
Graduate Texts in Mathematics

Michele Conforti
Gérard Cornuéjols
Giacomo Zambelli

Integer
Programming

Graduate Texts in Mathematics 271

Graduate Texts in Mathematics

Series Editors:

Sheldon Axler
San Francisco State University, San Francisco, CA, USA

Kenneth Ribet
University of California, Berkeley, CA, USA

Advisory Board:

Colin Adams, Williams College, Williamstown, MA, USA
Alejandro Adem, University of British Columbia, Vancouver, BC, Canada
Ruth Charney, Brandeis University, Waltham, MA, USA
Irene M. Gamba, The University of Texas at Austin, Austin, TX, USA
Roger E. Howe, Yale University, New Haven, CT, USA
David Jerison, Massachusetts Institute of Technology, Cambridge, MA, USA
Jeffrey C. Lagarias, University of Michigan, Ann Arbor, MI, USA
Jill Pipher, Brown University, Providence, RI, USA
Fadil Santosa, University of Minnesota, Minneapolis, MN, USA
Amie Wilkinson, University of Chicago, Chicago, IL, USA

Graduate Texts in Mathematics bridge the gap between passive study and creative un-
derstanding, offering graduate-level introductions to advanced topics in mathematics. The
volumes are carefully written as teaching aids and highlight characteristic features of the
theory. Although these books are frequently used as textbooks in graduate courses, they
are also suitable for individual study.

More information about this series at http://www.springer.com/series/136

Michele Conforti • Gérard Cornuéjols
Giacomo Zambelli

Integer Programming

123

Michele Conforti
Department of Mathematics
University of Padova
Padova, Italy

Giacomo Zambelli
Department of Management
London School of Economics

and Political Science
London, UK

Gérard Cornuéjols
Tepper School of Business
Carnegie Mellon University
Pittsburgh, PA, USA

ISSN 0072-5285 ISSN 2197-5612 (electronic)
ISBN 978-3-319-11007-3 ISBN 978-3-319-11008-0 (eBook)
DOI 10.1007/978-3-319-11008-0
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014952029

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the ma-
terial is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter devel-
oped. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or
material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive
use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the
provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions
that may be made. The publisher makes no warranty, express or implied, with respect to the material contained
herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Integer programming is a thriving area of optimization, which is applied
nowadays to a multitude of human endeavors, thanks to high quality soft-
ware. It was developed over several decades and is still evolving rapidly.

The goal of this book is to present the mathematical foundations of inte-
ger programming, with emphasis on the techniques that are most successful
in current software implementations: convexification and enumeration.

This textbook is intended for a graduate course in integer programming
in M.S. or Ph.D. programs in applied mathematics, operations research,
industrial engineering, or computer science.

To better understand the excitement that is generated today by this area
of mathematics, it is helpful to provide a historical perspective.

Babylonian tablets show that mathematicians were already solving sys-
tems of linear equations over 3,000 years ago. The eighth book of the Chinese
Nine Books of Arithmetic, written over 2,000 years ago, describes what is
now known as the Gaussian elimination method. In 1809, Gauss [160] used
this method in his work, stating that it was a “standard technique.” The
method was subsequently named after him.

A major breakthrough occurred when mathematicians started analyzing
systems of linear inequalities. This is a fertile ground for beautiful theo-
ries. In 1826 Fourier [145] gave an algorithm for solving such systems by
eliminating variables one at a time. Other important contributions are due
to Farkas [135] and Minkowski [279]. Systems of linear inequalities define
polyhedra and it is natural to optimize a linear function over them. This is
the topic of linear programming, arguably one of the greatest successes of
computational mathematics in the twentieth century. The simplex method,
developed by Dantzig [102] in 1951, is currently used to solve large-scale
problems in all sorts of application areas. It is often desirable to find inte-
ger solutions to linear programs. This is the topic of this book. The first
algorithm for solving pure integer linear programs was discovered in 1958
by Gomory [175].

v

vi PREFACE

When considering algorithmic questions, a fundamental issue is the in-
crease in computing time when the size of the problem instance increases.
In the 1960s Edmonds [123] was one of the pioneers in stressing the impor-
tance of polynomial-time algorithms. These are algorithms whose computing
time is bounded by a polynomial function of the instance size. In particular
Edmonds [125] pointed out that the Gaussian elimination method can be
turned into a polynomial-time algorithm by being a bit careful with the in-
termediate numbers that are generated. The existence of a polynomial-time
algorithm for linear programming remained a challenge for many years. This
question was resolved positively by Khachiyan [235] in 1979, and later by
Karmarkar [229] using a totally different algorithm. Both algorithms were
(and still are) very influential, each in its own way. In integer program-
ming, Lenstra [256] found a polynomial-time algorithm when the number of
variables is fixed.

Although integer programming is NP-hard in general, the polyhedral ap-
proach has proven successful in practice. It can be traced back to the work
of Dantzig, Fulkerson, and Johnson [103] in 1954. Research is currently very
active in this area. Beautiful mathematical results related to the polyhedral
approach pervade the area of integer programming. This book presents sev-
eral of these results. Also very promising are nonpolyhedral approximations
that can be computed in polynomial-time, such as semidefinite relaxations,
see Lovász and Schrijver [264], and Goemans and Williamson [173].

We are grateful to the colleagues and students who read earlier drafts
of this book and have helped us improve it. In particular many thanks to
Lawrence Wolsey for carefully checking the whole manuscript. Many thanks
also to Marco Di Summa, Kanstantsin Pashkovich, Teresa Provesan, Ser-
can Yildiz, Monique Laurent, Sebastian Pokutta, Dan Bienstock, François
Margot, Giacomo Nannicini, Juan Pablo Viema, Babis Tsourakakis, Thiago
Serra, Yang Jiao, and Tarek Elgindy for their excellent suggestions.

Thank you to Julie Zavon for the artwork at the end of most chapters.
This work was supported in part by NSF grant CMMI1263239 and ONR

grant N000141210032.

Padova, Italy Michele Conforti
Pittsburgh, PA, USA Gérard Cornuéjols
London, UK Giacomo Zambelli

Contents

1 Getting Started 1
1.1 Integer Programming . 1
1.2 Methods for Solving Integer Programs 5

1.2.1 The Branch-and-Bound Method 6
1.2.2 The Cutting Plane Method 11
1.2.3 The Branch-and-Cut Method 15

1.3 Complexity . 16
1.3.1 Problems, Instances, Encoding Size 17
1.3.2 Polynomial Algorithm 18
1.3.3 Complexity Class NP 19

1.4 Convex Hulls and Perfect Formulations 20
1.4.1 Example: A Two-Dimensional Mixed Integer Set . . . 22
1.4.2 Example: A Two-Dimensional Pure Integer Set 24

1.5 Connections to Number Theory 25
1.5.1 The Greatest Common Divisor 26
1.5.2 Integral Solutions to Systems of Linear Equations . . 29

1.6 Further Readings . 36
1.7 Exercises . 38

2 Integer Programming Models 45
2.1 The Knapsack Problem . 45
2.2 Comparing Formulations . 46
2.3 Cutting Stock: Formulations with Many Variables 48
2.4 Packing, Covering, Partitioning 51

2.4.1 Set Packing and Stable Sets 51
2.4.2 Strengthening Set Packing Formulations 52
2.4.3 Set Covering and Transversals 53
2.4.4 Set Covering on Graphs: Many Constraints 55

vii

viii CONTENTS

2.4.5 Set Covering with Many Variables: Crew Scheduling . 57

2.4.6 Covering Steiner Triples 58

2.5 Generalized Set Covering: The Satisfiability Problem 58

2.6 The Sudoku Game . 60

2.7 The Traveling Salesman Problem 61

2.8 The Generalized Assignment Problem 65

2.9 The Mixing Set . 66

2.10 Modeling Fixed Charges . 66

2.10.1 Facility Location . 67

2.10.2 Network Design . 69

2.11 Modeling Disjunctions . 70

2.12 The Quadratic Assignment Problem
and Fortet’s Linearization . 72

2.13 Further Readings . 73

2.14 Exercises . 74

3 Linear Inequalities and Polyhedra 85

3.1 Fourier Elimination . 85

3.2 Farkas’ Lemma . 88

3.3 Linear Programming . 89

3.4 Affine, Convex, and Conic Combinations 91

3.4.1 Linear Combinations, Linear Spaces 91

3.4.2 Affine Combinations, Affine Spaces 92

3.4.3 Convex Combinations, Convex Sets 92

3.4.4 Conic Combinations, Convex Cones 93

3.5 Polyhedra and the Theorem of Minkowski–Weyl 94

3.5.1 Minkowski–Weyl Theorem for Polyhedral Cones . . . 94

3.5.2 Minkowski–Weyl Theorem for Polyhedra 95

3.6 Lineality Space and Recession Cone 97

3.7 Implicit Equalities, Affine Hull, and Dimension 98

3.8 Faces . 101

3.9 Minimal Representation and Facets 104

3.10 Minimal Faces . 108

3.11 Edges and Extreme Rays . 109

3.12 Decomposition Theorem for Polyhedra 111

3.13 Encoding Size of Vertices, Extreme Rays, and Facets 112

3.14 Carathéodory’s Theorem . 113

3.15 Projections . 116

3.16 Polarity . 119

CONTENTS ix

3.17 Further Readings . 120
3.18 Exercises . 124

4 Perfect Formulations 129
4.1 Properties of Integral Polyhedra 130
4.2 Total Unimodularity . 131
4.3 Networks . 134

4.3.1 Circulations . 135
4.3.2 Shortest Paths . 137
4.3.3 Maximum Flow and Minimum Cut 139

4.4 Matchings in Graphs . 145
4.4.1 Augmenting Paths . 146
4.4.2 Cardinality Bipartite Matchings 147
4.4.3 Minimum Weight Perfect Matchings

in Bipartite Graphs 149
4.4.4 The Matching Polytope 150

4.5 Spanning Trees . 153
4.6 Total Dual Integrality . 155
4.7 Submodular Polyhedra . 157
4.8 The Fundamental Theorem

of Integer Programming . 159
4.8.1 An Example: The Mixing Set 161
4.8.2 Mixed Integer Linear Programming is in NP 163
4.8.3 Polynomial Encoding of the Facets of the Integer Hull 165

4.9 Union of Polyhedra . 166
4.9.1 Example: Modeling Disjunctions 169
4.9.2 Example: All the Even Subsets of a Set 170
4.9.3 Mixed Integer Linear Representability 171

4.10 The Size of a Smallest Perfect Formulation 174
4.10.1 Rectangle Covering Bound 177
4.10.2 An Exponential Lower-Bound for the Cut Polytope . . 179
4.10.3 An Exponential Lower-Bound for the

Matching Polytope . 181
4.11 Further Readings . 182
4.12 Exercises . 187

5 Split and Gomory Inequalities 195
5.1 Split Inequalities . 195

5.1.1 Inequality Description of the Split Closure 199
5.1.2 Polyhedrality of the Split Closure 202
5.1.3 Split Rank . 203

x CONTENTS

5.1.4 Gomory’s Mixed Integer Inequalities 205

5.1.5 Mixed Integer Rounding Inequalities 206

5.2 Chvátal Inequalities . 207

5.2.1 The Chvátal Closure of a Pure Integer Linear Set . . . 208

5.2.2 Chvátal Rank . 209

5.2.3 Chvátal Inequalities for Other Forms
of the Linear System 211

5.2.4 Gomory’s Fractional Cuts 212

5.2.5 Gomory’s Lexicographic Method for Pure
Integer Programs . 213

5.3 Gomory’s Mixed Integer Cuts 216

5.4 Lift-and-Project . 222

5.4.1 Lift-and-Project Rank for Mixed 0,1
Linear Programs . 223

5.4.2 A Finite Cutting Plane Algorithm for Mixed 0, 1
Linear Programming 225

5.5 Further Readings . 227

5.6 Exercises . 230

6 Intersection Cuts and Corner Polyhedra 235

6.1 Corner Polyhedron . 235

6.2 Intersection Cuts . 240

6.2.1 The Gauge Function 248

6.2.2 Maximal Lattice-Free Convex Sets 249

6.3 Infinite Relaxations . 253

6.3.1 Pure Integer Infinite Relaxation 256

6.3.2 Continuous Infinite Relaxation 264

6.3.3 The Mixed Integer Infinite Relaxation 268

6.3.4 Trivial and Unique Liftings 270

6.4 Further Readings . 273

6.5 Exercises . 275

7 Valid Inequalities for Structured Integer Programs 281

7.1 Cover Inequalities for the 0,1 Knapsack Problem 282

7.2 Lifting . 283

7.2.1 Lifting Minimal Cover Inequalities 285

7.2.2 Lifting Functions, Superadditivity, and Sequence
Independent Lifting 287

7.2.3 Sequence Independent Lifting for Minimal
Cover Inequalities . 289

CONTENTS xi

7.3 Flow Cover Inequalities . 291
7.4 Faces of the Symmetric Traveling Salesman Polytope 299

7.4.1 Separation of Subtour Elimination Constraints 302
7.4.2 Comb Inequalities . 303
7.4.3 Local Cuts . 305

7.5 Equivalence Between Optimization
and Separation . 307

7.6 Further Readings . 311
7.7 Exercises . 315

8 Reformulations and Relaxations 321
8.1 Lagrangian Relaxation . 321

8.1.1 Examples . 324
8.1.2 Subgradient Algorithm 326

8.2 Dantzig–Wolfe Reformulation 330
8.2.1 Problems with Block Diagonal Structure 332
8.2.2 Column Generation 334
8.2.3 Branch-and-Price . 337

8.3 Benders Decomposition . 338
8.4 Further Readings . 341
8.5 Exercises . 344

9 Enumeration 351
9.1 Integer Programming in Fixed Dimension 351

9.1.1 Basis Reduction . 352
9.1.2 The Flatness Theorem and Rounding Polytopes . . . 358
9.1.3 Lenstra’s Algorithm 362

9.2 Implementing Branch-and-Cut 364
9.3 Dealing with Symmetries . 373
9.4 Further Readings . 380
9.5 Exercises . 383

10 Semidefinite Bounds 389
10.1 Semidefinite Relaxations . 389
10.2 Two Applications in Combinatorial Optimization 391

10.2.1 The Max-Cut Problem 391
10.2.2 The Stable Set Problem 393

10.3 The Lovász–Schrijver Relaxation 394
10.3.1 Semidefinite Versus Linear Relaxations 396

xii CONTENTS

10.3.2 Connection with Lift-and-Project 397
10.3.3 Iterating the Lovász–Schrijver Procedure 399

10.4 The Sherali–Adams and Lasserre Hierarchies 400
10.4.1 The Sherali–Adams Hierarchy 400
10.4.2 The Lasserre Hierarchy 402

10.5 Further Readings . 408
10.6 Exercises . 411

Bibliography 415

Index 447

The authors discussing the outline of the book

Chapter 1

Getting Started

What are integer programs? We introduce this class of problems and present
two algorithmic ideas for solving them, the branch-and-bound and cutting
plane methods. Both capitalize heavily on the fact that linear programming
is a well-solved class of problems. Many practical situations can be modeled
as integer programs, as will be shown in Chap. 2. But in Chap. 1 we reflect
on the consequences of the algorithmic ideas just mentioned. Algorithms
raise the question of computational complexity. Which problems can be
solved in “polynomial time”? The cutting plane approach also leads natu-
rally to the notion of “convex hull” and the so-called polyhedral approach.
We illustrate these notions in the case of 2-variable integer programs. Com-
plementary to the connection with linear programming, there is also an
interesting connection between integer programming and number theory. In
particular, we show how to find an integer solution to a system of linear
equations. Contrary to general integer linear programming problems which
involve inequalities, this problem can be solved in polynomial time.

1.1 Integer Programming

A pure integer linear program is a problem of the form

max cx
subject to Ax ≤ b

x ≥ 0 integral
(1.1)

© Springer International Publishing Switzerland 2014
M. Conforti et al., Integer Programming, Graduate Texts
in Mathematics 271, DOI 10.1007/978-3-319-11008-0 1

1

2 CHAPTER 1. GETTING STARTED

where the data, usually rational, are the row vector c = (c1, . . . , cn), the

m × n matrix A = (aij), and the column vector b =

⎛
⎜⎝

b1
...
bm

⎞
⎟⎠. The column

vector x =

⎛
⎜⎝
x1
...
xn

⎞
⎟⎠ contains the variables to be optimized. An n-vector x is

said to be integral when x ∈ Z
n. The set S := {x ∈ Z

n
+ : Ax ≤ b} of feasible

solutions to (1.1) is called a pure integer linear set.
In this book we also consider mixed integer linear programs. These are

problems of the form

max cx+ hy
subject to Ax+Gy ≤ b

x ≥ 0 integral
y ≥ 0,

(1.2)

where the data are row vectors c = (c1, . . . , cn), h = (h1, . . . , hp), an m× n

matrix A = (aij), anm×pmatrix G = (gij) and a column vector b =

⎛
⎜⎝

b1
...
bm

⎞
⎟⎠.

We will usually assume that all entries of c, h, A, G, b are rational. The

column vectors x =

⎛
⎜⎝
x1
...
xn

⎞
⎟⎠ and y =

⎛
⎜⎝
y1
...
yp

⎞
⎟⎠ contain the variables to be

optimized. The variables xj are constrained to be nonnegative integers while
the variables yj are allowed to take any nonnegative real value. We will
always assume that there is at least one integer variable, i.e., n ≥ 1. The
pure integer linear program (1.1) is the special case of the mixed integer
linear program (1.2) where p = 0. For convenience, we refer to mixed
integer linear programs simply as integer programs in this book.

The set of feasible solutions to (1.2)

S := {(x, y) ∈ Z
n
+ ×R

p
+ : Ax+Gy ≤ b} (1.3)

is called a mixed integer linear set (Fig. 1.1).
A mixed 0, 1 linear set is a set of the form (1.3) in which the integer

variables are restricted to take the value 0 or 1:

S := {(x, y) ∈ {0, 1}n × R
p
+ : Ax+Gy ≤ b}.

1.1. INTEGER PROGRAMMING 3

y
S

1 2 30 4 5 x

S

x2

x1

1

2

3

4

0 1 2 3 4 5

Figure 1.1: A mixed integer linear set and a pure integer linear set

A mixed 0,1 linear program is an integer program whose set of feasible
solutions is a mixed 0, 1 linear set.

Solving integer programs is a difficult task in general. One approach
that is commonly used in computational mathematics is to find a relaxation
that is easier to solve numerically and gives a good approximation. In this
book we focus mostly on linear programming relaxations.

We will use the symbols “⊆” to denote inclusion and “⊂” to denote
strict inclusion. Given a mixed integer set S ⊆ Z

n × R
p, a linear relax-

ation of S is a set of the form P ′ := {(x, y) ∈ R
n × R

p : A′x + G′y ≤ b′}
that contains S. A linear programming relaxation of (1.2) is a linear pro-
gram max{cx + hy : (x, y) ∈ P ′}. Why linear programming relaxations?
Mainly for two reasons. First, solving linear programs is one of the greatest
successes in computational mathematics. There are algorithms that are eff-
icient in theory and practice and therefore one can solve these relaxations
in a reasonable amount of time. Second, one can generate a sequence of
linear relaxations of S that provide increasingly tighter approximations of
the set S.

For the mixed integer linear set S defined in (1.3), there is a natural
linear relaxation, namely the relaxation

P0 := {(x, y) ∈ R
n
+ × R

p
+ : Ax+Gy ≤ b}

obtained from S by discarding the integrality requirement on the vector x.
The natural linear programming relaxation of (1.2) is the linear program
max{cx+ hy : (x, y) ∈ P0}.

4 CHAPTER 1. GETTING STARTED

For example, the 2-variable pure integer program

max 5.5x1+2.1x2
−x1+ x2 ≤ 2
8x1+ 2x2 ≤ 17
x1, x2 ≥ 0
x1, x2 integer

0

1

2

1 2

3

x1

x2

Figure 1.2: A 2-variable integer program

has eight feasible solutions represented by the dots in Fig. 1.2. One can
verify that the optimal solution of this integer program is x1 = 1, x2 = 3
with objective value 11.8. The solution of the natural linear programming
relaxation is x1 = 1.3, x2 = 3.3, with objective value 14.08.

