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Introduction

Category theory is now part and parcel of contemporary mathematics, theoretical
computer science and even mathematical physics. And it is here to stay, for good
reasons. However, these reasons are not clear to everyone, even within the math-
ematical community. Category theory is hard to learn and master. It is abstract. It
is general. Someone has even said that it is “general abstract nonsense” (but it was
meant as a joke). What is the point? Why bother? The point is that not only is it
mathematically rich, deep and profound, but it is more generally conceptually rich,
deep and profound. What does it take to see this? Understanding a specific important
case is a place to start.

Nowadays, no one would deny the importance of group theory in mathematics,
physics, chemistry and science in general. Groups show up everywhere and when-
ever they do, their presence is significant, useful, and reveals deep and essential
conceptual components of a situation. But it took almost a century for the commu-
nity of scientists to recognize this fact. According to many, groups were considered
too abstract, too conceptual. The latter reaction might reveal more about those who
pronounced it than about the field itself. The fact is: groups capture basic structural
facts of a situation and allow for computations of otherwise intractable properties.
It turns out, although this certainly was not intended to be an important part of the
definition of a category, that groups are special cases of categories. It might take a
century for the scientific community to recognize the importance of category the-
ory. Indeed, it even took some time for category theorists themselves to recognize
that categories, their properties and structures were as significant as groups, their
properties and structures.

Category theory arose in the brains of Samuel Eilenberg and Saunders Mac Lane
in the early forties and was immediately applied to algebraic topology. In the fifties,
it made possible the creation of a whole new field of mathematics, namely homo-
logical algebra. It was the language in which Alexandre Grothendieck cast his revo-
lutionary approach to algebraic geometry in the sixties and although it took a while
before the community of algebraic geometers adopted Grothendieck’s style, con-
temporary algebraic geometry is unthinkable without category theory. And the same
can be said about algebraic topology and homotopy theory, to mention just these two
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2 Introduction

obvious cases. It was only at that time, approximately twenty years after its creation,
that category theory became an autonomous research area and that mathematicians
working in the field could claim to be category theorists. This was an important
moment in itself, but more was to come. In the seventies, to the surprise of its origi-
nators (and despite the contrary opinions of the majority of logicians at the time), the
realms of logic and the foundations of mathematics were shown to fall under its cov-
erage via one of the key concepts introduced by Grothendieck, namely the concept
of a Grothendieck topos. At that point, category theory was already covering a large
spectrum of mathematical concepts: from logic and sets to topological spaces. And
the developments and applications went on. Categorical ideas and methods were in
the background of Faltings’ proof of the Mordell conjectures and of Wiles’ proof of
Fermat’s last theorem, although not explicitly in the proofs themselves. Computer
scientists understood its usefulness in the eighties and it has been applied in various
ways in that field ever since. It is now finding its way into mathematical physics,
especially in the search for a theory of quantum gravity.

So the applications of category theory, at first somewhat limited to a few specific
fields of mathematics where its role was obvious, are nowadays varied, wide and
deep. This vast success, in itself, calls for an explanation. One striking feature of
the theory is that it turns up whenever the conceptual foundations of a problem or
a field need to be clarified. The fact that some of the key concepts of mathemat-
ics, at first seemingly unrelated, turn out to be special cases of general categorical
concepts indicates that it captures key features of mathematical situations. The fact
that seemingly different constructions are nothing but the same abstract categorical
concept suggests that there is a deep unity revealed by categorical methods.

Mathematics has changed radically during the first half of the twentieth century
and the use of the axiomatic method certainly played a key role in this change. Math-
ematics underwent further profound changes in the second half of the twentieth cen-
tury, changes that are still going strong and I believe that category theory has played,
is playing and will play a crucial role in these changes. A basic feature of this role is
the fact that it is possible to use the axiomatic method entirely within the language of
category theory: the language contains the resources to define, axiomatically or di-
rectly, concepts, systems and theories, to construct in a unified manner fundamental
mathematical systems of various types and prove, with the help of categorical meth-
ods, numerous theorems. These possibilities were not seen when the theory was
introduced and, as I have already mentioned, it took approximately twenty to thirty
years before some mathematicians could understand that it was possible. One of the
goals of this monograph is to present how these changes came to be: how mathe-
maticians moved from a convenient and heuristically valuable linguistic turn (I am
even tempted to use the word “dialect” at this stage), to a systematic and powerful
way of thinking—not only a “language” but also a whole collection of concepts,
methods and procedures—whose level of abstraction and generality is without any
comparable predecessor.

Of course, the fact that one can do something does not entail that one has to do
it. Learning a new language is not easy and requires time and effort. One has to
convince oneself that the acquisition of this new language is worth the investment,
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both at the individual level and at the collective level. Here a subtle and delicate
issue arises: why should a mathematician or a community of mathematicians adopt
category theory? For some, perhaps a majority, the adoption of such a general, ab-
stract and abstruse framework can only be justified by its power and efficacy in
proofs; that is, it has to be clear that proofs of important, deep and difficult theo-
rems can be achieved with it. Even better: that it is only by these means that they
can be proved. Features of a different kind will convince others: simplicity, unifying
conceptual power, indispensability with respect to some specific problems in a field
(e.g. homotopy theory), or generality. Still others will claim that category theory
cuts “mathematical nature” at its joints or that it constitutes the exact mathematical
expression of a fundamental metaphysical fact. Needless to say, it is not our inten-
tion here to argue in favor or against one or another of these justifying claims. Nor is
it our intention to convince anyone to adopt category theory as a general framework.
It is not even our intention to collect explicit reasons that would justify its endorse-
ment. These reasons will show up in various guises as the book develops. They will
be part of the story.

My basic claim in this monograph is that category theory is a conceptual ex-
tension of Klein’s program in elementary geometry. Or rather, with hindsight one
can argue that Klein’s program is one very special case of the power, richness and
persuasiveness of categorical methods. It illustrates in a particular setting how ba-
sic categorical ideas, namely morphisms between certain kinds of objects, capture
essential and fundamental aspects of a situation. Furthermore, there are many his-
torical threads between category theory and Klein’s program. First, the fathers of
category theory, Eilenberg and Mac Lane, made a direct reference to Klein’s pro-
gram in their original paper on category theory published in 1945. Second, there is
a filiation from Klein to Mac Lane, via Hilbert and Noether. Third, given Noether’s
influence on the development of algebraic topology in the thirties, one can also
conjecture a link between Noether and Eilenberg, perhaps via Hurewicz, who intro-
duced, among other things, the notion of short exact sequences. Be that as it may,
the conceptual link stands by itself. As I will try to show, most of the basic elements
implicitly and explicitly present in Klein’s program transfer almost directly to cate-
gory theory. They make clear the distinctive features of category theory, its role in
mathematics and in the foundations of mathematics. The main and basic point is that
category theory is thoroughly geometric and this simple fact, correctly understood,
goes hand in hand with facts which allow us to see in what way category theory
differs from set theory and in what sense it can play a genuine foundational role in
mathematics.

I will now sketch how these theses will unfold in the chapters of the book.
Chapter 1 opens up with Klein’s program. Geometry is usually thought of as

the science of figures and shapes in space. The latter are usually given in a certain
language, analytic or synthetic, and one proceeds from postulates and definitions to
prove properties of geometric objects. In Klein’s time, various notions of space were
developed. Klein’s insight was that a space could be studied as an object in itself,
from a global and external point of view. One then associates to a given geometric
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system an algebraic structure that captures its basic and essential properties, namely
its group of transformations.

Once the importance of the notion of transformation group is recognized, an
elementary geometry can be given by a manifold together with a criterion of identity
for geometric objects and a criterion of meaningfulness for geometric properties.
The transformation group acting on the manifold provides these criteria.

Klein systematically used what he called a “principle of transference” which al-
lows the transfer of a geometric structure from one manifold to another manifold,
provided there is a bijective correspondence between the manifolds. This is, as far
as we know, the first systematic instance of what is now called a “change of base”
or a transfer of structure. Although complex projective geometry occupied a priv-
ileged place in Klein’s work, it is clear that his approach provided a thoroughly
“democratic platform in geometry, establishing the group of transformations as the
ruling principle in any kind of geometry, and yielding equal rights of independent
consideration to each and every such group.” ([268], 28) This does not mean that
any geometric structure is as good as any other one, but, rather, that one has the sys-
tematic means to understand how geometric structures are related to one another,
how they can be identified, compared and classified.

It is the transformation group which is seen as fundamental, for not only does
it provide, as we have already said, a criterion of identity and meaningfulness, but
also because it shows what is essential and what is inessential in geometry. Thus the
study of a geometry becomes the study of a transformation group. Moreover, the
systematic use of groups provides also a criterion of identity between geometries
and therefore yields a systematic classification of geometries, which was Klein’s
principal goal.

In Chapter 2, I look at Eilenberg and Mac Lane’s original claim that category the-
ory can be considered a continuation of Klein’s program. Along the way, I present
and examine the definitions of category, functor and natural transformation. I try to
clarify the status of these “entities” in their applications, in particular in algebraic
topology. However Eilenberg and Mac Lane did not and could not exploit the con-
nection between Klein’s program and category theory fully. One of the main reasons
is that the notion of category was, rightly for their purposes, secondary. It was only
introduced so that the notions of functor and natural transformation could be given
a firm basis and so that they could be defined in their full generality. Moreover, they
did not have nor did they need the general notion of a categorical property, that is, of
a genuine property of a category. Thus they could not consider genuine categorical
structures.

Hence, they did not extend Klein’s program as such, although they clearly made
an effort to extend a part of it. Categories are not seen as playing in mathematics a
role similar to groups in geometry. The connection they make to Klein’s program,
although perfectly correct and legitimate, is limited to one methodological dimen-
sion of Klein’s work.

But in fact, the main reason why Eilenberg and Mac Lane could not see how to
extend Klein’s program by using categories is that they simply did not have in their
possession some of the key concepts of the theory. It can be argued, I believe, that
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although Eilenberg and Mac Lane introduced categories, functors and natural trans-
formations, they did not introduce category theory. What was missing was the alge-
braic structure of categories. It took about fifteen years for the latter to emerge and
another three to five years for the algebra to be exploited systematically. In a sense,
it is still not fully exploited by the community of mathematicians. It is as if mathe-
maticians had noticed the presence of groups in geometry but had failed to exploit
group theoretical concepts in geometry, thinking that groups were merely useful for
the classification and organization of geometry. In Chapter 3, I examine therefore
the emergence of the notion of universal arrow as it appeared in Mac Lane’s pa-
per in 1950. I then move on to Grothendieck and his use of universal arrows in the
definition of Abelian categories. Abelian categories constitute the first historical ex-
ample of a foundational use of category theory that goes beyond the merely heuristic
and organizational. While doing this work, Grothendieck introduced explicitly the
correct criterion of identity for categories, namely the notion of an equivalence of
categories. It is a surprise to most category theorists to learn that the latter notion
was not in Eilenberg and Mac Lane’s original paper. I then move on to another key
notion in Grothendieck’s work: representable functors. Although the latter is equiv-
alent to the notion of universal morphism, it leads to a better understanding of the
criterion of identity for categories as well as the notion of a categorical property.

In Chapter 4, I proceed to examine the key categorical concept: adjoint functors.
The whole chapter is devoted to Kan’s discover of the concept in 1956 and published
in 1958. I consider certain claims made by Mac Lane concerning the discovery of
adjoint functors and present my own analysis of this historical event. I speculate
as to why Eilenberg and Mac Lane did not see the notion right from the beginning
and why Kan did see it. This takes us through some homotopy theory and Kan’s
early work in the field. There is a circle of ideas showing up at this stage between
the notions of universal morphism, representable functor and adjoint functors. Once
these notions have been seen and understood, category theory came to life. Genuine
categorical concepts and properties were formulated and exploited in numerous sit-
uations. In the same way that group theoretical properties and structures can be used
to solve genuine geometrical problems (and others, of course), categorical proper-
ties and structures can be used to solve mathematical problems. Moreover, again as
in the group theoretical case, the categorical representation yields a better under-
standing of the situation and of its essential elements.

I therefore pursue the notion of adjoint functors further in Chapter 5. I try to
provide an informal understanding of the notion and present a series of paradigmatic
examples. At this point, I make contacts with logic by showing how propositional
connectives arise naturally as adjoints to elementary and trivial functors. This is a
key and central phenomenon: given an elementary functor, very often its adjoints,
when they exist, turn out to be fundamental operations. This illustrates in a striking
manner the importance of the concept of adjunction. I go back to the notion of
equivalence of categories and illustrate how two seemingly different categories turn
out to be equivalent, or essentially the same, from a categorical point of view, in the
same way that two seemingly different geometric systems turn out to be essentially
the same when looked at from the group theoretical point of view. I also return
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to the issue of what constitutes a categorical property, first by considering a natural
generalization of the notion of group—namely the concept of groupoid—and second
by presenting Freyd’s characterization of categorical properties.

At this juncture, I open up a parenthesis on the issue of the foundations of cate-
gory theory and categorical foundations of mathematics. In the sixties, while cat-
egory theory was gaining in popularity, clarity and strength, there were reasons
to reconsider the question of its foundations and there were indeed proposals to
build mathematics on categorical footings. I take a look at Mac Lane’s hesitations
on the question of the foundations of category theory, Feferman’s proposal regard-
ing the same problem, and the accompanying criticisms launched by Kreisel against
categorical foundations. I believe that Kreisel’s attitude and criticisms have been
extremely influential among logicians and mathematicians interested in the founda-
tions of mathematics. I also believe that although Kreisel was justified in voicing
these criticisms in the late sixties and early seventies, they quickly became unjusti-
fied. Furthermore, it seems clear that Kreisel himself was open to various alterna-
tives in foundational studies and that he might in the end have seen the relevance of
category theory and categorical logic in these studies.

I then turn, in Chapter 6, to the categorical program in the foundations of mathe-
matics, launched by Bill Lawvere in the early sixties and mostly developed by him
during the same decade. Lawvere’s vision was entirely original and based on a deep
understanding of abstract category theory and its main concepts. Lawvere’s goal
was to find a new and, according to him, more appropriate foundation for differ-
ential geometry. He was convinced that the standard set-theoretical foundations for
analysis carried with them extraneous and useless elements and that an alternative
based on categories would be more faithful to the nature of the continuum. However,
Lawvere did not start with analysis, but rather presented a categorical foundation
for universal algebra. But the latter was conceived right from the start in a larger
framework in which the category of categories constituted the universe in which
mathematical concepts had to be developed, including the concept of abstract set.
Soon after, Lawvere not only understood how logical operations, including quanti-
fiers, were representable as adjoints to elementary operations, but also how formal
systems and their models could be captured in the categorical space. This explo-
ration culminated in the discovery, made in collaboration with Myles Tierney, of
the concept of elementary topos and its links with logic and algebraic geometry.
Thus by the early seventies, the direction to be taken was clear to all category theo-
rists interested in the program and it did not take long before the roots to grow deep
in the foundational soil. In this chapter, I take a closer look at the program and its
main philosophical implications. I examine Lawvere’s approach to the category of
categories, the category of sets, and then I move to logic and some of the main and
relevant results obtained in the early seventies by various category theorists. It turns
out that one of the main ideas in the field is precisely the idea of invariants under
various transformations and how category theory captures these invariants.

Chapter 7 is solely devoted to topos theory. I look at both Grothendieck toposes
and elementary toposes. Topos theory gives rise to a fascinating interplay between
logic, set-theoretical thinking, and geometry. Indeed a topos can be thought of as
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a higher-order type theory or a local set theory, but it can also be thought of as a
generalized space. Topos theory, in turn, can be thought of as a generalization of
topology, as Grothendieck has emphasized from the beginning, and a proper frame-
work for the foundations of mathematics. Our goal in this chapter is to give a brief
and partial survey of the main features of toposes and topos theory, more specifically
those features which are closely related to the geometric and foundational nature of
the field. Needless to say, a whole book could have been written on that particular
aspect of category theory.

Category theory is radically different from set theory in many ways, one of which
is a consequence of the fact that its methods are fundamentally algebraic, whereas
set theoretical methods are, well, set-theoretical (some would say, and I would con-
cur: combinatorial). In particular, since groups are a special type of categories, many
methods developed in the study of abstract groups, including Lie groups, have found
and are finding a natural generalization in categories, in particular presentations and
representations of categories. These methods naturally lead to categories of cat-
egories, which are categories with more structure, this latter additional structure
being essentially geometric. However, the development of the geometric point of
view in the foundations of mathematics also leads to categories of categories. At
this stage, two problems show up: a proper characterization of the so-called weak
n-categories, and once the latter problem has been solved, a proper axiomatization
of a category of categories as a foundation for mathematics has to be provided.
These are still open problems at the moment of writing. No matter what the tech-
nical details of these developments turn out to be, the main fact remains: category
theory is essentially geometric.

Assuming that I have been successful, I will have shown how many important
conceptual aspects of Klein’s program and its extension transfer to category theory
and categorical foundations of mathematics. In fact, the parallel between Klein’s
approach to geometry and category theory might be reasonably easy to explain:
in the same way that transformation groups and Lie groups are basically algebraic
structures which turn out to have a rich geometric content because they are deeply
rooted in geometry, categories are basically algebraic structures which turn out to
have a rich geometrical content, also because they are deeply rooted in geometry,
in a loose sense of that latter expression. Categories, like transformation groups
and Lie groups, are more or less the algebraic embodiment or coordination of our
thinking about geometric structures and properties. (And, as I have already said,
Klein’s program is nothing but a very special case of applied category theory!) Thus,
although it is possible to do the algebra without thinking about geometry, I believe
that to make sense of these algebraic concepts and techniques, it is preferable to
keep in mind what it is that is coordinated by these techniques of thinking and what
it was all along: geometry. Otherwise, one might come to think that category theory
is merely a collection of purely algebraic tricks useful in the organization and the
resolution of a certain large but limited kinds of problems.

It is not impossible that my attempt will, in the end, disappoint everyone. The
book contains some history of mathematics and logic, some mathematics (but
not one single proof) and logic, and some philosophy of mathematics. Historians
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will probably find my historical contributions obvious, simple-minded and narrow-
minded: a kind of conceptual history that is far from a real historical study where
problems are put in a conceptual network, mathematicians in a social network, and
mathematical communities in a larger cultural and political context. Mathematicians
will probably find many mathematical mistakes and misunderstandings in my pre-
sentation and discussion of mathematical concepts and theorems, simplifications of
important ideas and results and a lack of a truly global mathematical perspective.
Last but not least, philosophers of mathematics will assuredly find my philosophi-
cal contribution shallow and irrelevant. Be this as it may, I hope that my book will
nonetheless stimulate others to contribute to a field that I believe to be in dire need
of new ideas and approaches.



Chapter 1
Category Theory and Klein’s Erlangen Program

1.1 Eilenberg and Mac Lane’s Claim

In the paper “General Theory of Natural Equivalences”, in which Eilenberg and
Mac Lane formally introduced categories, functors, and natural transformations,
they made an explicit reference to Klein’s Erlangen Program.1 They claimed that
category theory could be considered a continuation of Klein’s program. Here is how
they put it:

This may be regarded as a continuation of the Klein Erlanger Programm, in the sense that
a geometrical space with its group of transformations is generalized to a category with its
algebra of mappings ([74], 237).

This passage suggests an “equivalence” that can be written thus:

Space ∼ Category
Transformation group Algebra of mappings

Eilenberg and Mac Lane present this analogy as a generalization of Klein’s pro-
gram. As such, the equivalence is far from being clear. Are they making a genuine
generalization or is it merely an analogy?2 Furthermore, it is well-known that it
is possible to generalize concepts in varied and non-equivalent ways. Indeed, be-
fore 1945 (the year Eilenberg and Mac Lane’s paper appeared) Klein’s program had
been generalized already in different ways. To mention but one important case, the
French geometer Elie Cartan had developed in the twenties what is considered to be
a genuine generalization of Klein’s program by developing a framework in which
what he called Kleinian geometries and Riemannian geometries appear as special
cases of his generalized spaces. (See [39] or [249].) Cartan’s generalization extends

1 Eilenberg and Mac Lane had introduced functors and natural transformations in 1942 in their
paper “Natural Isomorphisms in Group Theory”. But the general theory only was published in
1945.
2 We leave open the question of what constitutes a genuine generalization. It is a difficult and
delicate question.

9
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Klein’s ideas to differential geometry. It is a bold and powerful generalization that
stays in the realm of geometry and in that sense is a “technical” generalization. For
Cartan’s goal is to find a way to apply Klein’s ideas, which are restricted to elemen-
tary geometry, to the whole of geometry as it was known at that time. By doing so,
Cartan extended the very notion of geometry by introducing new kinds of spaces.
(See, for instance, [4].) Eilenberg and Mac Lane’s generalization is of a different
nature.

As the title of their paper suggests, the key idea is the concept of natural
equivalence—to which we will turn later. In the introduction, they claim that the
“study of naturality is justified (. . . ) both by its technical and by its conceptual ad-
vantages” ([74], 236). Let us leave aside the technical aspects for the moment and
concentrate on the conceptual elements, since it is at this level that the connection
with Klein’s program is made. The essential passage reads as follows:

The theory also emphasizes that, whenever new abstract objects are constructed in a spec-
ified way out of given ones, it is advisable to regard the construction of the corresponding
induced mappings on these new objects as an integral part of their definition. The pursuit
of this program entails a simultaneous consideration of objects and their mappings (in our
terminology, this means the consideration not of individual objects but of categories). This
emphasis on the specification of the type of mappings employed gives more insight onto the
degree of invariance of the various concepts involved. For instance, we show in Chapter III,
§16, that the concept of commutator subgroup of a group is in a sense a more invariant one
than that of the center, which in its turn is more invariant than the concept of the automor-
phism group of a group, even though in the classical sense all three concepts are invariant
([74], 236–237).

The main ideas seem to be that: (1) Abstract objects ought to be considered
simultaneously with their mappings; that is, one should look at the category of those
objects instead of taking the objects separately; (2) Considering the mappings allows
a better classification of concepts in terms of their invariance. It is clearly the latter
idea that Eilenberg and Mac Lane had in mind when they made the connection with
Klein’s program. Indeed, Klein himself had presented his program in the following
words:

Given a manifold and a transformation group acting on it, to investigate those properties
of figures on that manifold which are invariant under [all] transformations of that group.
([138])

Klein’s fundamental idea was that to study a geometry, one had to look at its
group of transformations and, furthermore, the geometric properties of that geome-
try are those which are invariant under the group of transformations. This seems to
be the core of the generalization that Eilenberg and Mac Lane had in mind. But as
we will see in Chapter 2, if this is all that they had in mind, then we could say that
the generalization was a total failure! What I want to claim is that they were correct
in making this connection and in ways that they could not foresee when they made
it.3

3 I personally asked Mac Lane in 1993 whether he would still claim that category theory, as it had
developed in the last 50 years, could be considered a generalization of Klein’s program. After a
moment of thought, he answered unhesitatingly that it definitely was.
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Eilenberg and Mac Lane’s work strongly suggests that they saw category the-
ory as a convenient tool or language for certain purposes—at first, mostly in al-
gebraic topology. They were keenly aware that categories, functors and natural
transformations were completely general and could be applied to any field of
mathematics.

In a metamathematical sense our theory provides general concepts applicable to all branches
of abstract mathematics, and so contributes to the current trend towards uniform treatment
of different mathematical disciplines. In particular, it provides opportunities for the com-
parison of constructions and of the isomorphisms occurring in different branches of math-
ematics; in this way it may occasionally suggest new results by analogy ([74], 236. My
emphasis).

The last claim is prudent, to say the least. Thus, category theory might suggest,
by analogy, new results and constructions in various fields of mathematics: this
is certainly correct, but it falls far short of what the theory would actually make
possible. They could not know at that time, although as Mac Lane was just about
to discover, all the fundamental concepts of mathematics can be defined or con-
structed in a categorical framework. In the words of Mac Lane: “Eilenberg and
Mac Lane initially thought—and stated—that this first paper would be the only
needed paper on categories; these ideas would then appear just as a useful language”
([197], 131).

Eilenberg and Mac Lane’s use of categories, functors and natural transformations
certainly marks the birth of what can be called the first phase of category theory, a
phase during which category theory was seen as providing the right mathematical
framework to give a precise expression of certain problems which were previously
only informally formulated. As the quotation from Mac Lane makes clear, category
theory was, during this period, which extends roughly from 1945 up to 1955–57,
considered a convenient language, or more generally, a convenient framework. We
will come back to category theory itself and its first phase of development in the
next two chapters.

Before we do so, we have to take a close look at Klein’s program from a philo-
sophical perspective. For I believe that as the history of category theory unfolds,
the theory turns out to be a generalization of the conceptual dimensions of Klein’s
program in a deep sense. Indeed, I claim that not only does Klein’s program lead us
straight to fundamental methodological principles of category theory—namely the
very definition of a category and functoriality of mathematical concepts—but more-
over the program provides us with the inherent conception of mathematical objects
at work in category theory. Once this is clarified, one can move to the epistemo-
logical dimension of the theory and reveal the basic epistemological components
involved. Finally, it will be easier to get a better understanding of the position of
category theory with respect to other mathematical theories, e.g., set theory or con-
structive mathematics.

I will therefore look at Klein’s program from a definite perspective. My main ob-
jective is to bring to the fore three philosophically relevant aspects of the program.
First, the fact that transformation groups are not merely useful algebraic tools in
elementary geometry, but that they constitute in a precise sense the algebraic encod-
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ing of a criterion of identity for geometric objects, or to be more precise for geo-
metric object-types. Second, the same transformation groups also encode a definite
criterion of meaningfulness for geometric predicates, or, equivalently, a definite cri-
terion for geometric properties. Third, the main goal of the program is to classify
geometric spaces systematically and see precisely how they relate to one another. It
is these three philosophical dimensions of the program that I will then generalize to
category theory.

1.2 Klein’s Program: Basic Aspects

Given any group of transformations in space which includes the
principal group as a sub-group, then the invariant theory of this
group gives a definite kind of geometry, and every possible geome-
try can be obtained in this way. Thus each geometry is characterized
by its group, which, therefore, assumes the leading place in our con-
siderations.

([139], 133)

1.2.1 A Philosophical Fable

In order to illustrate what are, from a philosophical point of view, the fundamental
aspects of Klein’s program, we will start with a philosophical fable.4

Suppose three geometers, call them A, B and C, each developing a geomet-
ric theory, go to the International Congress of Geometry held in beautiful Man-
ifoldland that particular year. They each present anxiously their results to the
audience.

Geometer A works synthetically and develops what is now called inversive or
Möbius geometry. Her geometry is based on three primitive notions: points P, Q,
R, . . . , circles a, b, c, . . . and an incidence relation satisfying the following axioms
([82], 268–269):

Axiom 1: Three different points are on one and only one circle.
Axiom 2: If P is a point on the circle a and if Q is not on a, there exists a unique

circle b passing through P, Q and having only P in common with a.

Definition 1.1. a and b satisfying axiom 2 are said to be tangent at P.

4 Except for the axiomatic presentation, what we are about to describe can be found in more detail,
but in a different order, in [32], Chapter 5.
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a

P

bQ

Axiom 3: On each circle there are at least three points. There exist a point and circle
that are not incident.

Axiom 4: There exist four circles each two of which are tangent such that all six
points of tangency are different and such that no further circle through
one of these points is tangent to three of the circles.

Axiom 5: Let P, P′, Q, Q′, R, R′, S, S′ be different points with the exception that
P may coincide with P′. If C(PQRS), that is the points P, Q, R and S lie
on a common circle, similarly C(QQ′RR′), C(RR′SS′) and if PQQ′, PSS′

intersect in P, P′, then C(P′Q′R′S′).

A also adds the usual primitive notions to write down the axioms for order and con-
tinuity of the (real) plane (with a point at infinity), and then proceeds to develop the
geometric theory that follows. In particular, A introduces the fundamental transfor-
mations of her geometry: inversions.

An inversion is a transformation of the plane that generalizes reflection in a line.
Roughly described, an inversion maps points inside a circle to points outside the
circle, and vice versa. Given a circle C with center O and non-zero radius r and two
points P and P′ collinear with O such that (OP)(OP′) = r2, sending P to P′ defines
an inversion with the point O the center of inversion and C the circle of inversion
with radius r. Notice that C is fixed by this transformation and that the center O
is not in the domain or codomain of the transformation. Naturally, A explores the
properties of these transformations and even the properties of the group of such
transformations.

B studies a certain spherical geometry with analytic tools or in the analytic lan-
guage. Thus she starts by defining the real numbers either from the standard axioms
for a complete ordered field or begins with the natural numbers and proceeds as
usual to the integers, the rationals and either Dedekind cuts or Cauchy sequences.
Then B moves to the standard analytic construction of three-dimensional Euclidean
space, namely the set R3 with the standard Euclidean metric. She identifies the equa-
torial plane {(x,y,z) ∈ R3 | z = 0} with R2 and defines the standard unit sphere
S2 = {x ∈ R3 | |x|= 1}.

Using the ambient space R3 and algebra, she defines her geometric entities as
being certain subsets of the sphere S2. Thus a point is simply a point on the sphere.
A line on S2 is obtained by intersecting a plane through the origin of R3 and S2: it
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is thus a great circle. Rays, segments, angles, triangles, circles, etc. can be defined
similarly on the sphere and various results are proved.

Finally, C is interested in the geometry of the complex projective line P1(C).
Points are thus complex numbers z = x+ iy together with a point at infinity ∞. Even
though C is investigating the geometry of a line, since it is the complex projective
line, she can consider points, segments, angles, triangles, circles, etc. on the line
and, most importantly, use properties of the complex numbers like taking conju-
gates, to study and prove results about various geometric figures. In particular, C
defines various transformations of the complex projective line. These are the stan-
dard translation z′ = az, dilation z′ = rz (where r is a non-null real number), rotation
z′ = az (where a is such that ‖a‖ = 1), reflection z′ = z, the complex conjugate of
z, and inversion z′ = 1

‖z‖2 z . These transformations can be described succinctly as
follows: they are all of the form

z′ =
az+b
cz+d

or z′ =
az+b
cz+d

where a, b, c, d are all complex numbers and ad−bc = 0.
The three geometers finally meet and discuss their respective results. They are all

very interested in each other’s work, but each finds that the motivation underlying
her colleagues’ work lacks something in comparison with her own. Then arrives K,
also a geometer, who announces to A, B and C that they are all really doing the same
thing after all, even though their geometric theories are different. They all readily
agree to the differences: A works on the Möbius plane and her geometric entities are
only circles, though sometimes with an infinite radius. This last possibility baffles B,
since everything in her geometry is in a sense “finite” or at the very least “bounded”.
Furthermore, B uses analytic means whereas A restricts herself to synthetic meth-
ods. Even though C’s methods seem closer to B’s—for she also uses analytic and
algebraic methods freely—C’s geometry seems to be “closer” to A’s. Indeed, C’s
complex projective line can be thought as a plane with a point at infinity, although
it never occurred to her before to think of it that way. However, her work differs
considerably from A’s since to her, points are complex numbers and all geometric
constructions are defined via properties of complex numbers.

K first convinces A and C that they are doing the same thing. K shows first
that their underlying space is the same. Indeed, an analytical model of A’s plane is
constructed thus: taking the real plane and adding a formal point, the point at infinity.
It is then possible to show that A’s axioms are satisfied in this plane. K then shows
that this new plane is equivalent to C’s line. Inversions are then defined analytically
directly on the plane. K defines the standard bijection between the real plane and
the complex line and extends it by sending the point at infinity of the Möbius plane
to the point at infinity of the complex projective line. Using the bijection, she shows
how one can transfer A’s results into C’s language and vice-versa. Moreover, and
this finally convinces A and C that they are indeed doing the same thing, she shows
how A’s inversion can be easily expressed in C’s language, namely by complex
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linear transformations. In other words, she shows them that their geometries have
one thing in common: the associated transformation group.

K then turns to B’s case. Taking the north pole p = (0,0,1) as the point of pro-
jection, K defines the standard stereographic π from S2 minus the north pole to
the equatorial plane and extends it to the map from the whole sphere to the Möbius
plane by sending the north pole to ∞. (She notices that the projection is an inversion,
but in space, not on the plane.) B realizes that her spherical geometry can be trans-
ported or transferred to the Möbius plane in a systematic manner and that the map
π provides a dictionary between the two geometries: it sends lines to lines, circles
to circles, and preserves angles. She realizes that certain lines on the sphere are sent
to circles with an infinite radius, namely those lines passing through the north pole,
and that her geometry, which seemed to be essentially bounded, is not intrinsically
so. K then shows that transformations of the sphere become Möbius transformations
via the map π . Again this shows that the groups of transformations are isomorphic.
A, B and C are then convinced that K is correct: they are doing essentially the same
thing. K then insists that what they are all doing should be called “inversive geome-
try” and should be described thus: it is the study of those properties of figures in the
extended plane that are preserved by inversive transformations. A, B and C might
still nonetheless want to develop their geometry with their own methods and in their
original framework, although K urges them to study “the” transformation group,
since this is really what their geometries are all about. In a sense, we have a case of
what philosophers call “multiple realisability”: one and the same basic structure is
exemplified in many different ways that seem to be at first radically different.

K also points out that by fixing the point at infinity, one obtains Euclidean plane
geometry and thus that inversive group contains the Euclidean group as a subgroup.
She also notes that the inversive group does not contain the projective group of the
plane, nor does it contain the affine group of the plane, although it also contains
the group of similarities of the plane. Thus some of the relationships between these
geometries are established. We will come back to this question later.

1.2.2 Transformation Groups: Encoding Basic Geometric Facts

Let us come back to Klein’s program.5 Although the fable is restricted to inversive
geometry and that geometry was not primary in Klein’s mind, the story illustrates an
important aspect of the situation in Klein’s time. Indeed, from the late 18th century
until about the end of the 19th century, geometry exploded and grew into a com-
plex and apparently disconnected tree. Projective geometry, done over the complex
field, was slowly but surely moving towards center stage (before Klein conceived
of his program, he thought, under the influence of Cayley, that projective geometry
was central to the whole field). But it was not alone in the play: affine geometry,

5 As was underlined by [244], the term “program” in the expression “Klein’s program” does not
refer to a program in the standard sense of that expression but is simply a consequence of the fact
that Klein submitted his work as a “Programm zum Eintritt in die philosophische Fakultät”.
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Euclidean geometry, hyperbolic geometry, conformal geometry, descriptive geom-
etry, Plücker’s line geometry, Möbius’ inversive geometry, Analysis Situs, etc., all
had made or were making noteworthy appearances. The connections between these
geometries were far from clear; especially unclear were the connections between
projective geometry, which seemed to be incompatible with a metric, and other
geometries that were based on the notion of a metric. What is more, there was a
polemic over the “styles” in which a geometric theory had to be developed. Some
mathematicians were fervent adherents of the analytic-algebraic method whereas
others thought that only a synthetic approach could be faithful to the essence of
geometric objects. Klein’s main goal was to unify these various “characters” and
“styles” under a “general principle”6 and in such a way that the unification would
be systematic and objective.

The key to the unification consists in finding some intrinsic properties of geomet-
ric spaces that can be encoded in a common framework, irrespective of particular,
individual details of each one of them. These properties are encoded in the transfor-
mation group of a space and thus the group structure is used to shed a new light on
the nature and organization of a large part of geometry. This is possible because the
very notion of a transformation group is closely tied to basic features of a geometry.
Indeed, a transformation group is no more nor less than a different representation of
the basic properties of a geometry. Let us briefly recall how this is so.

Geometry is usually thought of as the study of figures in space, independently of
the positions occupied by these figures and their orientations. We picture a geometric
space by imagining points, lines, line-segments, circles, triangles, polygons, etc.,
and certain relations between them. It is also common to present the basic objects of
a geometry via axioms in a certain language, be it synthetically or with the help of
linear algebra, and then the various results are deduced from the axioms by logical
or by algebraic means. A concrete example will clarify these general remarks.

To fix ideas, let us work in the real plane R2. In the real plane there is a well-
known metric function defined by d(x,y) = |x−y|, where x and y are points of the
plane, i.e., x = (x1,x2) and y = (y1,y2). Treating the plane R2 as a vector space over
the real field R, we can define various geometric objects by algebraic means. For
instance, a line is defined in the following way. First, define a direction to be the set
of all vectors proportional to a given nonzero vector. Thus, for a vector v, a direction
is the set

[v] = {tv | t ∈ R}.

A line l through a point P is then defined to be l = P+[v], or equivalently,

l = {x | x−P ∈ [v]}.

It can be shown that this characterization is entirely equivalent to the purely analytic
definition of a line in the plane. Recall that analytically, a line is given by the set

{(x,y) | ax+by+ c = 0}, provided that a2 +b2 6= 0.

6 This is Klein’s own expression.
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We can obviously define other figures either with intersecting lines or directly by
algebraic or analytic means, e.g. circles and conic sections in general. This way
of setting up the stage for geometry is of course the algebraic approach. A purely
logical description is also possible, and in fact it is possible to mix the logical struc-
ture together with the algebraic components in an axiomatic framework. (See for
instance [25].)

So far, we have given the basic ingredients necessary to develop plane Euclidean
geometry in an “internal” fashion, so to speak. It is entirely possible to develop the
geometry with the standard algebraic methods. However, sooner or later, one real-
izes that some results are immediate consequences of certain inherent symmetries of
the geometric figures. To use these symmetries, certain transformations of the plane
that capture these symmetries are introduced. In the case of Euclidean geometry,
these transformations are called “isometries”.

An isometry is a bijective map f : R→R that preserves distances, i.e., f (d(x,y))=
d( f (x), f (y)). It can be shown that every isometry is either a translation along a line
in R2 or a reflection in a line in R or a rotation about a point in R or a glide reflec-
tion in R. The collection S(R2) of all the isometries has a certain algebraic structure.
Indeed, given two isometries f ,g : R2 → R2, their compositions f ◦g and g◦ f are
well defined and it can be immediately verified that they too are isometries. Thus,
the set S(R2) comes equipped with a binary operation. It is easily seen that this
operation is associative. Furthermore, there is an isometry e : R2 → R2, namely a
rotation through an angle that is a multiple of 2π , which acts as the identity with
respect to the binary operation; i.e., for any isometry f in S(R2), f ◦ e = e◦ f = f .
Finally, it can also be seen that for any isometry f , there exists an isometry f−1,
called the inverse of f , such that f−1 ◦ f = f ◦ f−1 = e. In other words, S(R2) is a
group, the group of transformations of the Euclidean plane.

Isometries can be represented algebraically with the help of matrices. An isome-
try t : R2 → R2 is a function of the form

t(x) = U(x)+a

where U is an orthogonal 2×2 matrix and a is a vector in R2. Recall that an orthog-
onal matrix is a matrix such that its inverse is equal to its transpose; i.e., U−1 = U t ,
which is equivalent to the claim that its columns are orthonormal.

The group of isometries is not only useful in deriving proofs in Euclidean ge-
ometry. Besides this heuristic role, two key features have to be underlined. First,
the group of isometries encodes basic features of Euclidean geometry. Indeed, on
the one hand, the notion of congruence of figures can be defined on the basis of
this group: two figures F1 and F2 are said to be (Euclidean-)congruent if there is an
isometry from F1 to F2. On the other hand (but this is in fact a direct consequence of
the previous remark), the notion of what it is to be a meaningful property of a Eu-
clidean figure is determined by the group of isometries. For a property P of a figure
F is a meaningful Euclidean property of F if it is a property of F as a rigid body, that
is, if the property does not change as F is moved around the plane. More formally, P
is a meaningful Euclidean property of F if and only if for any isometry f , the figure
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f (F) has the property P. It can easily be seen that these properties include distance,
angle, collinearity of points and concurrence of lines, among other things. Second,
since it is possible to associate to any plane geometry its group of transformations
and since these groups are structures in their own right which can be related to one
another, it is possible to determine on that basis how different geometries are related
to one another.

Consider, for instance, affine plane geometry. We take as the underlying space
the same space as above, that is R2. In Euclidean geometry, the notion of distance is
fundamental: circles with different radii are different. There are, however, geometric
properties that are independent of metric information. Circles have properties as
circles, over and above their properties as circles of a certain radius. The same is
true of all other geometric figures. Developing geometry with these requirements in
mind lead to affine geometry. The relevant transformations of the plane are in this
case collineations: a collineation is a bijection f : R2 → R2 satisfying the condition
that for all triples P, Q and R of distinct points, P, Q and R are collinear if and only if
f (P), f (Q) and f (R) are collinear. Let us immediately give the corresponding set of
algebraic transformations, the so-called affine transformations on the space R2. An
affine transformation of R2 is a linear map, that is, expressed in terms of matrices, a
function t : R2 → R2 of the form

t(x) = A(x)+b,

where A is an invertible 2×2 matrix and b is a vector of R2. Affine transformations
map straight lines to straight lines, parallel straight lines to parallel straight lines and
preserve ratios of lengths along a given straight line. As in the case of Euclidean
geometry, the set of affine transformations forms a group and that group encodes
the same type of information as above. Indeed, we can now determine which figures
are affine-congruent. It can be shown that:

1. All triangles are affine-congruent;
2. Ellipses are affine-congruent to circles, more precisely, every ellipse is affine-

congruent to the unit circle; in other words, all ellipses are affine-congruent to
each other;

3. Every hyperbola is affine-congruent to the so-called rectangular hyperbola with
equation xy = 1; in other words all hyperbolas are affine-congruent to each
other;

4. Every parabola is affine-congruent to the parabola with equation y2 = x; in other
words all parabolas are affine-congruent to each other;

5. But no non-degenerate conic is affine-congruent to one of a different type.

Thus, all triangles share the same (affine) properties. The same holds for all el-
lipses, hyperbola and parabola. These facts are very different from Euclidean prop-
erties. It seems intuitively clear that affine geometry is more general than Euclidean
geometry, but it is hard to express this fact using a purely geometric language.

However, the matrix presentation of the transformations allows us to see imme-
diately, or, if you will, directly, the relationship between Euclidean transformations,
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i.e., isometries and affine transformations. Since every orthogonal matrix is invert-
ible, it follows that every Euclidean transformation is also an affine transformation,
but the converse is false. Hence, the group of Euclidean transformations is a sub-
group of the group of affine transformations. In this sense, Euclidean geometry is a
subgeometry of affine geometry. This is the relationship between the geometries we
were seeking.

Klein’s basic insight, although not expressed in terms of matrices at that time,
was that the foregoing situation covers all cases of elementary geometry, including
non-Euclidean geometry and projective geometry. Needless to say, the latter cases
require more work, e.g. the projective plane is certainly not R2. Be that as it may, the
fact that transformation groups play a key role in the program is no coincidence, nor
should it be considered to be a purely heuristic classificatory device. Transformation
groups occupy the forefront of the unification because they are intimately linked to
fundamental aspects of geometry.

As in any systematic theory about a class of objects, we need a notion of equality
for the different objects of our theory. Thus a criterion of identity for geometric
objects is required. In other words, we need to know in some sense what the theory
is about or what it is to be an object referred to by the expressions of the theory. This
is a basic ontological requirement and transformation groups are intimately related
to this requirement. Indeed, as I have already mentioned, a given transformation
group is the algebraic encoding of the criterion of identity for the types of geometric
objects that are admissible in a given theory. Here is how Elie Cartan presented this
fact in a lecture on geometry and groups:

If indeed one tries to clarify the notion of equality, which is introduced right at the beginning
of Geometry, one is led to say that two figures are equal when one can go from one to the
other by a specific geometric operation, called a motion. This is only a change of words; but
the axiom according to which two figures equal to a third are equal to one another, subjects
those operations called motions to a certain law; that is, that an operation which is the result
of two successive motions is itself a motion. It is this law that mathematicians express by
saying that motions form a group. Elementary Geometry can then be defined by the study
of properties of figures which do not change under the operations of the group of motions
([42], 15–16. My translation7).

Let us unpack this claim, for it contains much of what I want to underline. First,
what is usually taken as a logical notion, namely equality of objects, is captured
in geometry by motions, or transformations of the given group. What the group
clarifies is the notion of superposition of figures, which was already used informally
in geometry by Euclid. Thus, given two figures, F1 and F2, we say that F1 = F2

7 Si en effet on cherche à préciser la notion d’égalité qui s’introduit dès le début de la Géométrie,
on est amené à dire que deux figures sont égales quand on peut passer de l’une à l’autre par une
certaine opération géométrique, appelée déplacement. Cela n’est évidemment qu’un changement
de mot ; mais l’axiome d’après lequel deux figures égales à une troisième sont égales entre elles
assujettit les opérations appelées déplacements à une certaine loi, à savoir que l’opération résultant
de deux déplacements successifs soit encore un déplacement. C’est cette loi que les mathématiciens
expriment en disant que les déplacements forment un groupe. La Géométrie élémentaire peut alors
être définie comme l’étude des propriétés des figures qui ne changent pas par les opérations du
groupe des déplacements.
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if there is a motion g in the given group G such that g(F1) = F2. One can even
interpret the axioms of group theory as being the algebraic expression of the formal
conditions imposed on the relation of identity. Generalizing the foregoing discussion
about group of transformations, we see that a group G is given by the following data:
a collection of elements together with a binary operation ×, a unary operation −1

and a constant e such that:

1. ∀x(x× e = e× x = x);
2. ∀x(x× x−1 = x−1× x = e);
3. ∀x∀y∀z((x× y)× z = x× (y× z)).

The first axiom, looked at from the point of view of the identity of geometric ob-
jects, asserts that an object is identical to itself. The second axiom amounts to the
symmetry of the identity relation: if F1 is equal to F2, then F2 is equal to F1. Finally,
the third axiom stipulates that if an object F1 is equal to an object F2 and if F2 is
equal to an object F3, then F1 is equal to F3. In other words, reflexivity, symme-
try and transitivity are captured by the axioms of group theory. Thus, associating a
transformation group to an elementary geometry is to fix a criterion of identity for
geometric objects in this geometry.

One aspect of this criterion of identity has to be emphasized immediately: what
we are characterizing with its help are types of geometric figures, not tokens of
these figures. Since a generalization of this point will recur again and again in the
chapters that follow, we will immediately try to give a first approximation of the
distinction between types and tokens that is at work in the context of geometry.8

To illustrate the distinction, suppose we are again in the Euclidean plane R2. A
specific geometric figure in the Euclidean plane can be thought as a subset of the
plane. For instance, the unit circle S1 centered at the origin (0,0), defined as the
subset {(x,y) | x2 + y2 = 1}, is a particular figure in that geometry. It is, as we will
say more generally, a particular. As such we will say that it is a token of a type,
namely, in this case, the type “circle with radius r = 1”. It is a specific instance of
the type. But there are clearly infinitely many others like it in the plane. However,
they are all, from the point of view of Euclidean geometry, the same. The group of
isometries guarantees this. Any other circle S′ with radius one in the plane can be
mapped to the unit circle S1 and vice versa. Thus, in Euclidean geometry, for each
k, there is a type “circle with radius r = k” and for k1 6= k2 the associated types are
also different. Notice, however, that one can consider the collection of all circles in
the Euclidean plane or the collection of all types of circles. These collections are
different. For, the elements of the first are all particular circles, whereas elements
of the second are all types. Of course, in this case, one could move from the first
collection to the second by taking equivalence classes of circles, where two circles
of the plane are considered to be equivalent when they have the same radius (from
a group-theoretical point of view, circles in the same equivalence class belong to

8 Philosophers will recognize the familiar philosophical type/token distinction introduced by C. S.
Peirce.
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the same orbit). One could then represent a type by its equivalence class.9 Notice
that when we move to the affine plane, there is only one type “circle”, for, as we
have already pointed out, any two circles can be mapped to one another in this case.
Thus, if one were to consider the collection of all types of circle in the affine plane,
then one would end up with a singleton set, namely the set of the type “circle”. That
type, however, has infinitely many tokens, namely all circles in the affine plane.
Geometry is not, in general, about particular figures, it is about types of figures.10 In
order to think about these types, we have to have the resources to define the types as
well as the resources to define tokens of these types. This point is fundamental both
ontologically and epistemologically and we will come back to it once we are in the
categorical setting.

Thus, a transformation group specifies the types that are admissible in a geomet-
ric space, it determines what there “is” or what can be in a space in an essential
way. As we have seen, circles and ellipses are distinguished in Euclidean geometry,
whereas the distinction does not make sense in affine geometry or in projective ge-
ometry. Indeed, circles can be transformed into ellipses and vice-versa in both affine
and projective geometry, but no such transformation exists in Euclidean geometry.
In Euclidean geometry, circles of different radii constitute different types and el-
lipses with different eccentricities constitute different types, whereas in affine and
projective geometry circles and ellipses are one and the same type, which might be
called “circular figure”.

Working with the transformations amounts to working with types instead of
working with tokens. Notice, though, that the transformations are applied to tokens
of these types and clearly the existence of the latter depends directly on the exis-
tence, or should we say the presence, of the former. Thus, a transformation group
indicates the presence of geometric types whose existence depends on the existence
of geometric tokens. Although this might seem to be a trivial point for elementary
geometry, it will turn out to be crucial when we get to categories.

This ontological dimension is closely associated to an epistemological facet of
mathematical knowledge. A transformation group is a way to abstract types from
specific tokens. For although one might work with a specific concrete representation
of a geometric figure in the course of a given proof, the transformations determine
in a certain sense the domain of validity of the proof by circumscribing the type to
which the proof ultimately refers. It should also be noted that the transformations,
in the case of elementary geometry, are global; they act on the whole space. Thus,
when one works on a proof, one usually concentrates on properties of a figure or a
configuration in the space, in other words on local attributes. Moving to the trans-
formation group constitutes a shift in attention, from the local to the global.

Furthermore, as Cartan also briefly indicates in the quoted passage—and as I
have also mentioned in the two specific cases presented—the underlying group also
determines what is a meaningful geometric property. The idea is simple enough:

9 Although it is very tempting to identify a type with an equivalence class, we believe that it is in
general a mistake, because we believe that types are not classes.
10 Of course, traditionally, geometry was very much about particular figures and the computation
of some of their properties, for instance areas or angles, etc.
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a property P of a figure F in the space S should be considered to be geometric
if and only if it does not depend on the choice of a coordinate system or, more
roughly, F’s position in the space S. This means that a genuine geometric property
P is invariant with respect to relevant transformations. More precisely, given a space
S and a group of transformations G associated to S, a property P of a geometric
figure F1 is said to be a geometric property of F1 if and only if P is a property
of F1 and for any other figure F2 equal of F1, P is a property of F2. Equivalently:
for all transformations g in G, g(F1) has the property P. A property Q that is not
invariant under the relevant transformations is not a genuine geometric property of
that geometry. For instance, in Euclidean geometry the radius r of a circle C is a
geometric property of C, whereas it is not a geometric property of a circle C in
affine geometry nor is it a geometric property of a circle C in projective geometry.
For in affine geometry, circles with different radii are transformed into one another,
and in projective geometry, circles are sent to conic figures in general.

As we have seen, the group axioms are the algebraic formulation of the criterion
of identity for geometric figures. More can be said about the translation of logical
aspects of geometry into the algebraic structure of the transformation groups. In-
deed, a given group of transformations literally contains all the logic of a geometry
and since it provides a criterion of identity of objects and their properties, it can be
said to provide, in a certain sense which will have to be clarified, a foundation of the
geometry. In the words of Elie Cartan,

(. . . ) it is the whole logical structure of elementary Geometry which is contained in the
group of motions and even, in a more precise manner, in the law according to which oper-
ations of that group compose with each other, independently of the nature of the objects on
which these operations act. This law constitutes what we call the group structure ([42], 17.
My translation.11)

This is an extremely delicate passage. It contains two claims, both of which are
fundamental. First, Cartan asserts that the law of composition of a group contains
all the logical structure of the geometry. The reason is that the law determines all
the subgroups of a given group and it is basically these subgroups that constitute
the group structure. In fact, from the point of view of representation theory, which
is Cartan’s point of view in this instance, the law of composition can take many
guises, depending on the choice of the “space” used to represent the group. But in
each case, to know the group is to know all its subgroups in all these representations.
(See, for instance, [41], Chapter VI. This is also related to what Cartan called the
“structural equation” of a Lie Group, which contains, so to speak, all the geometry
in a certain sense see, for instance, [249], Chapter 3, §3). Second, from the point
of view of the group of transformations, the nature of the underlying objects of the
space somehow “disappears” or becomes in a certain sense irrelevant or at least
secondary as far as the geometry is concerned. The structure of the geometry is
independent of the nature of the objects on which these operations act. This is not

11 (. . . ) c’est toute la structure logique de la Géométrie élémentaire qui est contenue dans le
groupe des déplacements et même, d’une manière plus précise, dans la loi suivant laquelle se
composent entre elles les opérations de ce groupe, abstraction faite de la nature des objets sur
lesquels s’exercent ces opérations. Cette loi constitue ce qu’on appelle la structure du groupe.
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to say that objects are dispensable in geometry. What is claimed is that the specific
nature of the objects used is irrelevant. To use the terminology already introduced
and which will constitute our framework, the objects are used as token of certain
types and it is only those features they possess as tokens of those types that are
relevant. Their specific nature, the attributes they have as objects and not as tokens,
is irrelevant. Klein himself was entirely aware of this fact and it even constitutes a
crucial, if not the central, philosophical aspect of his program. In his own words:

Instead of the points of a line, plane, space, or any manifold under investigation, we may use
instead any figure contained within the manifold: a group of points, curve, surface, etc. As
there is nothing at all determined at the outset about the number of arbitrary parameters upon
which these figures should depend, the number of dimensions of the line, plane, space, etc. is
likewise arbitrary and depends only on the choice of space element. But so long as we base
our geometrical investigation on the same group of transformations, the geometrical content
remains unchanged. That is, every theorem resulting from one choice of space element
will also be a theorem under any other choice; only the arrangement and correlation of
the theorems will be changed. The essential thing is thus the group of transformations; the
number of dimensions to be assigned to a manifold is only of secondary importance ([138]).

This is an astonishing claim. The group of transformations captures the geometrical
content. It is clear that for Klein, the group of transformations contains the whole
geometric structure all at once. The choice of specific geometric “elements”—a
notion to which we will come back in a short while—will determine the order of
presentation of the theorems of the theory, but not the content of the theory itself. It
could be said that the group of transformations encodes the objective content of the
theory whereas any specific choice of element as a token of the geometric type yield
a presentation of the theory, a presentation which contains an arbitrary component.

It should be stressed that this point of view was forced upon Klein by striking
geometrical results of the time. Indeed, he was familiar with Plücker’s idea that lines
could be taken as the fundamental elements of a geometry. Probably more significant
was Lie’s introduction of his line-to-sphere “translation” which showed how one
could systematically transfer a line geometry to a circle geometry and in such a way
that the transformations of one geometry are also transferred systematically to the
other. Here is how the French geometer Darboux described the situation:

Nothing resembles a sphere less than a straight line and yet (. . . ) Lie found a transformation
which makes spheres correspond to straight lines and hence makes it possible to derive the-
orems about spheres from those about lines and vice versa (Darboux, quoted in [144], 487).

Again, this is striking. How can one derive theorems about spheres from theorems
about lines and vice versa? What the line-to-sphere translation reveals is that both
geometries have essentially the same group of transformations. In other words, both
geometries have the same structure, it is only the concrete “visual” representations
which change from one context to the other. From there, it is just but one step to
conclude that what really matters in geometry is the group of transformations, not
the geometric elements one might adopt as fundamental or primitive.

This brings us to an additional epistemological element. No one will deny that
there are concepts which are properly geometrical, e.g. circle, line, triangle, sphere,
polyhedron, etc. With these concepts one usually associates visual representations,
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or as some philosophers would have said not so long ago, “intuitions”. According
to a certain philosophical tradition, in order to have geometric knowledge, concepts
and intuitions have to meet via a process of schematization. The introduction of
groups of transformations forces us to modify the picture in many different ways.
Lie’s result and its extensions in the hands of Klein indicate that:

1. Geometric concepts have to be taken as a whole and in a specified context; it
does not make much sense to talk about circles alone and in absolute terms;

2. Intuitions for one and the same system of concepts can vary considerably; as
Darboux put it “nothing resembles a sphere less than a straight line and yet
(. . . )”; these various intuitions are all adequate in the sense that they exemplify
correctly the given geometry but as was already mentioned, their specific nature
is irrelevant;

3. Nonetheless, the intuitions are still required in different ways and for different
purposes; this becomes especially clear when we consider various aspects of
representation theory;

4. According to certain interpretations of Kant’s philosophy of geometry, e.g. [95],
it is argued that the process of schematization is given by the axioms of Eu-
clidean geometry, the axioms being interpreted as giving rules for the construc-
tion of certain geometric objects and relations. One could argue that the choice
of a generating element is another possibility, although certainly not what moti-
vated Kant himself; more generally, it seems legitimate to inquire whether it is
not the whole status of axioms in geometry that becomes transformed;12

5. A group of transformations is an algebraic structure and it is well known that
algebra in general has a problematic epistemological status. Algebra is usually
considered to be a collection of tools used in the resolution of problems. To
conceive of a group of transformations merely as a tool is to miss the foregoing
facts related to the criteria of identity and meaningfulness.

The emphasis on transformation groups automatically led to an abstract point of
view of geometry, something that Klein was well aware of, although my presen-
tation is in a contemporary setting. From an abstract point of view, a geometry is
conceived as a (connected) manifold S, e.g. a space, together with a transformation
group G acting on S. Even though I have not mentioned the action of a group on
a space so far, it is now time to underline its importance. It is not only the group
G of transformations that counts but also its action on S. Here is the precise formal
definition: given a Lie group G and a connected manifold S, G is said to act on S
(from the left) is there is a (smooth) map α : G×S → S such that:

1. α(e,s) = s for all s ∈ S and e is the identity of G;
2. α(gh,s) = α(g,(h,s)) for all g,h ∈ G and s ∈ S.

The action α(g,s) is usually simply written as g · s. Moreover, all groups considered
by Klein act transitively:

12 “Typically, Klein conferred on axioms evidence and exactitude, but not self-evident truth” ([98],
622).
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3. For all s, t ∈ S, there is a g ∈ G such that g · s = t

and are effective:

4. For all g ∈ G, for all s ∈ S, if g · s = e, then g = e.

Notice that a group action can also be presented as a homomorphism of groups,
or what is called a representation of G, α : G → Aut(S), from G to the set of auto-
morphisms of S. Indeed, given an action α : G×S → S, for each g ∈ G, αg : S → S
is easily seen to be a permutation of S (condition 2 and the fact that G is a
group are essential here). Conversely, given a representation α : G → Aut(S), de-
fine α(g,s) = α(g)(s), which is easily seen to be an action. This way of thinking
about a group action will also play an important role in what follows.

It is the group G and the action α that determines the geometry, for the geom-
etry is neither more nor less than the invariant properties of the figures under the
group action. As we have seen, Euclidean geometry is characterized by the group of
rigid motions (isometries)—that is, the length-preserving transformations—whereas
affine geometry is characterized by collineations—that is, mappings preserving
collinearity, parallelism and ratios of division of line segments, etc. Again, to know
the structure of the group (and the action) is to know the geometry. To mention but
one simple example: the group of rigid motions of Euclidean geometry has as a
subgroup the group of all translations and it is in fact a normal subgroup. In hyper-
bolic geometry, which is very “close” to Euclidean geometry since only the axiom
of parallels of Euclidean geometry is false therein, there is no such subgroup. In Eu-
clidean geometry, composing translations yields translations, whereas in hyperbolic
geometry, composing translations can yield a rotation.

1.2.3 Transfer of Structure: The Irrelevance of the Nature of the
Elements of a Space

If, then, one takes away from the mathematical theory that which
appears merely as an accident, namely its matter, only what is es-
sential will remain, namely its form; and this form, which consti-
tutes so to speak the solid skeleton of the theory, will be the struc-
ture of the group.

([240], 264. My translation)

The real and deep significance of the abstract approach emerges dramatically in
Klein’s application of what is called the “principle of transference”. In fact, it con-
stitutes the cornerstone of Klein’s “comparative review”, the expression found in
the title of his program. The principle, whose name he borrowed from Hesse, can
be formulated in its most general form as follows: given two spaces S and S′ and a
bijection φ : S → S′, it is possible to transfer a group action defined on S to a group
action on S′, of course for a fixed group G. Indeed, given a group action on S, define
the group action G×S′→ S′ by:
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g · s′ = φ
(
gφ

−1(s′)
)

;

it is easily verified that this is a group action on S′. In terms of a group action as
a representation on the set of permutations of the space, the transfer is defined as
follows: given a representation of G on S, i.e., ρ : G → Aut(S), a representation
ρ ′ : G→ Aut(S′) of G on S′ is given by

ρ
′(g)(s′) = φρ

′(g)φ−1(s′);

which is again easily verified to be well-defined.
Notice immediately that the foregoing principle is very general. We can think of

a group action on S as being but one structure on S, namely a geometric structure
on S. This is only one structure of a certain type, or, to use another expression, a
structure belonging to a certain species of structures. Thus given a topology Γ on
S and a bijection φ : S → S′, the topology can be transferred to S′ simply by taking
the image φ(U) in S′ of each open set U of Γ . The transfer clearly yields a topology
on S′. Or, given a binary operation � : S×S → S and a bijection φ : S → S′, we can
transfer the operation � : S′×S′→ S′ on S′ thus:

s′� t ′ = φ
(
φ
−1(s′)�φ

−1(t ′)
)

.

And this clearly is a binary operation on S′.
Klein used the principle of transference to identify geometric spaces: two geome-

tries are the same or equivalent if there is a bijective correspondence between the
underlying spaces and the same transformation group acts on both of them. It is of
course natural to include isomorphic groups as being the same. Indeed, if the struc-
ture defined on S is transferred to S′, then S and S′ are equivalent (and it is easily seen
to be an equivalence relation). Note that the bijection φ : S → S′ literally provides
a dictionary between the different geometries. It shows how to translate notions de-
fined in S into notions of S′. The important point is that S can be a certain space in
which certain geometrical concepts are taken as fundamental and from which all the
others are derived, whereas S′ can be constructed from entirely different principles.
Thus they might “appear” considerably different, in the sense that the language used
are different and the representations of the objects are also different, whereas they
are fundamentally, structurally, the same. The dictionary helps us see how they are
really the same and in what sense. What matters in geometry is not that one refers to
points, lines, planes, etc., in a specific order and with certain notions taken as prim-
itive or fundamental but rather that one studies a certain structure which is captured
by a transformation group.13

13 It is not clear whether these facts influenced what was to become the common attitude regarding
the meaning of axioms in geometry, most notably represented by Hilbert. Recall his infamous re-
mark: “It must always be possible to substitute ‘table’, ‘chair’ and ‘beer mug’ for ‘point’, ‘line’ and
‘plane’ in a system of geometrical axioms.” (Hilbert, in [29]) In the axiomatic framework, the prin-
ciple of transference becomes the principle of isomorphism, also expressed by Hilbert: “(. . . ) any
theory can always be applied to infinitely many systems of basic elements. One only needs to ap-
ply a reversible one-one transformation and lay it down that the axioms shall be correspondingly
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Klein uses the principle of transference in his paper to show that various geome-
tries that appear different are, from the point of view of their groups, indistinguish-
able. Many of the arguments in his paper have the following form. The framework
is complex projective geometry, for instance P3(C), the complex three-dimensional
projective space. Then with a suitably chosen quadric one obtains a 2nd-degree
surface S in that space, for instance a sphere. Then via the standard stereographic
projection from a point P of S one obtains a bijection between this surface and a sub-
space of the complex projective space, usually the complex projective plane, P2(C).
It is then possible to show that the group of linear transformations of P3(C) which
leave the surface S and the point P invariant can be transferred, via the stereographic
projection, to the group of transformations of the plane. Hence these geometries are
essentially equivalent. But the argument is completely general and can easily be
lifted to higher dimensional spaces, as Klein does. In this manner, Klein presents
many examples of different geometries that are essentially the same. Here are a few
examples mentioned by Klein himself.

1. Elementary geometry of the plane and projective study of a quadric with a fixed
point are identical;

2. The theory of binary forms and projective plane geometry with a fundamental
conic are equivalent.

This is just one special case. The philosophical fable in Section 1.2.1 provides
another example of equivalent geometric theories. I should point out that the fable
could have included others geometers working in non-Euclidean geometry. For one
thing, the inversive group contains the isometries of the elliptic plane and of the
hyperbolic plane and in fact of three-dimensional hyperbolic space. Furthermore, it
is also connected to the Lorentz group and has applications in potential theory and
crystallography and thus is connected to physics in various ways. (See [269] for ref-
erences.) Thus there might be yet another geometer working, for instance, in three-
dimensional hyperbolic space. A model of hyperbolic space can be constructed in
R3 with an additional point, the point at infinity ∞. The domain of the model is
the set of points {(x,y,z) ∈ R3 | z > 0}∪{∞}. Points, lines, angles, circles, figures,
spheres, solids, etc. can be defined in that space. From our present perspective, the
(x,y)-plane together with the formal point ∞, the so-called “sphere at infinity” of
hyperbolic space, is particularly significant. Indeed, it can be shown that any in-
version in a circle in the (x,y)-plane—and the latter can still be thought of as the
complex projective line—extends to an inversion in a hemisphere orthogonal to the
(x,y)-plane, which is an isometry of hyperbolic space. Conversely, any isometry of

the same for the transformed things. This circumstance is in fact frequently made use of, e.g. in
the principle of duality, etc. (. . . ) [sic]” (Hilbert, in [87], 40) But notice that the principle works
differently in the axiomatic framework. For it is not so much a transfer of structure but simply that
two systems satisfy the same axioms. Thus they are two examples, or in the technical jargon two
models, of the same theory. Klein’s principle is somewhat different: we have two different geo-
metric theories that are at a different level identical. It is in a loose sense the dual of the principle
of isomorphism. For whereas the principle of isomorphism starts with one axiomatic theory and
allows us to see how the models are basically the same, the principle of transference starts in a way
with different theories and allows us to see how the theories are fundamentally the same.
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hyperbolic space induces a linear fractional mapping of the sphere at infinity. Thus,
a three-dimensional geometry is essentially the same as a two-dimensional one! (See
[54], [269] for more.) Many other examples of this kind can be given. For instance,
the above results can be generalized to higher dimensions, e.g. n-dimensional in-
versive geometry can be shown to be essentially the same as n+1-dimensional hy-
perbolic geometry or complex three-dimensional projective geometry can be shown
to be the same as five-dimensional complex hyperbolic geometry. (See also [58],
Appendix II and III, or [40], Chapter III.)

I should finally note that it would be easy to develop a case similar to Benacerraf’s
famous argument about natural numbers. Simply add irrelevant properties, like
purely set-theoretical properties of the sphere and similarly purely set-theoretical
properties of the Möbius plane, and a geometric version of Benacerraf’s problem
shows up. (See [24].) However in this case, Benacerraf’s problem is immediately
resolved for we know precisely in what sense different geometries are nonetheless
the same: they share the “same” transformation group and the latter settles all ques-
tions of identity and meaningfulness with respect to geometric matters. It is there-
fore possible to say precisely what it is to be a geometry of a certain sort and thus
settle all possible disagreements between A, B and C about what is the case in each
geometry. For instance, suppose A were to adopt K’s model of the Möbius plane
pick a certain set-theoretical property underlying her geometry. She then claims that
this property is what her geometry is about. B and C could simply point out that the
property is not a geometric property, since it is not invariant under the transforma-
tion group. A would have to agree since she agrees that to be a geometric property
is to be preserved by transformations of the underlying group. Thus there is a fact of
the matter to settle disputes as to what is to be a geometric statement and a geometry.

1.2.4 Why a Transformation Group is not Quite Enough

As we have seen, from Klein’s point of view, a geometry is given by a space, or
domain of action S and a group of transformations G acting on that space. The space
is thought as being “matter” without “form”. It is the group action that determines
the form, the geometry. But we have to be somewhat more careful. In fact, one
has to choose what can be called a generating element of the geometry, that is, a
basic geometric figure out of which all the others will be constructed. Thus one can
choose a point, or a line, or an oriented line, or a circle of fixed or arbitrary radius,
or some even more exotic figure. The chosen figure constitutes the “atom” of the
geometry. One is enough since the group of transformations will scatter the chosen
element around. Thus, for instance, if the group G is the group of isometries of the
Euclidean plane, then one can choose a point, or a line, or a circle of fixed radius, but
not a circle of arbitrary radius, since circles with different radii are different in this
geometry. Thus, a geometry is given by three components: (1) an underlying space,
(2) a group acting on that space, and (3) a generating element. Epistemologically,
these three components correspond to: (1) a given support on which the various
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geometric figures can be represented, (2) a structure imposed on this support which
gives it a shape, and (3) a choice of a specific “intuition”, or concrete representation
from which all the others are obtained via the global structure.

Once a generating element γ has been chosen, one of the subgroups of G has
a privileged status: the stabilizer subgroup of γ , that is the collection of all trans-
formations g such that g(γ) = γ . It is easily verified that it is a subgroup of G and
since G is a topological group, it can be shown that it is a closed subgroup of G.
Its privileged status is explained by the fact that two generating elements γ1 and
γ2 with the same stabilizer subgroup yield the same geometry. For instance, if the
domain of action is a plane and the group of transformations is the group of isome-
tries of the Euclidean plane, then one can choose a point γ or a circle σwith fixed
radius r as generating elements and the resulting geometries will be the same. This
can be seen informally as follows. First, it is clear that the stabilizer subgroup of
γ will be identical with the stabilizer subgroup of the circle σwith center γ . Lines
in the geometry generated by the circle are strips between parallel lines filled with
circles of radius r; distance between two circles is computed by measuring the dis-
tance between their respective centers, etc. In fact, all notions of line geometry have
an equivalent in the geometry generated by the circle. Notice, however, that once
again, the geometries are different at a certain level, if only because the fundamen-
tal objects of the first one are points whereas, in the second, this role is played by
circles and all the remaining notions are defined from those. Hence, the choice of
the generating element will have important consequences at the analytic level, that
is, the analytic description of the geometry. But one can also see how a transfer can
be effected: there is an obvious bijection between points and circles, namely the one
that sends each circle to its center and conversely sends each point to the circle of
radius r with that point as center. The dictionary and equivalence follow. Thus, the
geometries are fundamentally the same although they might appear different.

1.2.5 But Then Again, why a Group is Enough

The previous remarks lead us to shift from the underlying space to the transforma-
tion group and even to abandon the space in a certain sense. To see this, we first
observe that given a manifold S, a generating element γ and a group G acting on S,
we can construct the quotient G/H, where H is the stabilizer subgroup of γ . It is
then possible to define a bijection between G/H and S and thus transfer the action
of G on S to G/H. In the latter space, we do not choose a generating element of S,
but a closed subgroup H of G and construct the space out of it. It therefore appears
that what really matters is the closed subgroup H of G, for by choosing one such
subgroup it is possible to define various spaces upon which G can act transitively.

To illustrate this procedure, let G be the group of matrices of order n + 1, that
is matrices M such that Mn+1 = 1, of the following form:

(A ξ

0 1

)
, where A is an

orthogonal (n×n)-matrix and ξ is a column vector of length n. The closed subgroup
in this case can be chosen to be the group H consisting of matrices of the form

(
A 0
0 1

)
.
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The quotient space G/H is the collection of right cosets with respect to H. It can be
verified that in each such coset there is exactly one matrix of the form

(E ξ

0 1

)
, where

E is the unit matrix. There is thus a bijection between G/H and the n-dimensional
space of the columns ξ . We have thus recovered our space. Furthermore, it follows
immediately that given an element ξ of the space and an element g =

(E η

0 1

)
, of

the group G, the action of g on ξ has the form ξ 7→ Aξ + η . It can be shown that
there is a unique (Riemannian) metric on the space S that is invariant with respect
to the action and that the metric is, in this case, Euclidean. We have thus recovered
Euclidean geometry.

Affine geometry can be characterized in a similar manner. In this case, G is the
group of matrices of the form

(A ξ

0 1

)
where detA 6= 0 and ξ is as above. H is the

same subgroup as above of all matrices of the form
(

A 0
0 1

)
and we take once again

the quotient G/H. We can construct the same bijection between G/H and the space
of columns on which the action is defined in exactly the same way. However, in this
case, no metric can be defined, although a connection that yields the affine structure
can be defined. Hence, we have affine geometry.

Projective geometry, conformal geometry, etc. can be constructed by essentially
the same means. The construction described at the beginning of this section leads to
the classification of all possible two-dimensional “Kleinian” geometries: there are
23 of them. (See, for instance, [233], 12–21 or [249], Chapter 4. See also [261] and
[88].)

We can interpret the foregoing constructions and classification result as follows.
Even though the given transformation group G provides information about the ge-
ometry from “the outside”, by simply showing how the space transforms onto itself,
this knowledge is nonetheless enough to reconstruct the elements or components of
the space S itself and the resulting geometry. Thus we can have knowledge of the
“inside” also. Notice that we are not thereby reducing all the internal information to
the external information. The foregoing construction shows that we can access facts
about a manifold if we look at the abstract group of transformations in the right way.
The quotient G/H as to be seen as a space—it is not a group in general anyway, for
a stabilizer subgroup need not be a normal subgroup. Notice that there are important
constraints to this construction, e.g., the group G has to act transitively.

We have now arrived at a fully abstract approach to elementary geometry. This
is far from Klein’s work itself. Indeed, Klein’s groups are simply sets of functions
that are closed under composition and the groups are given by parameters. In the
foregoing construction, groups could be given in a purely abstract manner and ge-
ometries are then constructed from certain closed subgroups of the given groups.
Matter, form and generating element are now all part of the transformation group.
We have left behind almost all intuition. The space is constructed out of algebraic
elements and procedures. This progression from “concrete” representations to ab-
stract structures will accompany us throughout, for it is a key feature of the whole
of 20th century mathematics.
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1.2.6 Classifying Geometries

It is when unsystematic classification gives place to systematic clas-
sification that we can begin to make sense of talking of general cri-
teria of identity not just for things that belong to kinds, but for the
kinds themselves.

([257], 27)

As we have seen in the foregoing examples, the principle of transference allows us
to see that geometries that were thought to be unrelated could in fact turn out to be
the same in some abstract sense. By looking at the structure of the groups involved,
it is possible to determine when a given geometry Γ on a manifold S is a subgeom-
etry of another geometry Γ ∗ on the same manifold S. Indeed, Γ is a subgeometry
of Γ ∗ if GΓ , the group of transformations of Γ , is a subgroup of GΓ ∗ , the group of
transformations of Γ ∗.14 This is a consequence of the fact that the group encodes
the identity criterion and, derivatively, the criterion of meaningfulness. Indeed, ev-
ery property of a figure in Γ ∗ makes sense in Γ , since there are fewer properties
in Γ ∗ than in Γ . In other words, all distinctions feasible in Γ ∗ are also feasible
in Γ . However, some distinctions made in Γ cannot be made in Γ ∗. Furthermore,
all theorems valid in Γ ∗ are valid in Γ . For instance, the transformation group of
Euclidean space is a subgroup of the transformation group of projective space, so
Euclidean geometry can be considered a subgeometry of projective geometry. Any
property of a figure in projective geometry is a property of the corresponding figure
in Euclidean geometry, and every theorem of projective geometry is a theorem of
Euclidean geometry.

Informally, moving from one group G to a larger group G∗ amounts to “relaxing”
the criterion of identity of figures or geometric objects and geometric properties.
What is different in the first setting becomes indiscernible in the second setting.
Thus seen, a change of group is neither more nor less than a change in one’s principle
of classification and meaning, and the hierarchy of groups is a hierarchy of criteria
of individuality and meaningfulness. Changing the criteria obviously amounts to
a change of geometry. Hence the different geometries are related to one another
systematically by some of their properties, namely their transformation groups, and
geometries can be identified and classified in terms of transformation groups. Here
is Klein’s classification (taken from [253]):15

14 There is some disagreement in the literature concerning the terminology. One could as well
reverse the relationship between the geometries and claim that Γ ∗ is a subgeometry of Γ if GΓ , the
group of transformations of Γ , is a subgroup of GΓ ∗ , the group of transformations of Γ ∗. We will
simply follow the order imposed by the groups.
15 This is not the classification offered by [140], 919. In particular, Kline introduces affine geometry
in the classification whereas Klein did not mention affine geometry in his work. Thus, although
Kline claims that he presents the main geometries, which is certainly true, it is not the historical
classification.
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Group of all point transformations

Group of all diffeomorphisms

Group of contact
transformations

Group of rational
transformations

Group of complex
inversive plane

Group of manifolds
of constant curvature

Complex projective geometry
Group of real

inversive plane

Non-Euclidian geometry Real projective geometry

Hauptgruppe
(Euclidian geometry)

Thus, transformation groups encode two different criteria of identity. On the one
hand, a given transformation group G yields an internal criterion of equality for
geometric objects in the space on which the group acts, namely for the equality of
figures. On the other hand, from an external point of view, a given transformation
group G yields an abstract criterion of identity for a geometry as a whole, namely
that two spaces are identical as geometric spaces if they have isomorphic transfor-
mation groups. This is no coincidence: it is precisely because a transformation group
encodes the internal criterion of identity for geometric objects that it constitutes at
the same time the criterion of identity for the geometric structure as a whole. As we
will see, this double aspect of transformation group will extend to categories.

1.3 Logical Remarks

Geometrical objects have an ambiguous status. When a geometer works on a the-
orem about triangles, she works with a triangle-type, not a specific triangle or a
specific class of triangles. This suggests that a type-theory would be intuitively ap-
pealing for the development of geometry. Thus, one would start with a collection
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of types, say points, circles, triangles, etc., each instance or representative of which
would be a particular point, a particular circle, a particular triangle, etc. Note four
points:

1. It simply does not make sense to consider whether two elements belonging to
different types are identical to one another; the fact that they belong to differ-
ent types settles the matter immediately. It simply does not make sense to ask
whether this circle is identical with this triangle, even as geometric figures. But
it does make sense to ask whether two triangles are in fact the same as triangle.
It is entirely possible that each type determines its own identity criterion. This
suggests that there is no universal criterion of identity for objects but rather a
whole collection of identity criteria, one for each type.

2. For each type T , there is an identity criterion for objects of that type, namely
the transformation group associated with the geometry we are describing. Thus,
in this framework, the identity relation is a geometric relation presented in an
algebraic dressing. In this case, it is one and the same group that is associated
to each type. An obvious generalization would be to consider different groups
for different types. How this ought to be done is not at first obvious. How are
these groups to be related to one another?

3. Tokens of a type are not related to that type in the same way that elements of a
set are related to that set. The key difference here has to do with the properties
possessed both by the tokens and by the type of which they are tokens. Whereas
elements of a set do not have to have properties in common with the set they
belong to, tokens of a type necessarily have properties in common with the type
they are tokens of.

4. Frege thought that concepts were related to objects in a simple and straightfor-
ward manner: to each concept C, it is possible to associate an object OC, namely
the extension of C, which can be thought of as the collection of objects falling
under C. This leads immediately to Frege’s infamous Axiom V that gives iden-
tity conditions on extensions. We apparently owe to Peano the idea that objects
are elements or belong to a class determined by a concept (a “condition” in
Peano’s terminology). (See [163], 48.) But as my previous remark indicates, for
types, a comprehension principle is clearly inadequate. Although given a type
T , the class of its tokens can always be considered, doing so might direct our
attention in the wrong direction. We use a token of a type in reasoning and we
use it as a token of that type, that is, we concentrate on its properties as a token
of the type and not on its properties as a particular. We seldom have to con-
sider the collection of tokens as a collection of tokens of that type. It is certainly
true that the tokens share crucial properties, but they share these properties with
the type, not with the collection of objects having a certain property. Thus, we
might want to collect the tokens of a given type, but this is not a fundamental
conceptual operation. We might rather want to declare that a particular token is
a token of a given type, or exhibit a token of a given type.
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1.4 Main Ontological and Epistemological Consequences of
Klein’s Program

Of course, Klein’s approach is restricted to a narrow class of group actions. It does
not work for all geometries. One has to adopt a different standpoint to treat other
possible geometries from a group-theoretical point of view, a standpoint which was
elaborated by Elie Cartan and Hermann Weyl some fifty years later.16 But many
points need nonetheless to be emphasized, since they will have a parallel in the
context of category theory.

1. Even though Klein himself always had geometry in mind and never fully con-
sidered abstract groups and their representations, he opened the door to that
point of view by putting the group at the forefront. Given the importance played
by groups, it is reasonable to wonder whether geometry could be expressed in
purely group-theoretical terms, and this in two ways. First, from a purely ab-
stract point of view, that is, from the point of view of abstract group theory, it is
reasonable to ask whether one could determine abstractly which abstract groups
are transformation groups of geometries. This amounts to the problem of classi-
fication of Lie groups and by now we know that it is a problem of representation
theory: the goal is to provide a classification of all continuous groups acting on
a n-dimensional manifold, for any n. (This program was initiated by Lie and
Killing see [111].) Second, from an axiomatic point of view, it is also reason-
able to ponder over the possibility of presenting a geometry axiomatically by
using transformations as the primitive concept, and indeed this can be done.
Whether it ought to be done is another matter, one that more often than not in-
volves extra-mathematical arguments that are related to the way we do and learn
geometry. (For a group-theoretical approach to geometry from the “ground-up”
so to speak, see for instance [9] and [107]. In both cases, the group concept is
considered fundamental.)

2. As Rowe puts it:

(. . . ) what Klein accomplished was to provide geometers with a clear and (until about
1920) complete conception of what their subject was all about. He never intended,
however, that the answer be abstract, axiomatic, or shorn of the rich material that moti-
vated it, but rather that it should differentiate between what was essential and inessen-
tial when one considered a space and a certain group of transformations acting on it
([244], 47).

16 It is clear that in his generalization Cartan kept the idea that groups provide a criterion of identity
in geometry. In his method of moving frames, transformations still provide a criterion of identity,
but this time for moving frames instead of figures. But it basically amounts to the same thing.
Cartan’s idea is to stipulate that a moving frame, instead of being given a priori is in a sense
given by the transformation group and the latter also provides us with the criterion of identity for
these frames. Thus, moving frames “are configurations in E [a homogeneous space] such that there
exists exactly one transformation of G [the Lie group acting on E] carrying one such configuration
into another” ([47], 239). In a Euclidean space, they can be taken to be standard tetrahedra, but
in a general space, they are a family of “figures”, or “configurations” in Chern and Chevalley’s
terminology, which are taken onto one another by the chosen group. Hence, as in Klein’s program,
it is the group that is fundamental. See, for instance, [39], 1279–1313.
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Of course, what determines what is essential and what is inessential is precisely
the group and the action on the space. As we have seen, the particular choice
of generating element is, up to a technical constraint which we have ignored,
inessential. The particular choice of axioms and the order of their development
is, from the point of view of the structure of the geometry, inessential. This does
not mean that the choice of axioms and their development are not important,
either for pedagogical reasons or even for some “foundational” purpose, e.g. to
prove the independence of some axiom from the others, etc., but from the point
of view of the overall or global structure of the geometry, its “form” so to speak
or what makes it what it is and not something else, it is the knowledge of the
group which matters. Thus, one could claim that the knowledge of the group or
rather its role in the proofs of theorems provides a better understanding of these
results. It could even be claimed, as Cartan does at various points in his books
and papers, that in some cases it provides an explanation for certain results.
As we will see, in the same way that groups allow to differentiate what is es-
sential and inessential in geometry, more generally categories make it possible
to differentiate what is essential and inessential in mathematical “spaces” in
general. Moreover, it does so by looking at these fields in a geometric manner.
However, in contrast with Klein’s desire to avoid the abstract and axiomatic,
category theory lives by it.

3. The lesson most mathematicians learned and remembered from Klein was this:
one way to know a mathematical object is to look at its group of automor-
phisms. It is usually a good and effective tool, but not always, for there are
many mathematical objects with a unique automorphism, namely the identity
automorphism. Probably the best-known example of this phenomenon is the
case of the field R of real numbers: the only automorphism of the field R is the
identity morphism. Even in geometry, some Riemann spaces only support the
trivial identity automorphism! Considering the group of automorphisms of an
object is in a way a simple-minded generalization of Klein’s program. Klein has
shown that examining the group of automorphisms of a geometry is more than
useful. Hence it seems to be a good idea to do the same thing for an arbitrary
mathematical structure. But as I have just shown, it is not always revealing.
For as I have tried to show above, in elementary geometry, a group of auto-
morphisms has a very peculiar status. It does not merely reveal what might be
called the “internal symmetries” of a mathematical system, but it encodes not
only one but two different criteria of identity. This, I believe, is very unusual
and is specific to its status in geometry.

4. Let us draw a few ontological morals. First, Klein’s program offers a clear and
unambiguous framework in which elementary geometry is cast: transformation
groups. This is the unifying framework. It may not lead to new and deep results,
although this is debatable, but it clearly delineates what it is to be an elementary
geometry, or more generally a geometry on a homogeneous space.
Second, even though the perspective offered by Klein’s program does not de-
termine which underlying manifolds (or sets) exist, it certainly yields definite
results as to the possible existence of geometric structures on these sets, or more
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simply on the existence of geometric structures period. Thus, it provides the
means required to determine whether a specific geometrical structure exists.
Furthermore, the same means lead to a principled organization of geometry, an
intrinsic classification based on structural properties. In this sense, group theory
plays a crucial role in our understanding of the ontology of geometry.
Furthermore, it is clear that the existence of these geometric structures will de-
pend, in one way or another, on the existence of something else, e.g. whatever
collection of objects, abstract or concrete, which can be related in the specified
geometric manner, although representation theory teaches us that the matter is
more subtle than it might first appear. Klein was well aware of the alternative:
it is possible to put the transformation group first and define a geometry after-
wards or start from a geometry given in one way or another and then consider
its transformation group. In the latter case, the relationship between geomet-
ric properties and transformation groups can be put in terms of a relationship
which has attracted the attention of philosophers over the last twenty-five years,
although in fields which have nothing to do with mathematics and logic. In-
deed, I claim that one can say that group-theoretical properties formally super-
vene upon geometric properties. Since I believe that this claim stands on its own
and will also help to clarify a certain view about categories in mathematics in
general, we will now take a close look at it.

1.5 Groups and Geometries: Formal Supervenience and
Reduction

What Klein and Lie have discovered and emphasized is the way group-theoretical
concepts could be used fruitfully in geometry or for geometrical purposes. The us-
age of group-theoretical ideas is particularly effective for two reasons:

1. Fundamental geometric properties are closely tied to properties of transforma-
tions of the space, i.e., to elements of the associated group; that is, properties of
points, lines, circles, etc., are closely related to properties of the transformations
of the space;

2. The latter are in some sense independent of the former, since they are insensitive
to some changes in the geometry, e.g. the choice of the fundamental concepts
used in the presentation of a geometry, choice of coordinates, even the logical
organization of the theory. There is thus a relationship of dependent-variation
between transformation groups and geometries, a relationship, which at the in-
formal level is very close to what philosophers call “supervenience”. I want
to borrow the latter terminology for my own purposes here. I am not claim-
ing that the philosophical analysis of the concept of supervenience clarifies the
mathematical situation, for the latter is clear enough, whereas the philosophi-
cal analysis of the concept of supervenience is, on the contrary, far from being
clear. In fact, the clarity of the mathematical situation might lead to a better
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understanding of the notion of supervenience itself. For now, it helps me give a
name to a situation which was identified by Klein and which I believe transfers
to the case of categories.

In order to justify my choice of terminology, I will first show how the informal
notion of supervenience in the philosophical literature can be directly applied to the
case at hand.

The notion of supervenience is used in various places in philosophy, for instance
in philosophy of mind, ethics and aesthetics. Various definitions of supervenience—
weak, strong, global and modal—have been discussed in the literature. (See, for
instance [137], [226], [254].) The concept of supervenience seems to be particularly
apt here since it is usually presented as a relationship between sets of properties of
some kind. Informally, the relationship of supervenience is a relation of dependent-
variation. This, of course, is far from enough, for the mathematical concept of func-
tion captures a relation of dependent-variation, though no one would say that every
functional relationship is a case of supervenience. The fact that we are dealing with
sets of properties of a different type, and not just any set, is useful but not in itself
enough either, for there are numerous functions between sets of properties too. As
we will see briefly later, the language of category theory is helpful here.

Here is how the “core idea” of supervenience is presented in the literature: su-
pervenience

has to do with the fact that sameness in certain respects can exclude the possibility of differ-
ence in certain other respects. Suppose that there could be no difference of sort A without
some difference of sort B. Then, difference in any A-respect requires difference in some
B-respect. Thus, if there is no difference in any B-respect, then there can be no difference
in any A-respect. Exact similarity in B-respects excludes the possibility of difference in A-
respects. Moreover, if exact similarity in B-respects excludes the possibility of difference
in A-respects, then there could be no difference in A-respects without some difference in
B-respects. Thus, A-respects supervene on B-respects if and only if exact similarity in B-
respects excludes the possibility of difference in A-respects ([226], 17).

We can reformulate in an abstract setting the basic situation underlying Klein’s
program and it will immediately allow us to see why we can say that group-
theoretical properties supervene upon geometric properties. We will assume that
we are working with the language of linear algebra and that a geometry is a struc-
ture defined on a vector space over a field. Since Klein, like almost everyone at that
time, worked over the complex field, we can consider finite dimensional complex
vector spaces. In this language, we can define the notion of point, line, and other
geometric figures as usual. Notice that there are some choices that can be made
here: the choice of a basis being the most obvious. But one can restrict oneself to
line geometry or circle geometry in an obvious manner. Thus we can construct dif-
ferent geometries in the language, if only by choosing various bilinear forms. One
way to look at the relation between a space and its group of transformations is to
associate to each space S its group of automorphisms Aut(S), which is also called
the general linear group GL(S) of the space (over the complex numbers). The idea
underlying the principle of transference is the fact that any linear isomorphism ϕ

between two spaces S and T will induce a group isomorphism between GL(S) and
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GL(T ): indeed, given any g ∈ GL(S), the mapping ϕgϕ−1 is easily seen to be an
automorphism of T .

