsifiers” [16], p. 82.
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are established and maintained by means and criteria that are local to those
domains, and will therefore resist formal modelling. Indeed, for the same
reason, no general account (formal or otherwise) can go far beyond the truism
that, other things being equal, a theory should address all those phenomena
in its domain. The case of Galileo shows why: sometimes, progress requires
that domain boundaries be redrawn.

Next, there is the obvious passivity of the “scientists” (that is, scientist-
functions) in learning theory. They do not need to carry out experiments,
because the data is supplied to them by the “environment”. In formal
learning theory, the “environment” is nothing but a stream of data. This is
a more significant idealisation than may at first appear. An experiment is
a complex of physical processes (bombarding this with a stream of those,
mixing some of that with a tincture of the other, etc.). It takes considerable
scene-setting to turn such manipulations of matter into arguments. Doing
or seeing something does not, by itself, generate propositions. It is at this
point that familiar considerations about the theory-laden-ness of data enter
the story. The conduct and interpretation of experiments normally requires
expert judgment, tacit knowledge and a trained eye (and if the experiment is
to be robust it must be repeated in a variety of different laboratories, requiring
a whole community of trained eyes).31 All our accumulated sensitivity to the
logical and phenomenological subtlety and fallibility of experimentation is
abstracted away in formal learning theory. Instead, we have an optimistic sort
of empiricism in which the ‘environment’ supplies indubitable facts, ready to
use, to a passive observer. This is probably as it should be, as it is not obvious
how the experimenter’s skill and tacit understanding could be formally
modelled. Here again, if I am right, we have an essential aspect of enquiry
that resists formal modelling.32 It is not just that the results of experiments
are empirical and therefore less than wholly certain. It is that navigating these
uncertainties requires hands-on know-how that is nevertheless part of the
logic of empirical enquiry.

The ‘scientists’ of formal learning theory can usually get away with
passively contemplating whatever data they are fed because it is normally
stipulated that the ‘environment’ drops all the facts into their laps eventually.
In the case of language-learning, Gold’s 1967 paper assumed that every

31 See, e.g., [6].
32 This connects with an issue in artificial intelligence and philosophy of mind. Some philoso-

phers (under various influences including Heidegger, Merleau-Ponty, Kuhn and the later
Wittgenstein) deny that know-how can be comprehensively analysed into propositional
knowledge-that. If they are correct then experimenters’ skills cannot be entirely coded in a
logic-system. See [4].
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string in the target language is presented to the learner at least once.33 This
is a reasonable assumption if the point is to establish impossibility results,
because a language that is unlearnable with this generous assumption is
certainly unlearnable without it. However, deciding what data to collect is
a crucial part of scientific judgment, not least because it is often the case
that data cannot be collected passively. Much of our information about the
world cannot be gathered without the use of specialist machines, and will
not be gathered unless some scientist believes that it can be gathered and
is worth gathering. No-one committed to humour-medicine would bother to
go looking for germs. No-one committed to perfect, unchanging Heavens
would bother to set up a screen to display sun-spots. Moreover the available
technology sets limits to the range of possible experiments and observations.
In learning theory the available data is specified when the “environment” is
fixed, but (reasonably) the “environment” is not changed by the “scientist’s”
learning. The “environment” sends its data in a pre-determined stream
regardless of the “scientist’s” state of knowledge. In practice, new knowledge
raises new questions, which in turn elicit data that would not otherwise have
been forthcoming.

Now, learning theorists know that their “scientists” are unnaturally
passive. Therefore they developed the concept of an “oracle” that collects
data from the “environment” and feeds it to the “scientist”. The oracle
decides what data to collect next as a function of the information received
so far.34 This, though, merely raises questions of efficiency (that is, which
oracles help scientists to reach their success-points quickest?). So far as I
know, learning theory does not model the fact that a scientist may never see
certain data because his false beliefs prevent him from looking for them. The
oracle stands between the “scientist” and the “environment”, and determines
the order in which the data arrives. The oracle is not modified by what
the “scientist” learns (though in advanced versions of learning theory the

33 [9], p. 448. This presentation can take two forms: “text” and “informant”. A “text” for a
language L is “a sequence of strings x1, x2, . . . from L such that every string of L occurs at
least once in the text” (ibid. p. 450). An ‘informant’ for L “can tell the learner whether any
string is an element of L , and does so at each time t for some string yt” (op. cit.). In the
case of learning from an informant rather than from a text, it is assumed that every finite
string of the alphabet common to the possible languages will come up at least once. No
other strings are presented, and each string is accompanied by information as to whether
the string is correct or incorrect. He briefly considers ‘request informants’ that answer
queries about strings chosen by the learner, but quickly proves that these are equivalent
to the ‘arbitrary informant’ that rules on all the possible strings in an arbitrary order
(ibid. p. 467).

34 [22], pp. 87–90
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“scientist” may be modified by what it learns). Real scientists change their
search-strategies as well as their hypotheses in the light of new information.
In learning theory, the real scientist has been split into a “scientist” that forms
beliefs and produces hypotheses, and an oracle that decides what question to
ask next. The point here is that changes to the “scientist” ought to induce
changes in the oracle. This brings us back to the first point: there are no
paradigm-shifts (or problem-shifts, or changes of background metaphysics)
in learning theory.