A pure mathematician might dismiss integer programming as trivial.
For example, how difficult can it be to solve a 0, 1 linear program max{cx :
x ∈ S} when S := {x ∈ {0, 1}n : Ax ≤ b}? After all, one can check
whether S is empty by enumerating all vectors x ∈ {0, 1}n and, if S �= ∅,
pick a vector x ∈ S that results in the largest value of cx, again by complete
enumeration. Yes, this is possible in theory, but it is not practical when
n is large. The key algorithmic question is: Can an optimal solution be
found more efficiently than by total enumeration? As an example, consider
the following assignment problem. There are n jobs to be performed by n
workers. We know the cost cij of assigning job i to worker j for each pair i, j.
What is the cheapest way of assigning one job to each of the n workers (the
same job cannot be assigned to two different workers)? The number of
possible assignments is n!, the number of permutations of n elements, since
the first job can be assigned to any of the n workers, the second job to any

1.2. METHODS FOR SOLVING INTEGER PROGRAMS 5

of the remaining n − 1 workers and so on. However, total enumeration is
only practical for small values of n as should be evident from the following
table.

n n!

10 3.6× 106

100 9.3 × 10157

1000 4× 102567

Already for n = 100, the value of n! exceeds the number of atoms in the
universe, which is approximately 1080 according to Wolfram (http://www.
wolframalpha.com).

A 0, 1 programming formulation of the assignment problem is as follows.
Let xij = 1 if job i is assigned to worker j, and 0 otherwise. The integer
program is

min

n∑
i=1

n∑
j=1

cijxij

subject to

n∑
i=1

xij = 1 for j = 1, . . . , n

n∑
j=1

xij = 1 for i = 1, . . . , n

x ∈ {0, 1}n×n

(1.4)

where the objective is to minimize the overall cost of the assignments, the
first constraint guarantees that each worker is assigned exactly one job,
and the second constraint guarantees that each job is assigned only once.
Assignment problems with n = 1000 can be solved in seconds on a computer,
using the Hungarian method [245, 281] (This algorithm will be presented in
Sect. 4.4.3). We will also show in Chap. 4 that solving the natural linear
programming relaxation of (1.4) is enough to find an optimal solution of the
assignment problem. This is much more efficient than total enumeration!

1.2 Methods for Solving Integer Programs

In this section we introduce two algorithmic principles that have proven suc-
cessful for solving integer programs. These two approaches, the branch-and-
bound and the cutting plane methods, are based on simple ideas but they
are at the heart of the state-of-the-art software for integer programming.
Some mathematical sophistication is necessary to make them successful.

6 CHAPTER 1. GETTING STARTED

The choice of topics in the remainder of this book is motivated by the desire
to establish sound mathematical foundations for these deceptively simple
algorithmic ideas.

The integer programming formulation (1.2) will be denoted by MILP
here for easy reference.

MILP : max{cx+ hy : (x, y) ∈ S}

where S := {(x, y) ∈ Z
n
+ × R

p
+ : Ax + Gy ≤ b}. For ease of exposition,

we assume in this section that MILP admits a finite optimum. Let (x∗, y∗)
denote an optimal solution and z∗ the optimal value of MILP. These are the
unknowns that we are looking for.

Let (x0, y0) and z0 be, respectively, an optimal solution and the optimal
value of the natural linear programming relaxation

max{cx+ hy : (x, y) ∈ P0} (1.5)

where P0 is the natural linear relaxation of S (we will show later in the
book that the existence of an optimal rational solution (x0, y0) to (1.5)
follows from our assumption on the existence of (x∗, y∗) and the rationality
of the data; here we just assume it). We will also assume that we have a
linear programming solver at our disposal, thus (x0, y0) and z0 are available
to us. Since S ⊆ P0, it follows that z

∗ ≤ z0. Furthermore, if x0 is an integral
vector, then (x0, y0) ∈ S and therefore z∗ = z0; in this case MILP is solved.
We describe two strategies that deal with the case in which at least one
component of the vector x0 is fractional.

1.2.1 The Branch-and-Bound Method

We give a formal description of the branch-and-bound algorithm at the end
of this section. We first present the method informally.

Choose an index j, where 1 ≤ j ≤ n, such that x0j is fractional. For

simplicity, let f := x0j denote this fractional value and define the sets

S1 := S ∩ {(x, y) : xj ≤
f�}, S2 := S ∩ {(x, y) : xj ≥ �f}

where
f� denotes the largest integer k ≤ f and �f denotes the smallest
integer l ≥ f . Since xj is an integer for every (x, y) ∈ S, it follows that
(S1, S2) is a partition of S. Consider now the two following integer programs
based on this partition

MILP1 : max{cx+hy : (x, y) ∈ S1}, MILP2 : max{cx+hy : (x, y) ∈ S2}.

1.2. METHODS FOR SOLVING INTEGER PROGRAMS 7

The optimal solution of MILP is the best among the optimal solutions of
MILP1 and MILP2, therefore the solution of the original problem is reduced
to solving the two new subproblems.

Denote by P1, P2 the natural linear relaxations of S1, S2, that is

P1 := P0 ∩ {(x, y) : xj ≤
f�}, P2 := P0 ∩ {(x, y) : xj ≥ �f},

and consider the two corresponding natural linear programming relaxations

LP1 : max{cx+ hy : (x, y) ∈ P1}, LP2 : max{cx+ hy : (x, y) ∈ P2}.

(i) If one of the linear programs LPi is infeasible, i.e., Pi = ∅, then we
also have Si = ∅ since Si ⊆ Pi. Thus MILPi is infeasible and does not
need to be considered any further. We say that this problem is pruned
by infeasibility.

(ii) Let (xi, yi) be an optimal solution of LPi and zi its value, i = 1, 2.

(iia) If xi is an integral vector, then (xi, yi) is an optimal solution of
MILPi and a feasible solution of MILP. Problem MILPi is solved,
and we say that it is pruned by integrality. Since Si ⊆ S, it follows
that zi ≤ z∗, that is, zi is a lower bound on the value of MILP.

(iib) If xi is not an integral vector and zi is smaller than or equal to the
best known lower bound on the value of MILP, then Si cannot
contain a better solution and the problem is pruned by bound.

(iic) If xi is not an integral vector and zi is greater than the best
known lower bound, then Si may still contain an optimal solution
to MILP. Let xij′ be a fractional component of vector xi. Let

f ′ := xij′, define the sets Si1 := Si ∩ {(x, y) : xj′ ≤
f ′�}, Si2 :=
Si ∩ {(x, y) : xj′ ≥ �f ′} and repeat the above process.

To illustrate the branch-and-bound method, consider the integer pro-
gram depicted in Fig. 1.2:

max 5.5x1+2.1x2
−x1+ x2 ≤ 2
8x1+ 2x2 ≤ 17
x1, x2 ≥ 0
x1, x2 integer.

8 CHAPTER 1. GETTING STARTED

The solution of the natural linear programming relaxation is x1 = 1.3,
x2 = 3.3 with objective value 14.08. Thus 14.08 is an upper bound on the
optimal solution of the problem. Branching on variable x1, we create two
integer programs. The linear programming relaxation of the one with the
additional constraint x1 ≤ 1 has solution x1 = 1, x2 = 3 with value 11.8,
and it is therefore pruned by integrality in Case (iia). Thus 11.8 is a lower
bound on the value of an optimal solution of the integer program. The linear
programming relaxation of the subproblem with the additional constraint
x1 ≥ 2 has solution x1 = 2, x2 = 0.5 and objective value 12.05. The
above steps can be represented graphically in the enumeration tree shown
in Fig. 1.3.

Prune by integrality

x1 = 1.3, x2 = 3.3
z = 14.08

x1 = 1, x2 = 3
z = 11.8

x1 ≤ 1 x1 ≥ 2

x1 = 2, x2 = 0.5
z = 12.05

Figure 1.3: Branching on variable x1

Note that the value of x2 is fractional, so this solution is not feasible to
the integer program. Since its objective value is higher than 11.8 (the value
of the best integer solution found so far), we need to continue the search
as described in Case (iic). Therefore we branch on variable x2. We create
two integer programs, one with the additional constraint x2 ≥ 1, the other
with x2 ≤ 0. The linear programming relaxation of the first of these linear
programs is infeasible, therefore this problem is pruned by infeasibility in
Case (i). The second integer program is

max 5.5x1+2.1x2
−x1+ x2 ≤ 2
8x1+ 2x2 ≤ 17
x1 ≥ 2

x2 ≤ 0
x1, x2 ≥ 0
x1, x2 integer.

1.2. METHODS FOR SOLVING INTEGER PROGRAMS 9

The optimal solution of its linear relaxation is x1 = 2.125, x2 = 0, with
objective value 11.6875. Because this value is smaller than the best lower
bound 11.8, the corresponding node of the enumeration tree is pruned by
bounds in Case (iib) and the enumeration is complete. The optimal solution
is x1 = 1, x2 = 3 with value 11.8. The complete enumeration tree is shown
in Fig. 1.4.

Infeasible

Prune by integrality

Prune by infeasibilityPrune by bound

x1 = 1.3, x2 = 3.3
z = 14.08

x1 = 1, x2 = 3
z = 11.8

x1 ≤ 1 x1 ≥ 2

x2 ≤ 0

x1 = 2.125, x2 = 0
z = 11.6875

x1 = 2, x2 = 0.5
z = 12.05

x2 ≥ 1

Figure 1.4: Example of a branch-and-bound tree

The procedure that we just described searches for an optimal solution
by branching, i.e., partitioning the set S into subsets, and it attempts to
prune the enumeration by bounding the objective value of the subproblems
generated by this partition. A branch-and-bound algorithm is based on
these two principles. In the procedure described above, the branching step
creates two subproblems obtained by restricting the range of a variable.
This branching strategy is called variable branching. Bounding the objective
value of a subproblem is done by solving its natural linear programming
relaxation. This bounding strategy is called linear programming bounding.
Variable branching and linear programming bounding are widely used in
state-of-the-art integer programming solvers but they are not the only way
to implement a branch-and-bound algorithm. We discuss other strategies
in Chaps. 8 and 9. Next we formalize the steps of a branch-and-bound
algorithm based on linear programming bounding.

The branch-and-bound algorithm keeps a list of linear programming
problems obtained by relaxing the integrality requirements on the variables

10 CHAPTER 1. GETTING STARTED

xj, j = 1, . . . , n, and imposing linear constraints, such as bounds on the
variables xj ≤ uj or xj ≥ lj . Each such linear program corresponds to a
node of the enumeration tree. For a node Ni, let zi denote the value of the
corresponding linear program LPi. Node N0 is associated with the linear
programming relaxation (1.5). Let L denote the list of nodes that must still
be solved (i.e., that have not been pruned nor branched on). Let z denote a
lower bound on the optimum value z∗ (initially, the bound z can be derived
from a heuristic solution of MILP, or it can be set to −∞).

Branch-and-Bound Algorithm

0. Initialize

L := {N0}, z := −∞, (x∗, y∗) := ∅.

1. Terminate?

If L = ∅, the solution (x∗, y∗) is optimal.

2. Select node

Choose a node Ni in L and delete it from L.

3. Bound

Solve LPi. If it is infeasible, go to Step 1. Else, let (xi, yi) be an
optimal solution of LPi and zi its objective value.

4. Prune

If zi ≤ z, go to Step 1.

If (xi, yi) is feasible to MILP, set z := zi, (x
∗, y∗) := (xi, yi) and go to

Step 1.

Otherwise:

5. Branch

From LPi, construct k ≥ 2 linear programs LPi1 , . . . , LPik with smaller
feasible regions whose union does not contain (xi, yi), but contains all
the solutions of LPi with x ∈ Z

n. Add the corresponding new nodes
Ni1 , . . . , Nik to L and go to Step 1.

Various choices are left open in this algorithm, such as the node selection
criterion in Step 2 and the branching strategy in Step 5. We will discuss
options for these choices in Chap. 9. Even more important to the success

1.2. METHODS FOR SOLVING INTEGER PROGRAMS 11

of branch-and-bound algorithms is the ability to prune the tree (Step 4).
This will occur when z is a tight lower bound on z∗ and when zi is a tight
upper bound. Good lower bounds z are obtained using heuristics. Heuristics
can be designed either “ad hoc” for a specific application, or as part of
the branch-and-bound algorithm (by choosing branching and node selection
strategies that are more likely to produce good feasible solutions (xi, yi) to
MILP in Step 4). We discuss such heuristics in Chap. 9 (Sect. 9.2). In order
to get good upper bounds zi, it is crucial to formulate MILP in such a way
that the value of its natural linear programming relaxation z0 is as close
as possible to z∗. Formulations will be discussed extensively in Chap. 2.
To summarize, four issues need attention when solving integer programs by
branch-and-bound algorithms.

• Formulation (so that the gap z0 − z∗ is small),

• Heuristics (to find a good lower bound z),

• Branching,

• Node selection.

The formulation issue is a central one in integer programming and it will
be discussed extensively in this book (Chap. 2 but also Chaps. 3–7). One
way to tighten the formulation is by adding cutting planes. We introduce
this idea in the next section.

1.2.2 The Cutting Plane Method

Consider the integer program

MILP : max{cx+ hy : (x, y) ∈ S}

where, as earlier, S := {(x, y) ∈ Z
n
+ × R

p
+ : Ax + Gy ≤ b}. Let P0 be the

natural linear relaxation of S. Solve the linear program

max{cx+ hy : (x, y) ∈ P0}. (1.6)

Let z0 be its optimal value and (x0, y0) an optimal solution. We may assume
that (x0, y0) is a basic optimal solution of (1.6) (this notion will be defined
precisely in Chap. 3). Optimal basic solutions can be computed by standard
linear programming algorithms.

12 CHAPTER 1. GETTING STARTED

We present now a second strategy for dealing with the case when the
solution (x0, y0) is not in S. The idea is to find an inequality αx+ γy ≤ β
that is satisfied by every point in S and such that αx0 + γy0 > β. The
existence of such an inequality is guaranteed when (x0, y0) is a basic solution
of (1.6).

An inequality αu ≤ β is valid for a set K ⊆ R
d if it is satisfied by every

point ū ∈ K. A valid inequality αx + γy ≤ β for S that is violated by
(x0, y0) is a cutting plane separating (x0, y0) from S. Let αx+ γy ≤ β be a
cutting plane and define

P1 := P0 ∩ {(x, y) : αx+ γy ≤ β}.

Since S ⊆ P1 ⊂ P0, the linear programming relaxation of MILP based
on P1 is stronger than the natural linear programming relaxation (1.5), in
the sense that the optimal value of the linear program

max{cx+ hy : (x, y) ∈ P1}

is at least as good an upper-bound on the value z∗ as z0, while the opti-
mal solution (x0, y0) of the natural linear programming relaxation does not
belong to P1. The recursive application of this idea leads to the cutting
plane approach.

Cutting Plane Algorithm

Starting with i = 0, repeat:

Recursive Step. Solve the linear program max{cx+ hy : (x, y) ∈ Pi}.

• If the associated optimal basic solution (xi, yi) belongs to S, stop.

• Otherwise solve the separation problem

Find a cutting plane αx+ γy ≤ β separating (xi, yi) from S.

Set Pi+1 := Pi ∩ {(x, y) : αx+ γy ≤ β} and repeat the recursive step.

The separation problem that needs to be solved in the cutting plane
algorithm is a central issue in integer programming. If the basic solution
(xi, yi) is not in S, there are infinitely many cutting planes separating (xi, yi)
from S. How does one produce effective cuts? Usually, there is a tradeoff
between the running time of a separation procedure and the quality of the
cutting planes it produces. In practice, it may also be preferable to generate

1.2. METHODS FOR SOLVING INTEGER PROGRAMS 13

several cutting planes separating (xi, yi) from S, instead of a single cut as
suggested in the above algorithm, and to add them all to Pi to create problem
Pi+1. We will study several separation procedures in this book (Chaps. 5–7).

For now, we illustrate the cutting plane approach on our two-variable
example:

max 5.5x1+2.1x2
−x1+ x2 ≤ 2
8x1+ 2x2 ≤ 17
x1, x2 ≥ 0
x1, x2 integer.

(1.7)

We first introduce a variable z representing the objective function and
slack variables x3 and x4 to turn the inequality constraints into equalities.
The problem becomes to maximize z subject to

z −5.5x1 −2.1x2 = 0
−x1 +x2 +x3 = 2
8x1 +2x2 +x4 = 17
x1, x2, x3, x4 ≥ 0 integer.

Note that x3 and x4 can be constrained to be integer because the data in
the constraints of (1.7) are all integers.

Solving the linear programming relaxation using standard techniques,
we get the optimal tableau:

z +0.58x3 +0.76x4 = 14.08
x2 +0.8x3 +0.1x4 = 3.3

x1 −0.2x3 +0.1x4 = 1.3
x1, x2, x3, x4 ≥ 0.

The corresponding basic solution is x3 = x4 = 0, x1 = 1.3, x2 = 3.3 with
objective value z = 14.08. Since the values of x1 and x2 are not integer,
this is not a solution of (1.7). We can generate a cut from the constraint
x2+0.8x3+0.1x4 = 3.3 in the above tableau by using the following reasoning.
Since x2 is an integer variable, we have

0.8x3 + 0.1x4 = 0.3 + k where k ∈ Z.

Since the left-hand side is nonnegative for every feasible solution of (1.7),
we must have k ≥ 0, which implies

0.8x3 + 0.1x4 ≥ 0.3 (1.8)

14 CHAPTER 1. GETTING STARTED

This is the famous Gomory fractional cut [175]. Note that it cuts off the
above fractional solution x3 = x4 = 0, x1 = 1.3, x2 = 3.3. More generally, if
nonnegative integer variables x1, . . . , xn satisfy the equation

n∑
j=1

ajxj = a0

where a0 �∈ Z, the Gomory fractional cut is

n∑
j=1

(aj −
aj�)xj ≥ a0 −
a0�. (1.9)

This inequality is satisfied by any x ∈ Z
n
+ satisfying the equation∑n

j=1 ajxj = a0 because
∑n

j=1 ajxj = a0 implies
∑n

j=1(aj −
aj�)xj =
a0 −
a0�+ k for some integer k; furthermore k ≥ 0 since the left-hand side
is nonnegative.

Let us return to our example. Since x3 = 2 + x1 − x2 and x4 = 17 −
8x1−2x2, we can express Gomory’s fractional cut (1.8) in the space (x1, x2).
This yields x2 ≤ 3 (see Cut 1 in Fig. 1.5).

Cut1

Cut2

3

x1

x2

Figure 1.5: The first two cuts in the cutting plane algorithm

Adding this cut to the linear programming relaxation, we get:

max 5.5x1+2.1x2
−x1+ x2 ≤ 2
8x1+ 2x2 ≤ 17

x2 ≤ 3
x1, x2 ≥ 0.

1.2. METHODS FOR SOLVING INTEGER PROGRAMS 15

We introduce a slack variable x5 for the inequality x2 ≤ 3, and observe
as before that x5 can be assumed to be integer. Solving this linear program,
we find the optimal tableau

z +0.6875x4 +0.725x5 = 13.8625
x3 +0.125x4 −1.25x5 = 0.375

x1 +0.125x4 −0.25x5 = 1.375
x2 +x5 = 3

x1, x2, x3, x4, x5 ≥ 0.

The corresponding basic solution in the (x1, x2)-space is x1 = 1.375, x2 = 3
with value z = 13.8625. Since x1 is fractional, we need to generate another
cut. From the row of the tableau x1+0.125x4−0.25x5 = 1.375, we generate
the new fractional cut according to (1.9), namely (0.125 −
0.125�)x4 +
(−0.25 −
−0.25�)x5 ≥ 1.375 −
1.375�, which is 0.125x4 + 0.75x5 ≥ 0.375.
Replacing x4 = 17−8x1−2x2 and x5 = 3−x2 we get (see Cut 2 in Fig. 1.5):

x1 + x2 ≤ 4.

Adding this cut and solving the updated linear program, we find a new
optimal solution x1 = 1.5, x2 = 2.5 with value z = 13.5. This solution
is again fractional. Two more iterations are needed to obtain the optimal
integer solution x1 = 1, x2 = 3 with value z = 11.8. We leave the last two
iterations as an exercise for the reader (Exercise 1.6).

1.2.3 The Branch-and-Cut Method

In the branch-and-bound approach, the tightness of the upper bound is
crucial for pruning the enumeration tree (Step 4). Tighter upper bounds can
be calculated by applying the cutting plane approach to the subproblems.
This leads to the branch-and-cut approach, which is currently the most
successful method for solving integer programs. It is obtained by adding
a cutting-plane step before the branching step in the branch-and-bound
algorithm of Sect. 1.2.1:

Branch-and-Cut Algorithm

0. Initialize

L := {N0}, z := −∞, (x∗, y∗) := ∅.

16 CHAPTER 1. GETTING STARTED

1. Terminate?

If L = ∅, the solution (x∗, y∗) is optimal.