It should be clear from the foregoing discussion that it makes sense to say that
a group, thought of as a system of properties of a space, formally supervenes on
(elementary) geometrical properties, or a geometry.17 For, two geometrical spaces
cannot have different transformation groups without at the same time being different
as geometries. Indeed, if they have different transformation groups, this means that
one of the spaces admits certain non-trivial transformations that are not possible in
the other. These additional transformations will not only yield a different criterion
of identity but will also allow for the proof of some theorems in the space admitting
them. As the principle of transference shows, the converse is false: two geometries
can be, as geometries, different, for instance have different dimensions, and at the
same time have isomorphic transformation groups. These geometries are abstractly
the same even though they are different as geometric theories.

Furthermore, there is an obvious dependency relation between groups of transfor-
mation and geometries: in the preceding framework, the groups are obtained from
the geometries or the geometric properties. This dependency is rather strong: indeed,
there is a correspondence between a given group, its subgroups and supergroups
with a corresponding geometry, its subgeometries and supergeometries.

Finally, it cannot be said that group theory is reducible to geometry. It is hard to
see what the latter claim would mean, what kind of reducibility relation one would
have to use to make sense of this claim. For one thing, group theory is much more
than elementary geometry. The notion of a solvable group comes from Galois theory,
and even though one can claim that groups in Galois theory capture the geometry
of the situation (i.e., the geometry of the roots of an equation), it cannot be said that
it is about a geometrical space. In fact, Klein’s program suggests just the opposite:
it seems that geometry could be reduced to group theory, that it would just be a
chapter of group theory! One has to reverse the picture of the relationship between
geometries and groups and switch to representation theory to try to defend the idea
that there is a reduction of group theory to geometry.18

We are thus lead to recognize two important complementary facts. First, if ge-
ometric spaces are taken first, then groups, seen as systems of global properties of
homogeneous spaces, formally supervene upon geometric properties, that is prop-
erties definable in the language of the space, for instance via linear algebra. This
is just a fact. Moreover, not only does a transformation group depend on an under-
lying geometry in a definite sense, but also the identification and classification of
geometries is a function of this dependence. Second, it is possible to reverse the pre-

17 We cannot refrain from pointing out that, as usual in mathematics, properties are objectified,
which greatly simplifies our thinking about them. Furthermore, in this case the properties constitute
a group: this means that they are closed under the operation of “product”, in this case composition
and not a logical operation. Philosophers thinking about closure conditions on properties should
reflect upon this and similar cases. One does not have to impose a Boolean structure on properties.
Many other type of structures make perfect sense, it all depends how properties are represented.
18 In fact, even better here would be to look at more recent work on incidence geometry of the
geometry of groups. What is indisputable is that group theory provides essential concepts for ge-
ometry and, vice-versa, geometry provides essential tools for group theory.
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vious dependence and instead consider groups as being fundamental and construct
the spaces from them or, more generally, to look at their various representations (in
fact, preferably, at all of their representations) in a structure of a certain kind (for
instance finite-dimensional linear representations). This is a more abstract point of
view motivated by the observation that what is essential to a geometry is its underly-
ing global structure, which is provided or captured by the group of transformations.
For classificatory purposes, one wants to look at all such representations. However,
as we have already seen, to finally “get down” to geometry in the usual sense of that
expression, one has to choose a basic element of representation, in other words, what
the geometry will be a geometry of. These choices can vary and none is canonical.
What matters, once again, is the structure of the group, namely its stabilizer sub-
groups. Furthermore, once these choices have been made, the relationship between
geometric structures and group-theoretical structures will be as above: groups still
supervene upon geometries. Thus, in both cases, groups have a crucial, even indis-
pensable ontological role to play in (elementary) geometry.

1.6 Summing Up

I have looked at Klein’s program from a definite perspective. I have emphasized
various points that are directly relevant to my analysis of the nature of category the-
ory itself. The development of Klein’s point of view—if one can talk in those terms
at all—exhibits a shift from the idea that groups are merely tools for geometrical
purposes to the idea that they are at the very core of elementary geometry, and thus
have a foundational status. It is hard at this point to give a precise meaning to this
foundational status. I believe that the main reason is that we have a purely logi-
cal model of what it is to be a foundational framework and it can be argued that
transformation groups cannot be taken as being logically fundamental in geometry,
a perfectly reasonable claim.

But I believe that the model leads us astray to some extent. Not that the model
is false, but rather that while it leads to useful analyses, the latter hide important
aspects of a situation. As I will argue in the last chapter of the book, I believe that
this model follows from a “geocentric” metaphor or a “grounding” metaphor of
what it is to provide a foundation for a conceptual domain. Once this is seen, a
different metaphor can be used to develop a perfectly reasonable alternative of what
it is to be a foundation for a conceptual domain. We will turn to this alternative once
we have accumulated enough material from category theory and categorical logic.

Hence, there is already in geometry a foundational dimension that can be trans-
ferred almost directly to categories. The main element here is that the notion of
“form” can be captured by different means. “Logical form” is but one aspect of
a theory. Transformation groups can be said to capture the “algebraic form” of
a geometry. The logical form is assumed to provide a foundationally meaningful
analysis of a domain, because the primitive terms are taken to be not only logi-
cally primitive but also epistemically primitive. The algebraic form also provides a
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foundationally meaningful analysis because the overall algebraic structure is closely
related to the meaning of the terms involved and the identity of the space itself. The
latter is particularly clear when one sees how the algebraic form is used for classi-
ficatory purposes, e.g. Klein’s program itself or, for a slightly different case, [234].
But there is also an epistemic component in the algebraic form. As we have already
seen in the case of geometry, very often the algebraic form points towards an ex-
planation of various results and a better understanding of these results. This partly
explains why mathematicians use, develop and apply algebraic techniques and ma-
chinery. Some of the advantages of the algebraic form are the following:

1. The algebraic form, e.g., a transformation group, is fundamentally the result
of an attempt (sometimes unsuccessful, e.g., Weil’s foundations of algebraic
geometry or Bourbaki’s general notion of structure) to extract essential elements
from a given situation while ignoring irrelevant details; this is of the essence of
algebra and the axiomatic method in general.

2. This process of extraction is directed towards the search of a solution to a given
problem or a family of problems; it is the search for a solution to the given
problem that determines what is extracted and what is left out.

3. This process of extraction leads to the development of various artifacts that are
first thought of as tools and used as such for the solution of specific problems.

4. These tools are sometimes developed for their own sake and turn into system-
atic contexts, from the most elementary notational system, e.g. elementary alge-
bra, to the most sophisticated machinery, e.g. homology, homotopy or algebraic
K-theory. (For more on the latter, see [211], [212], [214].)

5. It is only within a systematic context that explanations and understanding can
be reached.

We will now go back to Eilenberg and Mac Lane’s introduction of category the-
ory into the mathematical landscape and see more precisely in what sense it can be
claimed that category theory can be thought of as a extension of Klein’s program.



Chapter 2
Introducing Categories, Functors and Natural
Transformations

Category theory is an embodiment of Klein’s dictum that it is the
maps that count in mathematics. If the dictum is true, then it is the
functors between categories that are important, not the categories.
And such is the case. Indeed, the notion of category is best excused
as that which is necessary in order to have the notion of functor.
But the progression does not stop here. There are maps between
functors, and they are called natural transformations.

([90], 114)
Symmetries of a geometric object are traditionally described by its
automorphism group, which often is an object of the same geomet-
ric class (a topological space, an algebraic variety, etc.). Of course,
such symmetries are only a particular type of morphisms, so that
Klein’s Erlanger program is, in principle, subsumed by the general
categorical approach.

([209], 4)
The notion of group has wide and important applications, which
will give us valuable insight into the meaning of categories. Indeed
when Sammy Eilenberg and Saunders Mac Lane first introduced
categories in 1940 [sic], one of the motivations was to extend the
Erlanger Programm.

([258], 187)

Category theory began with a certain problem in algebraic topology formulated by
Borsuk and Eilenberg in 1937. The problem was this: given a solenoid Σ in the three-
sphere S3, how many homotopy classes of continuous mappings f : S3−Σ → S2 are
there? The problem is to find properties of certain spaces using algebraic tools. In
this case, Eilenberg had showed that the homotopy classes were in 1-1 correspon-
dence with the elements of a certain group, H1(K, I),1 called the one-dimensional
homology group. But this did not show how to compute this group, i.e. to provide
an answer to the question. Then, Steenrod found a way to compute various groups

1 I am temporarily using Eilenberg and Mac Lane’s original notation. Nowadays, homology groups
are denoted with a subscript, e.g. Hn, and superscripts are used for cohomology groups, e.g. Hn.
Eilenberg, in a paper published in 1947 adopts what is now the usual convention. I do not know
whether this paper established the convention.

41



42 2 Introducing Categories, Functors and Natural Transformations

for a class of relevant spaces. However, the computations were difficult since the
various groups were complicated. Then, Eilenberg and Mac Lane found in 1942
that Steenrod’s groups were isomorphic to what are called extensions of groups, a
purely algebraic theory, and that the latter were much easier to compute.2 In the
1942 paper, we find the following claim:

The thesis of this paper is that the theory of group extensions forms a natural and powerful
tool in the study of homologies in infinite complexes and topological spaces. Even in the
simple and familiar case of finite complexes the results obtained are finer than the existing
ones ([71], 759).

Hence, the goal is to develop the theory of group extensions with a solution to
the problem given by Borsuk and Eilenberg in mind. In the introduction of their pa-
per, Eilenberg and Mac Lane introduce the topological group of all homomorphisms
Hom(H,G) of H into G. In order to establish what they call their main theorem, they
have to investigate various properties of this construction. In particular, they estab-
lish in lemma 18.2 the following isomorphism:

Hom(A⊗B,C)≡ Hom(A,Hom(B,C)).

This says that to every homomorphism from the tensor product A⊗B to C, there
corresponds a unique homomorphism from B to the homomorphisms from A to
C.3 This isomorphism has a key property: it varies “naturally” with the Abelian
groups A, B and C. The problem is to clarify what this “naturality” amounts to in
full generality. Various isomorphisms of that type, which are also natural, play a key
role in Eilenberg and Mac Lane’s solution to the original problem. Two sections of
the 1942 paper, namely §12 and §38, are devoted to the naturality of these maps.
In §12, Eilenberg and Mac Lane give a precise meaning to the expression “natural
homomorphism”—to which we will turn in due course. They wrote a second paper
that same year, explicitly tackling the notion of naturality. This paper opens up with
the following sentence:

Frequently in modern mathematics there occur phenomena of “naturality”: a “natural” iso-
morphism between two groups or between two complexes, a “natural” homeomorphism of
two spaces and the like. We here propose a precise definition of the “naturality” of such
correspondences, as a basis for an appropriate general theory. In this preliminary report we

2 Here is Mac Lane’s recollection: “We now turn to 1941. That year, Saunders Mac Lane gave a
series of lectures on group extensions at the University of Michigan. (. . . ) Samuel Eilenberg, (. . . ),
could not attend the last lecture and asked for a private lecture. Eilenberg immediately noticed that
the group Z[1/p] was dual to the topological p-adic solenoid group Σ , which Eilenberg had been
studying, and that Mac Lane’s algebraic answer Ext(Z[1/p],Z) = Ẑ/Z coincided with the Steenrod
homology groups H1(S3 −Σ ;Z) calculated in Steenrod’s 1940 paper. After an all-night session,
followed by several months of puzzling over this observation, they figured out how Ext plays a role
in cohomology; the result was the paper [1942a]” ([266], 805).
3 As we will see in Chapter 4, this example will come to play a fundamental role in the history of the
subject. However, in 1942, 1943 and 1945, Eilenberg and Mac Lane see it rather as an exceptional
case. It is in fact an adjoint situation. It was only in 1958 that the latter notion was published by
Daniel Kan. Notice that there is a similar isomorphisms in sets, where it is sometimes written as
CA×B ∼ (CA)B.
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restrict ourselves to the natural isomorphisms of group theory; with this limitation we can
present the basic concepts of our theory without developing the axiomatic approach neces-
sary for a general treatment applicable to various branches of mathematics ([72], 531).

The axiomatic approach necessary for a general treatment is, of course, category
theory.

Thus Eilenberg and Mac Lane started out by elaborating a tool, namely the theory
of group extensions, and ended up discovering that some aspects of this tool revealed
what appeared to be a common phenomenon in many different fields of mathematics
and that it needed to be clarified in all its generality. This is the main goal of the 1945
paper, and it is by developing the proper framework for this clarification—namely,
functors and categories—that Eilenberg and Mac Lane made an explicit connection
with Klein’s program.

It is clear from their 1945 paper that Eilenberg and Mac Lane had two simple
elements in mind when they claimed that category theory could be thought as a
continuation of Klein’s program and both were essentially methodological.

1. The first element directly yields the notion of a category.
2. The second tries to extend the idea that what is basic or essential in a field are

its invariants.

Although the first step is very natural and well motivated, it is not clear at first that
it is of any value in itself; that is, it is not clear that the very concept of category is
necessary or useful. In fact, Eilenberg and Mac Lane themselves thought that it was
secondary. Indeed, in §6 of their paper, which deals with foundational issues and to
which we will return, they explicitly state that:

It should be observed first that the whole concept of a category is essentially an auxiliary
one; our basic concepts are essentially those of a functor and of a natural transformation
(. . . ) The idea of a category is required only by the precept that every function should have
a definite class as domain and a definite class as range, for the categories are provided as
the domains and ranges of functors. Thus one could drop the category concept altogether
(. . . ) ([74], 247).

Since functors are functions and functions have to have definite domains and
codomains, categories were introduced. Thus, as such, a category was merely the
proper conceptual context in which natural transformations, the notion they were
trying to elucidate and use systematically, could be defined. In itself, a category was
thought to constitute neither a useful tool nor an object of study. As to the second
step, they did not see exactly how it had to be developed and their original attempt
falls short of success. Let us see how this is so.



44 2 Introducing Categories, Functors and Natural Transformations

2.1 From a Transformation Group to the Algebra of Mappings

A great deal of modern mathematics, by no means just algebraic
topology, would quite literally be unthinkable without the language
of categories, functors, and natural transformations introduced by
Eilenberg and Mac Lane in their 1945 paper. It was perhaps in-
evitable that some such language would have appeared eventually.
It was certainly not inevitable that such an early systematization
would have proven so remarkably durable and appropriate; it is hard
to imagine that this language will ever be supplanted.

([218], 666)

Eilenberg and Mac Lane first suggested that the situation between a space and its
group of transformations could be generalized to a category and its algebra of map-
pings. This way of looking at a category was explicitly adopted once again by
Mac Lane in 1950, five years after Eilenberg and himself had introduced categories:

The notion of an abstract group arises by consideration of the formal properties of one-
to-one transformations of a set onto itself. Similarly, the notion of a category is obtained
from the formal properties of the class of all transformations ψ : X → Y of any one set
into another, or of continuous transformations of one topological space into another, or of
homomorphisms, of one group into another, and so on ([186], 495).

Eilenberg and Mac Lane’s generalization can be analyzed in the following distinct
steps.

First, Klein started with a geometry and looked at the group of transformations of
that geometry. One possible generalization, as I have already mentioned in Chapter
1, is to replace the geometry by a different structure X or even an arbitrary set S and
consider its algebra of automorphisms. Very often, the latter constitutes a mathemat-
ical structure, but, as I have also mentioned, in some cases it is completely degen-
erate. Second, one can consider instead the algebra of all endomorphisms End(X)
instead of the algebra of automorphisms. What are in general the formal properties
of this algebra? In fact, we lose one property from the algebra of automorphisms,
namely the existence of inverses. Thus, two properties remain:

1. There exists an identity endomorphism, call it 1X , such that 1X (x) = x for all
x in X . This endomorphism has the following characteristic algebraic property:
for every endomorphism f of X , f ◦1X = f and 1X ◦ f = f .

2. Composition of endomorphisms is associative: for all endomorphisms f , g, h of
X , we have that f ◦ (g◦h) = ( f ◦g)◦h.

Thus End(X) is in general a monoid, not a group.
But Eilenberg and Mac Lane were looking at a whole collection of objects of

a certain kind, namely topological spaces, and they considered not only endomor-
phisms of these objects but also morphisms between them as being valuable. This is
the next step in the generalization: instead of considering the algebra of mappings
of one object into itself, consider the algebra of all mappings between two objects
of the same kind. Thus, if we consider two groups X , Y , we consider the collection
of all homomorphisms between X and Y . If X and Y are topological spaces, one
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considers the collection of all continuous maps between X and Y . Since in the case
of algebraic structures, the mappings are all called “homomorphisms”, we denote
the collection of mappings between X and Y by Hom(X ,Y ). If these Hom-sets, as
they are called, have an algebraic structure, then we can say that we are considering,
instead of the group of transformations of a space, the algebra of mappings of the
spaces. Since X and Y are arbitrary spaces, we have to collect all the Hom-sets to-
gether and “pasted” to one another in a coherent manner: any mapping in Hom(X ,Y )
should compose with any mapping in Hom(Y,Z) to yield a mapping in Hom(X ,Z);
and any mapping in Hom(X ,Y ) should compose with the collections End(X) and
End(Y ), which are just special cases of the previous pasting rule, since End(X) is
just Hom(X ,X).

The formal properties of this pasting yield the notion of a category. Here is Eilen-
berg and Mac Lane’s original definition (slightly paraphrased and with a different
notation). A category C is an aggregate of abstract elements Ob(C ), called the ob-
jects of the category, and abstract elements Mor(C ), called the morphisms of the
category. The objects are denoted by X , Y , Z, etc. and the morphisms are denoted
by f , g, h, etc. Certain pairs of morphisms f , g uniquely determine a product mor-
phism h = g◦ f subject to the axioms C1, C2 and C3 below. Corresponding to each
object X in Ob(C ) there is a unique morphism, denoted by 1X subject to the axioms
C4 and C5. The axioms are:

C1. The triple product ( f ◦g)◦h is defined if and only if f ◦(g◦h) is defined. When
either is defined, the associative law

( f ◦g)◦h = f ◦ (g◦h)

holds. This triple product is denoted by f ◦g◦h.
C2. The triple product f ◦g◦h is defined whenever both products f ◦g and g◦h are

defined.

Definition 2.1. A morphism 1 will be called an identity of C if and only if the
existence of any product 1◦ f or g◦1 implies that 1◦ f = f and g◦1 = g.

C3. For each morphism f : X → Y , there is at least one identity 1X such that f ◦1X
is defined and at least one identity 1Y such that 1Y ◦ f is defined.

C4. The mapping 1X corresponding to each object X is an identity.
C5. For each identity 1 of C there is a unique object X of C such that 1X = 1.

This is one way to define a category C , although it is not the definition one finds
in contemporary textbooks on the subject. Notice Eilenberg and Mac Lane’s choice
of terminology. They speak of an aggregate—not a set—of abstract elements, that
is, objects whose nature is left entirely unspecified. However, they do speak of el-
ements, suggesting that they are still in a set-theoretical framework, and although
they say that everything is abstract, they talk about mappings (and not morphisms,
as I do). In fact, it is clear that Eilenberg and Mac Lane assumed that structures of
a certain type are given and that they are pasted together in a natural way to obtain
a new structure, namely a category. It is indeed a natural extension of Klein’s ap-
proach. Instead of having a geometric space and pasting together its transformations
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into a group, we start with a space of structures and we paste together all admissi-
ble transformations of these structures into one another. This way of thinking about
categories, as a pasting of structures of a certain type, immediately leads to the stan-
dard examples of categories. Given a type S of structures and a well-defined notion
of homomorphism between them, one can consider the category CS of structures of
that type. Thus, we get:4

1. The category Set of all sets and functions between them;
2. The category Grp of all groups and group homomorphisms between them;
3. The category AbGrp of all Abelian groups and group homomorphisms between

them;
4. The category Top of all topological spaces and continuous functions between

them;
5. The category TGrp of all topological groups and continuous homomorphisms

between them;
6. The category Vect of all vector spaces and linear mappings between them;
7. The category Ban of all Banach spaces and linear transformations of norm at

most 1 between them;
8. The category Rng of all rings and ring homomorphisms between them;
9. The category CRng of commutative rings and ring homomorphisms between

them;
10. The category Preord of preorders and monotone functions between them;
11. The category Pos of posets and monotone functions between them.

And the list could be extended considerably. Notice that in fact it is the collection of
morphisms that determines the properties of the objects and the category. Indeed, if
one considers, for instance, the category of all sets but with, say, surjections between
them, then one obtains a different category than the category Set. We will see more
clearly why later. But it is an indication that the algebra of mappings does indeed
make a difference.

However, whereas in Klein’s program the new structures obtained were clearly
useful and even basic to the study of geometry, in the case of categories, it was not
at first clear how categories themselves could be used to solve problems or that they
captured important properties of the original structures.

Nonetheless, there are some prima facie considerations that suggest that the al-
gebra of mappings could be useful. As I have already mentioned, the Hom-sets
sometimes have a structure. If X and Y are, for instance, Abelian groups, then it is
possible to define an operation “+” on the collection Hom(X ,Y ). Indeed, for every
group homomorphism f ,g : X → Y , define ( f + g)(x) = f (x)+ g(x). It can be ver-
ified that, thus defined, the operation is associative, that the trivial homomorphism

4 Again, we ignore questions of size. It should be clear that we simply cannot consider the category
of all sets without some restrictions. Notice that in the context where we consider a category
as being a pasting of given collections, questions of size are inevitable and important. It is not,
however, entirely clear that a given solution to the problem of size developed in this context will
immediately transfer to a context in which a category is presented differently. But this is sheer
speculation for the time being.
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e(x) = eY —the morphism that sends every element of X to the identity element of
Y —is the identity element of the newly defined operation, and finally that for every
f : X → Y , there is an inverse, defined by f−1(x) = ( f (x))−1. Hence, in the case of
Abelian groups, the collection Hom(X ,Y ) of homomorphisms is itself an Abelian
group. We see that for objects of a certain kind, for each X , Y , Hom(X ,Y ) is more
than a collection. This immediately suggests that there may be different kinds of
categories. Indeed, one could take the foregoing definition of a category and require
that for all objects X , Y , Hom(X ,Y ) be an Abelian group. Once this is done, the
axioms have to be slightly modified to make sure that all the operations meet the
new requirement. Although the hom-sets and their structure played a key role in
the applications of category theory Eilenberg and Mac Lane had in mind from 1942
until 1945, this usage of the algebra of mappings had to wait for three years—it
appears in a somewhat different guise in [185]—before it was explicitly recognized.
The reason seems to be that Eilenberg and Mac Lane were thinking primarily about
functors and natural transformations and not about categories as such.

The notion of isomorphism or of isomorphic objects can be defined directly from
the definition of a category.5 A morphism f : X → Y is an isomorphism if there is
a (necessarily unique) morphism g : Y → X such that f ◦ g = 1Y and g ◦ f = 1X . If
there is an isomorphism f : X → Y , then X and Y are said to be isomorphic. Thus
the notion of isomorphism is not defined pointwise, i.e. on elements, and it is not
defined as a bijection preserving a certain structure as it is usually done in a set
theoretical framework. In the category Set of sets, isomorphisms are bijections, in
the category Grp, isomorphisms are the usual group isomorphisms (one-to-one and
onto homomorphisms), and in the category Top, the isomorphisms are homeomor-
phisms. But it is not always the case, as we will later see.

The algebra of all mappings coming into an object and going out of an object
could presumably capture essential properties of that object.6 The underlying idea
is still fundamentally geometric, although Eilenberg and Mac Lane did not explicitly
present it as such. Consider, by way of example, a solid in three-dimensional space.
By projecting it along three orthogonal axes, one obtains three two-dimensional
images of the solid. It is well known that it is in general possible to reconstruct
the solid from the three projections and vice-versa. The moral is this: the group of
automorphisms of an object X can be revealing, but in some cases, projecting the
object X into known objects or projecting known objects into X constitute another
way of probing it. Thus, one can know a geometric object by:

1. Projecting into it certain known geometric objects and studying the images,
direct and inverse, of these projections, and/or

5 This is indeed what Eilenberg and Mac Lane did: they give the definition immediately after the
axioms of a category. Notice that they call an isomorphism an “equivalence”. The terminology is
still in used in algebraic topology. See, for instance, [243], 12.
6 This could be turn into a general epistemological maxim: to know an object is to know how it
transforms into different objects, of the same kind or not (functors are allowed here), and how
other objects, of the same kind or not (functors are allowed), transform into it. This maxim could
be applied to many domains of the natural sciences where scientists use various machines to access
properties of the objects and phenomenon studied. For more on this parallel, see [211–213].
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2. Projecting the object itself into or onto known geometric objects and study the
direct and inverse images.

Thus if one were to use morphisms coming into an object or morphisms going
out of an object in some way, then we could claim that the algebra of mappings is
used as a tool of analysis in a geometric fashion. But this is not how Eilenberg and
Mac Lane used it. It did not take long, as we will see, before Mac Lane understood
how morphisms could be used to characterize concepts and analyze objects.

Notice how close the axioms of a category are to the axioms of a group: a cate-
gory with one object X is a monoid. Indeed, any monoid M can be presented as a
one-object category. The elements of the monoid M become the morphisms of the
category. Multiplication in M becomes composition of morphisms. It is immediately
verified that in this way the axioms for a monoid translate into the axioms of a cat-
egory and vice-versa. Consider, for instance, the monoid of natural numbers N with
the operation of multiplication. The identity element is the number one. Viewed as
a category, it has one object, let us also call it N, and the morphisms can be denoted
by 1, 2, 3, 4, . . . Composition of two morphisms n, m is defined by n×m. What is
missing from the axioms of a category to get a group is the existence of inverses. But
since the objects we add in an arbitrary category are of “arbitrary dimensions”, so
to speak, it is natural not to require the existence of inverses and consider all trans-
formations between objects. A category with one object such that all morphisms are
invertible is a group.

Notice also that if for every X and Y in Ob(C ), the collection HomC (X ,Y ) is
at most a singleton, i.e. there is at most one mapping from X into Y , then C is
just a different presentation of a partial order: write X ≤ Y if there is a map in
HomC (X ,Y ). Again, the axioms for a category guarantee that C is a partial order.
This is still geometric, since in this case the mappings can be thought as exhibiting a
part–whole relation, as in the case of the lattice of open sets of a topological space.
Hence, the notion of a category can be thought of as being a generalization of the
algebraic notion of a monoid and the order-theoretic notion of a partial order.

It is also interesting to note, as Eilenberg and Mac Lane immediately did in the
appendix of their 1945 paper, that Cayley’s representation theorem for groups can
be readily extended to (small) categories. Recall that Cayley’s representation theo-
rem asserts that any group G is isomorphic to a group of permutations, i.e. it can
be represented as a group acting on a set. To construct the required group of per-
mutations corresponding to a given group G, one first forgets that G is a group and
simply considers it as a set. Then one can reintroduce a group structure on the set
G by considering the group Aut(G) of automorphisms of the set G. The required
group of permutations will in general be a subgroup of Aut(G). Each fixed g ∈ G
defines a function τg : G→G by τg(h) = gh for each h ∈G. Let C = {τg | ∀g ∈G}.
One can easily show that C is a group of transformations on the set G. The function
ϕ : G →C defined by ϕ(g) = τg, is then seen to be an isomorphism of groups and
indeed it is a representation of G by a group of transformations.

In order to see how Cayley’s theorem is generalized to categories, we need to
introduce morphisms between categories. For in general a representation of a group
is a specific type of homomorphism of groups. Thus, a representation of category
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will be a specific type of homomorphism of categories. These are precisely what
Eilenberg and Mac Lane called “functors”.7

Informally, a functor F from a category C into a category D , is a mapping from
C into D that preserves the structure of C . More precisely, a functor F can be
defined as a pair of functions:

1. Fo : Ob(C )→ Ob(D);
2. Fm : Mor(C ) → Mor(D) such that Fm(1X ) = 1Fo(X) and Fm( f ◦ g) = Fm( f ) ◦

Fm(g).

Usually, the functions Fo and Fm are not distinguished since they are coherent with
one another. A functor such as F is called a covariant functor. Whenever the direc-
tion of arrows is reversed by F , i.e. F( f ◦g) = F(g)◦F( f ), then we say that F is a
contravariant functor. Both types of functors are common and play a crucial role in
category theory.

Notice that functors compose: given F : C →D and G : D → C define the com-
position of F and G as GF(X) = G(F(X)) for all objects X in C and GF( f ) =
G(F( f )) for all arrows f : X →Y in C . It is easily verified that this yields a functor
GF : C →D . Furthermore, functors automatically preserve commutative diagrams
and therefore, in particular, isomorphisms. For if f : X →Y is an isomorphism in C ,
this means by definition that there is a g : Y → X such that f ◦g = 1Y and g◦ f = 1X .
Thus, applying a functor F : C → D , we get F(1Y ) = F( f ◦ g) = F( f ) ◦F(g) =
1F(Y ) and therefore F( f ) is also an isomorphism. This simple property of functors
plays a key role in many applications of category theory.

In the appendix of their paper, Eilenberg and Mac Lane stipulated that a rep-
resentation of a category C in Set is a covariant functor F : C → Set. Moreover,
a representation, and more generally a functor, is said to be faithful if for every
morphisms f , g of C , F( f ) = F(g) only if f = g. We can now see how Cayley’s
representation theorem for groups is generalized to categories. For each fixed object
X of C , let ϕX = { f : Y → X | for some object Y in C }, that is the set of all mor-
phisms f of C such that X is the target of f . For each morphism g : X → Y , ϕg is a
function from ϕX to ϕY defined by ϕg( f ) = g◦ f , where f : Z → X . It is easily veri-
fied that ϕ() : C → Set is a functor and moreover a faithful functor between C and
a (sub)category of Set. Thus every (small) category C can be faithfully represented
by a collection of sets and functions between them. It is easy to verify that when
the category C is a group and the set representing the unique object of C is the set
of permutations of that set, then the categorical representation of C is the standard
Cayley representation.

Functors pervade mathematics. Let us look at some examples.

1. Given a category C , the identity functor 1C : C → C always exists and is de-
fined in the obvious manner.

7 “There was also some fun with the choice of terminology. Since the philosopher Kant had made
ample use of general categories [sic], the term was borrowed from him for its present mathematical
use, while Carnap, in his book on Die Logische Syntax der Sprachen had talked of functors in a
different sense and made some corresponding mistakes. It seemed in order to take over that word
for a better and less philosophical purpose” ([197], 131).
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2. ℘: Set→ Set defined by ℘(X), the usual power set of X , and given f : X →Y ,
℘( f ) : ℘(X)→℘(Y ) defined by ℘( f )(A) = f [A], the image of A under f . It is
easily seen that this is a functor.

3. ℘◦ : Set → Set defined on objects as in the previous case. But this functor is
contravariant: given an arrow f : X → Y , ℘◦( f ) : ℘(Y )→℘(X) is defined by,
for all B⊆Y ,℘◦( f )(B) = f−1[B] = {x∈ X | f (x)∈ B}, the usual inverse image
of B under f . Again, it is easily verified to be a functor.

4. Let us briefly come back to the collections Hom(X ,Y ) of morphisms between
X and Y . For a fixed object X in a category C , the following two functors can
be defined: first a covariant functor Hom(X ,−) : C → Set and second a con-
travariant functor Hom(−,X) : C → Set by:

a. For each object Y , Hom(X ,Y ) is the collection of all morphisms f : X →Y
and Hom(Y,X) is the collection of all morphisms g : Y → X ;

b. For a morphism g : Y → Z, Hom(X ,g) : Hom(X ,Y ) → Hom(X ,Z) is de-
fined by Hom(X ,g)( f ) = g◦ f , where g : Y → Z;

c. For a morphism h : Y → Z, Hom(h,X) : Hom(Z,X) → Hom(X ,Y ) is de-
fined by Hom(h,X)( f ) = f ◦h.

Notice that in the foregoing representation of a category C , the functor ϕX was
in fact Hom(−,X).

5. In their 1945 paper, Eilenberg and Mac Lane defined functors with two argu-
ments. However it may come as a surprise that they did not first define the
product of two categories in order to define functors. The notion of (Cartesian)
product category appears only in §13, whereas functors in two arguments are
defined in §3. Given two categories C and D , the product category C ×D
has as objects pairs (X ,Y ) where X is an object of C and Y is an object of
D and as morphisms pairs ( f ,g) : (X ,Y )→ (U,V ) where f : X →U in C and
g : Y →V in D . It is now possible to define a functor in two arguments, covari-
ant in the first variable and contravariant in the second variable, T : C ×D → E :
for each pair of objects (X , Y ) in C ×D , T (X ,Y ) is an object of E and for each
morphism ( f ,g) of C ×D as above, T ( f ,g) : (X ,V ) → (Y,U) satisfying the
foregoing conditions in the definition of a functor, e.g.:

a. T (1X ,1Y ) = 1T (X ,Y );
b. Whenever g ◦ f is a morphism of C and k ◦ l is a morphism in D , T (g ◦

f ,k ◦ l) = T (g, l)◦T ( f ,k).

For instance, the functor Hom(−,−) : C ×C → Set is a functor in two ar-
guments. The main examples presented by Eilenberg and Mac Lane are those
particular cases where the category C is a category of topological spaces, a
category of Abelian groups or a category of Banach spaces, together with the
obvious product functor.

6. The so-called “forgetful” functor U : Grp → Set that forgets some or all the
structure of an object. It assigns to each group G, the set U(G) of its ele-
ments, thus forgetting the group structure, and to each group homomorphism
f : G → H, the function U( f ) : U(G) → U(H) between the sets. Needless to
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say, this is but one example among many. For instance, there is a forgetful func-
tor U : Rng → Set that assigns to each ring R, the additive Abelian group of R
and to each homomorphism of rings f : R→ S, the same function now regarded
as an homomorphism of Abelian groups.

7. If the categories C and D are preorders, then a functor F : C → D is a mono-
tone function.

8. If the categories C and D are monoids (respectively groups), then F : C → D
is a monoid (group) homomorphism.

9. Consider a group G as a category with one object and morphisms the elements
of G . A functor F : G → Set to the category of sets sends the unique object of
G to a set S in Set and each morphism of G to an automorphism of S. Notice
that F is forced to send morphisms of G to automorphisms of S by definition.
F is precisely a representation of G .

10. If G is a group, then a functor F : G → Vect is a linear representation of the
group.

11. It is possible to see how to extend the concept of a group acting on a set to the
concept of a category acting on a set. We can also think of a representation of
a category C as an action of C on the underlying sets (notice the plural). For
a functor F : C → Set is defined thus: for each object X of C , F(X) is a set,
for each morphism f : X →Y in C , F( f ) : F(X)→ F(Y ) is a function between
the respective sets. If a transformation group G is essentially a collection of
transformations of a space onto itself, a category C can by extension be thought
as a collection of transformations of a family of “spaces” into one another. We
have seen that Cayley’s representation theorem is a special case of these.

I have already mentioned that functors compose and that for each category C , there
is an identity functor 1C . It is therefore tempting to consider the category CAT
whose objects C , D , E , . . . are categories and the collections Hom(C ,D) of mor-
phisms are collection of functors F , G, H, . . . It is easily verified that functors satisfy
the conditions of the definition of a category given above. Hence, the category of all
categories is a category. However, it quickly appears that the very existence of CAT
is problematic: since CAT is a category, it should be one of its objects, i.e. CAT
should be in CAT. Is this a problem? Although Eilenberg and Mac Lane did not en-
visage the category CAT in their original paper, they had to face the same problem.
Indeed, consider the category Set of all sets. What is it? Is it a set? It cannot be,
since, as is well known, there is no set of all sets. What is its status? Is it definable
at all? Have we been considering illegitimate collections all along?

2.2 Foundations of Category Theory

I introduced categories as pastings of structures of a certain type by morphisms
between these structures. The problem is that to form a category, it seems necessary
to collect together all structured sets of a certain type, in particular all sets, and all
morphisms between these structured sets and this is logically impossible. Eilenberg
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and Mac Lane recognized the problem immediately and devoted §6 of their paper to
it. It is rather interesting to see how they reacted to the problem. They more or less
decided to ignore the technical details involved, since according to their analysis
there is essentially no new problem involved. Their diagnosis is that the problem is
the standard problem of size, well known from set theory:8

We remarked in §3 that such examples as the “category of all sets,” the “category of all
groups” are illegitimate. The difficulties and antinomies here involved are exactly those of
ordinary intuitive Mengenlehre; no essentially new paradoxes are apparently involved. Any
rigorous foundation capable of supporting the ordinary theory of classes would equally well
support our theory. Hence we have chosen to adopt the intuitive standpoint, leaving the
reader free to insert whatever type of logical foundation (or absence thereof) he may prefer.
These ideas will now be illustrated, with particular reference to the category of groups ([74],
246).

In other words, the solutions to the problem can simply be the standard solutions to
the paradoxes of set theory. This clearly indicates that: (1) Eilenberg and Mac Lane
assumed that category theory could be developed in a set theoretical framework; (2)
To a large extent, the development of category theory—inasmuch as they thought
that category theory could be developed—appeared to them to be independent of
the chosen foundation.9

They go on and consider more specific solutions. As was already pointed out, it
is at this point that they indicate that the notion of category is after all secondary and
could be dismissed altogether. Thus the quotation I have given in the first section of
this chapter continues as follows (see p. 43):

Thus one could drop the category concept altogether and adopt an even more intuitive stand-
point, in which a functor such as “Hom” is not defined over the category of “all” groups, but
for each particular pair of groups which may be given. The standpoint would suffice for the
applications, inasmuch as none of our developments will involve elaborate constructions on
the categories themselves ([74], 247).

This is their first solution. It clearly indicates that categories did not have a specific
status in their mind. The algebra of mappings, namely the Hom-sets together with
the morphisms between them, is what matters in applications.

Eilenberg and Mac Lane then move on to consider more technical solutions to
the problem. They entertain the possibility of considering a category of groups (any
such that it would be a legitimate collection from the set theoretical point of view)
instead of the category of groups. We would in this case have a multiplicity of cat-
egories together with a multiplicity of functors for structures of a given type. Thus,

8 This is already debatable for sets themselves! To see the antinomies as problems related to the
size of sets is but one way to look at the problem. See, for instance, [109] and [163].
9 This is still a common attitude. Indeed, here is a typical statement: “It seems that no book on
category theory is considered complete without some remarks on its set-theoretic foundations.
The well-known set theorist Andreas Blass gave a talk (. . . ) on the interaction between category
theory and set theory in which, among other things, he offered three set-theoretic foundations for
category theory. One was the universes of Grothendieck (. . . ) and another was systematic use of
the reflection principle, which probably does provide a complete solution to the problem; but his
first suggestion, and one that he clearly thought at least reasonable, was: None. This is the point of
view we shall adopt” ([15], ix).
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there would be different Hom-functors, one for each category considered. This so-
lution would raise practical problems since it would become difficult to define the
composition of functors in general.

They then suggest that one could adopt the (unramified) theory of types as a
foundation for the theory of classes. In this context, one would consider, for instance,
the category AbGrpm of all Abelian groups of type m. A functor in two arguments,
e.g. Hom(−,−) would then have both arguments in AbGrpm, but its values would
be in the category of groups Grpm+k of higher type m+ k. They immediately point
out that the well-known ambiguity of the type theory would complicate the study
of natural isomorphisms since one would have to consider isomorphisms between
groups of different types.

Finally, standard set theoretical solutions are mentioned. They suggest that a set
of axioms for classes as in the Frænkel-von Neumann-Bernays system (NBG) would
be adequate.10 In this framework, a category is any legitimate class of the system.
An alternative is to restrict the size of the sets considered. Thus, one could take the
category of all denumerable groups, or the category of all groups of cardinality at
most that of the continuum, etc.

What is striking in Eilenberg and Mac Lane’s response to the question of the
foundations of category theory is that they do not see the potential problems that
are raised by the theory. For the specific applications that they have in mind and
that they can foresee, the aforementioned “tricks” seem entirely satisfactory. And
as we have seen, categories themselves are not even considered to be indispensable.
But their paper already contains two elements that raise serious issues about the
foundations of category theory. I have already hinted at one of them by suggesting
the possibility of the category of categories. This is but one case of a general sit-
uation: given certain categories, it often seems natural to construct new categories
from them, as in the case of the product of two categories, and this irrespective of
their size. The other problem, to which we will turn shortly, has to do with functor
categories. Let us briefly examine the first problem.

Assume that we work in NBG, which is the simplest technical solution. Recall
that in NBG, it is possible to distinguish classes and sets. Informally, sets are classes
that can belong to other classes. A proper class is a class that cannot belong to
another class. In other words, a proper class is a class that is not a set. Thus, in this
context, the category of all sets is a proper class, not a set and so is the category of
all groups, etc.

Armed with this distinction, we say that a large category is a category whose
class of morphisms is a proper class of NBG. Otherwise, the category is said to be
small. In general for each pair X , Y of objects of a category C , the class Hom(X ,Y )
is assumed to be a set. Since the class of objects of a category is in one to one
correspondence with a subclass of the morphism class of a category, namely each
object X corresponds to the identity morphism 1X : X → X , if a category is small,
its class of objects is also a set. Most of the examples of categories that we have
seen are large categories and they are definable in NBG. We have also seen many

10 This is how they present the theory. In his book on category theory, Mac Lane will talk about
the Gödel-Bernays axioms instead.
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examples of small categories. Any monoid, group, pre-order, partial order, lattice,
Heyting algebra, Boolean algebra, etc., seen as a category, is a small category. These
are all sets and they are obviously definable in NBG.

Suppose that we have a number of large categories C , D , E , . . . and that we want
to consider the category whose objects are the given large categories and functors
between them as morphisms. Since in NBG, proper classes cannot be elements of
another class—although they can be subclasses of another class—we cannot collect
the various large categories into one class, nor can we form the morphism class of
such a category.

There is, however, a standard way to avoid the foregoing difficulty. One starts
with small categories C , D , E , . . . and constructs the large category whose objects
are these small categories and functors between them. But this does not allow us to
consider functors between large categories, something which seems to be entirely
natural and even indispensable. As we will see, the problem will become even more
acute when functor categories enter the scene in their full generality.

2.3 Philosophical Interlude: An Argument Against the
Foundational Status of Category Theory

If we think of category theory as a geometric framework for studying the structure
of a family of objects, as Eilenberg and Mac Lane did, then the axioms of the theory
as presented above hide a crucial aspect of the theory. It is as if someone were to
define a group as a group of transformations, e.g., as a set of points and a collection
of mappings on these points that satisfy certain properties. Given this presentation,
we might be led to believe that a group is merely a tool to study the properties of
the given set of points, and that the sets of points are therefore primordial. Thus
transformations groups are part of applied mathematics; they constitute an example
of the application of mathematics to itself. When we move to the abstract notion
of group, we can look directly at the group structure, defined or characterized by
means of group theoretical concepts and then look at representations again, namely
go back to groups as transformation groups. We are at this point in the same po-
sition with respect to categories. The foregoing axiomatization, which is found in
many textbooks of category theory, presents categories as a tool used to examine
a collection of structured objects, and one is tempted to conclude that the objects
are primordial.11 Thus, one could argue that, just as a transformation group G in
geometry is abstracted from an underlying geometric structure, a category C is ab-
stracted from a collection of structures and homomorphisms between them. Hence,
one would be tempted to conclude that categories are fundamentally collections and
thus rest upon set theory.

11 Algebra is generally seen as a tool. To give but one example from the literature: “It is now taken
for granted that the methodology of algebra is an essential tool in mathematics. On the other hand,
in recent research one can observe a return to the challenge presented by fairly concrete problems,
many of which require for their solution tools of considerable technical complexity” ([115], xi).
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This remark can lead to what is taken to be a philosophical argument against the
foundational status of category theory. It can be summarized as follows: in order to
explain the concept of a category, one needs to explain the notion of a collection
and the notion of a structure. Hence, the notion of a collection comes before that
of a category and therefore, category theory cannot be taken as a foundation for
mathematics. Feferman first presented the standard formulation of this argument:

The point is simply that when explaining the general notion of structure and of particular
kinds of structures such as groups, rings, categories, etc., we implicitly presume as under-
stood the ideas of operation and collection ([85], 150).

Three points have to be made immediately. First, the argument rests on a certain
order of explanation and thus of what appears to be cognitive dependence. Second,
Feferman explicitly places categories alongside groups, rings and presumably other
algebraic structures and treats categories merely as one kind of structure among
others. This is certainly correct in a certain sense, since a category is an algebraic
structure and the first order theory of categories is an algebraic theory. However,
category theory is a general theory of structures and it is therefore in a sense a
metastructure. And third, the argument has a family resemblance with Poincaré’s
argument against logicism. It is certainly different in its details, but it relies on a
similar strategy. (See, for instance, [56].)

The argument clearly rests upon: (1) a purely logical conception of explanation,
probably along the lines of the deductivo-nomological model of explanation; and
(2) an assumption that understanding follows directly from logical explanations.
Needless to say, both claims are highly debatable. It would be pointless to analyze
the nature of explanations in general or even only in mathematics—assuming that
there are explanations in mathematics. (See, for instance, [241], [108].) However,
I cannot refrain from making remarks concerning the underlying conception of un-
derstanding.

The concept of understanding implicitly used by Feferman assumes that to un-
derstand a structure is to grasp, first, that we are dealing with a set of bare elements
and, second, that certain operations satisfying specific conditions are definable on
these elements and these are grasped afterward. Thus, Feferman assumes that un-
derstanding proceeds along the lines of model theory. However, in practice, mathe-
matical structures almost always appear in a given context and are abstracted from
that context. Thus, by looking at different definitions of homology groups and the
fact that the different definitions nonetheless yielded isomorphic groups, Eilenberg
and Mac Lane were led to the concepts of natural transformation, functor and cate-
gory by abstracting from each specific context the essential features of the situation.
It is therefore entirely possible that although some structures can be reconstructed
logically from the general idea of collection and operation, they might be best un-
derstood first by way of examples. Our point, at this stage, is not that Feferman is
wrong but that the argument presupposes a definite epistemology of understanding
that has to be seen as such.

It is revealing to note that an argument very similar to Feferman’s argument could
be constructed against the role of group theory in the foundations of geometry: in
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order to explain the concept of transformation group, one has to explain the notion of
a geometric structure. Hence transformation groups cannot be taken as a foundation
for geometry.12

But wait. The geometric case points toward an important fact: the dependence
involved is of a different nature than what we usually have in mind. Indeed, it is true
that the concept of a transformation group depends upon the concept of a geometry.
But at the same time, a transformation group is independent, at least in general, from
any specific geometry. This is the whole point of Klein’s transfer principle accord-
ing to which a group of transformations can be transferred from a given geometric
space to a different geometric space provided that a bijection between the geometric
elements exists. In other words, one could start, say, with a certain spherical ge-
ometry, and investigate its group of transformation, or one could start with Möbius
geometry, investigate its group of transformation and realize that both geometries
have isomorphic transformation groups and are, in a sense, the same. Although one
has to choose one geometric structure to exemplify a given transformation group G,
various geometric spaces can be chosen in order to illustrate and explain what G is.
Thus, G is in some respect independent from any particular geometry that exempli-
fies it without being completely independent from all these geometries. Moreover,
as we have seen in the case of elementary geometries, one can start with a purely al-
gebraic and abstract description of a group of transformations G and construct from
G and some of its subgroups the various geometric structures that exemplify it.

As I have also pointed out, looking at elementary geometry from the point of
view of transformation groups provides an insight into the nature of geometry and
geometrical concepts. Thus it could be argued that the traditional approach to the
foundations of elementary geometry did not reflect the essential features of geom-
etry (i.e., what makes geometry what it is), and that what does reveal the essential
features is precisely the nature, role and structure of transformation groups. I am
not equating transformation groups with geometry. As Poincaré said in a confer-
ence commenting on Cartan’s work:

If we then strip the mathematical theory of what appears in it merely as an accident, that is
of its matter, only the essential is left, that is its form; and this form, which constitutes, one
might say, the solid skeleton of the theory, will be the structure of the group ([239], 264).

In other words, the transformation group is what makes the whole thing hangs to-
gether as a whole, as a geometry. Clearly, when we start with a given geometric
theory and we move to its associated transformation group, we are abstracting from
a certain description of a geometric space to its skeleton, its structure. Conversely,
when we start from a transformation group, given algebraically, and move to its rep-
resentations, we are putting some flesh around the skeleton, we are giving a concrete
exemplification of the structure. As we have seen, there are usually many different
ways of adding flesh to a skeleton.

12 However, as we have seen, they can. See for instance, [9]. It could be argued that such a presen-
tation is cognitively awkward, but then the argument shifts from the purely logical possibility of
providing such a foundation to its cognitive value.
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Let us come back to the argument from this point of view. It is clear that when we
explain the notion of a transformation group, we implicitly take as understood cer-
tain notions of geometry. I can certainly grant this fact. What can we conclude from
it? Can we conclude that transformation groups have no role to play in the founda-
tions of geometry? I do not think that this is the proper conclusion. Here is a differ-
ent claim: someone who does not understand the nature and role of transformation
groups in elementary geometry does not understand what elementary geometry is
about. On the other hand, someone who does not know how to move from a transfor-
mation group to one of its geometric representation does not understand geometry
either. Thus, we are led to a situation where a foundational framework somehow has
to include two dimensions: a purely “abstract” component that provides the overall
structure of the theory, together with one or more singular representations or, to use
a metaphor, “embodiments”. Notice how close this sounds like what we find in logic
where we have a theory and its models. As we will see, categorical logic provides
a bridge between representation theorems and completeness theorems and it shows
how they are in fact two faces of the same coin.

In the next few chapters I will argue that the foundational status of category
theory in mathematics is analogous to the status of transformation groups in ele-
mentary geometry (and groupoids in differential geometry). In fact, the role played
by categories in mathematics is much stronger than the role played by transfor-
mation groups in geometry. Notice immediately that the analogy presupposes that
mathematical concepts in general have a lot in common with geometrical concepts.
This should be compared with the set-theoretical context in which, I believe, math-
ematical concepts are taken to be very much like concepts of arithmetic, or more
generally, combinatorics. (Even at its origin, set theory had a lot to do with count-
ing, whereas category theory had more to do with the classification of forms via
topological spaces.) Be that as it may, if the foregoing considerations concerning
transformation groups are sound, then I claim that they can be generalized to cate-
gories, viewed in the right way, and that the argument presented by Feferman misses
its target.

Let us now consider a second aspect of Feferman’s argument. First, it assumes
that categories are structured collections in general and thus are presented as classes
or sets with a certain structure, and second, it assumes a definite conception of sets.
As I will argue later, category theory relies on a different conception of sets and
once this is understood, categories can be presented in a way that does not depend
on the standard conception.

John Bell, inspired by Feferman, presented arguments against category the-
ory in the foundations of mathematics that go in a somewhat different direction.
First, Bell distinguishes two different senses in which category theory could serve
as a foundation for mathematics, a strong sense and a weak sense. According
to the strong sense, “all mathematical concepts, including those of the current
logico-mathematical framework for mathematics” should be explicable in category-
theoretic terms ([19], 353). In the weaker sense, “one only requires category theory
to serve as a [possibly superior] substitute for axiomatic set theory in its present
foundational role”([19], 353).
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Bell asserts that it seems implausible to him that category theory could be foun-
dationally adequate in the stronger sense. He gives two reasons. The first reason is
that metamathematics has two irreducible aspects: the combinatorial and the seman-
tical. The combinatorial “is concerned with the formal, finitely presented properties
of the inscriptions of the ambient formal language, and the semantical (. . . ) is con-
cerned with the interpretation and truth of the expressions of that language” ([19],
353). Bell argues that neither of these aspects can be accounted for by category
theory. For, according to Bell, combinatorial objects are generally intensional and
categories are extensional; that is, Bell presents categories as classes of objects and
morphisms satisfying the usual axioms, and the latter cannot “cover” the former.
Once more, this argument presupposes that there is a unique conception of classes.
As to the combinatorial aspects of metamathematics, I can certainly grant that any
foundational framework has to have a combinatorial dimension. As I will show later,
category theory and categorical logic have certain things to say about this aspect of
mathematics. We will come back to this point in due course.

Let us now turn to the semantical aspects of metamathematics. This is where
Bell explicitly falls back on Feferman’s argument, but with a slightly different twist.
Semantics deals with the notion of truth, and in particular logical truth. Bell claims
that in order to grasp the concept of logical truth for sentences of classical first-order
languages, one has to grasp the concept of a class. Thus, if category is to serve as a
foundation for mathematics in the strong sense, it has to give a satisfactory account
of the notion of class solely in its terms. Bell believes that this is not possible. Here
is how he puts it:

But this seems to me highly dubious, for it is surely the case that the unstructured notion of
class is epistemically prior to any more highly structured notion such as category: in order
to understand what a category is, you first have to know what a class is ([19], 352–354).

And we are back to Feferman’s argument.
Notice that it seems that both Feferman and Bell conflate the logical and the

epistemic. It might be perfectly correct to say that from an epistemic point of view
a notion of class precedes the notion of a category. This does not entail, however,
that from a logical point of view, a notion of class has to come before the notion of
a category. Once again, transformation groups and elementary geometric structures
allows us to see a parallel situation. It makes perfect sense to claim that geometric
notions are epistemically prior to group theoretical notions. However, it is perfectly
possible, from a purely logical point of view, to start from abstract transformation
groups and move to geometric spaces.

Let us now turn to the weak sense of “foundation” discussed by Bell. In this
sense, the question is whether category theory could serve as a substitute for ax-
iomatic set theory in its foundational role. Bell’s analysis is based on work done
in the seventies in which a systematic translation between axiomatic set theory and
topos theory was developed. On the basis of this translation, he concludes that

it would be technically possible to give a purely category-theoretic account of all mathe-
matical notions expressible within axiomatic set theory, and so formally possible for cate-
gory theory to serve as a foundation for mathematics insofar as axiomatic set theory does
([19], 355).
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He then claims that although possible, the actual translation is awkward and “un-
suitable as a means of formalizing those mathematical notions which are normally
expressed set-theoretically” ([19], 355). I agree with Bell on this line and I will not
look at the technical aspects of the translation in this book. I would even go further
and argue that the possibility of such a translation has no real foundational rele-
vance. It was an interesting technical question to be able to compare topos theory as
it was then developed to axiomatic set theory. But it certainly cannot serve to estab-
lish the possibility of topos theory and a fortiori of category theory as a foundation
for mathematics.

Bell then turns to Lawvere’s early axiomatization of the category of all small
categories (in [167]). This is an attempt at developing a foundational framework
in which mathematical objects are categories and the universe itself is a category.
Unfortunately, Lawvere’s original attempt suffered from a slight technical problem.
(See Chapter 6.) However, Bell believes that fixing these technical difficulties would
not do category theory any good. The problem here, according to Bell, is that, in
order to define notions of “workaday” mathematics, one has to introduce discrete
categories and discrete categories are nothing but sets. In a way, we get back to
Feferman’s argument. Here is how Bell puts it:

But the question automatically arises as to exactly why, in introducing ordinary mathemat-
ical notions into the theory, one must make a detour through the somewhat opaque notion
of discrete category. It is difficult to see how this can be explained except by appeal to the
notion of ‘unstructured’ category, i.e. set ([19], 355).

Notice that the problem is not that the notion of set has to be defined indepen-
dently of the given theory, for the concept of discrete category is defined within
the theory, rather the problem is that discrete categories make the whole system
appear “artificial” as a “foundation”. Two remarks have to be made. First, it now
appears that a categorical framework would be syntactically and semantically rather
different from what Lawvere presented in the sixties. (I will give pointers to these
differences as well as reference in the conclusion.) Second, introducing sets or col-
lections as discrete categories does not merely amount to introducing sets as they
are described in an axiomatic set theory, e.g., Zermelo-Frænkel (ZF). For sets as
discrete categories certainly do not satisfy the axiom of extensionality nor do they
satisfy a comprehension or a separation principle unless they are defined within a set
theory, which is just what the new framework is attempting to avoid. Thus, although
collections cannot be bypassed even in a categorical framework, this does not mean
that there is not a coherent and adequate notion of collection that can be developed
within that framework, a coherent notion that is compatible with a general notion of
mathematical concept.

Let us now close this philosophical interlude and return to categories and their
algebra of mappings. What is still not entirely clear is how the algebra of mappings
captures properties of a structure and how it should be used to discover these prop-
erties. Eilenberg and Mac Lane had an idea about this usage and it is precisely at this
point that category theory should be seen as a generalization of Klein’s program. To
see how this was done, we have to turn to the core of their work, namely natural
transformations.
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2.4 At Last, Natural Transformations

Informally, a natural transformation is a translation or a transformation of one func-
tor into another. More pictorially, one can think of the situation as follows: given two
parallel functors F : C → D and G : C → D , a natural transformation is a way to
transform globally or systematically the image of F in D into the image of G in C .
The formal definition is usually given thus: a natural transformation η : F →G is a
function which assigns to each object X of C an arrow ηX : F(X)→ G(X) in such
a way that for every morphism f : X → Y of C , the following diagram commutes:

F(Y ) G(Y )
ηY

//

F(X)

F(Y )

F( f )

��

F(X) G(X)
ηX // G(X)

G(Y )

G( f )

��

In particular, whenever ηX is an isomorphism for each X , then we say that η is a nat-
ural isomorphism. Here are some examples of natural transformations and natural
isomorphisms.

1. Consider the functor 1Set : Set → Set and the covariant functor ℘: Set → Set
defined above. There is a natural transformation {−} : 1Set →℘, such that for
each set X , the map {−}X : X →℘(X) is defined by {−}X (x) = {x} for all x in
X . It is easy to verify that it is a natural transformation.

2. Here is the example given by Eilenberg and Mac Lane themselves in the opening
paragraph of their original paper ([72]). Let V be a finite dimensional real vector
space. As usual, let V ∗ = { f : V →R | f is real-valued fonction}, the dual space
of V . It is well known that V ∗ is itself a finite dimensional real vector space and
that it is in fact isomorphic to V . However, in order to define an isomorphism
between V and V ∗, one has to choose a basis for V and the isomorphism will
vary with different choices of basis vectors. It is also well known that the double
dual V ∗∗, i.e. the space of all linear functionals of linear functionals, is also
isomorphic to V . However in this case the isomorphism does not depend on the
choice of a set of basis vectors. The isomorphism can be defined for all finite-
dimensional vector spaces simultaneously. This is why such an isomorphism
was said to be “natural”. It can easily verified that the operation of taking the
dual space of a real finite-dimensional vector space is functorial, i.e. going from
V to V ∗ is a functorial operation, more precisely a contravariant functor. It is
then possible to show that there is a natural transformation, in fact a natural
isomorphism, between the identity functor 1Vect and the functor (−)∗∗.

3. Let H be a fixed group. Then it is easy to verify that the map H ×− : Grp →
Grp is a functor. Indeed, for any group G, H×G is the usual group product and
for any homomorphism f : G1 → G2, (H ×−)( f ) : H ×G1 → H ×G2 is the
homomorphism (1H , f ) defined pointwise. It is easy to see that this construction
satisfies the conditions of the definition of a functor. Now, each homomorphism
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h : H → K defines a natural transformation H ×−→ K×−. This means that
the following diagram commutes:

H×G2 K×G2
ηG2

//

H×G1

H×G2

(1η , f )

��

H×G1 K×G1
ηG1 // K×G1

K×G2

(1K , f )

��

4. In their 1945 paper, Eilenberg and Mac Lane gave a host of examples of natural
transformations and also examples of mappings that are not natural. Here are the
basic examples of natural transformations given. When standard constructions
on sets, topological spaces, groups, Banach spaces are seen as functors, then
well-known maps are shown to be natural transformations. For instance, for
X , Y and Z sets, topological spaces or groups, the following isomorphisms are
natural transformations (isomorphisms):

a. (X ×Y )×Z // X × (Y ×Z);
b. X ×Y // Y ×X ;
c. Hom(Z,X)×Hom(Z,Y ) // Hom(Z,X ×Y );
d. Hom(X⊗Y,Z) // Hom(X ,Hom(Y,Z)), where in this case if X and Y are

groups, then the product X ⊗Y is the tensor product.

Once the concept of natural transformation is defined, it is easy to define a new
kind of category, namely a category of functors or a functor category thus: given
two categories C and D , the category DC has as objects functors F : C → D and
morphisms natural transformations η : F →G. It is easy to verify that this is indeed
a category (natural transformations compose in the obvious manner, the identity
natural transformation exists for each functor F and satisfies the conditions of the
definition). Since these categories play a key role in category theory and in our story,
we will give some simple and hopefully illuminating examples of such categories.

1. Let us start with a trivial example. Let 1 denote the category with one object
and one morphism, namely the identity morphism on the unique object. Then a
functor F : 1 → C picks out an object X of C and the unique morphism is sent
to the identity 1X of X . In particular, when C is the category Set, then a functor
picks a set X together with its identity map. Trivially in this case, the category
Set1 is “the same”—although we still have not made precise under what condi-
tions two categories should be considered to be “the same”, an important issue
to which we will turn shortly—as Set.

2. By modifying slightly the foregoing picture, we get a very different category.
Instead of the category 1, we take the category � with one object and one non-
trivial endomorphism. Then a functor F : �→ Set picks a set X together with
an endofunction X → X . The functor category Set� is the category whose ob-
jects are sets X together with an endofunction f : X → X . A morphism of this
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category is a natural transformation η with the property that it preserves endo-
functions. It can be represented thus:

X Y
η

//

X

X

f

��

X Y
η // Y

Y

g

��

As can be read directly from the diagram, preserving endofunctions means that
η ◦ f = g◦η . This functor category can therefore be thought of as a category of
sets with structure.

3. Let 2 denote the category with two different objects, denoted by 0 and 1, and
one non-trivial morphism 0→ 1. A functor F : 2→ Set picks out two sets and a
map between them, i.e. the functor category Set2 is the category of morphisms
of Set.

4. Let � denote the category with two objects and two parallel non-trivial mor-
phisms between them. A functor F : �→ Set picks two sets and two parallel
morphisms s, t : A ⇒ D. Such an object can be seen to be an irreflexive directed
multigraph. The set A is the set of arrows of the graph and the set D is the set of
dots of the graph. The map s sends an arrow to its source and the map t sends a
arrow to its target. Thus the functor category Set� is the category of irreflexive
directed multigraph. A morphism of this category between objects A1 ⇒ D1 and
A2 ⇒ D2 is given by a pair of functions fA : A1 → A2 and fD : D1 → D2 such
that the diagram commutes:

D1 D2fD
//

A1

D1

A1 A2
fA // A2

D2

s1

��

t1

��

s2

��

t2

��

that is, s2 ◦ fA = fD ◦ s1 and t2 ◦ fA = fd ◦ t1.
5. Let 3 denote the category with three different objects, denoted by 0, 1 and 2

and three non-trivial morphisms between them, namely 0 → 1, 1 → 2 and the
composition 0 → 2. A functor F : 3 → Set picks three sets X , Y and Z and a
commutative triangle between them. Thus, the category Set3 is the category of
commutative triangles of Set.

6. Let 〈N,×,1〉 denote the monoid of natural numbers with multiplication and one
as the identity element, now seen as a one object category with denumerably
many morphisms. A functor F : N→ Set picks one object, thus a set X , together
with an endofunction f : X → X . More specifically, F(1) = 1X and F(n) = f n,
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i.e. f composed with itself n times. Thus, this is simply a different description
of the category in the example 2 above.

7. Let now N be the set of natural numbers linearly ordered. A functor F : N→ Set
picks a sequence X0 → X1 → . . . of sets Xn and functions Xn → Xn+1. Lawvere
has suggested that such a sequence should be thought of as a set through time
or as a variable set. A morphism between two such sequences is given by a
sequence of functions thus:

Y0 Y1//

X0

Y0
��

X0 X1// X1

Y1
��

Y1 Y2//

X1

Y1
��

X1 X2// X2

Y2
��

...

...

where every square is commutative.
8. Let G be a group. The functor category SetG, also denoted by BG, is the cate-

gory of all representations of a fixed group G, where a representation is defined
as in the previous chapter, namely a representation of G is given by a set X
together with an action α : X ×G→ X on X .

Although Eilenberg and Mac Lane did consider functor categories of a very spe-
cial type in §8 of their paper, namely for functors with two arguments, such cate-
gories did not play a significant role in their work, nor did they notice that these cat-
egories raise another foundational problem. Indeed, they explicitly claim that “this
category [namely a functor category] is useful chiefly in simplifying the statements
and proofs of various facts about functors, as will appear subsequently” ([74], 250).
Once again, a category is merely heuristically useful and does not, as such, play any
significant role in the story.

As for the foundational problem, it is similar to the problem we have encountered
earlier with the category of categories. Indeed, if C and D are large categories in
the sense specified previously, then a single functor F : C →D is a proper class and
therefore we cannot collect all functors from C to D ; that is, the functor category
DC cannot be formed in NBG. However, if C and D are small categories, then
their morphism classes are sets and the functor category DC is a set, since it is
a subset of the class of all functions from C to D , i.e. not necessarily structure-
preserving. Thus, certain constraints have to be imposed on an operation that seems
to be intuitively natural between categories.

Natural transformations and in particular natural isomorphisms were Eilenberg
and Mac Lane primary targets in their 1945 paper. Once the general definition was
given, they turned in Chapter III to functors in the category of groups and presented
there the extension of Klein’s program as they saw it. Let us turn to their attempt
and try to see why it was inadequate.
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2.5 Extending Klein’s Program in the Wrong Direction

Eilenberg and Mac Lane’s idea seems to have been the following: Klein’s classi-
fication of geometric theories was based on the relationships between a group of
transformations and its subgroups. Eilenberg and Mac Lane replaced the transfor-
mation group, let us denote it by Aut(X), by the algebra of mappings Hom(X ,Y ).
Since they see the latter as a functor, it seems natural to consider its subfunctor and
see what are the invariant concepts of a mathematical field for the functor and its
subfunctors, together with natural transformations and subtransformations between
them. This is precisely what they do.

We first need the definition of a subfunctor. Given two parallel functors F,G : C →
D , G is a subfunctor of F , denoted by G ⊂ F , if G(X) ⊂ F(X) for all X in C and
G( f ) ⊂ F( f ) for all f : X → Y in C . (The last condition means that G( f ) is a
submapping of F( f ), i.e. G( f )(x) = F( f )(x) for all x in G(X).)

Given parallel functors F1,G1 : C → D and F2,G2 : C → D , natural transfor-
mations η1 : F1 → G1 and η2 : F2 → G2, we say that η1 is a subtransformation of
η2, denoted by η1 ⊂ η2, if F1 ⊂ F2 and G1 ⊂ G2 and if for all X in C , η1X is a
submapping of η2X .

Following a similar pattern, Eilenberg and Mac Lane then define in §15 quo-
tient functors. Assuming now that F,G : Grp → Grp, that F ⊂ G and that F
is a normal subgroup of G, then the quotient functor Q = G/F is defined by
Q(X) = G(X)/F(X), where both G(X) and F(X) are groups now, and given a
group homomorphism f : X → Y , Q( f ) : Q(X) → Q(Y ) is defined for each coset
by Q( f )(x + F(X)) = [G( f )(x)] + F(Y ). Given these definitions, Eilenberg and
Mac Lane consider examples of subfunctors of the identity functor 1 : Grp→Grp.
This is where the classification of group-theoretical constructions is introduced.
They mention that, for any group X , the commutator subgroup C(X), namely the
subgroup generated by elements of X of the form xyx−1y−1, x, y in X , is a normal
subfunctor of the identity functor 1. Furthermore the quotient functor (1/C)(X) is
the factor commutator group of X .

Another important construction in group theory is the center Z(X) = {x ∈ X |
xyx−1 = y (∀y ∈ X)} of the group X . (The center Z(X) is also defined as the set of
elements x that commute with all the elements of X , i.e. {x ∈ X | xy = yx (∀y ∈ X)},
which is easily seen to be equivalent.) However, Z(−) is not a functor and a fortiori
a subfunctor of the identity functor on the category of groups. But if one restricts the
algebra of mappings Hom(X ,Y ) to morphisms onto, then it is a functor. Similarly,
the automorphism group Aut(X) of a group X is not a functor unless the Hom-sets
are restricted to isomorphisms between groups. This is how the algebra of mappings
enters the classification of the concepts or constructions of group theory and how,
as we are told in the introduction of their paper.

The invariant character of a mathematical discipline can be formulated in these terms. Thus,
in group theory all the basic constructions can be regarded as the definitions of co- or con-
travariant functors, so we may formulate the dictum: The subject of group theory is essen-
tially the study of those constructions of groups which behave in a covariant or contravariant
manner under induced homomorphisms ([74], 237).
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In §16, Eilenberg and Mac Lane emphasize the functorial character of their clas-
sification. It is defined for all groups in the category of groups. This is the second
aspect that seems to allow them to make a connection with Klein’s program. For as a
group of transformations apply to a whole space, a functor is defined over a category
as a whole. In particular, one can consider a single group as a category (with one
object, as we have seen) and in this case, one recovers a classification of subgroups
that was already existent in 1945. Thus, Eilenberg and Mac Lane’s approach is more
general.

The category of groups, together with the category of Abelian groups, are the
only cases considered in any detail in their paper. Eilenberg and Mac Lane did not
present a general framework in which these ideas could have been developed. In
the category of groups, it does make sense to consider a normal subfunctor and
then quotients of a functor by a subfunctor, for these concepts are definable in this
category. But they do not make sense in general. As far as I know, no one has referred
to these sections of the paper since then. And it is no surprise, for Eilenberg and
Mac Lane did not hit on the right way of thinking about invariance in this new
context.13

Eilenberg and Mac Lane’s approach implies that the concept of commutator sub-
group is basic to group theory whereas the concept of center of a group is not as
basic as the concept of commutator, though certainly useful and important in certain
cases. Is this correct?

There seems to be something missing. Simply considering the (non)functoriality
of the concept of center Z(−) might lead us astray. Even though sending a group
to its center is not a functorial construction, among all the subgroups of a group G,
the center Z(G) occupies a significant place: it is the largest subgroup of G having a
certain property, i.e., that each of its elements commutes with all the elements of G.
It is, in a sense, the best possible solution to the problem of finding a subgroup of G
whose elements commute with all the elements of G. This fact can be translated in
terms of the algebra of mappings as follows:

1. There is a monomorphism (in this case an injection) from Z(G) into G and
2. Any group H which has an homomorphic image into G possessing the charac-

teristic property of Z(G) factors through Z(G).

We can even use these facts to define the center Z(G) with the help of the algebra of
mappings. Something is at work here and it is not the “brute” fact of functoriality.
In fact, what is missing is a basic categorical concept, some would rightly say the
fundamental categorical concept: it is the concept of a universal arrow, or equiva-
lently from the point of view of functors, the concepts of representable functor or,
equivalently, of adjoint functors or adjointness.

It is important not to forget what Eilenberg and Mac Lane’s goal was in their
1945 paper. Mathematicians knew informally that some mappings were “natural”

13 Notice that determining the invariant properties under a family of transformations is more often
than not a difficult task, even in geometry. Indeed, Klein’s characterization of geometry as the study
of the properties of figures that are invariant under all transformations of a group is in general hard
to implement.
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and others were not. They could not, however, say precisely or exactly what “being
natural” amounted to. This is where Eilenberg and Mac Lane succeeded. The key
observation Eilenberg and Mac Lane made was that “being natural” in the case of
certain isomorphisms between groups could be defined for any group as a group,
that is, without considering specific properties or elements of the group. One has to
look at what they have done from an epistemological point of view. The notion of
natural isomorphism was in the mathematical practice of the time. It had to be made
exact. This is far from being a trivial process, for it is not obvious how such a notion
should be made exact, and even more obvious that the set-theoretical framework is
not adequate for the purpose. Indeed, “being a natural isomorphism” is not a prop-
erty that is best defined in terms of the elements of the sets involved. Thus, Eilenberg
and Mac Lane had to create the proper context in which the notion could be defined
in full generality. Once the context is defined, one has to verify that it provides the
means to give a general definition and then that the general exact definition does
capture the informal notion adequately. One has to show that the examples mathe-
maticians already considered as being natural are natural in the new, precise sense.
Furthermore, one has to show that the examples of non-natural mappings are indeed
non-natural in the new, exact sense. Lastly, one has to give new and convincing ex-
amples and applications of natural mappings from the exact definition in such a way
that they are interesting, useful and coherent with the informal notion already used
in practice. These were certainly the goals Eilenberg and Mac Lane had in mind
when they wrote their paper and in these respects, they succeeded beautifully. The
connection with Klein’s program probably came as an afterthought and I for one
am convinced that it was not one of their main motivations to generalize Klein’s
program, contrary to what Taylor claims in the foregoing quote.

But as often happens when a new general framework is introduced, this one opens
the door to new possibilities: problems that had been vaguely conceived can at last
be formulated precisely; sometimes these problems can be solved with the new tools
provided by the framework; questions that were unthinkable become unavoidable;
fields that were fragmented can be unified; new analogies can be discovered, new
concepts can be introduced and results that had been proved in an obscure fashion
can be proved and explained, sometimes in a way that appears to be trivial; all in the
new framework. All this turned out to be in the future of category theory.

I will end this chapter by briefly looking at the status of category theory during
what I call its first period of development, namely from 1945 until around 1957–
1958.
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2.6 Category Theory: The First Phase 1945–1958

The work done by Eilenberg and Mac Lane on the role of the groups
Ext(G,H) in homology led them almost immediately afterward to
very general considerations on various aspects of groups theory that
would ultimately bring new points of view in many parts of math-
ematics and exert a deep influence on subsequent work in algebra,
algebraic topology, and algebraic geometry in particular.

([59], 96)

It is worth looking at the status of category theory from its inception in 1942 until
about 1957–1958, two years that mark an important turning point in its development.
It is probably fair to say that category theory was in this period first and foremost a
useful framework for algebraic topology and homological algebra. I will therefore
concentrate on two influential books published in that period, namely Eilenberg and
Steenrod’s Foundations of Algebraic Topology, published in 1952 but announced
already in 1945 ([79]) and Cartan and Eilenberg’s Homological Algebra, published
in 1956 (but based on seminars given in 1950/51).

Eilenberg and Steenrod’s main goal was to give the essential ingredients, via an
axiomatic theory, of “the part of algebraic topology called homology theory” ([80],
vii). In the thirties and forties, many apparently different and complicated homol-
ogy theories were defined and used by various authors and as Eilenberg and Steen-
rod identify them in the preface, they are the singular homology groups of Veblen,
Alexander and Lefschetz, the relative homology groups of Lefschetz, the Vietoris
homology groups, the Čech homology groups, the Alexander cohomology groups,
etc. Even though the experts knew implicitly what homology theory was, no one had
written down explicit conditions. This is what Eilenberg and Steenrod decided to do
by providing an axiomatic characterization of homology theory. One has to empha-
size the originality of Eilenberg and Steenrod’s contribution. What they axiomatized
is not a domain of entities of a certain kind, e.g., groups or topological spaces, but
connections between topological spaces and groups, namely functors between a cat-
egory of topological spaces and a category of groups and this just after the concepts
of category, functor and natural transformation had just been introduced.

The various homology and cohomology theories appear as complicated machines, the end
product of which is an assignment of a graded group to a topological space, through a se-
ries of processes which look so arbitrary that one wonders why they succeed at all. In a
remarkable book (. . . ) Eilenberg and Steenrod endeavored to break through this maze of
unpleasant mathematics by adopting a totally different viewpoint, concentrating on proper-
ties of these end products rather than on the various methods devised to get them. This is
the axiomatic theory of homology (and cohomology) ([59], 107).

Homology groups are constructed in an intricate manner and in various ways from
topological spaces. In the words of Eilenberg and Steenrod, “the construction of ho-
mology groups is a long and diverse story, with a fairly obscure motivation” ([80],
ix). Instead of focusing on the details of the various procedures to construct the
diverse homology groups, Eilenberg and Steenrod concentrated on their common
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properties. Thus, not only does one end up with a better picture of the various es-
sential components involved in all the constructions, but one presumably has a better
understanding of their success. To present a homology theory as a family of functors
between categories that satisfying certain specific properties is to define and clarify
the context, the framework of homology theory and, more generally, algebraic topol-
ogy.

Eilenberg and Steenrod define a homology theory as a family of functors {Hi : C →
D}, i an integer, from a certain category of topological spaces into a category of al-
gebraic structures, e.g. Abelian groups or modules over a ring R, together with a
family of natural transformations ∂i : Hi → Hi−1, called boundary operators, satis-
fying specific axioms which essentially stipulate how functors ought to behave with
respect to certain obvious topological constraints, for instance subspace, homotopy
equivalence and dimension. Moreover, and this detail turns out to be capital for the
ensuing development of category theory, these axioms also define a cohomology
theory, since the latter is simply the dual of a homology theory, i.e. it suffices to
reverse all the arrows in the axioms. Using the categorical terminology, a homology
theory is given by a family of covariant functors, whereas a cohomology theory is
given by a family of contravariant functors. Four elements have to be underlined:

1. A homology theory is basically given by two families of transformations:

a. Functorial transformations of topological spaces into algebraic structures;
these provide an algebraic encoding of topological properties;

b. Transformations of these functors into one another via natural transforma-
tions; these transformations are “natural translations” of one algebraic en-
coding into another;

2. These transformations have important properties themselves:

a. The functors Hi, like any functor, preserve isomorphisms between topologi-
cal spaces. Thus, if for two spaces X and Y , there is a functor Hi with Hi(X)
not isomorphic to Hi(Y ) for some i, then X and Y cannot be homeomor-
phic, for if they were, then there would be an isomorphism in the category
of topological spaces and a functor Hi would take it to an isomorphism in
the category of groups, which was shown to be impossible;

b. Two homology theories are said to be equivalent, that is essentially the
same, if there is a family of natural isomorphisms between them. Notice
that as a matter of fact, homology theories can be very different with respect
to other properties, e.g. facility of computation. It is the fact that homology
theories can be systematically related to one another via natural transforma-
tions that allowed their classification. One can compare systematically, that
is with the help of the morphisms in the target category, different homology
theories and determine how and where they differ with respect to their role,
that is capturing fundamental properties of the spaces studied. Chapter 3 of
Eilenberg and Steenrod’s book culminates in the so-called “uniqueness the-
orem” which stipulates under what conditions two homology theories are
essentially the same, i.e. naturally isomorphic.
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3. One can think of a homology theory as establishing a relation of formal super-
venience between properties of mathematical objects. In this context, the given
objects are topological spaces. In the category of topological spaces, some of
their most important properties are captured by the existence and properties
of continuous maps. The homology groups represent properties of topological
spaces. In the words of Spanier:

The functor Hn measures the number of ‘n-dimensional holes’ in the space (or simpli-
cial complex), in the sense that the n-sphere Sn has exactly one n-dimensional hole and
no m-dimensional holes if m < n. A 0-dimensional hole is a pair of points in different
path components, and so H0 measures path connectedness. The functors Hn measure
higher dimensional connectedness, and some of the applications of homology are to
prove higher dimensional analogues of results obtainable in low dimensions by using
connectedness considerations ([252], 155–156).

Supervenience is simply a different way of saying that the homology theories
are functorial: two identical, i.e. homeomorphic, spaces cannot have different
homology groups, whereas a family of homology groups can be “exemplified”
by two different topological spaces.

4. We can see more precisely what is the role and status of categories in this con-
text. As we have already mentioned, the central objects of study in Eilenberg
and Steenrod’s work are functors and natural transformations between functors,
namely homology and cohomology theories and their links. In turn, homology
and cohomology theories are fundamentally and essentially complicated con-
structions whose purpose is to capture or measure basic properties of topologi-
cal spaces. In Eilenberg and Steenrod’s own words:

Speaking roughly, a homology theory assigns groups to topological spaces and homo-
morphisms to continuous maps of one space into another. To each array of spaces and
maps is assigned an array of groups and homomorphisms. In this way, a homology
theory is an algebraic image of topology. The domain of a homology theory is the
topologist’s field of study. Its range is the field of study of the algebraist. Topological
problems are converted into algebraic problems ([80], vii).

Hence a homology theory, or in fact most of algebraic topology, is comparable to a
translation device. Seen this way, a category is merely the framework in which the
“data” has to be organized for the translation to be effected. For the basic objects of
study are still the topological spaces (and the mappings between them) and in order
to apply the translation device, they have to be “prepared” in a certain way, that is
they have to be presented to the device in the form of a category. Hence a category
has absolutely no ontological relevance in this context. It is part of the required
“preparation” of the data for the translation to take place. If a homology theory is
a machine, to use Dieudonné’s expression, then the categories involved are simply
parts of the machine.

However, the language of diagrams was seen as being a new and useful language.

Successful axiomatizations in the past have led invariably to new techniques of proof and a
corresponding new language. The present system is no exception. The reader will observe
the presence of numerous diagrams in the text. (. . . ) Certain diagrams occur repeatedly
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in whole or as parts of others. Once the abstract properties of such a diagram have been
established, they apply each time it recurs.

The diagrams incorporate a large amount of information. Their use provides extensive
savings in space and in mental effort. In the case of many theorems, the setting up of the
correct diagram is the major part of the proof. We therefore urge that the reader stop at the
end of each theorem and attempt to construct for himself the relevant diagram before ex-
amining the one which is given in the text. Once this is done, the subsequent demonstration
can be followed more readily; in fact, the reader can usually supply it himself ([80], xi).

These remarks hold true immediately in the first chapter of the book where the ax-
ioms are stated and general results proved, but one might think that they are not
indispensable. It is however difficult to see how Chapter 3 on the homology of sim-
plicial complexes and especially the proofs of the main isomorphism, its proper-
ties and the uniqueness theorem could be written without the diagrams one finds
there. There is no doubt that the diagrammatic language, derived from the categori-
cal framework, contributed to the success of the whole enterprise.

Eilenberg and Steenrod’s book effected a revolution in mathematical notation. Perhaps not
since Descartes’s La géométrie has a book influenced how we write Mathematics. One [sic]
knew they were looking at mathematics before 1600 because of the geometric diagrams
with vertices and sides labeled by alphabetic letters. La géométrie in 1637 gave us nearly
modern forms of equations, especially the notation of the exponent, i.e. a3. The diagrams
of Eilenberg-Steenrod not only made algebraic topology intelligible, but eventually swept
out to other parts of mathematics, providing an efficient way to express complex, functorial
relationships and giving us powerful methods of proofs by means of diagram chasing ([18],
733).

The categorical language provided “powerful methods of proofs”. Hence, the cat-
egorical language is certainly useful, but categories themselves and their proper-
ties are, once again, secondary. At best, categories provide a convenient organiza-
tion of mathematical data, they allow one to state certain theorems precisely and
in ways that were not hitherto possible. But it certainly does not, so the argument
goes, reflect an intrinsic mathematical structure. It does not capture or constitutes
what mathematics is fundamentally about. Thus, we have the category of topolog-
ical spaces, the category of Abelian groups, the category of groups, the category
of rings, the category of modules over a ring R, the category of sets and so on and
so forth, with various functors between them and natural transformations between
these functors. As such, although it is an organization of mathematics, it is not a
genuine classification, for in this case we have not stipulated when or under what
conditions these different “categories” are different, or equivalently, identical. For
instance, how do we know that the category of topological spaces is different, as
a category, from the category of Abelian groups? Is it possible that they could be
equivalent as categories? What are the identity criteria at work here? Does it matter
at all? As we will see in a short while, it is possible—and in fact necessary—to
give a precise answer to this question. It is probably this type of organization that
mathematicians have in mind when they claim that category theory provides an or-
ganization of mathematics. But this point of view misses categories altogether as
objects of mathematical interest themselves. In the same way that there was an on-
tological shift in geometry which went from the notion of a transformation group



2.6 Category Theory: The First Phase 1945–1958 71

as a methodological device to the notion of a transformation group as the basic ge-
ometrical structure, a similar ontological shift had to occur within category theory
too. But we are getting ahead of ourselves.

Eilenberg and Steenrod’s work showed what is essential for a family of functors
to be a homology theory. It specified what homology theory is about. The details of
the specific constructions and computations, which are chosen for some purposes
and can be extremely complicated, are left to the applications of actual, specific
theories. Categories remain in the shadows and are not seen as being indispensable
or even useful.

Cartan and Eilenberg’s work is in the same spirit as Eilenberg and Steenrod. Here
is how they present the goal of their book in the opening sentences of the preface:

During the last decade the methods of algebraic topology have invaded extensively the
domain of pure algebra, and initiated a number of internal revolutions. The purpose of this
book is to present a unified account of these developments and to lay the foundations of a
full-fledged theory.

The invasion of algebra has occurred on three fronts through the construction of coho-
mology theories for groups, Lie algebras, and associative algebras. The three subjects have
been given independent but parallel developments. We present herein a single cohomol-
ogy (and also a homology) theory which embodies all three: each is obtained from it by a
suitable specialization ([43], v).

Thus, as in the case of Eilenberg and Mac Lane and Eilenberg and Steenrod, we
are dealing with a unification accomplished once again with the help of categories,
functors and natural transformations. In a nutshell, mathematicians progressively
realized that certain homology and cohomology groups could be defined in terms
of certain purely algebraic structures (e.g. groups, algebras and Lie algebras). Thus,
methods developed for topological spaces could be transposed directly to algebraic
structures. This is what Cartan and Eilenberg report in their preface. They coined
the term “homological algebra” to circumscribe that part of algebra whose methods
were based on homology (and cohomology) theory. Their book is filled with innova-
tions: projective module, left exact and right exact functors, projective and injective
resolutions, derived functors, to mention the most obvious. As they mention imme-
diately in their preface,

This unification possesses all the usual advantages. One proof replaces three. In addition an
interplay takes place among the three specializations; each enriches the other two.

The unified theory also enjoys a broader sweep. It applies to situations not covered by the
specializations. An important example is Hilbert’s theorem concerning chains of syzygies in
a polynomial ring of n variables. We obtain his result (and various analogous new theorems)
as a theorem of homology theory ([43], v).

In the words of Weibel, Cartan and Eilenberg’s book “revolutionized the subject”
([266], 812). It would probably be better to say that the book created the subject
altogether, since there was nothing to overturn.

There is, however, one striking fact about Cartan and Eilenberg’s book. Although
the book is mainly about certain functors and their properties, categories are en-
tirely assumed! Indeed, in Chapter 2, where functors are explicitly introduced, we
find the casual statement: “We consider functors (in the sense of [74]), defined for
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Λ -modules and whose values are in the category of Γ -modules, where Λ and Γ

are two given rings” ([43], 18). Functors are then defined directly on modules and
homomorphism, without any mention of categories. Only in the Appendix written
by Buchsbaum do we find categories explicitly mentioned and used. We will come
back to the appendix in the next chapter.

However these applications do not use categorical concepts as such in any essen-
tial way. Both in Eilenberg and Steenrod’s and in Cartan and Eilenberg’s pioneering
works in the foundations of algebraic topology and homological algebra, there is no
categorical concept at work or which can be said to capture essential ingredients of
the situation. As Eilenberg and Steenrod themselves declare:

These [the concepts of category, functor and related notions] are needed in the subsequent
chapters to facilitate the statements of uniqueness and existence theorems. Only as much of
the subject is included as is used in the sequel. (. . . )

The ideas of category and functor inspired in part the axiomatic treatment of homology the-
ory given in this book. In addition, the point of view that these ideas engender has controlled
its development at every stage ([80], 108).

Thus, as we are told, categories are: (1) heuristically useful to facilitate the state-
ment of certain theorems, and (2) methodologically useful, for they provide certain
constraints that help in finding proper definitions and the correct context for cer-
tain ideas and proofs. It is in this sense that category theory is merely a language
while group theory is not. In the latter case, group-theoretical concepts—e.g., orbit,
stabilizer subgroup, quotient group, conjugacy class, kernel, center, etc.—play an
important role: they correspond to important geometrical facts. Investigating group-
theoretical facts by group theoretical means is more than significant: very often this
is what really matters to a geometric problem. For category theory to play a simi-
lar role in mathematics, genuine categorical concepts have to be found, developed
and applied. One has to see that there are such concepts and that categories them-
selves encode basic mathematical facts. How do categories provide such an encod-
ing? What are the concepts required? There is something missing in the categorical
landscape.



Chapter 3
Categories as Spaces, Functors as
Transformations

In all these applications [homological algebra, algebraic topology,
theory of schemes] it was soon realized that it was necessary to
make frequent use of properties and constructions applicable to
all categories, which had not been mentioned by Eilenberg and
Mac Lane.

[59], 149
They are discoveries that significantly different and mathematically
important subject-areas share a common structure (. . . ) they sug-
gest a formalism which implies that there are forms or structures
which are common to significant and significantly different partic-
ular subject-areas. (. . . ) The more global unification (. . . ) authorize
not only the transfer of knowledge from one mathematical subject-
area to another [sic], and not only the transfer of knowledge from
one mathematically significant subject-area to another, but, indeed,
the transfer of knowledge from one mathematical subject-area to
many other subject areas, both inside and outside of mathematics.

[57], 291–292

As we have seen in the previous chapter, Eilenberg and Mac Lane’s main goal was
to give a precise definition of an informal notion. In order to provide a fully rigor-
ous concept, they needed to introduce categories. The latter concept was not seen as
being of real importance. Functors and natural transformations certainly were im-
portant and continued to be central in the work of Eilenberg and Steenrod and Cartan
and Eilenberg. These two books are representative of the research based on categor-
ical ideas in the period from 1945 until about 1957–58. Then, in 1957, Grothendieck
published a paper on homological algebra in which he defined Abelian categories,
then used the latter to unify and expand various methods and prove new and pow-
erful theorems and, in 1958, Kan introduced the concept of adjoint functors, un-
doubtedly the concept that allowed a general and unified treatment of many diverse
mathematical concepts, including logical and foundational concepts in general. Af-
ter the publication of these two papers and until about 1970, research in category
theory can be divided in three related areas:

73
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1. The extension and development of work done in the first period, e.g., applica-
tions to algebraic topology, to homological algebra (which really took off as a
subject of research after the publication of Cartan and Eilenberg’s book), and
most notably Grothendieck’s project of rewriting the foundations of algebraic
geometry and proving the Weil conjectures using categorical notions;

2. The study, development, applications and extensions of Abelian categories in
general;

3. The search for and study of adjoint situations and their applications, in partic-
ular the associated monads or triples, in many fields of mathematics, including
foundational research.