A third methodological notion that learning theory may struggle to
articulate is that of the ad hoc hypothesis. In fact there are two principal
senses in which a hypothesis may be ad hoc. One is straightforward: a
hypothesis is ad hoc if it has been cooked up solely to save a theory from one
particular counterexample, but offers no explanation or insight into anything
beyond that one case (“All swans are white—obviously, this pink one has
been dyed.”). The other sense of ad hoc requires reference to a research
programme: a hypothesis is ad hoc in this sense if it is developed using
resources from outside the proper repertoire of the research programme. A
hypothesis could be ad hoc in the second sense but not in the first. That
is, a hypothesis could be an insight and a step in the right direction, and
yet be ad hoc with respect to a research programme that makes use of it
(“The flow of humours through a wound may be blocked by tiny animals,
so we should boil our instruments and bandages to kill them.” Here, germ
theory is ad hoc with respect to humour-medicine, but is in itself an insight).
It may be possible to formalise the first sense of ad hoc. However, general
accounts of methodology, including formal learning theory, will struggle to
articulate the second notion of ad hoc-ness because it requires the notion of a
sustained and unified enquiry (or paradigm, or research programme, etc.) as
a heuristic whole. Here, the point is the same as I argued above for domains
of enquiry. The principle of unity of a research programme is specific to
that programme. If the unity of a research programme cannot be formally
modelled, then it must also be impossible to model the case in which a given
hypothesis violates that unity (excluding trivial models in which the unity of
the programme is an unanalysed black box).

The pattern of argument should be obvious now if it was not before:
I have deliberately picked out methodological notions and truisms that
require some reference to the specifics of the domain of enquiry or the unity
of the enquiry itself. It is, ultimately, the unity of these complex wholes
(domains of enquiry and research programmes) that resists formalisation.
There is another notion that depends on them, which for the sake of a label we
might call the “Whewell bonus”. This is the case in which a theory predicts
or explains a phenomenon that it was not originally intended to address;
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the case in which even the theory’s champions are pleasantly surprised by
its success. This notion is notoriously difficult to formalise because as it
stands it involves the intentions of the theory’s originator. These intentions
(being psychological items) ought to be irrelevant if the Whewell bonus
is an objective virtue of theories. The challenge is to capture the thought
that a theory has reached beyond its original scope without making any
psychological reference. Here again, I would argue for particularism: there is
no general logical account of the original scope of theories. If in any given
case it is possible objectively to determine the original scope of a theory, it
is only by paying attention to the details in hand. Apart from anything else,
it may be that the proper scope of a theory is in part a function of the history
of the discipline in question prior to the formulation of the theory. The same
point comes up if we consider unification by consilience, in which a pair of
distinct theories in hitherto separate domains of enquiry come to reinforce
each other (for example, if studies of population DNA and the evolution
of language groups produce the same hypotheses about human kinship and
migration).

The Whewell bonus raises another class of methodological notions and
truisms, namely, those that exploit the insight that theories are as much tested
against each other as they are against nature. We accept our current scientific
orthodoxies because they are our least lousy theories so far. Therefore, we
cannot fully formalise a set of criteria for accepting or rejecting theories
without articulating some principle(s) of comparison between theories. In
particular, a Whewell bonus is only a real bonus if the phenomenon has not
already been adequately explained by some other theory. I shall not insist
on this point, however, as it may be possible to modify formal ‘scientists’
so that they watch each other’s results as well as their own and modify their
enquiries accordingly. Indeed, there are already some results about teams of
“scientists”, though these do not answer the present point.35

4 CONCLUSION

So far I have argued that there are methodological notions and truisms that
formal learning theory has not captured, and probably will not ever capture.
This is essentially the same claim that Glymour, Laudan and Salmon made
about Bayesianism. Since this is a negative claim, let me now allay some
natural fears. The point is not to “attack” formal learning theory, but rather
to learn a lesson from the history of our own discipline. When philosophers
acquire a new tool, there is a danger that the rising generation of researchers
may be so impressed with it that much of what was known before is forgotten.

35 [24]
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The more impressive the tool, the more intense the danger. Something of the
sort seems to have happened to the philosophy of science and mathematics
with the development of formal logic from Frege onwards, and it took a rather
wrenching “historical turn” for philosophers to rediscover the sensitivity
to history and practice that previous generations took for granted. Let us
not make the same mistake again. Let us learn what we can from formal
learning theory without losing sight of what we have learned from historical,
sociological and phenomenological studies of science. These studies have
shown us that much of the rigour of science is bound up with the subject-
matters and specialist techniques of individual sciences. Dendrochronology,
for example, depends on truths about logic, trees and the weather, plus the
judgment of experts and the reliability of their computers. To isolate the
logical aspect and forget the rest makes a mystery of the effectiveness of the
technique, and this is to invite mystification and scepticism. It is precisely
because the rigour of each special science depends on its characteristic
objects and techniques that enquiry is not the sort of thing of which there
can be a science.

Philosophy ought not to ignore developments in logical theory. But the
alternative to mathematical accounts of enquiry is not mere “religion”, and
philosophy ought not to ignore historical and phenomenological studies
of scientific practice either. Philosophy cannot (as Salmon hoped) simply
combine these approaches because their standards of rigour are incompatible.
Abstraction is a methodological sin among historians, while historicism is
anathema to logicians. Philosophers, caught in the middle, are at once chided
by mathematical logicians for lacking the clarity of the exact sciences, and by
historians for concocting abstractions while neglecting concrete reality. The
point of this article is to explain to exponents of formal learning theory that, if
philosophers do not embrace it with both hands, it may be because one hand
is already carrying a rather unwieldy load of historical and phenomenological
insight.
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