2. Select node

Choose a node Ni in L and delete it from L.

3. Bound

Solve LPi. If it is infeasible, go to Step 1. Else, let (xi, yi) be an
optimal solution of LPi and zi its objective value.

4. Prune

If zi ≤ z, go to Step 1.

If (xi, yi) is feasible to MILP, set z := zi, (x
∗, y∗) := (xi, yi) and go to

Step 1.

Otherwise:

5. Add Cuts?

Decide whether to strengthen the formulation LPi or to branch.

In the first case, strengthen LPi by adding cutting planes and go back
to Step 3.

In the second case, go to Step 6.

6. Branch

From LPi, construct k ≥ 2 linear programs LPi1 , . . . , LPik with smaller
feasible regions whose union does not contain (xi, yi), but contains all
the solutions of LPi with x ∈ Z

n. Add the corresponding new nodes
Ni1 , . . . , Nik to L and go to Step 1.

The decision of whether to add new cuts in Step 5 is made empirically
based on the success of previously added cuts and characteristics of the new
cuts such as their density (the fraction of nonzero coefficients in the cut).
Typically several rounds of cuts are added at the root node N0, while fewer
or no cuts might be generated deeper in the enumeration tree.

1.3 Complexity

When analyzing an algorithm to solve a problem, a key question is the
computing time needed to find a solution.

1.3. COMPLEXITY 17

1.3.1 Problems, Instances, Encoding Size

By problem, we mean a question to be answered for any given set of data. An
example is the linear programming problem: Given positive integers m,n,
an m × n matrix A, m-vector b, and n-vector c, find an n-vector x that
solves

max cx
Ax ≤ b
x ≥ 0.

An instance of a problem is a specific data set. For example,

max 5.5x1 + 2.1x2
−x1 + x2 ≤ 2
8x1 + 2x2 ≤ 17

x1, x2 ≥ 0

is an instance of a linear program. One measures the size of an instance by
the space required to write down the data. We assume that all instances of a
problem are provided in a “standard” way. For example, we may assume that
all integers are written in binary encoding. With this assumption, to encode
an integer n we need one bit to represent the sign and �log2(|n|+1) to write
|n| in base 2. Thus the encoding size of an integer n is 1 + �log2(|n| + 1).
For a rational number p

q where p is an integer and q is a positive integer,
the encoding size is 1 + �log2(|p|+ 1)+ �log2(q +1). The encoding size of
a rational vector or matrix is the sum of the encoding sizes of its entries.

Remark 1.1. Given a rational n-dimensional vector v = (p1q1 , . . . ,
pn
qn
), let

L be its encoding size and D the least common multiple of q1, . . . , qn. Then
Dv is an integral vector whose encoding size is at most nL.

Proof. The absolute value of the ith component of the vector Dv is bounded
above by |pi|q1 · · · qn. The encoding size of this integer number is bounded
above by L.

In this book we will consider systems of linear inequalities and equations
with rational coefficients. Since multiplying any such system by a positive
number does not change the set of solutions, the above remark shows that
we can consider an equivalent system with integer coefficients whose enc-
oding size is polynomially bounded by the size of the original system. By
“polynomially bounded” we mean the following. Function f : S → R+ is
polynomially bounded by g : S → R+ if there exists a polynomial φ : R → R

such that f(s) ≤ φ(g(s)) for every s ∈ S. For example, s2 is polynomially
bounded by s since φ(x) = x2 is a polynomial that satisfies the definition.

18 CHAPTER 1. GETTING STARTED

In Remark 1.1, the encoding size ofDv is at most L2 since L ≥ n. This shows
that the encoding size of Dv is polynomially bounded by the encoding size
of v.

We will also need the following more general definition. Given real valued
functions f , g1, . . . , gt defined on some set S, we say that f is polynomially
bounded by g1, . . . , gt if there exists a polynomial φ : R

t → R such that
f(s) ≤ φ(g1(s), . . . , gt(s)) for every s ∈ S.

Let f : S → R+ and g : S → R+ be two functions, where S is
an unbounded subset of R+. One writes f(x) = O(g(x)) if there exists
a positive real number M and an x0 ∈ S such that f(x) ≤ Mg(x) for
every x > x0. This notion can be extended to several real variables:
f(x1, . . . , xk) = O(g(x1, . . . , xk)) if there exist positive real numbers M and
x0 such that f(x1, . . . , xk) ≤ Mg(x1, . . . , xk) for every x1 > x0, . . . , xk > x0.
For example, considering the set S of all rational vectors v in Remark 1.1,
we can write that the encoding size of Dv is O(nL).

1.3.2 Polynomial Algorithm

An algorithm for solving a problem is a procedure that, given any possible
instance, produces the correct answer in a finite amount of time. For exam-
ple, Dantzig’s simplex method with an anti-cycling rule is an algorithm for
solving the linear programming problem [102]. Karmarkar’s interior point
algorithm is another. An algorithm is said to solve a problem in polynomial
time if its running time, measured as the number of arithmetic operations
carried out by the algorithm (a function f defined on the set S of instances),
is polynomially bounded by the encoding size of the input (a function g
defined on S). Instead of polynomial-time algorithm, we often just say
polynomial algorithm. Karmarkar’s interior point algorithm is a polynomial
algorithm for linear programming but the simplex method is not (Klee and
Minty [240] gave a family of instances where the simplex method with the
largest cost pivoting rule (Dantzig’s rule) takes an exponential number of
steps as a function of the instance size). A problem is said to be in the
complexity class P if there exists a polynomial algorithm to solve it. For
example linear programming is in P since Karmarkar’s algorithm solves it
in polynomial time. Specifically, if L denotes the encoding size of a linear
program with n variables, Karmarkar’s algorithm performs O(n3.5L) arith-
metic operations, where the sizes of numbers during the entire execution is
O(L). The running time was later improved to O(n3L) by Renegar [314].

1.3. COMPLEXITY 19

Another issue in computational complexity is the encoding size of the
output as a function of the encoding size of the input. For example, given
some input A, b, what is the encoding size of a solution to Ax = b?

Proposition 1.2. Let A be a nonsingular n × n rational matrix and b a
rational n-vector. The encoding size of the unique solution of Ax = b is
polynomially bounded by the encoding size of (A, b).

Proof. By Remark 1.1, we may assume that (A, b) has integer entries. Let θ
be the largest absolute value of an entry in (A, b). The absolute value of the
determinant of any square n×n submatrix of (A, b) is at most n!θn (by using
the standard formula for computing determinants as the sum of n! products
of n entries). The encoding size of n!θn is O(n(log n + log(1 + θ))), thus
it is polynomially bounded by n and the encoding size of θ. By Cramer’s
rule, each entry of A−1b is the ratio of two such determinants. Now the
proposition follows by observing that the encoding size of (A, b) is at least
n+ �log2(1 + θ).

1.3.3 Complexity Class NP

A decision problem is a problem whose answer is either “yes” or “no.”
An important complexity class is NP, which stands for “nondeterministic
polynomial-time.” Intuitively, NP is the class of all decision problems for
which the “yes”-answer has a certificate that can be checked in polynomial
time. The complexity class Co-NP is the class of all decision problems for
which the “no”-answer has a certificate that can be checked in polynomial
time, see Exercises 1.10, 1.11 and 1.12.

Recall that a set of the form S := {(x, y) ∈ Z
n
+ × R

p
+ : Ax + Gy ≤ b}

is called a mixed integer linear set. We assume the data to be rational. We
will show in Chap. 4 that the question “given a mixed integer linear set, is
it nonempty?” is in NP. Indeed, we will show that, if S contains a solution,
then it contains one whose encoding size is polynomial in the encoding size
of the input (A,G, b). Given such a solution, one can therefore verify in
polynomial time that it satisfies the constraints. On the other hand, the
question “given a mixed integer linear set, is it empty?” does not have any
obvious certificate that can be checked in polynomial time and, in fact, it is
conjectured that this problem is not in NP.

20 CHAPTER 1. GETTING STARTED

A decision problem Q in NP is said to be NP-complete if all other
problems D in NP are reducible to Q in polynomial time. That is there
exists a polynomial algorithm that, for every instance I of D, produces an
instance of Q whose answer is “yes” if and only if the answer to I is yes.
This implies that, up to a polynomial factor, solving Q requires at least as
much computing time as solving any problem in NP. A fundamental result
of Cook [84] is that the question “given a mixed integer linear set, is it
nonempty?” is NP-complete. Analogously, a decision problem Q in co-NP
is said to be co-NP-complete if all other problems D in co-NP are reducible
to Q in polynomial time.

A problem Q (not necessarily in NP or a decision problem) is said to
be NP-hard if all problems D in NP are reducible to Q in polynomial time.
That is, there exist two polynomial algorithms such that the first produces
an instance J(I) of Q for any given instance I of D, and the second produces
the correct answer for I given a solution for J(I). In particular, integer
programming is NP-hard.

In this book, we will focus on integer programs with linear objective
and constraints. Nonlinear constraints can make the problem much harder.
In fact, Jeroslow [210] showed that integer programming with quadratic
constraints is undecidable, i.e., there cannot exist an algorithm to solve this
problem. In particular, if no solution is found after a very large amount of
time, it may still not be possible to conclude that none exists.

1.4 Convex Hulls and Perfect Formulations

A set S ⊆ R
n is convex if, for any two distinct points in S, the line segment

joining them is also in S, i.e., if x, y ∈ S then λx + (1 − λ)y ∈ S for all
0 ≤ λ ≤ 1.

It follows from the definition that the intersection of an arbitrary family
of convex sets is a convex set. In particular, given a set S ⊆ R

n, the
intersection of all convex sets containing S is itself a convex set containing
S, and it is therefore the inclusionwise minimal convex set containing S. The
inclusionwise minimal convex set containing S is the convex hull of S ⊆ R

n,
and it is denoted by conv(S). Figure 1.6 illustrates the notion of convex
hull.

1.4. CONVEX HULLS AND PERFECT FORMULATIONS 21

S conv(S)

Figure 1.6: Convex hull of a set S of five points in R
2

Next we give a characterization of conv(S) that will be useful in the
remainder. A point x ∈ R

n is a convex combination of points in S if there
exists a finite set of points x1, . . . , xp ∈ S and scalars λ1, . . . , λp such that

x =

p∑
j=1

λjx
j ,

p∑
j=1

λj = 1, λ1, . . . , λp ≥ 0.

Note that the word “finite” is important in the above definition.
By convexity, every convex set containing S must contain all convex

combinations of points in S. Conversely, it is easy to verify that the set of
all convex combinations of points in S is itself a convex set containing S
(Exercise 1.17). It follows that

conv(S) = {x ∈ R
n : x is a convex combination of points in S}. (1.10)

Next, we show that optimizing a linear function cx over S ⊆ R
n is

equivalent to optimizing cx over conv(S).

Lemma 1.3. Let S ⊂ R
n and c ∈ R

n. Then sup{cx : x ∈ S} = sup{cx :
x ∈ conv(S)}.
Furthermore, the supremum of cx is attained over S if and only if it is
attained over conv(S).

Proof. Since S ⊆ conv(S), we have sup{cx : x ∈ S} ≤ sup{cx : x ∈
conv(S)}. We prove sup{cx : x ∈ S} ≥ sup{cx : x ∈ conv(S)}. Let
z∗ := sup{cx : x ∈ S}. We assume that z∗ < +∞, otherwise the statement
is trivially satisfied. Let H := {x ∈ R

n : cx ≤ z∗}. Note that H is convex
and by definition of z∗ it contains S. By definition conv(S) is contained in
every convex set containing S, therefore conv(S) ⊆ H, i.e., sup{cx : x ∈
conv(S)} ≤ z∗.

We now show the second part of the statement. For the “only if” dir-
ection, assume sup{cx : x ∈ S} = cx̄ for some x̄ ∈ S. Then clearly x̄ ∈
conv(S) and it follows from the first part that sup{cx : x ∈ conv(S)} = cx̄.

22 CHAPTER 1. GETTING STARTED

For the “if” direction, assume there exists x̄ ∈ conv(S) such that sup{cx :
x ∈ conv(S)} = cx̄. By (1.10), x̄ =

∑k
i=1 λix

i for some finite number of

points x1, . . . , xk ∈ S and λ1, . . . , λk > 0 such that
∑k

i=1 λi = 1. By defini-

tion of x̄, cx̄ ≥ cxi for i = 1, . . . , k, thus cx̄ =
∑k

i=1 λi(cx
i) ≤ cx̄

∑k
i=1 λi =

cx̄. Since λi > 0, it follows that cx̄ = cxi for i = 1, . . . , n. Thus the
supremum over S is achieved by x1, . . . , xk.

In this book we will be concerned with the case where S is a mixed integer
linear set, that is, a set of the form S := {(x, y) ∈ Z

n
+ ×R

p
+ : Ax+Gy ≤ b}

where A, G, b have rational entries. A fundamental result of Meyer, which
will be proved in Chap. 4, states that in this case conv(S) is a set of the form
{(x, y) : A′x+G′y ≤ b′} where A′, G′, b′ have rational entries. The first part
of Lemma 1.3 shows that, for any objective function cx, the integer program
max{cx + hy : (x, y) ∈ S} and the linear program max{cx + hy : A′x +
G′y ≤ b′} have the same value. A well-known fact in the theory of linear
programming implies that this linear program is infeasible, or unbounded
or admits a finite optimal solution, i.e., sup{cx + hy : A′x + G′y ≤ b′} =
max{cx + hy : A′x + G′y ≤ b′}. Therefore, the second part of Lemma 1.3
implies that the integer program max{cx + hy : (x, y) ∈ S} admits an
optimal solution whenever the linear program is feasible and bounded.

The above discussion illustrates that, in principle, in order to solve the
integer program max{cx + hy : Ax + Gy ≤ b, x ≥ 0 integral, y ≥ 0} it is
sufficient to solve the linear program max{cx + hy : A′x + G′y ≤ b′}. A
central question in integer programming is the constructive aspect of this
linear program: Given A, G, b, how does one compute A′, G′, b′?

Clearly the system of inequalities A′x+G′y ≤ b′ also provides a formu-
lation for the mixed integer set S := {(x, y) ∈ Z

n
+ ×R

p
+ : Ax+Gy ≤ b}. In

other words, we can also write S := {(x, y) ∈ Z
n
+ × R

p
+ : A′x +G′y ≤ b′}.

This new formulation has the property that for every objective function
cx+ hy, the integer program can be solved as a linear program, disregard-
ing the integrality requirement on the vector x. We call such a formulation
a perfect formulation. When there are no continuous variables y, the set
{x ∈ R

n : A′x ≤ b′} defined by a perfect formulation A′x ≤ b′ is called an
integral polyhedron.

1.4.1 Example: A Two-Dimensional Mixed Integer Set

In this section we describe the convex hull of the following mixed integer
linear set (see Fig. 1.7):

S := {(x, y) ∈ Z× R+ : x− y ≤ β}.

1.4. CONVEX HULLS AND PERFECT FORMULATIONS 23

Lemma 1.4. Consider the 2-variable mixed integer linear set S := {(x, y) ∈
Z×R+ : x− y ≤ β}. Let f := β −
β�. Then

x− 1

1− f
y ≤
β� (1.11)

is a valid inequality for S.

Proof. We prove that the inequality (1.11) is satisfied by every (x, y) ∈ S.
Note that, since x ∈ Z, either x ≤
β� or x ≥
β�+1. If x ≤
β�, then adding
this inequality to the inequality −y ≤ 0 multiplied by 1

1−f yields (1.11). If

x ≥
β�+1, then summing the inequality −x ≤ −
β�−1 multiplied by f
1−f

and the inequality x− y ≤ β multiplied by 1
1−f yields (1.11).

Note that the assumption y ≥ 0 is critical in the above derivation,
whereas we can have indifferently x ∈ Z or x ∈ Z+.

x

valid inequality (1.11)

β β

y

Figure 1.7: Illustration of Lemma 1.4

The three inequalities

x− y ≤ β

x− 1

1− f
y ≤
β�

y ≥ 0

are valid for S and we show in the next proposition that they provide a
perfect formulation for conv(S), that is, no other inequality is needed to
describe conv(S).

Proposition 1.5. Let S := {(x, y) ∈ Z× R+ : x− y ≤ β}. Then

conv(S) =

{
(x, y) ∈ R

2 : x− y ≤ β, x− 1

1− f
y ≤
β�, y ≥ 0

}
.

24 CHAPTER 1. GETTING STARTED

Proof. Let Q := {(x, y) ∈ R
2 : x − y ≤ β, x − 1

1−f y ≤
β�, y ≥ 0}.
We need to show that conv(S) = Q. By Lemma 1.4, conv(S) ⊆ Q. To
show the reverse inclusion, we show that every point (x̄, ȳ) ∈ Q is a convex
combination of two points (x1, y1) and (x2, y2) in S.

We may assume x̄ �∈ Z, since otherwise the result trivially holds with
(x1, y1) = (x2, y2) = (x̄, ȳ). Let λ = x̄ −
x̄�. Note that 0 < λ < 1. We
consider three possible cases.

If x̄ <
β�, let (x1, y1) = (
x̄�, ȳ) and (x2, y2) = (�x̄, ȳ). Clearly (x̄, ȳ) =
(1−λ)(x1, y1)+λ(x2, y2), and it is immediate to verify that (x1, y1), (x2, y2)
are both in S.

If
β� < x̄ < �β, let (x1, y1) = (
x̄�, ȳ − λ(1 − f)) and (x2, y2) =
(�x̄, ȳ + (1 − λ)(1 − f)). Note that (x̄, ȳ) = (1 − λ)(x1, y1) + λ(x2, y2).
We next show that (x1, y1), (x2, y2) are both in S. Indeed, y2 ≥ 0 and
y1 = −(1− f)(x̄− ȳ

1−f −
x̄�) ≥ −(1− f)(
β� −
x̄�) = 0, while x1 − y1 =

x̄� − ȳ + λ(1 − f) = x̄ − ȳ − λf ≤ x̄ − ȳ ≤ β and x2 − y2 = (1 − f)(x2 −
y2

1−f) + fx2 = (1− f)(x̄− ȳ
1−f) + f�β ≤ (1− f)
β�+ f�β = β.

If x̄ > �β, let (x1, y1) = (
x̄�, ȳ−λ) and (x2, y2) = (�x̄, ȳ+1−λ). Note
that (x̄, ȳ) = (1−λ)(x1, y1)+λ(x2, y2). We next show that (x1, y1), (x2, y2)
are both in S. Indeed, y2 ≥ 0 and y1 = ȳ − λ =
x̄�+ ȳ − x̄ ≥ �β − β ≥ 0,
while x1 − y1 = x2 − y2 = x̄− ȳ ≤ β.

1.4.2 Example: A Two-Dimensional Pure Integer Set

Consider the following region in the plane:

P := {(x1, x2) ∈ R
2 : −a1x1 + a2x2 ≤ 0, x1 ≤ u, x2 ≥ 0}, (1.12)

where a1, a2 and u are positive integers. Let S := P ∩ Z
2. Our goal is to

characterize the inequalities that define conv(S).

Figure 1.8 illustrates this problem when a1 = 19, a2 = 12 and u = 5.

Two of the inequalities that describe conv(S) go through the origin. One
of them is x2 ≥ 0. The other has a positive slope, which is determined by
an integral point (x∗1, x

∗
2) �= (0, 0) such that

x∗2
x∗1

= max

{
x2
x1

: (x1, x2) ∈ S

}
. (1.13)

This problem can be solved in polynomial time using continued fractions,
see [237]. We do not present this algorithm here (we refer the interested
reader to [196, 202]).

1.5. CONNECTIONS TO NUMBER THEORY 25

550

P conv(S)

0x1 x1

x2 x2

(x1,x2)
∗ ∗

F

Figure 1.8: Illustration of problem (1.12)

The solution (x∗1, x
∗
2) of problem (1.13) is a point on the boundary seg-

ment F of conv(S) that starts at 0 and has positive slope. Once we have
(x∗1, x

∗
2), it is easy to compute the vertex of conv(S) at the other end of the

boundary segment F : Assuming that the fraction x∗2/x
∗
1 is irreducible, this

vertex is the point (kx∗1, kx
∗
2), where k =
u/x∗1�.

If kx∗1 < u the next step is to determine the other boundary segment
of conv(S) that contains the point (kx∗1, kx

∗
2). If we move the origin to

(kx∗1, kx
∗
2) and set u := u − kx∗1, the problem is again to find a fraction as

in (1.13). This process is iterated until the bound u is reached.