I will concentrate on the last two threads, since they contain the elements I want
to put forward first — I will briefly come back to the impact of Grothendieck’s
work in algebraic geometry in later chapters. In particular, I want to focus on three
interrelated notions, namely universal mappings, representable functors and adjoint
functors, which constitute key conceptual elements in the categorical landscape.
Furthermore, I claim that they are at the very heart of the analogy between Klein’s
program and category theory. If a category is to be thought of as a space, or as an
algebraic encoding of a space — and as we will see, this way of thinking turns out to
be much more than an analogy — and we look for the equivalent of transformation
groups, we should consider functors, and more particularly adjoint functors, as the
key notion. I will therefore look at universal mappings, since they were introduced
first historically, then at representable functors. These two notions are intimately
linked to Abelian categories in the history, and I will maintain this parallel in my
exposition. Finally, I will turn to adjoint functors as Kan introduced them, and con-
sider some examples, including some in logic and foundations.

3.1 Universal Morphisms

In the same way that mathematicians knew about natural isomorphisms in the early
forties, they also knew implicitly about universal mappings: various cases of free
structures, e.g., free groups or free topological groups, various extensions, com-
pletions and compactification procedures, etc., were known to be similar. Let us
consider two typical cases to illustrate the situation.

Recall that a metric space (X ,d) is said to be complete if every Cauchy sequence
in X converges. For instance, the standard Euclidean space is complete in either of
its usual metrics, i.e., the Euclidean metric or the square metric. It is well known
that not all metric spaces are complete. For instance, the metric space (Q,d), where
d(x,y) = |x− y|, is not complete. The sequence

1.4,1.41,1.414,1.4142,1.41421, . . .

converges in R and it is a Cauchy sequence in Q that does not converge in Q. Given
these facts, it is then natural to consider whether any metric space can be imbedded
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isometrically in a complete metric space, that is in such a way that the distance
function is preserved by the imbedding. And indeed this can be done: given a metric
space (X ,d), there is a complete metric space (Y,D) together with an isometric
imbedding h : X → Y which satisfies the following key property:

Property (Uniqueness of the completion). Let h : X → Y and h′ : X ′ → Y ′ be iso-
metric embeddings of the metric space (X ,d) in the complete metric spaces (Y,D)
and (Y ′,D′). Then there is an isometry between the embeddings.

The metric (sub)space (h(X),D), that is the closure of the image of X under h
together with the ambient metric D restricted to it, is complete and is called the com-
pletion of X . For instance, the completion of (Q,d) is the Euclidean space (R,d).1

The notion of complete metric space and the operation of completion play an im-
portant role in functional analysis.

Let us now consider what appears to be a slightly different problem. Recall that
an open cover of a topological space X is a collection U of open subsets of X such
that the union of the elements of U is equal to X . A space X is said to be com-
pact if every open covering U of X contains a finite subcollection that also covers
X . Compactness is a very useful property in general, and in particular in analy-
sis. It is usually hard to determine whether a given space is compact or not. The
real line R with the standard topology is not compact, but the closed unit interval
[0,1] is compact. Again it seems natural to inquire whether topological spaces can
be compactified, and if so, under what conditions and in what ways. For, there are
many ways to compactify a topological space X : the simplest way is certainly the
one-point compactification. If the space X satisfies certain natural conditions, i.e.,
if it is a locally compact Hausdorff space, then X can be imbedded in a compact
Hausdorff space by adjoining a point to X and defining the appropriate topology on
the new space. For instance, the one-point compactification of the real line R with
the standard topology is homeomorphic to the unit circle and the one-point com-
pactification of the real plane R2 is homeomorphic to the sphere. In fact, we have
already seen these identifications, for if we look at R2 as the complex space C, then
C∪∞ is the Riemann sphere that we encountered in chapter 1. This compactifica-
tion is in a way the “smallest” possible way to compactify a space X . Is there a
“most general” way to do it? The answer is provided by the Stone-Čech compactifi-
cation: every completely regular space X can be imbedded in a compact Hausdorff
space βX containing X such that X is dense in βX , i.e., the closure of X is βX . The
Stone-Čech compactification has the following extension property: every bounded
real-valued function on X can be uniquely extended to a continuous real-valued
function on βX . In turn, it can be shown that given a completely regular space X ,
two compactifications Y and Y ′ which satisfy the previous extension property can
be shown to be homeomorphic. In other words, the Stone-Čech compactification is
essentially unique.

1 In fact the construction of the complete metric space in which the given metric space is imbedded
is a generalization of the standard construction of the real numbers via equivalence classes of
Cauchy sequences.
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The similarity between the metric case and the topological case is obvious. It
would be easy to extend the list of examples and with examples coming from differ-
ent fields. There seems to be a general pattern at work. The question is whether one
ought to look for this pattern and if so, what would be the gain. If one is convinced
that there is some sort of unity underlying mathematical knowledge, a belief which
goes back at least explicitly to Klein and Hilbert and which was and still is certainly
held by many mathematicians, then it seems natural to try to describe this pattern in
its most general form.

One way to state the general pattern is as follows: given a set E with a structure
of a certain kind, say of kind S, some sets F with a structure of a different kind,
say T extending S, the problem consists in finding a T -structure F0 together with
an S-mapping ϕ0 : E → F0 such that for every F and S-mapping ϕ : E → F there is
a unique T -mapping ϕ ′ : F0 → F such that ϕ = ϕ ′ ◦ϕ0. The mapping ϕ0 : E → F0
is said to be universal, for it satisfies a universal property: every S-map ϕ : E → F
factors uniquely through ϕ0 by a T -map. This situation can be represented by the
following commutative diagram:

E F0
ϕ0 //E

F

ϕ

��?
??

??
??

??
??

F0

F

ϕ ′

��

Thus, if this is adequate, one has to give a general definition of the notions re-
quired to state and solve this problem, which was called the “problem of universal
mappings”. It seems that, in particular, one has to clarify the notions of structure,
structure-preserving mapping, isomorphism of structure, i.e., identity of structure,
and composition of mappings.

In 1948, Pierre Samuel, a member of the Bourbaki group, presented the first at-
tempt to axiomatize such a general theory. Instead of giving definitions of structure,
kind of structure, isomorphism, etc., Samuel refers the reader to Bourbaki’s book
Théorie des ensembles, published in 1939.2 ([31])

He then proceeds to give axioms for mappings of a certain kind. These axioms
stipulate that mappings between structures of a kind T , that is T -mappings, com-
pose and the result is a T -mapping, that T -isomorphisms are T -mappings and a
one-to-one and onto T -mapping f is a T -isomorphism if and only if its inverse is
also a T -mapping. Then, certain axioms are given for substructures, the “closure”
of a subset of a set, a limitation on the cardinal number of that “closure” and axioms
for Cartesian products. Clearly, these axioms, especially the first three on mappings,
do not yield the definition of a category: nothing is said about associativity of com-
position, nor about identities. In fact, categories and functors are not mentioned in

2 That little fascicule was reviewed by Samuel Eilenberg. The sentence before last of his review
reads as follows: “The last section outlines an interesting method of treating structures, such as
order, topology, group, ring, etc., on a general basis and having concepts like isomorphism defined
quite generally.” [67]
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Samuel’s paper. Samuel does formulate the universal mapping problem in the gen-
eral way given above, mentions that all the examples he listed earlier in his paper
fall under the general scheme (except the case of the field of quotients of an integral
domain, since this case does not satisfy one of his axioms on products), and shows
explicitly how the completion of a uniform space is also a special case of the univer-
sal mapping problem. The two remaining sections of the paper deal with imbedding
problems and free topological groups, seen as applications of the same problem.

But Samuel’s axiomatization never caught on, and, as far as I can tell, was never
used again by anyone else. The universal mapping problem remained in a sense
open. Samuel’s axiomatization is a failure if only because it does not succeed as an
axiomatization: it does not clarify the basic concepts involved in the problem, it does
not explain why these maps have these properties, it does not open the door to new
applications and developments, it does not clearly systematize the different cases
according to clear and precise principles. The axioms seem to be ad hoc for the most
part and fail to go at the heart of the problem. To be fair to Samuel, it would take
quite a while before someone understood the relations between universal arrows,
representable functors and adjoint functors. The first steps were taken by Mac Lane
at the same time Samuel was writing his paper and we now turn to this important
step.

3.1.1 Mac Lane: Doing Duality without Elements

In 1948, Mac Lane drew attention to categories themselves. He ob-
served that many statements about abelian groups were equivalent
to statements about the category of abelian groups. (One can prove
that all statements about abelian groups can be so translated.)

([89], 9.)

Between 1945 and 1950, Mac Lane was trying to clarify one aspect of Eilenberg and
Steenrod’s work in the foundations of algebraic topology. He had also read Samuel’s
paper and Bourbaki’s work on linear algebra where the universal mapping problem
is also mentioned, since he wrote reviews of these two works. He was therefore well
aware of the universal mapping problem, together with Samuel’s proposal as well
as Bourbaki’s proposal. However, Mac Lane was using the categorical language and
was working on a different problem.

As we have seen, Eilenberg and Steenrod published an axiomatic presentation of
homology theory in 1945. The axioms stipulate certain properties of functors from
certain topological spaces into Abelian groups. Already at the end of their preface,
Eilenberg and Steenrod note that “homology theory and cohomology theory are dual
to one another. We treat them in parallel.” ([80], xiii.) These statements are clarified
in chapter 1, §3c, where the axioms for cohomology are introduced, immediately
after the axioms for homology. It appears immediately that the axioms are obtained
by reversing the arrows between the Abelian groups in the axioms for homology. In
other words, whereas the construction of a homology group is a covariant functor,
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the construction of a cohomology group is a contravariant functor. Thus, duality
is first presented as a property of diagrams in this context. But this is not what
Eilenberg and Steenrod mean by the fact that homology and cohomology are dual
to one another. For duality is a well-known phenomenon that goes back to the early
19th century in projective geometry. It is worth giving the whole quote to see what
they mean by duality in this context:

There is a duality relating homology and cohomology. It is based on the Pontrjagin theory of
character groups. Precisely, let Hq(X ,A), f ∗, δ be a cohomology theory satisfying Axioms
1c through 7c; and suppose Hq(X ,A) is always a discrete abelian group (R = the ring of inte-
gers) or always a compact abelian group. Let Hq(X ,A) be the character group of Hq(X ,A),
and let f∗, δ be the homomorphisms dual to f ∗, δ . Then it is readily shown, by the use of
standard properties of character groups, that Hq(X ,A), f∗, δ satisfy Axioms 1 through 6 [it
is a homology theory]. It follows that the dual of each theorem about {Hq(X ,A), f∗,δ} is a
true theorem about {Hq(X ,A), f ∗,δ}.When passing from a theorem to its dual, arrows are
reversed, subgroups are replaced by factor groups and vice versa. ([80], 15.)

Thus, the duality has a precise mathematical meaning but rests on an important as-
sumption: the cohomology groups always have to be either discrete Abelian groups,
i.e., R-modules with R the ring of integers, or compact Abelian groups. Whenever
R is unrestricted, then the duality is only partial or in the words of Eilenberg and
Steenrod “semiformal”.

When we step back from the algebraic topological set-up and concentrate on
the duality itself, we are looking at the category of Abelian groups or a related
category thereof, i.e., R-modules for some ring R different from the ring of integers.
One would like to clarify the background upon which this duality seems to rest. In
other words, one is interested in understanding the duality of groups in general and
showing how the duality between homology theory and cohomology theory follows
from this more general case. This is precisely what Mac Lane was after. In his own
words:

For a topological space the duality between homology and cohomology groups with locally
compact abelian coefficient groups can be formulated in terms of character groups. Another
formulation is suggested by the axiomatic homology theory of Eilenberg and Steenrod. In
this formulation, the axioms for a homology theory refer not to elements of the (relative)
homology groups, but only to certain homomorphisms; the dual statements are exactly the
axioms for a cohomology theory. For example, any continuous mapping ϕ : X → Y of one
space into a second induces a mapping in the same direction on the homology groups,
and in the reverse direction on the cohomology groups of these spaces. One of our chief
objectives is that of providing a background in which the proofs for axiomatic homology
theory become exactly dual to those for cohomology theory. ([186], 494.)

The first sentence mentions the duality via Pontrjagin’s theory of character groups
with the restriction. Mac Lane then continues by saying that the elements of the
groups involved do not play any part in the situation, only certain homomorphisms
are involved. This is certainly a key observation that seems to be restricted to the
case of groups as they appear in homology and cohomology theory, although there
are some indications, e.g., the so-called isomorphism theorems of group theory, that
other results and notions are on the same footing. This is, in a sense, the starting
point of category theory as a general methodological framework: define concepts
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and prove results about those concepts without making reference to elements. Al-
though Mac Lane was looking at a specific case, his approach opened the door to
this way of thinking. In the particular case he was looking at, since only homo-
morphisms between groups are involved, duality is expressed by reversing certain
mappings. One would like to be able to dualize all proofs obtained for homology
theories and automatically obtain proofs for cohomology theories. This means that
once a proof is obtained about certain homology groups, then by simply reversing
the arrows one would obtain the dual result for cohomology groups. This would
yield a simple method of proof. The language of diagrams thereby acquired a new
status: it allowed one to express directly an important relationship between theo-
ries. But since mappings between Abelian groups form a category, it seems to make
perfect sense to look at the category of Abelian groups in general and this is what
Mac Lane began to do. In fact, Mac Lane looked at the category of Abelian groups
and, whenever possible, the category of groups. The final goal is therefore to ob-
tain an axiomatic framework of those categories in which homology theory (and
cohomology theory) could be developed. Notice the important shift: one is now
trying to characterize certain categories axiomatically. Categories themselves be-
come the object of study. If categories seemed to be totally dispensable in Eilenberg
and Mac Lane’s paper, the duality between homology and cohomology developed
in Eilenberg and Steenrod forced Mac Lane to look at categories as such and try to
find some of their properties.

Mac Lane saw the problem as one of characterizing the class of statements “about
groups which do not make reference to the elements of the groups involved.” ([186],
487.) At that time, Mac Lane did not think that this meant looking only at mappings,
for he included statements about groups which make reference also to products of
homomorphisms, subgroups and quotient groups. Mac Lane had a set of examples
in mind that clearly led him to introduce subgroups and quotient groups in his search
for the right axiomatic framework. These examples, together with Mac Lane’s desire
to show how his work could be applied to universal algebra, might be responsible for
the fact that, in Mac Lane’s own words, his characterization was “clumsy”. ([195],
205.)

I will present slightly different examples from the ones found in Mac Lane’s pa-
per. But they are essentially the same. Let us restrict ourselves to Abelian groups.
Recall that there is the trivial Abelian group with one element, denoted by 0. Given
an Abelian group G, there is a unique homomorphism 1: 0 → G which sends the
unique element of 0 to the unit of G. Before we go on, some elementary notions
about sequences of morphisms have to be recalled. Given a homomorphism of
groups f : G → H, the kernel of f , denoted by ker f , is the set of all elements of
G that are sent to the unit eH of H, i.e.,

ker f = {x ∈ G | f (x) = eH},

and the image of f is the set of all elements of H that “fall” under f , i.e.,

Im f = {y ∈ H | ∃x ∈ G ( f (x) = y)}.
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Consider the following sequence of homomorphisms of groups:

G0
f // G1

g // G2.

Whenever Im f = kerg, the sequence is said to be exact. Exact sequences of (co-
homology) groups were used explicitly for the first time in 1941 by Hurewicz in a
very short note and introduced under that name by Eilenberg and Steenrod in their
announcement in 1945 and in their book.

Given these notions, the simplest duality of the type examined by Mac Lane is
probably the following. If the sequence

0 1 // G1
f // G2

is exact, then this is a different way of saying that the homomorphism f is injective.
By reversing the arrows, one obtains the sequence

0 oo ! G1 oo g
G2

which says that the homomorphism g is surjective. It is therefore possible to express,
in the category of groups, the fact that a morphism is injective with the help of
arrows and the notion of surjective is then its dual.

Mac Lane opened his paper with a special case of a general notion, which had
not been defined in 1948, but that was about to be introduced explicitly by Cartan
and Eilenberg and play an important role in the next ten years: it is the notion of
injective module and its dual, projective modules, which are defined thus. A module
E is injective if, for every module B and every submodule A of B, every f : A → E
can be extended to a map g : B → E. This can be expressed by a diagram in the
following manner:

A B//

E

A

OO

f

E

B

__

g

??
??

??
??

??
?

0 A//

Now, by dualizing this diagram, we obtain the notion of projective module. Thus,
a module P is projective if, for every module B and every quotient module C of B,
every f : P → B can be factored through the quotient map B → C. The diagram
becomes:

B C//

P

B
����

��
��

��
��

�
P

C

f

��
C 0//
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In his paper, Mac Lane considered free Z-modules, which are projective. The dual
notion, in this case, is said to be infinitely divisible. (It should be noted that nowa-
days, projective modules are introduced first, since there are obvious examples of
these, and injective modules are then defined by dualizing the diagram, since there
are no obvious examples of injective modules! However, there are plenty of injec-
tive modules; it can be shown that every (left) R-module M can be imbedded in an
injective module. Furthermore, it can be shown that every injective module is divis-
ible and that if R is a principal ideal domain, like Z, then an R-module is divisible if
and only if it is injective. Mac Lane was very close indeed to projective and injective
modules, but just missed.)

Along with these examples, Mac Lane gives the following list of cases:

Any subgroup of a free group is free, any quotient group of an infinitely divisible group is
infinitely divisible. Any abelian group is isomorphic to a quotient group of a free abelian
group; any abelian group is isomorphic to a subgroup of infinitely divisible group (that is,
can be embedded in an infinitely divisible group). If a free abelian group F is a factor group
of an abelian group, it is a direct factor; if an infinitely divisible group D is a subgroup of
an abelian group, it is a direct factor. ([186], 486.)

It is from these considerations that Mac Lane arrives at a table of dualities and what
will become the principle of duality. Given a statement S about groups, which does
not make any reference to the elements of the groups involved, the statement dual to
S is the statement obtained by interchanging domains and codomains of maps. The
table looks like this:

Statement S Statement dual to S
f : G→ H f : H → G
Domain f = G Codomain f = G
f is an isomorphism into [sic] f is an homomorphism onto
Composition g◦ f Composition f ◦g
P is a subgroup of G Q is a quotient of G
The injection i : P→ G The projection q : G→ Q

In the next section, §3, Mac Lane makes a fundamental observation. He observes
that the notions of free products of groups and direct products of groups can be de-
fined directly with the help of diagrams satisfying a specific property. This is the first
instance of concepts being defined with the help of universal mappings. As we have
seen, universal mappings were known to mathematicians and at least one attempt,
known to Mac Lane, had been made to provide an axiomatic characterization of the
universal mapping problem, but no one before Mac Lane had thought of using the
universal mapping property in order to define a construction. Furthermore, it turns
out that free products and direct products are dual to one another in this setup. Here
are the definitions.

Given Abelian groups A, B, a direct product of A and B is an Abelian group P
together with two homomorphisms pA : P → A and pB : P → B such that for any
Abelian group C with homomorphisms f : C → A and g : C → B, there is a unique
homomorphism h : C → P such that the following diagram commute:
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Reversing the arrows, we obtain the definition of a free product of two Abelian
groups A, B. Thus a free product F of A and B is an Abelian group together with
two homomorphisms iA : A → F and iB : B → F such that for any Abelian group C
with homomorphisms f : A → C and g : B → C, there is a unique homomorphism
h : F →C such that the following diagram commutes:
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What is striking here is that we are not defining the direct product nor the free prod-
uct of two groups, but a direct product and a free product. For any group satisfying
the foregoing conditions will do. This might look like a problem, but in fact it is
not. For it can be easily shown that: (1) If P with two projections pA, pB is a direct
product of A and B, then for any Q with projections qA, qB satisfying the condition
of products, there is a unique isomorphism between P and Q; (2) If P with pA, pB is
a direct product of A and B and Q is isomorphic to P, then Q, with the appropriate
morphisms, is a direct product of A and B. In this sense, the definition completely
characterizes the concept of product. There is of course an obvious shift from the
set-theoretical perspective, since we are not defining a specific object, like the Carte-
sian product of sets X and Y , which is the set of ordered pairs of elements of X and
Y , but a type of object. In this case, any object satisfying the universal property given
in the definition should be considered to be a token of the concept “direct product”.

Another important feature of this approach was immediately underlined by
Mac Lane: the two notions are dual to one another in the sense examined by him.
It follows that if a property of one of the constructions follows from the definition
and from properties of the morphisms of a category, the dual construction will have
the dual property and the proof will be automatic, i.e., one simply has to reverse all
the arrows involved. But some properties do not follow from properties of the mor-
phisms involved, e.g., the existence of the constructions themselves. In the words of
Mac Lane:

The proof of the existence of the direct product is not dual to the proof of the existence of the
free product, for both proofs involve the reference to the elements of the groups concerned.
However, the proof that the direct product is unique up to an isomorphism can be phrased so
as to be exactly dual to the proof of the uniqueness of the free product up to an isomorphism.
Similarly, the proofs of the associative and commutative laws for direct products, formulated
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in terms of diagrams like (3.1), are dual to the proofs of the corresponding laws for the free
product (. . . ) ([186], 490–491.)

Hence, at that point, Mac Lane sees clearly that some facts about (Abelian) groups
are provable on the basis of the “algebra of mappings”. Since Mac Lane’s goal was
to clarify the relationships between homology and cohomology theories, he did not
investigate how much could be done with the help of the algebra of mappings alone,
i.e., without reference to the elements of the entities concerned. Thus in his paper,
Mac Lane does not consider the possibility of defining for arbitrary objects X , Y
of an arbitrary category C a product for X and Y . And he does not consider the
possibility of defining other concepts in this way.

In the next two sections of his paper, Mac Lane concentrates on subgroups, quo-
tient groups and series of groups and explores various dualities between series of
subgroups and quotients. I will skip the details since they are not relevant to our
enterprise. Suffice it to say that at the end of §5, Mac Lane mentions that “our for-
mulation of duality in terms of homomorphisms does not suffice to subsume all
known “duality” phenomena. In particular, it does not appear to explain the duality
between “verbal” and “marginal” subgroups (. . . ), which is, however, an extension
of the above duality between ascending and descending central series.” ([186], 494.)

After a brief section in which Mac Lane clarifies the type of duality he is after,
we finally come to the introduction of categories and what he calls “bicategories”.3

Mac Lane now has to define categories in such a way that the definition be self-dual;
that is, by reversing the arrows in the definition, one obtains a category. This point
of view leads to the following definition of a category.

Definition 3.1. 4 A category C consists of arrows α , β , γ , . . . for certain pairs of
which a product αβ in C is defined and which are subject to the following three
axioms:

A1. The composite (αβ )γ is defined if and only if the composite α(βγ) is defined.
When either is defined, they are equal (and this triple composite is written as
αβγ).

A2. The triple composite αβγ is defined whenever both composites αβ and βγ are
defined.

Definition 3.2. An identity of C is an arrow u such that αu = α whenever the com-
posite αu is defined and uβ = β whenever the composite uβ is defined.

A3. For each arrow β of C there exist identity arrows u and u′ of C such that u′β
and βu are defined.

It is then possible to introduce objects X , Y , Z, . . . simply by establishing a one-
to-one correspondence between identity arrows and objects.

This definition satisfies a duality principle:

3 Warning: Mac Lane’s “bicategories” are not what are now called bicategories.
4 This is not quite the definition given by Mac Lane in his paper. But it is equivalent to it and it is
more economical.
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The concept of the “dual” of a statement about homomorphisms may now be defined pre-
cisely. In a category, the only primitive statements are statements of the forms

(10.1) α = β , αβ = γ;

We interpret the latter to mean “the product of αβ is defined and is equal to γ .” All other
statements can be expressed in terms of these primitive statements; in particular, we under-
stand the statement “αβ is defined” to be interpreted as “there exists a γ such that αβ = γ .’
A first order statement S in a finite number of letters (which designate mappings of the
category in question) is any statement formed from a number of primitive statements of the
types (10.1), combined by the standard logical connectives (including quantifiers “for all
α” and “∃α”). The dual of S is the statement obtained from S by the following typographi-
cal process: replace each primitive statement αβ = γ by the statement βα = γ , leaving the
other primitive statements, all the letters, and all the logical connectives unchanged. The
dual is thus obtained by “inverting all products.” ([186], 176)

Recall that Mac Lane had written his Ph.D. at Göttingen in logic. The observation
stated in this passage allowed Mac Lane to establish a fundamental metatheorem of
category theory, which was presented by him as a duality principle: if any statement
about a category is deducible from the axioms for a category, the dual statement
is likewise deducible. What Mac Lane did not consider explicitly is the notion of
dual category. Thus, although categories are not merely defined by Mac Lane to
assure that functors have domains and codomains, I speculate that in Mac Lane’s
mind at that time, categories had to be collections of structured sets with structure-
preserving functions between them. For, as we will see, in a dual category, mor-
phisms are not necessarily set-theoretical functions, they are in fact usually purely
formal objects. They probably provide the simplest examples of categories — and
of categories that play an important role in mathematics in general — in which
morphisms are usually not set-theoretical functions.5 In their study of duality in ho-
mological algebra, Buchsbaum and Grothendieck introduced dual categories right
from the start. One could argue that the duality principle is enough and that the fact
that Mac Lane did not introduce dual categories is an irrelevant detail. But I want
to underline the fact that to introduce dual categories is to make a shift of emphasis
that has an important impact on the nature and status of categories. The fact that he
did not introduce them is, I believe, revealing of his attitude towards categories as
mathematical objects at that time.

In order to axiomatize the various duality phenomena he was interested in,
Mac Lane had to introduce more structure into categories. He therefore gave ad-
ditional axioms for what he called “bicategories” and, later, Abelian categories.
Bicategories are introduced so that the dualities between subgroups and quotient
groups, on the one hand, and homomorphisms onto and isomorphisms into — this
is Mac Lane’s terminology — can be axiomatized. I will not present these axioma-
tizations. I will look at Grothendieck’s presentation since it clearly had much more
impact than Mac Lane’s. But before I do so, some final remarks about Mac Lane’s
paper are in order.

5 This point was emphasized by Colin McLarty during a talk given at Notre Dame in 2001.
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1. Following his definition of bicategory, Mac Lane states without demonstration
the

Theorem 11.5. The class of objects in a bicategory is partially ordered by ei-
ther of the relations

(11.1) S ⊂ B if and only if there is an injection κ : S → B;
(11.1’) Q≤ A if and only if there is a projection π : A→ Q.

Mac Lane then says that if S ⊂ B, S is called a subobject of B, while if Q ≤ A,
Q is a quotient-object of A. This time, this is true in any bicategory. However,
Mac Lane does not go as far as to define the notion of a subobject for any cate-
gory, thus avoiding references to elements in a more general framework.

2. Mac Lane clearly still has in mind some of the goals he had with Eilenberg
when they wrote their 1945 paper. But now, the emphasis is put on bicategories
instead of categories. In §13 entitled “Universal algebra”, which follows the
section in which examples of bicategories are given — which in fact exclude
the usual category of sets, but include the category of nonvoid sets where each
set carries with it an equivalence relation — Mac Lane claims that:

These examples indicate that most types of algebraic, topological, or other mathemat-
ical systems, together with the appropriate type of transformations, yield bicategories.
The bicategory language appears to be the appropriate vehicle for many of the the-
orems of universal algebra (. . . ) — often giving simpler formulations, because the
axiomatic formulation avoids the inevitably cumbersome explicit description of the
general form of any algebraic or mathematical system. This is especially the case when
universal algebra is extended to include those algebraic systems, which occur so fre-
quently, in which several groups, homomorphisms, functions, and so forth, together
constitute a single algebraic system. Using the notions of covariance and contravari-
ance [74] one can in fact give a general definition of mathematical systems and prove,
under general hypotheses, that the class of all systems of a given type is the class of
objects of a bicategory. ([186], 503.)

Thus, universal algebra would be a part of category theory, in fact even a part
of bicategory theory. The connections between universal algebra and category
theory would deserve a whole book in itself. Suffice it to say for the moment
that bicategories in Mac Lane’s sense did not play a role in the subsequent cat-
egorical approach to universal algebra.

3. Mac Lane’s paper, although correct, did not have a major impact in the mathe-
matical community. It does nevertheless constitute an important moment in the
development of category theory if only because it contains, for the first time,
the use of a universal property to define certain mathematical concepts and the
use of categories to capture and understand a mathematical phenomenon. It is
interesting to note that although Buchsbaum and Grothendieck basically had the
same goal as Mac Lane, they had the chance to look at a larger class of exam-
ples than he did. Indeed, it is clear that both Buchsbaum and Grothendieck had
the benefit of looking at Cartan and Eilenberg’s work in homological algebra,
and the duality between homology and cohomology theories as it arises from
derived functors in their work. Indeed, many of their theorems are presented
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twice, once for right derived functors and then again for left derived functors.
(See [43], chaps. VIII–XIII.) It is these examples that guided Buchsbaum and
Grothendieck in their introduction of Abelian categories. Grothendieck was also
looking, in fact first and foremost, at sheaf theory.

4. The overall moral that has to be underlined again is that Mac Lane’s paper
makes explicit reference to the fact that various mathematical concepts and re-
sults can be defined and proved without reference to the elements of the entities
involved. Mac Lane makes these remarks while he is in a categorical context,
suggesting that category theory is the proper framework for doing mathematics
in this way. Grothendieck would soon show that more homological algebra than
one might reasonably expect can be done in this way and then Lawvere would
take the bold step of trying to do everything in mathematics in the categorical
framework.

Before we look at Grothendieck, we will leave the historical development for a
very short while and look at some further examples of universal morphisms, since
they occupy a key place in the categorical landscape and constitute one of the ver-
tices of the fundamental triangle of concepts of category theory.

3.1.2 Universal Morphisms

I have already mentioned that Mac Lane’s characterization of the concept of di-
rect product of two groups holds for the concept of product in general, that is in
any category and not only the category of groups. For the essential features of a
product are captured by the morphisms coming in (which does not mean that the
mappings going out are not important, quite the contrary),6 provided one associates
to the product two universal arrows, called in this particular case its projections,
viz, pX : X ×Y → X and pY : X ×Y → Y , the usual projection maps in the case
of the Cartesian product of sets. Indeed, given two objects, X and Y , in any cate-
gory C , a product of X and Y , if it exists, is an object P of C together with two
morphisms pX : P → X and pY : P → Y such that for any object Q of C with mor-
phisms f : Q → X and g : Q → Y , there is a unique morphism h : Q → P such that
pX ◦ h = f and pY ◦ h = g. The associated diagram is exactly the same as the one
given above for groups. Indeed, the direct product of groups is an example of the
notion of products in an arbitrary category.

These data characterize a product P of X and Y in the following sense: any object
Q isomorphic to P is a product of X and Y and any product of X and Y is isomorphic
to P. Thus P is characterized up to (a unique) isomorphism. The actual elements
composing P are totally irrelevant. It does not matter how P is constructed, what
matters is that it comes equipped with universal projection arrows and that these

6 Indeed, since the morphisms coming in are, so to speak its defining properties, it is the mor-
phisms going out that contain non-trivial information about the construction. I want to thank Colin
McLarty who emphasized to me the importance of that point.
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satisfy the universal property. Thus, the definition characterizes a type of object, not
a particular object. This indicates that there is a criterion of identity at work within
category theory and that this criterion is different from the standard set-theoretical
criterion.

Indeed, in set theory, the Cartesian product of two sets X and Y is a unique
particular set composed of certain elements: it is the set {(x,y) | x ∈ X ∧ y ∈ Y}.
The axiom of extensionality, the criterion of identity for sets, forces the uniqueness
of this set. In a category C , a product P of two objects X and Y is an object belonging
to a certain collection of objects of C , which in the case of objects with universal
arrows is quite special since there is a unique isomorphism between the objects that
are products of a pair of objects. Any product of X and Y is related to X and Y by
a universal arrow and any object with morphisms into X and Y factors in a unique
manner through the products. This is perfectly natural if one thinks of the objects of
a category as being “geometric” objects in a generalized sense. In a geometric space,
one usually picks a certain figure of the space in a certain context. But in fact, any
similar figure, that is any figure related to it by the underlying transformation group,
would do. In a category, one picks a certain object P with certain projections as a
product of X and Y , but any other similar object, that is any object appropriately
related to P, would do.

Thus the concept of product is characterized in terms of a universal property: the
latter specifies that for all objects of a certain type in the category, only certain map-
pings (morphisms) will be going in a product from these objects, in fact, only one in
this case. This characterization holds in any category C . Whether a given category
C has products or not is something that has to be verified case by case. Matters
of existence are sharply divorced from matters of definition. The category of sets,
the category of groups, the category of topological spaces, the category of lattices:
these are all categories with products. However, we should immediately note that
we can easily present a finite category, that is, a category with a finite number of
objects and a finite number of morphisms, with products or at least a product for a
pair of objects, thus exhibiting a specific case of a category with products or a prod-
uct. More specifically, consider the following category with four objects and five
non-trivial morphisms, that is different from the obvious identities and composing
in the obvious way, depicted as follows:

X Poo P Y//
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Thus, at least for finitary operations, the fact that matters of existence are divorced
from matters of definition is of no importance. Things are more delicate when we get
to infinitary operations. The problem, of course, has very little to do with definition,
but with existence, as is always the case in mathematics in general.
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As we have already seen, by reversing all arrows in the foregoing definition, one
obtains the notion of a coproduct. More specifically, given two objects X and Y in a
category C , a coproduct for X and Y in an object Q together with two morphisms
iX : X → Q and iY : Y → Q such that for any object P with morphisms k : X →
P and j : Y → P, there is a unique morphism h : Q → P such that h ◦ iX = k and
h ◦ iY = j. Again, the diagram depicting the situation is the same as the one given
for the free product of two Abelian groups. The category of sets, the category of
topological spaces, the category of Abelian groups and the category of groups all
have coproducts. Furthermore, the proof that a product is unique up to a unique
isomorphism automatically yields a proof that a coproduct is unique up to a unique
isomorphism. It suffices to reverse all arrows in the first proof and the second result
is automatic. Many other important concepts can be defined in a similar manner.

An initial object in a category C is an object 0 of C such that for every object X
of C there is a unique arrow 0 → X . Thus in the category of sets, the empty set is
an initial object and in the category of groups, any one-element group is initial. The
dual concept is that of a terminal object. Hence, a terminal object in a category C is
an object 1 of C such that for every object X of C there is a unique arrow ! : X → 1.
For instance, in the category of sets, any singleton set is terminal and in the category
of groups, any one-element group is terminal.7

This last case brings us naturally to the concept of a zero object: it is an object
which is both initial and terminal. The category of sets does not have a zero object
whereas a one-element group is a zero object in the category of groups. Notice that
the concept of zero object is self-dual: dualizing it yields the same concept. Notice
also that as categories, the category of sets has to be different from the category of
groups. Although we do not have a criterion of identity for categories at our disposal,
it makes intuitive sense to say that Set is different from Grp if only because the
latter has a zero object whereas the former does not. By doing so, we start treating
categories as genuine objects with genuine properties, although, once again, we still
do not know what is a categorical property is, as such.

Other concepts are definable by universal morphisms.

Definition 3.3. Given parallel arrows and f : X → Y and g : X → Y in a category
C , an equalizer for f , g is an object E together with an arrow e : E → X such that
f ◦e = g◦e and for any object T with arrow h : T → X such that f ◦h = g◦h, there
is a unique arrow v : T → E such that e◦ v = h.

This definition corresponds to the following diagram:

7 Mathematicians speak of “the” one-element group. There is a simple reason behind this: there is
only one up to isomorphism. That is, if the criterion of identity adopted is given by the notion of
isomorphism, there is indeed essentially only one one-element group. Again, this is as in geometry.
Once the criterion of identity has been adopted, e.g., as in Euclidean geometry, one can certainly
talk about the properties of “the” circle of radius one as if there was only one such circle. One
knows that it is enough to pick one instead of working with the whole (equivalence) class of such
circles.
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An equalizer is the arrow-theoretic formalization of the following idea. Very of-
ten in mathematics one defines certain functions from X to Y and wants to know
when they are equal. For instance, consider the function of two variables x2 + y2

and the constant function which sends all pairs (x,y) to 1, both with domain the
product R×R and codomain R. The set {(x,y) | x2 +y2 = 1} is a subset of R which
contains the pairs (x,y) of reals such that the function x2 + y2 equals the constant
function on 1, i.e., it is an equalizer for these two functions. Thus, more generally,
in the category Set, given two functions f ,g : X → Y , an equalizer for f and g is
given by the subset E = {x ∈ X | f (x) = g(x)} together with the inclusion function
i : E → X defined by i(x) = x. The same construction holds in many other cate-
gories of structures, for instance the category Top, the category Grp, the category
AbGrp, just to mention the most obvious, provided the object E is endowed with
the structure induced by that of X .

The dual notion is that of a coequalizer, which is just as important since it corre-
sponds to taking a quotient of a certain object, a fundamental mathematical opera-
tion.

Definition 3.4. Given parallel arrows f ,g : X → Y in a category C , a coequalizer
for f , g is an object Q together with an arrow q : Y → Q such that q◦ f = q◦g and
for any object T with arrow h : Y → T such that h◦ f = h◦g, there is a unique arrow
v : Q→ T such that v◦q = h.

The corresponding diagram is:
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In the category Set, the coequalizer of f and g is the quotient of Y by the equiv-
alence relation generated by the pairs ( f (x),g(x)) for every x ∈ X . In the category
Top of topological spaces, the coequalizer is constructed as in the category of sets
and provided with the quotient topology. In a category of algebraic structures, the
coequalizer is somewhat more involved, but just as important. For instance, in the
category AbGrp of Abelian groups, the coequalizer of two morphisms f ,g : X →Y
is the coequalizer of f −g : X →Y and the zero morphism, i.e., the morphism send-
ing all elements of X to the identity element of Y , that is, the quotient of Y by the
subgroup ( f −g)(X)
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These concepts are fundamental concepts of mathematics defined with the help
of a universal property. All these examples show how some fundamental concepts of
mathematics can be defined with the language of category theory. Needless to say,
once they have been defined, it is possible to combine these concepts, e.g., take the
equalizer of maps between products, etc. One obvious question to consider, once
these definitions have been given and used, is what precisely they cover. In other
words, what are the concepts defined in this way? What is the expressive power
of the categorical language? Do we actually cover all fundamental constructions of
mathematics? The last question is certainly too vague, for it is not clear that we can
determine what constitutes a fundamental construction of mathematic in general.
But a general understanding of the concepts definable this way is certainly called
for. We will come back to this question later.

Let us now return to the historical thread we have been following. We now
turn to Grothendieck’s introduction and application of Abelian categories, for
Grothendieck’s paper, and his subsequent work in algebraic geometry, represents
a fundamental development, not only for category theory, but also for homological
algebra, algebraic topology and algebraic geometry.

3.2 Grothendieck and Abelian Categories

This work began with the attempt to exploit the formal analogy
between the cohomology theory of a space with coefficients in a
sheave (. . . ) and the theory of derived functors of functors of mod-
ules (. . . ) in order to find a common framework to cover these the-
ories and others.

([103], 119. My translation.8)
After the creation of the modern notion of a topological space and
the discovery of limiting procedures basic to measure theory, the
next major package of startlingly new infinitary constructions was
introduced by Alexander Grothendieck with his treatment of homo-
logical algebra, derived categories and functors, topos and sites.

([210], 165.)

In 1955, Grothendieck gave a seminar on homological algebra in which he general-
ized the concepts and methods developed by Cartan and Eilenberg to treat with the
same tools what he was mostly interested in at that time, namely the cohomology
of sheaves (about which I will have to say more in chapter 7). His results were then
published in 1957 in a long paper — 100 pages —, entitled Sur Quelques Points
d’algèbre homologique, in which he gave a characterization of Abelian categories
with original applications. As the foregoing quote indicates, Grothendieck’s moti-
vation was considerably different from Mac Lane’s and even Buchsbaum’s. As we

8 Ce travail a son origine dans une tentative d’exploiter l’analogie formelle entre la théorie de
la cohomologie d’un espace à coéfficients [sic] dans un faisceau (. . . ) et la théorie des foncteurs
dérivés de foncteurs de modules (. . . ), pour trouver un cadre commun permettant d’englober ces
théories et d’autres.
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have seen, Mac Lane’s motivation was to understand a type of duality that arose in a
certain treatment of algebraic topology. Mac Lane’s motivations are again explicitly
mentioned in the opening paragraph of the section of Abelian categories:

Our objective in this chapter is that of providing a self-dual set of axioms for abelian groups
and their homomorphisms sufficient to prove all categorical theorems which refer to a finite
number of such groups — and hence adequate to explain the apparent perfect duality present
for such theorems on abelian groups. ([186], 507.)9

Buchsbaum’s main motivation was essentially similar: his goal was to develop
the proper abstract framework to understand in full generality the type of duality
appearing in homological algebra, basically in Cartan and Eilenberg’s book. In his
own words:

Throughout this book [Cartan & Eilenberg], the authors dealt with functors defined on cat-
egories of modules over certain rings and whose values again were modules over a ring. It
will be shown here that the theory may be generalized to functors defined on abstract cate-
gories that will be described below, and whose values are again in such abstract categories.
The advantages of such an abstract treatment are manifold. We list a few:

(1o) The dualities of the type

kernel — cokernel
projective — injective

Z(A) — Z′(A)

that were observed throughout the book may now be formulated as explicit mathemat-
ical theorems.

(2o) In treating derived functors, it suffices to consider left derived functors of a covariant
functor of several variables; all other types needed may then be obtained by a dualiza-
tion process.

(3o) Further applications of the theory of derived functors are bound to show that the con-
sideration of modules over a ring Λ will be insufficient. Rings with additional structure
such as grading, differentiation, topology, etc. will have to be considered. With the the-
ory developed abstractly, these generalizations are readily available. (Buchsbaum, in
[43], 379.)

Both points (1o) and (2o) have to do with duality. Only the third point touches on
possible generalizations and they are clearly different from what Grothendieck was
after. It should be noted that, however, Buchsbaum’s axiomatization of Abelian cat-
egories is essentially the same as the one given by Grothendieck. Furthermore, in
§8 of his paper, Buchsbaum indicates that his approach covers the duality found in
Eilenberg and Steenrod’s work in algebraic topology, in other words Mac Lane’s
target.

The axiomatic homology and cohomology theories of Eilenberg–Steenrod (. . . ) may be de-
fined using an arbitrary exact category [his name for an abelian category] A as the range of

9 I should point out a small technical difference between Mac Lane and Buchsbaum, on the one
hand, and Grothendieck, on the other. Whereas, as the quotation from Mac Lane indicates, both
Mac Lane and Buchsbaum defined products and coproducts for finitely many objects, Grothendieck
defined these notions for arbitrary collections of such objects.
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values of the theory. Thus, replacing A by A ∗ [the dual of A ] replaces a homology theory
by a cohomology theory, and vice versa. This duality principle simplifies the exposition
of the theory. Furthermore, the uniqueness proof (. . . ) remains valid for such generalized
homology and cohomology theories. (Buchsbaum, in [43], 385.)

3.2.1 Abelian Categories

Grothendieck’s motivation was to develop a more general and abstract framework
such that (1) a formal analogy would become mathematically precise, (2) the new
framework would allow a unified treatment of both cases at hand and possibly oth-
ers as well. Thus, Grothendieck’s goal was not only to clarify and understand a
certain phenomenon that happened to be at work, but to obtain a more precise and
complete framework in which the techniques of homological algebra could be de-
veloped and applied to new cases. Thus his attitude towards categories is somewhat
different from Mac Lane’s and Buchsbaum’s. Clearly, Grothendieck’s characteriza-
tion of the concept of Abelian category is a generalization going in a direction dif-
ferent from Mac Lane’s and Buchsbaum’s: Mac Lane was concentrating on Abelian
groups and duality in that context; Buchsbaum was covering more, i.e., categories
of Λ -modules, and he had in mind generalizations along the lines of the properties
of the modules involved; Grothendieck had an informal analogy in mind between
algebraic situations, i.e., those described by Cartan and Eilenberg, and geometric
situations, namely the newly invented theory of sheaves. In fact, Cartan and Eilen-
berg were aware of the analogy with sheaves, but there was a technical hurdle that
they could not overcome. Grothendieck succeeded were they failed by using the
categorical language in an essential way.

Grothendieck’s paper constitutes a landmark not only in homological algebra, but
in category theory as well. It is striking in many different ways. First, it opens with
a section on general category theory and introduces immediately dual categories.
Thus, in contrast with Mac Lane who began his paper with considerations about
groups, Grothendieck makes it clear that category theory is not only a useful tool, but
constitutes the proper system of concepts with the appropriate structure to develop a
fully general and abstract framework in which the various theories can be “melted”
together. Second, Grothendieck explicitly introduces the notion of equivalence of
categories and underlines the fact that it is different from the notion of isomor-
phism of categories and that the latter is in practice useless. This is no surprise since
Grothendieck was working with functor categories and it turns out that many such
categories, which are not isomorphic, are nonetheless “the same” from a categorical
point of view. Thus considerations surrounding a criterion of identity for categories
appear; categories are becoming genuine objects of mathematics. Third, and along
the same lines, the very status of category theory changes with Grothendieck’s pa-
per. Grothendieck is treating a category as a whole in itself with specific properties.
Grothendieck is not trying to identify properties of Λ -modules or Abelian groups,
but common properties of categories of Λ -modules, categories of Abelian groups
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and categories of sheaves of Λ -modules over a topological space. Thus, Abelian
categories had to be seen in a new and different light. For an Abelian category
— and in fact other types of categories introduced by Mac Lane, Buchsbaum and
Grothendieck, like additive categories — is not merely a special type of category. In
the same way that a group is not merely a special type of set, an Abelian category
is not merely a special type of category. An Abelian category has additional struc-
ture and that structure is of the utmost importance, just as a group has an additional
structure and that structure is what a group is all about. Furthermore, in the same
way that the concept of group of transformations is in a sense an abstraction of a
geometric situation, the concept of Abelian categories is in a sense an abstraction
of an algebraic situation. Thus, with the introduction and use of Abelian and related
categories, categories are no longer dispensable, merely present so that functors can
have domains and codomains. They encode basic mathematical facts and categorical
concepts have now a useful mathematical meaning. Fourth, it is somewhat surpris-
ing to see Grothendieck and Buchsbaum work with the algebra of mappings, the
Hom-sets, and add structure on these components. They do not use the purely ab-
stract definition of a category, as in Eilenberg and Mac Lane’s paper, or Eilenberg
and Steenrod’s book. However, the explicit use of the algebra of mappings is very
much in the spirit of the 1945 paper by Eilenberg and Mac Lane, and to that extent,
it is also an generalization of Klein’s program. We will come back to this point,
and even see how much this is true for other aspects of Grothendieck’s work, in
particular toposes, later.

Grothendieck’s definition of a category is similar to the one we have considered
in chapter 2. His definition is immediately followed by the definition of the dual
category.

Definition 3.5. Given a category C , the dual category C ◦ is defined as follows:

1. The objects of C ◦ are the objects of C ;
2. An arrow f ◦ : X → Y of C ◦ is an arrow f : Y → X of C ;
3. Given two arrows f ◦ : X → Y and g◦ : X → Y , their composite is defined by

f ◦ ◦g◦ = (g◦ f )◦.

Clearly C ◦◦ = C . If a statement holds in a category C , then the dual statement, ob-
tained from the original by reversing all the arrows appropriately, holds in the dual
C ◦. Since C ◦◦ = C , if a statement holds in all categories, its dual holds as well
in all categories. In other words: if a statement of the elementary, i.e., first-order,
theory of category is a consequence of the axioms, so is the dual statement. The
conceptual significance of the duality principle — for its practical advantages are
obvious — is the same as any duality principle in geometry: it indicates the pres-
ence of a global structural phenomena, of the fact that what matters is not so much
the choice of particular objects and principles as basic objects and principles, but
rather of an overall organization that itself determines basic facts about objects and
principles. Furthermore, dual categories constitute explicit examples of categories in
which morphisms are not, in general, structure-preserving functions. Consider, for
instance, the dual category of the category of Abelian groups, AbGrp◦. Its objects
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are taken to be Abelian groups, but in fact, they should be treated as symbols in-
dexed by Abelian groups. Clearly, its morphisms are not group homomorphisms. A
morphism f ◦ : G→H in AbGrp◦ is going in the opposite direction from f : H →G
in AbGrp. Thus, a dual category cannot, in general, be interpreted as a category of
structured sets with structure-preserving functions between them. But as we will
see, dual categories and duality theorems in general play a crucial role in category
theory, and as is revealed by the theory, in many other areas of mathematics.

Another important notion given by Grothendieck early in his paper is the notion
of equivalence of categories. Eilenberg and Mac Lane had given the notion of iso-
morphism of categories, which is just a special case of isomorphism applied to cate-
gories. Thus a functor F : C →D is an isomorphism if there is a functor G : D →C
such that G◦F = 1C and F ◦G = 1D . However, it turns out that in practice, the no-
tion of isomorphism is not the appropriate notion. It does not provide a criterion of
identity for categories. The correct notion is given by an equivalence of categories,
which Grothendieck defined as follows:10

Definition 3.6. An equivalence between two categories C and D is given by a
system (F,G,ϕ,ψ) where F : C → D and G : D → C are covariant functors and
ϕ : 1C ' G◦F and ψ : 1D ' F ◦G are natural isomorphisms.

Two categories are said to be equivalent when there is an equivalence between
them.

In other words, the functors F and G are quasi-inverses to each other, the differ-
ence lying in the fact that the equality between their composites and the identity
functors has been replaced by natural isomorphisms. The replacement of an iden-
tity by an isomorphism is a key aspect of category theory in general with important
philosophical implications, to which we will return.

In order to define Abelian categories, Grothendieck, like Mac Lane and Buchsbaum
before him, needed to define various concepts in purely categorical terms. I will de-
part slightly from Grothendieck’s presentation, given in terms of Hom-sets, and stay
in the spirit of arrows only to introduce these notions. We will come back to Hom-
sets in the next section.

Definition 3.7. An arrow f : X → Y is a monic arrow or a monomorphism when for
every pair of arrows h : T → X and g : T → X such that f ◦h = f ◦g, we have h = g.
In algebraic terms, an arrow f is monic if it is left cancelable. The diagram is:

T
h //
g

// X
f // Y .

10 This is not quite true. Surprisingly, what Grothendieck defines in his paper is the notion of an
adjunction between two categories. It might very well be that the expression “homomorphismes
de foncteurs” on page 125 ought to have been “isomorphismes de foncteurs”, in which case the
definition is correct, although unnecessarily complicated. What is clear, although one ought to
show it in detail, is that the definition given corresponds to Grothendieck’s needs in that paper. See
[149].
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The dual concept is that of an epi arrow or epimorphism: an arrow f : Y → X is an
epi arrow or an epimorphism when for every pair of arrows h : X → T and g : X → T
such that h ◦ f = g ◦ f , we have h = g. In algebraic terms, an arrow f is epi if it is
right cancelable. Simply reversing the arrows of the preceding diagram yields the
appropriate graphic representation of the situation:

X
h //
g

// Y
f // T .

A morphism f is a bimorphism if it is both monic and epi.
In the category of sets, monic arrows are injective functions, epi arrows are sur-

jective functions and bimorphisms are isomorphisms.11 In the category of groups,
monic arrows are injective homomorphisms and epi arrows are surjective homo-
morphisms (this last claim is not trivial). In the category of topological spaces with
continuous mappings, monomorphisms are injections and epimorphisms are surjec-
tions. But this need not be the case in general. Let us consider some examples. Let
iQ : Q→ R be the standard inclusion function, iQ(r) = r, with Q and R considered
as Hausdorff topological spaces with the usual topology. This map is clearly not
surjective. However it is an epimorphism. For let X be any Hausdorff topological
space and f ,g : R→ X such that f ◦ iQ = g◦ iQ. Suppose there is an x ∈R such that
f (x) 6= g(x). Then there are neighborhoods U , V of in X of f (x) and g(x) respec-
tively such that U∩V = /0. But then f and g are different on the whole neighborhood
f−1∩g−1 of x, which necessarily includes rational numbers, i.e., f ◦ iQ 6= g◦ iQ, con-
tradicting our hypothesis. The key property of Q here is that it is a dense subset of
R. The results hold for arbitrary Hausdorff spaces satisfying this property.

Let us now give an example of a monic map that is not an injection. Consider
the category CTop• of pointed and connected topological spaces. An object of that
category is a pair (X ,x), where X is a connected topological space and x ∈ X is
a base point. A morphism f : (X ,x) → (Y,y) is a continuous mapping such that
f (x) = y. Consider now the projection p of the circular helix H on the circle S1,
p : (H,h)→ (S1,s), with p(h)= s. If f : (X ,x)→ (S1,s) is a morphism which admits
a lifting, i.e., if there is a morphism g : (X ,x)→ (H,h) such that the triangle

X S1//

H

X

??

��
��

��
��

��
�

H

S1
��

commutes, then it can be shown that this lifting is necessarily unique. But this is
simply the claim that p is a monomorphism and it is clearly not an injection.

Finally, let us give an example of a bimorphism that is not an isomorphism. Let
X denote the real line R with the discrete topology and Y denote the real line R with

11 Notice that isomorphisms, as they were defined earlier in the categorical setting, are bimor-
phisms.
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the usual topology. Let i : X → Y be the obvious inclusion i(x) = x. It is trivially
a continuous map since the domain has the discrete topology and it is obviously
surjective. It is also clearly an injection. This is enough to conclude that it is a
bimorphism. But it is clearly not an isomorphism, for there is no continuous function
j : X → Y such that i◦ j = 1Y and j ◦ i = 1X .

There is a general moral here: the language of arrows allows one to define con-
cepts that are, in the category Set of sets and functions, coextensive with standard
set-theoretical concepts. However, the categorical concepts are definable in any cat-
egory and in many cases, they differ from the set-theoretical concepts, as the forego-
ing examples show. We have thus introduced a division or a bifurcation of concepts.
It is common for bimorphisms to be different from isomorphisms; epimorphisms
are rarely surjections in categories of topological structures, although they almost
always are in categories of algebraic structures; monomorphisms are generally in-
jections. Now, in categories where the objects are structured sets with structure-
preserving functions, both sorts of concepts can be defined and used appropriately.
But from a purely categorical perspective, things have to be looked at differently.
In an arbitrary category, one cannot assume that the objects are structured sets and
structure-preserving functions. The fact that in the case of the category of sets the
categorical concepts are coextensive with the set-theoretical ones is taken as the
indication that the arrow-theoretical concepts constitute a proper generalization of
the set-theoretical concepts and as such should be considered as constituting an
adequate way of capturing the corresponding informal notions. After all, the set-
theoretical definitions of injective and surjective maps are nothing more nor less
than one way of making precise properties of mappings. If category theory is taken
to be primarily a theory of mappings, then it is reasonable to consider the definitions
of monomorphism, epimorphism, bimorphism and isomorphism as adequate since
they are defined solely in terms of properties of mappings.

A few more definitions are required. The following definition, although not re-
quired for Abelian categories, is of general interest and might as well be given at
this point, since it is closely related to the previous definitions.

Definition 3.8. Given a morphism f : X → Y in a category C , a morphism g : Y →
X , such that g◦ f = 1X is called a retraction of f and X is called a retract of Y and
a morphism h : Y → X such that f ◦ h = 1Y is called a section of f . Notice that a
morphism f can have many different sections, i.e., a right inverse is not necessarily
unique.

It can be shown that every section is a monomorphism, i.e., every morphism with
a left inverse is a monomorphism. Dually, every morphism with a right inverse is an
epimorphism.

Let us now go back to Grothendieck. Grothendieck first isolated the notion of an
additive category.

Definition 3.9. A category C is an additive category if it is a category and it satisfies
the following conditions:

AD1. for each pair of objects X , Y of C , the collection of morphisms HomC (X ,Y ) is
equipped with the structure of an Abelian group, such that, for all morphisms
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u : Z → X , v : Z → Y , and all pairs of morphisms ( f ,g) of HomC (X ,Y ),

( f +g)◦u = f ◦u+g◦u, v◦ ( f +g) = v◦ f + v◦g.

In words, the last condition expresses the fact that the composition of mor-
phisms is bilinear;

AD2. C has a zero object 0;
AD3. Products X ×Y exist for every pair X , Y of objects of C .

Notice immediately that the dual category of an additive category is also an additive
category. In other words, the characterization is self-dual. It can also be shown that
the axioms imply the existence of a coproduct X +Y for any pair of objects X ,
Y of C and that X ×Y is isomorphic to X +Y . Needless to say, the category of
Abelian groups is an additive category, and so is the category of Λ -modules and
the category of sheaves of modules over a topological space X . By duality, it can
be shown that the category of compact topological Abelian groups is additive (it is
essentially the same as the dual of the category of Abelian groups). The category
of sets and functions is not an additive category, for it does not have a zero object.
For the same reason, the category Top of topological spaces is not additive. More
interestingly, the category Grp of groups is not additive. Indeed, in Grp, the product
of two groups is not isomorphic to the coproduct of these two groups.

Let us look at the axioms more carefully. Not surprisingly, the axioms are about
the properties of the morphisms within a category. They can be divided into two
groups: the first axiom stands by itself and the last two can be looked at together.
For the first axiom, we can go back to Eilenberg and Mac Lane’s original analogy
between Klein’s program and category theory. If we consider a category as a “space”
with its algebra of mappings, what we find is that instead of having a space X with
its group of automorphisms, we have all objects X , Y , Z, . . . with their (Abelian)
group of morphisms (satisfying an additional condition). The last two axioms state
that the category has to have certain universal morphisms, i.e., that certain construc-
tions satisfying a universal property have to be available in the space. What has to
be seen here is that in the same way that a group of transformation encodes basic
facts about a geometry — it literally captures the basic geometric properties and
constructions of a geometry and the structure of the group of transformation en-
codes the structure of the geometric space — an additive category encodes basic
properties and constructions of an area of mathematics and its categorical structure
encodes the structure of a type of mathematical object. This means that within an
additive category, certain concepts can be defined, others can be constructed and
certain results can be demonstrated, and by purely categorical means. These facts
result from the additive structure of the category itself. As I have mentioned, the
category of Abelian groups is additive. Thus there are certain relationships between
these categories that clarify how certain mathematical theories are related to one
another. Once more, the parallel with the role of groups in geometry is striking. Fi-
nally, I want to emphasize once more that the notion of additive category should be
compared, from an epistemological and ontological point of view, to the notion of
Lie group. In the same way that a Lie group is not just a special type of group, i.e.,
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in the way that an Abelian group might be taken to be, an additive category — and, I
might as well mention it forthwith, an Abelian category — is not just a special type
of category.

To be true to the categorical spirit, functors between additive categories have to
be defined: a functor F : C →D is an additive functor if for every pair of morphisms
u,v : X → Y in C , F(u+ v) = F(u)+F(v).

Let us now turn to Abelian categories.
Before I give the definition, some preliminary notions are required. Recall that

Grothendieck’s goal is to develop homological algebra for various types of mathe-
matical entities. It amounts to doing homological algebra without reference to the
elements of the groups involved, more specifically, we need to define some of the
constructions that are usually defined for modules. The notions of monomorphism,
epimorphism, isomorphism, products, and coproducts are necessary, as well as the
notions of kernel and cokernel. We have seen above the traditional definition of the
kernel of a function in terms of sets and elements. Here is the categorical definition.

Definition 3.10. Given an arrow f : X → Y in a category C with a 0 object, the
kernel of f , denoted by ker f , is, whenever it exists, the equalizer of f and the 0
arrow between X and Y , i.e.,

ker f k // X
f //
0

// X .

Dually, given an arrow f : X → Y in a category C with a 0 object, the cokernel of
f , denoted by coker f is, whenever it exists, the coequalizer of f and the 0 arrow
between X and Y , i.e.,

X
f //
0

// Y c // coker f .

Thus, the kernel and the cokernel of a morphism are specific instances of univer-
sal morphisms, namely equalizers and coequalizers. Hence, as usual with univer-
sal morphisms, the kernel and the cokernel of a morphism is characterized up to a
unique isomorphism.

Definition 3.11. 12 A category C is Abelian if it is additive and satisfies the two
properties:

AB1. Every arrow of C has a kernel and a cokernel;
AB2. Given a morphism f : X → Y , and the following canonical decompositions:

ker f k // X i // coker f ; kerc
j // Y c // coker f ,

there is an isomorphism l : cokerk ' kerc such that f = j ◦ l ◦ i.

12 This is Grothendieck’s definition. Equivalent definitions were discovered soon after, notably by
Freyd.
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The morphism j : kerc → Y is called the image of f and the morphism i : X →
cokerk is called the coimage of f . Thus, in words, axiom AB2) says that the mor-
phism from the coimage of f to the image of f is an isomorphism.

Again, notice that these axioms are readily self-dual. Thus the dual category of an
Abelian category is also Abelian. Grothendieck immediately emphasizes that in any
Abelian category A , every bimorphism is an isomorphism. This is a consequence of
AB2), since there are additive categories which satisfy AB1) but in which a bimor-
phism is not necessarily an isomorphism. Grothendieck gives the examples of the
category of separated topological modules over a topological ring Λ with continu-
ous homomorphisms and the category of filtered Abelian groups. These automati-
cally yield examples of additive categories that are not Abelian. Another example is
provided by the category of topological Abelian groups with continuous homomor-
phisms: it is additive but not Abelian. In fact, we have already seen this example
above: the morphism i : R → R, where in the domain R is a topological Abelian
group with discrete topology and in the codomain, R has the usual topology. The
morphism has zero kernel and cokernel, it is a bimorphism but not an isomorphism.

Needless to say, the category of Abelian groups and the category of Λ -modules
are Abelian categories. But so is the category of sheaves of Abelian groups over a
fixed topological space X . Thus, as Grothendieck himself observes, one can work
in an Abelian category as if one were working with homomorphisms of Abelian
groups, provided the properties used have a “finite character”, i.e., infinite products
or coproducts are not used. Of course, this is at best a heuristic device and a more
precise statement of that correspondence, in the form of a representation theorem
for Abelian categories, is needed to know precisely in what sense one can work
in an arbitrary Abelian category as if it were the category of Abelian groups or
Λ -modules. The precise answer was provided around 1960 in the form of various
representation theorems by Freyd, Lubkin and Mitchell. (See [184], [227], and [91].)
In essence, what these theorems asserts is that one can work in an arbitrary Abelian
category as if one were working in a category of Λ -modules, for some ring Λ .

A few remarks about the axioms are in order. AB1) basically says that certain
universal morphisms exist, since it simply states that certain equalizers and coequal-
izers exist in the category. The last axiom seems to be more specific, although it is
very powerful. It does talk about morphisms and asserts the existence of a certain
isomorphism. Freyd’s axiomatization replaces AB2) with the following:

AB2’) Every monic arrow is a kernel and every epi arrow is a cokernel.13

Again, this axiom is self-dual. Moreover, in this form it says that monic arrows
are universal morphisms and epi arrows are universal morphisms too. Now all the
axioms, except for the axiom on the structure of the Hom-sets, specify the existence
of certain universal morphisms.

Interestingly enough, we do not need to define any other kind of functors between
Abelian categories, for in practice, the most significant functors are additive. The
last property is enough to carry the remaining elements of the structure required.

13 In fact, it is possible to define Abelian categories with the axioms AD2), AD3), AB1) and AB2’)
and then prove that an Abelian category is additive.
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Grothendieck then introduces four additional axioms, and their duals, all dealing
with infinite families of objects.14 These axioms are required since the behavior of
various Abelian categories varies when infinite operations are considered. For in-
stance, in the category of Abelian groups, infinite products are not isomorphic to
infinite coproducts, in contrast with the finitary case. Furthermore, the existence of
these infinitary operations is crucial for the proof of the existence of injective and
projective objects in an Abelian category. In turn, the latter are required for the con-
struction of derived functors, a basic ingredient of homology and cohomology the-
ories, and, hence, the application of many results obtained by Cartan and Eilenberg
in the category of Λ -modules. It is precisely at this point that Grothendieck saw a
categorical path to the solution of the problem with respect to sheaves of Abelian
groups. More specifically, if in an Abelian category A , for an object X , there is a
monomorphism of X into an injective object (respectively an epimorphism of a pro-
jective object onto X), then A is said to have enough injective (respectively enough
projective). These distinctions were crucial for Grothendieck, since the category of
sheaves of Abelian groups over a fixed topological space X has enough injective but
not enough projective in general. Grothendieck presented axioms guaranteeing the
existence of enough injective (respectively enough projective). He did not make a
specific construction (no one knew how to do it, in any case), but relied instead on
a more general categorical property. This was a tour de force and showed how cate-
gories could be used in a constructive and effective manner. As we have said, it was
obvious to Cartan, Eilenberg and many others that there was more than an analogy
between various constructions in homological algebra and the case of sheaves over
a topological space X . However, no one before Grothendieck knew how to show
that there were enough injectives in the latter case. It is by defining Abelian cate-
gories satisfying a certain condition and showing that in that case these categories
had enough injectives and that the various required constructions were possible that
Grothendieck solved the problem.

As with additive categories, Abelian categories encode fundamental aspects of a
mathematical domain. Various concepts can be defined and constructed and various
theorems can be proved in Abelian categories. An important portion of homological
algebra consists of defining and studying functors between Abelian categories.15

We can now see more clearly the shift that accompanied the work done by
Mac Lane, Buchsbaum, Heller and, in particular, Grothendieck. I claim that it is sim-
ilar to the shift between an abstract Lie group and a concrete transformation group.
As I have already said, in Eilenberg and Mac Lane, Eilenberg and Steenrod and
Cartan and Eilenberg, categories are considered as heuristics for organizing mathe-
matical data. They are merely useful devices, required for the use of functorial meth-
ods. Very little use is made of the global structure of the categories themselves. The
mathematical objects are treated as a whole, that is, they form a category, because

14 These aspects of Abelian categories were not considered by Buchsbaum and are crucial for the
applications Grothendieck had in mind.
15 In the sixties, other categories appeared on the scene and still play an important in homological
algebra: derived categories, which led to triangulated categories and, for the purpose of homotopi-
cal algebra, closed model categories.
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some constructions are functorial, i.e., uniform for all objects of that kind. But with
the axiomatic characterization of Abelian categories, categories are considered as
being mathematical objects as such. Mac Lane wanted to understand certain types of
properties of Abelian groups, those that satisfied a kind of duality, and saw that these
properties could be in fact encoded by a category of Abelian groups, and in fact, by
a category defined axiomatically. Furthermore, the properties Mac Lane was inter-
ested in are definable without any reference to the elements of the objects involved.
They are defined by properties of the morphisms, in other words by certain transfor-
mations of the objects. Hence it appears that at least a portion of mathematics can
not only be developed without reference to set-theoretical concepts, but is clarified
by developing it without those concepts. Buchsbaum, Heller and Grothendieck pro-
vided more evidence of the usefulness and relevance of categories. In other words,
the global structure of a category was taken to be epistemologically significant in
itself, as providing the essential information about the objects of the category. In
fact, Grothendieck would go one step further in this direction and develop a way of
working with categories that was entirely new.

One recognizes the Master’s touch in the idea that the problem is not to define a motif: the
problem is to define the category of motives, and to unearth the structures that it carries.
([55], 17. My translation.16)

The basic idea is this: whenever you want to define a structure of a certain kind K,
you do not define a set X together with the structure you are interested in and then
move to the category of these structures. Instead you define a category K such that
objects with a structure of kind K and structure-preserving morphism will consti-
tute an example of a category K. Furthermore, in principle one wants to define an
abstract category (e.g., Abelian categories), not by stipulating the kinds of objects
and morphisms between them, but by stipulating purely categorical properties right
from the start. The parallel with transformation groups is straightforward: instead
of starting with, say, a metric space and then moving to the automorphism group
of that space, one starts with a (Lie) group right from the start and characterizes
the space and its properties from the structure of the group, as we saw in section
1.2.5. This is a radical shift from the traditional perspective, one in which sets and
set-theoretical language is, at least from a practical point of view, abandoned. Of
course, the foundation of category theory itself still remains an open question and
we will see that, in dealing with foundations, Grothendieck fell back on set theory.

We can go back to Eilenberg and Mac Lane’s original claims. Recall that they
said that

The invariant character of a mathematical discipline can be formulated in these terms. Thus,
in group theory all the basic constructions can be regarded as the definitions of co- or con-
travariant functors, so we may formulate the dictum: The subject of group theory is essen-
tially the study of those constructions of groups which behave in a covariant or contravariant
manner under induced homomorphisms. ([74], 237.)

16 On reconnaı̂t la patte du Maı̂tre [i.e., Grothendieck] dans l’idée que le problème n’est pas de
définir ce qu’est un motif : le problème est de définir la catégorie des motifs, et de dégager les
structures qu’elle porte.
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As we have seen in the previous chapter, what they had in mind was basically the
functoriality of certain constructions. Now a different notion of what plays the key
role is emerging. Although it was not entirely clear from Grothendieck’s axiomati-
zation, it would not take long before mathematicians realize that the basic construc-
tions in the categorical contexts are given by universal morphisms and equivalent
notions. As we will see, these can be presented as functors satisfying certain prop-
erties, thus as transformations of the space, again in the spirit of Klein’s program.

Categories and their structure are now moving to centre stage. From 1957 on,
they are not only defined so that functors and natural transformations can be defined
in full generality: they are genuine mathematical objects with a definite mathemat-
ical role. Ironically perhaps, it is from this point on that the analogy with Klein’s
program appears in full force, albeit in a programmatic way. I claim that from 1957
onwards, it became possible to think that abstract categories are to mathematical
structures what transformation groups are to geometric structures. In a sense, the
notion of Abelian category captures the invariant content of the form a category has
to have to be the context in which a homology theory will have value. Furthermore,
this invariant content is expressed by certain transformations, more precisely func-
tors, over certain categories. (We will see in a short while how this is so.) This was
still somewhat weak since at that point Abelian categories were the only example on
offer. Just as when Lie wanted to apply transformation groups to differential equa-
tions, it became clear that a new conceptual method was available, and that various
programs could be considered. One of these programs was Grothendieck’s reformu-
lation of the foundations of algebraic geometry in which this method — i.e., don’t
define a single structure, define a category to characterize those structures — was
to play a key role. In this vast and ambitious enterprise, one concept was to become
pivotal: the notion of representable functor.

3.2.2 Representable Functors

The main goal of this presentation is to develop a general technique
allowing to recognize if such a functor F is representable, and to
study the properties of the corresponding S-pre-schema X with the
help of those of F .

([104], 11. My translation.17)

One of Grothendieck’s main targets was nothing less than the foundations of alge-
braic geometry. As we can see by looking at his lectures in the Séminaire Bourbaki
from 1957 until 1962, the notion of representable functors became one of the main

17 Le but principal de ces exposés est de développer une technique générale permettant de re-
connaı̂tre si un tel foncteur F est représentable, et d’étudier les propriétés du S-pré-schéma X
correspondant à l’aide de celles de F .
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tools he used in this enterprise.18 It is far from clear why Grothendieck decided to
use this notion instead of, say, adjoint functors, but it is reasonable to believe that it
is because representable functors make a connection to sets, something which might
be reassuring or comprehensible to a large audience, that is, outside categorical cir-
cles. It is also clear from the various seminars that Grothendieck thought in terms of
universal “problems”, that is he tried to formulate the problems he was working on
in terms of a universal morphism: finding a solution to the given problem amounted
to finding a universal morphism in the situation. Grothendieck saw that the latter
notion was subsumed under the notion of representable functor. Still another reason
might be that, in a way, representable functors, in algebraic geometry at least, con-
stitute an epistemological tool. They are, in a sense to be clarified, a systematic and
geometric generalization of the idea that to know an object X is to know its points.

In many cases, to know the underlying set of an object X — let us denote it by
U(X) — of a category C , it is enough to consider the morphisms from a universal
object of the category C to X . For instance, in the trivial case of the category of sets,
to know the underlying set of a set X (yes, that is what I have written), that is to
know X , it is enough to consider the collection HomSet(1,X), the set of all functions
from a terminal object 1 into X . Indeed, it is easy to see that in this case, there is a
bijection

ϕ : HomSet(1,X)' X .

In words: the set of functions from a terminal object 1 onto X is in one-to-one
correspondence with the set X . In fact, an element x ∈ X can be identified with a
morphism x : 1 → X . We can interpret this situation as follows: in the category of
sets, there is a canonical, or universal, point, denoted by 1, and all the other points,
i.e., the elements of the sets, are in fact representations or transformations of that
canonical point. Thus, one knows a set when one knows all the transformations of
the canonical point in it.

The same idea works in different categories, but sometimes with a different uni-
versal object. In the category of topological spaces Top, if 1 denotes the space con-
sisting of one point with the obvious topology, then for any space X , we have again
a bijection

ϕ : HomTop(1,X)'U(X).

Thus, in this case too, one can say that there is a canonical point such that all other
points are representations of transformations of it.

Things are somewhat more interesting in the category Grp of groups. Clearly,
in this case, one cannot take the zero object 0, since there is a unique morphism of
groups between 0 and a group G. However, the group of integers Z is a canonical
point in that category. Indeed, there is for any group G, a bijection

18 The references are: seminars 149, 182, 190, 195, 212, 232 and 236. The key seminar is 195,
presented in February 1960. These lectures were then transformed into the book Éléments de
géométrie algébrique co-written with Dieudonné. The first paragraph of the first chapter, called
chapter 0, deals with representable functors. Categories, functors and natural transformations are
not defined in full generality.
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ϕ : HomGrp(Z,G)'U(G).

Thus, the number of homomorphisms from the group of integers Z to G is in one-
to-one correspondence with the elements of G.

The preceding situation is a special case of a functor we have already encoun-
tered earlier. Indeed, for a fixed object Z of a category C , we have a functor
HomC (Z,−) : C → Set. In the foregoing cases, whenever Z is chosen appropri-
ately, for any object X of the category C , the collection HomC (Z,X) is isomorphic
to the set of elements of X . Now, if HomC (Z,X) is in bijection with the collection
of elements of X , then it ought to behave as the collection of elements of X , that is,
it should be related to the morphisms X → Y in an obvious manner: the map of sets
f : HomC (Z,X) → HomC (Z,Y ) should determine the morphism f ′ : X → Y . The
technical condition capturing this idea is that the functor HomC (Z,X) should be
faithful. Indeed, recall that a functor F : C →D is faithful if for every pair of paral-
lel morphisms f ,g : X →Y , if F( f ) = F(g), then f = g. Thus in our particular case,
this means precisely that if f ,g : X →Y and HomC (Z,X)( f ) = HomC (Z,Y )(g) then
f = g. But this condition is not always satisfied by the functor Hom. In particular,
in Grothendieck’s main case, that is the category of schemes, this condition is not
satisfied.

Grothendieck’s strategy to circumvent this difficulty is to use the categorical
setup fully and to look at an object X as a geometric object. Thus, instead of try-
ing to know the points of X — although it is very often what one wants to know
about X , especially in the context of algebraic geometry where the points might be
the solutions to a set of polynomial equations — one can know the parts of X by
looking at all the projections into X of objects of the same kind, that is by looking
at HomC (Z,X) for all Z in C . In other words, we are using the algebra of mappings
once more. Instead of looking at the algebra of automorphisms, we are looking at
the algebra of all morphisms coming into an object and its relationships to the other
algebra of mappings.

This idea can now be expressed precisely as follows. For any category C and any
object X of C , consider the contravariant functor

hX : C ◦→ Set

defined by
hX (Y ) = HomC (Y,X)

and for any morphism u in HomC (Y,Z),

hX (u) : HomC (Z,X)→ HomC (Y,X)
hX (u)(v) = v◦u.

Furthermore, for any morphism w : X → X ′ of C , there is a natural transformation

ηw : hX → hX ′
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defined by, for any object Y of C ,

ηw : HomC (Y,X)→ HomC (Y,X ′)
nw(Y )(v) = w◦ v.

Moreover, these functors can be linked to general functors as follows. Given a
contravariant functor F : C ◦ → Set and x ∈ F(X), a natural transformation ηx :
hX → F is defined as follows: for any v ∈ HomC (Y,X), we have the map ηX (Y ) :
HomC (Y,X)→ F(Y ) given by ηX (Y )(v) = (F(v)(X)).

It is now extremely tempting to think of a category C as a space and the objects
of C as geometric objects like circles, spheres, triangles, etc. The isomorphisms of
C correspond to the group actions in a standard space, i.e., they are invertible, and
therefore play the same role. However, in a category C , there are other transforma-
tions and they are used systematically to know the properties of the objects of the
space. In particular, the functors of the form hX , for all objects X of C , provide us
with a tool for investigating the objects of a category C . These functors are linked
together in a natural way, i.e., natural transformations exist between them.

In fact, we can describe the situation more systematically as follows. There is a
covariant functor h : C → SetC

◦
which associates to each object X of C the con-

travariant functor hX and to each morphism w : X → X ′, the natural transformation
hw : hX → hY . The fact that the functor hX determines the object X can now be
expressed by the following lemma, first proved by Yoneda in 1954:

Lemma 3.1 (Yoneda). If F : C → Set is a functor and X an object of C , then there
is a bijection ϕ between the natural transformations from hX to F and the ele-
ments of F(X), i.e., if we denote the set of natural transformations from hX to F by
Nat(hX ,F), we have

ϕ : Nat(hX ,F)' F(X).

Furthermore, it follows that if hX ' hX ′ , then X ' X ′.

In fact, a stronger statement can be made. The functor h : C → Set is an equiva-
lence of C with a full subcategory of the functor category SetC

◦
. This means that,

from a categorical point of view, the category C and the full subcategory of SetC
◦

are essentially the same. Notice that this is a representation theorem and that it ex-
tends Eilenberg and Mac Lane’s representation theorem. It says that any category
C can be represented as a category of functors. This might seem innocuous but
it constitutes an extremely important shift that has tremendous implications, both
mathematically, that is in the way one thinks about mathematics and how it should
be done, and philosophically, that is in the way one thinks about what mathematics
is about. For now, the objects of a category are not fundamentally structured sets,
they are first and foremost functors. This idea will become the guideline underlying
Grothendieck’s program: the basic objects of algebraic geometry will be functors.
As we will see, Lawvere will go further and work under the hypothesis that mathe-
matical objects in general should be functors. Of course, one could say that this was
true already in Eilenberg and Steenrod’s work in algebraic topology and Cartan and
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Eilenberg in homological algebra. But in these cases, functors were already “given”
by the context. Grothendieck and Lawvere made a very bold generalization and had
to be extraordinarily ingenious to extend this idea to different fields. Notice imme-
diately how this extends Klein’s program radically to the whole of mathematics: if,
in Klein’s case, the fundamental objects of elementary geometry are the transforma-
tions of a space, in Grothendieck and Lawvere’s cases, the fundamental objects of
algebraic geometry and mathematics in general are functors, i.e., transformations of
categories.

Whenever each natural transformation ηX is an isomorphism, then we have a
very special situation, the one we are interested in.

Definition 3.12. A representation of a functor F : C → Set is a pair (X ,η), with X
an object of X and

η : hX ' F

a natural isomorphism. The object X is called the representing object. The functor
F is said to be representable when a representation exists.

It should be noted that it can be proved that the representing object X is defined
uniquely up to a unique isomorphism. It is in this sense unique.

We can think of the notion of representable functor as follows. A functor
F : C ◦ → Set can be thought of as a transformation or a representation of the cat-
egory C ◦ into the category of sets; that is, the objects of C are transformed into
sets and the morphisms of C ◦ are transformed into functions. For the functor F to
be representable means that the structure of the category C ◦ allows this transfor-
mation to be made in a uniform manner. The representing object X and the natural
transformation η play that role. Thus it is possible to understand how the functor
F transforms the category C ◦ by looking at a specific and uniform aspect of the
structure of the algebra of mappings of C ◦ itself. These somewhat obscure remarks
will be clarified by considering some examples.

Let X and Y be two objects of a category C . Consider the functor F : C ◦→ Set
defined by: for any object Z of C ,

F(Z) = HomC (Z,X)×HomC (Z,Y )

and for any morphism f : Z → Z′, F( f ) : F(Z′)→ F(Z) is given by

F( f )(u,v) = (u◦ f ,v◦ f ).

What does it mean for F to be representable? It means that there is an object P
of C together with a natural isomorphism

η : HomC (−,P) = hP ' HomC (−,X)×HomC (−,Y ).

This means in turn that for any object Z of C , there is a bijection between
HomC (Z,P) and HomC (Z,X)×HomC (Z,Y ). Thus, for each morphism w : Z → P,
there is a unique pair of morphisms u : Z → X and v : Z →Y corresponding to w and



3.2 Grothendieck and Abelian Categories 107

conversely, for each pair of morphisms u : Z → X and v : Z → Y , there is a unique
morphism w : Z → P corresponding to them. In particular we have, for Z = P

ηP : HomC (P,P)' HomC (P,X)×HomC (P,Y )

and
ηP(1P) = (pX , pY ).

We can now apply Yoneda lemma to obtain the following commutative diagram:

HomC (Z,P) HomC (Z,X)×HomC (Z,Y )∼
//

HomC (P,P)

HomC (Z,P)
��

HomC (P,P) HomC (P,X)×HomC (P,Y )∼ // HomC (P,X)×HomC (P,Y )

HomC (Z,X)×HomC (Z,Y )
��

.

Recall that the functor HomC (−,P) is contravariant. So for every morphism u : Z →
P, we get a morphism hP(u) : HomC (P,P) → HomC (Z,P) and then what the dia-
grams says is that u is sent to u◦ pX and u◦ pY and this mapping is a bijection. Thus,
whenever the functor F is representable, the object P together with the mappings
(pX , pY ) constitute a product of X and Y in C . Therefore, if for any pair of objects
(X ,Y ) of C , the associated functor is representable, then we can say that C has
binary products. This shows how the notion of representable functor subsumes the
notion of universal morphism described previously.19

The converse relationship between universal morphisms and representable func-
tors can also be established. Suppose that there is for two objects X , Y of C , an
object P together with projections pX : P→ X and pY : P→Y satisfying the univer-
sal property, i.e., X and Y have a product in C . Define the functor F : C ◦ → Set as
follows: for any object Z of C

F(Z) = HomC (Z,X)×HomC (Z,Y )

and for morphisms in the obvious way. Define the natural transformation η : hP →F
by

ηP(Z)(u) = (u◦ pX ,u◦ pY ).

By the universal property of P and the projections pX and pY , the natural transfor-
mation η is a bijection, as required.

It can be shown that the same strategy applies to the other universal notions we
have seen in section 3.1: coproducts, equalizers, coequalizers can all be described
in the language of representable functors. Similarly, each and every representable
functor gives rise to a universal property. The two notions subsume one another.

19 Grothendieck was aware of that connection right from the start. He states in the seminar 195:
“This fact underlies the notion of solution of a Univeral Problem, such a problem always consists
in finding if a given functor from C → Set is representable.” ([104], 1. My translation.)
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Representable functors occupied a fundamental position in Grothendieck’s pro-
jects. Many results amounted to proving that a given functor was representable. Thus
one could claim that representable functors capture the basic concepts of a field. We
are, once more, back to Eilenberg and Mac Lane’s original claim, although in a
different guise. Now the key property is not the conditions under which a concept
is functorial, but rather whether a concept is a representable functor in a certain
context. We have just seen how in this case the algebra of mappings (i.e., the functors
of the form HomC (−,−)) occupies a key position.



Chapter 4
Discovering Fundamental Categorical
Transformations: Adjoint Functors

The multiple examples, here and elsewhere, of adjoint functors tend
to show that adjoints occur almost everywhere in many branches of
Mathematics. It is the thesis of this book that a systematic use of all
these adjunctions illuminates and clarifies these subjects.

([195], 103.)
Nowadays, every user of category theory agrees that this is the con-
cept [i.e. adjointness] which justifies the fundamental position of
the subject in mathematics.

([258], 367.)
But more importantly, it [the notion of adjoint functor] also cap-
tures an important mathematical phenomenon that is invisible with-
out the lens of category theory. Indeed, I will make the admittedly
provocative claim that adjointness is a concept of fundamental log-
ical and mathematical importance that is not captured elsewhere in
mathematics.

([8], 179.)

As we have seen, Eilenberg and Mac Lane tried to use functors in order to classify
mathematical concepts and in particular determine the “basic” concepts of a math-
ematical field. Their specific approach was a dead end. Soon afterwards, Mac Lane
started using universal properties to define various concepts and hoped that the con-
cept of a bicategory could have a role to play in universal algebra. After he had de-
fined and used Abelian categories in a novel way, Grothendieck pursued his project
of redefining the foundations of algebraic geometry and put representable functors
at the center of the new foundational framework. At about the same time, that is
around 1954–55, Daniel Kan was elaborating abstract foundations for homotopy
theory with the help of category theory and in the process he discovered what is
undoubtedly the fundamental notion of category theory. The notion involves two
functors, F : C → D and G : D → C related to one another in a specific manner,
namely for every X in C and A in D , there is an isomorphism

Hom(F(X),A)
φ // Hom(X ,G(A))

109



110 4 Discovering Fundamental Categorical Transformations: Adjoint Functors

which is natural in both X and A, in a sense to be explained below. Following the
suggestion of Eilenberg, who immediately saw the analogy between these functors
and adjoint operators in functional analysis, Kan called functors related to one an-
other in the specified way “adjoint functors”.

Clearly, and as we will see, the notion was already implicit in Eilenberg and
Mac Lane’s original papers. They had many examples of adjoint functors at hand
but they did not see them. The notion was also present in other well known theo-
rems of that time, for instance Stone’s representation theorem for Boolean algebras,
Pontrjagin duality, and many others. What was required was to look at them in a
certain manner, which no one did for 14 years or so. In fact, even those results were
not immediately seen as being special cases of adjoint functors.

The fact that the notion of adjoint functors was not discovered before, for instance
by Eilenberg and Mac Lane themselves or by any other mathematician working with
categorical tools afterwards, is sometimes presented as being mysterious. Here is
how Mac Lane puts it:

This situation is a striking instance of a historical question which can be raised about the
time of appearance of many mathematical concepts: Given the available formalism of ad-
joint operators and the numerous examples of adjoint functors, why was the general notion
so late in arising?

We [i.e. Mac Lane] have little expertise in answering such questions in the history of
mathematics and any attempt at an answer can only be speculation (. . . ). It is my own view
that the climate of mathematical opinion in the decade 1946–1956 was not favorable to
further conceptual development. Investigation of concepts as general as those of category
theory were heartily discouraged, perhaps because it was felt that the scheme provided by
Bourbaki’s structures produced enough generality. It is to be noted that Kan, when devel-
oping adjoint functors, came at the time from a solitary position more or less outside active
mathematical circles. ([193], 234.)

Two things are striking in Mac Lane’s claim. First, Mac Lane mentions sociological
reasons that might explain the delay in the apparition of the concept, e.g., the cli-
mate of mathematical opinion, the war and certain distrust with respect to category
theory or mathematics of that level of generality. Second, Mac Lane suggests that
it was left to a younger and solitary man to make the discovery, although they and
others who used categories afterwards, were fairly young when Eilenberg and him-
self introduced categories. Again, this suggests a sociological factor: the influence
of intellectual fashions in important academic circles that might have prevented the
discovery. A year later, Mac Lane went a little further.

One may also speculate as to why the discovery of adjoint functors was so delayed. Ideas
about Hilbert space or universal constructions in general topology might have suggested
adjoints, but they did not; perhaps the 1939–1945 war interrupted this development. Dur-
ing the next decade 1945–1955 there were very few studies of categories, category theory
was just a language, and possible workers may have been discouraged by the widespread
pragmatic distrust of “general abstract nonsense” (category theory). Bourbaki just missed.
His definition of universal construction was clumsy, because it avoided categorical language
(. . . ) This formulation lacks the symmetry of the adjunction problem, (. . . ) — and so was
left to a younger man, perhaps one less beholden to tradition or to fashion. ([195], 103.)

Besides the sociological factors already mentioned, there is a new element in this
quote. Now Mac Lane suggests that the concept might have come from functional
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analysis and general topology. A slightly different explanation is offered by Stone
in his comment on Mac Lane’s paper.

If one seeks to explain why the notion of an adjoint functor appeared in category theory
as much as fifteen years after its inception, it seems to me that two reasons have to be
suggested. In the first place, the concept had its origins and early development in analysis,
in the theory of differential equations. It was not a vital part of the mathematical experience
of the algebraically-oriented pioneers in category theory. The other historical factor that has
to be cited is the interruption of mathematical research imposed by World War II and the
many professional readjustments that followed it. ([256], 236.)

A little later, Stone clarifies this opening remark somewhat.

By analogy, I am equally certain that Eilenberg, Mac Lane, and the other early pioneers in
category theory would have hit quite early upon the idea of adjoint functor if they had been
more fully aware of contemporary work in Hilbert space theory and its background in the
theories of differential equations and topological groups. As it was, they drew mainly upon
algebra and algebraic topology – especially the theory of Abelian groups – for sources of
the new theory. ([256], 237.)

This is certainly wrong. It is far from clear that the concept of adjoint functor has its
origins in the development of analysis. It might be possible to trace it back to that
field, but in actual history, it seems unlikely. Certainly, the concept of adjoint opera-
tor does have its origins in analysis and some mathematicians using category theory
in the early years knew about adjoint operators and their properties. Eilenberg and
Mac Lane themselves used Banach spaces in their 1945 paper to illustrate the con-
cepts of functor and natural isomorphism. Grothendieck, for one, started his career
in functional analysis and was considered as one of the leading functional analyst in
the fifties. As we have seen, he followed Bourbaki and used representable functors
instead. Thus, these mathematicians knew functional analysis very well and knew
about adjoint operators. Certainly Eilenberg knew them well, for as I have already
mentioned, when Kan showed him the draft of his paper on adjoint functors, it was
Eilenberg who suggested the name and underlined the parallel between adjoint func-
tors and adjoint operators. Kan himself had not seen the parallel. Of course, once
the parallel is seen, it is entirely conceivable that the notion of adjoint functors could
have been discovered by someone working in functional analysis.1 Mac Lane says
so explicitly in his paper:

We now indicate how Kan’s notion of an adjoint functor may have been adumbrated in the
analytical study of adjoint transformations. (. . . ) The formal analogy to the definition (1) of
adjoint transformation is striking (. . . ) The basic formal properties of adjoint functors are
strikingly parallel to those of adjoint linear operators. ([193], 230–232.)