We now discuss the number of sides that conv(S) can have. Note that
at each iteration kx∗1 > u/2 (by definition of k), thus the new value of u is
at most half the previous value. This implies that the number of sides of
conv(S) (including the horizontal and vertical sides) is at most 3 + log2 u,
so it is at most linear in the binary encoding of the data. Thus conv(S) can
be computed in polynomial time when a1, a2, u are given.

1.5 Connections to Number Theory

Integer programs tend to come in two different flavors. Some, like the assign-
ment problem introduced in Sect. 1.1, fall into the category of combinatorial
optimization. Other integer programs are closely related to number theory.
We illustrate the ties to number theory with two examples. The first one
is the computation of the greatest common divisor of two integers, the sec-
ond is the solution of Diophantine linear equations, that is, finding integer
solutions to linear systems of equations.

26 CHAPTER 1. GETTING STARTED

1.5.1 The Greatest Common Divisor

Let a, b ∈ Z, (a, b) �= (0, 0). The greatest common divisor of a and b,
gcd(a, b), is the largest positive integer d that divides both a and b, i.e.,
a = dx and b = dy for some integers x, y. That is,

gcd(a, b) := max{d ∈ Z+ \ {0} : d | a, d | b},

where the notation d | c means d divides c. The following proposition shows
that the problem of computing gcd(a, b) can be formulated as a pure integer
program.

Proposition 1.6. Let a, b ∈ Z, (a, b) �= (0, 0). Then

gcd(a, b) = min{ax+ by : x, y ∈ Z, ax+ by ≥ 1}. (1.14)

Proof. Let m := min{ax + by : x, y ∈ Z, ax + by ≥ 1} (it is clear that
this set is not empty, as (a, b) �= (0, 0), thus this minimum exists). Clearly,
if d | a and d | b then d | ax + by for every x, y ∈ Z and so d | m. Thus
gcd(a, b) | m. We show that m | gcd(a, b). We need to show that m | a
and m | b. It suffices to show that m | a. Suppose not, then there exist
q, r ∈ Z with 1 ≤ r < m such that a = qm + r. Let x̄, ȳ ∈ Z such that
m = ax̄ + bȳ. We have r = a − q(ax̄ + bȳ) = a(1 − qx̄) − bqȳ and so
r ∈ {ax+ by : x, y ∈ Z, ax+ by ≥ 1}, a contradiction since r < m.

The problem of finding the greatest common divisor of two given integers
(a, b) �= (0, 0) can be solved by the Euclidean algorithm. Since gcd(a, b) =
gcd(|a|, |b|), we can assume that a ≥ b ≥ 0 and a > 0.

The Euclidean Algorithm

Input. a, b ∈ Z+ such that a ≥ b and a > 0.

Output. gcd(a, b).

Iterative Step.

If b = 0, return gcd(a, b) = a.

Otherwise, let r := a−
⌊a
b

⌋
b.

Let a := b, b := r and repeat the iterative step.

Proposition 1.7. Given a, b ∈ Z+ such that a ≥ b and a > 0, the Euclidean
algorithm runs in polynomial time and correctly returns gcd(a, b).

1.5. CONNECTIONS TO NUMBER THEORY 27

Proof. At each iteration the pair (a, b) is replaced by (b, r), where r = a −

a/b�b. Therefore r < a/2. Furthermore, in the pair (a, b), r replaces a
after two iterations. Therefore the Euclidean algorithm terminates after
at most 1 + 2 log2 a iterations. Noting that the size of the input a, b is
2+�log2(a+1)+�log2(b+1) (using binary encoding of integers as discussed
in Sect. 1.3.1) and that the work in each iteration is polynomial in this size,
we conclude that the Euclidean algorithm runs in polynomial time.

Note that d | a and d | b if and only if d | b and d | r. It follows that
the set of common divisors of (a, b) is precisely the set of common divisors
of (b, r). Thus gcd(a, b) = gcd(b, r). Since gcd(a, 0) = a, the algorithm
correctly computes gcd(a, b).

Integral Solutions of a Linear Equation

We now show that the Euclidean algorithm can be used to find all integral
solutions of the equation ax + by = c where a, b, c ∈ Z and (a, b) �= (0, 0).
We may assume without loss of generality that a ≥ b ≥ 0 and a > 0. At
each iteration, whenever b �= 0, the Euclidean algorithm replaces the vector
(a, b) with the vector (b, r), where r = a −
a/b�b. This exchange can be
performed in terms of matrices as follows:

(a, b)

(
0 1
1 −
a/b�

)
= (b, r).

Let T(a,b) be the above 2× 2 matrix. Note that its inverse is also an integral
matrix, namely

T−1
(a,b) =

(

a/b� 1
1 0

)
.

Let (a1, b1), . . . , (ak, bk) be the sequence produced by the Euclidean al-
gorithm, where (a1, b1) := (a, b), (ak, bk) := (gcd(a, b), 0), and (ai, bi) :=
(bi−1, ai−1 −
ai−1/bi−1�bi−1) for i = 2, . . . , k. Define

T := T(a1,b1)T(a2,b2) · · · T(ak ,bk).

It follows that

(a, b)T = (gcd(a, b), 0),

and T−1 = T−1
(ak ,bk)

T−1
(ak−1,bk−1)

· · ·T−1
(a1,b1)

is an integral matrix.

Theorem 1.8. Let a, b be integers not both 0, and let g := gcd(a, b). Equa-
tion ax + by = c admits an integral solution if and only if c is an integer
and g divides c.

28 CHAPTER 1. GETTING STARTED

Furthermore, there exists a 2× 2 integral matrix T whose inverse is also
integral such that (a, b)T = (g, 0). All integral solutions of ax + by = c are
of the form

T

(c
g

z

)
, z ∈ Z.

Proof. We may assume without loss of generality that a ≥ b ≥ 0 and a > 0.
We already established the existence of a matrix T as claimed in the theorem.

Equation (a b)

(
x
y

)
= c can be rewritten as (a b)TT−1

(
x
y

)
= c. This latter

equation is gt + 0z = c where

(
t
z

)
:= T−1

(
x
y

)
. Since both T and T−1

are integral matrices, vector

(
x
y

)
= T

(
t
z

)
is integral if and only if

(
t
z

)

is integral. Therefore the integral solutions of ax + by = c are the vectors(
x
y

)
= T

(
t
z

)
such that

(
t
z

)
is an integral solution to gt + 0z = c. The

latter equation admits an integral solution if and only if c is an integer and

g divides c. If this is the case, the integral solutions of gt+0z = c are

(c
g

z

)
,

for all z ∈ Z.

The above theorem has a straightforward extension to more than two
integers. For (a1, . . . , an) ∈ Z

n \ {0}, gcd(a1, . . . , an) denotes the largest
positive integer d that divides each of the integers ai for i = 1, . . . , n. When
gcd(a1, . . . , an) = 1, the integers a1, . . . , an are said to be relatively prime.

Corollary 1.9. Given a ∈ Z
n \ {0}, let g := gcd(a1, . . . , an). Equation

ax = c admits an integral solution if and only if c is an integer and g
divides c.

Furthermore, there exists an n × n integral matrix T whose inverse is
also integral such that aT = (g, 0, . . . , 0). All integral solutions of ax = c
are of the form

T

(c
g

z

)
, z ∈ Z

n−1.

Proof. Let gi := gcd(ai, . . . , an), i = 1, . . . , n. For i = 1, . . . , n − 1, let
T ′
i be the 2 × 2 integral matrix whose inverse is also integral such that

(ai, gi+1)T
′
i = (gcd(ai, gi+1), 0), and let Ti be the matrix obtained from the

n × n identity matrix I by substituting T ′
i for the 2 × 2 submatrix of I

with row and column indices i and i + 1. Clearly Ti and T−1
i are both

1.5. CONNECTIONS TO NUMBER THEORY 29

integral. Let T := Tn−1Tn−2 . . . T1. Since g = g1 and gi = gcd(ai, gi+1),
i = 1, . . . , n − 1, we have that aT = (g, 0 . . . , 0). Equation (g, 0 . . . , 0)y = c
admits an integral solution if and only if c is an integer and g divides c. If

this is the case, all integral solutions are of the form y =

(c
g

z

)
, z ∈ Z

n−1.

Since T and T−1 are both integral, it follows that x = Ty is integral if
and only if y is integral, therefore all integral solutions of ax = c are of the

form T

(c
g

z

)
, z ∈ Z

n−1.

The Convex Hull of the Integer Points in a Halfspace

Theorem 1.10. Given a ∈ Z
n \{0} and c ∈ R, let S := {x ∈ Z

n : ax ≤ c},
and let g := gcd(a1, . . . , an). Then

conv(S) =

{
x ∈ R

n :
a

g
x ≤

⌊
c

g

⌋}
.

Proof. By Corollary 1.9 there exists an integral n×nmatrix T whose inverse
is integral such that aT = (g, 0, . . . , 0). Let S′ := {y ∈ R

n : Ty ∈ S}. Note
that conv(S) = {x ∈ R

n : T−1x ∈ conv(S′)}, since a set C ⊆ R
n is a convex

set containing S if and only if C = {x ∈ R
n : T−1x ∈ C ′} for some convex

set C ′ containing S′.
We first compute conv(S′). Note that Ty ∈ S if and only if aTy ≤ c and

Ty ∈ Z
n. Since T and T−1 are both integral, Ty ∈ Z

n if and only if y ∈ Z
n.

Thus S′ = {y ∈ Z
n : y1 ≤ c

g}, because aT = (g, 0, . . . , 0). It follows that

conv(S′) = {y ∈ R
n : y1 ≤
 c

g �}.
From conv(S) = {x ∈ R

n : T−1x ∈ conv(S′)} and the above form of
conv(S′), we have that x ∈ conv(S) if and only if (1, 0, . . . , 0)(T−1x) ≤
 c

g �.
Since (1, 0, . . . , 0)T−1 = a

g , we get conv(S) =
{
x ∈ R

n : a
gx ≤

⌊
c
g

⌋}
.

1.5.2 Integral Solutions to Systems of Linear Equations

In this section we present an algorithm to solve the following problem:

Given a rational matrix A ∈ Q
m×n and a rational vector b ∈ Q

m, find a
vector x satisfying

Ax = b, x ∈ Z
n. (1.15)

With a little care, the algorithm can be made to run in polynomial time.
We note that this is in contrast to the problem of finding a solution to

Ax = b, x ≥ 0, x ∈ Z
n,

30 CHAPTER 1. GETTING STARTED

which is an NP-hard problem. The idea of the algorithm is to reduce problem
(1.15) to a form for which the solution is immediate.

A matrix A ∈ Q
m×n is in Hermite normal form if A =

(
D 0

)
where 0

is the m× (n−m) matrix of zeroes and

• D is an m×m lower triangular nonnegative matrix,

• dii > 0 for i = 1, . . . ,m, and dij < dii for every 1 ≤ j < i ≤ m.

Since dii > 0, i = 1, . . . ,m, a matrix in Hermite normal form has full
row rank.

Remark 1.11. If A is an m× n matrix in Hermite normal form
(
D 0

)
,

the set {x ∈ Z
n : Ax = b} can be easily described. Since D is a nonsingular

matrix, the system Dy = b has a unique solution ȳ. Furthermore

(
ȳ
0

)
is a

solution to Ax = b, and the solutions of Ax = 0 are of the form

(
0
k

)
for

all k ∈ R
n−m. Thus the solutions of Ax = b are of the form

(
ȳ
k

)
, where

k ∈ R
n−m. In particular, Ax = b has integral solutions if and only if ȳ is

integral, in which case

{x ∈ Z
n : Ax = b} =

{(
ȳ
k

)
: k ∈ Z

n−m

}
.

Consider the three following matrix operations, called unimodular oper-
ations:

• Interchange two columns.

• Add an integer multiple of a column to another column.

• Multiply a column by −1.

Theorem 1.12. Every rational matrix with full row rank can be brought
into Hermite normal form by a finite sequence of unimodular operations.

Proof. Let A ∈ Q
m×n be a rational matrix with full row rank. Let M be a

positive integer such that MA is an integral matrix. We prove the result by
induction on the number of rows of A. Assume that A has been transformed

with unimodular operations into the form

(
D 0
B C

)
, where

(
D 0

)
is in

Hermite normal form.

1.5. CONNECTIONS TO NUMBER THEORY 31

Permuting columns and multiplying columns by −1, we transform C
so that c11 ≥ c12 ≥ · · · ≥ c1k ≥ 0. If c1j > 0 for some j = 2, . . . , k, we
subtract the jth column of C from the first and we repeat the previous step.
Note that, at each iteration, c11 + · · ·+ c1k decreases by at least 1/M , thus
after a finite number of iterations c12 = . . . = c1k = 0.
When c12 = . . . = c1k = 0, we add or subtract integer multiples of the first
column of C to the columns of B, so that 0 ≤ b1j < c11 for j = 1, . . . , n− k.
Then the matrix

(
D 0

)
can be extended by one row by adding the first

row of (B,C).

The rationality assumption is critical in Theorem 1.12. For example
the matrix A =

(√
5 1

)
cannot be brought into Hermite normal form using

unimodular operations (Exercise 1.21).
We leave it as an exercise to show that, for every rational matrix A with

full row rank, there is a unique matrix H in Hermite normal form that can
be obtained from A by a sequence of unimodular operations (Exercise 1.22).

Remark 1.13. The statement in Theorem 1.12 can be strengthened: There
is a polynomial algorithm to transform a rational matrix with full row rank
into Hermite normal form. In particular every rational matrix with full row
rank can be brought into Hermite normal form using a polynomial number
of unimodular operations [228]. We do not provide the details of this poly-
nomial algorithm here. The interested reader is referred to [228] or [325]
(see also [217], p. 513).

An m × n matrix A is unimodular if it has rank m, it is integral and
det(B) = 0,±1 for every m×m submatrix B of A. In particular, a square
matrix U is unimodular if it is integral and det(U) = ±1.

Remark 1.14. If U is a matrix obtained from the identity matrix by per-
forming a unimodular operation, then U is unimodular.

Indeed, if U is obtained by interchanging two columns of the identity
or by multiplying a column of I by −1 then det(U) = −1, whereas if U
is obtained by adding to a column an integer multiple of another column
then U differs from the identity only in one component, and it is therefore
a triangular matrix with all ones in the diagonal, thus det(U) = 1.

Remark 1.15. If matrix H is obtained from an m × n matrix A by a
single unimodular operation, then H = AU , where U is the n × n matrix
obtained from the identity matrix by performing the same unimodular oper-
ation. In particular, by Theorem 1.12, if H is the Hermite normal form of
A, then H = AU for some square unimodular matrix U .

32 CHAPTER 1. GETTING STARTED

Lemma 1.16. Let U be an n × n nonsingular matrix. The following are
equivalent.

(i) U is unimodular,

(ii) U and U−1 are both integral,

(iii) U−1 is unimodular,

(iv) For all x ∈ R
n, Ux is integral if and only if x is integral,

(v) U is obtained from the identity matrix by a sequence of unimodular
operations.

Proof. (i)⇒ (ii) Assume U is unimodular. By standard linear algebra, U−1

equals the adjugate matrix of U divided by det(U). Since U is integral, its
adjugate is integral as well, thus U−1 is integral because det(U) = ±1.

(ii)⇒ (i) If U and U−1 are both integral, then det(U) and det(U−1) are
both integer numbers. Since det(U) = 1/det(U−1), it follows that det(U) =
±1.

(i)⇔ (iii) follows from (i)⇔ (ii).
(ii)⇒ (iv) Assume U and U−1 are both integral matrices and let x ∈

R
n. If x is an integral vector, then Ux is integral because U is integral.

Conversely, if y = Ux is integral then x = U−1y is integral because U−1 is
integral.

(iv)⇒ (ii) This is immediate.
(v)⇒ (i) Suppose that U is obtained from the identity matrix by a se-

quence of unimodular operations. It follows from Remark 1.15 that U =
U1 · · ·Uk where U1, . . . , Uk are matrices obtained from the identity matrix
by performing a single unimodular operation. By Remark 1.14 U1, . . . , Uk

are unimodular matrices, therefore U is unimodular, since it is integral and
det(U) = det(U1) · · · det(Uk) = ±1.

(i)⇒ (v) Suppose U is unimodular. Let H be the Hermite normal form
of U−1. By Theorem 1.12 and Remark 1.15, H = U−1U ′, where U ′ is
obtained from the identity matrix by a sequence of unimodular operations.
It follows from the implication (v)⇒ (i) that U ′ is unimodular, and it follows
from (i)⇒ (iii) that U−1 is unimodular. Therefore H is unimodular as well.
Since H is diagonal, H is the identity matrix. Therefore U = U ′, which
shows that U can be obtained from the identity matrix by a sequence of
unimodular operations.

1.5. CONNECTIONS TO NUMBER THEORY 33

The above result easily implies the following characterization of the
solutions of problem (1.15).

Theorem 1.17. Let A be a rational m × n matrix with full row-rank, and
let b ∈ R

m. Let H =
(
D 0

)
be the Hermite normal form of A, and U be a

unimodular matrix such that H = AU . Then Ax = b, x ∈ Z
n, has a solution

if and only if ȳ := D−1b ∈ Z
m. In this case, all solutions are of the form

{
U

(
ȳ
k

)
: k ∈ Z

n−m

}
.

Proof. By Lemma 1.16, for all y ∈ R
n we have that y ∈ Z

n if and only
if Uy ∈ Z

n, therefore y is an integral solution of Hy = AUy = b if and only
if x := Uy is an integral solution of Ax = b. By Remark 1.11, all solutions

of Hx = b are of the form

(
ȳ
k

)
, k ∈ Z

n−m, and the result follows.

This theorem suggests a natural algorithm to solve systems of linear
Diophantine equations.

Algorithm for Solving the Linear Diophantine Equation
Problem (1.15)

Step 1. Check whether A has full row rank. If not, either the system
Ax = b is infeasible and (1.15) has no solution or it contains redundant
equations that can be removed.

Step 2. Transform A into a matrix H in Hermite normal form by a sequence
of unimodular operations (this is possible by Theorem 1.12). By Remark
1.15 and Lemma 1.16, H = AU for some square unimodular matrix U .

Step 3. Solve Hy = b, y ∈ Z
n as in Remark 1.11. If this problem is

infeasible, (1.15) has no solution. Otherwise let ȳ be a solution. Then
x̄ = Uȳ is a solution of (1.15).

Step 1 of the algorithm can be performed by Gaussian elimination. If an
equation 0x = α is produced and α �= 0, then Ax = b is infeasible and (1.15)
has no solution. If α = 0, the equation is redundant.

Example 1.18. Solve the system

⎛
⎝

10 4 3 0
58 24 19 2
3 2 0 0

⎞
⎠x =

⎛
⎝
3
5
5

⎞
⎠ with x ∈ Z

4. (1.16)

34 CHAPTER 1. GETTING STARTED

Solution: We first transform the matrix A =

⎛
⎝

10 4 3 0
58 24 19 2
3 2 0 0

⎞
⎠ into

Hermite normal form by performing unimodular operations. We start by
subtracting 3 times column 3 from column 1. We get

A1 =

⎛
⎝

1 4 3 0
1 24 19 2
3 2 0 0

⎞
⎠ =

⎛
⎝

10 4 3 0
58 24 19 2
3 2 0 0

⎞
⎠

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0

−3 0 1 0
0 0 0 1

⎞
⎟⎟⎠ .

We now use column 1 of A1 to cancel out the nonzero entries in the first
row of columns 2 and 3.

A2 =

⎛
⎝

1 0 0 0
1 20 16 2
3 −10 −9 0

⎞
⎠ =

⎛
⎝

1 4 3 0
1 24 19 2
3 2 0 0

⎞
⎠

⎛
⎜⎜⎝

1 −4 −3 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ .

Next we interchange columns 2 and 4 of A2. We get

A3 =

⎛
⎝

1 0 0 0
1 2 16 20
3 0 −9 −10

⎞
⎠ =

⎛
⎝

1 0 0 0
1 20 16 2
3 −10 −9 0

⎞
⎠

⎛
⎜⎜⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞
⎟⎟⎠ .

Then we cancel out the nonzero entries in the second row of columns 3 and
4 using column 2 of A3.

A4 =

⎛
⎝

1 0 0 0
1 2 0 0
3 0 −9 −10

⎞
⎠ =

⎛
⎝

1 0 0 0
1 2 16 20
3 0 −9 −10

⎞
⎠

⎛
⎜⎜⎝

1 0 0 0
0 1 −8 −10
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ .

To get the matrix in lower triangular form, we subtract column 4 of A4 from
column 3, and then add 10 times column 3 to column 4. This gives

A5 =

⎛
⎝

1 0 0 0
1 2 0 0
3 0 1 0

⎞
⎠ =

⎛
⎝

1 0 0 0
1 2 0 0
3 0 −9 −10

⎞
⎠

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 10
0 0 0 1

⎞
⎟⎟⎠ .

Finally, in order to satisfy the condition dij < dii for j < i, we subtract 3
times column 3 of A5 from column 1.

H =

⎛
⎝

1 0 0 0
1 2 0 0
0 0 1 0

⎞
⎠ =

⎛
⎝

1 0 0 0
1 2 0 0
3 0 1 0

⎞
⎠

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0

−3 0 1 0
0 0 0 1

⎞
⎟⎟⎠ .

1.5. CONNECTIONS TO NUMBER THEORY 35

Matrix H is the Hermite normal form of A. Note that H = AU where

U =

⎛
⎜⎜⎝

−2 0 1 6
3 0 −1 −9
3 0 −2 −8

−6 1 2 10

⎞
⎟⎟⎠

is obtained by multiplying the 4×4 matrices that were used above to perform
the column operations.

We now return to question (1.16), namely to solve Ax = b with x ∈ Z
4.

This is equivalent to solving HU−1x = b with x ∈ Z
4. Set y := U−1x. Since

U is unimodular, this is equivalent to solving Hy = b with y ∈ Z
4. If D

denotes the 3× 3 submatrix of H induced by the first 3 columns of H, the
system is equivalent to (D 0)y = b with y ∈ Z

4. The answer is

⎛
⎝
y1
y2
y3

⎞
⎠ = D−1b, y4 ∈ Z.

Going back to x through x = Uy we get x = U1D
−1b + U2Z where U1 and

U2 are the column submatrices of U associated with the first 3 columns, and
the last one respectively. Here

D =

⎛
⎝

1 0 0
1 2 0
0 0 1

⎞
⎠ , D−1 =

⎛
⎝

1 0 0

− 1
2

1
2

0

0 0 1

⎞
⎠ , U1 =

⎛
⎜⎜⎝

−2 0 1
3 0 −1
3 0 −2

−6 1 2

⎞
⎟⎟⎠ , U2 =

⎛
⎜⎜⎝

6
−9
−8
10

⎞
⎟⎟⎠ .

Therefore the solutions of (1.16) are

x =

⎛
⎜⎜⎝
−1
4

−1
−7

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

6
−9
−8
10

⎞
⎟⎟⎠ k with k ∈ Z.

�
There is a simple characterization of when a system of linear equations

does not have a solution in integers. The characterization is similar to the
Fredholm alternative.

Theorem 1.19 (Fredholm Alternative). A system of linear equations Ax =
b is infeasible if and only if there exists a vector u ∈ R

m such that uA = 0,
ub �= 0.

36 CHAPTER 1. GETTING STARTED

A constructive proof of Theorem 1.19 is straightforward using Gaussian
elimination on the system Ax = b.

Theorem 1.20 (Integer Farkas Lemma or Kronecker Approximation Theo-
rem). Let A be a rational matrix and b a rational vector. The system Ax = b
admits no integral solution if and only if there exists a vector u ∈ R

m such
that uA ∈ Z

n, ub /∈ Z.

Proof. Assume that Ax = b admits an integral solution x. Then, for any
vector u such that uA is integral, ub = uAx is an integer.

Suppose now that Ax = b does not have an integral solution. If system
Ax = b is infeasible, Theorem 1.19 shows that there exists u such that
uA = 0 and ub �∈ Z (note that u may have to be scaled appropriately). So
the theorem holds in this case, and we may assume that Ax = b is feasible
and that A has full row rank.

By Theorem 1.12 and Remark 1.14, there exists a matrix in Hermite
normal form

(
D 0

)
and a square unimodular matrix U such that

(
D 0

)
=

AU . By Theorem 1.17, D−1b �∈ Z
m, say, the ith component of D−1b is

fractional. Let u be the ith row of D−1. Then the ith component of the
vector D−1b is ub, so ub /∈ Z. We conclude the proof by showing that uA is
integral. Indeed

uA = u
(
D 0

)
U−1 = eiU−1,

where ei denotes the ith unit row-vector in R
n. Since U−1 is integral, it

follows that uA is integral.

1.6 Further Readings

There are several textbooks on integer programming. Garfinkel and Nem-
hauser [159] is an important early reference, Schrijver [325], Nemhauser
and Wolsey [285], Wolsey [353], Bertsimas and Weismantel [51] are more
recent. We also recommend the book “50Years of Integer Programming
1958–2008” edited by Jünger et al. [217]. There are several monographs that
deal with central topics in integer programming, see Grötschel, Lovász, and
Schrijver [188] and De Loera, Hemmecke, and Köppe [110]. A good reference
on computational integer programming is the book edited by Jünger and
Naddef [218].

Integer programming is closely related to combinatorial optimization.
Many excellent references can be found under this heading; we just mention
Korte and Vygen [243] and the encyclopedic volumes of Schrijver [327].

1.6. FURTHER READINGS 37

A point of view that is popular in theoretical computer science is to ask,
for an optimization problem, how well can its optimum value be approxi-
mated in polynomial time. A polynomial algorithm that, for all instances,
finds a solution with value within a ratio α of the optimum value is called
an α-approximation algorithm. We refer to the books of Williamson and
Shmoys [349] and Vazirani [345]. There is also a vast literature on meta-
heuristics (local search, tabu search, genetic algorithms, etc.) that we do
not cover. Our focus in this book is on exact methods. We will only dis-
cuss heuristics briefly in the context of the branch-and-bound algorithm in
Chap. 9.

The first cutting plane algorithm was devised in 1954 by Dantzig, Fulker-
son, and Johnson [103] to solve the traveling salesman problem, using special
purpose cuts. The first general cutting plane algorithm for pure integer pro-
gramming was devised by Gomory [175] in 1958. Around the same time
Bellman [46] wrote his book on dynamic programming, a technique that
can be useful for certain types of integer programs.

The first branch-and-bound algorithm was proposed in 1960 by Land and
Doig [246]. Another early reference is Dakin [100]. The term branch-and-cut
was coined in the 80s by Padberg and Rinaldi [301, 302]. Extensive compu-
tational experience on the progress in software for integer programming up
to 2004 is reported in Bixby, Fenelon, Gu, Rothberg, and Wunderling [57].

Complexity issues were stressed by Edmonds [123, 125] and put in sharp
focus by the work of Cook [84] on NP-completeness. Papadimitriou [305]
showed that integer programming is in NP. Rather innocent-looking prob-
lems can be NP-complete, such as the following: Given n + 1 points in
Q

n, does their convex hull contain an integral point? Arora and Barak [14]
present a modern treatment of complexity theory.

Edmonds [123] was also a pioneer in developing the polyhedral approach
in combinatorial optimization. We will give examples of this approach, which
is known as polyhedral combinatorics, in Chap. 4.

Kannan and Bachem [228] presented polynomial algorithms for comput-
ing the Smith and Hermite normal forms of an integer matrix.

Lenstra [256] gave a polynomial algorithm to solve integer programs with
a fixed number of integer variables. We will present Lenstra’s algorithm in
Chap. 9.

Bachem and von Randow [21] proved a mixed integer Farkas lemma in
the spirit of Theorem 1.20 (see also [242]).

38 CHAPTER 1. GETTING STARTED

Primal Methods

This book focuses on the methods that have been most successful in solving
a wide range of integer programs in practice, such as branch-and-bound
and cutting plane algorithms. Other approaches, such as primal methods,
might be more appropriate for certain classes of integer programs. Like the
simplex method, primal methods start with a feasible solution and seek a
new feasible solution with better objective function value until optimality is
achieved. Consider an integer program of the form

min{cx : Ax = b, l ≤ x ≤ u, x ∈ Z
n} (1.17)

where all data are assumed to be integral. Primal methods address the
following question:

Let x0 be a feasible solution to (1.17). Either prove that x0 is optimal,
or find a vector z such that x0+ z is feasible for (1.17) and c(x0+ z) < cx0.
Such a vector z is called an improving direction.

The main result is the following:

Given an integral matrix A, there is a finite set of vectors Z(A) such
that, for every integral vectors c, b, l, u and feasible solution x0 to (1.17)
that is not optimal, there is an improving direction z ∈ Z(A).

The set Z(A) is called a Graver test set. As an example where primal
methods might be appropriate, we mention stochastic integer programs,
which often have a fixed constraint matrix but need to be solved for a large
number of different right-hand sides (see Tayur, Thomas, and Natraj [336]
for an application). We refer the reader to the books of Bertsimas and
Weismantel [51] and De Loera, Hemmecke, and Köppe [110] for a treatment
of primal methods.

1.7 Exercises

Exercise 1.1. Consider the objective function: f(y, x) = 8y+3x1+4x2+2x3
and the following inequalities:

y + x1 ≥ 0.2 (1.18)

y + x2 ≥ 0.8 (1.19)

y + x3 ≥ 1.5 (1.20)

y, x1, x2, x3 ≥ 0 (1.21)

Define the following programs:

1.7. EXERCISES 39

• LP: min{f(y, x) : (y, x) satisfies (1.18)−(1.21)}.

• ILP: min{f(y, x) : (y, x) satisfies (1.18)−(1.21), (y, x) integral}.

• MILP1: min{f(y, x) : (y, x) satisfies (1.18)−(1.21), y integer}.

• MILP2: min{f(y, x) : (y, x) satisfies (1.18)−(1.21), x integral}.

Show that:

• The unique optimum of LP is attained at y = 0.2.

• The unique optimum of ILP is attained at y = 1.

• The unique optimum of MILP1 is attained at y = 0.

• The unique optimum of MILP2 is attained at y = 0.8.

Exercise 1.2. Consider the program with n+ 1 variables:

min hy +
∑n

i=1 cixi
y + xi ≥ bi, 1 ≤ i ≤ n
y ≥ 0
xi ≥ 0, 1 ≤ i ≤ n

where 0 ≤ b1 ≤ b2 ≤ . . . ≤ bn and 0 ≤ ci ≤ h for i = 1, . . . , n. Design the
most efficient algorithms that you can to solve the above program under the
additional conditions:

• LP: y, xi continuous.

• ILP: y, xi integer.

• MILP: xi continuous, y integer.

In particular, can you give a closed-form formula for the optimal values of
y, xi in LP and ILP?

Exercise 1.3. Solve the following integer program by branch-and-bound,
using variable branching and linear programming bounding.

min 8y +3x1 +4x2 +2x3
y +x1 ≥ 0.2
y +x2 ≥ 0.8
y +x3 ≥ 1.5
y ≥ 0

x1, x2, x3 ≥ 0 integer.

40 CHAPTER 1. GETTING STARTED

Exercise 1.4. Solve the following pure integer program by branch-and-
bound.

max 2x1 +x2
−x1 +x2 ≤ 0
6x1 +2x2 ≤ 21
x1, x2 ≥ 0 integer.

Exercise 1.5. When the branch-and-bound algorithm takes too much time
to find an optimal solution, one may be willing to settle for an approximate
solution. Assume that the optimum value z∗ of (1.2) is positive. Modify
Step 4 of the branch-and-bound algorithm presented in Sect. 1.2.1 when the
goal is to find a feasible solution (x̄, ȳ) whose objective value z̄ is within p
% of the optimum, i.e., z̄

z∗ ≥ 1− p/100.

Exercise 1.6. Finish solving the 2-variable integer program of Sect. 1.2.2
using fractional cuts.

Exercise 1.7. Solve the following pure integer program using fractional
cuts.

max 2x1 +x2
−x1 +x2 ≤ 0
6x1 +2x2 ≤ 21
x1, x2 ≥ 0 integer.

Exercise 1.8. Let (x0, y0) be an optimal solution of (1.5) that is not in S.
Suppose that (x0, y0) = 1

2(x
1, y1) + 1

2(x
2, y2) where (xi, yi) ∈ S for i = 1, 2.

Show that there is no cutting plane separating (x0, y0) from S.

Exercise 1.9.

(i) Let A be a square nonsingular rational matrix. Show that the encoding
size of A−1 is polynomially bounded by the encoding size of A.

(ii) Let A ∈ Q
m×n be a rational matrix and b ∈ Q

m a rational vector.
Show that if the system Ax = b has a solution x̄ ∈ R

n, it has one
whose encoding size is polynomially bounded by the encoding size of
(A, b).

Exercise 1.10. Show that the following decision problems belong to the
class NP.

• Given two graphs G1 = (V1, E1), G2 = (V2, E2), determine if G1 and
G2 are isomorphic.

1.7. EXERCISES 41

• Given positive integers m and n, determine if m has a factor less than
n and greater than 1 (Integer factorization).

Exercise 1.11. Show that the following decision problems belong to the
class Co-NP.

• Determine whether {x ∈ {0, 1}n : Ax ≤ b} and {x ∈ {0, 1}n : A′x ≤
b′} have the same set of solutions.

• Given a graph G = (V,E) and a positive integer k, determine whether
the chromatic number of G is greater than k.

Exercise 1.12. Show that the following decision problems belong to the
class NP and to the class Co-NP. (Some answers are a consequence of basic
results in linear algebra, linear programming or graph theory. Please cite
any such results that you use.)

• Does a rational system of equations Ax = b admit a solution?

• Does a rational system of inequalities Ax ≤ b admit a solution?

• Is x̄ an optimal solution to the linear program max{cx : Ax ≤ b}?

• Does a rational system of linear equations Ax = b admit an integral
solution?

• Is a graph G = (V,E) Eulerian? (i.e., does G contain a closed walk
traversing each edge exactly once?)

• Is a graph G = (V,E) connected?

• Is a directed graph D = (V,A) strongly connected?

• Does a directed graph D = (V,A) contain a directed cycle?

Exercise 1.13. Draw the convex hull of the following 2-variable integer
sets.

• S := {x ∈ Z
2
+ : x1 + x2 ≤ 2, x1 − x2 ≤ 1, x2 − x1 ≤ 1}

• S := {(x, y) ∈ Z+ × R+ : x+ y ≥ 1.6, x ≤ 2, y ≤ 2}.

Exercise 1.14. Let c ∈ R+. Generate the valid inequalities needed to
describe the convex hull of S := {(x, y) ∈ R

2 : x−cy ≤ b, x integer, y ≥ 0}.

42 CHAPTER 1. GETTING STARTED

Exercise 1.15. Generate the valid inequalities needed to describe the con-
vex hull of the following sets S.

• S := {(x, y) : x+ y ≥ b, x ≥ 0 integer, y ≥ 0}

• S := {(x, y) : x+ y ≥ b, x ≥ 0 integer}

• S := {(x, y) : x+ y ≥ b, x ≥ d integer}

• S := {(x, y) : x+ y ≥ b, x ≥ d integer, y ≥ 0}

Exercise 1.16. Generate the valid inequalities needed to describe the con-
vex hull of the set S := {(x, y1, y2) : x + y1 ≥ b1, x + y2 ≥ b2, x ≥
0 integer, y1, y2 ≥ 0}.

Exercise 1.17. Consider a (possibly infinite) set S ⊆ R
n. Prove that the

set of all convex combinations of points in S is a convex set containing S.

Exercise 1.18. Modify the Euclidean algorithm so that it has the following
input and output.
Input. a, b ∈ Z+ such that a ≥ b and a > 0.
Output. gcd(a, b) and x, y ∈ Z such that ax+ by = gcd(a, b).
Prove the correctness of your algorithm, and show that it runs in polynomial
time.

Exercise 1.19. A rectangle is subdivided into an m×n checkerboard. How
many of the mn cells are traversed by a diagonal of the rectangle (A cell is
traversed if the diagonal intersects its interior).

Exercise 1.20. Let a1, . . . , an ∈ Z be relatively prime integers. Show that
the hyperplane a1x1 + . . . anxn = b contains integer points x ∈ Z

n for every
b ∈ Z.

Exercise 1.21. Let A =
(√

5 1
)
. Show that A cannot be put in Hermite

normal form using unimodular operations.

Exercise 1.22. Let A be a rational matrix with full row rank. Show that
there is a unique matrix H in Hermite normal form that can be obtained
from A by a sequence of unimodular operations.

Exercise 1.23. Put the following matrix in Hermite normal form.

A =

⎛
⎝

4 4 3 3 3
2 4 4 8 0
5 7 0 0 5

⎞
⎠.

1.7. EXERCISES 43

Exercise 1.24. Solve the system of Diophantine equations

4x1 +4x2 +3x3 +3x4 +3x5 = 3
2x1 +4x2 +4x3 +8x4 = 2
5x1 +7x2 +5x5 = 2

x ∈ Z
5.

(Hint: Use Exercise 1.23.)

Exercise 1.25. Let a1, . . . , an ∈ Z be relatively prime integers. Show
that there exists an n × n unimodular matrix whose first row is the vec-
tor (a1, . . . , an).

Exercise 1.26. Prove the following statement: Let A,G be rational matri-
ces and b a rational vector. The problem Ax+Gy = b, x ∈ Z

n is infeasible if
and only if there exists a vector u ∈ R

m such that uA ∈ Z
n, uG = 0, ub /∈ Z.

(Hint: prove that {x : Ax+Gy = b for some y} = {x : (uiA)x = uib, i =
1, . . . , k} where u1, . . . , uk is a basis of the linear subspace {u : uG = 0}.
Then apply Theorem 1.20.)

Exercise 1.27. Let A be an n× n nonsingular integral matrix.

(i) Show that there exist n × n unimodular matrices R and C such that
RAC is a diagonal matrix D with diagonal entry di ∈ Z+ \ {0} in row
i and column i, where di divides di+1 for i = 1, . . . , n− 1.

(ii) Show that the diagonal matrix D found in (i) is unique.

Exercise 1.28. Susie meets Roberto at a candy store. Susie tells Roberto:
“I want to buy chocolates for my friends. Unfortunately all the boxes contain
either 7 or 9 chocolates, so it is impossible for me to buy exactly one choco-
late for each of my friends.” How many friends does Susie have, knowing
that she has more than 40?

Exercise 1.29. Let a1, . . . , an be relatively prime positive integers. Show
that there exists a positive integer k such that, for every integer m ≥ k + 1
the equation a1x1 + · · · + anxn = m has a nonnegative integral solution.

44 CHAPTER 1. GETTING STARTED

This is a fantastic proof!

Chapter 2

Integer Programming Models

The importance of integer programming stems from the fact that it can
be used to model a vast array of problems arising from the most disparate
areas, ranging from practical ones (scheduling, allocation of resources, etc.)
to questions in set theory, graph theory, or number theory. We present here
a selection of integer programming models, several of which will be further
investigated later in this book.

2.1 The Knapsack Problem

We are given a knapsack that can carry a maximum weight b and there are
n types of items that we could take, where an item of type i has weight
ai > 0. We want to load the knapsack with items (possibly several items of
the same type) without exceeding the knapsack capacity b. To model this,
let a variable xi represent the number of items of type i to be loaded. Then
the knapsack set

S :=

{
x ∈ Z

n :
n∑

i=1

aixi ≤ b, x ≥ 0

}

contains precisely all the feasible loads.
If an item of type i has value ci, the problem of loading the knapsack so

as to maximize the total value of the load is called the knapsack problem.
It can be modeled as follows:

© Springer International Publishing Switzerland 2014
M. Conforti et al., Integer Programming, Graduate Texts
in Mathematics 271, DOI 10.1007/978-3-319-11008-0 2

45

46 CHAPTER 2. INTEGER PROGRAMMING MODELS

max

{
n∑

i=1

cixi : x ∈ S

}
.

If only one unit of each item type can be selected, we use binary variables
instead of general integers. The 0, 1 knapsack set

K :=

{
x ∈ {0, 1}n :

n∑
i=1

aixi ≤ b

}

can be used to model the 0, 1 knapsack problem max{cx : x ∈ K}.

2.2 Comparing Formulations

Given scalars b > 0 and aj > 0 for j = 1, . . . , n, consider the 0, 1 knapsack
set K := {x ∈ {0, 1}n :

∑n
i=1 aixi ≤ b}. A subset C of indices is a cover

for K if
∑

i∈C ai > b and it is a minimal cover if
∑

i∈C\{j} ai ≤ b for every
j ∈ C. That is, C is a cover if the knapsack cannot contain all items in C,
and it is minimal if every proper subset of C can be loaded. Consider the set

KC :=

{
x ∈ {0, 1}n :

∑
i∈C

xi ≤ |C| − 1 for every minimal cover C for K

}
.

Proposition 2.1. The sets K and KC coincide.

Proof. It suffices to show that (i) if C is a minimal cover of K, the inequality∑
i∈C xi ≤ |C| − 1 is valid for K and (ii) the inequality

∑n
i=1 aixi ≤ b is

valid for KC . The first statement follows from the fact that the knapsack
cannot contain all the items in a minimal cover.