And Mac Lane gives a list of properties that are formally analogous. The analogy is
so compelling that Mac Lane suggests that there might be a more general concept
“which would subsume both adjoint functors and adjoint operators with the just

1 In fact, it almost did. Lawvere developed his understanding of universal mappings while he was
teaching a course in functional analysis (Lawvere, personal communication). Mac Lane consulted
Lawvere on the issue when he wrote his tribute to Stone. It is not unlikely that Lawvere’s experience
and testimony influenced Mac Lane to a large extent. (Lawvere, personal communication.)
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noted corresponding formal properties”. ([193], 232.) The fact that the notion was
not discovered in the context of functional analysis cannot be attributed to ignorance
on the part of the mathematicians developing category theory from 1945 until 1955.

There is no doubt that the second World War had a major influence on mathemat-
ical research, but it is far from clear that it prevented the discovery of the concept of
adjoint functor. After all, Eilenberg and Mac Lane’s paper appeared in 1945 and one
would expect that adjoint functors would have been discovered soon thereafter. Fur-
thermore, Stone is somewhat loosing sight of what Eilenberg, Mac Lane and others
were doing during the first ten years following the introduction of category theory.
They were not developing category theory for its own sake. Quite the contrary, cat-
egory theory was merely a useful language for algebraic topology and homological
algebra, as Mac Lane himself readily admits. Stone returns to the impact of the Sec-
ond World War later in his paper.

Even if such be the case, one could still ask with Professor Mac Lane why, as a matter of the
purely internal development of category theory, adjoint functors did not appear considerably
earlier upon the cene [sic]. After all, the well-known dualities for abelian groups and for
vector spaces could have provided clues without any need of venturing very far away from
the initial concerns of category theory. If an answer is to be found here I think we have to
look at another factor, the impact of the Second World War. ([256], 237.)

Of course, Stone is correct in saying that various examples were already available
to many mathematicians right from the beginning. The role played by the Second
World War is, according to Stone, the following: many mathematicians working in
various areas of mathematics might have tried to apply category theory to their own
research, including Stone himself, had they had not been interrupted in that research
by the war. This may very well be, but it is far from clear that one of them would
have seen adjoint functors in these applications. Be that as it may, we can see in
these quotations the influence (albeit indirect) of the historian and philosopher of
science Thomas Kuhn in this historical analysis.

Stone makes a different suggestion in his remarks on Mac Lane’s paper and this
time it seems to be, at least in its positive aspect, correct:

Of course, it will never take very long for such a central and essentially simple concept as
that of adjoint functor to emerge from research carried on strictly inside a growing branch
of mathematics. While I do not know the private history of Kan’s introduction of the adjoint
functor, I suspect that it may have come about in just this manner.

This is not very far from what might have happened. But we have to be more
precise here. I will try to clarify what I believe is required in this context.

First, it should be clear that discovering a concept like that of adjoint functors is
not a typical problem-solving activity. It is certainly not like proving a conjecture
or finding a counterexample to a conjecture, or solving a system of equations, or
generalizing a known result, etc. I claim that it is more like a problem of pattern
recognition, but in this case, when one is not necessarily looking for a pattern. Sec-
ond, it seems reasonable to assume that for the process of pattern recognition to take
place, the pattern has to appear implicitly in a branch or various branches of mathe-
matics. In other words, the branch (or branches) of mathematics has to have certain
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properties for the pattern to be discernable. As we will see, Kan was working in one
of the fields where the concept could be found. Third, it requires a certain type of
activity or a certain frame of mind to see the pattern. As we will see, Kan asked the
right question and tried to understand certain aspects of a problem. Four, once the
pattern is seen, one has to have reasons to believe that it is a general and useful con-
cept and reasons to believe that it deserves a whole and independent development.
As we will see, Kan had reasons to use the concept in his work and found other,
more general reasons, while writing his paper on the concept. It is clear that adjoint
functors came to Kan during his research in homotopy theory.

I will therefore suggest an alternative reading and will give indications as to why
Eilenberg, Mac Lane and others could not see the notion of adjoint functors and how
the notion became clear to Kan.

As we will see, adjoint functors are closely related to universal morphisms and
representable functors. In fact, the three notions form a circle of ideas, although, in
a certain sense, adjoint functors are more faithful to the categorical spirit. Indeed,
whereas universal morphisms are defined with respect to the algebra of morphisms
of a unique category and representable functors are defined with respect to the cat-
egory of sets, adjoint functors are functors satisfying certain conditions.

Adjoint functors bring us directly back to Klein’s program. My main claim is that
adjoint functors are to categories what automorphisms are to geometric spaces. To
be more precise, in the same way that automorphisms encode a criterion of identity
and a criterion of meaningfulness for geometries, adjoint functors encode a criterion
of identity and a criterion of meaningfulness for categories. Or, to use an expression
that we will come back to later on, combinations of adjoint functors encode the
invariant content of various mathematical domains. Although this analogy has to
be clarified and expanded, and various nuances and subtleties concerning criteria of
identity and meaningfulness have to be added, it is a good first approximation. Had
Eilenberg and Mac Lane discovered adjoint functors right from the start, I believe
that they would have presented the global significance and the connection between
category theory and Klein’s program differently. For the basic concepts of a field do
not have to do with whether or not they are functorial — although this is certainly
a necessary condition in this context — but rather with whether or not they belong
to an adjunction. We will now briefly look at the background of Kan’s work (for
the notion first appeared naturally in that context), and then look at some aspects of
Kan’s work that prepared his mind for the discovery. Once we have done this, we
will step back from the historical record and concentrate on the notion of adjointness
as such, returning again to Klein’s program.
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4.1 The Background: Homotopy Theory and Category Theory

The philosophical emphasis here is: to solve a geometrical problem
of a global nature, one first reduces it to a homotopy theory prob-
lem; this is in turn reduced to an algebraic problem and is solved as
such. This path has historically been the most fruitful one in alge-
braic topology.

([99], vii.)
Within algebraic topology, homotopy theory is generally regarded
as more geometric than homology theory.

([83], xxxiii.)

Kan started his mathematical career by publishing four notes in the Proceedings
of the National Academy of Science–U.S.A. These four notes have a very simple
but revealing title: “Abstract Homotopy I, II, III, IV”. ([129–132]) Thus, Kan was
working in homotopy theory. He started out by noticing how homotopy groups could
be defined directly on abstract cubical complexes which satisfy a certain condition,
now called the Kan condition. This was the subject of his first note. Categories are
used in this first note, but acquire a more specific role in the second note and a
crucial role in the papers published later in 1958. We will come back to this aspect
of Kan’s work in due course. Before we look more closely at what Kan did, we will
rehearse the basic notions of homotopy theory, not only because they played a key
role in Kan’s work, but also because they continue to play a fundamental role in the
development of category theory even to this day.

The basic ideas of homotopy theory can be traced back to research in analysis, in
fact it goes back to Lagrange’s work!2 However, the precise definition of a homo-
topy between two continuous maps was first given by Brouwer in 1912. Brouwer’s
definition is in essence what is presented nowadays:

Definition 4.1. 3 Given two topological spaces X , Y , a subspace A of X , two con-
tinuous mappings f ,g : X → Y such that f |A = g|A are homotopic relative to A
if there exists a continuous mapping F : X × [0,1] → Y such that F(x,0) = f (x),
F(x,1) = g(x) and F(a, t) = f (a) = g(a) for all a ∈ A and t ∈ [0,1]. The mapping
F is called a homotopy and we write f ∼= g (rel A).

Informally, what the definition says is that it is possible to start from the image
f [X ] in Y and “deform” it continuously into the image g[X ] in Y . When the subspace
A is the empty subspace /0, we get the original definition of a homotopy, that is a
continuous deformation of f onto g parametrized by the unit interval and this case
is usually called a free homotopy. As the notation indicates, for a subspace A of X ,
the relation “being homotopic rel A” is an equivalence relation.

Brouwer showed that a certain property, the concept of the degree of a map, is
invariant under homotopy; that is, if f and g are homotopic, then they have the same

2 For a detailed and interesting exposition of the early years of homotopy theory, see [262].
3 I am defining relative homotopy, a notion introduced implictly by Hurewicz in 1935 and not by
Brouwer. As I will indicate, it is more general than Brouwer’s definition.
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degree. This result made it possible for him to prove his fixed-point theorem.4 This
is in fact typical and indicates the usefulness of the notion: in general, a functor F
defined on a category of topological spaces (or a more abstract category) is called
homotopy invariant if f ∼= g always implies F( f ) = F(g). This last condition was
in fact included as an axiom by Eilenberg and Steenrod in their axiomatization of
homology theory. Thus a homology theory has to be homotopy invariant. Informally,
what this invariance means is that for sufficiently small deformations of a map, the
associated algebraic morphism is not changed.

But homotopy theory appeared only in the 1930s with the work of Hopf and
Hurewicz.5 In the mid-thirties Hurewicz introduced higher homotopy groups (which
constituted the first introduction of algebraic objects in homotopy theory), and the
key notion of homotopy type, and proved various key results about higher homotopy
groups that are in the background of Kan’s paper on adjoint functors. Let us start
with the notion of homotopy type.6

Definition 4.2. Two spaces X and Y have the same homotopy type if there are map-
pings f : X → Y and g : Y → X such that the composed mappings f ◦ g and g ◦ f
are (free) homotopic to the identity mappings.7 The mapping f is called a homotopy
equivalence.

This definition makes sense since the notion of homotopy is an equivalence rela-
tion on the set Hom(X ,Y ). In fact, given a mapping f : X →Y , the equivalence class
[ f ] of mappings homotopic to f is called its homotopy class. The family of all such
homotopy classes of mappings between X and Y is usually denoted by [X ,Y ]. This
leads to the definition of a new category, the homotopy category hTop, with objects
topological spaces X , Y , Z, . . . and a morphism from X to Y is now a homotopy
class [ f ] of mappings from X to Y . This is a natural example of a category in which
the morphisms are not structure-preserving functions.

It is easy to see that the notion of homotopy type is in fact a derived notion
once we are in that category, since two spaces X and Y have the same homotopy
type if and only if they are isomorphic in the category hTop. In other words, f is a
homotopy equivalence if and only if [ f ] ∈ [X ,Y ] is an isomorphism in hTop. This
category is in fact fundamental in algebraic topology since most of the invariants
of algebraic topology depend upon the homotopy type of the space examined. One
can say that the goal of homotopy theory is to classify geometric objects that can
be continuously deformed into each other. Once again, notice that we are using
mappings to classify spaces.

The classification of topological spaces by homotopy types is different from the
classification based on homeomorphisms. Homeomorphic spaces have the same ho-

4 For more on this, see [59].
5 Čech had introduced higher homotopy groups in 1932 in a short note, but since they were Abelian,
it did not attract much attention.
6 For more on the history of homotopy, homotopy types and fibrations, see [214].
7 Hurewicz introduced the notion of homotopy type and the related notion of homotopy equivalence
in the third paper of a series of five. The definition came after the introduction of higher homotopy
groups.
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motopy type but spaces with the same homotopy type are not necessarily homeo-
morphic. For instance, a disk or a full sphere have the same homotopy type as a point
(and they are clearly not homeomorphic). The classification by homotopy types is
therefore coarser than the classification based on homeomorphisms.

Homotopy theory really got off the ground when Hurewicz introduced higher
homotopy groups and connected them to known homology groups, in a series of
five papers published in the mid-thirties.8 The first homotopy group, also known as
the fundamental group, was introduced earlier by Poincaré. Let I denote the usual
unit interval [0,1]. To define the fundamental group, we need a few preliminary
notions:

Definition 4.3.

1. A path in a space X is a continuous map f : I → X . If f (0) = a and f (1) = b,
we say that f is a path from a to b. We say that a is the origin of f , written
a = α( f ), and b is the end of f , written b = ω( f );

2. A space X is path connected if, for every a,b ∈ X , there exists a path in X from
a to b.

3. a∼ b if there is a path in X from a to b.

It can be shown that the latter definition is an equivalence relation. The equivalence
classes of X under the relation given in c) are called the Path component of X .

This is enough to introduce the first homotopy invariant structure: Let π0(X)
be the set of path components of X . It can be shown that π0 : hTop → Set is a
functor. Thus, if f is homotopic to g, then π0( f ) = π0(g) and if X and Y have
the same homotopy type, then they have the same number of path components.
Although this is not much as a functor, since it takes its values in Set and the only
information that can be extracted from the latter is their size (i.e., one can only count
the number of path components), it is enough to show that the circle S1 and the unit
interval I are not homeomorphic: deleting a point in I yields two path components
whereas deleting a point in S1 yields one path component. Therefore, they are not
topologically the same.

Definition 4.4.

1. Let x0 be a point of X and f : I → X a path; f is said to be closed at x0 if
α( f ) = x0 = ω( f );

2. Let f ,g : I → X be paths with f (1) = g(0). Define a path f ∗g : I → X by

( f ∗g)(x) =

{
f (2t) if 0≤ t ≤ 1/2
g(2t−1) if 1/2≤ t ≤ 1

.

It can be shown that f ∗g is a path.

8 For Hurewicz’s papers, see [150]. These papers were highly influential. A young Polish math-
ematician would come to admire these papers greatly: his name was Samuel Eilenberg. “Mathe-
matically speaking, I was profoundly influenced by Hurewicz’s papers in homotopy theory. (. . . )
Reprints of these five papers I had bound together, and I reread them from time to time. They are
an important relic to me.” ([70], xlvi.)
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Informally, the last definition says that given two paths such that the end of the
first is equal to the origin of the second, it is possible to start with the first and then
continue with the second in such a way that the result is a path.

Definition 4.5.

1. Let x0 be a point of X and f : I → X a closed path at x0. The equivalence class
of homotopic mappings to f is called the path class of f and is denoted by [ f ].9

2. If x0 ∈ X , then the constant mapping ix0 : I → X with ix0(t) = x0 for all t ∈ I is
called the constant path at x0.

3. If f : I → X is a path, its inverse path f−1 : I → X is defined by

f−1(t) = f (1− t).

Again, the last two definitions are very natural: the constant mapping simply
“stays” at the same point “all the time”. The inverse path is simply going through
the same points, but in the opposite direction.

With these definitions at hand, it is easy to show that, given a space X with a
point x0, called its base point, the following set:

π1(X ,x0) = {[ f ] | [ f ] is a path class with α[ f ] = x0 = ω[ f ]}

is a group with the binary operation

[ f ]◦ [g] = [ f ∗g].

This is the fundamental group of the space X with base point x0.
For instance, it can be shown, although it takes more work than one might expect

and it is certainly not a routine calculation, that the fundamental group of the circle
is isomorphic to the integers, i.e.,

π1(S1, p)' Z.

One way to see this is to consider the punctured plane with a base point, which is
essentially the same as the circle from the point of view of homotopy theory. The
paths in the punctured plane can be classified in the following manner: those paths
which do not go around the hole (these can be deformed continuously into the base
point and are therefore homotopically equivalent to the constant path based at that
point); and paths that go around the hole. These in turn are classified with respect to
two properties: their direction, and the number of times they go around the hole. If
a path goes around the hole once in a clockwise direction, then it is sent to 1 in Z.
If a path goes around the hole once in a counter clockwise direction, then it is sent
to −1 in Z. If a path goes around the hole n times in a clockwise direction, then it
is sent to n in Z. And so on. Of course, this is far from the actual proof, which is
considerably more involved. (See, for instance, [243], pp. 50–53.)

It can also be shown that for n > 1,

9 The path class of f is not, strictly speaking, the same thing as the homotopy class of f .
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π1(Sn, p)' 0

where p is of course a base point of the n-sphere. Furthermore, the fundamental
group of the torus is isomorphic to the group Z×Z, the fundamental group of the
projective plane P2 is isomorphic to a group of order 2 and the fundamental group of
the double torus is not Abelian. It follows from these results that the sphere S2, the
torus, the projective plane P2 and the double torus are topologically distinct. (See
[232], chap. 8.)

There is an alternative definition of the fundamental group that leads naturally to
Hurewicz’s generalization. The pair (X ,x0) is called a pointed space. It is easy and
useful to define the category of pointed spaces Top•. Its objects are pointed spaces
(X ,x0). A morphism f : (X ,x0)→ (Y,y0) is a pointed map, that is a continuous map
preserving the base point, f (x0) = y0. The pointed homotopy category hTop• has as
its objects pointed spaces (X ,x0) and morphisms (X ,x0) → (Y,y0) are relative ho-
motopy classes [ f ], where f : (X ,x0)→ (Y,y0) is a pointed map. Given two pointed
maps f , g of Top• such that their composition exists, then [g] ◦ [ f ] = [g ∗ f ]. In
hTop•, Hom-sets are denoted by [(X ,x0),(Y,y0)]. Now, consider the pointed space
(S1, p), the unit circle S1 with a specified base point p, say p = (1,0). A pointed
map f : (S1, p) → (X ,x0) is in fact the same as a closed path at x0. Thus, the set
of all pointed maps [(S1, p),(X ,x0)] can also be turned into a group and it can be
shown that

π1(X ,x0) = [(S1, p),(X ,x0)].

Informally, this means that the fundamental group can be seen as (pointed) homo-
topy classes of (pointed) maps from S1 into X . In categorical terms, which of course,
were not Hurewicz’s terms, the fundamental group π1(X ,x0) can be seen as a (co-
variant) functor

[(S1, p),−] : hTop•→Grp.

Again, this captures how the fundamental group encodes invariant properties of a
space. For it now follows from the functorial aspect of the construction that if

f : (X ,x0)→ (Y,y0)

is a homotopy equivalence, then the induced map

π1( f ) : π1(X ,x0)→ π1(Y,y0)

is an isomorphism of groups.
The basic idea underlying Hurewicz’s generalization is to consider spheres of

higher dimensions, Sn, in the above definition (that is, to consider (pointed) maps of
Sn into a space X), and their homotopy classes are then elements of the homotopy
group πn(X ,x0). It is relevant to note that in doing this, Hurewicz started from ba-
sic facts about function spaces that he then interpreted in the context of homotopy
theory, facts that were mentioned again by Kan in his paper on adjoint functors and
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presented as examples of adjoint functors.10 Furthermore, these adjunctions occupy
a key role in category theory in general and deserve to be presented immediately in
the context of homotopy theory.

Let us briefly go back to sets. Given three sets X , Y and Z and a function f : Z×
Y → X , it is well known that to f one can associate a unique function f ∗ : Z →
Hom(Y,Z), by putting f ∗(z) = f (z,−). Thus, there is a natural bijection:11

Hom(Z×Y,X)→ Hom(Z,Hom(Y,X)).

This is called the exponential law for sets (and for cardinals), since it can be written
as:

XZ×Y ' (XY )Z .

There is an important universal morphism in this context: if X and Y are sets, then
the evaluation map e : XY ×Y → X defined by e( f ,y) = f (y) is universal. The uni-
versality is expressed by the following condition: for any function f : Z×Y → X ,
there is a unique arrow f ∗ : Z → XY that makes this triangle commute

10 There is at this point a very important connection with functional analysis. At the end of the
chapter on function spaces of his book General Topology, published in 1955, Kelley refers to
Grothendieck’s work in functional analysis (problem D), Stone’s work on C(X), the algebra of all
continuous real-valued functions on X , X a compact topological space (problem R), Eilenberg and
Steenrod’s and Eilenberg and Mac Lane’s paper on categories (problem S). Although Eilenberg
and Steenrod’s book is in the bibliography, Eilenberg and Mac Lane’s paper is not. It is interesting
to read how Kelley refers to the subject: “However, the pattern used above is, in part, an example
of a general method. To each member of a certain collection of objects (in this case compact
Hausdorff spaces X) there is associated another object (in this case the Banach algebras C(X)).
Moreover, to each of a specified class of maps of the original objects (continuous maps in the case
at hand) there is assigned an induced map satisfying certain conditions [. . . ] This general method
of investigation has been used most successfully by Eilenberg and Steenrod in their axiomatic
treatment of homology theory. The method itself was first studied by Eilenberg and Mac Lane. The
study of objects and maps might be called the galactic theory, continuing the analogy whereby the
study of a topological space is called global.” ([136], 246–247.)

Two points have to be made. As Bill Lawvere had suggested to me, a student reading Kelley’s
book might have been led to look at category theory for problems in functional analysis and that
might have led to the discovery of adjoint functors along lines suggested by Mac Lane. Second,
Kelley describes a method, not a theory, and talks about functors without mentioning them explic-
itly. The terminology is interesting: categories could have been called “galaxies”, it makes perfect
sense, and a collection of categories would have been called, perhaps, a “cluster” and finally the
set up in which these things are situated would have been a “universe”. One wonders whether this
terminology would have led to different representations, in the psychological sense, of what cat-
egories are and a different reception by the various communities involved. In fact, Bill Lawvere
informed me that he used the term “galactic clusters” after Kelley in his introductory letter to
Eilenberg in 1959 to denote what Grothendieck called “fibered categories”. (Lawvere, personal
communication, December 2002.)
11 In his textbook on set theory, Vaught goes so far as to refer to category theory when he describes
this bijection: “(. . . ) in category theory there is even an attempt to single out maps like F above
from just any old one-to-one onto map by a technically defined notion: ‘F is a natural map’.”
([263], 37) In the context of the proof, where Vaught says that the first part is done “without
thought”, one wonders whether this is not a case of mathematical irony.
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This is another example of a universal mapping problem and it plays a key role in
mathematics in general since it deals with a basic construction: exponentials. What
the bijection shows is that it is connected to products in a category in a systematic
manner. In fact, many important properties of exponentials follow directly from the
connection with products and the universal morphism e.

How does this fit with homotopy theory? First, the foregoing bijection between
sets can be extended to topological spaces, provided that an appropriate topology is
defined on function spaces, as was noted by Eilenberg and Mac Lane in their 1945
paper where they present the exponential law for topological spaces as an example
of a natural isomorphism.

Let X and Y be topological spaces. Then XY is the set of all continuous functions
from Y to X . If K is a compact subset of Y and U an open subset of X , define

(K;U) = { f ∈ XY | f (K)⊂U}.

The topology having a sub-basis consisting of all subsets (K;U) is the compact-open
topology on XY ; that is, a typical open set of the space is an arbitrary union of finite
intersections of sets of the form (K;U).12

Let X and Z be topological spaces and Y be locally compact Hausdorff; let XY

have the compact–open topology. Then the evaluation map e : XY ×Y →X is contin-
uous and a map f : Z×Y → X is continuous if and only if its associate f ∗ : Z → XY

is continuous. (For the proofs, see [232], 287–288.) In other words, we have

HomTop(Z×Y,X)→ HomTop(Z,XY )

or to put it in the same form as above:

HomTop(Z×Y,X)→ HomTop(Z,HomTop(Y,X)).

In fact, when Z and Y are locally compact Hausdorff spaces, the exponential law
holds:

XZ×Y ' (XY )Z .

12 Hurewicz does not use this definition: he assumes that X and Y are separable metric spaces,
Y is compact and X is connected and locally contractible. Hurewicz mentions that the function
space XY is usually defined as a metric space and thus relies on a metric defined on X . But, he
continues, for Y compact, the topology defined is independent of the metric, which is one of the
essential properties of the compact-open topology. The definition of the compact-open topology
is explicitly given by [74], 243, where they present the function space construction as a functor.
However, the result I am about to present seems to have appeared explicitly for the first time in the
paper by Fox, published in 1945. See [86]
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The proof that it is a natural homeomorphism is given by Eilenberg and Mac Lane
in their 1945 paper. (See [74], 254.)

Consider now the following special case. Let Z above be the unit interval I =
[0,1] and Y be locally compact Hausdorff. Assume that f ,g : Y → X are homotopic
maps, i.e., there is a homotopy F : I×Y → X , that is a continuous function such that
F(0,−) = f and F(1,−) = g. By the previous results, the associate map F# : I →XY

is continuous. But this latter map is precisely a path in XY from f to g. Conversely,
every path in XY determines a homotopy. Using the terminology of path components
introduced above, this amounts to the observation that the homotopy classes are the
path components of XY , that is [Y,X ] = π0(XY ). This is Hurewicz’s starting point in
his first paper.

For every n ≥ 0, let pn = (1,0, . . . ,0) be the base point of Sn. Then, for every
space (X ,x0) and every n≥ 0, the nth homotopy group is defined as:

πn(X ,x0) = [(Sn, pn),(X ,x0)]

Hurewicz then proved a series of important results that launched homotopy theory.
For instance, he showed that:

1. πn(X ,x0) is independent of the base point x0, and one can therefore write πn(X);
2. For n≥ 2, πn(X) is Abelian;
3. πn(S3) = πn(S2) and in particular π3(S2) is infinite cyclic. These last results are

in fact corollaries of more general results on topological groups;
4. For n ≥ 2, if the first n−1 homotopy groups of X vanish, i.e., πn(X) = 1, then

Hurewicz defined a homomorphism h : πn(X)→Hn(X), where Hn(X) is the nth

homology group of X , and showed that it is an isomorphism.13

The last result is particularly important, it is known as the “Hurewicz isomorphism
theorem”, since it connects homotopy groups to homology groups. The connection
is far from obvious since homotopy groups are intrinsically geometrical in their
construction whereas homology groups, based on the idea of approximating a space
by simpler spaces and using the latter to construct the homology groups, are more
“destructive”. Furthermore, and this is also crucial, Hurewicz theorem opens the
possibility of computing homology groups by using homotopy groups and vice-
versa.

Computing these homotopy groups turned out to be extremely difficult, and de-
spite important developments in the understanding of relationships between homo-
topy groups, homology groups, and cohomology groups in the thirties and forties,14

the next breakthrough with respect to the computation of homotopy groups had to
wait for Serre’s thesis in 1950, published in 1951. ([248]) This paper marked the be-
ginning of a new development of the theory; Kan would refer to it explicitly in the

13 Hurewicz used what is called integral homology, defined by Vietoris.
14 Eilenberg, once again, played an important role in connecting cohomology and homotopy groups
in his 1940 paper ([66]) and, later, by developing singular homology in a paper written with Zilber
to which Kan refers explicitly in many of his papers. See [81].



122 4 Discovering Fundamental Categorical Transformations: Adjoint Functors

bibliography of his first paper, published in 1955, and in his paper on adjoint func-
tors. But surprisingly, perhaps, the mathematicians who inspired Kan were Eilen-
berg and Steenrod (via their book on the foundations of algebraic topology) and,
to go by the references in his papers, Eilenberg and Mac Lane and Eilenberg and
Zilber. In fact, Eilenberg and Mac Lane themselves contributed significantly to the
study of the relations between homology and homotopy groups, papers on which
Kan was about to build.

It is interesting to note how Eilenberg and Mac Lane used categories themselves
in their collaboration that started in 1940 and ended in 1954. We have seen earlier
how Eilenberg used them in his collaborations with Steenrod and Cartan and how
Mac Lane used them in his paper on duality for groups. Eilenberg and Mac Lane
started their collaboration on the relations between homology and homotopy groups
at about the same time they were developing their ideas on categories, functors and
natural transformations. Thus, in their paper entitled “Relations between homol-
ogy and homotopy groups”, published in 1943 (in which they introduced the spaces
which were about to be named after them, the Eilenberg-Mac Lane spaces), there
was no reference to categories, functors or natural transformations. In the following
year, Eilenberg published a very important and influential paper in which he intro-
duced what is now the standard version of singular homology theory. (See [68].)
Using the latter theory, Eilenberg and Mac Lane wrote a second, long paper on the
relations between homology and homotopy groups of spaces in which there is a
very short reference to categories: “The concept of naturality is used here in a vague
sense, which, however, could be made quite rigorous using the theory of functors.”
([75], 502.) Thus, categories could have been used, but merely to give a precise
and rigorous definition of natural isomorphism. Then Eilenberg wrote a paper enti-
tled “Homology of spaces with operators”, ([69]) quickly followed by “Homology
of spaces with operators. II”, ([76]) written with Mac Lane this time, presented in
1948 and published in 1949. Once more, there is a very brief reference to their work
on categories when a kernel of a homomorphism is said to be a contravariant functor
and a certain homomorphism is natural. ([76], 69.) Their last paper on the subject,
entitled “Relations between homology and homotopy groups of spaces. II” (1950)
([77]), which is in a way the culmination of their efforts, does not mention cate-
gories, functors nor natural transformations at all. That paper is based on work done
by Eilenberg and Zilber, also published in 1950, in fact in the same volume of the
Annals of Mathematics, and both papers are referred to by Kan in 1955 and later.

However, Eilenberg and Mac Lane were certainly aware that category theory
could be used in homotopy theory in a systematic fashion. Indeed, in chapter V
of their 1945 paper on categories, Eilenberg and Mac Lane consider applications of
categories to algebraic topology. They defined homology and cohomology groups as
functors, showed that certain well-known isomorphisms are natural isomorphisms
and present Čech homology theory in terms of functors. The chapter ends with a
remark on homotopy theory:

The process of setting up the various topological invariants as functors will require the
construction of many categories. For instance, if we wish to discuss the so-called relative
homotopy theory, we shall need the category XS whose objects are the pairs (X ,A), where
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X is a topological space and A is a subset of X . A mapping

i : (X ,A)→ (Y,B) in XS

is a continuous mapping i : X → Y such that i(A)⊂ B. The category X may be regarded as
the subcategory of XS, determined by the pairs (X ,A) with A = 0.

Another subcategory of XS is the category Xb defined by the pairs (X ,A) in which the
set A consists of a single point, called the base point. This category Xb would be used in a
functorial treatment of the fundamental group and of the homotopy groups. ([74], 292.)

The first mathematician to take up this proposal was Hu in 1947, in a paper entitled
“An exposition of the relative homotopy theory” ([113]), but in an odd way. After
the note by Eilenberg and Steenrod on an axiomatic approach to homology theory,
it is the second published paper after the original paper by Eilenberg and Mac Lane
in which categories are applied. However, as the title indicates, it is an exposition of
the main results known at that time on relative homotopy theory (results mostly due
to Hurewicz and Steenrod, but that had not been published systematically) and the
exposition is not done via categories. Thus, the paper does not open with a definition
of the categories involved and a presentation of various results in the framework of
functors and natural transformations. In fact, categories are used in that paper in an
awkward fashion. The homotopy groups are not defined as functors between cate-
gories.15 Furthermore, the term “category” is used only for groups and homomor-
phisms. Other categories are called “general categories”. Hu also introduces “local
categories”, which are in fact groupoids, but the latter notion, although defined, was
not used at the time. Hu’s paper had no effect on subsequent work.16

But Eilenberg and Mac Lane did finally use categories in a more systematic way,
first in 1951, where various constructions in certain categories are elaborated, and
then in a paper from 1952 (published in 1953) entitled “Acyclic Models”. Here is
how they present their application:

There are a number of situations in algebraic topology where one establishes the existence
of chain transformations and chain homotopies, dimension by dimension, using the fact
that certain homology groups of a local character are zero. Most of the applications can be
derived from well known theorems dealing with acyclic carriers. Other investigations (. . . )
lead to similar proofs in situations no longer covered by theorems on acyclic carriers. The
present paper formulates a general theorem, which seems to subsume all the situations of
this type hitherto encountered. The theorem is formulated in the language of categories and
functors. ([78], 189.)17

From the point of view of the history of category theory, this paper is interesting
in its own right. As the foregoing quote indicates, Eilenberg and Mac Lane are us-

15 In fact, even as late as 1962 Peter Hilton presents the fundamental group as a functor and has to
state explicitly the advantages of doing so in an expository paper. See [112].
16 Hu published the first textbook on homotopy theory in 1959, but there is no mention of cate-
gories, functors, etc. therein. (I do not take the notes published by Hilton in 1953 to constitute the
first textbook.)
17 Interestingly enough, in that paper Eilenberg and Mac Lane define a notion of representable
functor. But that notion has nothing to do with the notion we considered earlier. It is restricted to
functors with values in the category of Abelian groups and a functor is representable in their sense
if it is related by a natural isomorphism to certain free Abelian groups in a certain way.
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ing categories and functors to prove a general theorem. Thus the general set up is
provided by category theory: they consider functors between an arbitrary category
A , in which a set M of objects, called the model objects, is given, and ∂AbGrp
the category of chain complexes and chain transformations, where AbGrp is the
category of Abelian groups. They prove three general theorems in which the cate-
gory A is left unspecified and only properties of the functors (satisfying a certain
condition) and the category ∂AbGrp are used. In the remaining sections of the pa-
per, they specify a specific category for A and a set of models M and in this way
their general theorems become known special cases. The main and original result
of the paper, theorem V, establishes the equivalence between simplicial singular ho-
mology and cubical singular homology. Thus, Eilenberg and Mac Lane develop a
general framework and a general method. The method is then used immediately by
Eilenberg, in collaboration with Zilber, to prove an important theorem, known as the
Eilenberg & Zilber Theorem, on two products of complexes. Here is how Massey
comments on this theorem in his book:

Rather than go through the details of these lengthy calculations, it seems preferable to use
a more conceptual method due to Eilenberg and Mac Lane, called the method of acyclic
models. This method makes strong use of the naturality of the chain maps ζ and η which
we have defined. By making full use of this naturality, it is possible to avoid the necessity
of having explicit formulas. ([215], 138.)

Once more, natural transformations are not simply presented as such, they are used
to provide a more conceptual proof of a result.

All the foregoing elements constitute the background to Kan’s discovery. This
is not to say that this is what Kan knew about these matters nor that we know that
this is what he had in mind when he was working in homotopy theory. Furthermore,
there is much more to the story than what I have included, especially in homotopy
theory. That being said, two elements have to be kept in mind:

1. In homotopy theory, one finds specific relations between certain concepts, even
for the concept of homotopy itself. As we have seen, a homotopy can be defined
either as a continuous map

F : X × I → Y

or as a continuous map
F# : I → Y X .

This is just one case of a more general phenomenon.
2. Category theory was starting to be used in homotopy theory in the early fifties,

but not systematically. We have already seen how Eilenberg and Steenrod’s
book revolutionized the way to do algebraic topology. Students who learned
algebraic topology from that book — and so at the same time learned category
theory — would naturally think in terms of categories and functors. If, more-
over, these students were in an environment where this type of thinking is not
discouraged, for reasons of fashion or any other reasons, they might be more
attentive to categorical aspects of various problems and situations. This is pre-
cisely the situation in which Kan found himself.
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4.2 Kan’s Discovery

Kan does refer to the paper on acyclic models in his first note published in 1955.
However, the reference has nothing to do with acyclic models per se, but only with
a certain functor having values in the category of chain complexes. There is, of
course, some irony in the fact that Kan refers to many papers written by Eilenberg
and Mac Lane. For Kan discovered adjoint functors by working on problems in alge-
braic topology, taking up work done by Eilenberg, Mac Lane, Steenrod and Zilber,
and by pushing that work in a certain direction by applying systematically categori-
cal notions to the various problems he was interested in. It is, from that perspective,
rather surprising to see Mac Lane trying to explain how adjoint functors could have
been discovered in functional analysis — a context in which Eilenberg and he were
not intensely involved, although they certainly knew about it — when in fact ad-
joint functors were discovered in homotopy theory, a field in which Eilenberg and
he made important contributions, contributions that were in the background of the
discovery. But again, adjoint functors might have come from functional analysis, or
algebraic geometry or simply pure algebra. In each case, a story can be told.

Kan really starts off from where Eilenberg and Mac Lane had left off. There is
an obvious and clear progression in Kan’s work from 1955 until 1958 (in fact, from
1954 until 1956, which are the years during which this work was done). The cli-
max of this progression is undoubtedly the paper published in the Transactions in
1958 which follows the paper on adjoint functors.18 That paper, “Functors Involv-
ing C.S.S. Complexes”, is truly remarkable. Not only is category theory used in that
paper in an entirely original and powerful manner (and in this respect adjoint func-
tors occupy center stage, with some new concepts introduced for the first time in
full maturity for they are still defined that way today), but it also constitutes a beau-
tiful conceptual synthesis of all the work Kan had done. All the important results
that Kan had developed in his previous notes and paper are presented in a unified
manner. Furthermore, Hurewicz homomorphisms are derived from a certain functor
introduced by Kan. There is no doubt that the role played by adjoint functors in that
paper justified to a large extent the writing and publication of the paper on adjoint
functors. But we are getting ahead of ourselves.

We will not review Kan’s first four papers in detail. I have already mentioned
that Kan defines various categories in his first paper but does not use categorical
concepts or methods therein. The second and the third papers are of special interest
to us. The second paper, “Abstract Homotopy II”, in which Kan introduced what
would soon be named “Kan complexes” by other mathematicians,19 clearly shows
that Kan was following Eilenberg and Steenrod in the way he used categories at

18 As we will see, Kan had all these results in 1956. These papers were reviewed only in 1962! It
took four years for someone, in this case Puppe, to write reviews of the two papers in the Transac-
tions and they were written in German! Puppe was probably one of the very few mathematicians
who could understand the categorical framework developed by Kan. This is another indication of
the qualitative change these papers constitute in the field.
19 Already in 1958, in his review of Kan’s “Abstract Homotopy I, II, III, IV” published in 1957,
Moore called them “Kan complexes”.
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that time. In fact, Kan learned category theory from Eilenberg and Steenrod’s book
on the foundations of algebraic topology.20 Kan identifies some of the main cate-
gorical properties required by a category to be used in homotopy theory and gives
a purely abstract definition of a category with homotopy and for two mappings to
be homotopic in that context. Using a construction he had introduced in his first
paper, the category of cubical complexes, Kan defines a family of functors from a
category with homotopy to the category of cubical complexes which, in turn, al-
lows him to define in a purely abstract manner what is called the cubical singular
functor and to state its most important properties. In the remaining sections of the
paper, Kan considers specific cases of categories with homotopy and state that in
each case the abstract definitions become the standard definitions, in particular for
the category ∂AbGrp of chain complexes. The analogy with Eilenberg and Steen-
rod and Eilenberg and Mac Lane’s paper on acyclic models is striking. Recall that
in their book, Eilenberg and Steenrod used categories as an abstract framework to
define various homology and cohomology theories. They started off with what they
called “admissible categories”, which are simply categories of pairs of spaces and
maps satisfying certain conditions, but they ended up in chapter IV with what they
called “h-categories” which are abstract categories having specific properties. They
then showed in the remaining chapters that specific categories are h-categories and
that therefore certain general results apply immediately to various specific homol-
ogy and cohomology theories. The way Kan uses categories in this paper is similar
to Eilenberg and Steenrod and Eilenberg and Mac Lane’s usage.

The next paper, “Abstract Homotopy III”, communicated in April 1956, marks
the appearance of the first specific case of an adjoint pair, although still not named as
such by Kan. The date is important, since it is clear that it is during that period that
Kan discovered the notion of adjoint functors. Indeed, it appears in a paper follow-
ing the previous note, the paper “On C.S.S. Complexes”, under the name “Adjoint
Functors” and that paper was received by the American Journal of Mathematics in
September 1956. The two other papers involving adjoint functors, both published in
the Transactions in 1958, were also received in September 1956. It therefore seems
reasonable to believe that Kan discovered adjoint functors in the winter of 1956 and
spoke to Eilenberg about the notion after April 1956.21

In the winter of 1956, Kan was attending a seminar given by Eilenberg in ho-
mological algebra.22 In one of these seminars, Eilenberg introduced one of the key
constructions of homological algebra (and algebraic topology in general), the ten-
sor products of two Abelian groups. In order to define the tensor product of A and
B, Eilenberg used the bijection already indicated in the joint papers written with
Mac Lane in 1942,23 and to which we will return shortly:

Hom(A⊗B,C)→ Hom(A,Hom(B,C))

20 Kan, personal communication, February 2003.
21 This is indeed confirmed by Kan himself. (Kan, personal communication, February 2003.)
22 Kan, personal communication, February 2003. This is more or less how Kan recalls the story.
23 Indeed, in the paper on group extensions and homology, this approach is explicitly presented in
its most general form. See [71], 788.
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Upon seeing this, Kan wondered whether one could not just as well define the right-
hand side using the left-hand side instead. He asked Eilenberg, who answered that
he did not think that it could be done. Kan left the seminar thinking about the pos-
sibility and worked on the problem for some time. He then discovered that it could
be done. There is therefore a perfect symmetry or duality between the two concepts:
it is possible to define one concept with the other, given the proper connection be-
tween them. Furthermore, Kan proved that they determine each other up to a unique
isomorphism. Once Kan understood this relationship, he saw that he already knew
many other cases in his own work that could be treated similarly and he proceeded
to look at them. This led first to an observation in the third paper on abstract homo-
topy theory submitted in April 1956 and to the three papers written in the spring and
summer of 1956 and published in 1958.

Thus, in the paper “Abstract Homotopy III”, Kan considers what are called com-
plete semi-simplicial complexes, or c.s.s. complexes, and basically transfers the re-
sults he had obtained in his first paper on cubical complexes to c.s.s. complexes.
Towards the end of the paper, in §6.1, we read:

6.1 Let K,L ∈ S. For every integer n > 0, there exists (in a natural way) a one-to-one corre-
spondence between the c.s.s. maps Sdn K → L and the c.s.s. maps K → Exn L.

This is the first occurrence of an adjunction in Kan’s work. It appears once again in
the sequel to that note, a paper published in 1957 in which the results announced
in 1956 are proved explicitly. In the 1957 paper, the fact that this result is a special
case of adjointness is mentioned and there is a reference to the forthcoming paper
on adjoint functors.

The main tool used in the definition of the functor Ex∞ is what we call the extension ExK
of a c.s.s. complex K, which is in a certain sense dual to the subdivision SdK of K. More
precisely: let K and L be c.s.s. complexes, then there exists (in a natural way) a one-to-one
correspondence between the c.s.s. maps SdK → L and the c.s.s. maps K → ExL. In the
terminology of [Abstract functors] this means that the functor Ex is a right adjoint of the
functor Sd. ([133], 450.)

What Kan has in his hands now is a pair of functors, Ex and Sd, going in opposite
directions and related to one another in a systematic manner. Kan says that they are
dual to one another and this can be interpreted in two compatible ways: first, one is
on the left of the arrow whereas the other is on the right; thus although the direction
of the arrow is not reversed, they stand in opposition in a certain way; second, the
operations themselves, extension and subdivision, are in a certain manner dual in the
sense that one does the opposite of the other. Thus, they are conceptual “inverses”
although they are not inverses in the usual mathematical sense of the expression.
When Kan comes to the proof of the one-to-one correspondence, he claims that the
result is an immediate consequence of his paper “Functors Involving C.S.S. Com-
plexes” or that it can be verified by a straightforward computation. (See [133], 460.)
It is not necessary for my purposes to look at the details of this particular construc-
tion. I will however briefly present some of the definitions and a crucial aspect of
the paper on functors involving c.s.s. complexes, for it contains not only some of
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the ingredients that allow us to see how Kan thought of adjoint functors but also a
novel way of defining mathematical concepts and proving theorems.

Kan starts his paper with a definition that is now standard but which was clearly
a conceptual leap at that time (although a small step by contemporary standards).24

Definition 4.6. For each integer n ≥ 0, let [n] denote the ordered set 〈0, . . . ,n〉. A
function

α : [m]→ [n]

is said to be monotone if α(i)≤ α( j), 0≤ i≤ j ≤ m.
It can easily be seen that the ordered sets together with monotone functions be-

tween them form a category. It is nowadays called the simplicial category and is
usually denoted by ∆ . The simplicial category now plays a very important role in
mathematics in general.

The following concept, although originally defined by Eilenberg and Zilber in
1950 and mentioned earlier, is also given a categorical definition by Kan. It should
be mentioned that it is this concept that occupied Kan in his early research.

Definition 4.7. 25 A complete semi-simplicial (c.s.s.) complex K is a contravariant
functor K : ∆ ◦ → Set, i.e., an object of Set∆◦

. A c.s.s. map f : K → L is a natural
transformation from K to L, i.e., a map of the category Set∆◦

.

The elements of the set are called n-simplices of K. Note that the category of
c.s.s. complexes and c.s.s. maps is denoted by S . What Kan called a c.s.s. complex
is now simply called a simplicial set.

The step taken by Kan in defining c.s.s. complexes this way is important for two
reasons. First, a c.s.s. complex becomes a functor. Although it seemed natural to
describe homology and cohomology theories in terms of functors, defining c.s.s.
complexes as functors is a conceptual leap, for one has to identify the simplicial
category first and then see that a contravariant functor from the simplicial category
to the category of sets is just a c.s.s. complex. To see this is not entirely trivial. For
the non-categorical definition of a simplicial set is:

Definition 4.8. A simplicial set K consists of a collection of sets {Kn}n≥0 together
with set maps di : Kn → Kn−1 for i = 0, . . . ,n and s j : Kn → Kn+1 for j = 0, . . . ,n
satisfying the simplicial identities:

did j = d j−1di for i < j;
sis j = s j+1si for i≤ j;
dis j = s j−1di for i < j;
dis j = 1Kn for i = j, j +1;
dis j = s jdi−1 for i > j +1.

24 All the data appear in [81], in §8. However, they do not say explicitly that the data form a
category. Clearly, Eilenberg knew that they did but refrained from making it explicit.
25 In his seminar given in December 1956, Henri Cartan presented some of Kan’s results, in partic-
ular categories with a simplicial structure. The references given by Cartan are “Abstract Homotopy
III”, “Abstract Homotopy IV” and some “secret papers” of Kan!
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The maps di are called face maps and the maps s j are called degeneracy maps.
In order to see that these definitions are the same, one has to prove certain proper-

ties of monotone functions and derive from those properties the foregoing identities.
(See [195], 172–173.)

Second, there is nothing sacred about the category Set. Generalizing, Kan re-
places the category Set with various other categories and defines what we now call
a simplicial object X in each case. Thus, Kan considers ([135], 334) a special co-
variant functor

Σ : ∆ → Top

defined by: for each [n], Σ [n] is a (Euclidean) n-simplex with ordered vertices
p0, p1, . . . , pn. For each map α : [n] → [m], Σα : Σ [n] → Σ [m] is a simplicial map
defined by (Σα)(pi) = pα(i).

It can be seen that this amounts to the usual definition of a (Euclidean) n-simplex
and simplicial map, but it is much more compact and “abstract” than the usual defi-
nition. All the work is done by the categorical structure and the functorial properties.
Indeed, a (Euclidean) n-simplex is, once again, a functor. Kan proceeds to do the
same with standard n-simplexes which are defined as functors in the category of
simplicial sets,26 c.s.s. groups, which are covariant functors G : ∆ →Grp, and c.s.s.
Abelian groups which now take values in the category AbGrp of Abelian groups.
C.s.s. groups had been the topic of his paper “Abstract Homotopy IV” and were
there defined directly.

Now the definitions all had a unified presentation, which immediately indicated
what these objects have in common. If Eilenberg and Mac Lane had seen how cat-
egories and functors could be used to give a uniform definition of natural equiva-
lences, and a uniform proof for various results in homology theory in their paper on
acyclic models, if Eilenberg and Steenrod had found a unified treatment of various
homology and cohomology theories and Cartan and Eilenberg did the same for var-
ious applications of homological methods in algebra, Kan discovered how to define
in a uniform manner various constructions with the categorical language. One can
only be stunned by the beauty and simplicity of the approach when it is contrasted
with the earlier papers on the subject, including Kan’s own prior publications.

But what is even more striking about the paper “On Functors involving c.s.s.
complexes” is that the method of proof is also unified via the concept of adjoint
functor. This aspect is certainly crucial, for it must have convinced Kan of the im-
portance of the concept in general, that is, outside homotopy theory. The general
strategy calls to mind Eilenberg and Steenrod again. Kan considers a general case,
proves a result for that situation and then chooses specific parts involved in this sit-
uation to obtain standard results. By doing so, once again, Kan shows what various
categories have in common: the category of topological spaces, the category of c.s.s.
complexes, the category of chain complexes, the category of c.s.s. groups. It is at the
categorical level and with the help of adjoint functors that one can exhibit precisely
what these objects share. However, he does more: the general situation allows him
not only to recover known results in a unified and systematic way, but also to prove

26 The definition is a little more tricky in this case.
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and make new connections between known concepts. Furthermore, the general case
is presented in a certain format that is directly connected to the discovery of adjoint
functors: Kan can see that the general case already covers important aspects of ho-
motopy theory and allows a vast generalization of concepts and results. The key is
the form of the presentation: there is a pattern at work.

First, a general fact presented and proved in the paper on adjoint functors. Let

Hom(−,−) : C ×C → Set

be the standard Hom-functor. Let D be a small category, Kan defines what he calls
the lifted functor27

HomD (−,−) : C D◦ ×C → SetD
◦

defined in the obvious manner, i.e., for all X , Y in C , f : X → Y and F : D◦ → C ,
the assignments are given by the following:

Y HomD (F(−),Y )� //

X

Y

f

��

X HomD (F(−),X)� // HomD (F(−),X)

HomD (F(−),Y )

HomD (F(−),X)( f )

��

� //

Notice that both the functor Hom and the lifted functor HomD yield, in a sense,
function spaces, i.e., sets of maps between certain objects. As we have already seen
above, function spaces are naturally related to products in topology and homotopy
theory. This is the key here: there is a product which will be related to the foregoing
functor in the same manner. There is a tensor product functor

−⊗− : SetD
◦ ×C D → C

whose exact definition we will leave aside, since it is rather involved and is given
again in the paper on adjoint functors. It is clearly not a “product” in the set-
theoretical sense of that expression! In fact, as it can be seen from its domain, it is
a product of functors which yields an object in the category C . Notice also that the
domain of the tensor functor ⊗ is itself a product of functor categories. One might
wonder where this object “lives”. But there is not a single word about foundational
questions in Kan’s papers!

Using these constructions, Kan shows that if a category C satisfies a very weak
condition (i.e., it has small limits), then for any fixed covariant functor

Σ : D → C

the functors −⊗− and HomD (−,−) yield a pair of functors

27 The definition is entirely general in the paper. I present here a special case. These are now called
Kan extensions. See [198], chap. X.
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−⊗Σ : SetD
◦ → C and HomD (Σ ,−) : C → Set

such that there is a natural bijection

α : Hom(F×Σ ,X)→ Hom(F,HomD (Σ ,X)),

where F : D◦→ Set and X is an object of C .
These two functors and the natural bijection between them are then applied to dif-

ferent contexts to yield fundamental results of homotopy theory. In the words of Kan
himself: “By a suitable choice of the category C and the object Σ ∈ C D the above
functors and natural transformations reduce to well known ones.”28 ([135], 332)
In fact, in Kan’s paper, the category D is already chosen to be ∆ , the simplicial
category, but the construction, as he himself notes, is entirely general. Kan then
considers (§4) the case when C is the category Top of topological spaces and Σ an
Euclidean n-simplex. In this case, we have that:

1. For every topological space X , Hom∆ (Σ ,X) amounts to what is known as the
simplicial singular complex of X ;

2. For every c.s.s. complex K, K⊗Σ amounts to what is known as its geometric
realization;

3. The natural bijection α : HomTop(K ⊗ Σ ,X) → HomS (K,Hom∆ (Σ ,X)) ex-
presses the fact that there is a close connection between c.s.s. maps and con-
tinuous maps.

Then Kan does the same for the category of c.s.s. complexes and derives the
exponential law for c.s.s. complexes, i.e., if K, L and M are c.s.s. complexes, then
there is a natural isomorphism:

MK×L ≈ (ML)K .

The result about the functors Sd and Ex mentioned above would appear at this
juncture. It should be noted that even these have basically the same form. Kan then
moves to Chain complexes and defines a special case of Hom∆ which plays a key
role in the proofs of the remaining sections. After the introduction of Kan com-
plexes and the definition of higher homotopy groups for the latter, Kan considers
the category of c.s.s. groups and of c.s.s. Abelian groups and shows that for Kan
complexes, the homotopy groups are identical with the homology groups for ev-
ery integer greater than or equal to zero. Using the natural bijection between the
specified functors, Kan proves various properties of the functor Hom∆ , and shows
that the Hurewicz homomorphisms can be defined from it, as well as the Eilenberg-
Mac Lane complexes. In other words, a vast number of crucial constructions and
results follow directly from the general case and result, exhibiting the usefulness
and the power of the concept of adjunction for homotopy theory.

For us, what matters more is the form of the relationship between the two func-
tors. It has the same form as the one seen above between the tensor product of two

28 Kan does not denote his categories by ‘C ”, but by “Z” and the functor category by “ZV ”.



132 4 Discovering Fundamental Categorical Transformations: Adjoint Functors

Abelian groups and the Hom-functor and on product and function spaces. Thus,
what Kan has at his disposal is an important number of cases that have the same
fundamental form: they can all be expressed as a relationship between a product
functor and a function space functor. The next step is to realize that there is nothing
specific about the fact that it is a product functor and a function space functor and
thus, that the key ingredient has to do with the fact that it is simply two functors that
are related to one another in a certain manner. At this point, we are ready to look at
adjoint functors.

4.3 Kan’s 1958 Papers “Adjoint Functors”

At any rate, we [Eilenberg & Mac Lane] did think that it [category
theory] was good, and that it provided a handy language to be used
by topologists and others, and that it also offered a conceptual view
of parts of mathematics, in some way analogous to Felix Klein’s
“Erlanger Program”. We did not then regard it as a field for further
research effort, but just as a language and an orientation — a limi-
tation which we followed for a dozen years or so, till the advent of
adjoint functors.

([196], 334–335.)

What is striking in this quote is that Mac Lane does not see that the introduction of
adjoint functors by Kan not only made category theory “a field for further research
effort”, but that it also reinforced the fact that category theory “offered a conceptual
view of parts of mathematics, in some way analogous to Felix Klein’s ‘Erlanger
Program’.”

Kan’s paper on adjoint functors is very different from [186], [36] and [103] and,
in fact, from all the papers published from 1945 in which category theory played a
role. What is striking about it is that it is a paper on pure category theory as such
and, I speculate, probably the very first such paper after Eilenberg and Mac Lane’s
1945 paper. One could argue that it marks the birth of pure category theory. Cat-
egories, functors and natural transformations are not seen as providing the proper
framework to understand a problem in homology theory, to develop a framework
to apply notions of homology theory to algebra, or in order to develop an analogy
between aspects of homological algebra and the cohomology of sheaves of groups
over a topological space. We now leave behind the idea that category theory offers
a useful language, or is merely a useful tool. In Kan’s paper, categories are taken as
such and the purpose of the paper is to define and develop an intriguing dependence
between functors.

Kan’s paper can be read as a note or a fundamental improvement on Eilenberg
and Mac Lane’s paper. It should be noted, however, that Kan had not read Eilenberg
and Mac Lane’s 1945 paper before he wrote his paper on adjoint functors, but read
it carefully while writing it.29 Both papers are about natural equivalences in some

29 Kan, personal communication, February 2003.
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sense. At first sight, Eilenberg and Mac Lane’s paper seems to be more important,
since it develops a general theory of natural equivalences whereas Kan develops
specific cases of natural equivalences. It is not at first obvious that the type of natu-
ral equivalences brought to the fore by Kan constitute the core of category theory. In
order to see it as such, one has to shift considerably from the perspective developed
in Eilenberg and Mac Lane. One aspect of the shift is that whereas one looks pri-
marily at natural equivalences (isomorphisms) in Eilenberg and Mac Lane — they
constitute what the paper is about — in Kan’s paper, natural equivalences are sec-
ondary and functors constitute the object of the paper. This shift was certainly “in
the air” when Kan was thinking about these notions, but it was mainly in the applica-
tions of the theory and not in the theory as such. Eilenberg and Steenrod, Cartan and
Eilenberg, Grothendieck and others all had applied the categorical language to var-
ious fields and in these applications, the objects of attention are functors (although
in different ways in Eilenberg and Steenrod, and Cartan and Eilenberg on the one
hand and in Grothendieck on the other hand). In Eilenberg and Mac Lane’s paper,
functors constitute an organizing tool that allows a systematic and unified treatment
of the notion of natural transformation. In Kan’s paper, natural transformations are
used to characterize a certain class of functors.

In the paper on adjoint functors, Eilenberg and Mac Lane’s 1945 paper is the
most-cited reference. Kan refers to various notions taken from Eilenberg and Mac
Lane’s paper, and comments and improves on various sections of the paper. Kan
saw these connections while writing his paper. He started out from the various cases
he knew about and intended to write a note that would serve as a preliminary step to
his paper on functors involving c.s.s. complexes. In the process of writing the paper
itself, Kan made additional discoveries, e.g., the relations between adjoint functors
and limits and colimits, and the paper became a long exposition of the concept and
of its main properties.30

The bibliography is surprisingly short. It contains six references. In addition to
Eilenberg and Mac Lane’s paper, one reference is made to Cartan and Eilenberg
([43]) towards the end of the paper and simply because Kan uses some of the
definitions given in their book; there are three references to [80] in various exam-
ples involving the group of homomorphisms Hom(G,H), the tensor product of two
Abelian groups and the direct sum of groups;31 there are two references to specific
but fundamental texts in homotopy theory: a paper by James ([116]) and Serre’s the-
sis (both are referred to in the same example); and of course there is one reference
to the Kan’s own aforementioned paper in the same issue of the Transactions.

Nothing in the paper indicates that Kan saw how fundamental his “observation”
was or its general implications. He was certainly aware, as we have seen above,
of the unifying power and the usefulness of the notion in organizing proofs, at
least in homotopy theory. If the Mac Lane-Buchsbaum-Heller-Grothendieck line of

30 Kan, personal communication, February 2003.
31 It should be noted at this point that tensor products and Hom occupy an important place in
Eilenberg and Steenrod’s book. §9 of chap. V is devoted to the tensor product and §10 to groups
of homomorphisms. Exercise F of that chapter asks the reader to show that there is a natural
isomorphism between Hom(A⊗B,C) and Hom(A,Hom(B,C)).
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development indicated how category theory could be applied to algebraic topology
and homological algebra, Kan’s work eventually led to the discovery that: (1) an
unexpectedly large portion of mathematical constructions, theorems and theories
can be written in terms of adjoint functors; and (2) the language of adjoint functors
could be used to characterize, develop and systematize various areas of mathemat-
ics, from logic and universal algebra to algebraic topology, algebraic geometry and,
nowadays, theoretical computer science and mathematical physics. But as Mac Lane
observed, “the idea of adjunctions took on slowly.” ([195], 103.)32

Kan’s paper on adjoint functors contains four sections: an introduction and three
chapters. In the first chapter, Kan presents the basic definitions and properties of ad-
joint functors together with examples. In the second chapter, Kan defines limits and
colimits in full generality and considers their relationships with adjoints. Finally, the
third chapter deals with constructions first expounded in Eilenberg and Mac Lane’s
paper — namely the “lifting principle” in the section of the 1945 paper preceding
the applications — develops them in the context of adjoints (this is where Kan ex-
tensions are introduced) and looks at various applications. Kan’s paper deserves to
be looked at in more detail.

Kan’s introduction is revealing. It opens with the example that triggered his dis-
covery of the concept. It is taken from homology theory, and it was first presented by
Eilenberg and Mac Lane and mentioned in their 1942 note as “a less obvious relation
between the tensor product and the functor ‘Hom’ ”. As we have seen, the relation
is that there is a natural isomorphism (Kan speaks about a natural equivalence) of
the form (this is Kan’s notation):

α : Hom(⊗, )→ Hom( ,Hom( , ))

Kan points out that the Hom-functor and the tensor functor are not independent and
he adds that “there exists a kind of duality between the tensor product and the last
functor Hom, while both functors Hom outside the parentheses play a secondary
role.” ([134], 294.) The reference to the duality shows up again. But in this case one
wonders whether the choice of terminology could not refer to the situation one finds
in linear algebra where adjoint operators are defined in the context of the relations
between linear transformations and the dual space of a vector space.

The foregoing example goes back to papers published before the 1945 paper.
However, Eilenberg and Mac Lane themselves presented it as being “less obvious”
than other examples of isomorphisms between functors. The example appears in
their 1942 papers and is mentioned again in the 1945 paper, but very briefly and
the reader is referred to the 1942 papers for the proof of the isomorphism. It is
interesting to note that this example is the only example given by Eilenberg and
Mac Lane in their 1942 paper that has the right form. All the other examples of iso-
morphisms of functors have a different presentation. For instance, their first example
is the Pontrjagin duality for locally compact Abelian groups, which Eilenberg and

32 Here one might certainly invoke sociological factors. There is little doubt that the notion of
adjoint functors was considered to be too abstract or too formal by most mathematicians for quite
a while.
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Mac Lane present as establishing an isomorphism of the form:

G∼= Ch(Ch(G))

where G is a locally compact Abelian group and Ch(G) denotes the character group
of G. There is an adjoint situation here too, but it does not seem to have the same
form as the one discovered by Kan. The same remark applies to the other examples,
which involve various products of groups. The situation is essentially the same in
the 1945 paper. It is now worth looking carefully at the examples of natural iso-
morphisms given in the 1945 paper, which contains the basic examples. We have
already seen some of them in chapter 2. Here is the complete list:

1. If X , Y and Z are sets, topological spaces, groups or Banach spaces, then the
laws of associativity and commutativity are all seen as being natural isomor-
phisms between functors:

(X ×Y )×Z ∼= X × (Y ×Z)
X ×Y ∼= Y ×X

2. Consider Z as an additive group, and let H be any topological Abelian group,
then there is an isomorphism:

Hom(Z,H)∼= H.

Similarly, for R considered as a Banach space, it can be shown that:

Lin(R,B)∼= B,

where B is any Banach space and Lin(−,−) is the set of all linear transforma-
tions.

3. For X , Y and Z topological spaces, there is a functor Map(X ,Y ) defined as
the function space Y X with the compact-open topology. Then there is a natural
isomorphism:

Map(Z,X)×Map(Z,Y )∼= Map(Z,X ×Y )

Similarly, for groups and Banach spaces, there are analogous natural isomor-
phisms:

Hom(G,H)×Hom(G,K)∼= Hom(G,H×K)
Lin(B,C)×Lin(B,D)∼= Lin(B,C×D).

For groups, we also have that

Hom(G,K)×Hom(H,K)∼= Hom(G×H,K).
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And if X , Y are locally compact Hausdorff spaces and Z any space, as we al-
ready know, we have:

Map(X ×Y,Z)∼= Map(X ,Map(Y,Z)).

Then comes the example that triggered the whole story:

Hom(G⊗H,K)∼= Hom(G,Hom(H,K)).

Finally, an example which involves the same kind of relationship, we have, for
D a fixed Banach space and B, C two (variable) Banach spaces, and for linear
transformations with norm at most 1:

Lin(B,C)∼= Lin(Lin(C,D),Lin(B,D)).

When D is R, then Lin(C,R) is called the conjugate space Conj(C) of C. Hence
the foregoing isomorphism becomes:

Lin(B,C)∼= Lin(Conj(C),Conj(B)).

Similarly, if G and H are locally compact Abelian groups, we have:

Hom(G,H)∼= Hom(Ch(H),Ch(G)),

where Ch(H) is the character group of H.
4. Finally, we have, again for locally compact Abelian groups:

G∼= Ch(Ch(G)),

And similarly, for B a reflexive Banach spaces, we have:

B∼= Conj(Conj(B)).

And the list stops there.

What is striking about this list is the variety of cases. Of course, they can be
grouped together as I have tried to group them, so that similar cases are shown side
by side. But there is no overall structure that is immediately identifiable. Eilenberg
and Mac Lane noticed various natural isomorphisms, but they did not see how these
isomorphisms linked various functors together (“naturally”). Again, a shift in atten-
tion was required and since Eilenberg and Mac Lane were after the notion of natural
isomorphism, it is unlikely that they could have noticed a general pattern involving
functors. As we have seen, the situation for Kan was entirely different. Whereas the
relationship between the tensor product functor ⊗ and the Hom-functor of Abelian
groups was “less obvious” and perhaps seen by Eilenberg and Mac Lane as a special
case, it became the fundamental case for Kan, and as soon as the proper structure of
various categories involved in homotopy theory was revealed, it was possible to see
it as a paradigmatic case. The shift is striking. Not only does one have to see a sim-
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ilarity between various cases and jump to the general pattern, it is also necessary to
ignore a large number of cases, at least at first, for they hide the relevant aspects of
the situation. The fact that Kan was working in homotopy theory was certainly help-
ful in this respect, since as we have seen, the proper relationship between functors
shows up naturally in this context and plays an important role.

Notice that Kan’s example involves the algebra of mappings again. This is essen-
tially the role of the “external” Hom-functor: it situates the notion of adjoint functors
“inside” algebras of mappings. It is within these algebras that a dependence between
functors is noticed and emphasized. Of course, as Kan points out himself, the ex-
ternal Hom-functor has a secondary role to play in the mathematical content of the
notion. However, it allows the analogy with adjoint operators in linear algebra to be
structurally obvious. The dependence between adjoint functors becomes similar to
the dependence between linear transformations. There is certainly a rhetorical ele-
ment at work here: since adjoint operators play an important role in linear algebra,
one might expect adjoint functors to play a similar role in category theory. As usual
with analogies, what is known about adjoint operators can guide us and allow us to
see the relevance and status of adjoint functors. However, the analogy did not guide
Kan in his work.33 In fact, as Mac Lane emphasized in his paper on the influence of
Stone on the origins of category theory, the parallel between the two notions can be
taken quite far. In the words of Mac Lane himself:

First, when adjoint (or the adjoint functor) exists, it is unique; for functors, this of course
means unique up to a natural isomorphism. Second, the composition rule (ST )∗ = T ∗S∗ for
adjoint operators has an exact analogy governing the composition of adjoint functors. Third,
the adjoint of a linear operator is linear, and correspondingly the adjoint of an additive
functor is additive; more generally any left adjoint commutes with direct limits; Freyd’s
adjoint functor theorem appears to have no analog for adjoint operators.34 In all other cited
properties the parallel is so strong as to raise the evident question “Why?”. ([193], 232.)

One is therefore led to look for “dualities” between functors that are written in that
form. As we have seen, Kan’s examples from homotopy theory are naturally written
in that form because of their geometric content.

Kan then states the definition and gives two examples taken from homotopy the-
ory: first, the fundamental relation we have seen above between the Cartesian prod-
uct of a space with the unit interval I and the space of all paths; second, between
the category of topological spaces and the category of c.s.s. complexes, the relation-
ship between the geometric realization functor and the simplicial singular functor.
Everyone working in homotopy theory already knew the first case, although not as
a case of a more general situation, and the second was also a general phenomenon
in homotopy theory. Then Kan mentions that the notion of adjoint functors can be
generalized to many variables and presents the plan of the paper. It is clear from the

33 Kan, personal communication, February 2003.
34 As Peter Freyd as pointed out to me (personal communication, January 2003), this is false.
The theorem for adjoint operators is that every continuous homomorphism between Hilbert spaces
has an adjoint. Freyd has also suggested that Mac Lane probably had forgotten that continuity
is equivalent to boundedness for linear transformations (i.e., homomorphisms) between Hilbert
spaces.
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introduction that Kan’s motivations came from certain situations in algebraic topol-
ogy. In fact, it should now be clear that the two papers published in the Transactions
constituted a whole for Kan. It is not even inconceivable that the second paper was
more significant for him than the paper on adjoint functors, since it put in clear con-
ceptual perspective all his previous work and opened up vast horizons in abstract
homotopy theory.

It is one thing to notice the “duality” between functors, their dependence, and
make an analogy to linear algebra, it is another thing to jump from that case to
a general case and see that it is just one instance of a very broad and important
phenomenon. This is a bold and daring step. Other mathematicians might have no-
ticed the same dependence between specific functors, as Eilenberg and Mac Lane
certainly did for the basic example. But one had to see more than that to arrive at
the conclusion that a genuine concept was underlying these instances. First, one
had to see how it was related to other important notions of category theory, e.g.,
limits and colimits, and second and perhaps even more important, one had to see
that the notion could have a real mathematical value. Having mathematical value, in
this context, means essentially three things: (1) that the notion helped to clarify and
prove known results that are judged significant by at least one community of math-
ematicians (in this case, I claim, algebraic topologists); (2) that the notion made it
possible to solve problems that were still unsolved and non-trivial; and (3) that the
notion was sufficiently general in some sense. Kan succeeded in doing all three. The
paper on adjoint functors is a telling proof of the first and the third part. The paper
that follows in the Transactions accomplishes the second part, as well as the first
part again (Hurewicz homomorphism is certainly significant!). Thus, the elements
that led to the discovery of adjoint functors can be summarized as follows.

1. Working in algebraic topology, more specifically in homotopy theory, Kan came
to realize that specific constructions were best thought of as being functorial
constructions; we have already seen how this was present in the second paper
published in the Transactions; another important and different example is the
example given by Kan himself in the paper on adjoint functors: the suspension
functor and the loop space functor (see below); when one looks at these con-
structions as functors, then not only does their dependence becomes precise,
clear and revealing (i.e., one notice that they are adjoints), but moreover, and
this is a crucial fact, some of their fundamental properties follow directly from
the adjunction (see below). In other words, the adjunction is not merely an in-
triguing link, it actually does something important; this is also shown in the
paper on functors involving c.s.s. complexes.

2. The dependence, the duality between these functors, because of the nature of the
constructions themselves, finds a natural expression at the level of the algebra
of mappings; i.e., there is a natural isomorphism between Hom-sets in which
the functors show up. In other words, when one wants to write the dependence
between these functors, one is led to use the underlying Hom-sets. The depen-
dence therefore takes a specific form (to which Kan is clearly holding through-
out the paper).
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3. Once this is seen, it is only natural to look for similar examples in different areas
and Kan found them in algebra (via homology theory and homological algebra).
Eilenberg, Mac Lane, Steenrod and Cartan already knew these examples. The
most obvious example is the example that led to the discovery itself: it becomes
a guide in the search of adjoint functors. It is important to note that this exam-
ple is an example of endofunctors, whereas in other cases, Kan had examples
of functors going in the opposite direction. This was certainly not obvious to
Eilenberg and Mac Lane.35

4. The notion is sufficiently general and robust. It is not confined to a few ex-
amples, no matter how important, but belongs to the general framework of the
theory; by working it out, one notices that fundamental concepts of the theory
can be defined via that notion.

Of course, once this is done, it is not necessarily obvious that the concept circum-
scribed is fundamental or that it cuts through to the very heart of the theory. This
takes time and work and it took a little while and quite some work before the com-
munity came to realize the importance of the concept of adjoint functors.36

Let us now examine the content of the chapters of Kan’s paper. The first chap-
ter assumes the notion of category, functor and natural transformation as they were
defined in Eilenberg and Mac Lane 1945. Kan, however, assumes that all categories
are locally small (unless specified otherwise). He then introduces the Hom-functor
explicitly and defines the dual category and the dual of a functor, a notion used
throughout his paper to exploit the symmetry inherent in the notion of adjoint func-
tors. Kan defines the notion of adjoint functors in one variable thus:

Definition 4.9. Let C and D be categories, let F : C → D and G : D → C be co-
variant functors. Then F is called a left adjoint to G and G a right adjoint to F if
there exists a natural isomorphism

α : Hom(F(C ),D)→ Hom(C ,G(D)).37

35 It is interesting to read how Eilenberg and Steenrod describe homology theory in the preface of
their book, for they acknowledge that in this case, the “translations” are going in one direction only:
“In this respect, homology theory parallels analytic geometry. However, unlike analytic geometry,
it is not reversible. The derived algebraic systems represents only an aspect of the given topological
system, and is usually much simpler.” ([80], vii. My emphasis.)
36 Two mathematicians were ready to receive, apply and develop Kan’s contribution very quickly:
Peter Freyd and Bill Lawvere. Freyd had already discovered in early 1958 in his undergraduate
thesis at Brown University the notion of reflective subcategory, a special case of adjoint functors
and he proved various important facts about the existence of limits and colimits. When he saw
Kan’s paper, he immediately understood and saw how the notion was related to universal mor-
phisms and representable functors. (Freyd, personal communication, January 2003.) Lawvere gave
many lectures in a course on functional analysis organized by Truesdell in 1959 and saw how vari-
ous concepts and results in this area could be treated in terms of universal morphisms. He found out
about Kan’s paper in 1960 when Eilenberg showed it to him. (Lawvere, personal communication,
December 2002.)
37 This is Kan’s notation throughout his paper. The categories themselves are written as values of
the functors in the definitions.
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Kan then proves that an adjoint to a given functor is determined uniquely up to a
unique natural isomorphism (by symmetry, they determine each other by a unique
natural isomorphism), then moves to the case of functors in two variables, obtains
similar results and finally shows that the case of functors in more than two variables
can be reduced to the case in two variables. It is interesting to note that there is no
example in these first four sections in which the basic definitions and theorems are
proved. Examples are introduced in the following two sections of the first chapter.
These two sections, §5 and §6 of the first chapter, are pivotal, for they contain Kan’s
main examples and reveal the extent to which the description of adjoints in terms of
Hom-sets was crucial for him.
§5 describes what Kan calls the relative case, cases in which the Hom-functor is

replaced by another functor. It is relevant to give the exact definition (in my sym-
bolism but with Kan’s terminology).

Definition 4.10. Let F : C → Set be a covariant functor and let G : D◦×D →C be
a functor contravariant in the first variable and covariant in the second. The functor
G is called a Hom-functor rel. F if there exists a natural isomorphism

γ : Hom(D ,D)→ FG(D ,D).

In this definition, one can think of the functor G as being an abstract Hom-functor
in a category C . The functor G yields “Hom-objects”, not Hom-sets. But when G
is composed with F , the resulting functor is naturally isomorphic with the Hom-set
functor Hom(−,−) : D×D → Set.38

We have already seen important examples of this notion. For instance, the
functor:

HomTop(−,−) : Top◦×Top→ Top

assigns to given topological spaces X and Y , the function space HomTop(X ,Y ) =Y X

and not the Hom-set. But by composing with the forgetful functor F , the functor
HomTop is a Hom-functor relative to F .

The foregoing definition allows the definition of adjoint functors relative to a
functor F as above. This is expressed in the following manner:

Definition 4.11. Let G : C →D , K : D →C and F : A → Set be covariant functors
and let Q : C ×C →A and R : D×D →A be Hom-functors rel. F . Let

β : R(G(C ),D)→ Q(C ,K(D))

be a natural isomorphism. Then G is called the left adjoint of K rel. F under β .

Then Kan proves the obvious but important result, theorem 5.4, that adjointness
relative to F implies adjointness and moves to the case in two variables. It is after
the notion of Hom-functor relative to F is defined that Kan gives the first examples
of adjoint functors.

38 Nowadays, one would say that Kan is working here in what is called “enriched category theory”.
See, for instance [61].
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The first example is the one given in the opening paragraph of the paper, that is,
between the tensor product of Abelian groups and the Hom-functor (which in this
case yields an Abelian group):

Hom(A⊗B,C)→ Hom(A,Hom(B,C)).

The second and the third examples go back to Hurewicz. For, X , Z topological
spaces and Y locally compact Hausdorff, we have that

HomTop(Z×Y,X)→ HomTop(Z,XY ).

In particular we have, for Y the unit interval I, that

HomTop(Z× I,X)→ HomTop(Z,X I),

or that “taking the cartesian product with the unit interval is a left adjoint to taking
the space of all paths” and Kan mentions that the homotopy relation for continuous
maps can be defined by using either the left hand side or the right hand side of the
bijection.

Next comes a very important example, namely example 5.10. It is worth con-
sidering it in detail, for if the previous examples show how the concept of adjoint
functors is intimately connected to the fundamental concepts of homotopy theory,
they are nonetheless trivial in some sense and simply constitute a different way of
presenting known definitions and results. The next example describes an adjoint pair
that had become central in homotopy theory and that was well known at the time.39

The adjunction allows for more conceptual definitions and proofs of results con-
tained in the very important work of Serre and James. This example is clearly in the
spirit of the results presented in the paper on functors involving c.s.s. complexes.

Consider the category of pointed topological spaces Top•. Given a pointed space
(Z,z0), the (reduced) suspension of Z, denoted by Σ(Z,z0), is defined as follows.
Let S1 be a 1-sphere and let s ∈ S1 be the base point. The suspension of (Z,z0) is a
quotient space of the product space Z×S1 by shrinking to a point the subspace

(z0×S1)∪ (Z× s).

The base point of Σ(Z,z0) is the image of the projection of the point (z0,s). The
suspension is in fact a functorial construction Σ : Top•→ Top•.

The Hom-functor relative to F is an exponential functor and is defined thus.
Let Map: Top•×Top• → Top• be the functor which assigns to every two pointed
spaces (X ,x) and (Y,y), the function space (Y,y)(X ,x) (with the compact-open topol-
ogy) and with base point the map p : (X ,x)→ (Y,y) defined by p(g) = y, for every

39 “Between 1955 and 1958 B. Eckmann and P. Hilton had popularized through many colloquia
and lectures at seminars the idea of a duality in the category of topological spaces which allows,
starting from a given notion to get another one by reversing the arrows in diagrams, by changing
the functor ‘product by a space’ to the functor ‘exponentiation by this space’, and vice versa: so
the reduced suspension corresponds to the loop space (. . . )” ([271], 623.)
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g∈X . The functor F : Top•→ Set is the forgetful functor, i.e., it assigns to a pointed
space (X ,x) its underlying set X . Map is a Hom-functor rel. F .

Given a pointed space (X ,x0), one can define its loop space, denoted by Ω(X ,x0),
as Map((S1,s),(X ,x)), i.e.:

Ω(X ,x0) = { f : (S1, p)→ (X ,x0) | f ∈ Top•}

with the compact-open topology. It is by construction a functor

Ω = Map((S1,s),−) : Top•→ Top•.

It is a standard result of algebraic topology, although not written in this form when
Kan wrote his paper, that there exists a natural isomorphism

β : Map(Σ(Top•),Top•)→Map(Top•,Ω(Top•)).

Again this is Kan’s notation. This means that Σ is left adjoint to Ω relative to
F . Notice that this example was not in [74]. Let us look at the constructions
more carefully. Consider two pointed spaces (X ,x) and (Y,y). The construction
Map(Σ((X ,x)),(Y,y)) takes the pointed spaces (X ,x) and (Y,y) and yields a func-
tion space (Y,y)Σ(X ,x), i.e., the space of all continuous maps which preserve the base
point from the suspension of (X ,x) into the space (Y,y). Similarly, the construc-
tion Map((X ,x),Ω(Y,y)) takes the pointed spaces and yields again a function space
(Ω(Y,y))(X ,x), the space of all continuous maps from (Y,y) into the loop space of
(X ,x). Thus, although β is an isomorphism of spaces, it is an isomorphism of func-
tion spaces. Then theorem 5.4 allows us to write the adjunction in the following
manner:

α : Hom(Σ(X ,x),(Y,y))→ Hom((X ,x),Ω(Y,y)),

that is, in terms of the algebra of mappings. Notice also that although the reduced
suspension is not a product, it is nonetheless the quotient of a product of two spaces
and the loop space is clearly a function space. Thus, even if this last example seems
to be different from the previous cases, it is not that far from the general form.

The last example is attributed to P. Hilton. It is the only example that does not
involve a function space or a Hom structure. It essentially involves two products.
The first product is the so-called wedge product: given two pointed spaces (X ,x0)
and (Y,y0), their wedge X ∨Y is the quotient space of the disjoint union in which
the basepoints are identified.

The functors involved are:

×2 : Top•→ Top•

defined, for every pointed space (Y,y0) as

×2(Y,y0) = (Y ×Y,(y0,y0))

and the wedge



4.3 Kan’s 1958 Papers “Adjoint Functors” 143

∨2 : Top•→ Top•
defined, for every pointed space (X ,x0) as

∨2(X ,x0) = (X ∨X ,(x0,x0)),

in other words, two copies of the space X are glued together at the point x0. It can
be shown that there is a natural isomorphism

β : Map(∨2(X ,x0),(Y,y0))→Map((X ,x0),×2(Y,y0)).

Thus this example illustrates the variation allowed in the constructions of adjoint
functors.

The pattern, the uniformity was obvious from the examples given by homotopy
theory, including Kan’s paper “On Functors involving c.s.s. complexes”. Although
in each case, we are dealing with spaces, when we look at the details of the iso-
morphisms, we are forced to look at maps between spaces. Hence, we are naturally
put in the context of the algebra of mappings and the duality becomes more or less
obvious once the connection is written in that context. As we have seen, there was
no such apparent uniformity in Eilenberg and Mac Lane’s original list of examples.
Kan ignored a number of examples and focused on examples that had the same
form. The uniformity found is a first indication that there might be an important and
general underlying concept present in each particular case. But more is required to
see that it is important.

An additional element is provided by one of the examples: the adjoint situa-
tion between the suspension and the loop space constructions contains more, and
I believe that this additional fact contributed to the conviction that the notion was
mathematically significant.

Indeed, in the following section of his paper, §6, Kan introduces what are now
called the “unit” and the “counit” of an adjunction, two specific natural transfor-
mations that are inherent in any adjunction. (We will come back to the definitions
later.) Once Kan has defined these notions, showing that they are indeed natural and
that they determine completely the adjunction (as we will see, an adjunction can be
defined directly in terms of the unit and the counit), he gives one example that is a
direct application of these notions. Kan shows that two important homomorphisms
defined and used by James and Serre in their fundamental papers can be derived
directly from the adjunction between the suspension and the loop space, since they
can be defined directly via the unit and the counit of that adjunction. The unit of the
adjunction is the map:

η : (X ,x)→ΩΣ(X ,x)

whereas the counit of the adjunction is the map

ξ : ΣΩ(X ,x)→ (X ,x).
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The definitions of the homomorphisms found in homotopy theory constitute a
direct indication that the notion of adjunction is useful in applications and that ad-
junctions constitute more than an intriguing duality between functors.

Chapter I ends with this application. As such, Kan already has enough indications
that the notion is linked to important aspects of algebraic topology and homological
algebra. But, I claim, this is not enough to conclude that it is a general notion worth
investigating for its own sake. After all, the examples, although important and inter-
esting, are not enough to show that the notion has wide applicability and is playing a
key role in category theory as such. This is where the following two chapters come
in. They show how general the notion of adjoint functors is and the role it plays in
pure category theory and in various direct applications. Kan does this by defining
in purely categorical terms the algebraic notions of limits and colimits (in his pa-
per direct and inverse limits respectively) and shows how they are related to adjoint
functors. These results apply to a wide class of categories and clearly show that the
notion of adjoint functors plays a key role in the structure of categories. In other
words, chapters II and III clearly justify a whole paper on the notion and show that
it rightly belongs to pure category theory.40

Kan’s definitions of limits and colimits in categories are now standard and we
will essentially follow his presentation. Let C be a category and J a small category
(which will play the role of the index category; in applications, as we will see, it is
very often finite, but it need not be and, in some cases, it is infinite). Let F : J →C
be a functor. Then F is called a J diagram over C , that is, a J diagram is a system
of objects and morphisms of C indexed by the objects and morphisms of J . The
diagonal functor41

∆ : C → C J

assigns to every object X of the constant functor ∆X which maps every object of J
into X and every morphism into 1X , and which assigns to every morphism f : X →Y
of C the natural transformation ∆ f : ∆X → ∆Y given by ∆ f ( j) = f for every j in
J .42

Definition 4.12. Let X be an object of C and let k : F → ∆X be a morphism of C J .
Then X is called the direct limit of F under the morphism k if for every object Y of
C and every morphism k′ : F → ∆Y , there exists a unique morphism f : X →Y such
that the following diagram

F ∆X
k //F

∆Y

k′

��?
??

??
??

??
??

∆X

∆Y

f

��

commutes.

40 We should however recall that Kan did not have these results before he actually sat down and
wrote the paper. Thus, in a sense, he discovered post facto the generality of the notion.
41 Not to be confused, of course, with a simplicial object.
42 Interestingly enough, Kan denotes the category C J by CJ . In other words, he does not see it
as being similar to a function space, although he uses the notation for function spaces in his paper.
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Two remarks are in order. First, the notion of a limit of a system of (discrete)
groups is defined in [73], [74] and [80]. There, one starts with J a directed set
and the direct limit is actually explicitly constructed in the case of a directed sys-
tem of groups. Kan generalizes the notion found in Eilenberg and Mac Lane’s paper
and defines the direct limit in terms of morphisms. However, and this is the second
remark, there is absolutely no reference to a universal property in Kan’s paper, al-
though the definition is given in these terms. It is hard to tell whether Kan thought
that it was clear and did not have to be made explicit or whether he (and presumably
Eilenberg, who had read Kan’s paper) did not see the connection.

Be that as it may, Kan then gives some examples of direct limits which show
how general the notion is: a disjoint union of topological spaces (indexed by some
set J seen as a category) can be constructed as a direct limit, so can be a direct
sum of Abelian groups (again indexed by some set J ) and finally Eilenberg and
Mac Lane’s original example is now a special case of the general construction. Then
come two theorems which link the notion of direct limit with the notion of adjoint
functors: they assert that for an object in the category C J to have a direct limit
under some map, it is necessary and sufficient that the diagonal functor ∆ : C →
C J has a left adjoint.43 These theorems are proved, the dual notion of inverse
limits (now called “colimits”) is defined and dual results are also proved. In the
remaining paragraphs, Kan considers the more general case of arbitrary limits in a
category and shows that a category has arbitrary limits if a certain functor has a left
adjoint and a similar dual result for colimits is stated.

These remarks clearly show how general the notion of adjoint functor is: it is
connected to various fundamental constructions in categories as such. Whereas the
first chapter showed that the notion of adjoint functor arises naturally in certain
mathematical situations, the second chapter demonstrates that the notion occupies
a key position in category theory itself. The specific examples of the first chapter
might have been important and revealing in themselves, but they are not enough
to convince anyone that the concept of adjoint functor is sufficiently general. What
remained to be seen is the extent to which the concept of an adjoint situation captures
so many different mathematical constructs, so many different mathematical theories
and theorems.

We end our examination of Kan’s paper at this point but we will not leave adjoint
functors immediately. The concept is so fundamental, and plays such a key role in
the subsequent history and in my thesis, that it deserves to be looked at carefully
before we move to the next period.

43 There is a technical difficulty involved here: as Kan himself notes in the remark following the
theorems: “In order to obtain the second half of Theorem 7.8 (. . . ) a kind of axiom of choice would
be needed.” ([134], 311.)





Chapter 5
Adjoint Functors: What They are, What They
Mean

The theory of categories has arisen in the last twenty-five years and
now constitutes an autonomous branch of mathematics. It owes its
origin and early inspiration to developments in algebraic topology.
When the basic concepts of category, functor, natural transforma-
tion and natural equivalence were first formulated by Eilenberg
and Mac Lane they served immediately to provide the appropriate
framework for describing the way in which algebraic tools were
used, and could be used, in the study of topology. It was surely evi-
dent from the outset, to the inventors of these fundamental notions
and to others, that their domain of application certainly extended far
beyond that of algebraic topology. (. . . ) However, it was not clear
in the early stages that there was a “pure” theory latent within the
domain of categories and functors which was capable of assuming
substantial proportions within the body of mathematics. (. . . ) Nev-
ertheless, it is only in the last ten years, or less, that the source of
inspiration for advances in category theory has come to any consid-
erable extent from within the theory itself.

(Hilton, 1968, v, in [37])

“The source of inspiration for advances in category theory” was provided by the
development of Abelian categories and, together with these, the concept of adjoint
functors. The former provided a paradigm, in the most literal sense of that expres-
sion, that is a specific model, for the development and applications of category
theory, whereas the latter provided the general conceptual framework to develop
the whole theory on an autonomous basis. According to Mac Lane, it was in 1963
that mathematicians realized that they could be category theorists: “Then in 1963
it suddenly became clear that general category theory (not just Abelian categories
or applications of categories) was a viable field of mathematical research” ([196],
346). According to Mac Lane, some of the factors that triggered this change are:
(1) the first publication of what was to become SGA4 by Grothendieck and his col-
laborators in which category theory and topos theory are developed for algebraic
geometry; (2) Lawvere’s thesis; (3) Freyd’s first public presentation of his adjoint
functor theorem in front of logicians at Berkeley (see [90]); (4) Ehresmann’s pa-
per on structured categories (see [63]); (5) Mac Lane’s first coherence theorem (see

147
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[188]); and (6) Mac Lane’s lectures on categorical algebra as a Colloquium lecturer
for the American Mathematical Society (see [189]). What was clear to many people
is that there were many open problems in pure category theory. This was possible
mostly because of the advent of the concept that allowed for the formulation of
these problems as autonomous problems: the concept of adjoint functors (and its
equivalent formulations).

5.1 Adjointness

It is now time to step back from historical aspects of the theory and look more
closely at adjoint functors themselves. It is my belief that the claim that category
theory is a generalization of Klein’s program takes a new meaning when adjoint
functors are introduced and when their significance is understood. We will have
to go back to the history of category theory afterwards, for some more work by
specific mathematicians was required before adjoint functors could seen as having
this significance.

Recall the definition of adjoint functors from Chapter 4. Adjoint functors are
functors F : C →D and G : D → C such that there is an isomorphism

Hom(F(X),A)
φ // Hom(X ,G(A))

such that φ is natural both in X and A. Precisely, φ is a natural isomorphism (an
invertible natural transformation) between the set-valued functors Hom(F(−),−)
and Hom(−,G(−)) on C op×D .

The naturality of the bijection means, informally, that φ does not depend on X
and A. Again, this can be interpreted as a form of invariance. We represent this
situation by the correspondence:

F(X)→ A
X → G(A)

m φX ,A

where φX ,A means that the correspondence here is between the arrows determined
by X and A in the respective categories. In this case, we say that F is left adjoint to
G or equivalently that G is right adjoint to F , and this is denoted by F a G.

Technically, the bijection φX ,A depends on both X and A. For φ to be natural
means that φ is related to the family of bijections φ−,− in the right way, that is, when
A is transformed into B or X ′ is transformed into X , the correspondence between the
numerator and the denominator should still hold. For instance, let f : A → B be an
arrow of D . Then, the following correspondences φX ,A and φX ,B should be related
to one another as indicated by the following diagram:
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−−−−−−−−−−−−−−−−−−−−→[
m F(X) // A

X // G(A)

] f // B

G( f )
// B

−−−−−−−−−−−−−−−−−−−−→

m

 m φX ,B.

Hence, given the correspondence φX ,A, composing with f yields the correspondence
φX ,B, indicated by the long arrows above and below. When the correspondence is
natural in both variables, it means that we have indeed defined a global correspon-
dence.

This is an interesting epistemological dimension of the way one has to work
with categorical notions. We are often trying to define concepts and notions for the
whole by local means. The very definition of a natural transformation is typical in
this regard. The goal is to define arrows between arrows in a systematic manner,
i.e., globally. One way to do it is by giving a definition for an arbitrary collection
of arrows between two objects and show that the definition does not depend on the
local conditions of the definition, i.e., on any specific property of the objects chosen.
This is what it means for a transformation to be “natural”: it is canonical in the sense
that it does not depend on the presentation or the choice of the objects used in the
definition of the transformation. The naturality condition says that the objects we
have chosen are totally dispensable and none of their specific properties have been
used in the definition of the functors involved. They are merely representatives of
the objects of the category in this situation.

Let us consider products again, but this time from the point of view of adjoint
functors. We will now treat a given category C as a whole and look at its transfor-
mations. Consider the following very simple category: it has two objects, let us call
them 0 and 1, with only the identity arrow on each object and nothing else. We will
denote this category by P . It is as if we would consider two abstract copies of the
one element group without the isomorphism between them.

A functor F : P → C from the category P into a category C simply picks out
two objects of C , namely F(0) and F(1), with their identity arrows. We will call
such a functor F a representation of P in C . The category of all such represen-
tations of P in C is of course a functor category, denoted by C P , defined thus.
An object of C P is a pair of objects of 〈X ,Y 〉 and an arrow of C P is also a pair
〈 f ,g〉 : 〈X ,Y 〉 → 〈U,V 〉 of arrows f : X →U and g : Y →V of C .

There is an obvious functor I : C → C P , which sends an object X of C to the
pair 〈X ,X〉 of C P and an arrow f : X → Y to the pair 〈 f , f 〉 : 〈X ,X〉 → 〈Y,Y 〉 of
C P . The functor I can be thought of as giving a full and faithful representation of
C in C P . Looking at the image of the functor I in the category C P is like looking
at C with one’s eyes crossed: everything is simply doubled. It is reasonable to ask
whether I has “inverses”, since we want to think of I as being a “transformation”
or an “encoding” in some sense of C into C P . These functors would be the “dual”
of I, since they would in a sense “reverse” what I does. We are therefore looking
for functors C P → C satisfying certain conditions. In my previous terminology,
such a functor, let us call it J, would constitute a representation of C P in C , that
is J would determine how a pair 〈X ,Y 〉 of objects of C can be represented by a
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single object in C . For the object J(〈X ,Y 〉) to constitute a representation of a pair of
objects X and Y of C P in C , the object J(〈X ,Y 〉) has to be related to X and Y in a
privileged manner. In a categorical context, this can only mean that there are arrows
between J(〈X ,Y 〉) and X and Y and arrows between J(〈X ,Y 〉) and the objects of C
that could be representations of pairs of objects in C . Finally, for J to be an dual of
I, the following arrows

X → J(I(X)),
J(I(X))→ X ,

I(J(〈X ,Y 〉))→ 〈X ,Y 〉 and
〈X ,Y 〉 → I(J(〈X ,Y 〉))

should exist and should have specific properties. If J were a “real” inverse of I, that
is an inverse in the usual set-theoretical sense of that expression, we would have
identities between these objects, e.g., X = J(I(X)), etc. However, in a categorical
context, identity of objects is not given by the theory. “Being identical” within a
category can only mean “being isomorphic”. Thus, in the best cases, we should
have isomorphisms X ' J(I(X)), I(J(〈X ,Y 〉)) ' 〈X ,Y 〉. But this is not the only
possibility (and we will come back to this fundamental possibility in due time). In
certain contexts, one might at best hope to obtain universal morphisms

η : X → J(I(X)) and ξ : I(J(〈X ,Y 〉))→ 〈X ,Y 〉.

According to the preceding definitions, this means that for any morphism f : X →
J(〈Y,Z〉) in C , there is a unique morphism g : I(X) → 〈Y,Z〉 in C P such that the
following diagram

X J(I(X))
η //X

J(〈Y,Z〉)

f
��?

??
??

??
??

??
J(I(X))

J(〈Y,Z〉)
��

︸ ︷︷ ︸
in C

〈Y,Z〉

I(X)

��

g

︸ ︷︷ ︸
in C P

commutes. Similarly, for any morphism h : I(Z)→ 〈X ,Y 〉 in C P , there is a unique
morphism K : Z → J(〈X ,Y 〉) in C such that the following diagram

Z

J(〈X ,Y 〉)

k

OO

︸ ︷︷ ︸
in C

I(J(〈X ,Y 〉)) 〈X ,Y 〉
ξ //I(J(〈X ,Y 〉))

I(Z)

OO
〈X ,Y 〉

I(Z)

;;

h
ww

ww
ww

ww
ww

ww

︸ ︷︷ ︸
in C P
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commutes. In other words, this means that if J is a dual of I, then there should be a
bijection between arrows I(X)→ 〈Y,Z〉 and X → J(〈Y,Z〉).

There is yet another way to connect I and J via universal morphisms. The
pair of universal morphisms obtainable might be η : 〈X ,Y 〉 → I(J(〈X ,Y 〉)) and
ξ : J(I(〈Y,Z〉)) → X , in which case, as can easily be verified, there is a bijection
between arrows 〈X ,Y 〉 → I(X) and J(〈Y,Z〉)→ X .

These bijections can be represented with the help of the following notation:

in C P

in C
(I)

I(X)→ 〈Y,Z〉
X → J(〈Y,Z〉)

m (II)
〈Y,Z〉 // I(X)
J(〈Y,Z〉) // X

m

The vertical double arrows mean that to each arrow in the numerator corresponds
a unique arrow in the denominator and vice-versa. A different illustration of the
situation given on the left is as follows:

C C P

X

J(〈Y,Z〉)

I(X)

〈Y,Z〉

I

J

The beauty of such a correspondence is that it contains (almost) all the ingredients
required to determine what J ought to be in each case. Let us first consider the case
on the left, case (I). In the numerator, an arrow I(X) is, by definition, a pair of ar-
rows f : X → Y and g : X → Z. Thus, the correspondence means that to such a pair
corresponds a unique arrow X → J(〈Y,Z〉). If we can show that the object J(〈Y,Z〉)
comes with a pair of arrows J(〈Y,Z〉)→Y and J(〈Y,Z〉)→ Z, then we can conclude
that J(〈Y,Z〉) is a product of Y and Z in C . But if J(〈Y,Z〉) exists, then we certainly
have the identity arrow J(〈Y,Z〉) → J(〈Y,Z〉) in the denominator, which automati-
cally yields a unique arrow I(J(〈Y,Z〉))→ I(J(〈Y,Z〉)) in the numerator, which by
definition are a pair of arrows J(〈Y,Z〉)→ Y and J(〈Y,Z〉)→ Z, as required. Thus,
if J exists and satisfies the equivalence given by (I), then we can (almost) conclude
that J takes an object 〈Y,Z〉 of C P to a product of Y and Z in C . In other words, if
J exists, then C has binary products. (We will come back to the missing ingredient
in a short while.)

The same exercise can be performed for the equivalence on the right, namely
case (II). Again, the numerator means that we have a pair of arrows f : Y → X
and g : Z → X and the correspondence implies that for such a pair, there is a unique
arrow J(〈Y,Z〉)→ X . By an argument similar to the one sketched above, the identity
arrow J(〈Y,Z〉)→ J(〈Y,Z〉) yields a pair of arrows Y → J(〈Y,Z〉) and Z → J(〈Y,Z〉)
and it follows that J takes an object 〈Y,Z〉 of C P to a coproduct of Y and Z in C .
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A few remarks are in order. Given the functor I, finding J, that is, showing that
it can be defined and that it satisfies at least one of the conditions given above, is
comparable to solving an algebraic equation. In this case, the problem is to deter-
mine whether the category C has the resources to represent within itself, that is in
a uniform manner, pairs of its objects. Let us take a brief look at the composites of
I and J in light of the foregoing correspondences. Replacing 〈Y,Z〉 by I(X) in the
numerator yields in both cases:

I(X)→ I(X)
X → J(I(X))

m I(X)→ I(X)
J(I(X))→ X

m

These mean that to each arrow from I(X) to I(X) corresponds a unique arrow from
X to X ×X on the left, and a unique arrow from X

∐
X to X on the right. In par-

ticular, to the identity arrow 〈1X ,1X 〉 : 〈X ,X〉 → 〈X ,X〉 corresponds a unique arrow
∆X : X → X×X , called the diagonal of X or the graph of the identity arrow. On the
right, to the identity arrow corresponds a unique arrow ∇X : X

∐
X → X , called the

codiagonal of X . These are of course special cases of the morphisms η and ξ men-
tioned above. Replacing X by J(〈Y,Z〉) in the denominator yields the projection and
the injection arrows respectively. All these arrows are fundamental and significant.

The parallel with geometry is again striking. In geometry, the existence of a trans-
formation also corresponds to the availability of certain resources, certain construc-
tions, within the geometry. In geometry, a transformation is the mathematical rep-
resentation of a displacement. The inverse operation is a way of going back to the
original situation. In the case of categories, we do not have an endofunctor, pace
Eilenberg and Mac Lane, but a pair of functors going in opposite directions related
to one another in a specific manner. The reason is that a functor is the mathematical
representation of a conceptual transformation, of a mathematical construction per-
formed in a certain manner; that is, a construction which is “invariant” to the type
of entity on which it is applied. In a way, this is what “being functorial” means:
a mathematical construction is functorial if it is invariant with respect to the mor-
phisms of the category on which it is applied. A geometric transformation is a way
to transform a space into itself in such a way that it is possible to go back to the
original situation without losing any information. A functor is a way to transform a
“form” of structures into (possibly different) structures and an inverse to the given
functor in the sense we are interested in is a way to get “as close as possible” to
the original structures from the situation we find ourselves in. In general, we might
have lost information about the original structures by moving along a given functor.
However, if the latter has an adjoint, then we can recover a significant part of the
original structure by coming back. We will see latter how this is related to the rather
subtle problem of identity of categories.

We could certainly extend the above discussion to any simple “abstract” category
P that formally represents a property of interest. In fact, as is probably already clear
to the reader, what we have just discussed is a special case of a limit, in the sense
already introduced by Kan in full generality in 1958. Categories like the category
P above are presented directly in an abstract fashion, in the same way that certain



5.1 Adjointness 153

abstract groups are given by elements and abstract relations between them. We saw
in Chapter 2 some examples of very simple abstract categories, namely “the” one
element category 1, “the” two-element category 2, “the” three-element category 3,
etc. We have also already mentioned that the functor category C 1 is simply C , that
the functor category C 2 is the category of arrows of C and that the functor category
C 3 can be seen to be the category of commutative diagrams of C and morphisms
between them.

Functors such as I and J are of course adjoint functors and they are said to form
an adjunction.

Adjoint functors F : C → D and G : D // C are codependent functors and
this, in two different ways. First, the foregoing bijection establishes a strong depen-
dence between the way F encodes C in D and the way G encodes D in C . Second,
adjoints are determined up to an isomorphism: this means that if F is left adjoint to
G and F ′ is left adjoint to G, then F and F ′ are related by a natural isomorphism,
hence they are essentially the same. The same is true for G and G′ both right adjoints
to F . Notice that a functor can have both a right and a left adjoint. For instance, the
category of sets has both products and coproducts, which are both adjoints to the
appropriate diagonal functor.

The foregoing definition of adjoint functors is the one given by Kan in his orig-
inal paper. It relies heavily on the existence of a bijection between Hom-sets, and
therefore is basically set-theoretic. There is, however, an equivalent characterization
that is purely algebraic. Two functors F and G as above form an adjunction if there
exist natural transformations η : 1D → FG and ξ : GF → 1C such that the so-called
triangular identities hold, that is the following diagrams commute:

F FGF
Fη //F

F

1F

��?
??

??
??

??
??

FGF

F

ξ F

��

G GFG
ηG //G

G

1G

��?
??

??
??

??
??

GFG

G

Gξ

��

Thus, we have the identities ξ F ◦Fη = 1F and Gξ ◦ηG = 1G. Thinking about func-
tors as giving representations of properties of the objects of categories, the forego-
ing characterization “says” that the representations in C of the functor F seen as a
property given by the objects GF can be systematically transformed into the original
objects of C .

Three observations have to be made at this point. First, adjunctions pervade math-
ematics: they are everywhere, from logic to algebraic geometry. Second, adjoint
functors capture the notions of universal property (morphism or arrow) and repre-
sentable functor in all their generality. The third observation is connected to the
second. As Kan already saw, very often one is given an elementary functor in a
given mathematical situation, e.g., the diagonal functor above, and its adjoints turn
out to be significant mathematical constructions. In a sense, significant mathemati-
cal constructions arise out of trivialities if they are related to these trivialities in an
appropriate manner.
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Let us first look at some standard examples of adjoint functors.

1. A whole family of fundamental cases given by free constructions of a certain
type, e.g., free monoids, free groups, free vector spaces, free algebras, etc. The
basic situation is this: given a category C of structures of a certain type, we
can consider the functor UC : C → Set, from C to the category of sets with set
maps, the so-called “forgetful functor”, which sends every object X of C to its
underlying set UC (X) and every morphism to the underlying map between sets.
When this underlying functor has a left adjoint F : Set → C , then F(Y ), for Y
in Set, yields the free structure of the given type. Thus, we have

a. The functor UGrp : Grp → Set, from the category of groups and group ho-
momorphisms to the category of sets. F(Y ) is the free group with generators
y ∈ Y .

b. The functor UVect : Vect → Set, from the category of vector spaces over a
base field k and linear maps to the category of sets. F(Y ) is the free vector
space on Y , with one basis element for each element of Y and thus has as
many dimensions as Y has elements.

c. The functor UTop : Top→ Set, from the category of topological spaces and
continuous maps to the category of sets. F(Y ) is the discrete space on Y .

2. An important variation on the case 1c. has to be given since it generalizes to
other interesting situations. Consider the functor “points of a space”, as defined
earlier:

Hom(1,−) : Top→ Set.

This functor has both a left and a right adjoint. For any topological space X and
set Y , the following bijections have to be satisfied (and both have to be natural):

Hom(1,X)→ Y
X → G(Y )

m F(Y )→ X
Y → Hom(1,X)

m .

It is easy to see that the right-adjoint G : Set → Top associates to a set Y the
topological space G(Y ) with the indiscrete topology whereas the left-adjoint
F : Set → Top associates to a set Y the space F(Y ) with the discrete topology.
In turn, the functor F itself has a left adjoint. This means that the following
bijection is satisfied (and has to be natural):

H(Y )→ X
Y → F(X)

m in Set
in Top

.

It can be seen that the functor H : Top → Set takes a space Y to the quotient
space of its connected components.1 Thus we have the following chain of ad-
joints:

H a F a Hom(1,−) a G.

1 Recall that given a space X , we can define for all points of X the equivalence relation x ∼ y if
there is a connected subset of X containing both x and y.
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Similar chains of adjoints exist between other categories.
3. Instead of having a forgetful functor going into the category of sets, in some

cases only a part of the structure is forgotten. Here are standard examples:

a. There is an obvious forgetful functor U : AbGrp → AbMon from the cat-
egory of Abelian groups to the category of Abelian monoids: U “forgets”
about the inverse operation. The functor U has a left adjoint F : AbMon→
AbGrp which given an Abelian monoid M assigns to it the “best” pos-
sible Abelian group F(M) such that M can be embedded in F(M) as a
submonoid. For instance, if M is N, then F(N) “is” Z .

b. Similarly, there is an obvious forgetful functor U : Haus → Top from the
category of Hausdorff topological spaces to the category of topological
spaces, which “forgets” the Hausdorff condition. Again, there is a func-
tor F : Top → Haus such that F aU . Given a topological space X , F(X)
yields the “best” Hausdorff space constructed from X : it is the quotient of
X by the closure of the diagonal ∆X ⊆ X ×X , which is an equivalence re-
lation. In contrast with the example 3a, where we had an embedding, this
time we get a quotient of the original structure.

c. Let us go back to modules. We have already mentioned the example
given by Kan between the Hom-functor and the tensor product of Abelian
groups. Here is a slightly different example. There is a forgetful functor
U : ModR → AbGrp from a category of R-modules, where R is a com-
mutative ring with unit, to the category of Abelian groups. The functor U
forgets the action of R on a group G. The functor U has both a left and a
right adjoint. The left adjoint is R⊗− : AbGrp → ModR which sends an
Abelian group G to the tensor product R⊗G and the right adjoint is given
by the functor Hom(R,−) : AbGrp → ModR which assigns to any group
G the modules of linear mappings Hom(R,G).

4. Here are some elementary examples of adjoint functors that will allow us to
introduce the first elements of categorical logic. As we have seen, any poset C
can be considered as a category and 1 denotes the one-element poset. There is
a unique poset homomorphism from C to 1, ! : C → 1, which assigns to each
X in C the unique element •, i.e., !(X) = • and to each arrow f : X → Y the
unique identity arrow • → •. If this function has left and right adjoints, they
have to be functors F,G : 1→ C such that, respectively,

F(•)→ X
•→!(X)

!(X)→•
X → G(•)

.

Now since !(X) = •, the arrow at the denominator of the left-hand correspon-
dence has to be the identity arrow. Furthermore, since we are in a poset, arrows
represent the order relation and we always have that • ≤ •. The same is true for
the numerator on the right-hand side. The bijection implies that there has to be
a unique arrow F(•)→ X , i.e., F(•)≤ X has to be always true on the left, and
similarly X ≤ G(•) has to be always true on the right. Therefore, if we have
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F a !, F picks out an initial object of C , in this case the bottom element of the
poset. Symmetrically, if ! a G, then G picks out the top element of the poset.
In standard logico-algebraic notation, > denotes the top element and ⊥ denotes
the bottom element. Notice also that F can be taken to represent the property
of posets “is under all elements” and G represents the property “is over all ele-
ments”. A poset has the resources to encode these properties by having a bottom
and a top element respectively. Notice how in this case, as in the previous cases,
we start with a totally trivial functor ! : C → 1 and the adjoints yield significant
constructions. The same is true of the following examples, which we have in
fact already seen in a more general setting.
Consider once more the diagonal functor ∆ : C → C ×C with C a poset con-
sidered as a category. In this case, as we have seen, the left-adjoint to ∆ is
the coproduct, that is the sup, and the right-adjoint to ∆ is the product, that
is the inf. The correspondence takes the following special form in this special
case:

X ∨Y ≤ Z
X ≤ Z,Y ≤ Z

m Z ≤ X ∧Y
Z ≤ Y,Z ≤ X

m .

In order to introduce implication, we have to consider a functor with a param-
eter: (−∧X) : C → C . It can easily be verified that in the case when C is a
poset, the function (−∧X) is order preserving and thus a functor. A right ad-
joint to (−∧X) is a functor, let us temporarily call it F , also with a parameter
X , F(X ,−) : C → C such that

Y ∧X ≤ Z
Y ≤ F(X ,Z)

m .

Since we are in posets, it is easy to determine what F(X ,Z) ought to be. It
is the largest element of C such that its infimum with X is smaller than Z.
This element is sometimes called the relative pseudocomplement of X or, more
commonly, the implication and it is denoted by X ⇒ Z, by X → Z, or by X ⊃ Z.
We can therefore rewrite the foregoing bijection thus:

Y ∧X ≤ Z
Y ≤ X ⇒ Z

m .

Notice, first, that we can introduce the negation operator ¬X from the last
adjunction. Indeed, let Z be the bottom element ⊥ of the lattice. Then, since
Y ∧X ≤⊥ is always true, we have that Y ≤ X ⇒⊥ is also always true. But also
X ⇒⊥≤ X ⇒⊥ is always true, we get at the numerator that (X ⇒⊥)∧X =⊥.
Hence, X ⇒ ⊥ is the largest element disjoint from X . We can therefore put
¬X =df X ⇒⊥. Second, it is easy to prove certain facts about these operations
from the adjunctions. Consider, for instance, implication. Let Z = X . Then we
get at the numerator that Y ∧X ≤ X , which is always true in a poset (as it is eas-
ily verified). Hence, Y ≤ (X ⇒ X) is also true for all Y and this is only possible
if (X ⇒ X) =>.
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We have introduced in the context of posets operations as adjoints, also called
in this context Galois connections, which can be used to interpret logical oper-
ations. The existence of these adjoints is equivalent to certain algebraic facts.
Indeed, to say that for a given poset C , a left adjoint and a right adjoint to the
terminal poset exist and a left adjoint and a right adjoint to the diagonal functor
also exist, amounts to the claim that C is a distributive lattice. If, moreover,
right adjoints to the parametrized functors (−∧X) exist, then C is a Heyting
algebra. Notice that we could define distributive lattices and Heyting algebras
in this manner. Hence the existence of certain adjoints to given functors can be
used to define certain structures. The interesting aspect of this strategy is that
the given functors are often simple and fundamental from a conceptual point
of view. In the case of lattices, there is no doubt that the diagonal functor sat-
isfies these conditions. And so do the functors from and to the one-element
lattice.
We will see in the next chapter how this analysis extends to quantifiers and how
they too can be seen as adjoints. In this context, the slogan is: categorical logic
is algebraic logic. But before we develop this slogan, let us consider other cases
of adjoint functors in mathematics.

5. As I have already mentioned, all the fundamental constructions of category
theory, or what Eilenberg and Mac Lane called “the basic constructions” of a
category, limits and colimits, can be described as adjoints. Thus, as we have
seen, products and coproducts are adjoints and so are all the other examples
given in that section. Hence, whereas Eilenberg and Mac Lane’s identified the
basic constructions of a mathematical domain with functoriality, the develop-
ment of category theory has shown that, notwithstanding the importance of
functoriality, adjoints deserve to be looked at as the basic constructions of a
field.2

If we look again at the characterization of Abelian categories, we see that the
main properties in fact express the existence of adjoint functors to certain el-
ementary functors. For instance, having a zero object can be expressed as the
existence of an adjoint, being at the same time both a left and a right adjoint to a
functor. The case is exactly the same as in the case of posets above: let 1 denote
the category with one object and the identity morphism as the only morphism.

2 I do have to insist on the importance of functoriality, for it can be taken as some sort of founda-
tional or regulative principle. Compare Weil’s and Grothendieck’s approaches in the foundations
of algebraic geometry. Weil looked at the foundations of algebraic geometry in the same way that
geometers of the 19th century looked at geometry: there was a fundamental “universe” of geom-
etry provided by complex projective geometry. Everything was more or less going on within this
framework. As Weyl pointed out in his book on the classical groups, Klein’s approach helped ge-
ometers to liberate themselves from this point of view. Grothendieck, by contrast, thought that
the important idea was functoriality and what is called “a change of base”. In this framework,
there is no privileged universe, there is rather a “conservation principle” which is expressed by the
rule that the constructions should be functorial. Perhaps categorical principles should be compared
in general with conservation principles in physics. (See, for instance [20] where this compari-
son is taken up.) Interestingly enough, the later correspond to invariance under a transformation
group.
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Then a category C has a zero object if there is a functor 0 : 1→C which is both
a left and a right adjoint to the functor ! : C → 1. As we have seen, the existence
of products amounts to the existence of adjoints. We can now see more precisely
how the notion of Abelian category captures the invariant content of, to put it
briefly and rather sketchily, homology theory. On the one hand, it captures what
is common to the categories, e.g., categories of Λ -modules for certain rings Λ ,
that appear in homological algebra. On the other hand, the invariant content is
expressed by the existence of certain adjoint transformations between various
categories involved. In the same way that the invariant content of Euclidean ge-
ometry is captured by the group of isometries, the invariant content of (a part
of) homological algebra is captured by the notion of Abelian category. This is a
direct extension of Klein’s program.

6. Notice that an equivalence of categories is a special case of adjointness. Indeed,
if in the above triangular identities the arrows η : 1D → FG and ξ : GF → 1C

are natural isomorphisms, then the functors F and G constitute an equivalence
of categories. We can now come back to duality from a different perspective.
As we have seen in Chapter 2, Eilenberg, Mac Lane and their contemporaries
knew about certain important dualities and at least one of them played a key
role in the development of category theory, namely Pontrjagin duality between
certain groups and homomorphisms of groups. This duality can be described as
an equivalence of categories. Let C denote the following category:

the objets fo C are the locally compact Abelian groups;
the morphisms of C are the continuous group homomorphisms.

The Pontrjagin duality theorem amounts to the claim that the category C
is equivalent to the category C ◦, that is the opposite category. Of course,
the precise statement requires that we describe the functors F : C → C ◦ and
G : C ◦→ C and prove that they constitute an equivalence of categories.
Another well-known and important duality was discovered by Stone in the
thirties and now bears his name. (see [255].)3 As is well known, Stone was
a functional analyst studying linear operators in Hilbert space, and in par-
ticular algebras of commuting projections. It was known to Stone and oth-
ers that the latter could be given the structure of Boolean algebras, although
of a peculiar kind since these algebras could not be represented as algebras
of subsets. Stone knew that a representation theorem for these Boolean alge-
bras would be a tremendous tool. He achieved this result by importing topo-
logical concepts into algebraic structures, something that was entirely new.
In this way, he was able to construct from an arbitrary Boolean algebra a
topological space and, conversely, from a (compact Hausdorff and totally dis-
connected) topological space, to construct a Boolean algebra. Moreover, this
correspondence is functorial: any Boolean homomorphism is sent to a contin-
uous map of topological spaces and conversely, any continuous map between
the spaces is sent to a Boolean homomorphism. In other words, there is an

3 For a thorough and systematic presentation of dualities in general, see [120]. For some of their
applications in logic, see [202] and [259] and [260].
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equivalence of categories between the category of Boolean algebras and the
dual of the category of Boolean spaces (also called Stone spaces). Stone’s the-
orem is fundamental in more than one way. For: (1) Stone’s motivations were
clear right from the start: his result allowed him to prove various results by
going back and forth between the algebraic setting and concepts and the topo-
logical setting and concepts. For instance, he proved the maximal compacti-
fication of a completely regular space by looking at the algebraic side of the
problem and did the same for a generalization of Weierstrass’ approximation
theorem;4 (2) Although Stone did not present his result in the language of cat-
egory theory—he obtained his results in the mid thirties and published the full
version in 1937, almost ten years before Eilenberg and Mac Lane’s paper—the
connection between a category of algebraic structures and the opposite of a
category of topological structures established by Stone’s theorem constitutes
but one example of a general phenomenon that did attract and still attracts
a lot of attention from category theorists. Categorical study of duality theo-
rems is still a very active and significant field and is largely inspired by Stone’s
result.
In general, duality theorems like Stone’s theorem or Gelfand’s theorem between
categories are neither more nor less than the categorical expressions of deep
mathematical connections between mathematical domains that might seem to
be unrelated.

We now have to make some important remarks about adjunctions.

1. As we have seen, all fundamental concepts of category theory can be described
as adjoints and many important mathematical results are also described by the
existence of adjoints to certain given functors. Adjointness is clearly the funda-
mental or the core concept of the theory. Its discovery and its role contributed
directly and importantly to the emergence of category theory as a distinct and
autonomous branch of mathematics. As we have seen, this came as a surprise.
It was a post-hoc discovery. Thus, the importance of adjoints is justified in
two complementary ways. Firstly, a priori, the notion is the natural expres-
sion of what it is to be a conceptual inverse to a given functor. Secondly, a
posteriori, the fact that so many important mathematical concepts, including
the notion of universal arrow, representable functor and logical concepts, can
be presented as adjoints is a remarkable and important fact. This is some sort
of “empirical” evidence of the importance and the “objective” nature of the
concept.

2. In the same way that being functorial is heuristically valuable in many circum-
stances, looking for an adjoint to a given functor can be fruitful and can lead to
surprises. It often yields the right operation with the right properties. Indeed, as
we have already seen, an adjoint to a totally trivial functor very often turns out
to be a fundamental mathematical construction! The best examples of this are
given by products and coproducts, and, more generally, by limits and colimits.

4 I should point out that Stone’s paper contain a proof of universality of the construction and
constitutes an early example of the phenomenon.
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However, one has to reflect more seriously about adjoints. Functoriality makes
a lot of intuitive sense: after all, preserving commutative diagrams amounts to
preserving “identities”, i.e., isomorphisms, and various properties expressed by
commutative diagrams. What about adjointness? Of course, adjoints do have
important preservation properties and equivalences preserve the key facts about
categories. A left adjoint, as a left adjoint, preserves every existing colimit of
its domain category and a right adjoint, as a right adjoint, preserves every exist-
ing limit of its domain category. Even though these preservation properties are
extremely important, another and probably simpler aspect of the conceptual sig-
nificance of adjoints can be given by going back to the conceptual significance
of functors in general.
If we think of a functor as translating a certain property, or “problem”, of one
category into another (and that, as we have seen, allows us to conclude in cer-
tain cases that our problem has no solution), the existence of an adjoint tells us
that our problem has a solution and that, in fact, it is the best possible solution
of a certain type. It is a generic (or, I am tempted to say, paradigmatic) solution
in the sense that any other solution will factor through it. An adjoint is, in some
sense, a solution to a representation problem. If we think about a given functor
as encapsulating a problem, an adjoint is one of the generic answers, the other
one given by the other adjoint, if it exists. To use a metaphor: if the given functor
is seen as encoding a given problem arising in a certain theory, thus in a certain
language, into a different theory, thus a different language, then its adjoints can
be thought of as taking the answer in the second language and decoding it to
send it back in the original language in the best possible way. In other words,
given a category of objects of a certain type, what are the constructions one can
perform or that exist within that family? Again, these are fundamental questions
from an epistemological point of view. When one is trying to know a family of
objects better, one of the things one tries to do is to find a canonical decomposi-
tion of these objects into “prime” objects, or a subclass of these objects that are
easier to study or to know. But a decomposition means that we can join together
these objects in one way or another, thus that there are legitimate constructions
available within the family of objects and these correspond to the existence of
certain adjoints.

3. But here lies what may seem to be a mystery: why do almost all fundamental
constructions performed in different fields of mathematics turn out to be ad-
joints? Is this an epistemological phenomenon, a fact of our way of thinking? Is
it an ontological phenomenon, a fact about the way mathematical objects are?
Can it be a mixture of the two or something else altogether? Is this a legitimate
question? What is the framework one has to put oneself in to provide an answer?
It might very well be that there is no “deep” answer, if this is what one is look-
ing for. It is as if we had discovered that there is something called “conjunction”
which covers so many different linguistic cases. We might marvel at it and try
to find how this can be so. But it is simply a fact. What is wonderful is that the
language of category theory allowed for the definition of adjoints, that within
the categorical framework, one could find the appropriate level of abstraction.
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Once adjoints have been defined, once their usefulness has been recognized,
once their ubiquitous character has been acknowledged, then it becomes natural
to use them whenever appropriate, to look for them whenever they might show
up and to exploit them as much as possible. In other words, the way one does
and thinks about mathematics has changed in an irreversible manner.

5.2 Equivalence of Categories Again

We have seen in the previous section that an equivalence between two categories
C and D is given by an adjunction such that the natural transformations η and
ξ are natural isomorphisms. Thus an equivalence provides a way to transform a
category into itself without loosing in any essential manner the underlying criterion
of identity. Indeed, given an arbitrary adjunction, one or both functors F and G can
send objects that are not isomorphic to isomorphic objects, even the same object. For
instance, as we have already seen, the forgetful functor U : Grp→ Set sends groups
to their underlying sets and group homomorphisms to their underlying set functions.
Clearly, the two non-isomorphic four-elements groups will be sent to isomorphic
sets, even to the same set in some cases. Thus representing groups as sets forces
us to identify things that we considered distinct in the original context. As we have
already mentioned, the forgetful functor U has a left adjoint F which associates to
each set X the free group F(X) with generators the elements of X . Thus, coming
back along F into the category of groups, our original non-isomorphic groups will
be sent to isomorphic free groups that will nonetheless be related to the original
groups in the way specified by the adjunction. This is what an equivalence does not
do: it does not send non-isomorphic objects to isomorphic objects, or put differently,
it reflects isomorphisms in the sense that if F(X) and F(Y ) are isomorphic, then X
and Y were isomorphic in the first place. In the case of equivalences, the functors
preserve and reflect isomorphisms.

Isomorphic categories are simply isomorphic objects in the category of cate-
gories, even if we do not know exactly what that is. The fact that isomorphism
between categories is not the correct criterion of identity for categories is another
indicator of their intrinsically geometrical nature. Indeed, the notion of equivalence
between categories has the flavor of a homotopy equivalence between topological
spaces. As we have seen, two spaces X and Y are homotopy equivalent if there is a
homotopy equivalence between them, that is if there are continuous maps f : X →Y
and g : Y → X such that f ◦ g is homotopic to 1Y and g ◦ f is homotopic to 1X . In
turn, g ◦ f is homotopic to 1X means that there is a continuous deformation of the
image of g◦ f and the identity map 1X of the space X into itself. The spaces X and Y
are not mapped one-to-one and onto by a homotopy equivalence. Recall that a disk
in the real plane, for instance, is homotopy equivalent to a point. Analogously, two
categories C and D are equivalent if there is an equivalence between them, that is
if there are functors F : C →D and G : D → C such that FG→ 1D and GF → 1C ;
that is, the image of FG and GF in the respective categories can be naturally trans-
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formed into the identity functor of the category.5 The “size” of the categories can
be very different. Furthermore, in the same way that the notion of homotopy equiv-
alence can be considered to be the fundamental criterion of identity for spaces, the
notion of equivalence of categories is the correct notion for categories, at least at a
certain level. However (and we will come back to this point in the conclusion), since
it is possible to define a homotopy between homotopies, there is in fact a hierarchy
of criteria of identity inherent to homotopy theory, and not surprisingly the same
holds true for the notion of equivalence for categories.

Here are some fundamental examples of equivalent categories that will be useful
later.

Let X be a set. Consider the functor category SetX of all functors from X into
the category of sets, that is, the category whose objects are functors F : X → Set
and morphisms natural transformations η : F → G. It can be seen that every object
of this category can be presented as a disjoint X-indexed family {Yi}i∈X of sets
and morphisms are functions between these families of sets. Consider now the so-
called slice category Set/X of sets over X : an object of this category is a function
f : Y → X and a morphism between two objects f : Y → X and g : Z → X is a
function h : Y → Z such that g◦h = f . Thus a morphism can be represented thus:

Y

X

f
��?

??
??

??
??

??
Y Zh // Z

X

g

����
��
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��
�

Notice that an object f : Y → X of Set/X can also be thought of as being a disjoint
family {Yi}i∈X of sets: indeed for each i∈ X , the fiber f−1(i) over i is a set; for i 6= j,
f−1(i) 6= f−1( j) since f is a function and clearly Y =

⋃
i∈X f−1(i). There is therefore

an obvious functor Set/X → SetX , sending an object f : Y →X to the corresponding
family {Yi}i∈X of sets and similarly for morphisms. This is an obvious equivalence
between the given categories.

The previous example can be extended in a somewhat less obvious direction. We
start with the category of topological spaces over a space X , denoted by Top/X . As
in the previous case, an object is a continuous map f : Y → X and an arrow h : f → g
is a continuous map h : Y → Z such that g◦h = f . We restrict this category further,
to what are called étale bundles over X . In order to define étale bundles, we need to
recall the notion of a local homeomorphism. A continuous map f : Y → X is a local
homeomorphism if for each y in Y , there is an open V with y ∈V ⊂Y such that f [V ]
is open in X and f |V : V → f [V ] is a homeomorphism. An étale bundle over X is
simply such a local homeomorphism. The category Etale(X) of étale bundles over
X is defined to be the category whose objects are étale bundles over X and arrows
continous functions as above. It can be shown that a continuous function between

5 There is, by the way, a homotopy theory of groupoids (see, for instance, [34]), and higher-
dimensional categories, to which we will turn later, can be thought of as a generalization of homo-
topy theory to categories in general.
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two étale bundles is necessarily a local homeomorphism. For instance, when X is
“the” one point space, it can be verified that an étale bundle over X is necessarily a
space Y with the discrete topology. This is one part of the equivalence.

To look at the equivalent category, we have to take an algebraic point of view on
topologies. Indeed, from the algebraic point of view, the topology of a space X , that
is the family O(X) of opens of X , is a lattice, which can thus be considered to be a
category, namely with objects the open sets U , V , W , . . . of the topology and arrows
the inclusion functions between open sets. We can therefore consider the functor
category SetO(X)◦ , from the dual of O(X) into the category of sets. The objects of
this functor category are called presheaves on X . We consider a (full) subcategory of
the category of presheaves on X , the category of sheaves on X , denoted by Sh(X). A
sheaf (of sets) on X is a functor F : O(X)◦→ Set satisfying the following condition:
for each open covering U =

⋃
i Ui, i ∈ I, of an open set U of X , the diagram

F(U) e // ∏
i

F(Ui)
p //
q

// ∏
i, j

F(Ui∩U j)

is an equalizer, where for t ∈ F(U), e(t) = {t|Ui | i ∈ I} and for a family, p(ti) =
{ ti|(Ui∩U j)}, q{ti} = { t j

∣∣
(Ui∩U j)

}. This rather abstract condition expresses a local
property of sheaves: it “says” roughly that there is a unique way to “glue” together
functions that are defined locally. In other words, for sheaves, one can systemati-
cally move from the local to the global, or the global can be “constructed” from
the local in a systematic manner. The category Sh(X) is therefore the category of
such sheaves and morphisms are natural transformations between them. The cate-
gory Sh(X) is in fact equivalent to the category Etale(X). (For a proof of this basic
and important fact, see [200], Chapter II, 6, 88–92.) We will come back to sheaves
in Chapter 7.

Another variation on the same theme, which brings us back to transformation
groups. We can define the category BG of continuous G-sets, for G a topological
group. The objects of this category are the (right) G-actions on sets X with the dis-
crete topology, namely sets X with a right G-action X → X , and the arrows are func-
tions which preserve this action. It can be shown that this category is also equivalent
to a category of sheaves, denoted by Sh(G), but this time the sheaves are defined on
what is called a site, which is a generalization of a topology to the categorical case.
We will also come back to this case in Chapter 7. (See, [200], 150–154.)

One last example involving duality in an essential way and which we have al-
ready mentioned in my examples of adjunctions: the so-called duality theorems.
Dualities are concrete examples of links made between fields which seem to be at
first conceptually incommensurable. For instance, Stone duality states that there is
an equivalence between the dual of the category of Boolean algebras and the cat-
egory of totally disconnected compact Hausdorff spaces. This means that from an
abstract point of view, they are the “same”. Notice that it is the dual category of
the category of Boolean algebras, or equivalently, the dual of the category of to-
tally disconnected compact Hausdorff spaces, one or the other, which is involved.
In practice, what this means is that it is possible to start with one of the given cat-
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egories, say the category of Boolean algebras, define some properties for these al-
gebras and then, by dualizing, obtain a property of totally disconnected compact
Hausdorff spaces.

Let us note a few significant facts about these examples. First, in the first three
examples, we have an equivalence between a category of “standard” mathematical
objects on the one hand, and mathematical objects presented as functors on the other
hand. From a categorical point of view, this functorial presentation is fundamental;
as we have seen, this was emphasized by Grothendieck explicitly very early on and
it is found implicitly in Kan’s work. Second, two homeomorphic topological spaces
X , Y will lead to equivalent categories of presheaves SetO(X)◦ and SetO(Y )◦ and, a
fortiori, two equivalent categories of sheaves. In fact, in these cases, what matters is
the structure of the lattice of open sets of the spaces: isomorphic lattices will yield
equivalent categories. More generally, two equivalent categories C and D will yield
two equivalent functor categories SetC

◦
and SetC

◦
(and also SetC and SetD ). The

converse is far from being true: in general, if SetC
◦

is equivalent to SetD
◦
, it does

not follow that C is equivalent to D .
Equivalence of categories is not only useful in practice, but it is also conceptually

significant and constitutes the first step towards identifying he underlying criteria of
identity and meaningfulness in the context of category theory. Since these occupied
the front stage in my presentation of Klein’s program, we have to see how they ap-
pear in a categorical context. It is now time to go back to Klein’s program explicitly.

5.3 Back to Klein

As we have seen, Eilenberg and Mac Lane established a correspondence between a
space and its group of transformations and a category and its algebra of mappings,
e.g., the Hom-sets with the operation of composition. This is indeed a generaliza-
tion, but I now want to argue that it leads to another generalization of Klein’s pro-
gram. I want to interpret it more literally to start with: a category can be thought of as
a space and then one can look at its “algebra” of transformations, i.e., the “algebra”
of functors. Needless to say, the last expression is meaningless, strictly speaking,
for there is no such thing as “the” algebra of functors on a category. Recall that
what Eilenberg and Mac Lane did in their paper, is to restrict the analysis to endo-
functors, e.g., of the category of topological groups and, with this parameter fixed,
the algebra of functors amounted to the relationships between subfunctors of given
functors. The introduction of adjoint functors changes the scene dramatically. Be-
cause adjoint functors allow for an autonomous development of the basic concepts
of category theory, not only does it become an autonomous branch of mathemat-
ics, but its general conceptual significance, already present in its original form as a
general language and framework, is also greatly modified. Going back to Eilenberg
and Mac Lane’s original example, the category of (topological) groups, the system-
atic investigation of the existence of adjoints to certain “trivial” functors, e.g., the
existence of limits and colimits, now constitutes an analysis of the basic construc-



5.3 Back to Klein 165

tions of that field. The search for adjoints to other naturally arising functors, e.g.,
forgetful functors, is also part of that analysis. Furthermore, from this point of view,
mathematics studies functors and, among them, adjoint functors. This is simply re-
formulating and generalizing Eilenberg and Mac Lane’s claim about group theory.
Recall that in the original paper, they claimed that

The subject of group theory is essentially the study of those constructions of groups which
behave in a covariant or contravariant manner under induced homomorphisms. More pre-
cisely, group theory studies functors defined on well specified categories of groups, with
values in another such category ([74], 237).

But the autonomy allowed by adjoint functors leads to an ontological leap that we
have already encountered. By describing a mathematical field with the adjoint func-
tors and their relationships that are characteristic of that field, one can forget entirely
about the precise nature of the objects and morphisms involved. The objects do not
have to be given in advance, they do not have to be sets, nor do the morphisms need
to be given in advance, and they do not have to be functions. What are the objects of
an Abelian category? Are they sets? They do not have to be. What are the morphisms
of an Abelian category? Are they structure-preserving functions? They do not have
to be. The various representation theorems guarantee that the objects of an Abelian
category are at least functors and morphisms are natural transformations! But one
does not have to know what the objects and morphisms of an Abelian category are to
do (parts of) homological algebra. At some stage, one will have to know various rep-
resentation theorems to prove some specific results. However, this does not change
the fact that the characterization of that part of mathematics is now accomplished in
a way that is entirely set-free (provided that a category itself is not a set or a class,
something that is certainly not clear at this stage). Be that as it may—and we will
come back to this important issue in due course—the nature and role of categories
have now changed. I can now exploit the parallel with transformation groups. For,
in the same way that a transformation group is an abstract encoding of a geometry, a
category presented with the help of certain adjoints and properties of these adjoints
is an abstract encoding of a piece of mathematics: it gives precise means of defi-
nition and proofs. Using this analogy, we can transfer properties of transformation
groups to categories, for the status and role of transformation groups are to geom-
etry what categories are to mathematical domains. In fact, since a transformation
group is a category, we are simply generalizing the claims made for transformation
groups to categories in general. I will make a few remarks and try to establish more
properties in the following chapters.

It should be clear that the various categories described in the examples of equiv-
alences are in some sense different. The descriptions of the objects are different and
so are the morphisms. If categories were sets or classes, then we could certainly say
immediately that these categories are different as sets or classes. Their cardinality
could even be different: they could be of different sizes. These are striking cases of
mathematical objects that are different in their presentation, in the way we are to
think about their constituents. The equivalences between these categories indicate,
however, that they are nonetheless the same in a different way. One would like to be
able to find what is underlying this identity, to state precisely what they have in com-
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mon. The appropriate level of analysis is provided by adjoint functors. The parallel
with geometrical spaces and transformation groups that we have seen in Section 1.2
could not be more striking. In both cases we are dealing with well-defined math-
ematical structures and properties that seem to be different in important respects.
However, from a global point of view, they are essentially the same. In the case
of geometrical spaces, the different spaces can be seen as different representations
of a common abstract transformation group. Not surprisingly, the same is true for
categories.

Once categories defined with the help of specified adjoints have been introduced,
one can consider that the subject matter of category theory is not, say, the category
of groups or the category of topological spaces, but rather what deserve to be called
“abstract categories”. In some of its applications, it is possible to go back to specific
categories of given structures and morphisms. In this context, the given category
will be seen as an occurrence, an instance of one or more “abstract” categories
and the properties of the specific category will be derived from these instantiations.
Again, we are witnessing a shift analogous to the shift initiated by Klein and Lie in
geometry: categories of specific entities are pushed to the background and “abstract”
categories, that is categories given by a list of adjoint functors and properties of the
latter, constitute the fundamental object of study, what a given mathematical field is
all about. The role played by categories of specific entities becomes similar to the
role played by representations of transformation groups.

I have claimed that transformation groups have a key role to play in elementary
geometry, not only because they are useful to define concepts and prove various
results, but also because they constitute criteria of identity and meaningfulness for
geometric spaces. We ought to be able to transfer this claim to categories in some
way. In other words, categories should constitute in some sense criteria of identity
and meaningfulness. Here, the fact that a group is a special kind of category gives
us a hint. This point is so important that it deserves a section of its own.

5.4 From Groups to Groupoids

The idea that one can “introduce” a kind of objects simply by laying
down an identity criterion for them really inverts the proper order
of explanation. As Locke clearly understood, one must first have
a clear conception of what kind of objects one is dealing with in
order to extract a criterion of identity for them from that conception.
(. . . ) So, rather than “abstract” a kind of object from a criterion of
identity, one must in general “extract” a criterion of identity from a
metaphysically defensible conception of a given kind of objects.

([183], 517)
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Any geometric object in a simple manifold determines a particular
structure and therefore a space (. . . ) The geometric objects and the
spaces which they determine are classified by means of the pseudo-
group of regular point transformations, two objects belonging to
the same class if, and only if, they are equivalent. It is this pseudo-
group, rather than the group Gu, which is relevant, because a geo-
metric object is not necessarily defined over the whole of a simple
manifold. This classification of geometric objects is in the spirit of
the Erlanger Programm, equivalence under the pseudo-group being
an inevitable generalization of equivalence in the narrower sense.

([264], 49)6

This [Categories in differential geometry] is the title of the last
survey article by C. Ehresmann, who in categories recognized a
decisive motive force in the foundations of differential geometry.
Among the roots of this recognition are Lie’s theory of continuous
transformation groups, and the Lie-Klein Erlangen Program. Lie
etc. considered in this context structures more general than those we
now call Lie groups—namely “pseudogroups” (possibly infinite-
dimensional) and with multiplication only locally defined.
To understand differential geometry in the spirit of the Erlangen
program means thus more than understanding the formal notions of
group and group actions. The necessary comprehensive notions for
this were brought to the light of day by É. Cartan and C. Ehresmann,
in particular with the realization that pseudogroups are categories
(in fact groupoids).

([142], 551)

Eilenberg and Mac Lane’s methodological motivation was clearly fruitful and more
than useful. However by considering a group of automorphisms merely as a tool
for investigating the properties of the underlying structure, they had put aside a
crucial component of Klein’s approach. Indeed, as we have seen, a group of trans-
formations of a space is not merely a group of automorphisms. From the geometric
point of view, it also provides a criterion of identity for the objects of the space.
In elementary geometry, that is, in homogenous spaces, groups of transformations
do more than capture global properties of a space. Given any structure, its associ-
ated group of automorphisms, if it is not trivial, captures important features of the
structure, but it does not necessarily provide a criterion of identity for meaningful
objects definable within that structure. If my claim that categories are to spaces of
mathematical structures what transformation groups are to geometry is to hold any
water, I ought to be able to show that categories provide a criterion of identity for
mathematical structures. And indeed, they do.

As a first step, we have to go back to geometry and see how the group con-
cept as a criterion of identity can be extended to cover spaces in which it can-
not be applied directly. As we have seen, for the so-called Klein geometries, the
spaces are homogeneous and therefore the transformations can be defined for the
whole space and the group action is transitive. I have already mentioned the fact

6 It has been said that this small book influenced Ehresmann in his work in the foundations of
differential geometry. Ehresmann does refer to it in a note in his paper “Sur la théorie des espaces
fibrés”. (See [62], 133.)
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that there are many spaces for which no non-trivial global transformation can be
defined. But this does not mean that it is impossible to define local transforma-
tions, in particular local automorphisms, of the space and collect them into an al-
gebraic structure. It is important to see that the resulting algebraic structure does
constitute a criterion of identity for geometric objects in the space just as a trans-
formation group yields a criterion of identity for homogeneous spaces. Indeed, it is
the structure of the space itself that forces us to look at things locally. The collec-
tion of local automorphisms reduces to a transformation group whenever the space
has the appropriate structure. This yields the definition of what is called a pseu-
dogroup. Here is the formal definition: given a topological space (manifold) X , con-
sider the collection of all local homeomorphisms (diffeomorphisms) of X , that is the
set Γ = { f : U →V : ∀U,V ⊆ X ( f is an homeomorphism)} such that:

1. If f : U → V is in Γ and W ⊆U , W open, then f |W : W → f [W ] is in Γ , i.e.,
the restriction of an element f ∈ Γ to any open set in its domain is also in Γ ;

2. Let U =
⋃

i Ui, Ui open sets of X , if f |Ui
: Ui → f [Ui] is in Γ for all i, then

f : U →
⋃

i f [Ui] is in Γ ; this means that the property of being in Γ is local;
3. 1U : U →U is in Γ for all open sets U ;
4. If f ∈ Γ , then f−1 is in Γ ;
5. If f : U → V is in Γ and f ′ : U ′ → V ′ is in Γ and if V ∩U ′ is non-empty, then

f ′ ◦ f is a homeomorphism and is in Γ . In particular, when V = U ′, then this
conditions states that the composition f ′◦ f of two elements of Γ , when defined,
is in Γ .

Such a collection Γ is called a pseudogroup of X .7 The conditions simply ensure
that all local homeomorphisms are compatible with one another and compose in
the correct manner. Pseudogroups play a fundamental role in the foundations of
differential geometry. (See for instance [141] from which the above definition is
taken.) However, pseudogroups are defined on topological spaces. They depend on
topological spaces in the same way that transformation groups depend on geometric
structures. We need a more abstract definition.8 This leads us to the concept of
groupoid.

Although the definition of a groupoid can be given independently of category
theory, it is best seen as a special type of category: a groupoid G is a category in
which every morphism is an isomorphism.9 It can be shown that a groupoid can be
constructed from every pseudogroup and conversely certain subsets of a groupoid
admit a multiplication that makes them the abstract counterpart of a pseudogroup.
For, given a pseudogroup Γ on a space X , the associated groupoid is constructed by

7 Notice that this is not how Veblen and Whitehead defined the notion in their book [264] but it is
indeed the concept they are referring to in the quote above.
8 Notice how I am using the expression “abstract” in this context. We want a definition that keeps
the algebraic ingredients of the situation but ignores the inessential, topological, elements.
9 Oddly enough, although the definition was known when Eilenberg and Mac Lane wrote their first
papers on category theory, they did not include groupoids as an example of a category. Ehresmann,
on the other hand, came to categories via groupoids. For a brief history of the concept of groupoid,
see [34].



5.4 From Groups to Groupoids 169

considering the “germs” of elements of Γ . In general, germs of continuous functions
are defined thus: let x be a point of a space X and F a family of functions defined
on a neighborhood of x (each function in its own neighborhood). Two functions
f , g are said to be equivalent (at x) if they coincide in some neighborhood of x. An
equivalence class generated by this relation is called a germ of functions of class F at
x. Hence, given a pseudogroup Γ , it is easy to see how a germ of functions is defined
from Γ and since the functions are homeomorphisms, one obtains a groupoid.

A one-element groupoid, that is a category with one object in which every mor-
phism is an isomorphism, is a group and in fact can be seen as a group of trans-
formations, for the elements of the group are presented as transformations, namely
morphisms. This last example can be generalized. Let {Gi}i∈I be a family of groups
indexed by a set I. Define the category G with Ob(G ) = I and morphisms

Hom(i, j) =

{
/0 if i 6= j
Gi if i = j

Composition on each Hom(i, i) is given by the multiplication of the group Gi. This
is clearly a groupoid and whenever I is a singleton set, we get a group. Thus, the
concept of groupoid is a generalization of the concept of group. Two specific exam-
ples of this construction are worth mentioning. First, consider the category GL(k)
indexed by the natural numbers, whose morphisms Hom(i, i) are the groups GLn(k)
of invertible n× n matrices with entries in the field k and GL0(k) = {1}, the triv-
ial group. This is clearly a groupoid. Second, let Sn be the symmetric group of all
permutations of the finite set {1, . . . ,n}. Let S0 = {1}. Then the category S of all
symmetric groups defined as above is a groupoid.

Hence the notion of groupoid is a natural generalization of the notion of group
and the notion of pseudogroup. Moreover, and this is a key fact, it is a generaliza-
tion both in the logical and the geometric directions. Indeed a groupoid can still
be thought of as providing a criterion of identity. There are at least four ways to
see how a groupoid is a formal expression of a criterion of identity. Let us consider
them in turn.

First, let us take a somewhat different look at the previous discussion. In-
stead of considering a topological space and the collection of its local homeomor-
phisms, consider an indexed family of structures, for instance geometrical spaces,
E = {Ex}x∈B over a space B, that is a projection map p : E → B. The fiber over
x ∈ B is the set p−1({x}), which is simply Ex. A fiber can be, for instance, the tan-
gent space Ex at that point of the space B. For each x ∈ B, we have a group G(Ex)
of automorphisms of the fiber and these groups are connected to one another via
the isomorphims G(Ex) → G(Ey) induced by the isomorphisms between Ex and
Ey (another case of transport of structure). This yields the groupoid G(E) associated
with the given family. Notice, however, that in this generality, the resulting groupoid
is the generalization of an arbitrary group of automorphisms, that is a “symmetry
groupoid” and as such it does not necessarily reflect or yield a criterion of identity
for objects definable in the family. Thus, to keep the criterion of identity, E, B and
p have to have the appropriate geometric structure. Again, the basic idea is that a
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group will act only locally, that is on each fiber, and can be moved around in the
space B systematically, according to the latter structure. In this context, we basi-
cally have a local criterion of identity that can be transported in the space according
to a certain law. More specifically, E and B must be manifolds, p a smooth projec-
tion and there must be a (Lie) group H acting simply transitively (and smoothly) on
each fiber Ex. In this case, a fiber can be thought of as a space of all moving frames
over a point of the space B. The isomorphisms Ex → Ey are sometimes called in this
context “admissible maps”, that is homeomorphisms commuting with the action of
H. This is the proper context in which differential geometry (developed by Élie
Cartan, Herman Weyl and Charles Ehresmann) is elaborated; differential geometry
constitutes a generalization of Klein’s program.

Second, groupoids sit right at the core of topological spaces, via the fundamental
groupoid. The latter is customarily defined as the fundamental group, but it is really
a groupoid and should be treated as such. Recall that if X is a space, then there is a
partial binary operation defined on the set of all path classes in X by [ f ][g] = [ f ∗g].
It can easily be verified that it is a groupoid. When a point x0 of X is fixed, then, as
we have seen, we obtain the fundamental group of X . There are, however, numerous
advantages to considering the groupoid instead. See, for instance, [35].

Third, it can easily be shown that any equivalence relation R on a set X can
be presented as a groupoid on X . Thus, a groupoid is a generalized equivalence
relation. The set X is first thought of as a category by taking its elements as the
objects of the category. An arrow f : x → y exists if and only if (x,y) ∈ R. It is
easily seen that the conditions satisfied by an equivalence relation yield a category,
and in particular that symmetry of the relation turns the category X into a groupoid
as required. The diagonal equivalence relation on X , that is the relation containing
only the pairs (x,x) for all x in X , is sometimes called the fine groupoid on X . Seeing
an equivalence relation as a groupoid can be thought of as providing a criterion of
identity of elements of X as “identical as R-forms”. Moreover, a groupoid not only
encodes which objects are equivalent, but also the different ways (“isomorphisms”)
in which two objects are equivalent.

Finally, a group G acting on a set X can also be seen as a groupoid: representing
the action of the elements g of G on the elements x of X as arrows (x,g) : x → xg, a
product of two arrows (x,g) : x → xg and (xg,h) : xg → xgh is defined by:

(x,g)(xg,h) = (x,gh).

Thus, as a groupoid, its objects are the elements of X and the arrows are defined as
above. The laws satisfied by a group action immediately yield a groupoid. Both these
constructions, which appear trivial at first, play an important role in practice. (See,
for instance, [34], where these notions are presented and applications discussed.)

Let us come back to categories. As one can easily see, any category C has an
underlying groupoid: it is simply given by the isomorphisms of C . The foregoing
discussion suggests that we should think of a category C as a space, in an abstract
sense, whose “points” are in fact “geometric objects” and with a criterion of identity
provided by the underlying groupoid. Notice that the groupoid also keeps track of
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the different ways two objects are the same. Thus a category is an “abstract geom-
etry”. In more familiar terms: given a family of structures of a certain kind, i.e., a
category C , the underlying groupoid of the category provides the criterion of iden-
tity for the objects seen as structures of that kind. This simply means that in a cate-
gory, isomorphic objects are indistinguishable and this is precisely because they can
be transformed into one another. In the same way that equal figures in a geometry
are identical as geometric objects and may be distinct as sets, in a category C , two
isomorphic objects are identical as C -objects and may be distinct as sets. When in
a category C , it is not necessary nor even sensible to work with the set-theoretical
criterion of identity, e.g., the axiom of extensionality. The underlying criterion of
identity of a category C does not depend upon an underlying set-theoretical cri-
terion in the same way that the criterion of identity of geometric objects does not
depend upon an underlying set-theoretical criterion. We will therefore say that the
underlying groupoid of a category C is an internal criterion of identity, that is a cri-
terion of identity for the entities within the category. This is simply a different way
of saying that isomorphic objects of a category C are considered to be the same
qua C -objects. Notice that this implies that the identity relation is contextual: two
things are treated as the same in a given context, whereas in a different context,
they might be different. This illustrates what was obvious but implicit all along:
from a categorical point of view, entities are always entities in a given context. In a
categorical perspective, there is no such thing as a context-independent entity. The
question “What is x?” for x a mathematical entity, even as simple an object as π ,
does not make sense if a context is not specified. (This is what [162] have named
the “context principle”.)

I have already given illustrations of this phenomenon. Applying a functor F from
C to a different category D is analogous to mapping a certain geometric space into
another space, and thus potentially modifying the criterion of identity, which is the
associated transformation group. Thus, applying a functor amounts to a possible
change of criterion of identity in the same way that modifying a group of trans-
formations amounts to changing the criterion of identity for geometric figures. For
instance, as we have seen, applying a forgetful functor U : C → Set amounts to a
changing the criterion of identity in as much as two different C -objects may turn
out to be indistinguishable as sets. There are, for instance, various partial orders
definable on a given set X of cardinality n, not necessarily finite. As partial orders,
they are all different objects in the category of partially ordered sets. Applying the
forgetful functor U to the category of partially ordered sets will send all these dif-
ferent objects to the “same” object, that is to the component, let us call it [n], of the
groupoid of equinumerous sets.

Just as a transformation group encodes a criterion of identity for geometrical
figures and, at the same time, a criterion of identity for a geometry, the underlying
groupoid of a category C encodes an internal criterion of identity for C -objects and,
at the same time, an external criterion of identity for the category C itself. But here
there is a subtle point that has to be emphasized. A specific group action encodes
an internal criterion of identity for geometric figures, but a group type (that is, not
a specific group but a group up to an isomorphism) encodes an external criterion of
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identity for a geometry; likewise, a specific category encodes an internal criterion
of identity, but an equivalence type encodes an external criterion of identity for
mathematical fields.

It should be obvious that there is a connection between groupoids and equiv-
alence of categories. Indeed, since functors in an equivalence between categories
preserve and reflect isomorphisms, it follows that such functors preserve the un-
derlying groupoids of the categories involved. It seems extraordinarily tempting at
this point to claim that not only do we have a criterion of identity—which is true
but incomplete when looked at carefully (we will come back this point later)—but
also a criterion of meaningfulness: a meaningful categorical property is a property
P preserved and reflected by equivalence functors. Here lies our first surprise: it is
simply false.

This was first shown by Freyd in 1976. We should pause for a second and think
about the time it took before someone actually asked the question and provided an
answer! Categories had been defined thirty years earlier, adjoint functors and equiv-
alence of categories had been around for twenty years and no one before Freyd could
say precisely what a genuine categorical property was, that is, provide a systematic
and general answer. In practice, everybody knew what they were and supposedly
everyone thought that these properties were preserved and reflected by equivalence
functors.

Freyd’s counterexample is very simple: an equivalence F : C →D between cate-
gories preserves equalizers but does not reflect them. Indeed, a morphism F( f ) may
be an equalizer of F(g) and F(h) in D , without f being an equalizer for g and h in
C , and this for the most simple and, as Freyd says himself, perverse reason. For it is
entirely possible, for instance, that g : X → Y and h : U →V in C , thus prohibiting
the construction of the equalizer in C (because the morphisms g and h don’t even
have the same domain and codomain), while F(X) = F(U) and F(Y ) = F(V ) in D ,
making the construction of the equalizer possible in D . But “having equalizers” is
intuitively a genuine categorical property, since it is a universal property.

What is required is a finer analysis of the notion of “P is a categorical prop-
erty”, in the light of the criterion of identity of categories, namely equivalence of
categories. “Being preserved and reflected by equivalences” will not do. Informally,
what is needed is a characterization of the properties that are invariant within equiv-
alence types. More formally:

(&) If P(C ) and C is equivalent to D , then P(D) if and only if P is a genuine
categorical property.

The problem is to characterize what is meant by “P is a genuine categorical
property”. Freyd answers the problem with the help of a diagrammatic language in
which it is possible to characterize genuine categorical properties in the sense that
the characterization yields a proof of the statement (&). What is interesting here is
that, if one were to start with the standard first-order logic and try to characterize
categorical properties in this fashion, one would fail. As Freyd himself observes,
free formulas are not preserved by equivalence functors, and neither are negatomic
predicates. However, once the diagrammatic language has been introduced and used
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in the proof of the theorem (&), then it is possible to translate the diagrammatic
language into a two-sorted first order language with bounded quantifiers. Here we
will restrict ourselves to the first-order counterpart. My presentation will follow
Freyd’s.

Freyd introduces a two-sorted language: a sort O for objects X , Y , Z, . . . and a
sort M for morphisms f , g, h, . . . . One atomic relation, =, and two unary operations
written � f and f � are also needed. Informally, one reads the formula “X = � f ” as
“X is the domain or source of f ” and “X = f �” as “X is the codomain or the target
of f ”. Quantifiers are “restricted” in the following sense:

∀
X

f−→Y
[. . . ] is the abbreviation of ∀ f [(X = � f )∧ (Y = f �)⇒ . . . ]

and
∃

X
f−→Y

[. . . ] is the abbreviation of ∃ f [(X = � f )∧ (Y = f �)∧ . . . ].

A sentence is called Freyd-diagrammatic10 if all quantified maps are restricted in
the aforementioned sense and

1. No map is quantified without its domain and codomain having been previously
quantified;

2. The atomic predicates X = � f , Y = f � do not appear other than implicitly in
the restricted quantifiers;

3. The atomic predicate (X = Y ) does not appear;
4. If ( f = g) appears as an atomic predicate then the restricted quantifiers for f

and g imply that � f = �g and f � = g�;
5. If g◦ f = h appears as an atomic predicate then the restricted quantifiers for f ,

g, and h imply that � f = �h, f � = �g, and g� = h�;
6. If f = 1X appears as an atomic predicate then the restricted quantifier implies

X = � f and X = f �.

The other formation rules are standard. What Freyd shows is that theorem (&) can be
proven for the diagrammatic language first, and then he shows that any elementary
sentence S in the diagrammatic language is invariant within equivalence types if and
only if there is a Freyd-diagrammatic sentence S′ such that the axioms of category
theory imply S ⇔ S′.

Notice that there is no equality between objects X , Y of a category and that they
are only needed to restrict quantifiers. This could be easily simplified by adopting
bounded quantification over a multisorted language right from the start. Equality
exists only between morphisms. This is not surprising since the identity conditions
for objects are extracted from the categorical context in the form of isomorphisms
between them. Although I haven’t presented the diagrammatic language, I will sim-
ply claim that the usual universal properties are diagrammatic properties and that

10 Freyd calls them “Frege-diagrammatic”, but since the notation has nothing to do with Frege’s no-
tation (as Freyd is well aware), I prefer to call them “Freyd-diagrammatic”. “Peano-diagrammatic”
would be another obvious alternative.
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therefore they are invariant within equivalence types. The interested reader can con-
sult [93]. (For a more systematic and more general presentation of a formal system
adequate for equivalence types of categories, see [206].)

I am thus in the position to make the following claims:

1. Category theory is a generalization of Klein’s program in many different senses.
By replacing a group with a groupoid and then with a category (which is appro-
priate and natural in all cases), one can use categories in the way Klein thought
groups could be used in geometry.11 But in the same way that Klein’s analysis is
suited to elementary geometry and that a more sophisticated analysis is required
for more general geometrical settings, groupoids and categories constitute the
entry point of higher-dimensional groupoids and categories, a setting in which
the question of criteria of identity is clearly delicate. (We will briefly come back
to this point in the conclusion.)

2. The use of adjoint functors to define various types of categories reveals a pro-
found unity of mathematical concepts and methods; in the same way that the
introduction of the group concept in geometry led to a systematic understanding
of the links between various geometrical systems and geometrical methods, the
introduction of the category concept opened the way to a better understanding
of various mathematical concepts and methods. Interestingly enough, Klein’s
view on the use of groups in geometry was first and foremost seen as a ped-
agogical tool. It was also how Eilenberg and Steenrod conceived the role of
categories in algebraic topology: they thought it was pedagogically valuable.
Of course, both were right, but history showed that there was much more to it
than a pedagogical instrument.

3. The introduction of categories and (adjoint) functors paves the way for a
systematic classification of mathematical domains; this classification is well
founded since there are intrinsic criteria of identity and of meaningfulness at
work; furthermore, these criteria show that categories are in some sense inde-
pendent from set-theoretical foundations.

Two important points still have to be clarified: (a) the very status of category
theory itself; (b) the extent to which category theory can be applied to foundational
issues in mathematics. We will now make some remarks about the first issue from
an historical perspective and then move to the second in the following chapter, since
major developments were made in the sixties, mostly by a few mathematicians,
which set the stage for further developments.

11 This is probably literally true of Ehresmann’s work in differential geometry. There is of course a
direct filiation from Klein to Cartan to Ehresmann. But Ehresmann’s work still has to be analyzed
carefully. It was more or less ignored by the categorical community for a long time, for reasons
that are beyond the scope of this study.
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5.5 The Foundations of Category Theory. . . Again

Categorical algebra has developed in recent years as an effective
method of organizing parts of mathematics. Typically, this sort of
organization uses notions such as that of the category G of all
groups. (. . . ) This raises the problem of finding some axiomati-
zation of set theory—or of some foundational discipline like set
theory—which will be adequate and appropriate to realizing this
intent. This problem may turn out to have revolutionary implica-
tions vis-à-vis the accepted views of the role of set theory.

([194], 231)
It is a remarkable empirical fact that mathematics can be based on
set theory. More precisely, all mathematical objects can be coded
as sets (in the cumulative hierarchy built by transfinitely iterating
the power set operation, starting with the empty set). And all their
crucial properties can be proved from the axioms of set theory. (. . . )
At first sight, category theory seems to be an exception to this gen-
eral phenomenon. It deals with objects, like the categories of sets,
of groups etc. that are as big as the whole universe of sets and that
therefore do not admit any evident coding as sets. Furthermore, cat-
egory theory involves constructions, like the functor category, that
lead from these large categories to even larger ones. Thus, category
theory is not just another field whose set-theoretic foundation can
be left as an exercise. An interaction between category theory and
set theory arises because there is a real question: What is the appro-
priate set-theoretic foundation for category theory?

([28], 6)

The first textbooks in category theory appeared on the scene in the sixties. They are,
in order of appearance: [89], [228], [64], [37], and [235]. This is an indication that
category theory, which in the sixties almost always took the form of the theory of
functors, was considered by some as being a mathematical theory worthy of expo-
sition as such. The emphasis in all these books but one, namely Ehresmann’s book,
was on Abelian categories and homological algebra. Freyd’s book, the very first one
on category theory, is even entitled Abelian Categories. They all introduced adjoint
functors and made the connection between adjoint functors, representable functors
and universal morphisms.12 At that point, the constructions used in category the-
ory were more intricate: functor categories were part and parcel of the machinery,
both in the context of Abelian categories and in relation to adjoint functors. It was
no longer possible to claim, as Eilenberg and Mac Lane had done in 1945, that one
could dispense with the notion of category altogether and work with pairs of ob-
jects. The status of categories was becoming a legitimate question and its precise
relationship to set theory was also an issue. It is interesting to note that there was
in fact very little published during this period on the topic. It may very well be that
category theory as an independent discipline was still in its infancy and that there

12 Freyd introduces the material related to adjoint functors in the exercises of his book. Here is
how he presents the situation: “One important area of functor theory which is not touched in the
text is the theory of adjoint functors. It is too important to leave out entirely, and hence we have
included a range of exercises on the subject” ([89], 10).
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were more challenging categorical problems to tackle than the problem of how it
relates to set theory. The books published in that period are revealing in that respect:
the way categories are defined and the manner in which the foundations of category
theory are treated give us a picture of category theorists’ attitudes. The status of
categories just did not seem to make any real difference in practice. One defined
categories in a certain way, then ignored the underlying aspects of the definition and
concentrated on the relevant and useful properties, and these properties are, not sur-
prisingly, purely categorical in the sense previously explained. Some care had to be
taken, but everyone knew how to circumvent the most obvious problems, which all
seemed to have something to do with questions of size. But as I have already sug-
gested, and as we will see later, this is probably a bit careless. There is one important
exception, as far as books are concerned: Mac Lane’s book published in 1971.

But the situation is not as simple as the textbooks might lead one to believe. It is
certainly the case that almost all category theorists did not care much about the issue
and similarly, given the recent proof by Cohen of the independence of the contin-
uum hypothesis and the forcing method introduced therein, almost all set theorists
did not care much about the issue either, since they were busy exploring further ap-
plications and modifications of Cohen’s method. Here is how Cohen himself viewed
the situation in 1967:

Yet, unless I am not sufficiently aware of current trends, the set-theoretical difficulties in
handling categories have not inspired many set theorists and it has had little impact in logic
as a whole. Thus, although we thoroughly accepted highly impredicative set theory because
we understand its internal cogency, we, as logicians, are less likely to accept category theory
whose roots lie in algebraic topology and algebraic geometry. It could be retorted that the
existing axioms of infinity are ample to cover formalizations of category theory, yet an
obstinate categorist could say that categories themselves should be accepted as primitive
objects ([49], 13–14).

This statement probably reflects the attitude of most logicians of that period.
Notice that the argument is pretty weak: because the roots of category theory lie in
algebraic topology and algebraic geometry, logicians are less likely to accept it. This
is a clear and simple case of a genetic fallacy. The fact that set theory arose from real
analysis is not viewed as weakness by logicians. Other, more interesting arguments,
were given by other logicians at about the same time and we will get back to them
shortly. Two mathematicians seem to have taken the problem seriously. Mac Lane
had presented a paper on the topic in the late fifties in which he described the various
difficulties that crop up when working in NBG for instance. (See [187].) At about
the same time Grothendieck had developed his solution to the problems, at least
those generated by the use of functor categories.13 But these did not generate much
discussion.

The situation drastically changed after the publication of Lawvere’s widely read
Ph.D. thesis and two short notes that were published soon afterwards in which he

13 It seems that Grothendieck started thinking about the problem in the late fifties when the question
of the foundations of category theory were brought to the fore at the meetings of the Bourbaki
group. The first appearance of Grothendieck universes are in [96]. I owe this information to Ralf
Krömer.
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proposes to found mathematics on category theory and, in particular, to reformulate
set theory in categorical terms. ([165], [167]) Here is how Mac Lane reports reacting
to Lawvere’s thesis: “I was stunned when I first saw it [i.e., Lawvere’s thesis]; in the
spring of 1963, Sammy [Eilenberg] and I happened to get on the same airplane from
Washington to New York. He handed me the just completed thesis, told me that I was
the reader, and went to sleep. I didn’t”14 ([196], 346). Although he did not endorse
Lawvere’s program entirely—for Mac Lane never argued in favor of a purely cat-
egorical foundational stance—Lawvere’s dissertation and papers contained various
suggestions as to how to handle foundational issues. It is clear, as we will see, that
Mac Lane took these suggestions up and investigated them. Thus, towards the end
of the sixties, Mac Lane presented a series of papers on the foundations of category
theory and the foundations of set theory.15 The second paper published in 1969 was
accompanied by a paper written by Feferman on the same topic. (See [84].) These
were, for quite a while the only papers that aimed at clarifying the set-theoretical
foundations of category theory. One fact that played a key part in this development
is the appearance of elementary toposes in the late sixties and early seventies, due
to Lawvere and Tierney. But we are getting ahead of ourselves. Let us first go back
to textbooks to see how the various authors defined categories.

In all the books published between 1963 and 1970, a category is either defined
as a class M of morphisms with the obvious axioms, as in [89], or as a class A of
objects and a class M of morphisms satisfying the obvious axioms, as in [228]. It
is then specified that for objects X , Y , Hom(X ,Y ) is a set. Thus all authors work
in a set-theoretical language, usually NBG. During that period, a few distinctions
were made to organize the field: (1) a large category is one in which the collec-
tion of morphisms is a class whereas a small category is a category in which the
collection of morphisms is a set; (2) a distinction is introduced between concrete
and abstract categories. An abstract category is any category satisfying the forego-
ing definition of a category as a class. A concrete category is a pair 〈C ,U〉 where
C is a category and U : C → Set is a faithful functor. What this definition says is
that a concrete category is a category in which objects can be treated as sets and
morphisms can be treated as functions. The underlying motivation behind this dis-
tinction is that there are categories in which morphisms are not functions, as I have
already mentioned and many mathematicians saw in this fact the fundamental rai-
son d’être of category theory. For instance the category hTop, is not concrete in
this sense, while the category Top is concrete. The proof of the non-concreteness
of a category is more involved than one might think. (See [92] for details and other
examples of non-concrete categories.) The first distinction guarantees that a functor

14 It should be pointed out that it was also Mac Lane who communicated Lawvere’s notes published
in the Proceedings of the National Academy of Sciences, published in 1963 and 1964.
15 See [190], [191], [192], [194]. Here the dates of publication are misleading. For in fact the
last paper, published in 1971, was in fact the first paper presented on the issue. It is based on
a paper presented at a symposium on pure mathematics in 1967. The second one was probably
finished before 1968 and it is more or less a general presentation of category theory with a sketch
of Lawvere’s proposal. The first paper published in 1969 was in fact finished in 1968. The second
was received by the editor in the spring of 1969. These dates are important since Mac Lane seems
to change his mind considerably between 1968 and 1969. We will come back to this point.
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category C D can be constructed provided that the category D is small. Although
this approach seems to work for most purposes, the introduction of restrictions on
the size of categories is, from the point of view of category theory, rather artificial.
Furthermore, in some contexts, large categories and functors between large cate-
gories became inescapable, as in Grothendieck’s work with fibred categories first
presented in the early sixties. (See [105].) But there is no trace of these difficulties
in the aforementioned books.

Let us now turn to alternatives available in the literature at that time. As I have
already indicated, a different approach, based on ZFC with additional axioms, was
developed by Grothendieck in the late fifties. It is called the method of universes or
Grothendieck universes. The definition, as presented in SGA4 by Verdier, goes as
follows. (See [5].)

Definition 5.1. A universe is a non-empty set U satisfying the following properties:

(U1) If x ∈U and if y ∈ x, then y ∈U .
(U2) If x,y ∈U , then {x,y} ∈U .
(U3) If x ∈U , then ℘(x) ∈U .
(U4) If {x | i ∈ I ∈U} is a family of elements of U , then

⋃
i∈I xi ∈U .

Clearly the empty set is a universe, called U0. Furthermore, the collection of
finite sets is also a universe, let us call it U1. Thus these axioms are, as such, not
very strong. For this reason, Grothendieck added the following axiom:

(UA) For any set x, there is a universe U such that x ∈U .

This is a very strong axiom. Just consider the case when x is the set N of natural
numbers. Then axiom (U3) yields all the powers of N and axiom (U4) then makes
it possible to take the union of these powers. We will call this universe U2. It can
be shown that the axiom (UA) is equivalent to the existence of strongly inaccessible
cardinals, an axiom independent from ZFC.

The advantage of this framework is that the “usual” categories, that is the cate-
gories of structured sets, are definable: given a universe U , it is possible to define
the category of sets in U , or U-sets, the category of topological spaces in U , the cat-
egory of Abelian groups in U , the category of categories in U , etc. For instance, in
U1, there is the category of U1-sets, i.e., of finite sets, the category of finite topolog-
ical spaces, the category of finite Abelian groups, the category of finite categories,
etc. Of course, one normally considers a universe U in which there is an infinite
cardinal. The “usual” categories are then elements of U .

As for the “unusual” categories (e.g., in Grothendieck’s usage, presheaves and
sheaves, and more generally functor categories), the method of universes gives the
means to handle them. Some terminology is required. Given a universe U , we say
that a set is U-small if it is isomorphic to an element of U . We say that a category
is a U-category if for every pair (X ,Y ) of objects of C , HomC (X ,Y ) is U-small. It
is easy to verify that if the categories C and D are members of U , then the func-
tor category DC is an element of U and that if C and D are U-small, then DC

is U-small. Furthermore, if C is U-small and D is a U-category, then DC is a U-
category. Now, let C be a U-category and consider the category of all functors from
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C to U-sets, i.e., UsetsC . This is clearly not, in general, a U-category. Just consider
the case when U is U1 and C is the category N with objects the natural numbers
and morphisms the usual ordering relation. It is clearly a U1-category, but the cate-
gory U1setsN is not. However, it is a U2-category. Thus, there is always a chain of
universes U1 ⊂U2 ⊂U3 · · · that can be extended indefinitely as needed.

Although this framework is technically flawless, various criticisms were leveled
at it. The most obvious criticism, raised for instance by Mac Lane, is that it is not
possible to consider the category of all groups. One is always restricted to the cate-
gory of U-groups, for some universe U , and this is not faithful to category theory.16

Second, from a set-theoretical point of view, large categories require existence prin-
ciples that go beyond ZFC, that is, beyond what is apparently needed for the rest of
mathematics. Third, the method of universes introduces a lot of technicalities that
seem totally irrelevant to the actual practice of category theory, e.g., keeping track
of the universes and moving from one universe to the next when constructing functor
categories. Presumably, one would want a foundational framework that is faithful to
the practice and not one that solves a technical problem in a merely ad hoc manner.
Finally (this criticism was raised much later by, e.g., [23]), although questions of
size are relevant to category theory and have to be treated with care, there are other
important conceptual issues that are not even touched upon by this framework.

In his book, Mac Lane starts by presenting a slight modification of the method of
universes: he presents a framework in which there is only one universe U . This ap-
proach was initially presented in [192], probably following a lead offered by [167],
where we read: “The last clause thus embodies the idea that only one inaccessi-
ble is needed for most mathematics; our world thus stops far short of the second
Grothendieck universe if we assume the above axioms” ([167], 18). But in this pa-
per Lawvere is developing a purely categorical framework and not a set-theoretical
framework. He therefore leaves open the question of a set-theoretical translation of
his idea, and this is what Mac Lane develops. More formally, he assumes ZFC and
adds the following axiom:

(AU) There is a set U , called a universe, satisfying the following properties:

(i) x ∈ u ∈U implies x ∈U ;
(ii) u ∈U and v ∈U imply {u,v}, 〈u,v〉 and u× v ∈U ;

(iii) x ∈U implies ℘(x) ∈U and
⋃

x ∈U ;
(iv) ω ∈U ;
(v) if f : a→ b is a surjective function with a ∈U and b⊂U , then b ∈U .

Thus, the basic idea is to add an infinite set and some closure properties on the
universe right from the start. With such a universe U fixed, a set x is said to be small
if it is a member of U . Notice that this characterization of smallness is different from
Grothendieck’s definition. It can easily be seen that the small sets thus defined are

16 This is certainly not entirely convincing. For why would it not be adequate to consider a category
of groups, deemed adequate for the purposes at hand? This was Eilenberg and Mac Lane’s attitude
in the forties after all. . . This clearly shows that Mac Lane’s views on the status of categories had
changed in the meantime.
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themselves a model of ZFC. In this way, Mac Lane believes that he is simplifying
the framework greatly and that it is for most purposes sufficient for category theory.

Our intention is that the small sets can serve as the objects of Mathematics, while the other
sets, not necessarily small, may be used to describe the various categories and functor cate-
gories of these Mathematical objects ([192], 195).

It is possible to construct the category of all small sets, the category of all small
groups, the category of all small topological spaces, etc. Of course, the category of
all small sets is not itself small. Thus the category of all groups cannot be formed.
What Mac Lane takes to be the key property for the development of category theory
is that of being locally small: a category C is said to be locally small when the
set Hom(X ,Y ) is small for each pair of objects X , Y of C . The reason is that local
smallness is the key property for the proofs of crucial results in category theory, e.g.,
Yoneda’s lemma, Kan extensions and Freyd’s adjoint functor theorem. Therefore it
seems that any set-theoretical framework adequate for category theory has to make
room for local smallness. All the categories mentioned above (the category of small
sets, etc.), are locally small. The rub is that, as we already know, not all categories
are locally small: given locally small categories C and D , the functor category DC

is not necessarily locally small.
Mac Lane circumvents that problem by embedding any given set S into a larger

set S. The set S is no longer a universe in the foregoing sense, but it is such that
problematic constructions which were leading to categories that were not locally
small could now be made to yield locally small categories. I won’t give the detail
here for it is clearly an ad hoc solution to the problem once again, and to this extent
it is not satisfactory.

The foregoing approach, although weaker than Grothendieck’s method of uni-
verses, is still stronger than ZFC, since it postulates a specific universe (and possible
extensions which are not universes but larger). Mac Lane presented this approach in
1969. It is not his first stab at the problem. Indeed, Mac Lane had earlier considered
a set theory weaker than ZFC, which he called a theory of schools and was pre-
sented under that name only once. (See [192].)17 However, the main point of this
approach is to allow for “variable” models of set theory: it portrays category theory
as moving from one model of set theory to a different, presumably larger, model of
set theory. The starting point, however, is a weak set theory, essentially Zermelo set
theory, that can be extended in different directions, depending on one’s needs. Since
schools have classes as parts, the theory of schools has two sorts: one for items and
one for classes. The axioms are extensionality for classes, ordered pair, empty class,
unit classes, Cartesian product and bounded comprehension over classes. A distinc-
tion between small and large classes is introduced via the concept of a subschool.
But the key concept is that of a normal subschool: a subschool N of a school S is a
normal subschool if it is a school such that the N-classes are full S-classes and all

17 Mac Lane sketches the theory once again in 1971, but not under that name. It is there presented
as a framework where there are multiple systems for foundations and was certainly written before
he had the developed the formal version of the theory, since the paper was presented in 1967. Once
again, it is hard not to see Lawvere’s influence at work.
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S-subclasses of an N-class are also N-classes. Grothendieck universes are normal
subschools and so is the class of all sets in models of NBG. There is no need for
us to look at the details of this approach, since it did not have any echo when it
appeared and Mac Lane resuscitated the idea in a different form later, after toposes
were introduced. But what we do have to keep in mind is that category theory in fact
does not need a theory as strong as ZFC to be developed. Mac Lane even claimed
at some point that most of mathematics, in fact all of it except set theory itself, did
not need ZFC but only a form of Zermelo set theory. It is interesting to note that
this idea appeared at the same time that he was proposing a stronger framework and
before the advent of topos theory.

Be that as it may, Mac Lane’s attitude is revealing. We see him presenting first
a system weaker than ZFC and then, soon after, a system stronger than ZFC. And
that is not all. As I have already mentioned, he already knew about Lawvere’s pro-
gram of starting with categories and derive sets from them instead. This amounts to
the claim that categories are neither sets nor classes in the standard formal sense,
although the axioms of category theory can be interpreted to some extent within a
set theory like ZFC or a variant thereof. Mac Lane is clearly sympathetic to Law-
vere’s program. Indeed, Mac Lane sketches Lawvere’s proposal and comments on
it by saying that “In this description of a category, one can regard ‘object’, ‘mor-
phism’, ‘domain’, ‘codomain’, and ‘composite’ as undefined terms or predicates;
the definition as given is then independent of set theory.” ([190], 287.) In the same
spirit, Mac Lane opens up his textbook on category theory by defining what he calls
a metacategory, again borrowing the terminology and the presentation from [167].
The idea is to give an axiomatic definition of category theory for which it is not
assumed that categories are sets or classes. Here is how the definition goes:

Definition 5.2. A metagraph consists of objects a, b, c, . . . , arrows f , g, h, . . . , and
two operations, as follows:

Domain, which assigns to each arrow f an object a = dom f ;
Codomain, which assigns to each arrow f an object b = cod f .

A metacategory is a metagraph with two additional operations:

Identity, which assigns to each object a an arrow ida = 1a : a→ a;
Composition, which assigns to each pair 〈g, f 〉 of arrows with domg = cod f an
arrow g◦ f , with g◦ f : dom f → codg.

And these operations are subject to the usual axioms, associativity and the unit law.

Although Mac Lane does not take this step, the foregoing data can be presented
by the following diagram:

C2 = C1×C0 C1 −◦− //
π1 //

π2
// C1 oo 1(−)

σ //

τ
// C0

where we do not specify what C1, C0, σ , τ and 1(−) are, but where C2 is the pullback

of C1
σ //
τ

// C0. Then, the axioms can be stated as additional diagrams that have to be
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commutative. Needless to say, this description is motivated by the original definition
but we now use the language of diagrams to present the data required.

Mac Lane’s motivation is straightforward: “A metacategory is to be any interpre-
tation which satisfies all these axioms” ([195], 8). He comes back to this motivation
in the section on foundations:

For this reason, there has been considerable discussion of a foundation for category theory
(and all of Mathematics) not based on set theory. This is why we gave the definition of a cat-
egory in a set-free form, simply by regarding the axioms as first-order axioms on undefined
terms “object of C ”, “arrow of C ”, “composite”, “identity”, “domain”, and “codomain”
([195], 24).

Thus, after reading Mac Lane in the late sixties and early seventies, the reader comes
to the conclusion that there are three logical options: category theory can be devel-
oped within a set theory weaker than ZFC, within a set theory stronger than ZFC
or on its own, that is, independently of ZFC or any formal set theory. The latter
approach does not mean that sets are forgotten once and for all; they are simply
reintroduced within a categorical framework. In other words, all options are on the
table and, at that time, none seems to be really satisfactory.18 It seems that every-
thing is possible but that nothing is clearly adequate! How are we to decide? At
that point in time, there does not seem to have been any reasonable way to make a
choice. In fact, judging from what Mac Lane wrote in the years following and even
to this day, it seems that he stayed in this superposition of mental states and never
really made up his mind about the issue.19

There was yet another possibility, presented in 1969 by Feferman, following a
suggestion made by Kreisel. From a purely set-theoretical point of view, it can be
said that what Mac Lane presents as being a problem generated by category theory
is simply a special case of a general problem that set theorists had considered even
before the advent of categories; it is simply one version of the usual problem of set
formation, that is the problem of what totalities can be considered to be sets. In fact,
the problem goes back to Cantor and Frege. When Cantor considered the totality of
all ordinals, he simply mentioned that it did not constitute a set. Cantor’s reflections
on the absolute point in the same direction. Frege’s infamous axiom V leads to a
similar problem: an unrestricted principle of comprehension, intuitively convincing
as it might be, yields contradictions. Set theorists are well aware of this problem and
have proposed various well-known solutions. Already in the thirties, when Zermelo
introduced the cumulative hierarchy of sets, he envisaged a solution for sets that
reminds one of Grothendieck and Mac Lane: “Any specifically described model of
set theory can in some way be described as a set, that is, as an element of a higher
model of set theory” ([270], 47). This idea has been translated, in contemporary
set theory, into what is called a reflection principle: whatever is true of the whole

18 We will see in the next chapter why Lawvere’s program was seen as unsatisfactory at that point.
19 Well, it seems that he gave up the one-universe approach and argued more in favor of a weak set
theory, namely Zermelo with bounded quantifiers and choice. Mathias, a set theorist who is not de-
fending set theory as the only acceptable foundational framework, looked carefully at Mac Lane’s
revised weak framework as presented in [196], and showed some of its limitations. See [216] and
[217].
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universe of sets is in fact true of a part of that universe. The underlying idea is that
the whole universe of sets, whatever it is, is in fact impossible to grasp by rational
means and therefore, whatever is presented or described by rational means is merely
a part of that universe. Feferman’s approach is based on such a reflection principle.20

Formally, Feferman starts with ZFC written in the usual first-order language. A
constant symbol, s for ‘small’, is then added to the language. Since formulas will
be relativized to s, we introduce the following conventions: write ∃x ∈ sφ(x) for
∃x[x∈ s∧φ(x)] and ∀x∈ sφ(x) for ∀x[x∈ s⊃ φ(x)]. For any formula φ , φ (s) denotes
the result of relativizing all quantifiers to φ . The system ZFC/s is then defined by
the following axioms:

1. the axioms of ZFC;
2. ∃x(x ∈ s);
3. ∀x∀y[(y ∈ x∧ x ∈ s)⊃ y ∈ s];
4. ∀x∀y[x ∈ s∧∀z((z ∈ y⊃ z ∈ x)⊃ y ∈ s)];
5. ∀x1 ∈ s . . .∀xn ∈ s[φ (s)(x1, . . . ,xn) ⇔ φ(x1, . . . ,xn)] for each formula φ of the

language with free variables x1, . . . ,xn.

The second axiom says that the universe of small sets is not empty, the third amounts
to the claim that the union of small sets is small, the fourth axiom guarantees that
subsets of small sets are themselves small. The fifth axiom is the reflection princi-
ple: it says literally that any formula φ with small sets as parameters describing a
property of the universe in our given language is true if and only if the description is
true of small sets. Put differently, it does not matter whether the variables are inter-
preted as denoting small sets or arbitrary sets. From a model-theoretic point of view,
it means that the universe of small sets is an elementary substructure of the universe
of all sets. Notice, however, that the reflection principle 5 is false if we take finite
sets for the universe of small sets.