Let x̄ be a vector inKC and let J := {j : x̄j = 1}. Suppose
∑n

i=1 aix̄i > b
or equivalently

∑
i∈J ai > b. Let C be a minimal subset of J such that∑

i∈C ai > b. Then obviously C is a minimal cover and
∑

i∈C x̄i = |C|. This
contradicts the assumption x̄ ∈ KC and the second statement is proved.

So the 0, 1 knapsack problem max{cx : x ∈ K} can also be formulated
as max{cx : x ∈ KC}. The constraints that defineK andKC look quite dif-
ferent. The set K is defined by a single inequality with nonnegative integer
coefficients whereas KC is defined by many inequalities (their number may
be exponential in n) whose coefficients are 0, 1. Which of the two formu-
lations is “better”? This question has great computational relevance and

2.2. COMPARING FORMULATIONS 47

the answer depends on the method used to solve the problem. In this book
we focus on algorithms based on linear programming relaxations (remember
Sect. 1.2) and for these algorithms, the answer can be stated as follows:

Assume that {(x, y) : A1x + G1y ≤ b1, x integral} and {(x, y) : A2x +
G2y ≤ b2, x integral} represent the same mixed integer set S and consider
their linear relaxations P1 = {(x, y) : A1x + G1y ≤ b1}, P2 = {(x, y) :
A2x + G2y ≤ b2}. If P1 ⊂ P2 the first representation is better. If P1 = P2

the two representations are equivalent and if P1 \ P2 and P2 \ P1 are both
nonempty, the two representations are incomparable.

Next we discuss how to compare the two linear relaxations P1 and P2.
If, for every inequality a2x+ g2y ≤ β2 in A2x+G2y ≤ b2, the system

uA1 = a2, uG1 = g2, ub1 ≤ β2, u ≥ 0

admits a solution u ∈ R
m, where m is the number of components of b1, then

every inequality defining P2 is implied by the set of inequalities that define
P1 and therefore P1 ⊆ P2. Indeed, every point in P1 satisfies the inequality
(uA1)x+(uG1)y ≤ ub1 for every nonnegative u ∈ R

m; so in particular every
point in P1 satisfies a2x+ g2y ≤ β2 whenever u satisfies the above system.

Farkas’s lemma, an important result that will be proved in Chap. 3,
implies that the converse is also true if P1 is nonempty. That is

Assume P1 �= ∅. P1 ⊆ P2 if and only if for every inequality
a2x+ g2y ≤ β2 in A2x+G2y ≤ b2 the system uA1 = a2, uG1 =
g2, ub1 ≤ β2, u ≥ 0 is feasible.

This fact is of fundamental importance in comparing the tightness of differ-
ent linear relaxations of a mixed integer set. These conditions can be checked
by solving linear programs, one for each inequality in A2x+G2y ≤ b2.

We conclude this section with two examples of 0, 1 knapsack sets, one
where the minimal cover formulation is better than the knapsack formulation
and another where the reverse holds. Consider the following 0, 1 knapsack
set

K := {x ∈ {0, 1}3 : 3x1 + 3x2 + 3x3 ≤ 5}.

Its minimal cover formulation is

KC :=

⎧⎨
⎩x ∈ {0, 1}3 :

x1 +x2 ≤ 1
x1 +x3 ≤ 1

x2 +x3 ≤ 1

⎫⎬
⎭ .

48 CHAPTER 2. INTEGER PROGRAMMING MODELS

The corresponding linear relaxations are the sets

P := {x ∈ [0, 1]3 : 3x1 + 3x2 + 3x3 ≤ 5}, and

PC :=

⎧⎨
⎩x ∈ [0, 1]3 :

x1 +x2 ≤ 1
x1 +x3 ≤ 1

x2 +x3 ≤ 1

⎫⎬
⎭ .

respectively. By summing up the three inequalities in PC we get

2x1 + 2x2 + 2x3 ≤ 3

which implies 3x1 + 3x2 + 3x3 ≤ 5. Thus PC ⊆ P . The inclusion is strict
since, for instance (1, 23 , 0) ∈ P \ PC . In other words, the minimal cover
formulation is strictly better than the knapsack formulation in this case.

Now consider a slightly modified example. The knapsack set K := {x ∈
{0, 1}3 : x1 + x2 + x3 ≤ 1} has the same minimal cover formulation KC as
above, but this time the inclusion is reversed: We have P := {x ∈ [0, 1]3 :
x1+x2+x3 ≤ 1} ⊆ PC . Furthermore (12 ,

1
2 ,

1
2) ∈ PC \P . In other words, the

knapsack formulation is strictly better than the minimal cover formulation
in this case.

One can also construct examples where neither formulation is better
(Exercise 2.2). In Sect. 7.2.1 we will show how to improve minimal cover
inequalities through a procedure called lifting.

2.3 Cutting Stock: Formulations with Many

Variables

A paper mill produces large rolls of paper of width W , which are then cut
into rolls of various smaller widths in order to meet demand. Let m be
the number of different widths that the mill produces. The mill receives an
order for bi rolls of width wi for i = 1, . . . ,m, where wi ≤ W . How many of
the large rolls are needed to meet the order?

To formulate this problem, we may assume that an upper bound p is
known on the number of large rolls to be used. We introduce variables
j = 1, . . . , n, which take value 1 if large roll j is used and 0 otherwise.
Variables zij , i = 1, . . . ,m, j = 1, . . . , p, indicate the number of small rolls
of width wi to be cut out of roll j. Using these variables, one can formulate
the cutting stock problem as follows:

2.3. CUTTING STOCK: FORMULATIONS WITH MANY. . . 49

min

p∑
j=1

yj

m∑
i=1

wizij ≤ Wyj j = 1, . . . , p

p∑
j=1

zij ≥ bi i = 1, . . . ,m

yj ∈ {0, 1} j = 1, . . . , p
zij ∈ Z+ i = 1, . . . ,m, j = 1, . . . , p.

(2.1)

The first set of constraints ensures that the sum of the widths of the
small rolls cut out of a large roll does not exceed W , and that a large roll
is used whenever a small roll is cut out of it. The second set ensures that
the numbers of small rolls that are cut meets the demands. Computational
experience shows that this is not a strong formulation: The bound provided
by the linear programming relaxation is rather distant from the optimal
integer value.

A better formulation is needed. Let us consider all the possible different
cutting patterns. Each pattern is represented by a vector s ∈ Z

m where
component i represents the number of rolls of width wi cut out of the big
roll. The set of cutting patterns is therefore S := {s ∈ Z

n :
∑m

i=1 wisi ≤
W, s ≥ 0}. Note that S is a knapsack set. For example, if W = 5, and the
order has rolls of 3 different widths w1 = 2.1, w2 = 1.8 and w3 = 1.5, a

possible cutting pattern consists of 3 rolls of width 1.5, i.e.,

⎛
⎝
0
0
3

⎞
⎠, another

consists of one roll of width 2.1 and one of width 1.8, i.e.,

⎛
⎝
1
1
0

⎞
⎠, etc.

If we introduce integer variables xs representing the number of rolls cut
according to pattern s ∈ S, the cutting stock problem can be formulated as

min
∑
s∈S

xs

∑
s∈S

sixs ≥ bi i = 1, . . . ,m

x ≥ 0 integral.

(2.2)

50 CHAPTER 2. INTEGER PROGRAMMING MODELS

This is an integer programming formulation in which the columns of the
constraint matrix are all the feasible solutions of a knapsack set. The number
of these columns (i.e., the number of possible patterns) is typically enormous,
but this is a strong formulation in the sense that the bound provided by
the linear programming relaxation is usually close to the optimal value of
the integer program. A good solution to the integer program can typically
be obtained by simply rounding the linear programming solution. How-
ever, solving the linear programming relaxation of (2.2) is challenging. This
is best done using column generation, as first proposed by Gilmore and
Gomory [168]. We briefly outline this technique here. We will return to it in
Sect. 8.2.2. We suggest that readers not familiar with linear programming
duality (which will be discussed later in Sect. 3.3) skip directly to Sect. 2.4.

The dual of the linear programming relaxation of (2.2) is:

max

m∑
i=1

biui

m∑
i=1

siui ≤ 1 s ∈ S

u ≥ 0.

(2.3)

Let S ′ be a subset of S, and consider the cutting stock problem (2.2)
restricted to the variables indexed by S ′. The dual is the problem defined
by the inequalities from (2.3) indexed by S ′. Let x̄, ū be optimal solutions
to the linear programming relaxations of (2.2) and (2.3) restricted to S ′. By
setting x̄s = 0, s ∈ S \ S ′, x̄ can be extended to a feasible solution of the
linear relaxation of (2.2). By strong duality x̄ is an optimal solution of the
linear relaxation of (2.2) if ū provides a feasible solution to (2.3) (defined
over S). The solution ū is feasible for (2.3) if and only if

∑m
i=1 siūi ≤ 1 for

every s ∈ S or equivalently if and only if the value of the following knapsack
problem is at most equal to 1.

max{
m∑
i=1

ūisi : s ∈ S}

If the value of this knapsack problem exceeds 1, let s∗ be an optimal solution.
Then s∗ corresponds to a constraint of (2.3) that is most violated by ū, and
s∗ is added to S ′, thus enlarging the set of candidate patterns.

This is the column generation scheme, where variables of a linear program
with exponentially many variables are generated on the fly when strong
duality is violated, by solving an optimization problem (knapsack, in our
case).

2.4. PACKING, COVERING, PARTITIONING 51

2.4 Packing, Covering, Partitioning

Let E := {1, . . . , n} be a finite set and F := {F1, . . . , Fm} a family of subsets
of E. A set S ⊆ E is said to be a packing, partitioning or covering of the
family F if S intersects each member of F at most once, exactly once, or
at least once, respectively. Representing a set S ⊆ E by its characteristic
vector xS ∈ {0, 1}n, i.e., xSj = 1 if j ∈ S, and xSj = 0 otherwise, the families
of packing, partitioning and covering sets have the following formulations.

SP := {x ∈ {0, 1}n :
∑

j∈Fi
xj ≤ 1,∀Fi ∈ F},

ST := {x ∈ {0, 1}n :
∑

j∈Fi
xj = 1,∀Fi ∈ F},

SC := {x ∈ {0, 1}n :
∑

j∈Fi
xj ≥ 1,∀Fi ∈ F}.

Given weights wj on the elements j = 1, . . . , n, the set packing problem is
max{

∑n
j=1wjxj : x ∈ SP }, the set partitioning problem is min{

∑n
j=1wjxj :

x ∈ ST }, and the set covering problem is min{
∑n

j=1wjxj : x ∈ SC}.
Given E := {1, . . . , n} and a family F := {F1, . . . , Fm} of subsets of E,

the incidence matrix of F is them×n 0, 1 matrix in which aij = 1 if and only
if j ∈ Fi. Then SP = {x ∈ {0, 1}n : Ax ≤ 1}, where 1 denotes the column
vector in R

m all of whose components are equal to 1. Similarly the sets ST ,
SC can be expressed in terms of A. Conversely, given any 0,1 matrix A,
one can define a set packing family SP (A) := {x ∈ {0, 1}n : Ax ≤ 1}. The
families ST (A), SC(A) are defined similarly.

Numerous practical problems and several problems in combinatorics and
graph theory can be formulated as set packing or covering. We illustrate
some of them.

2.4.1 Set Packing and Stable Sets

Let G = (V,E) be an undirected graph and let n := |V |. A stable set in G is
a set of nodes no two of which are adjacent. Therefore S ⊆ V is a stable set if
and only if its characteristic vector x ∈ {0, 1}n satisfies xi+xj ≤ 1 for every
edge ij ∈ E. If we consider E as a family of subsets of V , the characteristic
vectors of the stable sets in G form a set packing family, namely

stab(G) := {x ∈ {0, 1}n : xi + xj ≤ 1 for all ij ∈ E}.

We now show the converse: Every set packing family is the family of
characteristic vectors of the stable sets of some graph. Given an m × n
0, 1 matrix A, the intersection graph of A is an undirected simple graph

52 CHAPTER 2. INTEGER PROGRAMMING MODELS

GA = (V,E) on n nodes, corresponding to the columns of A. Two nodes
u, v are adjacent in GA if and only if aiu = aiv = 1 for some row index i,
1 ≤ i ≤ m. In Fig. 2.1 we show a matrix A and its intersection graph.

A :=

1 1 0 0 1
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
0 1 0 1 0

1
2

3

4

5

Figure 2.1: A 0, 1 matrix A and its intersection graph GA

We have SP (A) = stab(GA) since a vector x ∈ {0, 1}n is in SP (A) if and
only if xj + xk ≤ 1 whenever aij = aik = 1 for some row i.

All modern integer programming solvers use intersection graphs to model
logical conditions among the binary variables of integer programming formu-
lations. Nodes are often introduced for the complement of binary variables
as well: This is useful to model conditions such as xi ≤ xj, which can be
reformulated in set packing form as xi + (1 − xj) ≤ 1. In this context,
the intersection graph is called a conflict graph. We refer to the paper of
Atamtürk, Nemhauser, and Savelsbergh [16] for the use of conflict graphs
in integer programming. This paper stresses the practical importance of
strengthening set packing formulations.

2.4.2 Strengthening Set Packing Formulations

Given a 0, 1 matrix A, the correspondence between SP (A) and stab(GA)
can be used to strengthen the formulation {x ∈ {0, 1}n : Ax ≤ 1}.

A clique in a graph is a set of pairwise adjacent nodes. Since a clique K
in GA intersects any stable set in at most one node, the inequality

∑
j∈K

xj ≤ 1

is valid for SP (A) = stab(GA). This inequality is called a clique inequality.
Conversely, given Q ⊆ V , if

∑
j∈Q xj ≤ 1 is a valid inequality for stab(GA),

then every pair of nodes in Q must be adjacent, that is, Q is a clique of GA.
A clique is maximal if it is not properly contained in any other clique.

Note that, given two cliques K, K ′ in GA such that K ⊂ K ′, inequality∑
j∈K xj ≤ 1 is implied by the inequalities

∑
j∈K ′ xj ≤ 1 and xj ≥ 0,

j ∈ K ′ \K.

2.4. PACKING, COVERING, PARTITIONING 53

On the other hand, the following argument shows that no maximal clique
inequality is implied by the other clique inequalities and the constraints
0 ≤ xj ≤ 1. Let K be a maximal clique of GA. We will exhibit a point
x̄ ∈ [0, 1]V that satisfies all clique inequalities except for the one relative
to K. Let x̄j := 1

|K|−1 for all j ∈ K and x̄j := 0 otherwise. Since K is a

maximal clique, every other clique K ′ intersects it in at most |K|− 1 nodes,
therefore

∑
j∈K ′ x̄j ≤ 1. On the other hand,

∑
j∈K x̄j = 1 + 1

|K|−1 > 1. We
have shown the following.

Theorem 2.2. Given an m× n 0, 1 matrix A, let K be the collection of all
maximal cliques of its intersection graph GA. The strongest formulation for
SP (A) = stab(GA) that only involves set packing constraints is

{x ∈ {0, 1}n :
∑
j∈K

xj ≤ 1,∀K ∈ K}.

Example 2.3. In the example of Fig. 2.1, the inequalities x2+x3+x4 ≤ 1
and x2 + x4 + x5 ≤ 1 are clique inequalities relative to the cliques {2, 3, 4}
and {2, 4, 5} in GA. Note that the point (0, 1/2, 1/2, 1/2, 0) satisfies Ax ≤ 1,
0 ≤ x ≤ 1 but violates x2 + x3 + x4 ≤ 1. A better formulation of Ax ≤ 1,
x ∈ {0, 1}n is obtained by replacing the constraint matrix A by the maximal
clique versus node incidence matrix Ac of the intersection graph of A. For

the example of Fig. 2.1, Ac :=

⎛
⎝

1 1 0 0 1
0 1 1 1 0
0 1 0 1 1

⎞
⎠. The reader can verify

that this formulation is perfect, as defined in Sect. 1.4. �
Note that the strongest set packing formulation described in Theorem 2.2

may contain exponentially many inequalities. If K denotes the collection
of all maximal cliques of a graph G, the |K| × n incidence matrix of K is
called the clique matrix of G. Exercise 2.10 gives a characterization of clique
matrices due to Gilmore [167]. Theorem 2.2 prompts the following question:

For which graphs G is the formulation defined in Theorem 2.2 a
perfect formulation of stab(G)?

This leads to the theory of perfect graphs, see Sect. 4.11 for references on
this topic. In Chap. 10 we will discuss a semidefinite relaxation of stab(G).

2.4.3 Set Covering and Transversals

We have seen the equivalence between general packing sets and stable sets
in graphs. Covering sets do not seem to have an equivalent graphical rep-
resentation. However some important questions in graph theory regarding

54 CHAPTER 2. INTEGER PROGRAMMING MODELS

connectivity, coloring, parity, and others can be formulated using covering
sets. We first introduce a general setting for these formulations.

Given a finite set E := {1, . . . , n}, a family S := {S1, . . . , Sm} of subsets
E is a clutter if it has the following property:

For every pair Si, Sj ∈ S, both Si \Sj and Sj \Si are nonempty.

A subset T of E is a transversal of S if T ∩ Si �= ∅ for every Si ∈ S.
Let T := {T1, . . . , Tq} be the family of all inclusionwise minimal transversals
of S. The family T is a clutter as well, called the blocker of S. The following
set-theoretic property, due to Lawler [251] and Edmonds and Fulkerson [127],
is fundamental for set covering formulations.

Proposition 2.4. Let S be a clutter and T its blocker. Then S is the blocker
of T .

Proof. Let Q be the blocker of T . We need to show that Q = S. By
definition of clutter, it suffices to show that every member of S contains
some member of Q and every member of Q contains some member of S.

Let Si ∈ S. By definition of T , Si ∩ T �= ∅ for every T ∈ T . Therefore
Si is a transversal of T . Because Q is the blocker of T , this implies that Si

contains a member of Q.
We now show the converse, namely every member of Q contains a mem-

ber of S. Suppose not. Then there exists a member Q of Q such that
(E \Q)∩S �= ∅ for every S ∈ S. Therefore E \Q is a transversal of S. This
implies that E \ Q contains some member T ∈ T . But then Q ∩ T = ∅, a
contradiction to the assumption that Q is a transversal of T .

In light of the previous proposition, we call the pair of clutters S and its
blocker T a blocking pair.

Given a vector x ∈ R
n, the support of x is the set {i ∈ {1, . . . , n} :

xi �= 0}. Proposition 2.4 yields the following:

Observation 2.5. Let S, T be a blocking pair of clutters and let A be the
incidence matrix of T . The vectors with minimal support in the set covering
family SC(A) are the characteristic vectors of the family S.

Consider the following problem, which arises often in combinatorial
optimization (we give three examples in Sect. 2.4.4).

Let E := {1, . . . , n} be a set of elements where each element j = 1, . . . , n
is assigned a nonnegative weight wj , and let R be a family of subsets of E.
Find a member S ∈ R having minimum weight

∑
j∈S wj.

2.4. PACKING, COVERING, PARTITIONING 55

Let S be the clutter consisting of the minimal members of R. Note
that, since the weights are nonnegative, the above problem always admit an
optimal solution that is a member of S.

Let T be the blocker of S and A the incidence matrix of T . In light of
Observation 2.5 an integer programming formulation for the above problem
is given by

min{wx : x ∈ SC(A)}.

2.4.4 Set Covering on Graphs: Many Constraints

We now apply the technique introduced above to formulate some optimiza-
tion problems on an undirected graph G = (V,E) with nonnegative edge
weights we, e ∈ E.

Given S ⊆ V , let δ(S) := {uv ∈ E : u ∈ S, v /∈ S}. A cut in G is a set F
of edges such that F = δ(S) for some S ⊆ V . A cut F is proper if F = δ(S)
for some ∅ �= S ⊂ V . For every node v, we will write δ(v) := δ({v}) to
denote the set of edges containing v. The degree of node v is |δ(v)|.

Minimum Weight s, t-Cuts

Let s, t be two distinct nodes of a connected graph G. An s, t-cut is a
cut of the form δ(S) such that s ∈ S and t /∈ S. Given nonnegative weights
on the edges, we for e ∈ E, the minimum weight s, t-cut problem is to find
an s, t-cut F that minimizes

∑
e∈F we.

An s, t-path in G is a path between s and t in G. Equivalently, an s,
t-path is a minimal set of edges that induce a connected graph containing
both s and t. Let S be the family of inclusionwise minimal s, t-cuts. Note
that its blocker T is the family of s, t-paths. Therefore the minimum weight
s, t-cut problem can be formulated as follows:

min
∑

e∈E wexe∑
e∈P xe ≥ 1 for all s, t-paths P

xe ∈ {0, 1} e ∈ E.

Fulkerson [156] showed that the above formulation is a perfect formu-
lation. Ford and Fulkerson [146] gave a polynomial-time algorithm for the
minimumweight of an s, t-cut problem, and proved that the minimum weight
of an s, t-cut is equal to the maximum value of an s, t-flow. This will be dis-
cussed in Chap. 4.

Let A be the incidence matrix of a clutter and B the incidence matrix
of its blocker. Lehman [254] proved that SC(A) is a perfect formulation if

56 CHAPTER 2. INTEGER PROGRAMMING MODELS

and only if SC(B) is a perfect formulation. Lehman’s theorem together with
Fulkerson’s theorem above imply that the following linear program solves
the shortest s, t-path problem when w ≥ 0:

min
∑

e∈E wexe∑
e∈C xe ≥ 1 for all s, t-cuts C

0 ≤ xe ≤ 1 e ∈ E.

We give a more traditional formulation of the shortest s, t-path problem in
Sect. 4.3.2.

Minimum Cut

In the min-cut problem one wants to find a proper cut of minimum total
weight in a connected graph G with nonnegative edge weights we, e ∈ E.
An edge set T ⊆ E is a spanning tree of G if it is an inclusionwise minimal
set of edges such that the graph (V, T) is connected.

Let S be the family of inclusionwise minimal proper cuts. Note that the
blocker of S is the family of spanning trees of G, hence one can formulate
the min-cut problem as

min
∑

e∈E wexe∑
e∈T xe ≥ 1 for all spanning trees T

xe ∈ {0, 1} e ∈ E.
(2.4)

This is not a perfect formulation (see Exercise 2.13). Nonetheless, the
min-cut problem is polynomial-time solvable. A solution can be found by
fixing a node s ∈ V , computing a minimum weight s, t-cut for every choice
of t in V \ {s}, and selecting the cut of minimum weight among the |V | − 1
cuts computed.

Max-Cut

Given a graph G = (V,E) with edge weights we, e ∈ E, the max-cut
problem asks to find a set F ⊆ E of maximum total weight in G such that
F is a cut of G. That is, F = δ(S), for some S ⊆ V .

Given a graph G = (V,E) and C ⊆ E, let V (C) denote the set of nodes
that belong to at least one edge in C. A set of edges C ⊆ E is a cycle in G if
the graph (V (C), C) is connected and all its nodes have degree two. A cycle
C in G is an odd cycle if C has an odd number of edges. A basic fact in
graph theory states that a set F ⊆ E is contained in a cut of G if and only
if (E \ F) ∩ C �= ∅ for every odd cycle C of G (see Exercise 2.14).

2.4. PACKING, COVERING, PARTITIONING 57

Therefore when we ≥ 0, e ∈ E, the max-cut problem in the graph
G = (V,E) can be formulated as the problem of finding a set E′ ⊆ E of
minimum total weight such that E′ ∩ C �= ∅ for every odd cycle C of G.

min
∑

e∈E wexe∑
e∈C xe ≥ 1 for all odd cycles C

xe ∈ {0, 1} e ∈ E.
(2.5)

Given an optimal solution x̄ to (2.5), the optimal solution of the max-cut
problem is the cut {e ∈ E : x̄e = 0}.

Unlike the two previous examples, the max-cut problem is NP-hard.
However, Goemans and Williamson [173] show that a near-optimal solution
can be found in polynomial time, using a semidefinite relaxation that will
be discussed in Sect. 10.2.1.

2.4.5 Set Covering with Many Variables: Crew Scheduling

An airline wants to operate its daily flight schedule using the smallest
number of crews. A crew is on duty for a certain number of consecutive
hours and therefore may operate several flights. A feasible crew schedule is
a sequence of flights that may be operated by the same crew within its duty
time. For instance it may consist of the 8:30–10:00 am flight from Pitts-
burgh to Chicago, then the 11:30 am–1:30 pm Chicago–Atlanta flight and
finally the 2:45–4:30 pm Atlanta–Pittsburgh flight.

Define A = {aij} to be the 0, 1 matrix whose rows correspond to the
daily flights operated by the company and whose columns correspond to all
the possible crew schedules. The entry aij equals 1 if flight i is covered by
crew schedule j, and 0 otherwise. The problem of minimizing the number
of crews can be formulated as

min{
∑
j

xj : x ∈ SC(A)}.

In an optimal solution a flight may be covered by more than one crew: One
crew operates the flight and the other occupies passenger seats. This is
why the above formulation involves covering constraints. The number of
columns (that is, the number of possible crew schedules) is typically enor-
mous. Therefore, as in the cutting stock example, column generation is
relevant in crew scheduling applications.

58 CHAPTER 2. INTEGER PROGRAMMING MODELS

2.4.6 Covering Steiner Triples

Fulkerson, Nemhauser, and Trotter [157] constructed set covering problems
of small size that are notoriously difficult to solve. A Steiner triple system
of order n (denoted by STS(n)) consists of a set E of n elements and a
collection S of triples of E with the property that every pair of elements in
E appears together in a unique triple in S. It is known that a Steiner triple
system of order n exists if and only if n ≡ 1 or 3 mod 6. A subset C of
E is a covering of the Steiner triple system if C ∩ T �= ∅ for every triple T
in S. Given a Steiner triple system, the problem of computing the smallest
cardinality of a cover is

min{
∑
j

xj : x ∈ SC(A)}

where A is the |S| × n incidence matrix of the collection S. Fulkerson,
Nemhauser, and Trotter constructed an infinite family of Steiner triple sys-
tems in 1974 and asked for the smallest cardinality of a cover. The question
was solved 5 years later for STS(45), it took another 15 years for STS(81),
and the current record is the solution of STS(135) and STS(243) [292].

2.5 Generalized Set Covering: The Satisfiability

Problem

We generalize the set covering model by allowing constraint matrices whose
entries are 0,±1 and we use it to formulate problems in propositional logic.

Atomic propositions x1, . . . , xn can be either true or false. A truth

assignment is an assignment of “true” or “false” to every atomic proposition.
A literal L is an atomic proposition xj or its negation ¬xj. A conjunction
of two literals L1 ∧ L2 is true if both literals are true and a disjunction of
two literals L1 ∨ L2 is true if at least one of L1, L2 is true. A clause is a
disjunction of literals and it is satisfied by a given truth assignment if at
least one of its literals is true.

For example, the clause with three literals x1 ∨ x2 ∨ ¬x3 is satisfied if
“x1 is true or x2 is true or x3 is false.” In particular, it is satisfied by the
truth assignment x1 = x2 = x3 = “false.”

2.5. GENERALIZED SET COVERING: THE SATISFIABILITY. . . 59

It is usual to identify truth assignments with 0,1 vectors: xi = 1 if
xi = “true” and xi = 0 if xi = “false.” A truth assignment satisfies the
clause ∨

j∈P
xj ∨ (

∨
j∈N

¬xj)

if and only if the corresponding 0, 1 vector satisfies the inequality

∑
j∈P

xj −
∑
j∈N

xj ≥ 1− |N |.

For example the clause x1 ∨ x2 ∨ ¬x3 is satisfied if and only if the corre-
sponding 0, 1 vector satisfies the inequality x1 + x2 − x3 ≥ 0.

A logic statement consisting of a conjunction of clauses is said to be in
conjunctive normal form. For example the logical proposition (x1 ∨ x2 ∨
¬x3) ∧ (x2 ∨ x3) is in conjunctive normal form. Such logic statements can
be represented by a system of m linear inequalities, where m is the number
of clauses in the conjunctive normal form. This can be written in the form:

Ax ≥ 1− n(A) (2.6)

where A is an m × n 0,±1 matrix and the ith component of n(A) is the
number of −1’s in row i of A. For example the logical proposition (x1∨x2∨
¬x3) ∧ (x2 ∨ x3) corresponds to the system of constraints

x1 + x2 − x3 ≥ 0
x2 + x3 ≥ 1

xi ∈ {0, 1}3.

In this example A =

(
1 1 −1
0 1 1

)
and n(A) =

(
1
0

)
.

Every logic statement can be written in conjunctive normal form by using
rules of logic such as L1 ∨ (L2 ∧ L3) = (L1 ∨ L2) ∧ (L1 ∨ L3), ¬(L1 ∧ L2) =
¬L1 ∨ ¬L2, etc. This will be illustrated in Exercises 2.24, 2.25.

We present two classical problems in logic.
The satisfiability problem (SAT) for a set S of clauses, asks for a truth

assignment satisfying all the clauses in S or a proof that none exists.
Equivalently, SAT consists of finding a 0, 1 solution x to (2.6) or showing
that none exists.

Logical inference in propositional logic consists of a set S of clauses (the
premises) and a clause C (the conclusion), and asks whether every truth

60 CHAPTER 2. INTEGER PROGRAMMING MODELS

assignment satisfying all the clauses in S also satisfies the conclusion C.
To the clause C, we associate the inequality

∑
j∈P (C)

xj −
∑

j∈N(C)

xj ≥ 1− |N(C)|. (2.7)

Therefore the conclusion C cannot be deduced from the premises S if and
only if (2.6) has a 0, 1 solution that violates (2.7).

Equivalently C cannot be deduced from S if and only if the integer
program

min

⎧⎨
⎩

∑
j∈P (C)

xj −
∑

j∈N(C)

xj : Ax ≥ 1− n(A), x ∈ {0, 1}n
⎫⎬
⎭

has a solution with value −|n(C)|.

2.6 The Sudoku Game

The game is played on a 9×9 grid which is subdivided into 9 blocks of 3×3
contiguous cells. The grid must be filled with numbers 1, . . . , 9 so that all
the numbers between 1 and 9 appear in each row, in each column and in
each of the nine blocks. A game consists of an initial assignment of numbers
in some cells (Fig. 2.2).

1

1
1

2

2

3

3

3
4

4

5
5

5

6

6

7

7
7

8

8
8

8

9

Figure 2.2: An instance of the Sudoku game

This is a decision problem that can be modeled with binary variables
xijk, 1 ≤ i, j, k ≤ 9 where xijk = 1 if number k is entered in position with
coordinates i, j of the grid, and 0 otherwise.

2.7. THE TRAVELING SALESMAN PROBLEM 61

The constraints are:

∑9
i=1 xijk = 1, 1 ≤ j, k ≤ 9 (each number k appears once in column j)∑9
j=1 xijk = 1, 1 ≤ i, k ≤ 9 (each k appears once in row i)∑2

q,r=0 xi+q,j+r,k = 1, i, j = 1, 4, 7, 1 ≤ k ≤ 9 (each k appears once in a block)∑9
k=1 xijk = 1, 1 ≤ i, j ≤ 9 (each cell contains exactly one number)

xijk ∈ {0, 1}, 1 ≤ i, j, k ≤ 9

xijk = 1, when the initial assignment has number k in cell i, j.

In constraint programming, variables take values in a specified domain,
which may include data that are non-quantitative, and constraints restrict
the space of possibilities in a way that is more general than the one given
by linear constraints. We refer to the book “Constraint Processing” by R.
Dechter [108] for an introduction to constraint programming. One of these
constraints is \alldifferent{z1, . . . , zn} which forces variables z1, . . . , zn
to take distinct values in the domain. Using the \alldifferent{} con-
straint, we can formulate the Sudoku game using 2-index variables, instead
of the 3-index variables used in the above integer programming formulation.
Variable xij represents the value in the cell of the grid with coordinates
(i, j). Thus xij take its values in the domain {1, . . . , 9} and there is an
\alldifferent{} constraint that involves the set of variables in each row,
each column and each of the nine blocks.

2.7 The Traveling Salesman Problem

This section illustrates the fact that several formulations may exist for a
given problem, and it is not immediately obvious which is the best for
branch-and-cut algorithms.

A traveling salesman must visit n cities and return to the city he started
from. We will call this a tour. Given the cost cij of traveling from city i to
city j, for each 1 ≤ i, j ≤ n with i �= j, in which order should the salesman
visit the cities to minimize the total cost of his tour? This problem is
the famous traveling salesman problem. If we allow costs cij and cji to be
different for any given pair of cities i, j, then the problem is referred to as
the asymmetric traveling salesman problem, while if cij = cji for every pair
of cities i and j, the problem is known as the symmetric traveling salesman
problem. In Fig. 2.3, the left diagram represents eight cities in the plane.
The cost of traveling between any two cities is assumed to be proportional
to the Euclidean distance between them. The right diagram depicts the
optimal tour.

62 CHAPTER 2. INTEGER PROGRAMMING MODELS

Figure 2.3: An instance of the symmetric traveling salesman problem in the
Euclidean plane, and the optimal tour

It will be convenient to define the traveling salesman problem on a graph
(directed or undirected). Given a digraph (a directed graph) D = (V,A),
a (directed) Hamiltonian tour is a circuit that traverses each node exactly
once. Given costs ca, a ∈ A, the asymmetric traveling salesman problem on
D consists in finding a Hamiltonian tour in D of minimum total cost. Note
that, in general, D might not contain any Hamiltonian tour. We give three
different formulations for the asymmetric traveling salesman problem.

The first formulation is due to Dantzig, Fulkerson, and Johnson [103].
They introduce a binary variable xij for all ij ∈ A, where xij = 1 if the tour
visits city j immediately after city i, and 0 otherwise. Given a set of cities
S ⊆ V , let δ+(S) := {ij ∈ A : i ∈ S, j /∈ S}, and let δ−(S) := {ij ∈ A :
i /∈ S, j ∈ S}. For ease of notation, for v ∈ V we use δ+(v) and δ−(v) instead
of δ+({v}) and δ−({v}). The Dantzig–Fulkerson–Johnson formulation of the
traveling salesman problem is as follows.

min
∑
a∈A

caxa (2.8)

∑
a∈δ+(i)

xa = 1 for i ∈ V (2.9)

∑
a∈δ−(i)

xa = 1 for i ∈ V (2.10)

∑
a∈δ+(S)

xa ≥ 1 for ∅ ⊂ S ⊂ V (2.11)

xa ∈ {0, 1} for a ∈ A. (2.12)

Constraints (2.9)–(2.10), known as degree constraints, guarantee that the
tour visits each node exactly once and constraints (2.11) guarantee that
the solution does not decompose into several subtours. Constraints (2.11)
are known under the name of subtour elimination constraints. Despite the

2.7. THE TRAVELING SALESMAN PROBLEM 63

exponential number of constraints, this is the formulation that is most widely
used in practice. Initially, one solves the linear programming relaxation
that only contains (2.9)–(2.10) and 0 ≤ xij ≤ 1. The subtour elimination
constraints are added later, on the fly, only when needed. This is possible
because the so-called separation problem can be solved efficiently for such
constraints (see Chap. 4).

Miller, Tucker and Zemlin [278] found a way to avoid the subtour elim-
ination constraints (2.11). Assume V = {1, . . . , n}. The formulation has
extra variables ui that represent the position of node i ≥ 2 in the tour,
assuming that the tour starts at node 1, i.e., node 1 has position 1. Their
formulation is identical to (2.8)–(2.12) except that (2.11) is replaced by

ui − uj + 1 ≤ n(1− xij) for all ij ∈ A, i, j �= 1. (2.13)

It is not difficult to verify that the Miller–Tucker–Zemlin formulation
is correct. Indeed, if x is the incident vector of a tour, define ui to be
the position of node i in the tour, for i ≥ 2. Then constraint (2.13) is
satisfied. Conversely, if x ∈ {0, 1}E satisfies (2.9)–(2.10) but is not the
incidence vector of a tour, then (2.9)–(2.10) and (2.12) imply that there is
at least one subtour C ⊆ A that does not contain node 1. Summing the
inequalities (2.13) relative to every ij ∈ C gives the inequality |C| ≤ 0, a
contradiction. Therefore, if (2.9)–(2.10), (2.12), (2.13) are satisfied, x must
represent a tour. Although the Miller–Tucker–Zemlin formulation is correct,
we will show in Chap. 4 that it produces weaker bounds for branch-and-cut
algorithms than the Dantzig–Fulkerson–Johnson formulation. It is for this
reason that the latter is preferred in practice.

It is also possible to formulate the traveling salesman problem using
variables xak for every a ∈ A, k ∈ V , where xak = 1 if arc a is the kth leg
of the Hamiltonian tour, and xak = 0 otherwise. The traveling salesman
problem can be formulated as follows.

min
∑
a∈A

∑
k

caxak

∑
a∈δ+(i)

∑
k

xak = 1 for i = 1, . . . , n

∑
a∈δ−(i)

∑
k

xak = 1 for i = 1, . . . , n

(2.14)

64 CHAPTER 2. INTEGER PROGRAMMING MODELS

∑
a∈A

xak = 1 for k = 1, . . . , n

∑
a∈δ−(i)

xak =
∑

a∈δ+(i)

xa,k+1 for i = 1, . . . , n and k = 1, . . . , n− 1

∑
a∈δ−(1)

xan =
∑

a∈δ+(1)

xa1 = 1

xak = 0 or 1 for a ∈ A, k = 1, . . . , n.

The first three constraints impose that each city is entered once, left once,
and each leg of the tour contains a unique arc. The next constraint imposes
that if leg k brings the salesman to city i, then he leaves city i on leg k+1.
The last constraint imposes that the first leg starts from city 1 and the last
returns to city 1. The main drawback of this formulation is its large number
of variables.

The Dantzig–Fulkerson–Johnson formulation has a simple form in the
case of the symmetric traveling salesman problem. Given an undirected
graph G = (V,E), a Hamiltonian tour is a cycle that goes exactly once
through each node of G. Given costs ce, e ∈ E, the symmetric traveling
salesman problem is to find a Hamiltonian tour in G of minimum total cost.
The Dantzig–Fulkerson–Johnson formulation for the symmetric traveling
salesman problem is the following.

min
∑
e∈E

cexe

∑
e∈δ(i)

xe = 2 for i ∈ V

∑
e∈δ(S)

xe ≥ 2 for ∅ ⊂ S ⊂ V

xe ∈ {0, 1} for e ∈ E.

(2.15)

In this context
∑

e∈δ(i) xe = 2 for i ∈ V are the degree constraints and∑
e∈δ(S) xe ≥ 2 for ∅ ⊂ S ⊂ V are the subtour elimination constraints.

Despite its exponential number of constraints, the formulation (2.15) is very
effective in practice. We will return to this formulation in Chap. 7.

Kaibel andWeltge [224] show that the traveling salesman problem cannot
be formulated with polynomially many inequalities in the space of variables
xe, e ∈ E.

2.8. THE GENERALIZED ASSIGNMENT PROBLEM 65

2.8 The Generalized Assignment Problem

The generalized assignment problem is the following 0,1 program, defined by
coefficients cij and tij, and capacities Tj , i = 1, . . . ,m, j = 1, . . . , n,

max

m∑
i=1

n∑
j=1

cijxij

n∑
j=1

xij = 1 i = 1, . . . ,m

m∑
i=1

tijxij ≤ Tj j = 1, . . . , n

x ∈ {0, 1}m×n.

(2.16)

The following example is a variation of this model. In hospitals, operat-
ing rooms are a scarce resource that needs to be utilized optimally. The basic
problem can be formulated as follows, acknowledging that each hospital will
have its own specific additional constraints. Suppose that a hospital has n
operating rooms. During a given time period T , there may be m surgeries
that could potentially be scheduled. Let tij be the estimated time of oper-
ating on patient i in room j, for i = 1, . . . ,m, j = 1, . . . , n. The goal is to
schedule surgeries during the given time period so as to waste as little of the
operating rooms’ capacity as possible.

Let xij be a binary variable that takes the value 1 if patient i is oper-
ated on in operating room j, and 0 otherwise. The basic operating rooms
scheduling problem is as follows:

max
∑m

i=1

∑n
j=1 tijxij∑n

j=1 xij ≤ 1 i = 1, . . . ,m∑m
i=1 tijxij ≤ T j = 1, . . . , n

x ∈ {0, 1}m×n.

(2.17)

The objective is to maximize the utilization time of the operating rooms
during the given time period (this is equivalent to minimizing wasted
capacity). The first constraints guarantee that each patient i is operated
on at most once. If patient i must be operated on during this period, the
inequality constraint is changed into an equality. The second constraints are
the capacity constraints on each of the operating rooms.