Feferman shows how categories, functors and natural transformations can be de-
fined in this framework and how the distinctions between small categories and lo-
cally small categories can be made. He then conjectures that the theorems of cate-
gory theory, as of 1969, are provable in a system weaker than ZFC/s, where in fact
the reflection principle is not even used.21 However, the real interest of the system
is that it has the two following properties:

1. Given any “metacategory” C , the reflection principle guarantees that there is
a category Cs which is a set and such that they have the same set-theoretical
properties, i.e., they have the same properties expressible in the language of set
theory under consideration. In the words of Blass, “if we prove a theorem about
small sets by using large categories, then the same theorem holds for arbitrary
sets” ([28], 8). Any reference to inaccessible cardinals is simply removed. This
is an exact formulation of the conviction that questions of size are only used to
justify certain general constructions and they do not bear on the real mathemat-
ical content of the construction and its consequences.

20 Lawvere also mentions a reflection principle, referring to Bernays and Levy, as a possible frame-
work in his paper on the category of categories in 1966.
21 Feferman works in a somewhat weaker system at first. But this is irrelevant to the discussion.
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2. Feferman proves that ZFC/s is a conservative extension of ZFC. This means
that whatever we can prove about sets in ZFC/s is already provable, although
perhaps in a much more convoluted manner, in ZFC. Thus, as far as results
about sets are concerned, category theory does not go beyond ZFC.

Feferman’s results are important for they can be interpreted as showing that as
far as set theory is concerned, category theory does not raise new foundational prob-
lems. Thus, from the purely set-theoretical point of view, Mac Lane’s worries seem
to be simply unfounded.

As we have seen, logicians in general never showed a deep interest in the foun-
dations of category theory. It can be said that they never saw the situation as being
radically different from other foundational problems, e.g., wheter the collection of
all well-orderings is itself a well-ordering. The most striking and important illustra-
tion of this attitude is provided by Kreisel, who wrote two papers in the sixties in
which he voices his opinion on the subject ([145] and [146].) He also wrote a crit-
ical review of Mac Lane’s 1971 paper. Kreisel’s reaction gives us the opportunity
to present what seems to be the first expression of a profound disagreement on the
nature of a foundational enterprise, a disagreement that seems to last even to this
day. Indeed, I believe that Kreisel’s opinion was and still is very influential among
logicians and philosophers. Although Kreisel’s arguments were legitimate and had
an undeniable force when he formulated them in the late sixties, I believe that they
are no longer tenable given the developments that followed in category theory and
categorical logic.

The basis of Kreisel’s criticisms is a distinction between foundations and orga-
nization of mathematics. Kreisel claims that the distinction is useful “for analyzing
the nature of the problems presented by (existing) category theory, and, more gen-
erally, for analyzing the role of foundations for working mathematicians” ([146],
189). The distinction between foundations and organization amounts to the fact that
foundations have to do with the validity of mathematical principles, as opposed to
their efficiency. In other words, foundations should yield a justification of axioms or
reasons for axioms. How is this supposed to be done and what type of justification
are we to expect?

Here Kreisel’s answer appears to be somewhat mysterious and difficult to under-
stand. Let us start with a somewhat long quote.

For foundations it is important to know what we are talking about; we make the subject
as specific as possible. In this way we have a chance to make strong assertions. For practice,
to make a proof intelligible, we want to eliminate all properties which are not relevant to
the result proved, in other words, we make the subject matter less specific.

Foundations provide an analysis of practice. To deserve this name, foundations must be
expected to introduce notions which do not occur in practice. Thus in foundations of set
theory, types of sets are treated explicitly while in practice they are generally absent; and
in foundations of constructive mathematics, the analysis of the logical operations involves
(intuitive) proofs while in practice there is no explicit mention of the latter ([146], 192).

Foundations, according to Kreisel, make the subject as specific as possible. What
exactly does that mean? It suggests that in a foundational analysis, we come to fix the
referent of our discourse. For instance, in a foundational analysis, the real numbers



5.5 The Foundations of Category Theory. . . Again 185

are identified with certain equivalence classes of Cauchy sequences or, in a different
analysis, with Dedekind cuts. Kreisel seems to suggest that the foundational analysis
exhibits what we are talking about when we talk about the reals. These notions do
not appear in practice. Someone doing analysis does not prove results about real
functions by referring to real numbers as equivalence classes of Cauchy sequences,
for instance. At most, the analysis is provided in a preliminary chapter and is then
forgotten, as in [236]. In order to do analysis, one uses the properties of the reals
that are usually stated in the axiomatic presentation: the real numbers constitute a
complete ordered field. Thus, in this sense, we make the subject less specific since
we simply state the properties required to prove the various theorems of analysis.

This is fair enough. But, as we will see, foundations in this sense can also be car-
ried out in a categorical framework. To mention but one interesting aspect revealed
by a categorical analysis of the reals, whereas Cantor’s and Dedekind’s construc-
tions are logically equivalent in ZFC, they are not necessarily so in some categories,
more specifically in some toposes. This already indicates that some foundational
analysis performed in a set-theoretical framework can be transferred into a topos-
theoretical framework. This in itself might not satisfy someone like Kreisel. For
although the technical result is surprising to some extent (but not too surprising
since we were already prepared for some such result by constructive analysis of
real numbers), it is fundamentally the “same”. What would be interesting is a gen-
uinely “new” analysis in the proposed framework and, indeed, such innovations are
possible, as was demonstrated in synthetic differential geometry.

Furthermore, it is not entirely clear that seeing real numbers as, say, Dedekind
cuts, provides reasons for or justifies the axioms. Clearly, one can take the axioms
for a complete ordered field and verify that indeed, Dedekind cuts satisfy these
axioms, i.e., make them true. In this sense, they constitute a justification. But the
axioms will be just as true in different foundational schemes, e.g., in various cat-
egories or, more specifically, toposes. Furthermore, one can reasonably question
whether a set-theoretical analysis is, at bottom, more specific in the foregoing sense
than a topos-theoretical analysis, unless one assumes to begin with that there is
a unique universe of sets (a claim which requires its own justification, given the
state of knowledge in contemporary set theory). (See, for instance, [250].) To be
fair to Kreisel, he wrote these notes before the advent of topos theory and the
topos-theoretical implementations of these analyses. (More on elementary toposes
in Chapter 7.) Be that as it may, we seem to be forced to shift to a different issue,
namely the status of category theory itself.

What Kreisel seems to be indirectly objecting to here is the fact that category
theory necessarily makes “the subject less specific”, thus cannot provide a proper
foundational analysis of mathematics. This is underlined further in the following
passage:

Foundations and organization are similar in that both provide some sort of more systematic
exposition. But a step in this direction may be crucial for organization, yet foundationally
trivial, for instance a new choice of language when (i) old theorems are simpler to state but
(ii) the primitive notions of the new language are defined in terms of the old, that is if they
are logically dependent on the latter. Quite often, (i) will be achieved by using new notions
with more ‘structure’, that is less analyzed notions, which is a step in the opposite direction
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to a foundational analysis. In short, foundational and organizational aims are liable to be
actually contradictory ([146], 192).

It is hard not to see that Kreisel’s target is category theory, in particular the role it
played in the foundations of algebraic topology and homological algebra. Indeed,
everyone, Eilenberg and Mac Lane to begin with, presented category theory first and
foremost as a language that made it possible to express certain concepts, results and
problems precisely, and to prove theorems in algebraic topology. Furthermore, as
everyone saw and as I have indicated, category theory also provided the language
with which to systematically organize algebraic topology and, afterwards, other ar-
eas of mathematics and even mathematics as a whole. Finally, categories, functors
and natural transformations do indeed seem to have more “structure” and to be log-
ically dependent on “older” and more “simple” notions, i.e., set-theoretical notions.
Kreisel raises the same point in his appendix to Feferman’s paper:

Organization and foundations are incomparable. Organization involves a proper choice of
language; we have already seen that this is not necessarily provided by set-theoretical foun-
dations. On the other hand, we may have a very successful organization which leaves open
the verification of adequacy conditions, at least for a given foundational scheme.

Generally speaking, the aims of foundations and organization will be in conflict. Being
an analysis of practice foundations must be expected to involve concepts that do not occur
in practice (just as fundamental theories in physics deal with objects that do not occur in
ordinary life). Organization is directly concerned with practice; (. . . ) (Kreisel, in [84], 244–
245.)

Kreisel’s claims recall Russell’s claims in the opening page of his Introduction to
Mathematical Philosophy:

Mathematics is a study which, when we start from its most familiar portions, may be
pursued in either of two opposite directions. The more familiar direction is constructive,
towards gradually increasing complexity: from integers to fractions, real numbers, com-
plex numbers; from addition and multiplication to differentiation and integration, and on to
higher mathematics. The other direction, which is less familiar, proceeds, by analyzing, to
greater and greater abstractness and logical simplicity ([245], 1).

This is certainly in the spirit of Kreisel’s proposal. Category theory and the orga-
nization it provides is certainly in the realm of “higher mathematics”, whereas set-
theoretical analysis, although this is not what Russell had in mind, belongs to the
foundational project. Clearly, Eilenberg, Mac Lane, Steenrod, Cartan, Grothendieck
and Kan were primarily concerned with mathematical practice. Category theory was
useful as a language to organize, clarify and deepen some mathematical concepts,
problems and constructions. However, Russell goes on:

(. . . ) instead of asking what can be defined and deduced from what is assumed to begin
with, we ask instead what more general ideas and principles can be found, in terms of
which what was our starting-point can be defined or deduced. It is the fact of pursuing
this opposite direction that characterizes mathematical philosophy as opposed to ordinary
mathematics ([245], 1).

The introduction of the concept of adjoint functors changes the landscape and the
status of category theory. Adjoint functors provide the “general idea” and the “prin-
ciple” from which various starting points can be defined and deduced. In this sense,
category theory becomes part of mathematical philosophy.
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Kreisel would probably still not agree. He would claim that he has in fact antici-
pated this possibility already in the early phase of category theory. Thus, we read:

Before going further into the relation between mathematical practice and foundations, it
is worth noting the obvious distinction between (i) foundational analysis (which is specifi-
cally concerned with validity) and (ii) general conceptual analysis (which, in the traditional
sense of the word, is certainly a philosophical activity). As mentioned above, the working
mathematician is rarely concerned with (i), but he does engage in (ii), for instance when
establishing definitions of such concepts as length or area or, for that matter, natural trans-
formation. For this activity to be called an analysis the principal issue must be whether the
definitions are correct, not merely, for instance, whether they are useful technically for de-
riving results not involving the concepts (when their correctness is irrelevant). In short, it’s
not (only) what you do it’s the way that you do it ([146], 192).

What does it mean for a definition to be correct? We are told what it does not
mean: it does not mean that it is useful in applications. But we are not told what it
is. Is it given by some a priori criterion? Or is it given by some general empirical
criterion? We are left in the dark. It is no surprise to find Halpern, in his review of
Kreisel’s paper, saying “In the next section the distinction between organization and
foundation is elaborated. In this section a further distinction is made—conceptual
analysis versus foundational analysis (which the reviewer found more confusing
than clarifying)”([110], 1).

Two elements are mentioned by Kreisel in all his papers on the topic: (1) precise
adequacy conditions, given by a set-theoretical analysis; and (2) logical simplicity,
which goes back at least to Russell. With respect to the first ingredient, we have to
turn to the second appendix of the textbook Kreisel wrote with Krivine. (See [148].)

In this appendix, which is on the foundations of mathematics, Kreisel starts off
by stating what we have already seen, namely that foundational studies are con-
cerned with describing and analyzing informal mathematics. One of the main goals
of foundational work is that

(. . . ) in foundations we try to find (a theoretical framework permitting the formulation of)
good reasons for the basic principles accepted in mathematical practice, while the latter is
only concerned with derivations from these principles. The methods used in a deeper anal-
ysis of mathematical practice often lead to an extension of our theoretical understanding. A
particularly important example is the search for new axioms, which is nothing more than a
continuation of the process which led to the discovery of the currently accepted principles.
(Kreisel in [148], 161.)

Then Kreisel attacks what he calls the formalist doctrine, which was also his main
target in his paper published in 1971 (presented in 1967 at Berkeley).22 ([146])
Once this is done, Kreisel turns to what he takes to be two valuable foundational
programs: the set-theoretic semantic foundations and the combinatorial foundations.
According to Kreisel, both views, the first realistic and the second idealistic, contain
worthy elements but both also have limitations and defects. This judgment is based
on the idea that “a conceptual framework is defective if it does not allow (theoretical)
explanations of facts for which an alternative theory has an explanation, one purpose
of theory being the extension of the range of theoretical understanding.” (Kreisel, in

22 More specifically, the targets were Paul Cohen and Abraham Robinson.
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[148], 228.) He then claims that there are results that allow us to see the defects of
both points of view.

Kreisel claims that the set-theoretical foundations provide a realistic analysis of
mathematical practice; that is, it presents mathematics as being about certain ab-
stract objects. They do so by reducing each mathematical structure U to a set, which
is then called a realization of that structure (usually called a model). An adequate
axiomatization of the reduction of a structure U to set theory is a set of axioms AU

satisfying the following conditions (p. 172):

1. AU is purely logical (in the language of predicate calculus);
2. U satisfies A and hence, there exists a structure that satisfies AU;
3. All structures that satisfy AU are isomorphic (and, hence, isomorphic to U);
4. All intuitive properties of U can be expressed or defined in terms of those ex-

plicitly mentioned in AU;
5. All assertions about U that can be proved intuitively follow logically from AU.

Notice that the language does not have to be first-order and the formulas do not have
to be finite in all cases. (And indeed, these cases are investigated in the book.) In
fact, it is clear that first-order logic is inadequate in the foregoing sense for various
structures, in particular it does not allow for a distinction between finite and infinite.
(For more on limitations of first order logic, see [16].) The claim is that all 19th
century informal mathematics can be reduced adequately to set theory. Kreisel un-
derlines the fact that the set-theoretic foundations themselves cannot be adequately
reduced in this way. For that would mean that they can be realized by a set by 2, and
by 3, this set would be in one-to-one correspondence with the collection of all sets,
which is impossible.

For structures such as the collection of all sets or the intuitive notion of ordinal,
a generalized notion of realization is required. In this case, predicate symbols are
added but for which variables now range over all sets, and not only over elements
of a set. The adequacy conditions are then adapted to this variation: “axioms are
set-theoretically justified if one has a (precise) concept which satisfies the axioms
in the wider sense of realization” ([148], 176). Category theory clearly falls under
this generalized notion: there is a first order characterization of the concept and
although it permits self-applicability, this is no different from the notion of well-
ordering, according to Kreisel. Thus, from his point of view, the foundations of
category theory do not raise any genuinely new logical or set-theoretical issues.
But, I do have to point out immediately, although it certainly was not clear to most
people at that time, that condition 3 above is clearly inadequate for categories. For,
as we have seen, the notion of isomorphism does not provide the proper criterion
of identity for categories. This is the first serious indication that there is something
different going on. As we have seen, the notion of equivalence for categories is
analogous to the notion of homotopy equivalence for spaces.

Kreisel does not claim, however, that category theory might not bring about some
important revisions in the foundations of mathematics. For one thing, there are al-
ready, according to him, foundational notions that are not reducible to sets, e.g.,
the notion of rule as treated in intuitionistic mathematics, where a rule is regarded
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as a process, or the notion of abstract structure or abstract property. Kreisel even
suggests that non-set-theoretical foundations might begin with the (primitive) no-
tions of rule and abstract structure in terms of which the notions of category theory
can be defined, and not from the technical notion of category itself. (See Kreisel in
[84], 243.) In the same paper, Kreisel rightly calls attention to the fact that category
theorists have not given a clear and unambiguous presentation of category theory
itself.

What was missing before one could even begin to consider a problem of foundations for
category theory, was a formulation of the latter. In other words, the specialists in the subject
should decide what they are talking about, and state properties of these concepts (it is the
business of specialists because ‘category’ in contrast to ‘number’ was introduced as a tech-
nical notion). Then we can see whether or not we get an adequate set-theoretical foundation.
(Kreisel, in [84], 240.)

As we have seen, the very presentation of the concept of a category had changed
from Eilenberg and Mac Lane’s original definition to various presentations in the
textbooks. In this respect, Kreisel is entirely correct.

Thus, with respect to the question of the relationship between set theory and
category theory, we can sum up Kreisel’s attitude as follows:

1. Category theory (at least as it was presented in the sixties) does not raise any
new set-theoretical foundational problems;

2. Instead of starting from category theory and trying to see what it can bring to
the foundations of mathematics, which is what Kreisel takes Mac Lane to be
doing (see Kreisel’s review of Mac Lane, [147]), one should instead look more
carefully at category theory from the point of view of foundations;

3. Set-theoretical foundations are not, according to Kreisel, the only possible or
valuable foundations for mathematics; there are alternatives and category theory
might play a role in the formulation of new foundational schemes;

4. Category theory itself (at least as category theorists formulated it in the sixties)
does not provide a foundational scheme as such; it is merely an organizational
tool for mathematical practice.

The last point brings us to the issue of logical simplicity. Kreisel assumes, as
many people do, that a foundational analysis ought to be based on logically simple
notions and that the notions of membership, collection and rules are such notions.
One might then argue that the notion of category presupposes the notions of col-
lection and rule and that, therefore, from a foundational point of view, it cannot be
taken as a starting point. Here, extreme care has to be taken.

From a purely philosophical point of view, this presupposes a certain concep-
tion of the nature and role of a foundational framework. From a mathematical point
of view, what can be said at this point is that the work of Eilenberg, Mac Lane,
Grothendieck, Kan and others had contributed to the introduction of a precise, al-
though not entirely formal, notion, somewhat similar to what Cantor and Dedekind
had done for the notion of set. In the same way that every mathematician knows what
a set is, but is probably incapable of writing down the axioms of ZFC, most mathe-
maticians nowadays know what categories, functors and natural transformations are
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as tools in their work. What remains to be done is to give a precise and formal anal-
ysis of categories in general, and this might turn out to be somewhat different from
the informal picture used by most people. The first person who thought of this was
Bill Lawvere; and as I mentioned, he proposed that the category of categories be
considered as an adequate foundation for mathematics. This was certainly a radical
suggestion. It was bold, almost inconceivable for mathematicians used to thinking
in terms of elements, collections, properties, etc. It required a qualitative shift in
the way one was to think about mathematical knowledge, mathematical entities and
foundations, a shift similar to the one proposed by Klein and Lie in geometry a
century earlier.

We are now ready to look at this alternative.



Chapter 6
Invariants in Foundations: Algebraic Logic

When they introduced the theory of categories in 1945, Eilenberg
and Mac Lane suggested the possibility of “functorizing” the study
of general algebraic systems. The author has carried out the first
steps of this program, making extensive use of the theory of adjoint
functors, as introduced by Kan and refined by Freyd.

([164], 869.)

We now turn to logic and the foundations of mathematics proper. Without a doubt,
the whole program of thinking the foundations of mathematics in general in a cat-
egorical framework is due to one person: F. William Lawvere. He launched the
program in his very first work, namely his Ph.D. thesis, defended at Columbia un-
der Eilenberg’s supervision in 1963. Remarkably, the thesis already contains the key
ideas that have guided Lawvere throughout his career and that have influenced the
categorical community so greatly. Let us start with a summary of these key ideas.
The category of categories is a framework for mathematics; it should be the foun-
dation of mathematics, but in an “open” manner, i.e., there is no ultimate and once-
and-for-all foundational framework. (Whether there is one category of categories is
still a debatable issue. But in the early years, Lawvere used those terms.) Thus, every
aspect of mathematics should be representable in one way or another in that frame-
work. In other words, categories constitute the background to mathematical thinking
in the sense that, in this framework, essential features of that thinking are revealed.
More specifically mathematical objects and mathematical constructions should be
thought of as functors in that framework. Even sets, considered now as abstract sets,
can be construed as functors. There are no such things as sets by themselves; in fact
there is no such thing as a mathematical concept by itself. Sets, more specifically
abstract sets, form categories and the latter categories play a key role in the cate-
gory of categories, i.e., in mathematics. Adjoint functors occupy a key position in
mathematics and in the development of mathematics; one of the guiding principles
of the development of mathematics should be “look for adjoints to given functors”.
In that way, foundational studies are directly linked to mathematical practice and
the distinction between foundational studies and mathematical studies is a matter of
degree and direction; it is not a qualitative distinction. Invariance occupies a central
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position in this program. As the foregoing quote clearly indicates, Lawvere is going
back to the claim made by Eilenberg and Mac Lane that the “invariant character of a
mathematical discipline can be formulated in these terms” (i.e., as we saw in chap-
ter 2, in terms of functoriality). ([74], 237.) But now, this invariance is revealed by
adjoint functors and other categorical structure and properties. The invariant content
of a mathematical theory is the “objective” content of that theory; this is expressed
in various places throughout his published work. To wit:

As posets often need to be deepened to categories to accurately reflect the content of
thought, so should inverses, in the sense of group theory, often be replaced by adjoints.
Adjoints retain the virtue of being uniquely determined reversal attempts, and very often
exist when inverses do not. ([176], 47. My emphasis.)

Not only should sets be treated in a categorical framework, but also logical aspects
of the foundations of mathematics should be treated categorically, in as much as
they have an objective content. In particular, the logical and the foundational are
directly revealed by adjoint functors.

As I have said, these ideas, as well as others, are more or less implicit in
Lawvere’s thesis. Lawvere’s approach should be contrasted not only to Eilenberg
and Mac Lane’s, but also and probably more importantly to Grothendieck’s and
Kan’s. Whereas the latter were using and developing category theory for specific
purposes, e.g., in the foundations of algebraic geometry in order to prove the Weil
conjectures or the development of combinatorial homotopy theory, Lawvere’s goal
is general in the sense that it aims at incorporating the whole of mathematics. Fur-
thermore, Lawvere’s usage of categories is such that their status changes progres-
sively in the sixties and seventies. As we will see, not only does Lawvere recog-
nizes explicitly that categories defined axiomatically constitute autonomous kinds
or types and are, as such, independent of any underlying set-theoretical structures
and structure-preserving functions, but they become polymorphic: in addition to
their usual role, they become the algebraic descriptions of formal systems and as
such can be thought of as formal systems; they provide the underlying framework
for semantics and as such can be thought of as the universe of interpretations.

A summary of the main results of the thesis were communicated to the Pro-
ceedings of the National Academy of Sciences by Mac Lane and published in 1963.
Essentially the same summary was presented at Berkeley in 1963 at a symposium
on model theory and later published in 1965 in the proceedings of the meeting.
([166]) Mac Lane also communicated Lawvere’s axiomatization of the elementary
theory of the category of sets in the same Proceedings in 1964 ([165]). That ax-
iomatization was not in the thesis as such. The following year, Lawvere presented
an explicit axiomatization of the category of categories, published again in the Pro-
ceedings in 1966 ([167]). Another paper, published in 1968, gives an account of the
main elements of the thesis together with some new extensions. ([170]) Two short
notes, abstracts of talks given at meetings of the Association of Symbolic Logic, are
published in the Journal of Symbolic Logic. These notes contain the first attempts
at presenting a systematic and comprehensive categorical treatment of first-order
logic, via the notion of an elementary theory. ([169])
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Between 1965 and 1968, a certain methodological shift in attention can be de-
tected in Lawvere’s work. Going back to his original program of clarifying the con-
ceptual content of semantics, Lawvere realizes that certain types of categories can
be defined purely by stipulating that certain adjoint functors to given elementary
functors exist. The definitions of types of categories require nothing else than the
existence of left or right adjoints to specific elementary functors. This is not how
adjoint functors were used. In a loose sense, defining a category via the existence
of adjoints amounts to the claim that certain basic conceptual operations can be
represented in that category. This in itself would probably not be of foundational
relevance, were it not for the fact that the categories so defined correspond in a
precise technical sense to logical concepts and theories. Thus the existence of cer-
tain adjoints to specific elementary functors amounts to a specification of logical
structures and resources. In this sense and paraphrasing Élie Cartan, a category (of
a certain type) contains all the logic of a specific mathematical theory. With these
ideas and results in his pocket, Lawvere could see that a program of “functorizing”
the study of mathematical concepts in general could be formulated.

The presentation of these fundamental facts and the program that ensued were
made in the paper entitled Adjointness in Foundations, published in 1969. This
paper contains the seeds of a categorical program in logic and the foundations of
mathematics. Two other papers of that period also contain important parts of that
program: first the paper on diagonal arguments presented in 1968 and published in
1969 ([172]) and the paper on quantifiers and the comprehension schema as adjoints
also presented in 1968 and published in 1970 ([173]). In addition to these papers,
the two abstracts mentioned earlier have to be mentioned, since they played a role
in the development of categorical logic. The discovery of the notion of elementary
topos in collaboration with Tierney in 1969–70, can be seen as a direct extension of
this work, opening up vast horizons hitherto unseen.

We will now look more carefully at the details of this program. We will start with
Lawvere’s study of algebraic categories, then move on to the category of categories
and to the elementary theory of the category of sets. The last two papers did not have
the same fate as his work on universal algebra. Despite the fact that Lawvere’s work
on the category of categories suffered from a slight technical flaw, both it and his
work on the category of sets were essentially metamathematical, and category the-
ory was not yet seen as a potentially useful framework for metamathematics. Studies
on the category of categories that followed Lawvere’s pioneering work were math-
ematically motivated and I speculate that no one saw what to do with the category
of sets. It simply did not have a clear function. His work on algebraic theories, how-
ever, inspired much of what was to follow in logic, including Lawvere’s own work,
and it still constitutes the starting point of what are now called “doctrines” in cat-
egorical logic and the categorical approach to universal algebra. We will therefore
return to categorical logic afterwards.
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6.1 Lawvere’s Thesis

Lawvere’s imaginative thesis at Columbia University, 1963 con-
tained his categorical description of algebraic theories, his proposal
to treat sets without elements and a number of other ideas. I was
stunned when I first saw it; in the spring of 1963, Sammy and I hap-
pened to get on the same airplane from Washington to New York.
He handed me the just completed thesis, told me that I was the
reader, and went to sleep. I didn’t.

([196], 346.)
Essentially, algebraic theories are an invariant notion of which the
usual formalism with operations and equations may be regarded as
“presentation”.

([164], ii. My emphasis.)

The main concept of Lawvere’s thesis is the notion of algebraic category. The main
result of the thesis is a categorical characterization of algebraic categories. Together
with algebraic categories, Lawvere also introduced algebraic theories and algebraic
functors. The three notions are intimately connected to one another. As Lawvere
himself points out, there is a strong analogy between the way his work is developed
and the theory of sheaves that had been just introduced at that time: Grothendieck
had provided an axiomatic characterization of categories of sheaves on topologi-
cal spaces, and Lawvere’s goal was to characterize algebraic categories in a similar
manner. The main tool of the thesis — the key to the connections between these no-
tions — is the adjoint functor. Adjoint functors constitute the methodological core
of the thesis and of the whole approach. The framework is presented as a new foun-
dation for universal algebra. In the very first chapter of the thesis, which gives the
underlying context of the work, there is a sketch of a first-order theory of the cat-
egory of categories. Within that context, sets are defined in categorical terms, the
notion of equivalence of categories is given, as well as the category of small cate-
gories, the category of large categories, the category of finite sets, the category of
small sets, and the category of large sets. A categorical version of the Peano pos-
tulates is also given.1 But the bulk of the chapter is given to the presentation and
development of the notions of adjoint functors and limits. In the second chapter,
algebraic theories are introduced, the category of algebraic theories is defined and
various properties of the category are proved, e.g., the existence of an adjoint that
corresponds to the existence of free algebraic theories. Chapter three deals with al-
gebraic categories (and here Lawvere explicitly exploits the analogy with sheaves).
The notions of algebraic semantics and algebraic structure are defined and a cat-
egorical characterization of algebraic categories is given. Chapter four deals with
algebraic functors and their adjoints. Finally, in chapter five, particular cases and
extensions are considered.

Let us look at the central concepts and results of the thesis and see how the
invariant content of universal algebra is analyzed.

1 These axioms are sometimes called the Peano-Lawvere axioms. (See, for instance [199], 67.)
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First comes the notion of an algebraic theory. As we have seen in the forego-
ing chapters, a group is usually thought of as a set together with some specified
operations, e.g., multiplication, inverse and unit, satisfying certain identities, e.g.,
associativity, unit law and inverses. Formally, this is encoded by a signature, e.g.,
(×,()−1,e) or some such, with the standard axioms. But it is clear that the signa-
ture can in general vary and so does the choice of axioms. These choices determine,
though, the same theory, in the sense that all the definable operations and all the
theorems are the same. Lawvere’s idea is to define a category which will encode all
the information at once, thus independently of the choice of signature and axioms
and call that category the theory. Here is the general definition:2

Definition 6.1. An algebraic theory is a (small) category A such that:

1. The objects of A are the natural numbers 0, 1, 2, . . . ;
2. Each object n is the product of 1 with itself n times; thus, for each n, the projec-

tion maps π1n : n→ 1, . . . , πnn : n→ 1 exist;
3. A morphism m → n is an n-tuple (ω1, . . . ,ωn) of m-ary operations, where an

m-ary operation is any map m → 1; in particular the map (π1n, . . . ,πnn) : n → n
exists;

4. If ω = (ω1, . . . ,ωn) : m → n and ξ = (ξ1, . . . ,ξk) : n → k, then ξ ◦ω = (ξ1 ◦
(ω1, . . . ,ωn) . . . ,ξk ◦ (ω1, . . . ,ωn)).

It is easy to verify that composition so defined is associative and that the maps
(π1n, . . . ,πnn) : n→ n are the identity maps.

The underlying motivation is very simple and makes perfect sense once the no-
tion of an algebra of type A , also called an A -algebra, has been given: it is sim-
ply a product preserving functor from an algebraic theory to the category of sets,
F : A → Set. Thus, F(1) picks a set, say A, and F(n) is simply an n-fold product of
A, i.e., A×·· ·×A n-times. An operation n → 1 becomes a standard set-theoretical
operation A×·· ·×A → A. Notice that an algebra of type A is a functor. It is also
called a model of the theory A . Thus, in particular, if A is the theory of groups,
then each and every group is a functor.

Two categories can now be formed: (1) The category I of algebraic theories
whose objects are algebraic theories, morphisms functors preserving products and
taking 1 to 1; and (2) The functor category Set(A ) of all product preserving functors
A → Set, which is the category of models of the theory A . The latter category is
called an algebraic category.

A morphism f : A →B of algebraic theories induces a functor Set( f ) : Set(B)→
Set(A ) by composition. Such a functor is called an algebraic functor. Further-
more, for any algebraic category Set(A ), there is an obvious forgetful functor
UA : Set(A ) → Set which sends to each object F(n) the underlying set and to each

2 I am presenting the definition given by Lawvere in his published papers. In his thesis, Lawvere
defines the category of algebraic theories as a subcategory of the category of finite sets, which is
itself a category in the category of categories. Pareigis’ presentation is, in this respect, more faithful
to Lawvere’s original work. See [235].
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morphism F(n)→ F(m) the underlying set map. Notice that the forgetful functor is
an algebraic functor.

Algebraic functors lead to another construction, named algebraic semantics: it
assigns to each algebraic theory A , the forgetful functor UA and to each morphism
f : A →B of algebraic theories the algebraic functor Set( f ) : Set(B) → Set(A ). In
fact this is itself a functor, sometimes called the semantic functor,

G : I◦→ K

where K is the category of algebraic categories.
With these definitions, Lawvere’s main results are:

1. Every algebraic functor has a (left) adjoint. This is the conceptual and unified
formulation of various constructions in universal algebra, e.g., free algebras,
tensor algebras, monoid rings, etc.

2. Algebraic semantics has a (left) adjoint, which can be called algebraic structure.
This means that it is possible to recover an algebraic theory from the semantics,
i.e., from the category of models.

3. The categorical characterization of algebraic categories: if C is a category with
finite limits, has an abstractly finite regular projective generator G and every
recongruence in C is a congruence, then there is an algebraic theory A and an
equivalence Φ : C → Set(A ). (There is no need to specify what the second and
third conditions mean here. They are technical conditions that we do not have to
look into.) Thus algebraic categories are characterized in an invariant manner.

These results were not only remarkable for what they accomplished, but also for
the research avenues they opened. There were some obvious generalizations that
were taken up rapidly by others and not so obvious generalizations that had to wait
for other concepts to be fully worked out.

1. The obvious generalization was to consider infinitary operations and related
work in universal algebra. This was done quickly by Linton. (See [182].)

2. One of the great advantages of the categorical language is that it is possible
to replace the category Set of sets by an arbitrary category C with appropri-
ate properties. The identification of the relevant properties of C , expressed in
categorical terms, leads to a classification of logical categories in categorical
terms. The category Set of sets becomes a special, but very important, case of
a type of category defined abstractly. Lawvere has given a characterization of
algebraic categories. Further work led to characterizations of similar categories,
i.e., categorical characterization of semantical frameworks.

3. An algebraic theory as defined by Lawvere can be thought of as a data type.3

Lawvere’s work shows how syntactical information of a specific kind can be
encoded by categories. The search for a proper generalization to cover all types
of logical theories, not only the algebraic or equational case, is irresistible. More

3 This is more than a metaphor. There is indeed a formal connection with databases. See for in-
stance [238].
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specifically, the task is to find a general procedure to move from a theory written
in a given formal system to a category that would be the invariant formulation of
the latter. The notion of algebraic theory was specifically tailored for algebraic
structures and it is not clear how one can go from there to other cases, e.g., cases
with quantifiers and relations. In particular, Lawvere considered single-sorted
theories and a generalization to many-sorted theories seems natural, although
in practice we are used to the single-sorted case.

4. Once an element of one or all the previous points has been settled, the next
task consists in looking at the various adjoint situations and seeing what one
can get from them. For instance, Lawvere’s work makes it clear that the adjoint
situation is a special case of an algebraic duality and its importance is due to
the fact that it is the very first case of such a duality where the category of sets
appears as the dualizing object.

Mathematicians took up these tasks in the wake of Lawvere’s thesis. Important
results were obtained in the late sixties and early seventies by Lawvere himself,
but also by Lambek, Freyd, Linton, Isbell and by Gabriel and Ulmer. (See [97].)
Ehresmann and his students, most notably Bénabou, obtained similar results during
that period. Ehresmann’s motivation was different and was mainly oriented towards
the foundations of differential geometry, but it led him to the notion of sketch which
was recognized later as being significant. (See, for instance [64], [65], [21].)

We will come back to these developments later in this chapter. Before we do so,
we will consider Lawvere’s attempts at functorializing the foundations of mathe-
matics via the category of categories and the category of sets.

6.2 The Category of Categories as a Foundational Framework

In the mathematical development of recent decades one sees clearly
the rise of the conviction that the relevant properties of mathemat-
ical objects are those which can be stated in terms of their abstract
structure rather than in terms of the elements which the objects were
thought to be made of. The question thus naturally arises whether
one can give a foundation for mathematics which expresses whole-
heartedly this conviction concerning what mathematics is about,
and in particular in which classes and membership in classes do
not play any role. Here by “foundation” we mean a single system
of first-order axioms in which all usual mathematical objects can be
defined and all their usual properties proved.

([167], 1.)

This was a fabulously bold claim to make in 1966. Lawvere had already made it in
1963. He was one of the few people to see “clearly the rise of the conviction that the
relevant properties of mathematical objects are those which can be stated in terms of
their abstract structure rather than in terms of the elements which the objects were
thought to be made of”. Bourbaki certainly can be said to have had similar views, but
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they were developed in a different and considerably less satisfactory framework.4

Mac Lane, who was probably the first one to develop a part of mathematics without
using set elements in his study of duality in groups, certainly did not see it clearly.
Furthermore, Abelian categories and adjoints had only just been introduced and
developed. It was clear that category theory was now migrating to other areas of
mathematics (e.g., algebraic geometry and universal algebra), and that it was not
confined to the simple role of being a useful language for algebraic topology and
homological algebra, but it certainly was not obvious that it could be used as a
language for the whole of mathematics, including set theory, or portions of it.

It should be said that Lawvere’s first love was continuum mechanics, which he
studied under Truesdell at Indiana and that he felt that set theory was simply not
providing an adequate foundation for the understanding and development of that
field. The study of continuum mechanics naturally led him to functional analysis
and thence to category theory. He clearly saw how category theory could be used to
clarify and develop functional analysis and his hope was that one could develop a
categorical framework for continuum mechanics that would avoid what he took to
be set-theoretical side-effects.

My own motivation came from my earlier study of physics. The foundation of the con-
tinuum physics of general materials, in the spirit of Truesdell, Noll, and others, involves
powerful and clear physical ideas which unfortunately have been submerged under a math-
ematical apparatus including not only Cauchy sequences and countably additive measures,
but also ad hoc choices of charts for manifolds and of inverse limits of Sobolev Hilbert
spaces, to get at the simple nuclear spaces of intensively and extensively variable quantities.
But as Fichera lamented, all this apparatus gives often a very uncertain fit to the phenomena.
This apparatus may well be helpful in the solution of certain problems, but can the problems
themselves and the needed axioms be stated in a direct and clear manner? And might this
not lead to a simpler, equally rigorous account? These were the questions to which I began
to apply the topos method in my 1967 Chicago lectures. (. . . ) I had spent 1961-62 with
the Berkeley logicians, believing that listening to experts on foundations might be a road
to clarifying foundational questions. (. . . ) Though my belief became tempered, I learned
about constructions such as Cohen forcing which also seemed in need of simplification if
large numbers of people were to understand them well enough to advance further. ([177],
726.)

Lawvere had taken courses in logic both at Indiana and at Columbia, where
Mendelson was teaching logic and the foundations of mathematics. He left Columbia
for California, more specifically Palo Alto, and he attended seminars by Tarski and
his colleagues. It is during that year that he wrote his thesis and that many ideas
about a categorical analysis of logic took form, e.g., his analysis of quantifiers in
terms of adjoints was announced at Berkeley during a seminar.5

4 Grothendieck, who was a member of Bourbaki, had left the collective partly because influential
members of the group were against category theory.
5 Lawvere, personal communication 2003. The first announcement of this discovery appeared in
an abstract in 1966. See [168]. As we have seen, Mac Lane was keenly interested in universal
algebra and thought of using category theory to develop it. He was also interested in logic and
the foundations of mathematics, but it never occurred to him to consider a categorical analysis of
the concepts underlying these fields. In fact, as we will see, Mac Lane thought that it simply did
not make sense to try to do such an analysis, at least for sets. Furthermore, it seems that Mac Lane
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As is seen from the introduction to his 1966 paper quoted above, Lawvere claims
that a categorical foundation would be more faithful to the nature of mathematics,
since it would only present or represent the relevant properties of mathematical
objects. The relevant properties are stated in terms of abstract structures and, in turn,
the latter are stated in the context of categories, not in terms of elements of sets. It
is impossible not to think of Kreisel’s comments (presented in the previous chapter)
at this stage.6 One could easily retort that sets are certainly abstract in some sense
and that structures can be specified in a set-theoretical manner, e.g., in the manner
specified above by Kreisel himself, where the notion of isomorphism plays a key
role. So what precisely is the point here?

From the point of view of someone like Kreisel, it certainly cannot be the fact
that a foundational framework has to be more readily usable in algebraic topology,
functional analysis or any other such field, as Lawvere claims. This is, according
to Kreisel, an aspect of organization, not foundations. For Kreisel, a foundational
framework might be totally useless in various areas of “higher” mathematics, in
other words, for the “working mathematician”, in the same way that fundamental
physics might be useless in various areas of engineering or “higher” physics, what-
ever that might be, or for the “working physicist”, whatever that might be.

But the latter analogy is clearly misleading. Kreisel draws an analogy between
foundational research and theoretical physics and argues that foundational concepts
do not have to have an impact on the “working mathematician”. The problem with
the analogy is that concepts of theoretical physics do have an impact on all areas of
the world, in one way or another. For example, physical properties are often relevant
to biological phenomena. This was noticed explicitly, although with no reference
whatsoever to Kreisel, by Taylor in the very first paragraph of the introduction of
his book published in 1999:

Foundations have acquired a bad name amongst mathematicians, because of the reductionist
claim analogous to saying that the atomic chemistry of carbon, hydrogen, oxygen and ni-
trogen is enough to understand biology. Worse that this: whereas these elements are known
with no question to be fundamental to life, the membership relation and the Sheffer stroke
have no similar status in mathematics. ([258], viii.)

We can perhaps reformulate this point of view by saying that a foundational
framework should exhibit the underlying unity of mathematics, in the sense that
foundational concepts and results should be seen as being a part of mathematics,
not something that is extraneous or on a different plane altogether. This is clear for
the foregoing quote by Lawvere. More recently, in an appendix to a book on set
theory written in collaboration with Robert Rosebrugh,7 we read:

could not make the epistemological shift required to consider categories as data types or semantical
universes. To do so, one had to treat categories in a different fashion, to see them as more than a
useful language for algebraic topology and homological algebra.
6 It should be mentioned that Kreisel and Lawvere had the occasion to meet and discussed these
issues in the sixties. While Lawvere was in Palo Alto, he sometimes took the train with Kreisel to
go to Berkeley. Furthermore, the two were in Zurich at the same time.
7 Interestingly enough, the book is entitled Sets for Mathematics. I guess Kreisel could write a
book entitled Sets for Foundational Analysis.
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A foundation makes explicit the essential general features, ingredients, and operations of a
science as well as its origins and general laws of development. The purpose of making these
explicit is to provide a guide to the learning, use, and further development of the science. A
“pure” foundation that forgets this purpose and pursues a speculative “foundations” for its
own sake is clearly a nonfoundation. ([179], 235.)

This statement can be reformulated as follows: a foundation should

1. Provide an analysis of the essential general features, ingredients and operations
of mathematics as it is, thus it should be a part of mathematics and its role is to
reveal the scaffolding of the discipline, not so much what it rests on, but rather
how it all holds together as one discipline;

2. This analysis should make it possible to explain why previous developments
were successful, i.e., it should provide the means to reconstruct the history of
the field in such a way that one can understand why certain concepts were
correct and fertile and others pointless;

3. Similarly, the analysis should suggest new ideas, concepts and developments of
various mathematical fields, including, of course, foundations.8

In all three cases, adjoint functors play a key role. The analysis Lawvere has in
mind should in fact be performed in terms of categories, functors and in particular,
adjoint functors as long as they are relevant to the situation at hand; which is to say,
for Lawvere, almost always. (Or, he might say, one should at least try to analyse any
given situation in categorical terms, since, as he has shown, it is very often possi-
ble even though it might not seem so at first.) The presence and the role of adjoint
functors in this analysis is precisely what makes it more that merely an organization
of mathematics in Kreisel’s sense. What Kreisel has in mind is probably an analy-
sis performed on known mathematics expressed in set-theoretic language or a the-
ory whose models are taken in a set-theoretical universe. Categories, functors, etc,
might enter the picture, but they will be, in that context, categories of set-theoretical
structures. I should nonetheless indicate that the analysis provided by the categorical
point of view might very well be extremely insightful and in particular, the search
for adjoints in such a case might also be extremely relevant. But this is certainly not
what Lawvere has in mind in general. The whole analysis should be performed in a
categorical framework at the level of categories and adjoints right from the begin-
ning. The organization of mathematical disciplines thus obtained is structured and
developed from the adjoints found in that context. The nature of the mathematical
disciplines is also determined by the adjoints revealed in that context. Later we will
see concrete examples of this organization and nature.

There is no doubt that Lawvere’s early attempt at axiomatizing the category of
categories was somewhat premature. For the original axiomatization of the category
of categories presented by Lawvere was based on the properties of categories known

8 Lawvere’s work is an illustration of how this can be done. For the historical aspect, see for
instance, [177]. Historians might disagree with the goals and the methods used by Lawvere in this
enterprise. As to the direction of mathematics, his early proposal to develop differential geometry
in a categorical setting is certainly telling. See [175].
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at that time. Indeed, we read in the first paragraph of the paper on the category of
categories:

The author believes, in fact, that the most reasonable way to arrive at a foundation meet-
ing these requirements is simply to write down axioms descriptive of properties which the
intuitively-conceived category of all categories has until an intuitively-adequate list is at-
tained; that is essentially how the theory described below was arrived at. Various metatheo-
rems should of course then be proved to help justify the feeling of adequacy. ([167], 1.)

Very little was known about the “intuitively-conceived category of all categories”
and one could even argue that the proper language for such a description was not
even available at the time. The requirements mentioned by Lawvere here are prag-
matic:

A foundation of the sort we have in mind would seemingly be much more natural and
readily-useable than the classical one when developing such subjects as algebraic topology,
functional analysis, model theory of general algebraic systems, etc. Clearly any such foun-
dation would have to reckon with the Eilenberg-MacLane [sic] theory of categories and
functors. ([167], 1.)

Again, as we have seen, Kreisel disagrees. According to him, a foundation for math-
ematics does not have to be readily-useable by working mathematicians. Lawvere’s
reply is that the set-theoretical foundations introduce extraneous elements that are
confusing and that obscure the conceptual scaffolding of various theories, e.g., func-
tional analysis. A foundational analysis should clarify the conceptual basis of a field,
not obscure it. Notice that Lawvere’s goal is not to get rid of sets altogether, it is
clearly to keep the portions of set theory that do clarify things but to put them in a
context, namely a categorical context, that allows one to get rid of the exogenous
and irrelevant aspects of the theory.

Let us now turn to Lawvere’s axiomatization of the category of categories as
such. Lawvere works in a first-order language and the aim is to provide an axioma-
tization such that:

1. A model of the axioms should be a category;
2. The objects of the model should themselves be categories;
3. The axioms should be such that the basic properties and theorems of category

theory can be proved; e.g., functor categories and adjoint functors should be
definable, Yoneda’s lemma and Freyd’s special adjoint functor theorem should
be provable, etc.

4. Sets should be definable within the model, and the relevant aspects of set theory
should be definable and provable;

5. It should be possible to make a distinction between small and large categories,
and Grothendieck universes should be models of the theory. (However, Lawvere
claims explicitly that his theory is weaker than Grothendieck since only one
inaccessible cardinal is required — which again shows where Mac Lane got his
idea — and he also explicitly considers reflection principles, although not the
one proposed by Feferman.)

The first requirement indicates how to begin: from the axioms of category the-
ory themselves. However, a category cannot be defined as a set or a class, nor can
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Hom-sets be used in the definition itself. But this was not insurmountable. The hard
part seems to be to find a way to force the objects of a category to be categories
themselves and arrows to be functors. This is precisely what most of the remain-
ing axioms are meant to do. In modern terminology, the goal is to define categories
internally, that is within a category.9 Lawvere’s strategy is to pick specific objects,
basic “forms”, that can be used to characterize categories in the sense that these ob-
jects can only be represented in categories, i.e., these objects encode the presence of
morphisms and their properties, i.e., composition, associativity, and identity. They
are then mapped into the objects of the model and the fact that they can be mapped
tells us that the objects are indeed categories. Notice the deeply geometric method
involved here, which I have already mentioned: the objects of the models are cat-
egories because certain specific forms can be mapped into them in the appropriate
way.

Lawvere divided his presentation in two parts: a basic theory which occupies al-
most 70% of the paper, and a short and intricate presentation of what is called a
strong theory. Both theories are preceded by an elementary theory of abstract cate-
gories, from now on called ETAC. The latter simply guarantees that the model of the
category is a category. It is essentially a formalization of Eilenberg and Mac Lane’s
definition of a category. The theory is developed within first-order logic with equal-
ity.10 There are three function symbols, two unary, ∆0(x) and ∆1(x), and one ternary
Γ (x,y;u), yielding the basic formulas

∆0(x) = y, ∆1(x) = y and Γ (x,y;u)

which should be read “y is the domain of x”, “y is the codomain of x” and “u is the
composition of x followed by y”.11 Formulas and sentences are defined as usual in
first-order logic. ETAC is then given by the following axioms:

1. ∆i(∆ j(x)) = ∆ j(x) for i, j = 0,1;
2. (Γ (x,y;u)∧Γ (x,y;u′))⇒ u = u′;
3. ∃u[Γ (x,y;u)]⇔ ∆1(x) = ∆0(y);
4. [Γ (x,y;u)⇒ (∆0(u) = ∆0(x)∧∆1(u) = ∆1(y))];
5. Γ (∆0(x),x;x)∧Γ (x,∆1(x);x);
6. [Γ (x,y;u)∧Γ (y,z;w)∧Γ (x,w; f )∧Γ (u,z;g)]⇒ f = g.

The first four axioms are “bookkeeping” axioms. Their presence guarantees that
composition and domain and codomain functions are coherent with one another.
Axiom 5 is the identity axiom and axiom 6 is the associativity law. Thus, a model
of the theory is a category.

9 I should immediately point out that at about the same time, but with a very different motivation,
Ehresmann was also trying to define categories internally. This led him to develop the notion of
sketch.
10 This was done, of course, before Freyd’s paper presented in chapter 5 and Ehreshmann’s work
on sketches. Again, I should emphasize the fact that it is far from obvious that category theory
requires a modification of the syntax of mathematics.
11 Notice the order of composition. I follow Lawvere and write the order of the arrows from left to
right in this section.
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One can introduce the usual abbreviations to depict arrows and commutative dia-
grams, as well as for objects that can be identified with the identity arrows. It is then
possible to define monomorphisms, epimorphisms, isomorphisms, etc., as Lawvere
did himself. Notice the real primitive notion here is the function Γ (x,y;u). Thus,
one could say, as apparently Lawvere did to Tarski after his talk on the matter, that
whereas set theory is the formal expression of the binary relation “x belongs to A”,
category theory is the formal expression of the ternary function “u is the composi-
tion of x followed by y”, where one could informally think of u, x and y as processes,
or rules, etc.12

The next axioms are now intended to characterize the objects and the morphisms
of the model, i.e., of a category and in fact to make sure that the morphisms are func-
tors and objects are categories themselves. Formally, Lawvere added two constants
∂0 and ∂1 that are used to introduce five specific objects, denoted by 1, 2, 3, 4 and E.
It is these objects that will be used to characterize the other objects of the model. The
morphisms between these objects and the other objects of the underlying category
will assure us that we are dealing with a category of categories.

We have already seen the first three: 1 is the category with exactly one morphism
and it is defined by the abbreviated formula — we denote arbitrary objects by A, B,
C, it being understood now that they are categories:

∃1∀A∃!x[A x // 1].

Needless to say, the formula simply says that 1 is a terminal object in the category.
2 should denote the category with two objects and one non-trivial morphism. Thus
one can think of 2 as being the ordinal 2, considered as a category. It is defined by
(any one of) the equations:

∆i(∂ j) = 2, i, j = 0,1,

i.e. graphically

2
∂0 //
∂1

// 2.

But 2 has to be characterized categorically, i.e., in the language of ETAC. Here is
how Lawvere does it: ∂0 and ∂1 are constant, that is, they factor through 1; this can
be translated into the following commutative diagrams:

2

1

!

��?
??

??
??

??
??

?2 2
∂0 // 2

1

??

0

��
��

��
��

��
��

2

1

!

��?
??

??
??

??
??

?2 2
∂1 // 2

1

??

1

��
��

��
��

��
��

12 This is reported by Lambek. Lambek, personal communicaiton, 2003.
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Γ (∂i,∂ j;∂ j), i, j = 0,1, which is the same as saying that the diagrams

2

2

∂1

��?
??

??
??

??
??

?2 2
∂0 // 2

2

??

∂0

��
��

��
��

��
��

and

2

2

∂0

��?
??

??
??

??
??

?2 2
∂1 // 2

2

??

∂1

��
��

��
��

��
��

commute.
The next two axioms assure that ∂0 and ∂1 are distinct and are the only non-trivial

endofunctors on 2:

∂0 6= ∂1,∂i 6= 12, i = 0,1 and ∀x(x : 2→ 2⇒ x = ∂0∨ x = ∂1∨ x = 12).

The last two axioms stipulate the role played by 2 in a model: 2 is a generator,
i.e.,

∀x∀y[(∆0(x) = ∆0(y)∧∆1(x) = ∆1(y∧ x 6= y)⇒∃z(z : 2→ ∆0(x)∧ zx 6= zy)].

If A is any generator, then ∃x∃y(x : 2→ A∧ xy = 12), that is 2 is a retract of A.
This completes the characterization of 2. The axioms yield an adequate charac-

terization of 2, since it can now be proved that for any generator A satisfying the
axioms for 2, then A = 2. The last equality follows from an axiom assumed by
Lawvere but that I have not stated yet. It says that if the identity 1A is the only au-
tomorphism of a category A, then A is the only category in its isomorphism class,
i.e., if A ≈ B, then A = B. Thus, the objects 1 and 2, which clearly satisfy this con-
dition, are unique in the sense of identity. Although the axiom might be convenient,
it seems to introduce a certain amount of confusion within the theory. Indeed, it is
not in the spirit of category theory to identify objects. As we have seen, the latter
are usually characterized up to a unique isomorphism and the theory might be more
faithful to category theory by characterizing objects in that way.

Now that the object 2 has been defined, it is possible to say what it is to be a
morphism in an object A of the model, i.e., we are starting to look into the objects
of the model to make sure that they are themselves categories.

Definition 6.2. x ∈ A means 2 x // A.

This simply says that the elements of our objects are morphisms. Notice imme-
diately though that the ∈ relation is not the standard set-theoretic relation.

In order to define 3, 4 and E, Lawvere had to introduce some important properties
of the ambient category, namely:

Axiom (Axiom of finite roots). There is an initial object 0, binary products and
coproducts as well as equalizers and coequalizers of parallel arrows exist.

It follows that finite limits and colimits exist.
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We will only show how 3 is defined and characterized. 3, together with two ar-
rows α,β , is first defined by the following pushout13:

2 3
β

//

1

2

∂1

��

1 2
∂1 // 2

3

α

��

This already says that 3 has, together with the obvious three identity morphisms,
two different morphisms, α and β such that the codomain of α is the domain of
β . But the role of the object 3 is to depict commutative triangles in the objects
of the model, that is any morphism t : 3 → A to an object A of the category is a
commutative diagram in A. Therefore, Lawvere postulates that 3 has exactly one
morphism γ besides the five implied by the definition and it satisfies the equations

∂0γ = ∂0α and ∂1γ = ∂1β .

3 allows one to say that a morphism h in an object A is the composition of two
morphisms f and g of A.

4 and E are defined and characterized in similar fashions. 4 is required to state
that composition of morphisms is associative and E to state that two morphisms are
parallel.

With these five objects (together with a slight logical trick to assure that we can
now talk about properties of the objects of the model), Lawvere claims that every
object of the universe described is at least a category. To insure that the objects are
no more than categories, more axioms are required.

The first axiom is the important statement that the category of categories is Carte-
sian closed, i.e., the claim that given two categories A, B, there is a category BA and
a functor

e : A×BA → B

called evaluation and satisfying the already mentioned universal property. This ax-
iom says that functor categories exist in the category of categories and there is no
need to emphasize the importance of this fact at this point.

Lawvere introduced “sets” at this point, by the following

Definition 6.3. 14 The category A is said to be discrete (or to be a set) if and only if
there is an isomorphism A! : A2 ∼ // A1.

This definition states that an object A is discrete if and only if the morphisms of
A are in fact objects.

The last four axioms included by Lawvere can now be stated directly.

13 A pushout is the dual construction of a pullback. The latter will be defined in section 6.6
14 This definition is the basis of Bell’s objection presented in chapter 2.
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Axiom. For any category A, there is a discrete category Ac with a functor A → Ac
satisfying the following universal property: for any functor A → B to a discrete
category, there is exactly one functor such that the diagram

A Ac//A

B
��?

??
??

??
??

??
Ac

B
��

commutes. The object Ac is called the set of components of A.

Axiom (dual of the preceding). For any category A, there is a maximal discrete
subcategory |A| with a functor |A| → A such that for any functor B → A from a
discrete category to A, there is a unique functor B→ |A| such that the diagram

|A| A//|A|

B

OO
A

B

??

��
��

��
��

��
�

commutes. The object |A| is called the set of objects of A.

Definition 6.4. The set of morphisms of A is the discrete category |A2|.

Axiom (Axiom of choice). For all f : A→ B such that A � 0 and B is discrete, there
is a g : B→ A such that f g f = f .

Axiom. If |A2|
f // |B2| and [∀t[t : 3→ A⇒∃!u(u : 3→ B∧|u2|= |t2| f )]] then

∃! f ( f : A→ B∧ f = | f 2|).

This last axiom simply says that given a function from a set of morphisms into
a set of morphisms satisfying the informal properties of a functor, there is an actual
functor that corresponds to it in the model.

This constitutes the basic theory of the category of categories. Lawvere then
states that the basic theory is sufficient to develop a large part of analysis, preuni-
versal algebra, category theory and universal algebra. Lawvere proceeds to prove a
version of the general adjoint functor theorem in the basic theory.

Lawvere’s axiomatization of the category of categories was bold in two impor-
tant respects: (1) very little was known about the category of categories since pure
category theory was still in its infancy — no one had looked into that structure care-
fully; (2) the motivation underlying such work might have seemed dubious at that
time: what would one gain from such a concept? There were no clear applications,
and the foundational benefits were far from obvious, despite Lawvere’s claim to the
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contrary in the opening paragraph of his paper. But these elements were overshad-
owed by Isbell’s review, published in 1967 ([114]), in which he showed that some
claims made by Lawvere in his paper were in fact false.

The culprit is a statement, later called the category description theorem, or CDT,
presented as a theorem by Lawvere towards the end of the exposition of the basic
theory. Isbell showed in his review that there is a model C of the basic theory, namely
the category of all (small) categories in which every endomorphism is an identity,
such that CDT is false in that model. More specifically, the basic theory allows
one to construct a certain category A which is not in the model (it has non-trivial
endomorphisms). Therefore, CDT cannot be a theorem of the theory.

But this is not all. Lawvere also asserted “that the basic theory needs no explicit
‘axiom of infinity”’. ([167], 6.) This is of course a striking claim, because in set
theory an axiom of infinity has to be assumed. According to Lawvere, no such as-
sumption is required in the context of the category of categories. However, following
Isbell’s suggestion, it can be seen that there is a model in which all the categories
are finite, thus showing that Lawvere’s claim is wrong. So for Lawvere’s original
proposal at least, the situation is no different from the set-theoretical one.

From this last result, it also follows that Lawvere’s claim that his own theory
of the category of sets can be developed within the basic theory of the category of
categories is also false. Overall, Lawvere’s analysis was flawed.

But clearly it would be wrong to dismiss Lawvere’s work on these grounds.

1. The problems simply show that the task is more difficult than one might have
expected. As we have already said, little was known in pure category theory in
the early and mid-sixties. Lawvere’s work called for more research and it was
soon to follow in various directions. (For instance, [22] and [100–102].) As to
Lawvere’s specific attempt, various proposals were made later to fix it. See [27]
and [26], where an attempt is made at rehabilitating some of the original claims
(e.g., the existence of an infinite object is claimed to be derived), and [222] for a
development which follows Lawvere’s own presentation very closely but avoids
its pitfalls.

2. As more recent works have shown, a category of categories is a rich and intricate
structure in itself and it seems reasonable to try to characterize a category of
categories by grasping this structure instead of trying to “force” the objects to
be categories; we will briefly come back to this point in the conclusion;

3. Be that as it may, the main point remains: what Lawvere was basically trying
to do was to provide a proper setting for the categorical way of doing mathe-
matics. More precisely, from his own research and the work done at that time,
Lawvere understood that mathematical domains, for instance homological alge-
bra or universal algebra, could be characterized in a purely categorical fashion,
or developed in a categorical framework. In turn, adjoint functors constituted,
according to Lawvere, the main methodological tool required for categorical
work, since they yield an invariant presentation of given concepts. Thus, if cate-
gory theory has to do with functors, and more specifically adjoint functors, one
has to clarify to some extent what the underlying universe of these functors is.
Instead of trying to force category theory into a set-theoretical universe, it seems



208 6 Invariants in Foundations: Algebraic Logic

to make sense to describe the universe of categories and functors directly, which
is what he did.

4. I can now reiterate more precisely the main connection to Klein’s program.
It is possible to characterize a system of mathematical concepts by categori-
cal means, more precisely by adjoint functors and related properties, e.g., the
so-called “exactness conditions” (the terminology comes directly from homo-
logical algebra and the characterization of Abelian categories in that context).
This is now clearly in the spirit of the program and also coherent with Eilenberg
and Mac Lane’s original intention of using category theory to provide a classi-
fication of mathematical concepts in terms of invariants. Not only is a category
itself a collection of “spaces” with their “transformations”, but, going one level
up, categories themselves are “spaces” with “transformations” between them
(and, as we will see, “transformations of transformations”, i.e., transformations
similar to homotopies in topology).

As I have already mentioned, Lawvere meant to develop set theory within the
category of categories, i.e., he thought it possible to characterize the concept of set
without referring to the standard ∈ relation and its associated axioms. The general
strategy should now be obvious: identify enough categorical properties such that
any category equivalent to a category satisfying these properties “is” the category of
sets. This ought to yield an invariant presentation of the category of sets. Again, the
connection with Klein’s program is more than clear. To see how Lawvere thought
this could be done and how it served as a springboard to his work on elementary
toposes, we now turn to the elementary theory of the category of sets, ETCS for
short.

6.3 The Elementary Theory of the Category of Sets

(. . . ) and then [Lawvere] conceived the idea of giving a direct ax-
iomatic description of the category of all categories. In particular,
he proposed to do set theory without using the elements of a set.
His attempt to explain this idea to Eilenberg did not succeed; I hap-
pened to be spending a semester in New York (at the Rockefeller
University), so Sammy asked me to listen to Lawvere’s idea. I did
listen, and at the end I told him “Bill, you can’t do that. Elements
are absolutely essential to set theory.” After that year, Lawvere went
to California.

([196], 342.)
Thus we seem to have partially demonstrated that even in founda-
tions, not Substance but invariant Form is the carrier of the relevant
mathematical information.

([165], 1506. My emphasis.)
Some years ago I began an introductory course on Set Theory by
attempting to explain the invariant content of the category of sets,
for which I had formulated an axiomatic description.

([176], 5. My emphasis.)
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Let us briefly see how invariant Form is the carrier of the relevant information, even
for the concept of set.

Lawvere assumes the standard axioms for a category and then postulates that
the category of sets has a terminal object 1, an initial object 0, binary products and
coproducts, equalizers and coequalizers, thus all finite limits and colimits (axiom
1). He also assumes that it is Cartesian closed, i.e., that the object BA, together with
the known morphism and universal property, exist for any A and B (axiom 2). These
two axioms are “structural” and are satisfied by many categories, even, as we have
seen, by the category of categories as axiomatized by Lawvere.

The next axiom is known as the Peano-Lawvere characterization of the natural
numbers. It is therefore an axiom of infinity, but it contains more when it is assumed
along with the previous axioms.

Axiom (3). There is an object N together with morphisms 1
z // N s // N such

that given any object X together with mappings 1
x0 // X t // X , there is a unique

morphism N x // X such that x0 = zx and xt = sx.

This is now the standard characterization of the natural number system by a uni-
versal property. A theorem on primitive recursion follows from it and the preceding
axioms. Lawvere immediately points out that axiom (3) is satisfied, as well as the
first two axioms, by the category 1, i.e., the category with one object and one mor-
phism. Thus, more is needed, both structurally and in terms of existence.

The next axiom is false in the category of categories, for it says that the terminal

object 1 is a generator, i.e., if the morphisms A
f //
g

// B are different, then there is

a morphism x : 1 → A such that f x 6= gx. In more colloquial language, this axiom
states that if f and g are different, then there is an element x, or a point, in A such
that f and g are different on that element.

The fifth axiom is the axiom of choice as expressed in the category of categories.
The last three axioms are not expressed in a categorical fashion. It is time I men-
tioned that Lawvere reintroduces the ∈ notation in his axiomatization. Since there
is a one to one correspondence between the morphisms x : 1 → A and the elements
x ∈ A in the universe of sets, it seems reasonable to say that x is an element of A if
and only if x : 1→ A. The remaining axioms are then expressed as follows:

Axiom (6). If A is not an initial object, then A has elements.

Axiom (7). An element of a sum is a member of one of the injections.

Axiom (8). There exists an object with more than one element.

Lawvere underlines the fact that the first seven axioms are satisfied by the cate-
gory 1 with one morphism, thus the need for the eighth axiom. One could certainly
object to the introduction of the ∈ relation and the notion of element in a categor-
ical framework and claim that this part of the axiomatization does not capture the
invariant form of the category of sets.
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Be that as it may, the claim that the invariant form of the concept of set is cap-
tured by the axioms is substantiated by a metatheorem and its corollary. Indeed, the
metatheorem asserts that any two categories satisfying the eight axioms are equiva-
lent, thus in particular any (complete) category satisfying the eight axioms is equiv-
alent to the category of sets. We can now clearly see what was missing in Eilenberg
and Mac Lane’s approach in the development of invariance in a categorical setting:
the notions of adjoint functors and of equivalence of categories. Lawvere is in a po-
sition to state precisely what it means to be “the” category of sets: the properties are
(mainly) expressed in categorical terms and the invariance amounts to the claim that
any other category satisfying these properties is equivalent to it. If this is not a clear
generalization of Klein’s program, then I do not know what it is.15

Surprisingly, perhaps, Lawvere’s work did not lead to further investigation along
similar lines. The category of sets was not taken as a foundational framework; it was
not studied and explored. Although there is no clear explanation for this, Johnstone
has suggested that the category of sets is simply too “rigid”:

In retrospect, the answer is that Lawvere’s axioms were too specialized: the category of
sets is an extremely useful object to have as a foundation for mathematics, but as a subject
of axiomatic study it is not (pace the activity of Martin, Solovay et al.!) tremendously
interesting — it is too “rigid” to have any internal structure. ([117], xiii.)

It is not exactly clear why it is such “an extremely useful object to have as a founda-
tion for mathematics” if nothing is developed in it and no one proceeds to do more
research within it. It is clear that Lawvere’s axiomatization did not attract much in-
terest for it was seen as being a simple translation of the standard axioms into the
language of category theory and, as such, not providing any interesting novelty. So-
ciological factors must also probably be invoked. Lawvere’s paper appeared in 1964,
very shortly after Cohen’s proof of the independence of the continuum hypothesis
was published. (See [48].) Cohen’s result, and probably most notably his method of
forcing, deservedly attracted much attention. There is very little doubt that one of
the key advantages of topos theory over ETCS is precisely that the former bridges
the gap between a categorical description of sets and the method of forcing whereas
the latter is a category of sets satisfying the axiom of choice.

6.4 Categorical Logic: the Program

Categorical logic, in a very broad sense, can be seen to derive from
the completeness and exactness properties of the category of sets, in
a manner paralleling the earlier development of Abelian categories.

([207], 5.)

15 And other similar claims for other concepts followed. For instance, D. Schlomiuk, following
Lawvere’s steps very closely, did the same for “the” category of topological spaces. See [247].
More recently, a different characterization of the category of sets has been given in terms of chains
of adjoints. See [242].
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After 1966, Lawvere’s own published work goes back to connections between cat-
egories and logic. As I have said, three papers published in 1969 and 1970 are ex-
tremely important in many respects since they contain the seeds and the statement
of a vast foundational program which was taken up and is still alive. Here are the
basic methodological elements underlying this program.

First, the use of adjoint functors is emphasized both in practice and also from a
more general point of view. In his paper on diagonal arguments and Cartesian closed
categories, Lawvere defines a Cartesian closed category as a category C equipped
with three kinds of right adjoints ([171].):

1. A right adjoint 1 to the unique C → 1;
2. A right adjoint (−×−) to the diagonal functor C → C ×C ;
3. For each object A in C , a right adjoint (−)A to the functor A×− : C → C .

Before that paper, adjoints were used by Lawvere to show that any category sat-
isfying a certain specification was equivalent to a fixed category of interest or to
establish certain properties of given functors in a context. In this Lawvere was fol-
lowing the examples of Abelian categories and sheaves. As we have seen, the ax-
ioms for the category of categories and the category of sets did not mention adjoints
explicitly. Right from the beginning, Lawvere emphasized the fact that Cartesian
closed categories are algebraic versions of type theories.

Second, in connection with the role of adjoint functors, there is an explicit recog-
nition of the levels of abstraction introduced by category theory, more specifically
the fact that category theory now allows for purely abstract characterizations of
mathematical domains.

More recently, the search for universals has also taken a conceptual turn in the form of
Category Theory, which began with viewing as a new mathematical object the totality of
all morphisms of the mathematical objects of a given species A, and then recognizing that
these new mathematical objects all belong to a common non-trivial species C which is
independent of A. ([171], 281.)

What is described by Lawvere should now be clear: in the beginning, mathemati-
cians started with already defined mathematical objects and structure-preserving
functions and moved to a new object, namely the category of these objects of
species A. But it was soon realized that such a category participated in a different
species, namely a category of type C, which can be described independently of A.
The first example of this phenomenon is of course provided by Abelian categories:
one started with Abelian groups (or modules over a commutative ring), the latter
constituting the objects of species A, moved to the category of Abelian groups (or
modules over a commutative ring) and then to an Abelian category, which is a cate-
gory of type C. As we have seen, the important step is that the latter can be described
independently of the former. Lawvere makes a bold generalization: he sees this case
as a general phenomenon, even as a framework that should guide the development
and analysis of mathematics. Of course, he had other examples at his disposal, e.g.,
algebraic theories and categories, Cartesian closed categories and hyperdoctrines,
etc. Once more, the parallel with transformation groups in geometry is striking.
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Third, Lawvere uses Cartesian closed categories to present an analysis of well-
known diagonal arguments, i.e., those of Cantor, Russell, Gödel and Tarski. The
motivation is similar to the one indicated in the foregoing paragraph: these diagonal
arguments are similar and thus seem to form a species of argument. Lawvere hopes
to be able to disclose the common abstract structure underlying them. This abstract
structure takes the form of a fixed-point theorem based on the properties of Cartesian
closed categories. In the process of his analysis, Lawvere introduces an object of
truth values 2, in fact the standard Boolean algebra, for this object appears in one
way or another in all the arguments. As we will see, the object of truth-values, as
well as the Cartesian closed structure, will become pivotal in his characterization of
the notion of elementary topos in 1969.

Fourth, in all three papers, Lawvere suggests extensions of his earlier work on
algebraic theories to theories written in higher-order type theories and, as a spe-
cial case, first-order theories. I should point out immediately that he was no longer
alone in looking for connections between categories and logic. Lambek’s work on
categorical analysis of deductive systems has to be mentioned at this stage. (See
[155–157].) Lawvere’s extensions are based on the following fundamental facts:

1. The logical quantifiers can be presented as adjoint functors to the simple and
fundamental operation of substitution ([169], [171], [174]);

2. The comprehension principle can be presented as an adjoint functor in a proper
context ([171], [173]);

3. Lawvere sketches how one can construct a category from a given theory for-
malized in higher-order logic ([171], [173], [174]).

I have to underline the fact once more that a categorical analysis of logical sys-
tems not only provided a novel and unifying understanding of logical operations
and systems, but by the same token, it initiated a shift in the status of categories
themselves. It is now possible to identify a type of category with a type of deductive
system. The claim that category theory can be seen as a language can now be made
more precise: category theory can be seen as a formal language for mathematics.

Fifth, all these constructions are incorporated in a general framework that consti-
tutes nothing less than the frame of categorical logic as it developed afterwards.16

This framework is presented in very broad strokes at the beginning and the end of
the papers entitled “Adjointness in Foundations” and is itself of considerable philo-
sophical interest.

Lawvere identified two aspects, which he qualifies as being “dual”, since they
appear to obey some sort of general duality or Galois connection inherent to mathe-
matics, namely the Formal and the Conceptual. The Formall is more or less identi-
fied with the manipulation of symbols, either in deduction or calculations, whereas
the Conceptual is identified with the content of these symbols, the subject matter of
the Formal or what they refer to. Thus, at first sight, Lawvere’s terminology coin-
cides with the classical distinction between the syntax and the semantics of formal
languages. However, Lawvere has the actual practice of mathematics in mind and

16 At least before categorical logic became a standard tool in theoretical computer science. But
even in this context, one can see the influence of Lawvere’s suggestions.
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therefore does not equate his distinction with the fundamental metamathematical
distinction.In fact, he sees foundational research as being part of mathematics: “Be-
ing itself part of Mathematics, Foundations also partakes of the Formal-Conceptual
duality.” ([171], 281.) Thus, the syntax of a logical system is part of the Formal,
whereas the semantics is part of the Conceptual. But Lawvere’s presentation of the
semantics is somewhat odd: “Naturally the formal tendency in Foundations can also
deal with the conceptual aspect of mathematics, as when the semantics of a formal-
ized theory T is viewed itself as another formalized theory T′, or in a somewhat
different way, as in attempts to formalize the study of the category of categories.”
([171], 281.) Category theory is clearly put on the conceptual side of mathematics
and, in fact, one can see that Lawvere sees his work on the foundations of univer-
sal algebra and the subsequent work on Cartesian closed categories and extensions
thereof as being part of the conceptualization of the formal aspect of mathematics.17

Indeed, he claims explicitly that “Foundations may conceptualize the formal aspect
of mathematics, leading to Boolean algebras, cylindric and polyadic algebras, and
certain of the structures discussed below.”18 ([171], 282.) At the center of this con-
ceptualizations appear adjoint functors.

Adjoints are present in foundations in two senses. First, Lawvere introduces
Cartesian closed categories and what he calls hyperdoctrines in that paper. The main
property of these two concepts is that they are entirely given by adjoint functors.
However, as we have already mentioned, Cartesian closed categories and hyper-
doctrines correspond in a precise technical sense to logical frameworks. Thus, both
Cartesian closed categories and hyperdoctrines are categorical codifications of log-
ical structures, the algebraic counterpart of these structures. Adjoint functors are
used to define the conceptual content of foundations. However, and this is the sec-
ond point, adjoint functors also play a more general role. The Formal and the Con-
ceptual mentioned above should be related by adjoint functors (but we are clearly at
a programmatic stage here).

Lawvere is in fact more precise in the way these adjoints should show up and here
we see him generalizing the work contained in his thesis. First, Lawvere suggests
that one should consider categories of models of a theory, thus framing model theory
in the context of category theory.19 More specifically, a model in the standard model-
theoretic sense can be described as a functor from a category T to the category Set
of sets. The category of such models is then a subcategory of the functor category
SetT, or also written Mod(T,Set) or ModSet(T).

Second, the category T is the categorical encoding of a given formal theory.
In Lawvere’s own terms: “The invariant notion of theory here appropriate has, in
all cases considered by the author, been expressed most naturally by identifying a

17 Indeed, in the 1990’s Lawvere and Steve Schanuel cowrote a book entitled Conceptual Mathe-
matics. (See [180].)
18 Notice here the reference to cylindric and polyadic algebras. Indeed, it is clear that Lawvere’s
first attempt at capturing logic by the means of category theory consisted in translating in the
categorical language and spirit some of the results of algebraic logic of that period.
19 I have to point out that Freyd had already made explicit connections between category theory
and model theory before. See [90].
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theory T itself with a category of a certain sort.” ([171], 295.) I emphasize the fact
that Lawvere is looking, once again, for an invariant notion of a theory and that this
invariant notion is provided by a category. Thus, if a group of transformations is an
invariant presentation of a theory of geometry, a category can be seen as an invariant
presentation of a theory in general. Since a group is a special type of category, this
is another illustration of the generalization of Klein’s program at work.

Third, and the adjoint functors enter the picture explicitly at this stage, there
ought to be an adjoint pair of functors encapsulating the general duality expressed
above

T◦ semantics //oo
structure

Mod(T,Set).

The Conceptual is identified with the category of models of T.20 However, the
Formal is not identified with the invariant formulation of the theory, since clearly
there are aspects of the Formal, e.g., specific rules of computation or derivation,
that are inherent to a formal framework. Therefore, Lawvere suggests that there is a
further adjoint situation, left unspecified this time and simply written as:

Formal //oo Theories.

This adjoint situation describes “the presentation of the invariant theories by means
of the formalized languages appropriate to the species”. ([171], 295.) Since adjoint
functors compose, we get a family of adjoint functors

Formal◦ //oo Conceptual

that we started with.
As such, this description is almost completely programmatic. It is clearly a bold

generalization of Lawvere’s thesis. It is given as a completely general framework
for foundational research. It is taken as being faithful to the essential elements of
mathematical knowledge. Logicians who were about to enter the scene picked up
that program and started to develop it systematically. It led to what were later called
“categorical doctrines” and were presented as such by Kock and Reyes in their sur-
vey paper. (See [143].) Thus, I strongly disagree with Corry when he says:

Lawvere himself proposed in an article of 1969 to connect the concept of duality, and other
categorical concepts, with the epistemological issues related to the philosophy of mathemat-
ics. In order to do that, he identified two “dual aspects” of mathematical knowledge — the
conceptual and the formal aspects — which appear in many domains of mathematics. (. . . )
Now Lawvere proposed to dedicate efforts to develop the second aspect, the conceptual one,
embodied in category theory. This proposal, however, remained at the programmatic level
and no one seems to have developed it further. ([51], 388.)

It is true that different mathematicians may have interpreted the Formal and the
Conceptual according to their own convictions, but the mathematical content of
Lawvere’s proposal, including the mathematical duality involved, led very quickly

20 I am not entirely faithful to Lawvere here. He takes the Conceptual to be the functor category
Mod(CAT, [SetI]), which is of course slightly more general than what I have been describing.
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to a host of important results. The fact is, no one had to quote Lawvere explicitly or
say that their work was part of that program, for in a sense the program was already
implicit in the manner Lawvere had set up his own work on universal algebra and
that work, as we have seen, called for various generalizations and expansions.

Finally, one has to contrast categorical logic with other attempts at developing an
algebraic framework for logic around the same time, e.g., Halmos’s polyadic alge-
bras and Tarski et al.’s cylindrical algebras. Joyal and Reyes described the advan-
tages of the categorical approach in an unpublished paper from the mid-seventies:

1) The concept of category is used in all branches of mathematics, whereas the structure
of polyadic algebra is exotic. Thus, we may hope to extend the application of logic in
mathematics.

2) Certain categories, used in different fields of mathematics are in fact theories and is
useful [sic] to consider them as such.

3) As we shall see in this paper, constructions which are actually used in model theory
are specializations of general categorical constructions (hence logic is no exception to
the generalized use of categories in mathematics). ([126], 5)

These considerations boil down to one fundamental fact: whereas cylindric algebras
and polyadic algebras are isolated in the conceptual realm of mathematics, cate-
gories are omnipresent. The heuristic gain of using categories is therefore clear and
powerful.

But there are indications that the gain is more than heuristic. As we have already
seen in the section on adjoint functors, the algebraic expression of propositional
logic is given by lattice theory and in the latter adjoint functors are usually called
Galois connections. Disagreements appear when higher-order operations like quan-
tifiers are considered, in other words, disagreements appear as to how to generalize
the algebraic framework to higher-order logical operations. The fact that categories
are a generalization of posets suggests that they might yield the correct generaliza-
tion. Indeed:

1. Concepts and results about propositional logic are special cases of concepts and
results in the categorical setting;

2. It is possible to naturally extend proofs in the propositional setting to the cate-
gorical setting;

3. It is possible to obtain new results in the categorical setting;
4. It is possible to make contacts with other areas of mathematics either by using

results of different fields in the new context or by applying the new results in
different fields.

It is a remarkable fact that the categorical machinery introduced for algebraic
topology, homological algebra, homotopy theory and algebraic geometry constitutes
at the same time the proper setting for an algebraic analysis of logic.

We now turn to the details of this program and its development. We will now
leave the historical thread and concentrate on its conceptual aspects. Again, my
goal is to emphasize how the introduction of category theory in logic is part of the
extension of Klein’s program.
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6.5 An Adjoint Presentation of Propositional Logic

As we have seen in section 5.1, it is possible to introduce operations on a partially
ordered set by adjoint functors (or Galois connections). Once this is seen, various
systems of propositional logic can be presented by sets of rules that mimic the ad-
joint situations. Here are the details for classical propositional logic (CPL).

Let us recall some elementary conventions to fix the vocabulary. We denote
propositional atoms by p, q, r, . . . . A conceptual frame is an (arbitrary) set of atoms
and it is denoted by L. Thus a conceptual frame is nothing but a collection of propo-
sitions about something. The notion of well-formed formula is as usual. Formulas
are denoted by ϕ , ψ , ξ , etc.

At the syntactic level, a logic L is characterized by a consequence relation, which
we will denote by `: and we write Γ `:α to express the fact that α is derivable from
Γ . A propositional logic is given by a set of connectives and a set of rules of infer-
ences, which in turn determine the consequence relation. The set of connectives for
CPL is the set {>,⊥,∧,∨,→}. The rules are applied to entailments: an entailment
is a formal entity of the form ϕ `ψ , where ϕ and ψ are arbitrary formulas. A rule of
inference is an n-ary relation on entailments, for n a positive integer. The first n−1
places of the relation are called the premises; the last place is the conclusion of the
rule. When n is equal to 1, we have a logical axiom scheme. A rule R has the form

R
α β . . .

γ

where α,β ,γ denote entailments.
The set of rules of CPL is given by:

Structural rules:

(Taut) ϕ ` ϕ

(Cut)
ϕ ` ψ ψ ` θ

ϕ ` θ

Logical rules:

(True) ϕ ` > (False) ⊥ ` ϕ

(∧)
ϕ ` ψ ϕ ` θ

ϕ ` ψ ∧θ
(∨)

ψ ` ϕ θ ` ϕ

ψ ∨θ ` ϕ

(→)
ϕ ∧ψ ` θ

ϕ ` ψ → θ
(Bool) (> ` ϕ ∨¬ϕ)

where ¬ϕ is defined as ϕ →⊥. Some comments about the rules are in order. First,
the structural rules can be thought of as defining a partial order on formulas, hence a
category. Thus, one could define a deductive system as a category. Second, the log-
ical rules are easily seen to be the syntactic expression of adjoint situations, except
for (Bool). Indeed, if one reads the entailment relation as being a partial order, then
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the rules are nothing but the adjoint situations for partial orders. Third, if the rule
(Bool) is removed, then one obtains intuitionistic propositional logic (IPL). Fourth,
double lines indicate that it is possible to go either way: from top to bottom or from
bottom to top. Thus they are abbreviations for two or three rules.

A theory T is a pair T = (L,U) where L is a conceptual frame and U is a set of
entailments, thought of as the axioms of the theory T. Thus, we write U`:α to mean
that α is derivable from the axioms U of the theory (by the use of some specified
rules, here the classical rules).

The foregoing syntax for CPL is such that some aspects of the semantics become
obvious. Furthermore, and as we will see, it allows for the definition of basic no-
tions that can be raised to higher-order contexts. In the context of categorical logic,
semantics for propositional logics are given by algebras. In the case of CPL, it is of
course given by Boolean algebras. We will be somewhat explicit in the presentation
and discussion of the semantics, although the details are well-known, because the
categorical framework allows much flexibility and generalization.

Let the category Bool be the category with objects A, B, C, . . . , Boolean algebras
and f , g, h, . . . , Boolean homomorphisms. Let T = (L,U) be a fixed theory and A
a fixed Boolean algebra. An interpretation I of L in A is any mapping I : L → A.
For any L-formula ϕ , that is any formula in which the only atoms occurring are
from I, I(ϕ) is defined by recursion as usual. A model of T in A is an interpreta-
tion I : L → A such that each entailment ϕ ` ψ in U is true in A, in the sense that
I(ϕ)≤A I(ψ) (recall that a Boolean algebra is also a poset). In this case, we write
as usual I � ϕ ` ψ . For CPL, it is a standard result that the two-elements Boolean
algebra 2 is enough and can be used to prove soundness and completeness. In fact,
in this context, verification of soundness is routine: it is simply a translation of the
various rules of inference in the language of posets and they simply become the
expression of the existence of adjoints for certain operations on the appropriate al-
gebras. Completeness, although more complicated, also takes an algebraic dressing.

A somewhat more general framework is needed to be able to prove soundness
and completeness in a uniform manner for other propositional logics. Recall, for
instance, that for IPL, there cannot be a finite algebra that plays the same role that
2 plays for CPL. (This was shown by Gödel in 1932.) What we need in general
is a specified collection of algebras for a given logic. Thus, to specify a semantics
for a logic L, a collection S of L-algebras has to be given, where an L-algebra
is a partially ordered set L together with a set of operations, one for each logical
connective and such that the rules of inference of L are satisfied by L with the
obvious interpretation. Of course, as before, L-algebras form a category. Thus, we
have the category of distributive lattices, of Boolean algebras, of Heyting algebras,
etc. We then say that an entailment α is a semantic consequence of a theory T with
respect to S if for every L-algebra S in S , and every S-model I : L → S of T,
we have I � α . This is denoted by T �S α . We say that completeness holds with
respect to S , if T �S α implies T`:α for any T and α . For instance, completeness
holds with respect to S = {2} for CPL.

In an algebraic context, the completeness theorem for a logic L is equivalent to
a representation theorem, provided the logic L satisfies some very mild conditions,



218 6 Invariants in Foundations: Algebraic Logic

e.g., being invariant under substitution. More specifically, the representation theo-
rem holds with respect to S , if for every L-algebra A, and any elements x, y in A,
x≤A y if and only if h(x)≤S h(y) for every S in S and every morphism h : A→ S.
The Stone representation theorem for Boolean algebras is equivalent to the state-
ment that the representation theorem holds with respect to the collection S = 2.
The equivalence between completeness and representation now takes the following
form: for any propositional logic L satisfying mild conditions, and for any class S
of L-algebras, completeness with respect to S holds if and only if the representation
theorem holds with respect to L in the category of L-algebras.

Seeing that a completeness theorem for a propositional logic is equivalent to a
representation theorem for a category of algebras might seem mildly interesting but
of no real value, since completeness theorems can be proved directly. What are the
advantages of proceeding via a representation theorem? We can at this point imme-
diately underline two facts: (1) When moving to higher-order logics in a categorical
context, we are simply moving to categorical algebra, and a uniform procedure to
establish various representation theorems can be developed. In other words, in all
cases, there is a part of the proof that relies on “general abstract nonsense”, that is
category theory, and another part that is specific to the logic under consideration; (2)
The equivalence between completeness theorems and representation theorems links
logical results to important and fundamental mathematical results. We will come
back to these points in chapter 7.

Furthermore, in the algebraic setting, we can immediately introduce two impor-
tant concepts which are more or less trivial at the propositional level but acquire
more substance when we move to higher-order logics. As we will see, these con-
structions can be lifted directly into the categorical setting.

The first such concept is the notion of a generic or universal model of a theory.
Let T be a theory in CPL. Then, as is well known, one can construct the associated
Lindenbaum-Tarski algebra of T as follows: define a congruence relation ∼T on the
formulas of the underlying conceptual frame L of T by

ϕ ∼T ψ if and only if T`:ϕ ` ψ and T`:ψ ` ϕ .

In words, two formulas are equivalent or logically indistinguishable if and only
if they are deducible from one another in T, i.e., they have, so to speak, the same
logical strength. It follows from the structural rules of CPL that∼T is an equivalence
relation and the fact that it is a congruence relation follows from invariance under
substitution.

Let us denote as usual the equivalence class of ϕ by [ϕ] and the collection of all
L-formulas by FL. Then the usual quotient FL/∼T can be seen to be a partially
ordered set, the latter relation being defined by

[ϕ]≤ [ψ] if and only if T`:ϕ ` ψ .

Furthermore, the usual algebraic operations can be defined in the usual manner on
representatives of the equivalence classes. It can be shown that the resulting algebra,
which we will denote by [T], is a Boolean algebra. There is an obvious interpretation
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MT of T in [T]: MT(ϕ) = [ϕ] for all ϕ ∈FL and it can be shown that MT is a model
of T. It is called the generic or universal model of T.

From a categorical point of view, the Lindenbaum-Tarski algebra is defined by
a universal property. Indeed, the pair 〈[T],MT〉 satisfies the following property: for
any model M : T → A, there is a unique morphism f : [T]→ A of Boolean algebras
such that the diagram

T [T]
MT //T

A

M

��?
??

??
??

??
??

[T]

A

f

��

commutes. Thus, the Lindenbaum-Tarski algebra is another instance of a univer-
sal morphism. The existence of the Lindenbaum-Tarski algebra is established by
the foregoing construction, but as usual in a categorical context, what matters is
specified by the universal property it satisfies. Furthermore, the pair 〈[T],MT〉 is
determined by T up to isomorphism. What the diagram asserts is that there is a one-
to-one correspondence between models M : T→ A and morphisms f : [T]→ A. It is
in this sense that [T] is generic or universal: every model of T is in fact an image of
the generic model and any such model can be obtained in this manner. In particular,
that is, in the case of Boolean algebras, it follows that any model T→ 2 corresponds
to a Boolean homomorphism [T]→ 2.

The generic model is connected to deducibility in a very important way. Indeed,
it follows that

T`:ϕ ` ψ if and only if MT � ϕ ` ψ if and only if MT(ϕ)≤[T] MT(ψ).

A few words of explanation about the generic model are probably needed at this
stage. One has to be clear about what it amounts to. It is a quotient construction
based on an equivalence relation. Thus, we start with a certain theory T in a given
conceptual frame and we ignore the explicit content of the propositions to focus our
attention on the logical strength of the formulas. In other words, when we move
from the theory T to the generic model [T], we shift from the criterion of identity on
specific formulas and the deducibility relation defined between them to the criterion
of identity on equivalence classes of formulas and the order relation between them.
But we have to be extremely clear about the nature of these equivalence classes.
The fact that the quotient structure is an algebra, and not just a set, is of fundamen-
tal importance. The algebraic structure encodes in a condensed manner all possible
logical paths between all possible formulas having the same logical strength. An
equivalence class [ϕ] stands for a certain property that is shared by all its represen-
tatives: given any representative ϕ of [T] and any other equivalence class [ψ] with
representative ψ such that [ϕ]≤[T] [ψ], there is a proof from ϕ to ψ in T. The details
of the proof, e.g., its length or complexity, are completely ignored. The partial order
represents a basic logical connection between formulas; it ignores all the syntacti-
cal information contained in the proofs to keep the purely conceptual connection
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between logical types within the given theory. Thus, the identity condition used to
identify the logical types is not that they are sets (i.e., it is not the axiom of exten-
sionality), but rather it is the criterion of identity for the algebraic system they find
themselves in. It is for this reason that we can treat the equivalence classes as (logi-
cal) types, for they simply yield a representation of an algebraic system, i.e., it is the
fact that the construction of the Lindenbaum-Tarski algebra satisfies the foregoing
universal property which constitutes the key fact.

We have moved from a theory to its generic model, to algebraic systems. There
is a way to go in the opposite direction. We can start from a specified algebra A
and try to construct a theory TA, which we will call the internal theory of A, and an
interpretation MA : TA → A satisfying the universal property of the generic model.
The conceptual frame is simply the set of elements of A, i.e., L = |A|, where |A|
denotes the underlying set of A. The set of entailments ΣA is the set of all entail-
ments over LA that are true under the identity interpretation 1|A| : LA → A. Thus, the
internal theory TA of A is given by 〈LA,ΣA〉 and the generic model MA : TA → A is
the identity morphism. The universal property is in this case trivially verified.

Needless to say, the previous considerations do not apply exclusively to Boolean
algebras and CPL. They cover a whole range of propositional logics. Furthermore
and as we will see, the notions of generic model and of internal theory can be lifted
into the categorical context and thus are also used for higher-order logics.

Let us recapitulate the use of categories and adjoints at the level of propositional
logic.

1. At the syntactical level, logical systems can be presented in a language that
mimic adjoint situations, as we have illustrated for classical logic;

2. At the semantic level, each specific algebraic structure, e.g., Boolean or Heyting
algebras, used to interpret the syntax can be defined via adjoint connections on
partial orders seen as categories;

3. The algebraic structures form categories in their own right and the structure of
these categories is relevant from the logical point of view;

4. Given that adjoints are organized in a certain manner and that categories of
algebraic structures are related to one another in systematic ways, various re-
sults connecting logical systems to one another are possible and can even be
exploited. A striking example of this phenomenon will be given later when I
present and discuss geometric or coherent logic.

6.6 Quantifiers as Adjoint Functors

One of the stunning discoveries made by Lawvere in the early sixties is the fact that
quantifiers can be introduced as adjoint functors. This is an additional and very im-
portant indication that the slogan “algebraic logic is categorical logic” has a definite
content.

To motivate the purely formal definitions, we will start with the case of sets. Let
X be a set and℘(X) be the set of all subsets of X .℘(X) is a preorder, thus a category,
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under the relation of inclusion of subsets. In fact, as is well known, it is a Boolean
algebra. Each function f : X → Y induces two order-preserving functions between
℘(X) and ℘(Y ). The first function is the direct image function f∗ : ℘(X)→℘(Y )
defined by f∗(S) = { f (x) ∈ Y | x ∈ S}. The second is the inverse image function
f ∗ : ℘(Y )→℘(X) defined by f ∗(T ) = {x ∈ X | f (x) = y for some y ∈ T}. This last
object can be described in purely categorical terms. To see this, we need to introduce
another universal construction, called the pullback.

Consider the following diagram in an arbitrary category C .

Y Zg
//

X

Y

X

Z

f

��

A pullback of this diagram, whenever it exists, is an object P together with arrows
pX : P→ X , pY : P→ Y and pZ : P→ Z such that

1. f ◦ pX = pZ = g◦ pY and
2. For any object Q with arrows h : Q → Y , i : Q → Z and k : Q → X such that

g◦h = i = f ◦k, there is a unique arrow u : Q→P such that pX ◦u = k, pZ ◦u = i
and pY ◦u = h.

In diagrammatic language, a pullback 〈P, pY , pZ , pX 〉 for the arrows f : X → Z
and g : Y → Z is a way to fill in the diagram in the following manner:

Y Zg
//

P

Y

pY

��

P X
pX // X

Z

f

��

P

Z

pZ

��?
??

??
??

??
??

such that the following universal property is satisfied:

Y Zg
//

P

Y

pY

��

P X
pX // X

Z

f

��

Q

X

k

''OOOOOOOOOOOOOOOOOOOOQ

P

u

��

Q

Y

h

��/
//

//
//

//
//

//
//

//
//

/

P

Z

pZ

��?
??

??
??

??
??
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Notice that since f ◦ pX = pZ = g ◦ pY , the arrow pZ can be dropped from the
definition altogether (and so can the arrow i : Q → Z, which we have not drawn).
Such a P is sometimes denoted by Y ×Z X and is also known as the fibered product
of Y , X over Z. Notice also that pullbacks are a generalization of the notion of
products, for whenever Z is the terminal object 1, then a pullback is a product.

The category Set has pullbacks. A pullback of sets X and Y can be described in
set-theoretical language as a subset of the Cartesian product of X and Y . Indeed, it
is the set of all pairs (x, y) such that f (x) = g(y), i.e., {(x,y) ∈ X×Y | f (x) = g(y)}.

The inverse image function f ∗ can be described in terms of pullbacks. Indeed,
consider the following diagram:

X Y
f

//

T

X

T

Y

i

��

Taking the pullback of the inclusion function i : T → Y along f yields the inverse
image of f .

X Y
f

//

f (T )

X
��

f (T ) T// T

Y

i

��

Since we are by assumption in the category of sets, we can see directly why f ∗(T )
is the pullback. The pullback X×Y T is by definition the set {(x,y)∈ X×T | f (x) =
f (y)}. Since i : T → Y is an inclusion, this can be rewritten as {(x,y) ∈ X × T |
f (x) = y}, which in turn can be rewritten as {x ∈ X | f (x) = y for some y ∈ T},
which is precisely the definition of f ∗(T ) .

The inverse image of a given monic arrow i can be taken in any category with
pullbacks. Think of the subset T of Y as being a unary predicate T (y) over Y . What
the above pullback shows is that the arrow f can be thought of as being “substitu-
tion”. Indeed, the pullback f ∗(T ) can also be thought of as being a unary predicate
over X , which we can denote by S(x). What the pullback says is that S(x) is ob-
tained from T (y) by substituting f (x) for y, i.e., S(x) = T ( f (x)). It is in this sense
that pullbacks are substitution in logic. As we will see, quantifiers can be described
as adjoints to f ∗. Thus quantifiers are obtained as adjoints to substitution.

Consider now adjoints to f ∗. In the category of sets, it is easily verified that the
direct image is left adjoint to the inverse image function, i.e.,

f∗(S)⊆ T if and only if S ⊆ f ∗(T ),

or, to use our previous notation
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f∗(S)⊆ T
S ⊆ f ∗(T )

that is f∗ is left adjoint to f ∗. But by definition, f∗(S) can be written in this particular
case as the set of elements y of Y such that there exists an x in X which is in S such
that f (x) = y. Thus, the left adjoint is directly connected to the existence of an
element that can be substituted. It is the existential quantifier f∗(S) and is written as
∃ f S. Thus,

∃ f (S) = { f (x) | x ∈ S}= {y ∈ Y | ∃x ∈ X( f (x) = y∧ x ∈ S)}.

A right adjoint to the inverse image function f ∗ can be defined and it exists in the
category of sets. There is another function℘(X)→℘(Y ), let us call it provisionally
f +, such that

f ∗(T )⊆ S if and only if T ⊆ f +(S).

The set f +(S) is defined in this context as

f +(S) = {y ∈ Y | for all x, if f (x) = y, then x ∈ S}.

It can be verified that f + is right adjoint to f ∗, i.e.,

f ∗(T )⊆ S
T ⊆ f +(S)

Notice the presence of a universal quantifier in the definition of this subset in the
category of set. We write f +(S) as ∀ f S. Thus,

∀ f S = {y ∈ Y | f−1({y})⊆ S}= {y ∈ Y | ∀x ∈ X( f (x) = y→ x ∈ S)}.

To summarize, we have:

℘(X) oo f ∗
∃ f //

∀ f

//℘(Y ), ∃ f a f ∗ a ∀ f .

To see the connection with the standard quantifiers, it is enough to look at a
particular case of the above. Let f be the first projection function p : X ×Y → X .
Hence p∗ : ℘(X)→℘(X×Y ) which to each subset S of X assigns the inverse image
p∗(S) in X×Y . S ought to be thought of as a unary predicate S(x) over X . Then p∗(S)
is also a predicate p∗(S)(x,y), which we will simply write as P(x,y), where y is a
dummy variable. The pullback diagram in this case is
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X ×Y Xp
//

p∗(S) = P(x,y)

X ×Y
��

p∗(S) = P(x,y) S// S

X
��

The pullback means that P(p(x),y) = S(x), which is a special case of substitution. It
is also called “weakening” in the literature since p∗(S) yields a property of elements
(x,y) of X ×Y by ignoring y, that is by the weakening of the property S of elements
of X . It can be verified that taking the pullback of a subset S of X in this case amounts
to considering the cylinder over S in X ×Y .

The adjoint situation takes the following particular form:

℘(X ×Y ) oo p∗
∃p //

∀p

//℘(X), ∃p a p∗ a ∀p.

For T ⊆ X ×Y , ∃p(T ) ⊆ X : it is the set of elements of X such that there is a y and
〈x,y〉 ∈ X×Y , that is, it is the direct image p∗. We write ∃pT as ∃yT (x,y). Similarly,
∀pT is the set of elements of x such that for all 〈x,y〉, if p〈x,y〉= x, then 〈x,y〉 ∈ T .
We write ∀pT as ∀yT (x,y). Symbolically,

∃yT (x,y) = ∃pT = {x ∈ X | ∃y(x,y) ∈ T}

and
∀yT (x,y) = ∀pT = {x ∈ X | ∀y ∈ Y (x,y) ∈ T}.

Rewriting the inclusions relations as implications, i.e., `X for ⊆X and `X ,Y for
⊆X×Y , the adjoint situations become:

T (x,y) `X ,Y p∗S(x)
∃yT (x,y) `X S(x)

and
p∗S(x) `X ,Y T (x,y)
S(x) `X ∀yT (x,y)

.

All the foregoing was developed in the category of sets. It is easy to see that for
any category C with finite products and pullbacks (and, of course, in which a notion
corresponding to the lattice of subsets exists), it is possible to investigate whether
quantifiers are definable in C , i.e., if the relevant adjoints exist.

As Lawvere underlined in 1970, quantifiers are related to substitution in another
way, at least in some important contexts, e.g., in the category of sets. Quantifiers are
said to be stable under substitution whenever the pullback on the left implies that
the square on the right is commutative:
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X Y
f

//

A

X

s

��

A B
g // B

Y

t

��

⇒

℘(X) ℘(Y )
∃ f

//

℘(A)

℘(X)

OO

s∗

℘(A) ℘(B)
∃g // ℘(B)

℘(Y )

OO

t∗

A similar condition can be stated for the universal quantifier ∀ f . These are called
the Beck-Chevalley conditions (for the respective quantifier) in the literature. Thus,
although quantifiers do satisfy this condition in the category of sets, it is not always
the case, even in categories where the quantifiers exist.

6.7 Graphical Syntax: Sketches

(. . . ) categorical logic is, to a great degree, autonomous, even in
matters syntactical.

([203], 54.)

As we have seen, category theory was at first considered to be a useful language.
What was clearly useful was the use of diagrams to prove certain results either in
algebraic topology, homological algebra or algebraic geometry. It is clear that doing
category theory, or simply applying category theory, implies manipulating diagrams:
constructing the relevant diagrams, chasing arrows by going via various paths in dia-
grams and showing they are equal, etc. This practice suggests that diagram manipu-
lation, or more generally diagrams, constitutes the natural syntax of category theory
and the category-theoretic way of thinking. Thus, if one could develop a formal
language based on diagrams and diagrams manipulation, one would have a natural
syntactical framework for category theory. However, moving from the informal lan-
guage of categories which includes diagrams and diagrammatic manipulations to a
formal language based on diagrams and diagrammatic manipulations is not entirely
obvious. The gains obtained by the introduction of such a formal language are not
at first clear. The motivation for such an enterprise is not a priori transparent. As we
have seen in a previous chapter, Freyd was forced to consider some issues related
to the language of categories by a metatheoretical preoccupation. It was not seen by
category theorists as being a vital issue.

This idea of exploiting diagrams in a formal manner was first developed system-
atically by C. Ehresmann and his school in the sixties when they defined the notion
of an esquisse, which was appropriately translated by “sketch” in English. However
the notion was not taken up by many mathematicians and has only recently made
a comeback. It has been generalized and used in various ways and certainly offers
an interesting framework to clarify and again unify various important notions, even
logical notions.
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In order to see what a sketch is, I will first give a simple example to illustrate how
the arrows of a given category can be used as a language to define various internal
notions. Since groups have been the focus of our attention so far, we will once again
take a look at them, but this time by giving the definition of a group internal to a
category C , that is given by the language of the category C .

The data required to define a group G abstractly can be specified with the help
of diagrams, provided the underlying category has a minimal amount of structure,
in this case binary products and a terminal object must exist in the category (or
equivalently, binary and empty products exist). Thus a group in a category C with
products is an object G of C together with the following arrows:

m : G×G→ G; i : G→ G; e : 1→ G

such that the following diagrams are commutative in C :

G×G Gm
//

G×G×G

G×G

m×1

��

G×G×G G×G
1×m // G×G

G

m

��

G G×Goo 1×e
G

G

1
��?

??
??

??
??

??
G×G G

e×1 //G×G

G

m

��

G

G

1
����

��
��

��
��

�

1 Ge
//

G

1
��

G G×G
(1,i) // G×G

G

m

��
G 1oo

e

G×G

G

G×G Goo (i,1)
G

1
��

The first one states that the group operation is associative, the second that the
element e : 1 → G is the identity element and the third one asserts that inverses
exist. If C is the category of sets, we obtain the usual notion of group, if it is the
category of topological spaces and continuous maps, G is a topological group, if C
is the category of manifolds and smooth maps, we obtain a Lie group and if C is the
category of groups and group homomorphisms, then G is an Abelian group. (This
last statement ought to be surprising! One has to verify why it is so.)

The general idea is to construct an abstract graph which would simply contain
the information in the above diagrams together with the information necessary for
certain constructions to be of the right type, e.g., products and certain commutativ-
ity conditions. Thus, the concept of group can be presented by an abstract graph,
and notice immediately that a group in the usual sense then becomes an interpre-
tation of this abstract graph into a category, e.g., it is given by a functor which
preserves the relevant structure from the graph to the underlying graph of a cat-
egory, for instance as above the category of sets, or the category of topological
spaces.
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Thus, a specific abstract graph is used to characterize a certain concept, for in-
stance the nodes and arrows above, in which certain diagrams will have to be con-
sidered as being limit or colimit diagrams and certain commutativity conditions are
satisfied.21 In the case of a group, we need a product node and a terminal object
node in the data and certain commutativity expressing the equalities, hence very
little data. These are the ingredients we need to specify for an abstract graph to be-
come a definition or “axiomatization” of the group concept. This is precisely what
the basic notion of a (finite product) sketch captures in general.

Before we give the definition of a sketch, recall the notion of a directed graph.
A directed graph is given by a collection of arrows A and a collection of vertices or
nodes O, together with two arrows s : A → O and t : A → O, the source and target
arrows, which associate to each arrow a in A, its source s(a) and its target t(a).
We are now ready to specify what a sketch is. We will restrict ourselves to what is
called a finite limit sketch, also called a left-exact sketch or LE-sketch, for it is a
very natural notion and we can make all the points we are interested in with its help.

Definition 6.5. A finite limit sketch S or a LE-sketch is given by a quadruple
〈S, I,D,C〉 where:

1. S is a graph;
2. I : O→ A is a map which assigns to each node g of S an arrow g→ g;
3. D is a collection of diagrams in S;
4. C is a collection of cones in S, where a cone with domain g in a graph S (re-

spectively in a category) is a collection of arrows with domain g (such that, in a
category, if i : g1 → g2, j : g1 → g3 and k : g2 → g3 then k◦ i = j, i.e., the various
diagrams commute). (Needless to say, these cones will be turned into limits in
the interpretations or representations of the sketch in various categories.)

Let us consider the sketch for groups. This case, where only finite products are
required, will again illustrate the nature of sketches.

First, let us see the graph that contains all the information. It is in fact quite
involved, more than one might at first think. The collection O of objects contains
four distinct objects, which we will denote by g0, g1, g2 and g3. For the arrows, we
must have the arrows that will become the group operations and the arrows for the
products, that is the projection arrows. Thus we have the following:

1. 1i : gi → gi (i = 0,1,2,3 the identity arrows);
2. p1, p2 : g2 → g1 (projections of g2 as a product of g×g);
3. q1,q2,q3 : g3 → g1 (projections of g3 as a product of g×g×g);
4. q12,q23 : g3 → g2 (projections of g3 on g2 whose role will be clarified by dia-

grams);

21 Of course, as soon as we have a graph, it is easy to pass to a category generated by this graph.
Hence one could define a sketch as being a certain abstract category. The interesting point in this
context is that an interpretation is a functor from this abstract category into a category, hence it is
a representation. Recall that an abstract transformation group is simply a one-object category and
a representation of a transformation group is a functor from this group into a category of vector
spaces.
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5. m : g2 → g1 (operation of multiplication);
6. e : g0 → g1 (operation of picking up the identity);
7. i : g1 → g1 (send each element to its inverse element in g);
8. m×11,11×m : g3 → g2 (two morphisms whose name exhibit my intentions);
9. ! : g1 → g0;

10. e×11,11×e : g1 → g2 (two morphisms allowing us to pick appropriate pairs of
elements);

11. (i,11),(11, i) : g1 → g2 (two morphisms allowing us to pick appropriate pairs of
elements).

The collection of diagrams of the sketch contains all the foregoing diagrams
describing the axioms of group theory together with the following diagrams which
force the arrows given to be universal arrows and arrows of the proper type:

g1 g2oo
p1

g1

g1

11

��

g1 g1oo 11 g1

g2

11×e

��
g2 g1p2

//

g1

g2

g1 g0
! // g0

g1

e

��
g1 g2oo

p1

g0

g1

e

��

g0 g1oo ! g1

g2

e×11

��
g2 g1p2

//

g1

g2

g1 g1
11 // g1

g1

11

��

g1 g2oo
p1

g1

g1

11

��

g1 g1oo 11 g1

g2

(11,i)

��
g2 g1p2

//

g1

g2

g1 g1
i // g1

g1

11

��
g1 g2oo

p1

g1

g1

i

��

g1 g1oo i g1

g2

(i,11)

��
g2 g1p2

//

g1

g2

g1 g1
11 // g1

g1

11

��

g2 g2oo
12

g1

g2

OO

p1

g1 g3oo q1 g3

g2

q12

��
g2 g212

//

g3

g2

g3 g1
q2 // g1

g2

OO

p2

g2 g2oo
12

g1

g2

OO

p2

g1 g3oo q2 g3

g2

q23

��
g2 g212

//

g3

g2

g3 g1
q3 // g1

g2

OO

p3

g1 g2oo
p1

g1

g1

11

��

g1 g3oo 11 g3

g2

11×m

��
g2 g1p2

//

g3

g2

g3 g2
q23 // g2

g1

m

��
g1 g2oo

p1

g2

g1

m

��

g2 g3oo q12 g3

g2

m×11

��
g2 g1p2

//

g3

g2

g3 g1
q3 // g1

g1

11

��
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g1 g111

//

g3

g1

q3

��

g3 g2
m×11 // g2

g1

p2

��
g1 g111

//

g3

g1

q1

��

g3 g2
11×m // g2

g1

p1

��

The cones in this case are simple: we need the empty cone so that g0 will become
the terminal object and the cones given by 2, 3 and 4 above so that g2 and g3 become
the appropriate product of g1.

This is but one finite-product sketch. Notice that finite-product sketches are es-
sentially finite-limit sketches in which diagrams are all discrete. A finite-limit sketch
is a sketch in which all finite limits are allowed. Morphisms between sketches are de-
fined as follows: given two sketches S and S′ = 〈S′, I′,D′,C′〉, a morphism f : S→ S′

is a graph homomorphism f : S→ S′ such that f ◦ I = I′, every diagram in D is taken
to a diagram in D′ and every cone in C is taken to a cone in C′. Clearly, morphisms of
sketches are simply special morphisms of graphs and it is therefore possible to con-
sider the category of LE-sketches, which is a subcategory of the category of graphs.
Notice that in this case, morphisms can be thought of as translations. The under-
lying groupoid of the category of sketches provide us with a criterion of identity
for presentations of theories although we should immediately point out that it is not
an interesting criterion of identity in this case, since our structures are already ab-
stract. In view of their abstract nature, it is more interesting to introduce a criterion
of identity which will rests on their representations, to which we now turn.

The foregoing sketch for groups constitutes a presentation of the concept of
group by exhibiting, so to speak, the basic and generic structure of a group. In-
deed, the sketch is the sketch of one object with certain transformations between it
and certain of its products. Of course, the theory of groups has to do with all groups
and we therefore have to find a way to move from this abstract generic group to
various concrete groups. This is done by considering various representations, also
called models in this context, of the given sketch in categories. In order to define
models for sketches, observe that any category C has an underlying sketch whose
graph is the underlying graph of C , I picks out the identity maps of C , D is the
class of all commutative diagrams of C and C the class of all limit cones of C . It is
then easy to see how a representation or a model of a sketch can be defined. Define
a map from a sketch S into a category C , for instance the category Set, as a sketch
morphism from S to the underlying graph of C . In the category C , diagrams become
commutative diagrams, cones become limit cones in C (and so on for sketches with
more structure). Given a sketch S and a category C , consider the collection of all
such representations or models F : S → C . They form a category whose objects are
the models F and morphisms the natural transformations between such models. No-
tice that the collection of all graph morphisms S → C is also a category and that
the category of models of S in C , denoted by Mod(S,C ) is a subcategory of the
functor category SetS. Given two sketches S and S′, they are said to be equivalent
or similar if the categories Mod(S,Set) and Mod(S′,Set) are equivalent categories.
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(In fact, we could replace Set by an arbitrary category with the appropriate struc-
ture, for instance Grothendieck toposes, but it is not necessary at this point.) Thus,
two sketches S and S′ are equivalent if their category of models are (categorically)
equivalent. A category C is said to be sketchable if there is a sketch S such that C
is equivalent to the category Mod(S,Set). Thus, the category of groups is sketch-
able. Notice that this means, among other things, that groups can be represented
systematically as functors from a sketch in the category of sets.

Some important remarks can now be made.

1. There is a very natural way to think about the relationship between a sketch and
its various representations. A sketch such as the above sketch for a group should
be thought of as a type, in the standard philosophical sense of that expression,
and its various representations or models as tokens of that type, again in the
standard philosophical sense of that expression. But this shows how different
from the standard approaches syntactical matters are in a categorical context. It
is obvious that the relationship between the presentation of a theory in a stan-
dard syntactical framework with its models has nothing to do with a type/token
relationship. The type/token relationship is the basic epistemological relation-
ship in category theory.

2. Sketches are organized in a natural way. The basic idea is to follow the natural
organization of limits and colimits and then additional structures that can be
given on these. For instance, it is natural to start with finite-product sketches,
then move to finite-limit sketches and to κ-infinite sketches, for various cardi-
nals κ . One can then consider mixed sketches, that is, with limits and colimits,
either finite or infinite. By playing with the sizes of limits and colimits and the
presence and absence of some of them, it is possible to obtain various types of
sketches. For instance, geometric sketches are sketches with finite products and
no restriction on the size of coproducts.22 There is therefore a natural classifica-
tion of sketches that led to an intrinsic classification of categories. Furthermore
since a sketch is fundamentally a geometric notion, it is possible that some ge-
ometric measure of complexity could be devised and would reflect a different
kind of complexity than the standard measures. The idea is not to replace the
standard measures, but to have a (potentially) different notion at hand. This
brings us to my next point.

3. Since sketches are the categorical expression of syntax, it is natural to wonder
how they correspond to the standard notions of logical syntax. There is indeed
an interesting parallel as well as certain differences. Let us start with the case of
finite-product sketches, the simplest case. Since a commutative diagram is ba-
sically the pictorial expression of an equation and since an arrow from a finite
product object into an object, say f : X × ·· · ×X → X is basically an opera-
tion defined on that object, it is easy to see that finite-product sketches are the
graphical expressions of structures with operations whose basic properties are
defined by universally quantified equations. Thus it is easy to construct, in addi-
tion to the sketch for groups, the sketch for semigroups, monoids, commutative

22 The terminology still fluctuates somewhat at this stage.
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monoids, Abelian groups, rings, commutative rings, semi-lattices, lattices, dis-
tributive lattices, etc. These are all cases of what are usually called equational
theories or, equivalently, theories in equational logic. A model of an equational
theory T is called a T-algebra. It is not possible to construct a finite-product
sketch for the concept of a complete lattice nor is it possible for the concept
of topological space, since both rest on an infinitary operation, nor is it possi-
ble to construct a finite product sketch for fields, simply because the axiom for
multiplicative inverses is an implication whose antecedent stipulates that x is
different from 0. For those, one has to introduce more operations and therefore
more structure, hence more complicated sketches.
Finite limit sketches are particularly interesting with respect to traditional syn-
tactical systems. From a categorical point of view, they constitute a very impor-
tant and natural setting. They truly constitute the core of logic for they contain
what could be considered the basic logical operations. Interestingly enough, al-
though it is possible to precisely express the logic of finite limits, or finite-limit
logics, in traditional syntactical terms, this characterization escaped the atten-
tion of logicians and model theorists. It is important to note that many important
and natural mathematical notions can be expressed in this language, the very no-
tion of a category being the most notable example. Here are some of the basic
facts of the syntax of finite-limit sketches.

a. Pullback is a finite limit concept and a category having a terminal object,
binary products and equalizers has pullbacks, and a category having pull-
backs and a terminal objects has finite products and equalizers. In both
cases, such a category has all finite limits. (See [220], 51.)

b. The concept of monomorphism is a finite limit concept, since a morphism
f : X → Y is a monomorphism if and only if the following diagram is a
pullback:

X Y
f

//

X

X

1

��

X X1 // X

Y

f

��
.

As we have seen, a monomorphism f : X → Y can be thought of as being
a predicate on Y , in the same way that a subset of a set X can be thought
of as being a predicate on X . Given two such monomorphisms f : X → Y
and g : Z → Y , we say that f is included in g, f ⊆ g, if there is a (necessar-
ily) unique h : X → Z such that g ◦ h = f . The relation is easily shown to
be a preorder on monomorphisms with common codomain. Furthermore,
an equivalence relation can be defined on monomorphisms with common
codomain thus: f ≈ g if and only if f ⊆ g and g ⊆ f . The correspond-
ing equivalence classes [ f ] are called the subobjects of Y , where Y is the
codomain of f . Thus, the notion of being a subobject of an object is essen-
tially a finite limit notion. The poset of subobjects of Y is denoted by S(Y ).
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Notice that it is a meet or inf semi-lattice, since we are in a category with
finite limits.

c. Relations or predicates with several variables are essentially subobjects and
are thus a finite limit notion. In particular, the diagonal monomorphism
∆X : X → X ×X , given by 〈1X ,1X 〉, the equality predicate on X , is a finite
limit notion.

d. The notion of substitution is also a finite limit notion, since it is a special
case of pullbacks.

e. It is possible to give a precise definition of a finite-limit theory, the latter ex-
pression understood in its usual logical sense. It can also be shown that uni-
versal Horn logic can be interpreted in any category with finite limits. But
finite-limit logic is richer than universal Horn logic. There are some notions
which are definable within finite-limit logic but which are not in universal
Horn logic. There is a special form of the unique existential quantifier hid-
den in finite-limit logic, which is just a consequence of the nature of what
a finite limit is. This does not exist in universal Horn logic. The character-
ization of finite-limit logic in traditional quantification logic is somewhat
delicate, but certainly not mysterious. (For a traditional syntactic presenta-
tion of finite-limit logic, called left-exact logic by the author, see [219]. See
also [52] and [94] for other presentations.)

As the example shows, the correspondence between sketch-based logic and tra-
ditional syntax-based logic is somewhat delicate. But many important results
are known. For instance (and glossing over important technical details regarding
the notion of a (basic) theory in a certain formal system), it has been shown that
a category is sketchable if and only if it is axiomatizable by a (basic) theory in
L∞,∞, the latter being full infinitary logic with no size restriction on quantifiers,
on the one hand, and conjunction and disjunction on the other. (See [207], chap.
3.) A category is finitely sketchable if and only if it is axiomatizable in what is
called a σ -coherent (basic) theory T, which is a theory between finitary logic
and the logic with finite quantification, finite conjunctions and countably many
disjunctions. This shows that finite sketches are somewhat “stronger” than the-
ories axiomatized in finitary logic. (See [207] and [2] for more on these results
in general and [3] and [1] for the latter result.23)

4. There are two kinds of transfer of structures inherent to categorical logic.
First, given a sketch morphism t : S → S′, we automatically obtain a map
t∗ : Mod(S′,C ) → Mod(S,C ), simply by composing with t. This means that
given a certain sketch S′, any one of its models in a category C can be turned
into a model of the sketch S. Second, given a functor F : C → D of the appro-
priate type, e.g., preserving finite limits, we get a functor F∗ : Mod(S,C ) →
Mod(S,D) by composing with F . This means that a model of a sketch S in C

23 Surprisingly, [1] also show that finite sketches are quite strong in the sense that for any geometric
sketch, that is a sketch with finite limit-specifications and arbitrary colimit-specifications, there is a
finite sketch such that their categories of models in Set are equivalent. There is only one restriction
for this result to hold: the size of the colimit-specifications has to be less than or equal to the first
measurable cardinal.
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can be transfered to a model of S in D . This is the basic setup for important
results in categorical logic that will be expressible once we have introduced the
intermediate level between the syntax, namely sketches, and the universes in
which they are represented.

5. Given the notion of a sketch, it is natural to try to find out which categories
are sketchable, i.e., which categories C are equivalent to categories of the form
Mod(S,Set) for a sketch S, and what conditions C has to satisfy to be sketch-
able by a sketch S of a certain type — say, a finite-limit sketch. As we have
already seen, the category of groups is sketchable, and we can say precisely
what its sketch is: it is a finite-product sketch. Thus, the category Grp of groups
and group homomorphisms is equivalent to Mod(S,Set), for the sketch S of
groups presented. This is possible because the category Grp of groups has cer-
tain abstract categorical properties. Gabriel and Ulmer had already found many
results in that area by in the late sixties, but a systematic investigation was only
developed in the eighties, and research is ongoing. For instance, there is a com-
plete abstract characterization of the categories that are sketchable and these
categories are called accessible categories. These results are of course results
about the epistemic accessibility of certain type of structures in the same way
that results about the axiomatizability of a structure are results about the epis-
temic accessibility of certain type of structures. Notice, however, that there is
here no restriction to the finite case. Sketches can be infinite too, and sketches
of accessible categories certainly can be. But, as we have already said, one has
a control on the upper bound of these sketches. (See [2], [3], [1], or [207].)

6. I have presented a simple and limited concept of sketch. There are various
generalizations, which are needed to define, for instance, structured categories.
[151] gives an historical survey and other results. [152], [153], [154] and [267]
constitute generalizations of the notion in the spirit of the traditional concept
introduced by Ehresmann. [203], [204] and [205] offer a generalization that
goes in a somewhat different direction and with properties that are not quite the
same as in the traditional framework. For one thing, in Makkai’s framework,
sketches are defined directly within a given category. Furthermore, there is no
intrinsic hierarchy in his framework. One of the advantages of this approach
is that it allows the definition of an entailment in a proof-theoretical sense and
therefore a general framework for completeness proofs in the standard sense of
that expression. Further work will show which of these notions turns out to be
adequate.
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6.8 Categorical Theories: Conceptual and Generic Structures

A theory is a category with certain operations (defined up to isomor-
phism) (. . . ) The notion of theory is thus “intrinsic”, i.e., indepen-
dent of a particular presentation via formal languages and axiomatic
systems. In this sense, categorical logic may be viewed as “syn-
thetic” or “intrinsic” logic by opposition to the usual “analytic”,
“formal” logic.

([126])

One of the most original aspects of categorical logic and categorical foundations
of mathematics is the introduction of a presentation-invariant structure for theories.
This is in itself a very interesting and conceptually significant contribution of cat-
egory theory to logic and philosophy. Notice immediately the connection with the
use and status of the group of transformations in geometry as a way of encoding the
logical structure of a geometry. Unfortunately, it has escaped the attention of almost
all logicians and certainly almost all philosophers. Furthermore, it illustrates once
more in what manner category theory is essentially geometric.

Traditional logic divides things into two parts: syntax and semantics. This dis-
tinction is at the same time an epistemological and an ontological distinction, or
at least it is motivated by epistemological and related ontological elements. On the
one hand, syntax is suppose to represent the “concrete” facets of language and its
epistemic accessibility is a crucial component: its basic constituents are an alphabet
(a set of symbols), with rules of formation and rules of transformation defined on
this alphabet and derived sets thereof. Formal systems and “languages” are defined
in this context in the usual way. Syntax is usually finitistic: on the one hand, the
alphabet can usually be surveyed and it is made up of distinguishable units; on the
other hand, rules of formation and transformation are usually recursive. Semantics
is the world of “entities” syntactical expressions are supposed to refer to. In math-
ematics, these are collections of mathematical entities with relations and functions
defined on them. Semantics is the mathematical universe, what mathematicians are
supposed to be thinking about or the content of their propositions. The whole point
of model theory is to define the proper relations connecting syntax and semantics
appropriately. So far we have seen how categorical logic treats syntactical matters,
i.e., via the notion of sketch and sketch morphisms, and semantical matters, i.e., cat-
egories in which sketches are represented. Categorical logic introduces an interme-
diary step, which Makkai calls the “conceptual level”; I will adopt his terminology
since it seems to me to be particularly apt.24 The fundamental property of the con-
ceptual level is that it shares a structure with the “world” of structures the formal
system is referring to, and at the same time it shares with the syntax its epistemic
accessibility. To motivate this intermediate level, I will start with a simple remark
about traditional syntax and presentation of theories.

24 As usual, the terminology is not adopted by everyone. What I call the category of concepts
is sometimes called the syntactic category, which is also a reasonable terminology, or simply a
theory, again a defendable choice. Another possibility would be to call it an intentional category
associated to a theory.
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It is well known that many mathematical theories can be presented differently, ei-
ther by different signatures and therefore, in this case, a different choice of primitive
operations or simply by a different choice of primitive operations and axioms. For
instance, the notion of group can be axiomatized in different manners. It is possible
to take the inverse operation as primitive or to define it with the help of other opera-
tions. There are, therefore, some choices and some pragmatic elements involved in
the presentation of a theory. This is particularly clear in the case of geometry, where
many equivalent axiomatizations of the same theory exist. Although these choices
might be very important pragmatically and pedagogically, when it is the theory as a
whole that is the object of study, the presentation of a theory should not be of pri-
mary concern. For, the totality of relations and operations of the theory, given and
defined, should be the same, no matter what the choice of primitive notions or the
particular form of the axioms has been. In a sense then, the theory should be this
totality of notions and theorems, independent of this or that presentation. This is
precisely what a theory is defined to be in categorical logic. It is in fact the category
of concepts of a particular field and it has some very interesting properties. Let us
consider this in some detail.

From a purely conceptual point of view, the category of concepts of a sketch S can
be characterized by the following universal property: given a sketch S, the category
of concepts of S is a category [T]S together with a functor I : S → [T]S such that for
any category C and model F : S→ C , there is a unique functor F∗ : [T]S → C such
that F∗ ◦ I = F , i.e., such that the following diagram commutes:

S [T]S//S

C
��?

??
??

??
??

??
[T]S

C
��

Thus, the category of concepts of a sketch S can be defined as a certain quotient
of the free category generated by S, which makes sense since S is a graph. It can
be constructed directly in various ways, depending on the context. Thus the con-
ceptual category of a T-algebra can be given a very simple form which we have
already seen: the conceptual category of a T-algebra is a category whose objects
are the natural numbers 0,1,2, . . . and in which every n is the n-fold product of 1,
that is each n is equipped with an n-tuple of projection maps pi : n→ 1, i = 1, . . . ,n.
This is, of course, Lawvere’s definition presented above. Notice that [T]S is charac-
terized up to isomorphism of categories. Furthermore, by definition, Mod(S,C ) and
Mod([T]S,C ) will be equivalent categories. Notice also that the category of concepts
[T]S is already a model of the sketch S and that since the category of concepts [T]S
is a category, we can now consider the category Mod([T]S, [T]S) of models of the
category of concepts into itself. Among the latter, there is a privileged, albeit trivial,
model, given by the identity functor. We immediately recognize the constructions
already presented at the propositional level. Although these considerations might
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still look ridiculous, they in fact lead to an important concept that we will see in a
short while.

It is important to note that the category of concepts can be defined even when
theories are defined in the traditional syntactical manner. The main difference with
the case of sketches is that the relationship between a given theory T and its category
of concepts is not a functor anymore, but an interpretation in the standard model-
theoretic sense. It is probably worthwhile to look at the construction of the category
of concepts of a theory in this context, for it may shed a different light on the reasons
underlying the choice of terminology.

In a categorical framework, it is very natural to consider formal systems with
many sorts. A similarity type or alphabet A, often called a language in the literature,
is given by:

1. A collection of sorts S1,S2,S3, . . .;
2. A collection of relation symbols R1,R2,R3, . . ., each of which is given with the

sorts of its arguments; we denote symbolically, in view of the intended interpre-
tations, a relation R as R(x1, . . . ,xn) � S1×·· ·×Sn; this is a purely notational
device with absolutely no meaning;

3. A collection of function symbols f1, f2, f3, . . . each of which is given with the
sorts of its arguments and the sort of its target; we denote a function symbol f
as f : S1×·· ·×Sn → S if f takes n arguments of sorts S1, . . . ,Sn respectively to
a value of sort S.

4. A collection of constants c1,c2,c3, . . . each with a specified sort; we denote a
constant c by c : 1→ Si to indicate that the constant c is of sort Si.

This is the standard definition extended to a many-sorted context. To obtain a formal
system LA in the alphabet A, we add the following:

1. Each sort Si comes with infinitely many variables x1,x2,x3, . . .; we write x : Si
to indicate that the variable x is of sort Si;

2. Each sort has an equality relation =S; notice immediately that this means that
equality is not treated as a universal or purely logical relation and that in the
interpretation, whatever will correspond to a sort will have to come equipped
with a criterion of identity or equality for its objects;

3. The usual logical symbols and two propositional constants, > and ⊥;
4. The usual deductive machinery of intuitionistic predicate logic (if any other

deductive procedures are assumed, they are made explicit).

Terms (of a given sort) and atomic formulas are defined as usual. We will denote
an arbitrary term by the letter t. For the collection of formulas, one can restrict or
extend the possible logical operations depending on the type of categories in which
these formulas will be interpreted. For instance, a formula ϕ is said to be coherent if
it is obtained from atomic formulas by applying finite conjunction, disjunction and
existential quantification. More formally, the collection of coherent formulas is the
smallest collection of formulas such that:

1. The atomic formulas R(t1, . . . , tn), t = t ′, >, ⊥ are coherent formulas;
2. If ϕ and ψ are coherent formulas, then so are ϕ ∨ψ and ϕ ∧ψ;
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3. If ϕ(x1, . . . ,xn) is a coherent formula, then so is ∃x : Sϕ(x1, . . . ,xn) where S is
any sort and x is a variable of that sort.

An implication of coherent formulas ϕ and ψ has the form

∀x1 . . .∀xn(ϕ(x1, . . . ,xn)⇒ ψ(x1, . . . ,xn))

where ϕ(x1, . . . ,xn) and ψ(x1, . . . ,xn) are coherent formulas. Notice that instead of
implications, we could have resorted to sequents; they are essentially equivalent in
most contexts, although the formulation in terms of sequents is more flexible. A
theory T in the given language L is said to be a coherent theory if all its axioms are
implications of coherent formulas. Many mathematical theories can be expressed
in this form. In particular, every equational theory can be presented this way. For
instance, the theory of semigroups, the theory of monoids, the theory of groups, the
theory of Abelian groups, the theory of R-modules for a fixed ring R, the theory of
chain complexes, etc. are all coherent theories. (See for instance [200], chap. X, §3.
However what we call coherent, they call geometric. The terminology is not entirely
settled. See also [122], D.1) We will now give a specific example to which we will
come back in the next chapter.

We can define linear orders with bottom and top elements in a language with one
sort I, one relation symbol ≤, and two constants b and t. The following axioms for
the theory of linear orders show that it is a coherent theory:

∀x : I (>⇒ x ≤ x),
∀x,y,z : I (x ≤ y∧ y≤ z⇒ x ≤ z),
∀x,y : I (x ≤ y∧ y≤ x ⇒ x = y),
∀x : I (>⇒ b≤ x∧ x ≤ t),

(b = t)⇒⊥,
∀x,y : I (>⇒ x ≤ y∨ y≤ x).

This theory is intimately connected to the simplicial category and, more specifi-
cally, to simplicial sets. We will also come back to this point in the next chapter.

A different example of a class of significant formulas is provided by the notion of
a geometric formula: a formula is said to be geometric if it is obtained from atomic
formulas by applying finite conjunction, finite existential quantification and infinite
disjunction. (Warning: some authors call a formula geometric if both conjunctions
and disjunctions are allowed to be infinite.) As in the previous case, we can define
an implication of geometric formulas and stipulate that a geometric theory T is a
theory in which all axioms are geometric axioms.

The concepts of generic model of a theory T and of the internal theory of a
category seen above can now be considered. Given, say, a coherent theory T, the
category of concepts [T] of T is constructed from the language and the axioms of T
as follows. (See also [208], chap. 8 or [200], chap. X, §5 for more details and proofs
or again [122], D.) To get the objects of this category, first consider what is called
a formal set [x;ϕ(x)], where x denotes a n-tuple of distinct variables containing all
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free variables of ϕ and ϕ is a formula of the underlying formal system L. Two such
formal sets, [x;ϕ(x)] and [y;ϕ(y)] are equivalent if one is the alphabetic variant of
the other, that is if x and y have the same length and sorts and ϕ(y) is obtained from
ϕ(x) by substituting y for x (and changing bound variables if necessary). This is
clearly an equivalence relation and it is therefore possible to consider equivalence
classes of such formal sets. An object of the category of concepts [T] is such an
equivalence class of formal sets [x;ϕ(x)], where ϕ is a formula of the formal system
L. The objects of [T] are the equivalence classes of these formal sets, for all formulas
of L. Notice this last important point: we take all formulas of the language, not only
those which appear in T. Thus, in a sense, the space of objects is the collection of
all possible properties and sentences expressible in that language, thus all possible
theories in the given formal system. No logical relationship is considered at this
stage, we have only identified our points. The next step will introduce the structure
corresponding to the structure of that particular theory T and it is this step that will
capture the particular features of T. This is just as one would expect in a categorical
framework: the structure of T is captured by the morphisms we will define and the
properties resulting therefrom.

It is easier to motivate the definition of morphism with an eye on the semantics,
although the properties of the morphisms, e.g., that they form a category, have to
be proved with the syntactical features of the theory (unless one has a completeness
theorem at hand). The basic idea is this: a functor from [T] to Set should transform
the objects of [T] into genuine sets and the morphisms of [T]into genuine functions
automatically, and these functions should be functions that are definable in T — i.e.,
for which we can prove in T that they are indeed functions. Furthermore, [T] should
contain all of them. By sending a formal set [x;ϕ(x)] to the set of n-tuples satis-
fying the formula, i.e. {(x1, . . . ,xn) | ϕ(x)}, a morphism from [x;ϕ(x)] to [y;ψ(y)]
should become a genuine function between genuine sets {(x1, . . . ,xn) | ϕ(x)} and
{(y1, . . . ,ym) | ψ(y)} respectively. Such a morphism should simply be given by a
formula of the theory T that defines such a function, that is a formula θ(x,y) of T
that is provably functional. The only trick in the construction is to construct a mor-
phism between two (equivalence classes of) formal sets [x;ϕ(x)] and [y;ψ(y)] in
such a way that, when interpreted, it yields the graph of the function, in the standard
set-theoretical sense of that expression, between the actual sets {(x1, . . . ,xn) | ϕ(x)}
and {(y1, . . . ,ym) | ψ(y)}. Thus, all definable functions in T will be represented by
a morphism in [T].

Formally, consider a triple (x,y,γ), where x and y are disjoint tuples of distinct
variables and γ is a formula with free variables possibly among x and y. Such a
triple defines a formal function if the following formulas are provable:

T ` ∀x∀y(γ(x,y)⇒ (ϕ(x)∧ψ(y)));
T ` ∀x(ϕ(x)⇒∃y(γ(x,y)));

T ` ∀x∀y∀y′(γ(x,y)∧ γ(x,y′)⇒ y = y′);
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where we have used some obvious abbreviations. The underlying motivation should
be clear: these formulas will be true in any interpretation of T in which γ is indeed
a morphism.

We now define an equivalence relation (x,y,γ)∼ (u,v,η) if

T ` ∀x∀y(γ ⇔ (η(x/u,y/v))).

The equivalence relation guarantees that for every model M of T, the functions cor-
responding to γ and to η will coincide. We can now stipulate that a formal function
is an equivalence class of the foregoing equivalence relation. Given a representative
(x,y,γ) of such an equivalence class, we denote the equivalence class containing it
by 〈x 7→ y : γ〉. Thus, a formal morphism in [T] is denoted by:

〈x 7→ y〉 : [x : ϕ]→ [y : ψ]

For each formal set [x : ϕ(x)], the identity morphism is provided by the formal
morphism 〈x 7→ y : (x = y)∧ϕ〉. Given two formal morphisms 〈x 7→ y : γ〉 : [x : ϕ]→
[y : ψ] and 〈y 7→ z : η〉 : [y : ψ]→ [z : ζ ], their composition is defined by the formal
morphism 〈x 7→ z : µ〉 : [x : ϕ]→ [z : ζ ] where µ = ∃y(γ∧η). These two definitions
satisfy the usual requirements of a category. Thus, [T] is a category.

Notice that [T] is not a category of structured sets and structure-preserving func-
tions! A lot of information about T is lost when all we have at our disposal is [T]. It
is, for instance, impossible to know which atomic formulas are involved in specific
formal sets or what were the primitive symbols of the language LT. Furthermore,
two different theories T and T′ can very well yield isomorphic categories of con-
cepts, thus essentially the same category. As we have seen, the syntactic logical
operations, i.e., quantifiers and connectives, become categorical operations in the
category and this part of the structure is not lost. Again, moving from a theory T
to its category of concepts [T] is an abstraction. The category of concepts [T] is
the algebraic encoding of the logical theory. We should immediately point out that
although the foregoing presentation was restricted to coherent theories, it does not
need to be.

However, when restricted to coherent theories, the foregoing construction has
additional interesting features. For instance, one can show that it is a category with
finite limits. This means that the category of concepts has pullbacks and a terminal
object. To show this, one has to show that given three formal sets related to one
another in the appropriate manner, there is a formal set with formal projections
satisfying the universal property of pullbacks. In fact, whenever T is a coherent
theory, then [T] as a category is what is called a coherent category (see below for
the main elements of the definition; these categories also go by the name of logical
categories or logos (See [208], chap. 8)). By the foregoing construction, it can be
seen that the category of concepts is the category of all definable sets and functions
of a theory T. Thus, in a sense, it contains all the formally expressible concepts of T,
whence its name. Furthermore, it should be clear that under any reasonable notion
of interpretation, there is a canonical or generic or universal model, denoted by G,
of T, in fact based on the interpretation of the whole underlying language of T, in
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its category of concepts [T]. In fact, when T is coherent more is true. Given any
model M of T in a coherent category C , there is a (coherent) functor I : [T] → C
which extends the canonical model and which is uniquely determined up to a unique
isomorphism. This can be rephrased as follows: for any coherent category C and
model M of T in C , there is a (coherent) functor I : [T]→ C and an isomorphism
of T-models M → I(G); if I1 and I2 : [T]→ C are such that f : I1(G)→ I2(G), then
there is a unique natural isomorphism η : I1 → I2 such that f = η(G).

In a sense, T and [T] are interchangeable: from a practical point of view it means
that proof-theoretical means can be used to study [T] and that categorical methods
can be used to study T, depending on the context and the methods available.

This last statement can be strengthened and one can see more precisely to what
extent one can replace a theory by a category or replace a category by a logi-
cal theory. For given a (small) category C , at least with finite limits, it is possi-
ble to associate or construct the language LC of C as follows. We first have to
identify the alphabet of LC . The sorts are given by the objects X ,Y,Z, . . . of C .
Every morphism f : X → Y of C becomes a function symbol of LC . (In partic-
ular, a constant c : 1 → X is seen as 0-ary function symbols.) This is called the
canonical language of C . Notice that LC is obtained as if we had taken C and de-
stroyed its categorical structure, retaining only the symbols, and keeping in mind
that function symbols are sorted. It is possible to extend this language to reflect
the structure of C more closely. Although subobjects of C can be denoted nat-
urally by formulas of LC , it is possible to introduce relation symbols for each
subobject R(x1, . . . ,xn) � X1×·· ·×Xn and n-ary function symbol for morphisms
f : X1 × ·· · ×Xn → X . This is called the extended canonical language of C . (See
[208], chap. 2, sec. 4.) In order to get the internal theory TC of C in its canonical
language, C has to have more structure than just finite limits. Once again, it has
to be what is called a coherent category. In this case, it is possible to give a list of
coherent axioms ΣC , that is a set of coherent formulas, and prove that TC is sound
in C . (See [208], chap. 3.) The internal theory TC is related to C by two expected
properties:

1. There is of course a canonical interpretation G of TC in C ;
2. For any model M of TC in a coherent category D , there is a unique (coherent)

functor I : C →D such that I applied to G is equal to M.

It is of course possible to complete the circle: starting with a coherent category C ,
construct its internal theory TC and then move to its category of concepts [TC ]. How
are C and [TC ] related? They are in fact equivalent as categories, i.e., C → [TC ].
This can be seen by the following (standard) argument. As we have seen, there is
a canonical interpretation from TC into [TC ]. Since TC is the internal language
of C , there is a unique coherent functor I : C → [TC ]. Similarly, since [TC ] is the
category of concepts of TC , there is a coherent functor I′ : C → [TC ], which is
unique up to a unique isomorphism. Composing I and I′ in both directions, we get
functors which are isomorphic to the identity functors on the respective categories,
i.e., an equivalence, as required. This yields the very important result that every
(small) coherent category is equivalent to a category of concepts for some theory T.
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Given the foregoing equivalence between categories and logical theories, it
makes perfect sense to say that a category of concepts in finite limit logic, say,
is simply a (small) category with finite limits. This is what opens the doors to the
direct and abstract definition of various kinds of conceptual categories, also called
categorical doctrines or simply doctrines in the literature, which are basically log-
ical. Thus a category C with all finite limits is called Cartesian or Left-Exact. As
we have already mentioned, the property of being Cartesian is completely charac-
terized by the fact that every diagonal functor I : C → C D has a right adjoint, for D
an arbitrary finite diagram (category). We can now define coherent categories.

A coherent category C is a Cartesian category such that

1. Every subobject meet semilattice S(X) is a lattice;
2. Each f ∗ : S(Y )→ S(X) is a lattice homomorphism;
3. f ∗ has a left adjoint, denoted by ∃ f and which is in the category of sets the

existential quantifier and
4. ∃ f satisfies the Beck-Chevalley condition stated previously.

As we have seen, any coherent theory T yields a coherent category, and con-
versely there is a coherent category corresponding to every coherent theory.

A Heyting category C is a coherent category in which each f ∗ : S(Y ) → S(X)
has a right adjoint, denoted by ∀ f . The last condition is sufficient to entail that each
S(X) is a Heyting algebra, that f is a homomorphism of Heyting algebras and that
the right adjoint is also stable under substitution. Heyting categories are common:
for any small category P , the functor category SetP is a Heyting category. They
correspond to theories in intuitionistic predicate logic.

A Boolean category C is a coherent category such that every S(X) is a Boolean
algebra, i.e., every subobject has a complement. Whenever the category P is a
groupoid, the category SetP is a Boolean category. Thus, in particular, when P is
a group, the category SetP is a Boolean category.

A pretopos C is a coherent category having (1) quotients of equivalence relations
and (2) finite disjoint sums. The category Set suffers, or one should say in this case
benefits, from a multiple-personality syndrome — some say that such an object is
schizophrenic in the literature — for it is a coherent category, a Heyting category, a
Boolean category and a pretopos (in fact, it is also other things. . . ).

The terminology (coherent, Heyting, Boolean, etc.) reflects the fact that starting
from a theory T given in a certain language L as above, the resulting category of
concepts [T] of T is a category of the corresponding kind, e.g., a Heyting category.
These categories correspond to logical theories and we now see how the categorical
perspective introduces an organization of the logical landscape.

The transfer of structures we have discussed above for sketches takes a new twist
for categories of concepts. Indeed, the foregoing transfers for sketches automatically
extend to categories of concepts but in this new context it is reasonable to look for
adjoints to these functors and, as usual, finding and determining the properties of
these adjoints is an important aspect of the categorical investigation. We use the
same terminology as for sketches: a structure-preserving functor I : T→T′ between
(small) categories of concepts is called an interpretation of T in T′. (When T and T′
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have been constructed from theories, one can verify that it is a legitimate notion of
interpretation. See [208], chap. 7, 196.) A structure preserving functor M : T→ Set
is called a (set-)model of T. A natural transformation between models η : M1 →M2
is a homomorphism of models of T and they are the traditional model-theoretic
structure-preserving functions between models. The functor category Mod(T,Set)
is the category of (set-)models of T. More generally, for a category C with the
appropriate structure, one can consider the category Mod(T,C ) of models of T in
C . Transfers of structure are as for sketches:

1. Given an interpretation I : T→T′, one can transfer models of T′ to models of T
by composing with I, that is given a model M : T′→ Set, we get by composition
with I a model MI : T → Set. Hence, there is a functor I∗ : Mod(T′,Set) →
Mod(T,Set);

2. Given a functor F : C → D of the right type (that preserves the right kind of
structure in each case), we get a functor F∗ : Mod(T,C )→Mod(T,D) by com-
posing models M with F .

This is the appropriate set-up to develop some important ideas and significant
results of categorical logic.

1. As we have already seen, as soon as T and T′ are equational theories defined
as above, the functor I∗ has a left adjoint. This is simply a reformulation of
Lawvere’s original result for universal algebra. This situation can be thought
about in the following way. The functor I provides us with an interpretation
of the concepts of T into the concepts of T′. We can think of T′ as extend-
ing T, as a way of adding concepts to T. Then the functor I∗ can be thought
of as “restricting” the models of T′ to models of T is a systematic way. The
existence of the adjoint means that the models of T can be extended in a sys-
tematic way to models of T′. In other words, the category Mod(T′,Set) has the
means to represent within itself how one goes from a model of T to a model
of T′. Consider, for instance, the case when T is the theory of groups and T′

is the theory of Abelian groups, as categories of concepts. There is an obvious
product-preserving functor I : T→ T′ from the category of concepts of the the-
ory of groups to the category of concepts of the theory of Abelian groups. The
induced functor I∗ takes a model of the theory of Abelian groups and sends it to
a model of the theory of groups in an obvious way (since every Abelian group is
a group). The left adjoint to I∗ takes a group and sends it to its Abelianization,
a standard construction of group theory.

2. An interesting case is the case when we end up with an equivalence of cate-
gories between Mod(T′,Set) and Mod(T,Set). This means that from a cate-
gorical point of view, the category of models of T′ is indistinguishable from
the category of models of T. In a sense, then, adding new concepts to T sim-
ply does not modify in any essential way what it can express. This means
that T has some sort of completeness and in this context it makes perfect
sense to say that it is conceptually complete. More precisely, we say that T
is conceptually complete whenever the following is satisfied: if the functor
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I∗ : Mod(T′,Set)→Mod(T,Set) is an equivalence of categories, then the func-
tor I : T → T′ was one already. This literally means that by moving to T′, we
did not add anything essentially new to T, although we might have thought we
had. Conceptual completeness is in fact equivalent to a standard result of model
theory, namely Beth definability theorem. However, one of the advantages of
working in the categorical framework is that categorical methods make it pos-
sible to prove results which might not be accessible otherwise, for instance, a
constructive proof of this result for intuitionistic logic. (See [237] for a categor-
ical proof of conceptual completeness of intuitionistic first-order logic.)
I should point out that conceptual completeness is analogous to a general phe-
nomenon in mathematics, a particularly interesting case of which is the so-
called “Morita equivalence”. In the case of conceptual completeness, an equiv-
alence between categories of models induced by a given functor I yields an
equivalence on the underlying structures involved, namely the theories. This
result can be formulated in this way because the theories are taken to be cat-
egories. If they were not, we could instead stipulate that two theories, pre-
sented in the traditional manner, are equivalent if and only if their category
of (set-)models are categorically equivalent. (This has been done in practice for
theories as well as for sketches. See, for instance, [1] for sketches and [38] for
theories.) This is obviously an equivalence relation and in this form, which is
not a form of conceptual completeness as above, we have a direct parallel with
Morita equivalence. Very often in practice, a certain category C of structures
is given whose objects “depend” in one way or another on a certain underlying
structure. Categories of models are but one particular case. But there are many
others. Consider, for instance, the category of (left-)modules M over a ring R.
The underlying ring influences the structure of the whole space of modules.
Changing the ring can certainly modify the structure of the category of mod-
ules. There are some very strange and interesting relations between such cate-
gories of modules and the category of rings, in particular a strange circularity.
For given a module M, one can consider the ring of endomorphisms End(M)R
of M and then consider modules over that ring. Then, given the later category
of modules, we can once more consider rings of endomorphisms of the latter.
We could clearly go on and on like that. But more to the point, two rings R
and S can be very different and yet yield equivalent categories of modules. For
instance, a ring R and the ring of all (n× n)-matrices over R are equivalent in
this sense. But these two rings are not isomorphic in general. (Consider finite
rings!) Morita has provided a ring-theoretical criterion when two rings R and S
are equivalent in this sense: it is necessary and sufficient that there exists, in the
category of R-modules, what is called a finitely-generated projective generator
U , that is an R-module U with specific properties, such that the ring of endo-
morphisms of U is isomorphic to S. Furthermore, one can define the notion of
Morita invariance for properties of rings: a ring-theoretical property P is said to
be Morita invariant if a ring R has the property P if and only if every ring Morita
equivalent to R has the property P. Many important ring-theoretical properties
turn out to be Morita equivalent. Notice that a property P is Morita invariant if



244 6 Invariants in Foundations: Algebraic Logic

it is defined by means of a categorical property of the category of modules over
R. Exactly the same definition could be given for logical theories.
In fact, the property of Morita equivalence can itself be expressed in purely cat-
egorical language, in terms of certain properties of a functor, i.e., a transforma-
tion between certain categories. Once more, we have an example of properties
of certain structures that are captured by global transformations of the appropri-
ate spaces. (See [17], chap. 2).

3. From a categorical point of view, the category of (set-)models of a theory T
should capture the essential properties of T. In a sense, conceptual complete-
ness is already an indication of this fact. But in principle it could be stronger:
is it possible to recover a category of concepts T from its category of models
Mod(T,Set) in a uniform manner and up to equivalence of categories? This
would mean that the latter category can be enriched in such a way that the re-
sulting category contains all the information necessary to recover the category
of concepts in an essential manner. A theory for which this is possible is said
to be strongly conceptually complete. A different way to formulate this result
is to say that if Mod(T,Set) and Mod(T′,Set) are equivalent, then T and T′

are equivalent too. Notice that it is not assumed that the first equivalence is in-
duced by an interpretation in this case. Whereas conceptual completeness is a
local phenomenon, since it depends on the interpretation I, strong conceptual
completeness is a global phenomenon, since there is no underlying interpreta-
tion at hand. The construction of T can be thought of as a case of abstracting
certain data out of another, more “concrete”, situation. Finite limit categories
of concepts are strongly conceptually complete.25 If the category of models is
adequately enriched in a precise technical sense, then in these circumstances
first-order classical logic is strongly conceptually complete. (See [201].)
In the same way that conceptual completeness is analogous to other common
cases in mathematics, the same can be said about strong conceptual complete-
ness. Indeed, strong conceptual completeness is directly tied to duality theorems
and many such theorems in mathematics can be interpreted informally as saying
that a certain abstract structure can be reconstructed from a structured collec-
tion of more concrete structures. Stone duality itself can be stated in this form.
Pontrjagin duality asserts that certain groups can be reconstructed from their
group of characters. The latter result is extended to more general groups via the
so-called Tanaka duality. In this case, one starts with a category of representa-
tions of a (certain type of) group and the question is whether the given group
can be recovered from its category of representations. Various groups can in-
deed be so recovered in a uniform manner. Of course, the methods used in logic
are totally different from the methods used in representation theory. (For a pre-
sentation of Tannaka duality, see, for instance, [127].)

4. How can we not say that in the case of conceptual and strong conceptual com-
pleteness it is the whole logical structure of a given mathematical theory which
is contained in the category of models and even, in a more precise manner, in the

25 Thus they are the so-called Barr-exact categories
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law according to which operations of that category compose with one another,
independently of the nature of the objects on which these transformations act
(to paraphrase Cartan’s claim about the relation between the structure of a Lie
group and the logic of the corresponding geometry)? The fact is, in a categori-
cal framework, theories are replaced by categories of concepts and the latter are
characterized in a purely abstract way, i.e., as categories that are Cartesian, reg-
ular, coherent, Heyting, Boolean, pretoposes, toposes, etc. In a sense, the next
step corresponds to the step in geometry where one shifts from transformation
groups to transformation groups given abstractly and the various representations
of these abstract groups.

5. As we have seen, completeness results for various propositional logics are
equivalent to representation theorems for various algebras, e.g., in the case of
classical propositional logic, the completeness theorem is equivalent to Stone’s
representation theorem for Boolean algebras. It has been shown that the classi-
cal (Gödel) completeness theorem is equivalent to a representation theorem for
coherent categories, which can be stated thus: for any small coherent category
C, there is a (small) set I and a conservative coherent functor F : C → SetI . A
functor F : C →D is said to be conservative if it reflects isomorphisms, i.e., if
F( f ) is an isomorphism in D , then f was already an isomorphism in C . Need-
less to say, the key property is precisely that of being conservative. For what it
amounts to is the fact that for any diagram in C such that its image under F in
D is a diagram of a universal morphism, then the original diagram was already
a diagram of a universal morphism in C . For instance, given the diagram

X oo pX Z
pY // Y

in C , such that

F(X) oo F(pX )
F(Z)

F(pY ) // F(Y )

is a product diagram in D , then the original diagram was already a product di-
agram in C . As it can be verified, the category Set is coherent and so is the
functor category SetI . Since the functor F : C → SetI is conservative, it follows
that C shares all the coherent properties of SetI , and in fact of Set. The equiv-
alence between the representation theorem and the completeness theorem can
be established as follows. Assuming the representation theorem, we start with
a coherent theory T and construct the category of concepts [T] of T, which is
a coherent category. Applying the representation theorem to [T], we obtain the
completeness theorem. To prove the other direction, we assume the complete-
ness theorem and start with a coherent category C . Using the internal language
of C , one constructs as above the coherent theory TC of C . The models of
TC are then constructed so that they are identical with functors C → Set. The
representation theorem then follows from the completeness theorem for TC .
Two important elements have to be added to the picture. First, the represen-
tation theorem for coherent categories is but one representation theorem for
a whole collection of relevant categories: exact categories, Heyting categories
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and Boolean categories. Second, these results in fact follow a general pattern.
Indeed, the foregoing representation theorem takes a general, purely categori-
cal form. Given any categories S and C , we can always consider the repeated
functor category S (S C ). In this situation, there is a canonical functor, the eval-
uation functor

e : C →S (S C )

for which, given any object X of C , and any functor F : C → S , e(X)(F) is
simply F(X), the evaluation of F at X . For any subcategory D of S C , the same
functor e : C →S D can be defined. It is then easy to show that the representa-
tion theorem for coherent categories is equivalent to the claim that the functor
e : C → S Mod(C ) is conservative. The fact that the evaluation functor is co-
herent holds on purely general grounds. We therefore have a purely categorical
description of the representation theorem. Moreover, in the early seventies Joyal
demonstrated that the functor e preserves all existing instances of the Heyting
structure in C . This automatically yields a representation theorem for Heyt-
ing categories and, in turn, a canonical completeness theorem for intuitionistic
logic.

6.9 Summing Up

When Lawvere presented his program of using category theory to develop logic al-
gebraically, very few people thought it possible or useful. The first developments
were however promising — so much so that it seemed reasonable to investigate the
matter further. We have seen that at the center of his program was the idea of invari-
ance: once a theory has a categorical characterization, it is possible to say precisely
what it means to have an invariant presentation of it. This invariance is captured
by the categorical properties themselves, more often than not by specific adjoints.
There is a deep geometric flavor to the whole enterprise, directly in line with Klein’s
program. However, at the end of the sixties, Grothendieck and his students had de-
veloped various important notions in their search for a proof of the Weil conjectures.
Among the fruits of their labor, especially Grothendieck’s work, was the concept
of a topos. The latter notion was about to give to logic and to the foundations of
mathematics a definitive and profound geometric twist, still in the spirit of Klein’s
program.



Chapter 7
Invariants in Foundations: Geometric Logic

By an additional stage of abstraction Grothendieck, followed by
Lawvere and Tierney, proposed an abstract concept of “topos” that
was for him the ultimate generalization of the concept of space.

([44], 7.)
We consider forcing over categories as a way of constructing ob-
jects by geometric approximation, including a construction of a
generic model of a geometric theory as its special case.

([246], 1.)

Topos theory is a world in itself. It is mathematically rich, intricate and multifaceted.
Its history is extremely complex, still quite recent and would deserve a whole book.
Its philosophical relevance is unquestionable.

One of the important features of the history I have sketched so far is the unify-
ing power of the concepts that appeared in it. The group concept had such unifying
power as well, and that power certainly motivated Klein, Lie and others in geome-
try, elementary or not. But it is also true of the concept of category—and as we have
seen this was already recognized by Eilenberg and Mac Lane right from the start—
and the concept of adjoint functors. The axiomatic characterization of various types
of categories also constitutes another mode of unification. The concept of Abelian
category, for instance, allowed the presentation and development of various coho-
mology theories and related methods. What is striking about the concept of topos
is that, like the concept of group, it has a tremendous unifying power: it is at the
same time topological, geometrical, arithmetical and logical. From a mathematical
point of view, what makes this diversity interesting is the fact that it is possible to
use means, ideas, intuitions, from one domain inherent to toposes and transfer them
to another inherent domain, e.g., from the geometrical to the arithmetical, from the
logical to the topological. This in itself would warrant careful examination.

In this chapter, we will first take a quick look at Grothendieck toposes and some
of their most important features. We will then move to elementary toposes, intro-
duced by Lawvere and Tierney in the early seventies, and look at their most im-
portant properties. All the previous considerations surrounding Klein’s program
and its categorical generalization apply directly to the concept of topos. First, an
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(elementary) topos is characterized by the existence of certain adjoints to given el-
ementary functors. Second, it can also be presented in a purely logical fashion, as
a higher order type theory and thus, in a certain sense, it contains all the logic of a
situation. Third, and perhaps most important for us, a topos is a space and we are
right back in geometry.

7.1 Grothendieck Toposes: Generalized Spaces

Such was the case, for instance, with the crucial unifying notion of
topos, at the very heart of the new geometry – the one that provides
the common geometric intuition for topology, algebraic geometry
and arithmetic – the one also that allowed me to unveil the étale and
l-adic cohomological tool and the main ideas (more or less forgot-
ten since then, it is true. . . ) of crystalline cohomology.

([106], 11. My translation.1)

As the foregoing quotes indicate, Grothendieck saw toposes in two complementary
ways: first, the concept itself provides the common geometric intuition for topology,
algebraic geometry and arithmetic; second, one of its function is to allow for the
definition and development of various cohomology theories. We will not look at
the historical development of the concept of topos, although it will certainly make
a fascinating story when all is told. (See, however [221] for a preliminary sketch
and [224].) We will rather concentrate on some of its most important conceptual
elements.

The motivation underlying topos theory can be summarized as follows:2 one can
study, say, a compact Hausdorff space X by studying the associated ring C(X) of
complex-valued functions on X . (Notice once again how the study of an object is
transferred to the study of how this object is transformed or mapped into another,
usually well-known, object.) The maps between spaces become maps between the
associated rings and the space X can be completely recovered (up to homeomor-
phism) from C(X). This is what Gelfand duality more or less says. Considering an
arbitrary topological space X , one can, instead of looking at the ring of complex-
valued functions on X , consider the “continuous set-valued functions” on X , that is,
sheaves of sets on X . As in the previous case, continuous mappings between spaces
can be described in terms of their associated sheaves and the space X can be fully
recovered from the sheaves. Furthermore, and this is an important feature, all the
(cohomological) invariants of the space X are transferred to the category of sheaves
on X . Thus, one might as well replace or even identify the space X with the category

1 Tel a été le cas, notamment, de la notion unificatrice cruciale de topos, au cœur même de la
géométrie nouvelle—celle-là même qui fournit l’intuition géométrique commune pour la topolo-
gie, la géométrie algébrique et l’arithmétique—celle aussi qui m’a permis de dégager aussi bien
l’outil cohomologique étale et l-adique, que les idées maı̂tresses (plus ou moins oubliées depuis, il
est vrai. . . ) de la cohomologie cristalline.
2 I owe this way of presenting the motivation to [230].
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of sheaves on X . From a categorical point of view, the latter is characterized by the
fact that it is a (Grothendieck) topos. Hence, a space is a topos and a topos is a space.

Notice the shift from Eilenberg and Mac Lane’s methodological standpoint. We
are not looking at how the space X is transformed into other spaces or how other
spaces are transformed into it, but rather we are looking at all the possible “con-
tinuous” transformations of X into a “known space”, namely the category of sets!
From an abstract point of view, we are looking at how X “acts” continuously on sets.
The sheaves of sets on a topological space X form a topos. Thus studying the latter
topos amounts to studying X . One of the advantages of looking at the topos instead
of the space itself is that the “points” of a topos (the term has a precise technical
definition), have a lot of structure and, in fact, in many concrete cases where X is
constructed out of other structures, e.g., when X is the spectrum of a commutative
ring Y , these ‘points’ of the topos are parts of what one wants to know. Furthermore,
it is possible to generalize to more abstract spaces: sheaves of sets on a locale and
sheaves of sets on a site are also toposes.

In the same way that transformation groups in the hands of Klein-Lie-Killing-
Cartan were a tool to study and understand geometry better, toposes were first and
foremost a tool to study and understand algebraic geometry, in particular étale coho-
mology theory. In this context, in the same way that one keeps an eye on the geome-
try at hand when using the group, one usually keeps an eye on the objects one starts
with when using a topos. But, as in the case of groups in geometry, toposes acquired
an autonomous standing and became an object of study with various applications.

In order to understand better in what sense a topos is a generalized topological
space, let us start by observing what the fundamental property of a topological space
is: a topology is essentially a structure which allows mathematicians to define things
locally and study things locally, things that are transformed continuously into one
another. A topological structure is a structure whose essence is to make sense of
(1) local phenomena and (2) continuity. A topos is a generalized topological space
more or less because it provides the means to express and study local phenomena
and continuity. It possesses an intrinsic concept of localization and naturally extends
the notion of continuity. This comes from Grothendieck’s notion of a site, on the one
hand, and the notion of a geometric morphism, on the other. We will briefly look at
these two notions.

A site is more or less a generalized topology on a category in the sense that it
provides a notion of localization for that category. Thus, a category C is thought
of as the underlying space and a site is a family of “neighborhoods” in a general-
ized sense. Informally, the idea is this. What should it mean for a category to have
something “locally defined” or a notion of localization? In the case of a topological
space, “locally” means “in a neighborhood” or, what is equivalent, “in an open set”.
Of course, this is not enough. What this really means is that these open sets satisfy
a certain structure, that they are related to one another in a specified manner. It is
this structure (or a logically equivalent one) that constitutes the essence of “being
open”.

These open sets form, from the algebraic point of view, a lattice. In fact, they
form a complete Heyting algebra and can therefore be considered as a category: its
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objects are the open sets and its morphisms are inclusion maps between open sets.
We can concentrate on a topology from this point of view and find the essential
properties of these mappings from a categorical point of view. Keeping the arrow-
theoretic properties, we should obtain a purely categorical definition of “localizing”
which should be applicable to arbitrary categories. Thus, the notion of a localization
in a category, or of a “topology”, is an abstraction from a certain notion of local-
ization in the topological case and in this sense it is already a generalization of that
notion. However, as usual, this abstraction is not trivial and not unique. The “right”
properties of these open sets do not impose themselves and various abstractions are
possible. The trick here is to focus on the process, so to speak, of localization; that
is, the ability one has, in a topological space, of moving from an open set U to a
family of open sets Vi that cover U . Informally, “localizing” is the ability to move
from any given open set U to any open set V contained in U . But to make sure that
this process is well defined and “stable”, certain conditions have to be imposed on
it. Roughly the conditions taken can be the following. The idea is to concentrate on
covers of U , for any open set U of a topological space. A cover is a collection of
open sets that cover U in the sense that U is contained in the union of these open
sets. Such covers are the backbone of the process of localization. Intuitively, these
covers should satisfy some simple properties: the collection of all open sets included
in a given U should constitute a cover of U ; a cover should be “stable” in the sense
that for any open set V element of a cover of U , if we localize U via V further,
that is by replacing V by a collection of open sets W whose union contain V , then
the latter collection of W s should be a cover of V ; and finally localizing should be
“transitive”, that is a cover of a cover of U should be a cover of U too.

Formally, this leads us to the following considerations and definition. Given a
topological space X and its category (lattice) of open sets O(X), we consider an open
set U of O(X) together with its “covers”, that is families of open sets {Vi}i∈I such
that U ⊂

⋃
i Vi. We say that such a family S = {Vi}i∈I covers U . An axiomatization on

covers has to be an axiomatization on families of covers for all open sets. Formally:

1. For every open set U , the collection of all open subsets of U is a cover of U ;
2. If S = {Vi}i∈I is a cover of U , and given open sets Wj ⊂ Vi for all j ∈ J, then
{Wj} j∈J is a cover of Vi;

3. If S = {Vi}i∈I is a cover of U and if for every Vi, {Wj} j∈J is a cover of Vi, then⋃
i{

⋃
j Wj} is a cover of U .

These properties are obvious properties of covers of a topology and a choice of such
covers corresponds to a notion of localization in a topological space. This is what
localization is taken to mean. But it is now easy to translate these properties in the
context of an arbitrary category C and define the cover of an object X of C . To do
this, we need a simple preliminary notion, for we will talk about covers of objects
instead of covers of open sets. A sieve S—a “crible” in French—on an object X of
a category C is a family of morphisms with codomain X in C such that

if f : Y → X is in S and g : Z → Y , then f ◦g : Z → X is also in S.
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Thus a sieve on an object X is a collection of morphisms with codomain X that is
closed under right-composition. Informally, we can think of this situation as follows
and this partially explains the choice of terminology. If the image f [Y ] is thought as
being a (structured or coherent) part of X , that is a part of X that is still of the same
type as X , and if g[Z] is a part of Y , then f g[Z] is a part of X . Thus, a sieve S on X is
a way to “decompose” X . The name “sieve” is quite apt.

A sieve S on X can also be thought of as a subfunctor of the functor Hom(−,X) :
C ◦ → Set. This simply means that for each Y , S(Y ) is a subset of Hom(Y,X) and
for each morphism f : Z → Y , S( f ) is simply a restriction of

Hom( f ,X) : H(Y,X)→ Hom(Z,X).

If S is a sieve on X and g : Y → X is any arrow with codomain X , not necessarily
in S, then Sg = {h | cod(h) = Y ∧g◦h ∈ S} is a sieve on Y .

Definition 7.1. 3 A Grothendieck topology or a covering system (or a localization
system) on a category C is a function J which assigns to each object X of C a
collection J(X) of sieves on X , such that:

1. The maximal sieve { f | cod( f ) = X} is in J(X);
2. If S(X) ∈ J(X), then Sg ∈ J(Y ) for any arrow g : Y → X ;
3. If S(X) ∈ J(X) and R is any sieve on X such that Rg ∈ J(Y ) for all g : Y → X in

S, then R ∈ J(X).

Thus, a localization system is a collection of ways of decomposing an object X ,
ways of moving from the object X to its parts.

A site is a pair (C ,J) where C is a (small) category equipped with a Grothendieck
topology J. Notice that in practice one has to choose a topology J on a category C
to obtain the corresponding site (C ,J). It should be clear that a site is taken to be
what one means by localizing in a category C . There are of course many possible
choices of localizations in a given category.

We now have a categorical characterization of the process of localization. Notice
immediately that it is an adequate generalization of the topological notion, at least
in the following sense. If X is a topological space, the partial order O(X) on open
subsets U ⊆ X is, as we have seen, a category: there is at most one arrow U → V
whenever U ⊆ V . A covering in the usual topological sense, i.e., for any U , a col-
lection of open sets {Ui}i∈I such that U =

⋃
i Ui, yields a covering in the categorical

sense, simply by letting {Ui →U} ∈ J(U) for each object U of O(X). It is easy to
verify that this is a Grothendieck topology J on O(X).

Clearly, the notion of Grothendieck topology is more flexible than the usual no-
tion of a topology and this flexibility was required by the context of algebraic ge-
ometry when one works with algebraic varieties in an affine space kn where k is
an arbitrary commutative ring. In this context, Grothendieck topologies are needed.
But one could go much further in the heuristic direction. 20th century mathematics

3 There are of course alternative definitions, in particular definitions that do not rely on the notion
of sieve. See for instance [117] or [208].
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has clearly shown that it was more than useful to try to find a topology in a given
situation and to use topological ideas to clarify, solve and understand various math-
ematical contexts. If toposes are generalized topological spaces, it would seem to be
a useful idea to try to import such a space into various situations. One can then use
what Grothendieck called “topological intuition” in contexts where there is no ob-
vious topology involved. Grothendieck clearly believed that various problems could
be solved easily if only one could find the appropriate topos for them.

But the story does not end with sites. Although we have a categorical notion of
localization, we do not have a space yet. To understand why, we have to go back to
topological spaces. We have seen in an earlier chapter how the category of sheaves
on a topological space X is defined. The basic point is that one can define the cat-
egory of sheaves over a site. It is this latter category that should be thought of as
a space. But one might wonder why this is so. In fact, a site is already an interest-
ing structure, much like a space, which contains useful mathematical information.
One would want to associate invariants to sites but it is precisely at this point that
toposes appear to be useful. As Grothendieck and his colleagues observed, the im-
portant invariants associated to a site are definable in the associated topos. This led
Grothendieck and his colleagues to the important observation that two sites can be
considered to be the same whenever their associated toposes are equivalent cate-
gories (Morita again. . . ).

Given a site (C ,J), a functor F : C ◦ → Set is called a presheaf on C . The cat-
egory of presheaves on C is simply the functor category SetC

◦
. Sheaves on a site

can be defined in various manners. I will give a purely diagrammatic definition. A
presheaf F : C ◦→ Set is a sheaf if and only if for all covering sieves S of objects X ,
any natural transformation η : S → F has a unique extension to Hom(−,X), that is
there is an isomorphism between the set of natural transformations induced by the
inclusion S � Hom(−,X),

Hom(S,F)≈ Hom(Hom(−,X),F)

or, equivalently, the following diagram

S F
η //S

Hom(−,X)
��

F

Hom(−,X)

can always be extended into the following commutative diagram:
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S F
η //S

Hom(−,X)
��

F

Hom(−,X)

??

��
��

��
��

��
�

Thus, whereas a presheaf associates a set F(X) to an object X of C and a function
F( f ) to a morphism f : X → Y , a sheaf is systematically connected to the covering
sieves of the objects of C . In a sense, a sheaf systematically encodes the localization
systems of the site (C ,J) and thus each sheaf has a localization system. Needless to
say, this is a generalization of the notion of sheaf over a topological space that we
saw in Chapter 5. The category of sheaves over a site, with natural transformations
as morphisms, is denoted by Sh(C ,J). It is this latter category that ought to be
thought of as a generalized space.

A Grothendieck topos is defined to be a category E equivalent to a category
Sh(C ,J) of sheaves over a site.

This is a rather strange definition, but of great interest from a philosophical
point of view. For although there is a uniform description of categories of the form
Sh(C ,J), the definition says that any category equivalent to a category of this form
is a Grothendieck topos. The definition is nothing less than an abstraction of the no-
tion of a category of sheaves on a site. The reason why it is a legitimate abstraction
is that it gives an identity criterion for Grothendieck toposes. It does not characterize
Grothendieck toposes intrinsically but it says when two such toposes are identical,
i.e., equivalent. Thus, given a Grothendieck topos E , there are many different sites
that yield equivalent categories, thus basically the same topos, although it is impos-
sible to tell which of the sites is preferable. It is an extrinsic characterization that
nonetheless provides us with a type of mathematical entity. It says absolutely noth-
ing about the structure of toposes, their intrinsic properties. Of course, one would
want a characterization of toposes independent of sites and similar to the charac-
terization of Abelian categories for instance. This characterization was provided by
Giraud, one of Grothendieck’s students, in the form of the following theorem.

Theorem 7.1. A category E with small Hom-sets and all finite limits is a Grothendieck
topos if and only if it has the following properties:

1. E has all small coproducts, and they are disjoint and stable under pullback;
2. Every epimorphism in E is a coequalizer;
3. Every equivalence relation R //// X in E is a kernel pair and has a quotient;
4. Every exact diagram R //// X // Q is stably exact;
5. There is small set of objects of E which generate E .

I will not give technical details about these conditions. Suffice it to say that the
conditions given by the theorem do not refer to a site, only to the capacity of a
category to represent in a universal way, certain properties, and the existence and
size of a collection of certain specific morphisms. It is therefore an intrinsic char-
acterization and it provides an abstract characterization of Grothendieck toposes.
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Hence, the theorem provides a “presentation-free” characterization of Grothendieck
toposes. Notice, however, that it is not an elementary characterization (that is, a
first-order characterization) since it is required that the category E has all small co-
products. Of course, the proof of Giraud’s theorem does more: it tells you how to
construct the given category E as a topos of sheaves on a site. (See [45] for more on
sheaf theory and Giraud’s theorem.)

As I have already mentioned, Grothendieck observed that the choice of a site
was arbitrary in a very specific sense. Two non-isomorphic sites and even two non-
equivalent sites (C ,J) and (C ′,J′) can yield equivalent toposes. (See, for example,
the so-called comparison lemma in [200], 588, or [121], C2.2, 547.) In this specific
case, (C ,J) and (C ′,J′) can be considered to be essentially the same. This is by
now a familiar situation. Thus two algebraic geometers could choose two different
sites for specific purposes and work on sheaves over these sites without noticing
that they are doing the “same” thing. As Grothendieck emphasized, it is the topos
of sheaves on these sites that is really significant and that topos is determined up
to equivalence of categories. This situation can again be compared with the case of
elementary geometry that I have illustrated above, where the geometers A, B and
C chose various presentations, in particular axiomatic presentations, of one and the
same geometry. In the present case, it is as if A, B and C had chosen different sites
to start with. From a global point of view, different presentations will yield the same
(or rather isomorphic) transformation groups and one is led to conclude that it is the
transformation group which really “matters”: likewise, two sites can be said to be
equivalent if their respective toposes of sheaves are equivalent. (Morita equivalence
again.) 4 As we have already seen, this is a recurrent theme in category theory and
categorical logic. Interestingly enough, sites and their associated toposes of sheaves
can be used in logic. This is a direct geometrization of logic. The first steps are
simple applications of what we have already seen.

Here are some standard and important examples of Grothendieck toposes.
Obviously, any category of sheaves over a topological space X is a Grothendieck

topos. This already provides a large class of examples. In particular, the category
Set of sets is a Grothendieck topos: simply let the space X be the one-point space
1 with the obvious trivial topology (the category 1 has only one morphism). Thus,
one can think of the category of sets as a generalized space, although as a limiting
case.

More generally, given any category C , one can always consider the so-called
trivial topology: the only covering families are the one-elements families of isomor-
phisms { f : Y ∼−→ X}. With this site, every presheaf is a sheaf and therefore every
category of presheaves SetC

◦
is a Grothendieck topos.

4 I should also point out that Grothendieck very often used the existence of an isomorphism be-
tween induced structures to define the equivalence of original structures. For instance in his work
with Dieudonné on the foundations of algebraic geometry, it is the isomorphism between two va-
rieties which allows one to say that two polynomial rings are equivalent. Once again, polynomial
rings can look different because of the choice of variables or other contingent elements of the same
type. (See [60].)
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Two specific examples of toposes of sheaves, which were introduced later, after
the discovery of elementary toposes, are worth mentioning, if only because they are
directly connected to foundational studies. Let B be a complete Boolean algebra,
considered as a category. There is an obvious Grothendieck topology definable on
B: a family {bi → b} is a covering if and only if b = ∨bi in B. We thus get a site and
a Grothendieck topos Sh(B) of Boolean sheaves. These toposes are closely related
to Boolean-valued models of set theory.

The second example is related to Cohen forcing. Let P be a partially ordered set
and p ∈ P. A subset D⊆ {q ∈ P | q≤ p} is said to be dense below p if ∀r ≤ p∃q≤
r (q∈D). A sieve S on an element p of P in this case is simply a subset S of elements
q≤ p such that r ≤ q ∈ S implies r ∈ S. It is possible to define a topology J on P by

J(p) = {D | (∀q ∈ D)(q≤ p)∧D is a sieve below p}.

Although we have defined this topology on a partially ordered set, it can easily be
defined on an arbitrary category. Given this site, we can consider the topos Sh(P) of
sheaves.

But there is another important and different class of examples. Let G be a topo-
logical group and X a set with discrete topology. We have already seen the category
of continuous G-sets. It can be shown that the category of continuous G-sets is a
Grothendieck topos, denoted by BG. Notice how different these examples are from
the examples of sheaves over a topological space, at least at first sight. But the no-
tion of Grothendieck toposes covers both. In fact, a slightly more general class of
examples can be included.

Indeed the last example can be generalized in the following way. Let G be a
topological group, X a space and α : G×X → X an action of G on X . A G-space
over X is a space p : E → X over X with an action β : G× E → E such that p
respects this action. In other words, the following diagram commutes:

G×X X
α

//

G×E

G×X

1×p

��

G×E E
β // E

X

p

��

A morphism of G-spaces over X is a morphism of spaces over X

E

X

p

��?
??

??
??

??
??

E F
f // F

X

q

����
��

��
��

��
�
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that respects the G-action. This constitutes the category of G-spaces over X . If,
furthermore, the morphism p : E → X is étale (see Chapter 5 for the definition), we
say that the G-space over X is étale. We can therefore consider the subcategory of
étale G-spaces over X and this category is in fact a Grothendieck topos, it is called
the topos of G-equivariant sheaves on X , denoted by ShG(X).

In fact, Joyal and Tierney showed in the early 1980s that the notion of Grothen-
dieck topos is in a sense the precise generalization of these two classes of examples,
sheaves over a topological space, on the one hand, and continuous actions of a group
on a space, on the other. This is an extremely interesting and important result. For,
it is clear that the notion of sheaves on a site is a vast generalization of the notion
of a sheaf on a topological space and one is left wondering whether there is any-
thing spatial left in the general notion. What Joyal and Tierney have shown is that
Grothendieck’s generalization is not as extreme as one might think and it is still
essentially spatial or geometrical. More specifically Joyal and Tierney proved a the-
orem that asserts that for any Grothendieck topos E , it is possible to find a localic or
continuous groupoid G such that E is equivalent to the category of étale G-spaces.
Since a locale can be seen as a rather straightforward generalization of the notion of
topological space and a groupoid action is essentially a geometric notion intrinsic,
for instance, to differential geometry, Grothendieck toposes are still fundamentally
spatial. (See [128], and [229], where these results are extended, [125] and [124]
for a slightly different approach and [121], C5 for a systematic and comprehensive
exposition.)

Let us try to unpack the conceptual significance of this fundamental result. A
localic or continuous groupoid G is a groupoid in the category of locales. This is
probably not very helpful. The category of locales can be thought as the category
of “formal” or “pointless” spaces in the following sense. A topology can be looked
at from the algebraic point of view: the collection of open sets of a space X form
a complete distributive lattice, that is, a lattice with finite infima, arbitrary suprema
and for which infima distribute over arbitrary suprema i.e., for all a, {bi}i∈I in a
complete distributive lattice, we have:

a∧ (∨ibi) = ∨i(a∧bi).

It is obvious that two homeomorphic spaces have isomorphic lattices of open sets.
Thus, it is possible to forget about the (set-theoretical) points of a space and de-
fine a topological space directly from the lattice-theoretical point of view. In order
to keep a distinction between the set-theoretical conception of a topological space
and this algebraic conception, most people proceed in the following manner. First,
a frame A is any lattice with all finite infima and all arbitrary suprema that satis-
fies the infinite distributive law above. The category Frm of frames is the category
whose objects are frames and morphisms are structure-preserving mappings, that is
a morphism f : A → B between frames is a map which preserves finite infima and
infinite suprema. The crucial observation is that any continuous map f : X → Y be-
tween topological spaces induces a morphism of frames f−1 : O(Y )→ O(X) from
the frame of open sets of Y into the frame of open sets of X .
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The category of frames is a category of algebraic objects. But notice the con-
nection between frames and topological spaces: given a continuous map between
topological spaces, the induced morphism of frames is a map going in the opposite
direction. It is tempting to start with the category of frames and define a category
of spaces as the dual of the latter, e.g., the category with the same objects but the
morphisms going in the opposite direction. By reversing the morphisms, we end
up with the continuous maps between the spaces. Hence, dualizing the category of
frames, one obtains what is called the category Loc of locales, i.e., Loc = Frm◦.
(A warning: what I have been calling the category of frames, Joyal and Tierney call
the category of locales and what I have been calling the category of locales, they
call the category of spaces, but as far as I know, no one has endorsed that termi-
nology.) Thus, the objects of the category of locales are the same as the objects of
the category of frames. However, a morphism of locales is the dual of a morphism
of frames, i.e., f : X → Y is a morphism of locales if and only if f ◦ : Y → X is a
morphism of frames.

The category of locales is naturally connected to the category of topological
spaces. There is a functor L : Top → Loc from the category of topological spaces
to the category of locales defined on objects by L(X) = O(X), associating to each
space X, the frame of open sets of X , and to any continuous map f : X → Y , the
morphism of locale L( f ) : L(X)→ L(Y ), given by the dual of the frame morphism
f−1 : O(Y ) → O(X). However, the notion of locale is a generalization of the no-
tion of topological space. It should be pointed out that the idea of characterizing a
space by its algebra of parts goes back at least to Wallman, who made the explicit
connection between topological spaces and lattices in 1938. ([265])

A groupoid G in the category of locales, or a localic or continuous groupoid, is
a groupoid s, t : G1 → G0 such that G0 and G1 are locales and the source and the
target maps are morphisms of locales. (To be totally rigorous here, I should add that
the identity map associating to each object of G the identity arrow for that object is a
morphism of locales and so are the morphisms defining composition in the groupoid
and projections. I should also point out that these morphisms also have to be open
morphisms in the appropriate localic sense. But these are important technical details
that I can leave out for present purposes.)

Given a continuous groupoid G, a G-space E over G0 is a locale (a “space”)
together with maps p : E → G0 and E ×G0 G1

• // E, where the domain of the
action • is the “set” of pairs (e,g) with t(g) = p(e), where t : G1 → G0 is the target
map, satisfying the following conditions:

1. p(e•g) = s(g), where s : G1 → G0 is the source map;
2. e • i(p(e)) = e, where i : G0 → G1 assigns to each element of G0, its identity

arrow;
3. (e • g) • h = e • (g • h), where G1 ×G0 G1

◦ // G1 is the composition of mor-
phisms.

Notice that these conditions could be expressed directly in terms of commutative
diagrams in the category of locales. Informally a G-space is a space over G0 with
an (contravariant) action of G defined on it. As we have seen, this is a fundamental
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geometric notion. A morphism of G-spaces is a map of spaces E1 → E2 over G0
which preserves the action. We thus get a category of G-spaces.

An étale G-space E is a G-space such that p : E →G0 is a local homeomorphism.
The word “étale” here means that the “topology” of G0 is uniformly “spread out”,
that is “horizontally”, in E. (Keep in mind that G is a continuous groupoid and E is a
locale. So this is a more general definition.) As usual, this means that E is a sheaf on
G0 and as usual, this means that any such E can be reconstructed by the collection
of local sections from G0 into E. Furthermore, the morphisms of G, that is elements
of G1, act on the fibers of E; that is, if f : x → y is a point of G1, the action defines
a map f ∗ : Ey → Ex by f ∗(e) = e•g. A morphism of étale G-spaces is a morphism
of G-spaces. The fact that each map over G0 is a local homeomorphism implies
that morphisms of G-spaces are local homeomorphisms too. The category of étale
G-spaces is denoted by BG and it is a topos. Notice that when G0 is a one-element
space and G1 is a discrete space, then the groupoid G is a group and the topos BG is
the category of G-sets: that is, sets equipped with an action. At the other end of the
spectrum, so to speak, when G is a trivial groupoid, namely when G1 = G0 (that is,
when the only morphisms are the identities) then BG is the topos of sheaves on G0,
i.e., Sh(G0). Thus, for any space X , the topos Sh(X) of sheaves on X is of the form
BX .

Joyal and Tierney’s representation theorem states that any Grothendieck topos E
is equivalent to a topos of the form BG, for an appropriate open continuous groupoid
G. We can now make more precise comments on the geometric content of this the-
orem.

First, everything is going on in the category of locales, thus of spaces in a gen-
eralized sense of the term. The objects of the topos BG are spaces over G0, which
is itself, of course, a space. Second, for each of these spaces over G0, the groupoid
G acts on them. To understand the meaning of this action in general, we can take a
closer look at the situation. The action is defined on certain pairs (not on all pairs)
of the product E×G0 G1 (as the notation indicates, it is a fibered product, i.e., a pull-
back, over G0), and thus the groupoid acts only “locally”, for it acts on the points
e of E for which p(e) = t(g). A possible picture of the situation is to think of G0
as the “base” space, that is the geometry one investigates, about which G1 gives the
structure of local “homeomorphisms”, and a space E can be thought of as a space
of “moving frames” over G0. Then the groupoid will send moving frames to mov-
ing frames according to the underlying structure of local homeomorphisms of G0.
The conditions 1, 2 and 3 simply make sure that this process is done in a coherent
fashion. Hence in general, a Grothendieck topos can be thought of as a framework
in which one examines a given space, namely G0, together with a basic equivalence
relation defined on that space, namely by G1, where the space is examined by con-
sidering the étale spaces over G0 which “respect”, in a certain sense, the geometry
of the latter. The two ends of the spectrum, namely the toposes of G-sets and the
toposes of sheaves over a topological space constitute degenerate cases where the
“geometry” is “simplified” in a sense. For in the first case, the underlying space G0
is trivial, whereas in the second, the groupoid action G1 is trivial.
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However, the foregoing examples and Joyal and Tierney’s result obscure an im-
portant aspect of Grothendieck toposes, already clear to Grothendieck himself. In
the examples, we have considered toposes of sheaves over a topological space X
or, slightly more generally, over a locale X , or toposes of G-sets, for a group (or a
groupoid) G. But Grothendieck’s notion of a generalized space covers a much wider
range of possibilities: in certain applications, one can and should consider a topos
of sheaves over a site C , where C is itself a category of spaces, e.g., the category
sSet of simplicial sets, the category Man of smooth manifolds or the category Top
of topological spaces or any other category of spaces of a certain kind. Of course,
these toposes, being Grothendieck toposes, are also covered by Joyal and Tierney’s
representation theorem, but they might have specific properties of intrinsic interest,
as Lawvere has emphasized later. (See [178], for instance.)

A topos can thus be thought of as a generalized topological space. If the latter
notion was conceived to clarify the notion of continuity, since it leads directly to the
definition of a continuous function, it seems reasonable to believe that morphisms
between toposes would generalize that concept too.

First, recall the notion of a continuous function f : X → Y between topological
spaces. The function f is continuous if for every open U of Y , f−1(U) is an open
of X . Moving to sheaves over these topological spaces, namely Sh(X) and Sh(Y ), it
can be shown that a continuous function f : X → Y induces two functors

Sh(X)
f∗ //oo
f ∗

Sh(Y ).

The first functor f∗ : Sh(X) → Sh(Y ), called the direct image functor, is defined
by composing with f−1 thus: given a sheaf on X , F : O(X)◦ → Set and an open
set U in O(Y ), define f∗ : (F)(U) = F( f−1(U)). This automatically yields a sheaf
on Y . It is easier to define the other functor, the so-called inverse image functor
f ∗ : Sh(Y )→ Sh(X) by looking at the étale spaces corresponding to sheaves. Thus,

given an étale space E
p // Y over Y , one defines f ∗(E

p // Y ) by taking the
following pullback along f :

X Y
f

//

f ∗(E)

X
��

f ∗(E) E// E

Y

p

��

It can be shown that, at least when Y is Hausdorff (a slightly weaker condition

will do, e.g., being sober), then any such pair of functors Sh(X)
f∗ //oo
f ∗

Sh(Y ) neces-

sarily comes from a unique continuous function f : X → Y . It can also be verified
that in this case f ∗ a f∗ and it follows from the construction of f ∗ that it preserves
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finite limits. (See, for instance, [200], 348–349, or [121], A4.1, 166.) We are thus led
to the following definition of morphisms between toposes: a geometric morphism
f : F → E between toposes is a pair of functors f ∗ : E →F and f∗ : F → E such
that f ∗ is left adjoint to f∗ and f ∗ is left exact. Of course, it would be enough to
say that a morphism f∗ : F → E is a geometric morphism if it has a left exact left
adjoint functor f ∗ (necessarily unique up to isomorphism). It is entirely reasonable
to think of f∗ as being the geometric part of the morphism and to think of f ∗ as
being the algebraic part. A nice illustration of the fact that f∗ should be thought of
as the geometric part is offered by the functor of global sections Γ : Sh(X)→ Set.

If we think of the sheaves over X as an étale space E
p // X , then a global section

of p is a continuous map s : X → E such that the diagram

X

X

1X

��?
??

??
??

??
??

X Es // E

X

p

����
��

��
��

��
�

commutes. This is clearly a geometrical concept. We can think of s as projecting X
in E evenly. An informal picture of such a global section might look like this:

E

X

ps

Thus, for each étale space E
p // X , one can consider the set Γ (E) of its global

sections and it is easily verified to be a functor. In general, given a Grothendieck
topos E , one can define the functor Γ : E → Set by Γ (E) = HomSet(1,E). The latter
functor is the geometric part of a geometric morphism. Its algebraic part, that is its
left adjoint, is the functor ∆ : Set→ E defined by ∆(S) =

∐
s∈S 1, the co-product of

S-many copies of the terminal object of E , clearly an algebraic construction. It can
be shown that ∆ a Γ and that ∆ is left-exact. This is an entirely general situation:
given a Grothendieck topos E , there is one geometric morphism γ : E → Set such
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that γ∗ = Γ and γ∗ = ∆ , and it can be shown that there can be only one (up to natural
isomorphism).

I should point out immediately that Grothendieck’s reasons for considering a
topos as a generalized space were somewhat different and more technical. To put it
simply, Grothendieck’s motivations rested on the fact that the cohomological prop-
erties of a space are completely determined by the topos of sheaves over it, or in
the words of Johnstone: “topos cohomology is a minimal common generalization
of the (sheaf) cohomology of spaces and of the (Galois) cohomology of groups”
([119], 104). Again, an analogy with the role of groups in geometry seems natural.
In the same way that a transformation group captures all the essential properties of
a geometry, a topos of sheaves over a topological space captures all the essential
properties of a topology, even in the generalized sense Grothendieck gave to the
word “topology”.

One last element has to be mentioned: if the notion of Grothendieck topos can
be thought of as a legitimate generalization of the notion of topological space, it
seems reasonable to expect that various concepts arising in the context of topology
could be lifted to the context of toposes, and indeed they can. Thus, it is possible
to define various notions, like open maps of toposes, connected, locally connected,
hyperconnected, etc. for toposes.

But, as I have said, the spatial facet of a topos is but one of its aspects.

7.2 Elementary Toposes

Grothendieck toposes are not all of topos theory. In the late sixties, Lawvere and
Tierney provided elementary (that is, first-order) axioms for toposes. An elementary
topos is an abstract category that captures by global properties of a theory of abstract
sets, that is, sets that are not defined by their elements, or in other words, for which
nothing is known about the individual and intrinsic properties of their elements.
What is known is known via universal arrows and other arrow-theoretic properties.
Notice that this does not mean that absolutely nothing is known about the “elements”
or the “parts” of these abstract sets. Quite the contrary is in fact true. As above,
since a topos is a special type of category, it can be thought of as a space and its
objects can be thought of as the definable “figures” in it. As in the geometric case,
two figures are equal if there is a transformation of the appropriate sort between
them, which in this case means that there is an isomorphism between them. The
identity of a geometric form as a form should not depend upon specific, “contingent”
factors, like its place relative to a chosen “system of coordinates” or its actual “parts”
or “points”. It surely depends on these points in a certain manner, but it is also
independent of them. The crucial fact about abstract sets within a topos is that there
is a uniform part-whole relation within that topos. In other words, a topos has the
means to represent within itself the property “being a part of”, seen as an abstract
property. This can be seen directly by looking at the axioms for elementary toposes.
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Definition 7.2. A category E is an elementary topos if it satisfies the following con-
ditions:

1. It has all finite limits or, equivalently, it has pullbacks and a terminal object 1;
2. There is an object Ω , called the subobject classifier, together with a monic

arrow > : 1 → Ω such that for any monic m : Y → X , there is a unique arrow
χm : X →Ω in E such that the following square is a pullback:

X Ω
χm

//

Y

X

m

��

Y 1! // 1

Ω

>

��

3. It has power-objects, that is for each object X , there is an object PX , called the
power object of X , and an arrow ∈X : X ×PX → Ω such that for every arrow
f : X ×Y → Ω there is a unique arrow g : Y → PX such that the following
diagram commutes:

X ×PX Ω∈X
//

X ×Y

X ×PX

1X×g

��

X ×Y Ω
f // Ω

Ω

Let us briefly examine these axioms one by one.
The first axiom asserts that elementary constructions are possible in any elemen-

tary topos. These constructions are finite products, equalizers, pullbacks and com-
binations thereof, in particular monomorphisms. Notice that these can be given, as
usual, by asserting the existence of adjoint functors to elementary functors.

The second axiom is crucial from the logical point of view and the geomet-
ric point of view. The terminology itself, subobject classifier, comes directly from
topology: Tierney suggested the name when he noticed the parallel between the
topos-theoretical notion and the concept of a classifying space in homotopy theory.
The latter concept comes from a fundamental paper of E. H. Brown Jr. published in
1962. ([33].) In a nutshell and very roughly, Brown proved that cohomology the-
ories, as functors, are representable. More precisely, given a contravariant functor
H : hTop◦• → Set• from the pointed homotopy category to the category of pointed
sets and pointed functions satisfying certain mild conditions, there is a space Y ,
unique up to homotopy, and a natural isomorphism φ : [−,Y ]•→H. To see the sim-
ilarity with the notion of a subobject classifier, one has to look at it from a slightly
different point of view, namely the point of view of representable functors.

First, given any category C with finite limits, there is a functor Sub: C ◦→ Set,
called the subobject functor, constructed as follows. For an object X of C , Sub(X)
is the set of (equivalence classes) of subobjects of X , i.e., the set of (equiva-
lence classes) of monomorphisms m : A → X . Given a morphism f : Y → X and
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a monomorphism m : A → X , Sub( f ) : Sub(X) → Sub(Y ) is obtained by pulling
back m along f as in the following diagram5:

Y X
f

//

f−1(A) = B

Y
��

f−1(A) = B A// A

X

m

��

The important point here is that the existence of the subobject classifier Ω amounts
to the claim that the functor Sub is representable and is represented by Ω . This
simply means that there is a natural isomorphism ϕ : HomE (−,Ω)→ Sub(−). One
subtle technical point has to be emphasized in order to understand how close the
analogy is between the subobject classifier and the concept of classifying space. It
is not only the fact that, in both cases, a certain functor is representable that underlies
the analogy, it is also the fact that in both cases, a certain object and a morphism
are obtained by pulling back along the representable object. Thus, in the case of
the classifying space, every n-dimensional cohomology class in any space X arises
by pulling back along a morphism in the universal or representing space Y . The
similarity with the notion of subobject classifier Ω is now immediate.

From the logical point of view, Ω can be thought of as an object of truth-values.
Its presence in an elementary topos amounts to the possibility of representing in-
ternally, that is with the means of the arrows of the category E , “properties” of its
objects, since we can think of a subobject Y of an object X , that is a monomorphism
m : Y → X , as a predicate over X . Each such predicate m corresponds to a char-
acteristic map χm : X → Ω . This means that there is a bijection between predicates
m : Y →X over X and characteristic maps χm : X →Ω . A subobject classifier can be
thought of as an object of “truth values”, since what the foregoing pullback defining
it says is that every predicate over X corresponds to a characteristic map which sends
this predicate to “true”, that is composing to predicate m with the characteristic map
is equal to the component > of Ω .

Given the equivalence between the notion of representable functor and the exis-
tence of an adjunction, it is no surprise that the existence of a subobject classifier
amounts to the existence of an adjoint functor to an elementary functor. It is certainly
worth making the construction explicit. The subobject classifier can be exhibited as
a terminal object in an appropriate category. Let Mon(E ) be the category whose
objects are monomorphisms m : Y → X of E and given two objects m : Y → X and
n : U → Z, a morphism m→ n is a pair of morphisms ( f ,g) such that f : Y →U and
g : X → Z and the following square

5 This is, of course, a special case of the inverse image of f .
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X Zg
//

Y

X

m

��

Y U
f // U

Z

n

��

is a pullback. It can be verified that in this category, the object> : 1→Ω is terminal.
The third axiom says that the topos has the means to represent internally the

lattice of subobject of an object X . This is exactly what PX is. In the case of the
topos of sets, PX is simply the power set of X . In other words, there is an object in
the topos E which represents faithfully the parts of X . Of course PX will be closely
connected to the subobject classifier as it should be. In particular, Ω is P1 and PX is
the same as Ω X . Notice that, as usual in category theory, a subobject classifier and
power objects are determined up to (a unique) isomorphism. The basic claim here
is that these are the fundamental operations that any theory of abstract sets should
satisfy. Thus a category of sets is thought of as being a category that admits certain
transformations, namely those which amount to the representation of finite limits
and, essentially, the part-whole relation.

Two stunning facts are direct consequences of Lawvere and Tierney’s definition
of an elementary topos. First, it follows from the fact that Ω represents the functor
Sub that is has in general the structure of a Heyting algebra. Thus, it is possible to

define operations Ω ×Ω
∧ // Ω , Ω ×Ω

∨ // Ω and Ω ×Ω
→ // Ω satisfying the

usual identities of a Heyting algebra. Furthermore, quantifiers can also be defined.
Given a morphism f : X → Y , there is always a morphism f ∗ : ΩY → Ω X , namely,
once again, by pulling back along f . The quantifiers are then morphisms ∃ f : Ω X →
ΩY and ∀ f : Ω X →ΩY satisfying the expected conditions. Notice that the definition
of quantifiers is simply obtained by using the fact that quantifiers are adjoints to
substitution, as we have seen previously. Thus, from the simple constraint that Ω

is the representing object of a representable functor, the whole logical structure of
the space follows. Of course, it is not that surprising, since Ω represents the functor
Sub, which gives all possible decompositions of an object into its parts. We can
therefore expect to get a lattice-like structure. But the fact that it is in general a
Heyting algebra was not expected.

The second fundamental fact brings us back to Grothendieck topologies and
Grothendieck toposes. One of Lawvere and Tierney’s goals was to provide an el-
ementary axiomatic approach to sheaves. Their axiomatization of an elementary
topos constituted a preliminary step in that respect, a characterization of an abstract
type of category in which it is possible to define a topology by the means given
by the definition. Specifically, given a topos E with its subobject classifier Ω , a
Lawvere-Tierney topology on E is a morphism j : Ω → Ω satisfying the following
properties:

1. j ◦>=>;
2. j ◦ j = j;
3. j ◦∧= ∧◦ ( j× j).
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These identities can be pictured thus:

1)

1 Ω
> //1

Ω

>
��?

??
??

??
??

??
Ω

Ω

j

��

2)

Ω Ω
j //Ω

Ω

j
��?

??
??

??
??

??
Ω

Ω

j

��

3)

Ω ×Ω Ω∧
//

Ω ×Ω

Ω ×Ω

j× j

��

Ω ×Ω Ω
∧ // Ω

Ω

j

��

I should immediately point out that Johnstone calls these operators local opera-
tors instead of topologies. I will stick to the original terminology for now. Since Ω

is the subobject classifier and j : Ω → Ω is an endomorphism, it determines up to
isomorphism a unique subobject J →Ω obtained from the following pullback

Ω Ω
j

//

J

Ω

��

J 1! // 1

Ω

>

��

A Lawvere-Tierney topology is given in algebraic terms: it is a modal operator
on the object of truth-values of the topos E . Informally, it should be thought of as
a “closure” operator, with two caveats. First, recall that a topology, in the standard
sense of that expression, can be given by a closure operator on the collection of all
subsets of a set X , namely by a map : ℘(X)→℘(X) such that:

C1. /0 = /0;
C2. A⊂ A for all A⊂ X ;
C3. A = A for all A⊂ X ;
C4. A∪B = A∪B for all A,B⊂ X .

Given a Lawvere-Tierney topology j : Ω → Ω in a topos E and a characteris-
tic map χA : X → Ω , the composition j ◦ χA : X → Ω yields a subobject of X by
considering the following pullback:

X Ω
χA

//

A

X
��

A

ΩΩ Ω
j

//Ω

11

Ω

>

��

A 1! //

This construction obviously yields a map : Sub(X)→ Sub(X) and it can be shown
that j is a Lawvere-Tierney topology if and only if this operator satisfies the follow-
ing properties:

CLT1. A⊂ A for all A ∈ Sub(X);
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CLT2. A = A for all A ∈ Sub(X);
CLT3. A∩B = A∩B for all A,B ∈ Sub(X).

The object A is called the j-closure of A. Although there are obvious similari-
ties with the concept of closure operator in topology, the concepts are nonetheless
formally different, as is obvious by comparing conditions C4 and CLT3.

These differences notwithstanding, the closure operator is used to define sheaves
in a topos E . A subobject A of X is said to be dense if A = X , i.e., if its j-closure is
equal to the whole object. One also says that the monomorphism A → X is a dense
monomorphism whenever the foregoing condition is satisfied. An object F of E is
a sheaf (or sometimes a j-sheaf ) if any morphism A → F from a dense object can
be uniquely extended to a morphism on the whole of X . Thus, an object F is a sheaf
of E if the following diagram can be filled uniquely as shown:

A F//A

X

dense

��

F

X

??

!
�

�
�

�
�

�

The full subcategory of E of j-sheaves, usually denoted by Sh j E , can be shown to
be an elementary topos.

It is certainly not obvious at first sight how this characterization captures Grothen-
dieck’s notion of a sheaf. Informally, if one moves from an object X to its dense
subobjects, and then from a dense subobject A to its dense subobjects, once starts
to understand how this definition captures a process of moving from the local to
the global, which is what sheaves are all about in the first place. Formally, it is
possible to show that every Grothendieck topology J on a small category C de-
termines a Lawvere-Tierney topology j on the presheaf topos SetC

◦
. Conversely,

assuming that C is a small category, every Lawvere-Tierney topology j on the
presheaf topos SetC

◦
determines a Grothendieck topology J on C . (See [200], 222–

234.) However, it is clear that the notion of a Lawvere-Tierney topology is more
general than Grothendieck’s notion, since, for instance, the double negation opera-
tor ¬¬ : Ω → Ω is a Lawvere-Tierney topology in any elementary topos E . It is of
course this correspondence between Grothendieck toposes defined via Grothendieck
topologies and elementary toposes in which sheaves can be defined via Lawvere-
Tierney topologies that allows us to see why and how elementary toposes can still
be thought of as generalized spaces.

It is certainly worth comparing how categories are used in both characterizations
of the notion of sheaf. Whereas in the case of a Grothendieck topos, we start with a
category C with a Grothendieck topology on it, that is a site, then consider a functor
category of the form SetC

◦
and finally move to any category equivalent to the cate-

gory of sheaves over that site. The language of categories is used in the notion of a
Grothendieck topology and in the definition of a site. But there is a sense in which
one can say that we are still very much in the ambient universe of sets, and in both
definitions. That is, we are still considering functor categories into Set and sheaves
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are still defined relative to certain collections. In the case of an elementary topos, we
start with a topos E , define a topology by using the structure of E itself and char-
acterize sheaves as being those objects of E into which a certain type of morphisms
can be mapped. In this case, the whole characterization is intrinsic to categories,
so to speak. Once again, one could say that the characterization of an elementary
topos and of the topos of j-sheaves both lead to an invariant characterization, for
the underlying categorical structure is made explicit.

I have not mentioned morphisms between toposes. There are, in fact, two types
of morphisms of toposes: geometric morphisms and logical morphisms. We will
first consider the category of toposes with geometric morphisms between them. In
this case, one usually considers toposes defined over a base topos S , which means
that an object of that category is a topos E together with a geometric morphism
f : E →S and a morphism from an object g : F →S to an object f : E →S is
a geometric morphism p : F → E satisfying a certain condition. There is slightly
more structure involved here, a 2-categorical structure, but we will ignore it. See
[121], B3. We will restrict ourselves to the case when the base topos is the topos
Set.

7.3 Invariants Under Geometric Transformations

Geometric morphisms are defined between elementary toposes exactly as they are
for Grothendieck toposes. Geometric morphisms provide some of the most impor-
tant links between topos theory and categorical logic. For one thing, the notion of
a geometric theory, a concept that I have already introduced in Chapter 6, was in
fact extracted from geometry. The reason for this is simple: it follows from the
definition of a geometric morphism f : F → E that the inverse image functor f ∗

preserves finite limits, colimits and the existential quantifier, i.e., it preserves geo-
metric logic or, put differently, any model of a geometric theory T in E . (Recall that
the toposes E and F are defined over Set.) In other words, if M is a model of a
geometric theory T in E , then f ∗(M), the inverse image of M in F is also a model
of the geometric theory T, but now in F . In more categorical terms, this means that
for a geometric theory T, any geometric morphism f : F → E induces a functor
f ∗ : Mod(T,E )→ Mod(T,F ) from the category of models of T in E into the cat-
egory of models of T in F . In other words, geometric logic is the invariant part of
first-order logic under geometric morphisms.

This brings us to one of the most important and original aspects of topos-
theoretical model theory. Given any geometric theory T, we have seen in Chapter
6 that it is possible to construct the category of concepts [T] of T. So far, we are
still in algebra. But we can now move to geometry. Indeed, the latter category of
concepts has a natural Grothendieck topology definable on it and is therefore a site.
It is thus possible to construct the topos of sheaves over that site, which we will de-
note by B(T), and the latter topos is called the classifying topos of the theory T. We
have moved from a theory T in a certain language, to its category of concepts [T],
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its algebraic counterpart, ending up in a generalized space, a topos of sheaves over
[T]. It is therefore possible to investigate the geometric properties of the classifying
topos and apply geometrical methods in order to learn and understand properties
of T itself. In other words, classifying toposes introduces geometrical features into
logic and does so in several ways.

Once more, the term “classifying topos” comes directly from the concept of a
classifying space in geometry and topology. (We should point out that the first
instances of classifying toposes appeared in the sixties, in the work of Monique
Hakim, then a student of Grothendieck. The general notion and its relations to logic
were formulated around 1973–74 by various people, notably Joyal, Reyes, Bénabou
and Tierney.) The fact is that the classifying topos B(T) of a geometric theory has
exactly the same properties as the classifying topos of G-torsors. (See [200], chap.
VIII, §2, for the notion of G-torsors and topos theory.) More specifically, for any
cocomplete topos E (a cocomplete topos has all colimits), there is an equivalence
of categories

Hom(E ,B(T))→Mod(T,E ),

between the category of models of T in E and the category of geometric morphisms
between E and B(T). This equivalence is natural in E : for any geometric morphism
f : F → E , the following square commutes:

Hom(F ,B(T)) Mod(T,F )//

Hom(E ,B(T))

Hom(F ,B(T))

Hom( f ,B(T))

��

Hom(E ,B(T)) Mod(T,E )// Mod(T,E )

Mod(T,F )

f ∗

��

It follows that there is a universal or generic model GT of T in B(T): any model
M of T in any topos E is, up to isomorphism, obtained by taking the inverse image
functor f ∗(GT) of the generic model GT of T in B(T), i.e., M = f ∗(GT). In par-
ticular, a set-theoretical model of the theory T is the inverse image of GT in Set,
the topos of sets, i.e., a geometric morphism f : Set→ B(T). Furthermore, and this
is a very important fact, the geometric sequents satisfied by GT are precisely those
provable in T.

We could reformulate the foregoing situation by saying that all the properties of
the models of T as models of T are already in GT. Furthermore, it could be said
that a property P is a property of a model as a model of T in as much as it is a
property of the generic model GT. In practice, one wants to determine properties
of a theory by considering properties of its classifying topos and generic model
(and vice-versa). Once more, this is fundamentally geometric: the generic model
is generic in the same sense that a triangle or a line is generic in geometry. Its
properties are the properties it has qua triangle and any other property is simply
irrelevant. Epistemologically, the classifying topos and the generic model constitute
another way in which the essential features of a situation are revealed. Thus, in the
same way that a transformation group can be said to point to what is essential and
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what is inessential in geometry, the classifying topos and the generic model point to
what is essential and inessential in a logical theory.

This line of argument can be pushed a little further. It can be shown that, on the
one hand, any geometric theory T has a classifying topos B(T) and a generic model
GT and, on the other hand, any Grothendieck topos E is equivalent to the classifying
topos of some geometric theory T. (See [208], chap. 9 or [122], D3.) In the words
of Johnstone:

(. . . ) we may interpret this result as saying that a Grothendieck topos is ‘the same thing’ as a
Morita equivalence class of geometric theories – or perhaps more accurately, that the notion
of Grothendieck topos represents the ‘extensional essence’ of the intuitive (intensional)
notion of a geometric theory ‘up to Morita equivalence’. ([122], D3.1, 897)

Recall that two (geometric) theories T and T′ are Morita equivalent if their corre-
sponding conceptual categories are equivalent as categories, which, in the cases we
are interested in, amounts to saying that their categories of models are equivalent.
In other words, since a Grothendieck topos E is equivalent to the classifying topos
B(T) of some geometric theory T and the latter constitutes, as I have just argued,
the extensional essence of the theory, it follows that, up to Morita equivalence, E is
the extensional essence of the geometric theory.

To get a better understanding of the classifying topos, it is perhaps better to con-
sider an analogy between topos theory and ring theory that was systematically ex-
ploited by Joyal in the early seventies.6

Let Z denote the usual ring of integers and Z[X ] denote the polynomial ring
in the indeterminate X . Consider now a polynomial in X , for instance p(X) =
X2 − X − 1. The latter has no integer solution. There is a standard way to force
the roots of this polynomial to exist in an extension of the ring Z[X ], namely
by taking the quotient ring Z[X ]/(p(X)), where (p(X)) denotes the ideal gener-
ated by the polynomial. The ring Z[X ]/(p(X)) contains the generic zero or root
G = X +(p(X)) and it is a universal solution in the sense that there is an isomor-
phism G∗ : HomRing(Z[X ]/(p(X)),R)' ZeroR(p(X)), where, on the left-hand side,
we are in the category of rings and, on the right hand side, we have the roots of p(X)
in R. Given these facts, the analogy becomes:

Ring Theory Categorical Logic
Ring Topos
Finitely presented ring Coherent topos
Z Set
Ideal Theory
Zero Model
Proper ideal Consistent theory
Generic zero Generic model

From this point of view, the classifying topos of a theory T is the space B(T)
which results from the category Set by forcing the existence of a generic model of
T in the same way that the “generic” ring Z[X ]/(p(X)) results from Z[X ] by forcing

6 This was communicated to me by Gonzalo Reyes, who worked with Joyal during that period.
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the existence of a generic zero of p(X). The choice of terminology is not innocent:
it is in the context of toposes of sheaves over a site, i.e., Grothendieck toposes, that
the most general methods of forcing, in the standard logical sense of that expression,
can be formulated. (See, for instance, [246].)

I will mention only one important example of a classifying topos. We have seen
in Chapter 5 the category of simplicial sets, Set∆◦

, which can now seen to be a
Grothendieck topos. It was shown by André Joyal that it is in fact a classifying
topos. It classifies the theory of linear orders with bottom and top elements, which
I have described in the previous chapter. (For a proof, see [246], 21–26 or [200],
450–466.)

The classifying topos B(T) can be used to obtain various completeness theorems
for theories, in particular coherent and geometric theories. Furthermore, these theo-
rems have interesting, surprising and unexpected methodological and philosophical
consequences.

Consider, for instance, the following “classical” completeness theorem for ge-
ometric theories. Let T be a geometric theory and α a geometric sequent (over
the signature of T). If α is satisfied in all T-models in Boolean toposes, then it is
provable in T. The proof, taken from [122], D3.1, 899, follows from simple facts:
it can be shown that there is, in this situation, a surjective geometric morphism
f : B → B(T), where B is a Boolean topos. By assumption, the sequent α is satis-
fied in the T-model f ∗(GT). It can be shown that in this case, α is satisfied in GT
itself. But since sequents satisfied in GT are provable in T, the result follows at once.

One interesting consequence of the theorem is that if a geometric sequent α is
derivable by classical means, then it has a constructive proof. In fact, by slightly
strengthening the hypothesis, it is possible to conclude that if α is provable with the
help of the axiom of choice, then there is a proof of α that avoids it.

Results for coherent theories are even more striking. Recall that a coherent lan-
guage contains only symbols for finite conjunctions, finite disjunctions, the “truth”,
the “false” and the existential quantifier and the appropriate rules of deduction. A
coherent theory T is given by a collection of axioms in a coherent language. I have
already indicated that the conceptual category of a coherent theory is a coherent cat-
egory. It can be shown that any topos is a coherent category and therefore coherent
theories can be interpreted in toposes. This is a key link between first-order logic
and toposes.

A Grothendieck topos equivalent to the classifying topos of a coherent theory T
is called a coherent topos. (The terminology is certainly confusing. Grothendieck
introduced coherent toposes in the sixties independently of any logical motivation.
Joyal, while developing the categorical counterpart of first-order logic, then came
up with the notion of coherent categories and coherent theories and proved, in col-
laboration with Reyes, that any coherent topos is equivalent to a classifying topos
of a coherent theory.)

The “classical” completeness theorem for coherent logic then takes the following
form. Let T be a coherent theory and α be a coherent sequent (over the signature of
T). If α is satisfied in all T-models in Set, then α is provable in T. This is a striking
result: if a sequent α is satisfied in all set models of the theory, then it is provable.
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In other words, if α is satisfied or provable in Set, possibly by non-constructive
means, then there is a constructive proof of α . It should be pointed out that the clas-
sical completeness theorem for coherent logic is equivalent, via classifying toposes,
to a theorem in algebraic geometry which states that a coherent topos has enough
points, sometimes known as Deligne’s theorem for coherent toposes. (See [122],
D3.3, 915.)

The preservation of geometric logic by geometric morphisms yields important
results and opens up interesting avenues, for instance links between logic, alge-
braic geometry and algebraic topology. As far as mathematics is concerned, topos-
theoretical ideas might provide the proper level of encoding of various important
properties, just as groups encode various important properties of various algebraic,
topological or geometric situations. Be this as it may, from a foundational point of
view, one would also want to know whether other foundationally important struc-
tures are preserved by geometric morphisms or not. But here, the picture becomes
somewhat more complicated—some would say, more interesting. For other kinds
of morphisms between toposes have to be taken into account, namely logical mor-
phisms. Once these have been defined, one can then elaborate a framework in which
one can develop various parts of mathematics and investigate invariance from var-
ious angles. This setting provides a framework to find constructive proofs of (ade-
quately translated) classical theorems of mathematics and even allows for a possible
reinterpretation of Hilbert’s program. One of the reasons underlying these possibil-
ities is that the construction of the generic model does not depend on the use of the
law of excluded middle nor the axiom of choice and thus one is able to prove the
consistency of various theories in a relatively weak metalanguage, e.g., a construc-
tive type theory.

7.4 Invariants Under Logical Transformations

As we have seen, an elementary topos contains all the algebraic structure encoding
logical operations. In the early seventies, various mathematicians discovered that
an elementary topos could be presented as a higher-order intuitionistic type the-
ory. In fact, an elementary topos can be thought of as a higher-order intuitionistic
type theory, once one knows certain facts about the theory, its interpretation and the
associated conceptual category. I will first clarify these points.

Given the axioms of an elementary topos, the definition of a logical morphism is
immediate. Let E and F be elementary toposes. A functor F : E →F is a logical
morphism if it preserves all the elementary structure of E , that is, it preserves all fi-
nite limits, the subobject classifier and the exponential, all up to isomorphism. Since
all finite limits exist if and only if pullbacks and a terminal object exist, it is enough
to require that F preserve these. Formally, this means that given, for instance, a
product X ×Y with the appropriate projections in E , then F(X ×Y ) is a product in
F and there is a unique isomorphism F(X ×Y ) = F(X)×F(Y ) in F preserving
the projections. Similarly, preserving the subobject classifiers means that given the
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subobject classifier > : 1 → ΩE of E , then F(>) : F(1) → F(ΩE ) is a subobject
classifier of F .

Thus, one can consider the (2-)category Log of toposes with logical morphisms
between them.

It is natural to wonder at this stage whether the foregoing situation for geometric
logic can be mimicked in the context of logical morphisms. In other words, is it
possible to find an appropriate logical system L such that for any theory T in L,
there is a topos ET and a canonical structure MT in ET yielding an equivalence
of categories Log(ET,F ) ' ModF (T), where F is any topos and Log(ET,F )
denotes the category of logical functors and natural transformations between them?
The answer is affirmative: there is such a logical framework.

However, before I introduce it, I have to admit that I have been sloppy in my
presentation of the syntax of various logical systems so far. Because I want to in-
terpret a formal system in a topos, I am forced to consider cases where models are
empty, an assumption that is usually circumvented by fiat in standard accounts of
semantics. One always starts with a non-empty domain of interpretation. However,
if we want to interpret a formal system in a topos, we have to be careful. On the one
hand, there is an “empty” object, namely the initial object 0, and, more troubling
perhaps, there are toposes that have the unsettling property of having objects that
are not empty without being fully inhabited. For instance, in the topos Set2 of pairs,
the object 〈0,X〉, where X is not empty, is not an initial object nor is it inhabited.
Indeed, there is no morphism from the terminal object 〈1,1〉 into it. On the other
hand, empty domains of interpretation are usually rejected for good reasons. By al-
lowing a predicate to be interpreted over an empty set, inferences that are clearly
invalid become valid. Consider, for instance a unary predicate P(x), vacuously in-
terpreted. Then, clearly we have the inference ∀xP(x) ` P(x) for it is impossible that
∀xP(x) be true and P(x) be false. The inference P(x) ` ∃xP(x) is valid for similar
reasons. It follows, by the transitivity of entailment, that ∀xP(x) ` ∃xP(x), which
is certainly not valid if the domain of interpretation is empty. Thus, something has
to give: either we exclude empty domains, something that we do not want to do in
a topos-theoretical context, or we drop the transitivity of entailment (a somewhat
radical solution), or we introduce a way to keep track of empty terms in the formal
system itself, so that the last entailment, for instance, will be rejected. The majority
of categorical logicians have adopted the last solution.

There are numerous presentations of the type theory associated with toposes in
the literature. (See [30], [160], [20], [258], [122].) I will roughly follow [160] and
[122], with slight modifications in terminology.

Let us start with the syntactic framework. A τ-signature is given by a set Sτ of
sorts. The set of types is closed under the following conditions:

1. Basic types: each sort is a type; the symbol Ω is a basic type;
2. Product types: If A and B are types, then A×B is a type; there is a distinguished

type 1 (the empty product);
3. Power types: If A is a type, then PA is a type.

The logical symbols are >,∧,=,∈,{|},〈〉.
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Terms, together with their types, are defined recursively as usual, except that we
keep track of free variables in them. To indicate that a term t has type A, we write
t : A and the finite set of free variables of a term t is denoted by FV(t).

1. For each type A, there is an infinite set of variables x : A; FV(x) = {x}.
2. There is a distinguished term ∗ : 1 with FV(∗) = /0.
3. If t1 : A and t2 : B, then 〈t1, t2〉 : A×B; FV(〈t1, t2〉) = FV(t1)∪FV(t2).
4. If t : A×B, then fst(t) : A and snd(t) : B; FV(fst(t)) = FV(snd(t))∪FV(t).
5. If ϕ is of type Ω and x : A, then {x ∈ A | ϕ(x)} : PA; FV({x ∈ A | ϕ(x)}) =

FV(ϕ)\{x}.

Whenever the type of x is clear, we will write {x | ϕ} instead.
There are two kinds of atomic formulas.

1. If t1 and t2 are of the same type A, then t1 =A t2 is an atomic formula, thus of
type Ω and FV(t1 = t2) = FV(t1)∪FV(t2).

2. If t1 : A and α : PA, then (t1 ∈ α) is an atomic formula; FV(t1 ∈ α) = FV(t1)∪
FV(t2).

Complex formulas are defined recursively in the usual manner.

1. If ϕ and ψ are formulas, then (ϕ ∧ψ) is a formula; FV(ϕ ∧ψ) = FV(ϕ)∪
FV(ψ).

2. > is a formula; FV(>) = /0.

As I have mentioned implicitly, formulas are in fact terms of type Ω . The reader
will have noticed the absence of the remaining logical operators. In fact, they can
all be defined from our basic set of connectives and terms. Although this is certainly
not a reasonable way to proceed from a practical point of view, from a theoretical
point of view, it shows that a purely algebraic presentation of a higher-order logic
is feasible, an interesting result in its own right. Here are the definitions introducing
the missing connectives:

D1 ∀xϕ ≡ [{x | ϕ}=>].
D2 ϕ → ψ ≡ [ϕ ∧ψ = ϕ].
D3 ϕ ∨ψ ≡ ∀w[(((ϕ → ψ)∧ (ψ → w))→ w) =>].
D4 ⊥≡ ∀w(w =>).
D5 ∃xϕ ≡ ∀w[(∀x(ϕ → w)→ w) =>].
D6 ¬ϕ ≡ ϕ →⊥.

Before I introduce the rules of the calculus in terms of sequents, I have to clarify
the notion of a suitable context for a sequent. The latter notion is one way to preserve
the transitivity of entailment and the possibility of empty types.

A context is a finite list x = x1, . . . ,xn of distinct variables. The type of a context
x is the string of not necessarily distinct sorts of the variables occurring in it. The
empty context is simply the case when there is no variable. If x is a context and y is
a variable different from those occurring in x, then x,y denotes the context obtained
by appending y to the list x. A context x is suitable for a formula ϕ if all free
variables of ϕ occur in x. Finally, a sequent over a τ–signature is an expression of
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the form ϕ `x ψ , where ϕ and ψ are formulas over τ and x is a context suitable for
both formulas. It is now easy to verify that in this way, the entailment relation is still
transitive and that problems arising from empty types are avoided.

We can now present the rules of a τ-calculus.

1. Structural rules:

ϕ `x ϕ
ϕ `x ψ ψ `x χ

ϕ `x χ

ϕ `x ψ

ϕ `x,y ψ

ϕ(y) `x,y ψ(y)
ϕ(b) `x ψ(b)

where, in the last rule, the substitution rule, y is a variable of type B and b is
a term of type B with no free occurrences of variables other than those in the
context. It is assumed that b is substitutable for x, with the usual proviso.

2. Logical rules

ϕ `x >
ϕ `x ψ ϕ `x χ

ϕ `x ψ ∧χ

ϕ `x ψ ∧χ

ϕ `x,y ψ

ϕ `x ψ ∧χ

ϕ `x χ

3. Equality rules:
> `x x = x ϕ ∧ (x = t) `y ϕ(t/x)

where, in the last rule, x and t are of the same type, y is any context containing
x and the free variables of t, and t is substitutable for x in ϕ .

4. Other axioms

> `w (w = {x : A | x ∈ w}), where w : PA;
z ∈ {y : A | ϕ} `x,z ϕ(z/y) ϕ(z/y) `x,z z ∈ {y : A | ϕ}

where ϕ is a formula with free variables in the context x,y.

> `x x =1 ∗, where x : 1;
> `x,y fst(〈x,y〉) =A x) > `x,y snd(〈x,y〉) =B x)

> `z 〈fst(z),snd(z)〉=A×B z,

This completes the description of the τ-calculus. A τ-theory T over a τ-signature
is given by a set of sequents over τ and these constitute the axioms of T. It should
also be clear that the notion of a model M of a τ-theory T in a topos E can be
defined. The soundness of the foregoing system is then easily proved.

It is also possible to construct the category of concepts ET from a τ-theory T and
show that it is an elementary topos. And again, it is possible to define a canonical
model MT in ET with the property that a sequent ϕ `x ψ in the τ-signature is satisfied
in MT if and only if it is provable in T. Completeness follows: given a τ-theory T
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and a sequent ϕ `x ψ of T, then if ϕ `x ψ is satisfied in all models of T in toposes,
it is provable in T.

Let F be an elementary topos. We can consider the category of models ModF (T)
of T in F but with isomorphisms between them (thus, it is a groupoid). Morphisms
are restricted to isomorphisms, since even if we are given morphisms between in-
terpreted sorts, they will not give rise to morphisms between all interpreted types,
in particular power types. Thus, suppose we have for each sort A and two interpre-
tations of the sorts, MA and NA in a topos F , morphisms MA→ NA. Consider now
the passage from the pair (A,B) to the power type BA. The latter construction is con-
travariant in the first variable: thus a morphism MA→ NA gives rise to a morphism
NBNA → MBMA in a natural way, but the latter goes in the wrong direction. We
therefore do not get morphisms between all interpreted types in the right way. (We
are assuming that MBMA = M(BA).) By restricting morphisms to isomorphisms, we
get around that difficulty.

It can be shown that any logical functor E →F gives rise to a functor ModE (T)
→ ModF (T). We now get to the main result: for any topos F and any τ-theory T,
there is an equivalence of categories Log(ET,F ). Thus, an F -model of T corre-
sponds to a logical isomorphism from ET to F and conversely. (See [122], D4.3,
970.) Once again, we can go in the opposite direction, meaning that given a (small)
topos E , there exists a τ-theory TE , called the theory of E , such that for any topos
F , there is an equivalence Log(E ,F ) ' ModF (TE ). In words, a logical isomor-
phism from E to F corresponds to an F -model of TE and conversely. The theory
TE is constructed in the obvious way. The τ-signature is defined as follows: the
types are the objects of E . In particular, the type Ω is the object ΩE of E . We can
therefore define a language LE , called the internal language of the topos E , based
on this signature. Furthermore, there is an obvious canonical interpretation of that
language in E . The theory TE is the set of sequents in LE that are satisfied under
the canonical interpretation. (See [122], D4.2, 947, 956 and 972 for details. See also
[160], 189–205 for a slightly different presentation.)

Thus, starting with a (small) topos E , it is possible to construct TE from E and
to construct ETE

, the category of concepts of TE . It can be shown that there is an
equivalence of categories E ' ETE

. Starting instead with a τ-theory T, moving to
its category of concepts ET and finally to its internal theory TET , one can show that
T and TET are Morita-equivalent, that is there are natural bijections between the
isomorphisms classes of models of the theories in arbitrary toposes.

The foregoing results can be interpreted as saying that a (small) topos is essen-
tially the same thing as a higher-order intuitionistic type theory. The logical and
the geometrical sides are in this sense two faces of the same coin. How can we
not transpose once more Cartan’s claim linking the structure of a group to the un-
derlying logic of a geometry? A paraphrase would give something like this: it is
the whole logical structure of a higher-order type theory which is contained in the
structure of the associated topos and even, in a more precise manner, in the law ac-
cording to which morphisms of that topos compose with each other, independently
of the nature of the objects on which these operations act. This resembles the case
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of geometry again where one can associate a certain group of transformations to a
geometric theory, e.g., Euclidean geometry.

It should be emphasized that the internal language of a topos is not merely an
alternative presentation of a topos; it is very often useful and yields simpler, more
direct proofs of various results. (See, for various examples, [160], 148–160, [223],
126–132, and, for examples also using classifying toposes, [122], D4.1, 948–951.)

However, for this language to be considered adequate as a foundational frame-
work, it is unquestionable that it ought to contain a type for natural numbers, or,
equivalently, a type for an infinite list. Thus, we add to a τ-signature another basic
type, denoted by N, a new term, 0 : N, a term-forming operation (namely if n is a
term of type N, then Sn is also a term of type N), together with the following axioms
(we now use the full language of the theory). The resulting signature will be called
a τN-signature.

> `x ¬(Sx = 0)
Sx = Sy `x,y x = y

(0 ∈ z)∧ (∀x)(x ∈ z→ Sx ∈ z) `z (∀y)(y ∈ z)

where x : N, y : N and z : PN.
Now that there is a type of natural numbers, it is possible to construct other

number systems in the standard algebraic fashion, for instance integers and rationals.
The case of real numbers is subtler since we are in a constructive framework. Be that
as it may, it seems reasonable to think of a τN-theory as a constructive foundational
formal system.

All the foregoing concepts and results for τ-theories can be extended to τN-
theories. τN-theories are sound with respect to toposes with natural number ob-
jects; given a τN-theory T, the category of concepts ET is a topos with a natural
number objects containing a canonical structure MT and completeness follows as in
the previous cases; logical functors preserve natural number objects and therefore
we have, as before, that for any τN-theory and any topos F with a natural num-
ber object, there is an equivalence Log(ET,F ); finally, given a small topos E with
a natural number object, there is τN-theory TE such that every model of TE in a
topos F with a natural number object corresponds to a logical functor ET →F .

7.5 Invariant Foundational Frameworks

Consider the topos ET in the case when T is the empty or “pure type” theory over
the “empty signature”, that is the set SτN of sorts is empty. However, although the
set of sorts is empty, there are still basic types, namely 1, Ω and N. Thus T nev-
ertheless has many types: 1, P1, PP1, . . . , P1×P1, . . . , N, PN, PPN, N×PN, . . .
The topos ET is said to be freely-generated by the T-model MT and it is called the
free topos with natural number object. Interestingly enough, the free topos ET is
the initial object in the (2-)category Log. This means that there is a unique logical
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functor from ET to any topos F in Log. Like any initial object, ET is unique (up to a
unique equivalence). Going back to the analogy with ring theory, the topos ET is to
the category Log what the ring Z of integers is to the category of rings (with unit).
Thus, in this sense, ET is the invariant logical content of all higher-order intuitionis-
tic theories. This has been used by Lambek to argue that ET could be considered the
appropriate foundational framework for the constructive part of arithmetic and anal-
ysis at least. He also argued that it could satisfy the moderate Platonist, the moderate
formalist and the moderate logicist, thus providing a common ground for what he
sees as constituting the standard positions in the foundations of mathematics. (See
[53], [158], [159], [161].)

In fact, the free topos satisfies additional properties that an intuitionist should find
appealing. First, Lambek argues that any topos E worthy of the name “universe of
mathematics” should satisfy three properties, namely:

1. (Consistency) The topos E is not degenerate, i.e., the atomic formula 0 = 1 is
not true in E , equivalently ⊥ is not true in E ;

2. (Disjunction property) If p∨q is true then either p is true or q is true;
3. (Existence property) If ∃xϕ(x) is true and x : A, then ϕ(a) is true for some object

a of type A.

Lambek calls any topos satisfying these conditions a local topos. It can be shown
that the free topos ET is a local topos. Recall that since provability and truth coincide
in ET, conditions 2 and 3 then become:

2. If ` p∨q then either ` p or ` q;
3. If ` ∃xϕ(x) and x : A, then there is a term a : A such that ` ϕ(a).

Both properties are demonstrable properties of ET, and since ET is non-degenerate
by construction, it satisfies (1). These properties were shown to hold in an intuition-
istic framework, the first one by Gödel and the second one by Kleene. Needless to
say, these logical properties correspond to purely categorical properties of the topos,
which are, informally, that the terminal object 1 is not initial, that 1 is indecompos-
able and, finally, that 1 is projective. (See [160], 229–230 for proofs.)

Furthermore, the free topos has another relevant property, namely that all numer-
als are standard, in the sense that all arrows 1 → N have the form Sn0 for some
natural number n. (This is not necessarily true in an arbitrary topos.)

It can also be shown that other well-known constructivist principles, which an
intuitionist might not find desirable, are provable in the free topos. I will mention
only two.

4. (Markov’s principle) If ` ∀x(ϕ(x)∨¬ϕ(x)) and ` ¬∀x¬ϕ(x), then ` ∃xϕ(x),
where x : A;

5. (Independance of premises) If ` ¬p → ∃xϕ(x), then ` ∃x(¬p → ϕ(x)), where
x : A.

Thus, according to Lambek, some constructivists might consider the foregoing
pure type theory T as being an adequate formal system for mathematics and ET a
proper universe of mathematics, thus as constituting together an appropriate con-
structive foundations for (elementary) mathematics. In his own words:
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(. . . ) the free topos is a suitable candidate for the world of mathematics acceptable to mem-
bers of different philosophical schools, who do not insist on the principle of excluded middle
and who are willing to compromise: (a) to moderate Platonists, because it is an initial ob-
ject in the category of all toposes; (b) to moderate formalists or even nominalists, because
it may be constructed from words (. . . ); (c) to moderate intuitionists, because (. . . ) [it] is an
intuitionistic type theory (. . . ) ([159], 153–154)

However, as Lambek is himself aware, Platonists, formalists, and intuitionists all
have to compromise.

Needless to say, such a compromise will be rejected by extreme Platonists, who may believe
that mathematical entities are thoughts in the mind of a demiurge, by extreme nominalists,
who may believe that only words are real, but that equivalence classes of synonymous words
are not, and by extreme intuitionists, who may believe that infinite sets do not exist or that
truth varies with historical time. ([159], 154)

Lambek mentions the assumption of the existence of the type N as being objec-
tionable. More damaging to the constructivist, perhaps, is the presence of the power-
type constructor PA for any type A, a questionable construction in and of itself that
furthermore leads directly to impredicative definitions. A predicative type theory à
la Martin-Löf, which has models in locally Cartesian closed categories, might con-
stitute a more palatable framework. I will not present this framework here. (But see,
for instance, [122], D4.4, or [251].)

Two important but seldom-mentioned aspects of the argument presented by Lam-
bek have to be underlined. First, it is suggested that the pure type theory T could
be an appropriate formal system for constructive mathematics. It would thus be the
language of constructive mathematics. Its universe of interpretation would then be
given by the free topos ET. But the latter is constructed from T in an ambient theory.
Thus, the construction of the universe depends on an underlying theory. Although
the latter is very weak and constructive, it has to be kept in mind. The second point
is more fundamental. The fact that ET is an initial object in the category Log is taken
to be an important, if not crucial, property of the universe and, as a consequence,
of T itself. However, that feature does not make sense without referring to the cate-
gory Log and its properties. The main point I want to emphasize at this juncture is
that Lambek sometimes argues as if T and ET can be taken together in an isolated
fashion and considered as a foundational framework. But if being initial in Log is a
crucial premiss of the argument in favor of T and ET as a foundational framework,
then one cannot ignore the fact that the universe is unique up to a unique equiva-
lence in a larger universe of universes. From our point of view, it is its invariance as
an initial object that constitutes the key feature of ET.

Of course, if classical logic is thought to be required in a foundational framework,
then it is enough to add the axiom

> ` ∀p : Ω(¬¬p→ p)

or, equivalently, the law of excluded middle

> ` ∀p : Ω(p∨¬p)
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to the foregoing τN-calculus. We now get classical τN-theories and given such a
classical theory T, the topos ET can be constructed in exactly the same manner as
before. However, the latter topos has new properties.

A topos E is said to be Boolean if its internal language is classical. Equivalently,
a topos E is Boolean if and only if one of the following conditions hold:

1. Every subobject in E has a complement, that is for every subobject A � X in
E , A∨¬A = X ;

2. For every object X of E , Sub(X) is a Boolean algebra;
3. The morphism ¬¬ : Ω →Ω is the identity 1Ω : Ω →Ω ;
4. The morphisms > : 1 → Ω and ¬ ◦> : 1 → Ω induce an isomorphism Ω '

1+1.

It can be shown that any topos ET constructed from a classical τN-theory T is
Boolean.

The (2-)category BoolLog of Boolean toposes and logical morphisms between
them is defined in the obvious manner. Starting with the pure type theory T0, it is
possible to construct the free Boolean topos ET0 , which is initial in the category
BoolLog.

Can we proceed to soundness, completeness and all other results as we did in the
constructive case? At this stage, the situation becomes somewhat more complicated,
for Gödel’s first incompleteness theorem rears its head.7

Completeness results for classical type theories have been known since the basic
work of Henkin. Moreover, Henkin assumed that a model of a type theory had to be
local. (Since the free topos for a constructive type theory is always local, there was
no need to impose this condition on it.) Lambek and Scott follow suit. They therefore
consider local Boolean toposes as legitimate models of classical τN-theories. A
topos is Boolean local if and only if the following properties hold:

1. (Consistency): ⊥ is not true;
2. (Universal property): If ϕ(x) in the τN-signature of T is such that ` ϕ(a) for

all closed terms a : A, then ` ∀xϕ(x), i.e., it is a theorem of T.

It follows that in a Boolean local topos, the logical connectives are interpreted in the
usual informal manner. Thus, (1) and (2) imply the disjunction and the existential
properties and, furthermore:

3. (Negation) ¬p is true if and only if p is not true;
4. (Implication) p→ q is true if and only if, if p is true, then q is true.

These properties translate accordingly into categorical properties. In fact, Boolean
local toposes are equivalent to well-pointed toposes. Let us first unpack the defini-
tion of being well-pointed.

7 This might be taken as being a good reason not to include natural number object as part of the
definition of elementary topos: it excludes the topos S1 of (hereditarily) finite sets. The latter is
also a free Boolean topos, but without a natural number object.
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A topos E is well-pointed if and only if its terminal object 1 is a generator (some-

times called a separator); that is, given two parallel morphisms X
f //
g

//Y in E , either

f = g or there is a morphism x : 1 → X such that f ◦ x 6= g ◦ x. This condition is in
fact equivalent to the condition (2) of a Boolean local topos. What it says is that the
“elements” of X allow us to distinguish maps that are different in the universe. Thus
it is enough to know the elements of the sets to know the universe.

It can be shown that any well-pointed topos is Boolean and two-valued; that is,
there are only two morphisms into the subobject classifier Ω , namely> : 1→Ω and
⊥ : 1 → Ω , or equivalently the terminal object 1 has only two subobjects, namely
0 � 1 and 1 � 1. (See [223], 211, for proofs.) Notice that being Boolean is not the
same as being two-valued: a two-valued topos need not be Boolean and conversely
a Boolean topos need not be two-valued. (See [200], 274.)

The main point is that a well-pointed topos behaves very much like a category of
sets, in the standard Zermelo conception of a set. As we have just seen, it is Boolean
and two-valued, every object or “set” is either initial or has global elements (which
is certainly not the case in an arbitrary topos), being monic and epic can be defined
in the usual manner on global elements. Moreover, in any well-pointed topos, sup-
ports split, that is if X 6= 0, then the unique map !X : X → 1 splits, which in turn
means that there is a morphism s : 1→ X such that !X ◦ s = 1. (This latter claim is a
special case of the categorical version of the axiom of choice. The full version of the
axiom of choice states that any epimorphism has a section.) In fact, a well-pointed
topos can be thought of as a model of Zermelo set theory with bounded compre-
hension, sometimes called restricted Zermelo set theory, Z− set theory or Mac Lane
set theory. (Bounded comprehension simply means that the quantified variables are
typed. See [200], 332–343 for the proof that the theory of restricted Zermelo with
choice is equiconsistent with the theory of well-pointed toposes with natural number
object and choice.) Thus, every Boolean local topos is very much like a restricted
Zermelo set theory. The basic idea is that the sets of such toposes should in some
sense be completely determined by their points, or elements. After all, this is the
fundamental property of standard sets: a set in the traditional conception is entirely
determined by its elements and two sets are identical if and only if they have the
same elements. The set-theoretical criterion of identity is radically different from
the criterion of identity with which we have been working so far.

The surprise here is that the classical free topos ET0 is not local. (However, given
the foregoing connection with a restricted Zermelo set theory, this is not so surpris-
ing after all.) The reason is simple: Gödel’s first incompleteness theorem creeps in.
Indeed, it is possible to reproduce Gödel’s argument within T0 and thus obtaining
a sentence G such that ` G∨¬G. If ET0 were local, it would satisfy the disjunction
property and, thus we would have ` G or ` ¬G, which is impossible by Gödel’s
theorem. Needless to say, the argument works for any undecidable sentence p.

From Lambek’s perspective, the fact that ET0 fails to be local prevents it, in
contrast with the constructive case, from being considered the universe of classical
mathematics. Indeed, Lambek defines a model of a τN-theory to be a local topos.
It is important to note immediately that, in the classical case, Lambek supposes
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that one would like to identify the topos ET0 with the universe of sets, since he as-
sumes that mathematicians endorsing classical set theory believe that there is such
a unique set-theoretical universe. (This is not to say that Lambek himself endorses
such a view.)

If the goal is to try to find a unique universe of classical mathematics, then it
seems that the topos-theoretical framework fails. Lambek does consider an alterna-
tive:

It is tempting to abandon the search for a distinguished Boolean local topos and be satisfied
with the sheaf of Boolean local toposes instead. ([159], 156)

Why would it be an alternative? In short, because of the following representation
theorem: any small Boolean topos is equivalent to the topos of global sections of a
sheaf of Boolean local toposes.

And we are back to sheaves. In fact, we are back to the analogy with rings. In-
deed, starting with Grothendieck’s representation theorem that asserts that every
commutative ring is the ring of continuous sections of a sheaf of local rings, it be-
comes reasonable to ask whether a similar result could not be proved for toposes.
After promising but not quite satisfactory results by Lambek and then by Lambek
and Moerdijk, Awodey proved the completely analogous result stated in the forego-
ing paragraph. ([6])

We will concentrate on the meaning of the result, without entering fully into all
the technical details. Let E be a small topos. We first construct a functor8 E / : E ◦→
CAT into the category CAT of (possibly large) categories as follows: for each object
X of E , (E /)(X) =df E /X , the slice topos and for each morphism f : X → Y in E ,
we obtain a functor by pulling back along f . Composition can also be defined.9

Notice that the functor E / can be thought of as a presheaf of categories. So far,
we had only considered presheaves and sheaves of sets. There is absolutely nothing
in the definition of a presheaf or of a sheaf that fixes the domain category. In so
far as the category CAT is legitimate, the whole construction makes perfect sense.
What Awodey shows first is that the functor E / is in fact equivalent to a sheaf of
categories on E . Thus, the small topos E is now considered as a site. (I will not
specify the Grothendieck topology. Suffice it to say that it is the so-called finite
epimorphism topology.) The Grothedieck topos Sh(E ) of sheaves over E can be
constructed. It can be shown that the topos Sh(E ) has enough points and, by a
result of Butz and Moerdijk, that for any such Grothendieck topos E , there is a
topological space XE and a geometric morphism φ : Sh(XE )→ E (with additional
properties). Thus, in this particular case, it can be shown that one obtains a geometric
morphism φ : Sh(XE )→ Sh(E ) and that Sh(XE )(1, Ẽ )' E , where Sh(XE )(1, Ẽ ) is
the topos of global sections of Ẽ on XE and Ẽ denotes the inverse image of the sheaf
equivalent to E / in Sh(XE ). Thus, the representation theorem, in its general form,
states that any small topos E is equivalent to the topos of global sections of a sheaf of

8 In fact, it is a pseudofunctor. Part of the proof of Awodey’s result consists in showing that it is
equivalent to a functor.
9 The same remark appplies here. One has to show that the result is indeed a genuine composition,
that is, not only defined up to a natural isomorphism.



282 7 Invariants in Foundations: Geometric Logic

local toposes on a topological space. Notice that this is a particular case of Joyal and
Tierney’s result: in this case we are dealing with a standard topological space and
not a locale. Whenever E is a small Boolean topos, then the representation theorem
asserts that E is equivalent to the topos of global sections of a sheaf of well-pointed
toposes on a topological space.

If we start with a classical τN-theory T, we can construct its corresponding
Boolean topos ST and, by the representation theorem, fix a sheaf representation
S̃T of ST on a space X . As Freyd had already shown in the early seventies, there is
then a faithful logical morphism

〈πx〉x∈X : ST → ∏
x∈X

(S̃T)x

from the given Boolean topos into a product of well-pointed toposes. Since we still
have that

Log(ST,F )'ModF (T),

to every logical morphism ST →F corresponds a model MT of T in F . In partic-
ular, for each point x ∈ X , there is a model πx(MT) ∈ Mod(S̃T)x

(T). Now, given a
T-sentence ϕ such that ϕ is true in every Boolean topos F , in particular ϕ is true
in every πx(MT), and since 〈πx〉x∈X is faithful, ϕ is true in ST and therefore, it is
provable in T.

Informally, the models of a classical theory are the points of a topological space
and the truth of a sentence of the theory varies continuously from point to point.
In other words, this means that a sentence in the language of a classical theory T
is provable if it is true in every T-model in every model of bounded Zermelo set
theory. We might not be able to get the universe of sets, that is a fixed topos of sets,
but completeness is attainable as long as these categories of sets vary, as long as we
have variation in a space of categories of sets.

Notice, once again, that the metamathematics is taking place in a category of cat-
egories, namely a category of toposes with logical and/or geometric morphisms.
These categories are always lurking in the background and they seem to be in-
escapable. Furthermore, the whole notion of invariance is relative to the context
in which these categories are defined.

7.6 Using Geometric and Logical Invariants

As early as 1975, André Joyal suggested that the methods based on the notion of
the classifying topos are reminiscent of Hilbert’s ideas on the introduction and the
elimination of ideal elements in mathematical reasoning, usually known as Hilbert’s
program. The basic idea is to find a geometric or coherent formulation of a given
mathematical theory T, move to the category of concepts of T and the classifying
topos of the theory. Then, by the completeness results for geometric and coherent
theories, if there is a proof using classical logic and/or the axiom of choice, there
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is a constructive proof of the same result. The construction of the classifying topos
amounts to the introduction of ideal elements that are then eliminated via the com-
pleteness results. Although my presentation makes it sounds as if it does not in fact
deliver a concrete constructive proof of the results, in practice, such proofs have
been found. (For a survey of such results in algebra, see for instance [50].)

As I have just said, the various theorems have to be “translated” adequately; that
is, an appropriate version of the theorem has to be found and then it is possible to
obtain a constructive proof of the new version. In many cases, these new versions
become the standard version when they are interpreted in the topos of sets, or, in the
case of topological spaces, when they are restricted to the correct class of topological
spaces. It should also be mentioned that the proofs depend on an interplay between
logical tools, geometrical tools and finally, categorical tools. They constitute perfect
illustrations of the multifaceted aspect of topos theory. Here is a sample of some of
the results that now have a constructive proof:

1. Tychonoff’s theorem asserts that a product of compact spaces is compact. The
standard proof depends on the axiom of choice. There are proofs that avoid the
use of the axiom of choice. (See, for instance, [118] and [123].)

2. Tychonoff’s theorem in turn implies the existence of the so-called Stone-Cech
compactification for certain spaces X , which, in a sense, is the maximal com-
pactification of a space relative to a given embedding. Various constructive
proofs of this theorem can also be given. (See [10], [11], [13].)

3. The Stone-Weierstrass theorem can be proved constructively. (See [12].)
4. Gelfand duality can be given a contructive treatment. (See [14].)
5. The Hahn-Banach theorem in functional analysis is also known to depend on the

axiom of choice. Properly reformulated, a constructive version of the theorem
can also be given. (See [231].)

This is but a sample of an active field of research. Notice that in this case, topos-
theoretical methods are heuristic: they are used to find constructive proofs of results
that are known to depend on various parts of mathematics that are contentious from
a constructive point of view.

7.7 Summing Up

All the themes touched upon in previous chapters find an echo in topos theory. It
is intrinsically geometric, topological, algebraic and logical. A topos can be con-
ceived of as a universe of sets, as a higher-order type theory, as a space or as an al-
gebraic structure. It provides the means to apply and develop various techniques and
tools: cohomology theories, homotopy theory, etc. I believe that it is as fundamen-
tal to mathematics as groups are, and for similar reasons. In the same way that the
group axioms, simple and elegant, capture algebraically deep and fundamental as-
pects of a mathematical context and are for that reason extremely powerful and use-
ful, the topos axioms, also simple and elegant, capture algebraically, logically and
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geometrically deep and fundamental aspects of a mathematical context. Further-
more, one can investigate the invariant content of various notions and situations, the
invariance being now of at least two flavors, logical and geometrical. It is hard not to
see in topos theory another embodiment of Klein’s program in the way envisioned
by Eilenberg and Mac Lane.



Conclusion

Comprehending under an all-embracing unitary idea the opposing
views of different schools of thought.

(Klein, quoted by [98], 615)

Once Eilenberg and Mac Lane understood that a category was a natural generaliza-
tion of a group of transformations, it must have been irresistible to conjecture that
the algebra of such transformations, of the morphisms of a category, could be used
in a way similar to the way groups are used in geometry. But if the group law and
structure arose in a context where they immediately had a role to play in the solution
of important mathematical problems, the same cannot be said of categories. As we
have seen, categories were introduced for the sake of conceptual clarity. As such,
they did not have a clear mathematical function. At first they were seen as provid-
ing a convenient framework, a language for various fields. Groups, as far as I know,
never had the status of being a mere language. To many mathematicians, groups
were central, powerful and revealing. It is hard to see how Galois theory could have
arisen without groups. Modern differential geometry is inconceivable without Lie
groups and Lie algebras. The fact that categories are often, if not almost always,
thought of as providing a convenient language, whereas groups are not thought of
that way, seems to be a fundamental difference between groups and categories. Of
course, there was the element of unity provided by categories, comparable to the
unity provided by groups towards the end and the beginning of the 20th century.
It was clear to Eilenberg and Mac Lane that any well defined mathematical system
gives rise to a category once one has defined the appropriate notion of morphism ac-
companying these systems. But this is not much of a gain as it stands; one wonders
what to do with these categories.

The collection of morphisms of a category is given as a whole, and it is hard to
see the underlying algebraic structure at work in this context. The forest hides the
trees. Eilenberg and Mac Lane understood that they were introducing an algebraic
framework but could not see how this algebraic machinery could work. It is as if
someone somehow were to build a powerful computer and power it up, but have no
idea how to program it or even that it was programmable. The flexibility, suppleness,
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versatility, power and strength of category theory were clearly not appreciated by its
inventors or even by the first generation of mathematicians who applied it to alge-
braic topology and homological algebra. Category theory was in the background:
useful, amusing, awfully general and abstract—but at the same time, indisputably
clarifying, simplifying and helpful in the way it allowed the organization of con-
cepts, results and proofs. But in the end, despite its usefulness, it was not clear that
it was necessary or indispensable.

The algebraic structure at work emerged progressively in the fifties. Mac Lane
recognized the possibility of using the algebra to define various central concepts
like product and coproduct in order to characterize a type of category, but in the
end the categories he defined did not do the work expected. Buchsbaum and Heller
defined, by categorical means, types of categories that carved parts of homological
algebra at its joints, but it was left to Grothendieck and Kan to give categories un-
expected new roles and to put genuinely new categorical concepts to work. From
that point on, category theory could be seen as a genuine extension of group theory
in mathematics in general, although it is not clear that it was explicitly seen that
way. The formulation, solution and understanding of various mathematical prob-
lems depend essentially on categorical concepts. Not only can one look at invariant
properties of various mathematical structures, but—and this is a facet that we have
not emphasized sufficiently—one can also consider covariant properties between
various mathematical structures. Categories, functors and natural transformations
become indispensable in the same way that group-theoretical concepts became in-
dispensable in Galois theory or geometry. To say that categories are merely an or-
ganizational tool is like saying that groups merely organize elementary geometry
or Galois theory. To make that claim is to fail to see the real work done by both
concepts.

As we have already mentioned, Eilenberg and Mac Lane immediately saw that
categories were entirely general and that almost any mathematical system could
give rise to categories. The abstract categorical algebra arising in the sixties led to
the possibility of conceiving the totality of mathematical concepts as being gov-
erned by categorical principles. While set theorists were considering various exotic
set-theoretical universes, Lawvere proposed that one could instead frame mathe-
matics within categorical universes instead. At that point, set theory and category
theory could be seen, each in its own way, to provide the language and the tools
to define, develop and analyze all the basic concepts of mathematics. But again,
it is the algebra of categories that sets it apart and this algebra has an intrinsically
geometrical flavor in the same way that the algebra of groups has an intrinsically ge-
ometrical flavor. In comparison, set theory is intrinsically combinatorial in its spirit.
It is probably worth expanding on this contrast.

Since about the middle of the 19th century, mathematicians have been used
to considering number systems—usually the natural numbers—as fundamental or
given. The basic entities of mathematics are numbers, usually thought of as individ-
ual objects with well-defined properties. This is simple enough for numbers like 2
or 101001000

, but not so simple for real numbers or complex numbers, since the latter
are derived from a geometrical given, namely the real line. The real numbers could
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be reconstructed from the natural numbers, and the resulting system was a good
model of the real geometric line. This made a rigorous development of analysis
possible, so conceiving a line as somehow made up of points seemed a small price
to pay. Of course, lurking in the background, one could find certain dubitable set-
theoretical axioms, like the power-set axiom and the axiom of choice, and problems,
like the continuum hypothesis. But the usefulness of the set-theoretical language and
the set-theoretical universe was too great to consider abandoning it. Hilbert talked
about Cantor’s paradise; perhaps his opponents should have compared the language
of transfinite sets to the siren’s song.

But what if the real line is first and foremost a line, that is, a geometric object?
We have known since antiquity that rather than thinking of the line as a sum of
individually given points that are supposed to adhere to one another by some kind
of miracle glue, we can think of it as a type of entity, with its own criterion of
identity, that can have points as components. It seems that we are falling back on
the perennial distinction between discrete and continuous quantities.

We submit that category theory and set theory differ radically on how they rep-
resent the nature of mathematical objects. (See [213] for more on this particular
point.) A set is entirely determined by its elements, at least in the conception follow-
ing Zermelo’s axiomatization. A set is nothing but a bunch of elements considered
as a whole. This conception is captured by the axiom of extensionality: two sets X
and Y are identical if and only if they have the same elements. The universe of sets
is simply the collection or sum of such sets. It has, as such, no criterion of identity
since it is usually assumed to be unique. However, it could be considered to be a
class and classes have essentially the same criterion of identity that sets have. In
category theory, objects are treated differently. Morphisms can be identical and are
identified, e.g., in commutative diagrams. The identity criterion for morphisms is
given as primitive. Objects are isomorphic. This is a derived criterion of identity in
a category. As for categories themselves, as we have seen, they are equivalent, not
isomorphic. And this is only the tip of the iceberg.

To get a better grip of the situation without going into the technical details, it
might be judicious to recall some elementary aspects of homotopy theory. (In fact,
there are profound formal and conceptual links between category theory and homo-
topy theory, but we won’t delve into them at this point!) We will be entirely informal,
since the introduction of the formal definitions would needlessly encumber our dis-

cussion. Recall that a homotopy H between two parallel continuous maps X
f //
g

// Y

is a continuous deformation of f into g. We have seen that being homotopic is an
equivalence relation and therefore could be used as a criterion of identity. How about
the homotopies themselves? In other words, suppose we have two homotopies H1
and H2 from f to g. Since H1 and H2 are maps, we could stipulate that H1 = H2 like
any other maps. However, since they are parallel continuous maps, it is also possible
to require that there be homotopies H : H1 → H2 and G : H2 → H1 between them
such that H ◦G = 1H2 and G ◦H = 1H1 , the identity deformations. How about H
and G themselves, in other words homotopies of homotopies? Clearly, we could go
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on and on in this manner and introduce a hierarchy of criteria of identities. The main
point is that the latter hierarchy is faithful to the nature of the objects involved.

The link with categories becomes immediate when the parallel with natural trans-
formations and homotopies is brought forward. In fact, a natural isomorphism can
be defined as a homotopy between functors. (See [35], 228.) It is also possible to de-
fine natural transformations in a similar fashion. (See [35], 233.) But this is not what
we are interested in here. In the same way that the criterion of identity between ho-
motopies should be provided by a homotopy of “higher-dimension”, it makes sense
to require that identities in a category of categories be replaced by a hierarchy of nat-
ural equivalences. The overall general picture emerging from this perspective can be
sketched as follows.

One starts with “points”, i.e., 0-dimensional objects, also called 0-cells, repre-
senting categories or sets (at this stage both ways of thinking are entirely accept-
able) with paths between them. These paths represent functors and can informally
be thought of as processes. They are also called 1-cells. As usual, paths compose
and there is an identity path for each 0-dimensional object. But here, we face the
first difference with the usual definition of a category. In the classical definition,
composition has to satisfy the associativity, i.e., there is an identity between cer-
tain paths, and identities on 0-cells also have to satisfy certain conditions; again
identities between paths have to be satisfied. Since objects are defined up to isomor-
phism, it seems reasonable to require that morphisms between 0-cells be defined
up to isomorphism. Thus, given three paths or 1-cells f , g and h, there should be a
natural equivalence α : f (gh) = ( f g)h between the different ways they compose,
and not an identity between them. Such a natural equivalence is called a 2-cell. The
same should apply to the conditions on identities. If one thinks of α as a homo-
topy between paths, the analogy with the case of identities of homotopies becomes
immediate. How are we to identify two such 2-cells? We have to introduce natu-
ral equivalences between them, that is 3-cells. And so on and so forth. Although
moving from identities to natural equivalences seems conceptually justified, it in-
troduces a level of complexity that rapidly becomes daunting. Of course, one can
stop at any given level and decide that at that level, identities will be used. Thus,
one can start with 0-cells with no paths between them. This is a universe of sets or
a 0-category. One can start with 0-cells, paths between 0-cells, that is 1-cells, and
identities between 1-cells, and then one recovers the standard definition of a cate-
gory, now called a 1-category. But we can go one level up, that is 0-cells, 1-cells
between them, 2-cells between 1-cells and identities between 2-cells. We thus get a
(weak) 2-category. And so on and so forth. Of course, the process can be iterated ad
infinitum and we get what is called a ω-category. The study of what are now called
higher-dimensional categories is presently developing at a quick pace. (See, for an
introduction, [181] or [46].) The main philosophical point I want to bring forward
concerns the hierarchy of criteria of identities inherent to this universe and how it
is different from the one found in a universe of ZF-type sets. What it shows is that
there is a conceptual alternative to the cumulative hierarchy that could be used to
conceive a universe of mathematical entities. In this alternative, one deals with types
as basic objects. Of course, we still do not have a clear picture of a single category of
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categories with specific axioms that might constitute a genuine alternative to a set-
theoretical universe, but no matter what these axioms turn out to be, the underlying
framework will have to be along the lines of an ω-category.

From an epistemological point of view, the differences between categories and
sets are also striking and significant. Here the comparison with geometry is again
fruitful. In a set-theoretical framework, the world is made up of atoms, which in
turn, coalesce to form sets, which in their turn, form new sets when they are col-
lected together. We are therefore have a bottom-up structure where in order to know
a given set one has to know its elements and, perhaps, what principle or construction
were used to collect these elements to form a set. It is truly an atomistic epistemol-
ogy. In a categorical framework, one is given a space as a whole and to know an
object is to know how it is connected to the others in the space. To use the analogy
with geometry, one has to “carve-out” the objects in the space by analyzing their al-
gebraic properties in the whole space. It is a top-down approach. (For more on this
point, see [7].) Of course, in a categorical framework, one quickly gets the feeling
one is working in nested universes. Properties of objects in a category are reflected
or determined by properties of functors between the given categories and other cat-
egories. Thus, universal morphisms correspond to adjoint functors. This reflection
does not hold for all constructions defined within a category, but what can be done
within a category depends, directly or indirectly, on the structure provided by these
adjoint situations.

If foundational studies of mathematics rest upon the introduction, development
and analysis of formal systems and their properties, then there is no doubt that cat-
egory theory has something to offer the field and that what it has to offer ought to
be seen in a geometric light. For instance, as we have seen, it is possible to charac-
terize a hierarchy of formal systems, Cartesian logic, regular logic, coherent logic,
geometric logic, intuitionistic logic, pretoposes, classical logic, lambda calculi, var-
ious type theories, etc., and to associate to these logical systems categories, for in-
stance Cartesian, regular, coherent, pretoposes, Heyting, Boolean, toposes, Carte-
sian closed, locally Cartesian closed, etc., in such a way that one can prove various
results for these systems, for instance completeness, to mention the most obvious.
In each case, one can define morphisms between theories of a given kind and in-
vestigate invariance and coviariance between them. Furthermore, the categories are
related to one another and it is therefore also possible to investigate relationships
between them. In the same way that Klein’s program opened the door to a sys-
tematic comparison between elementary geometrical systems, category theory and
categorical logic provide the proper algebraic tools to perform a similar task.

If, on the other hand, foundational studies of mathematics are taken to also in-
clude the analysis and classification of the elements, concepts, constructions, and
operations of mathematics itself, then it is clear that category theory provides a tool
of exceptional power and clarity for this purpose. Moreover, unlike the use of formal
systems in foundations, the use of category theory has actually shaped the develop-
ment of mathematics itself, thus extending the notion of foundations to include the
structure of modern mathematics. (See also [225].)
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Needless to say, we haven’t covered all aspects of category theory and categori-
cal logic. We have barely mentioned higher-dimensional categories, we haven’t said
a word about monoidal categories, braided categories, etc., we haven’t related how
quantum logic is being reformulated in a categorical framework in an original and
promising way, we haven’t shown how linear logic and its variants can be mod-
eled by various categories, etc.: in all these cases, we would have found additional
elements showing that, indeed, as Eilenberg and Mac Lane had glimpsed without
seeing all the details, category theory does indeed constitute an extension, in spirit,
in essence, and in the role it gives to algebra, of Klein’s program.
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21. J. Bénabou. Algèbre élémentaire dans les catégories avec multiplication. C. R. Acad. Sci.
Paris, 258:771–774, 1964.

22. J. Bénabou. Introduction to bicategories. In Reports of the Midwest Category Seminar, pages
1–77. Springer, Berlin, 1967.

23. J. Bénabou. Fibered categories and the foundations of naive category theory. J. Symbolic
Logic, 50(1):10–37, 1985.

24. P. Benacerraf. What numbers could not be. Philos. Rev., 74:47–73, 1965.
25. G. Birkhoff. A set of postulates for plane geometry, based on scale and protractor. Ann. of

Math., 33(2):329–345, 1932.
26. G. Blanc and M. R. Donnadieu. Axiomatisation de la catégorie des catégories. Cahiers
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65. C. Ehresmann. Sur les structures algébriques. C. R. Acad. Sci. Paris Sér. A-B, 264:A840–

A843, 1967.
66. S. Eilenberg. Cohomology and continuous mappings. Ann. of Math. (2), 41:231–251, 1940.
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178. F. W. Lawvere. Categories of spaces may not be generalized spaces as exemplified by di-
rected graphs. Repr. Theory Appl. Categ., (9):1–7 (electronic), 2005. Reprinted from Rev.
Colombiana Mat. 20 (1986), no. 3-4, 179–185.

179. F. W. Lawvere and R. Rosebrugh. Sets for Mathematics. Cambridge University Press, Cam-
bridge, 2003.

180. F. W. Lawvere and S. H. Schanuel. Conceptual Mathematics. A First Introduction to Cate-
gories. Cambridge University Press, Cambridge, revised edition of the 1991 original edition,
1997.

181. Tom Leinster. A survey of definitions of n-category. Theory Appl. Categ., 10:1–70 (elec-
tronic), 2002.

182. F. E. J. Linton. Some aspects of equational categories. In Proc. Conf. Categorical Algebra
(La Jolla, Calif., 1965), pages 84–94. Springer, New York, 1966.

183. E. J. Lowe. The metaphysics of abstract objects. J. Philos., 92(10):509–524, 1995.
184. S. Lubkin. Imbedding of Abelian categories. Trans. Amer. Math. Soc., 97:410–417, 1960.



298 References

185. S. Mac Lane. Groups, categories and duality. Proc. Nat. Acad. Sci. U.S.A., 34:263–267,
1948.

186. S. Mac Lane. Duality for groups. Bull. Amer. Math. Soc., 56:485–516, 1950.
187. S. Mac Lane. Locally small categories and the foundations of set theory. In Infinitistic Meth-

ods (Proc. Sympos. Foundations of Math., Warsaw, 1959), pages 25–43. Pergamon, Oxford,
1961.

188. S. Mac Lane. Natural associativity and commutativity. Rice Univ. Studies, 49(4):28–46,
1963.

189. S. Mac Lane. Categorical algebra. Bull. Amer. Math. Soc., 71:40–106, 1965.
190. S. Mac Lane. Foundations of mathematics: Category theory. In R. Klibansky, editor, Con-

temporary Philosophy, volume I, pages 286–294. La Nuova Italia Editrice, Firenze, 1968.
191. S. Mac Lane. Foundations for categories and sets. In P. Hilton, editor, Category Theory,

Homology Theory and their Applications. II, volume 92 of Lecture Notes in Mathematics,
pages 146–164. Springer Verlag, New York, 1969.

192. S. Mac Lane. One universe as a foundation for category theory. In S. Mac Lane, editor,
Reports of the Midwest Category Seminar. III, volume 106 of Lecture Notes in Mathematics,
pages 192–200. Springer Verlag, New York, 1969.

193. S. Mac Lane. The influence of M. H. Stone on the origins of category theory. In F. E.
Browder, editor, Functional Analysis and Related Fields, pages 229–235. Springer-Verlag,
New York, 1970.

194. S. Mac Lane. Categorical algebra and set-theoretic foundations. In Axiomatic Set Theory
(Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967),
pages 231–240. Amer. Math. Soc., Providence, R.I., 1971.

195. S. Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate Text in
Mathematics. Springer-Verlag, New York, 1971.

196. S. Mac Lane. Concepts and categories in perspective. In P. Duren, editor, A Century of Math-
ematics in America, Part I, pages 323–365. American Mathematical Society, Providence,
1988.

197. S. Mac Lane. The developments and prospects for category theory. Appl. Categ. Structures,
4(2–3):129–136, 1996.

198. S. Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 2nd edition, 1998.

199. S. Mac Lane and G. Birkhoff. Algebra. The Macmillan Co., New York, 1967.
200. S. Mac Lane and I. Moerdijk. Sheaves in Geometry and Logic. A first introduction to topos

theory. Universitext. Springer-Verlag, New York, 1994.
201. M. Makkai. Strong conceptual completeness for first-order logic. Ann. Pure Appl. Logic,

40(2):167–215, 1988.
202. M. Makkai. Duality and definability in first order logic. Mem. Amer. Math. Soc.,

105(503):x+106, 1993.
203. M. Makkai. Generalized sketches as a framework for completeness theorems. I. J. Pure

Appl. Algebra, 115(1):49–79, 1997.
204. M. Makkai. Generalized sketches as a framework for completeness theorems. II. J. Pure

Appl. Algebra, 115(2):179–212, 1997.
205. M. Makkai. Generalized sketches as a framework for completeness theorems. III. J. Pure

Appl. Algebra, 115(3):241–274, 1997.
206. M. Makkai. Towards a categorical foundation of mathematics. In Logic Colloquium ’95

(Haifa), volume 11 of Lecture Notes Logic, pages 153–190. Springer, Berlin, 1998.
207. M. Makkai and R. Paré. Accessible Categories: The foundations of Categorical Model

Theory, volume 104 of Contemporary Mathematics. American Mathematical Society,
Providence, RI, 1989.

208. M. Makkai and G. E. Reyes. First Order Categorical Logic: Model-theoretical Methods in
the Theory of Topoi and Related Categories, volume 611 of Lecture notes in mathematics.
Springer-Verlag, Berlin, New York, 1977.

209. Y. I. Manin. Topics in Noncommutative Geometry. M.B. Porter Lectures. Princeton
University Press, Princeton, 1991.



References 299

210. Y. I. Manin. Interrelations between mathematics and physics. In Matériaux pour l’Histoire
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270. E. Zermelo. Über Grenzzahlen und Mengenbereiche: neue Untersuchungen über die Grund-
lagender Mengenlehre. Fundamenta Mathematicae, 14:339–344, 1930.

271. M. Zisman. Fibre bundles, fibre maps. In I. M. James, editor, History of Topology, pages
605–629. North-Holland, Amsterdam, 1999.





Index

A

A -algebra 195
Abelian category see Category, Abelian
Action of a category on a set 51
Additive category see Category, additive
Adjoint functor 65, 110, 132, 148

As criterion of identity 113
As criterion of meaningfulness 113

Adjointness 65, 159
Adjunction 94, 127, 153

Counit of an — 143
Unit of an — 143

Algebra of type A 195
Algebraic semantics 196
Algebraic structure 196
Algebraic theory see Theory, algebraic
Alphabet see Type, similarity
Arrow

Epi — 95
Monic — 94

Awodey, S. 281
Axiom of extensionality 87
Axiomatization of structure reduction to set

theory 188

B

Bénabou, J. 197, 268
Beck-Chevalley conditions 225
Bell, J. 57–59, 205
Benacerraf, P. 28
Bernays, P. and P. Levy 183
Bicategory see Category, bicategory
Bimorphism 95
Blass, A. 52
Borsuk, K. and S. Eilenberg 41, 42

Bourbaki, N. 40, 76, 77, 110, 111, 176, 197,
198

Brouwer, L. E. J. 114
Brouwer, L. E. J. 114
Brown, E. H. Jr. 262
Buchsbaum, D. A. 91, 100
Buchsbaum, D. A. 72, 84–86, 90–94, 100,

101, 133, 286

C

c.s.s. complex 127, 128
c.s.s. map 128
Canonical language of a category 240

Extended — 240
Cantor, G. 182, 185, 189, 212
Carnap, R. 49
Cartan, É. 9, 10, 19, 21, 22, 34, 35, 56, 167,

170, 174, 193, 245, 249, 275
Cartan, H. 100, 128, 139, 186
Cartan, H. and S. Eilenberg 67, 71–74, 80,

85, 90–92, 100, 106, 122, 129, 133
Categorical doctrines 241
Categorical property 88, 172
Category 72, 92, 102

— of concepts 235
1 61
2 62
3 62
ω-category 288
Abelian — 84, 86, 93, 98
Abstract — 166, 177
Additive — 96
Algebraic — 195
As a space 105
As criterion of identity 167
As generalization of monoids 48

303



304 Index

As generalization of partial orders 48
Bicategory 83, 84
Boolean — 241
Cartesian — 241
— of (set-)models 242
— of étales bundles 162
— of functors 61
— of presheaves 163
— of sheaves 163
Coherent — 241
Concrete — 177
Discrete — 205
Dual — 84, 93
Eilenberg and Mac Lane’s definition 45
Equivalent — 94, 161
Finite — 87
Grothendieck’s definition 93
Heyting — 241
Higher-dimensional — 288
Large — 53, 177
Left-Exact see Category, Cartesian
Locally small — 180
Mac Lane’s definition 83
Product — 50
Representation of a — in Set 49
Simplicial — 128
Sketchable — 230
Small — 53, 177
U-category 178
U-small — 178

Category description theorem 207
Category of categories 51

Axiomatization of the — 59, 201
Category theory 41, 92, 112, 147, 175, 185,

212, 287
As generalization of Erlangen Program

43, 59
Foundations of — 52, 53, 63, 101, 176
Set-theoretical foundations of — 177

Cayley’s representation theorem 48
Generalization to categories 48, 49

Cayley, A. 15
CDT see Category description theorem
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