A special case of interest is when all operating rooms are identical, that
is, tij := ti, i = 1, . . . ,m, j = 1, . . . , n, where the estimated time ti of
operation i is independent of the operating room. In this case, the above
formulation admits numerous symmetric solutions, since permuting operat-
ing rooms does not modify the objective value. Intuitively, symmetry in the

66 CHAPTER 2. INTEGER PROGRAMMING MODELS

problem seems helpful but, in fact, it may cause difficulties in the context of
a standard branch-and-cut algorithm. This is due to the creation of a poten-
tially very large number of isomorphic subproblems in the enumeration tree,
resulting in a duplication of the computing effort unless the isomorphisms
are discovered. Special techniques are available to deal with symmetries,
such as isomorphism pruning, which can be incorporated in branch-and-cut
algorithms. We will discuss this in Chap. 9.

The operating room scheduling problem is often complicated by the fact
that there is also a limited number of surgeons, each surgeon can only
perform certain operations, and a support team (anesthesiologist, nurses)
needs to be present during the operation. To deal with these aspects of the
operating room scheduling problem, one needs new variables and constraints.

2.9 The Mixing Set

We now describe a mixed integer linear set associated with a simple make-
or-buy problem. The demand for a given product takes values b1, . . . , bn ∈ R

with probabilities p1, . . . , pn. Note that the demand values in this problem
need not be integer. Today we produce an amount y ∈ R of the product
at a unit cost h, before knowing the actual demand. Tomorrow the actual
demand bi is experienced; if bi > y then we purchase the extra amount
needed to meet the demand at a unit cost c. However, the product can only
be purchased in unit batches, that is, in integer amounts. The problem is
to describe the production strategy that minimizes the expected total cost.
Let xi be the amount purchased tomorrow if the demand takes value bi.
Define the mixing set

MIX :=
{
(y, x) ∈ R+ × Z

n
+ : y + xi ≥ bi, 1 ≤ i ≤ n

}
.

Then the above problem can be formulated as

min hy + c
∑n

i=1 pixi
(y, x) ∈ MIX.

2.10 Modeling Fixed Charges

Integer variables naturally represent entities that come in discrete amounts.
They can also be used to model:

– logical conditions such as implications or dichotomies;

– nonlinearities, such as piecewise linear functions;

– nonconvex sets that can be expressed as a union of polyhedra.

2.10. MODELING FIXED CHARGES 67

y

cost

M

Figure 2.4: Fixed and variable costs

We introduce some of these applications. Economic activities frequently
involve both fixed and variable costs. In this case, the cost associated with
a certain variable y is 0 when the variable y takes value 0, and it is c + hy
whenever y takes positive value (see Fig. 2.4). For example, variable y may
represent a production quantity that incurs both a fixed cost if anything
is produced at all (e.g., for setting up the machines), and a variable cost
(e.g., for operating the machines). This situation can be modeled using a
binary variable x indicating whether variable y takes a positive value. Let
M be some upper bound, known a priori, on the value of variable y. The
(nonlinear) cost of variable y can be written as the linear expression

cx+ hy

where we impose

y ≤ Mx
x ∈ {0, 1}
y ≥ 0.

Such “big M” formulations should be used with caution in integer program-
ming because their linear programming relaxations tend to produce weak
bounds in branch-and-bound algorithms. Whenever possible, one should
use the tightest known bound, instead of an arbitrarily large M . We give
two examples.

2.10.1 Facility Location

A company would like to set up facilities in order to serve geographically
dispersed customers at minimum cost. Them customers have known annual
demands di, for i = 1, . . . ,m. The company can open a facility of capacity uj
and fixed annual operating cost fj in location j, for j = 1, . . . , n. Knowing

68 CHAPTER 2. INTEGER PROGRAMMING MODELS

the variable cost cij of transporting one unit of goods from location j to
customer i, where should the company locate its facilities in order to mini-
mize its annual cost

To formulate this problem, we introduce variables xj that take the value
1 if a facility is opened in location j, and 0 if not. Let yij be the fraction of
the demand di transported annually from j to i.

min
m∑
i=1

n∑
j=1

cijdiyij +
n∑

j=1

fjxj

n∑
j=1

yij = 1 i = 1, . . . ,m

m∑
i=1

diyij ≤ ujxj j = 1, . . . , n

y ≥ 0

x ∈ {0, 1}n.

The objective function is the total yearly cost (transportation plus
operating costs). The first set of constraints guarantees that the demand is
met, the second type of constraints are capacity constraints at the facilities.
Note that the capacity constraints are fixed charge constraints, since they
force xj = 1 whenever yij > 0 for some i.

A classical special case is the uncapacitated facility location problem, in
which uj = +∞, j = 1, . . . , n. In this case, it is always optimal to satisfy
all the demand of client i from the closest open facility, therefore yij can be
assumed to be binary. Hence the problem can be formulated as

min
∑∑

cijdiyij +
∑

fjxj∑
j yij = 1 i = 1, . . . ,m∑
i yij ≤ mxj j = 1, . . . , n

y ∈ {0, 1}m×n, x ∈ {0, 1}n.

(2.18)

Note that the constraint
∑

i yij ≤ mxj forces xj = 1 whenever yij > 0 for
some i. The same condition could be enforced by the disaggregated set of
constraints yij ≤ xj , for all i, j.

min
∑∑

cijdiyij +
∑

fjxj∑
j yij = 1 i = 1, . . . ,m

yij ≤ xj i = 1, . . . ,m, j = 1, . . . , n
y ∈ {0, 1}m×n, x ∈ {0, 1}n.

(2.19)

2.10. MODELING FIXED CHARGES 69

The disaggregated formulation (2.19) is stronger than the aggregated
one (2.18), since the constraint

∑
i yij ≤ mxi is just the sum of the con-

straints yij ≤ xi, i = 1, . . . ,m. According to the paradigm presented in
Sect. 2.2 in this chapter, the disaggregated formulation is better, because it
yields tighter bounds in a branch-and-cut algorithm. In practice it has been
observed that the difference between these two bounds is typically enormous.
It is natural to conclude that formulation (2.19) is the one that should be
used in practice. However, the situation is more complicated. When the
aggregated formulation (2.18) is given to state-of-the-art solvers, they are
able to detect and generate disaggregated constraints on the fly, whenever
these constraints are violated by the current feasible solution. So, in fact, it
is preferable to use the aggregated formulation because the size of the linear
relaxation is much smaller and faster to solve.

Let us elaborate on this interesting point. Nowadays, state-of-the-art
solvers automatically detect violated minimal cover inequalities (this notion
was introduced in Sect. 2.2), and the disaggregated constraints in (2.19)
happen to be minimal cover inequalities for the aggregated constraints. More
formally, let us write the aggregated constraint relative to facility j as

mzj +
m∑
j=1

yij ≤ m

where zj = 1−xj is also a 0, 1 variable. This is a knapsack constraint. Note
that any minimal cover inequality is of the form zj + yij ≤ 1. Substituting
1− xj for zj , we get the disaggregated constraint yij ≤ xj . We will discuss
the separation of minimal cover inequalities in Sect. 7.1.

2.10.2 Network Design

Network design problems arise in the telecommunication industry. Let N
be a given set of nodes. Consider a directed network G = (N,A) consisting
of arcs that could be constructed. We need to select a subset of arcs from
A in order to route commodities. Commodity k has a source sk ∈ N , a
destination tk ∈ N , and volume vk for k = 1, . . . ,K. Each commodity can
be viewed as a flow that must be routed through the network. Each arc
a ∈ A has a construction cost fa and a capacity ca. If we select arc a,
the sum of the commodity flows going through arc a should not exceed its
capacity ca. Of course, if we do not select arc a, no flow can be routed
through a. How should we design the network in order to route all the
demand at minimum cost?

70 CHAPTER 2. INTEGER PROGRAMMING MODELS

Let us introduce binary variables xa, for a ∈ A, where xa = 1 if arc a is
constructed, 0 otherwise. Let yka denote the amount of commodity k flowing
through arc a. The formulation is

min
∑
a∈A

faxa

∑
a∈δ+(i)

ykij −
∑

a∈δ−(i)

ykji =

⎧⎨
⎩

vk for i = sk
−vk for i = tk

0 for i ∈ N \ {sk, tk}
for k = 1, . . . K

K∑
k=1

yka ≤ caxa for a ∈ A

y ≥ 0

xa ∈ {0, 1} for a ∈ A.

The first set of constraints are conservation of flow constraints: For each
commodity k, the amount of flow out of node i equals to the amount of flow
going in, except at the source and destination. The second constraints are
the capacity constraints that need to be satisfied for each arc a ∈ A. Note
that they are fixed-charge constraints.

2.11 Modeling Disjunctions

Many applications have disjunctive constraints. For example, when schedul-
ing jobs on a machine, we might need to model that either job i is scheduled
before job j or vice versa; if pi and pj denote the processing times of these
two jobs on the machine, we then need a constraint stating that the starting
times ti and tj of jobs i and j satisfy tj ≥ ti + pi or ti ≥ tj + pj . In such
applications, the feasible solutions lie in the union of two or more polyhedra.

In this section, the goal is to model that a point belongs to the union of
k polytopes in R

n, namely bounded sets of the form

Aiy ≤ bi
0 ≤ y ≤ ui,

(2.20)

for i = 1, . . . , k. The same modeling question is more complicated for
unbounded polyhedra and will be discussed in Sect. 4.9.

A way to model the union of k polytopes in R
n is to introduce k vari-

ables xi ∈ {0, 1}, indicating whether y is in the ith polytope, and k vectors
of variables yi ∈ R

n. The vector y ∈ R
n belongs to the union of the k

polytopes (2.20) if and only if

2.11. MODELING DISJUNCTIONS 71

k∑
i=1

yi = y

Aiyi ≤ bixi i = 1, . . . , k
0 ≤ yi ≤ uixi i = 1, . . . , k

k∑
i=1

xi = 1

x ∈ {0, 1}k.

(2.21)

The next proposition shows that formulation (2.21) is perfect in the
sense that the convex hull of its solutions is simply obtained by dropping
the integrality restriction.

Proposition 2.6. The convex hull of solutions to (2.21) is

k∑
i=1

yi = y

Aiyi ≤ bixi i = 1, . . . , k
0 ≤ yi ≤ uixi i = 1, . . . , k

k∑
i=1

xi = 1

x ∈ [0, 1]k.

Proof. Let P ⊂ R
n×R

kn×R
k be the polytope given in the statement of the

proposition. It suffices to show that any point z̄ := (ȳ, ȳ1, . . . , ȳk, x̄1, . . . , x̄k)
in P is a convex combination of solutions to (2.21). For t such that x̄t �= 0,
define the point zt = (yt, yt1, . . . , y

t
k, x

t
1, . . . , x

t
k) where

yt :=
ȳt
x̄t

, yti :=

{ ȳt
x̄t

for i = t,

0 otherwise,
xti :=

{
1 for i = t,
0 otherwise.

The zts are solutions of (2.21). We claim that z̄ is a convex combination
of these points, namely z̄ =

∑
t : x̄t �=0 x̄tz

t. To see this, observe first that

ȳ =
∑

ȳi =
∑

t : x̄t �=0 ȳt =
∑

t : x̄t �=0 x̄ty
t. Second, note that when x̄i �= 0 we

have ȳi =
∑

t : x̄t �=0 x̄ty
t
i . This equality also holds when x̄i = 0 because then

ȳi = 0 and yti = 0 for all t such that x̄t �= 0. Finally x̄i =
∑

t : x̄t �=0 x̄tx
t
i for

i = 1, . . . , k.

72 CHAPTER 2. INTEGER PROGRAMMING MODELS

2.12 The Quadratic Assignment Problem
and Fortet’s Linearization

In this book we mostly deal with linear integer programs. However, non-
linear integer programs (in which the objective function or some of the
constraints defining the feasible region are nonlinear) are important in some
applications. The quadratic assignment problem (QAP) is an example of
a nonlinear 0, 1 program that is simple to state but notoriously difficult to
solve. Interestingly, we will show that it can be linearized.

We have to place n facilities in n locations. The data are the amount fk�
of goods that has to be shipped from facility k to facility 	, for k = 1, . . . , n
and 	 = 1, . . . , n, and the distance dij between locations i, j, for i = 1, . . . , n
and j = 1, . . . , n.

The problem is to assign facilities to locations so as to minimize the total
cumulative distance traveled by the goods. For example, in the electronics
industry, the quadratic assignment problem is used to model the problem of
placing interconnected electronic components onto a microchip or a printed
circuit board.

Let xki be a binary variable that takes the value 1 if facility k is assigned
to location i, and 0 otherwise. The quadratic assignment problem can be
formulated as follows:

max
∑
i,j

∑
k,�

dijfk�xkix�j

∑
k

xki = 1 i = 1, . . . , n

∑
i

xki = 1 k = 1, . . . , n

x ∈ {0, 1}n×n.

The quadratic assignment problem is an example of a 0,1 polynomial
program

min z = f(x)
gi(x) = 0 i = 1, . . . ,m
xj ∈ {0, 1} j = 1, . . . , n

(2.22)

where the functions f and gi (i = 1, . . . ,m) are polynomials. Fortet [144]
observed that such nonlinear functions can be linearized when the variables
only take value 0 or 1.

Proposition 2.7. Any 0,1 polynomial program (2.22) can be formulated as
a pure 0,1 linear program by introducing additional variables.

2.13. FURTHER READINGS 73

Proof. Note that, for any integer exponent k ≥ 1, the 0,1 variable xj satisfies
xkj = xj . Therefore we can replace each expression of the from xkj with xj,
so that no variable appears in f or gi with exponent greater than 1.

The product xixj of two 0,1 variables can be replaced by a new 0,1
variable yij related to xi, xj by linear constraints. Indeed, to guarantee that
yij = xixj when xi and xj are binary variables, it suffices to impose the
linear constraints yij ≤ xi, yij ≤ xj and yij ≥ xi + xj − 1 in addition to the
0,1 conditions on xi, xj , yij .

As an example, consider f defined by f(x) = x51x2 +4x1x2x
2
3. Applying

Fortet’s linearization sequentially, function f is initially replaced by z =
x1x2 + 4x1x2x3 for 0,1 variables xj, j = 1, 2, 3. Subsequently, we introduce
0,1 variables y12 in place of x1x2, and y123 in place of y12x3, so that the
objective function is replaced by the linear function z = y12 + 4y123, where
we impose

y12 ≤ x1, y12 ≤ x2, y12 ≥ x1 + x2 − 1,
y123 ≤ y12, y123 ≤ x3, y123 ≥ y12 + x3 − 1,

y12, y123, x1, x2, x3 ∈ {0, 1}.

2.13 Further Readings

The book “Applications of Optimization with Xpress” by Guéret, Prins, and
Servaux [193], which can also be downloaded online, provides an excellent
guide for constructing integer programming formulations in various areas
such as planning, transportation, telecommunications, economics, and
finance. The book “Production Planning by Mixed-Integer Programming”
by Pochet and Wolsey [309] contains several optimization models in pro-
duction planning and an accessible exposition of the theory of mixed inte-
ger linear programming. The book “Optimization Methods in Finance” by
Cornuéjols and Tütüncü [96] gives an application of integer programming to
modeling index funds. Several formulations in this chapter are defined on
graphs. We refer to Bondy and Murty [62] for a textbook on graph theory.

The knapsack problem is one of the most widely studied models in integer
programming. A classic book for the knapsack problem is the one of Martello
and Toth [268], which is downloadable online. A more recent textbook is
[234]. In Sect. 2.2 we introduced alternative formulations (in the context
of 0, 1 knapsack set) and discussed the strength of different formulations.
This topic is central in integer programming theory and applications. In
fact, a strong formulation is a key ingredient to solving integer programs

74 CHAPTER 2. INTEGER PROGRAMMING MODELS

even of moderate size: A weak formulation may prove to be unsolvable by
state-of-the-art solvers even for small-size instances. Formulations can be
strengthened a priori or dynamically, by adding cuts and this will be dis-
cussed at length in this book. Strong formulations can also be obtained with
the use of additional variables, that model properties of a mixed integer set
to be optimized and we will develop this topic. The book “Integer Program-
ming” by Wolsey [353] contains an accessible exposition of this topic.

There is a vast literature on the traveling salesman problem: This problem
is easy to state and it has been popular for testing the methods exposed in
this book. The book edited by Lawler, Lenstra, Rinnooy Kan, and Shmoys
[253] contains a series of important surveys; for instance the chapters on
polyhedral theory and computations by Grötschel and Padberg. The book
by Applegate, Bixby, Chvátal, and Cook [13] gives a detailed account of the
theory and the computational advances that led to the solution of traveling
salesman instances of enormous size. The recent book “In the pursuit of the
traveling salesman” by Cook [86] provides an entertaining account of the
traveling salesman problem, with many historical insights.

Vehicle routing is related to the traveling salesman problem and refers
to a class of problems where goods located at a central depot need to be
delivered to customers who have placed orders for such goods. The goal is
to minimize the cost of delivering the goods. There are many references in
this area. We just cite the monograph of Toth and Vigo [337].

Constraint programming has been mentioned while introducing formu-
lations for the Sudoku game. The interaction between integer programming
and constraint programming is a growing area of research, see, e.g., Hooker
[206] and Achterberg [5].

For machine scheduling we mention the survey of Queyranne and
Schulz [312].

2.14 Exercises

Exercise 2.1. Let

S := {x ∈ {0, 1}4 : 90x1 +35x2 +26x3 +25x4 ≤ 138}.

(i) Show that

S = {x ∈ {0, 1}4 : 2x1 +x2 +x3 +x4 ≤ 3},

2.14. EXERCISES 75

and
S = {x ∈ {0, 1}4 : 2x1 +x2 +x3 +x4 ≤ 3

x1 +x2 +x3 ≤ 2
x1 +x2 +x4 ≤ 2
x1 +x3 +x4 ≤ 2}.

(ii) Can you rank these three formulations in terms of the tightness of their
linear relaxations, when x ∈ {0, 1}4 is replaced by x ∈ [0, 1]4? Show any
strict inclusion.

Exercise 2.2. Give an example of a 0, 1 knapsack set where both P \ PC �= ∅
and PC \P �= ∅, where P and PC are the linear relaxations of the knapsack
and minimal cover formulations respectively.

Exercise 2.3. Produce a family of 0, 1 knapsack sets (having an increasing
number n of variables) whose associated family of minimal covers grows
exponentially with n.

Exercise 2.4. (Constraint aggregation) Given a finite set E and a clutter
C of subsets of E, does there always exist a 0, 1 knapsack set K such that C
is the family of all minimal covers of K? Prove or disprove.

Exercise 2.5. Show that any integer linear program of the form

min cx
Ax = b
0 ≤ x ≤ u
x integral

can be converted into a 0,1 knapsack problem.

Exercise 2.6. The pigeonhole principle states that the problem

(P) Place n+1 pigeons into n holes so that no two pigeons share a hole

has no solution.

Formulate (P) as an integer linear program with two kinds of constraints:

(a) those expressing the condition that every pigeon must get into a hole;

(b) those expressing the condition that, for each pair of pigeons, at most
one of the two birds can get into a given hole.

Show that there is no integer solution satisfying (a) and (b), but that the
linear program with constraints (a) and (b) is feasible.

76 CHAPTER 2. INTEGER PROGRAMMING MODELS

Exercise 2.7. Let A be a 0, 1 matrix and let Amax be the row submatrix
of A containing one copy of all the rows of A whose support is not included
in the support of another row of A. Show that the packing sets SP (A) and
SP (Amax) coincide and that their linear relaxations are equivalent.

Similarly let Amin be the row submatrix of A containing one copy of
all the rows of A whose support does not include the support of another
row of A. Show that SC(A) and SC(Amin) coincide and that their linear
relaxations are equivalent.

Exercise 2.8. We use the notation introduced in Sect. 2.4.2. Given the
matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
1 0 0 0 1 0
1 0 0 0 0 1
0 1 0 0 0 1
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

• What is GA?

• What is Ac?

• Give a formulation for SP (A) that is better than Acx ≤ 1, 0 ≤ x ≤ 1.

Exercise 2.9. Let A be a matrix with two 1’s per row. Show that the sets
SP (A) and SC(A) have the same cardinality.

Exercise 2.10. Given a clutter F , let A be the incidence matrix of the
family F and GA the intersection graph of A. Prove that A is the clique
matrix of GA if and only if the following holds:

For every F1, F2, F3 in F , there is an F ∈ F that contains (F1 ∩ F2) ∪
(F1 ∩ F3) ∪ (F2 ∩ F3).

Exercise 2.11. Let T be a minimal transversal of S and ej ∈ T . Then
T ∩ Si = {ej} for some Si ∈ S.

Exercise 2.12. Prove that, for an undirected connected graph G = (V,E),
the following pairs of families of subsets of edges of G are blocking pairs:

2.14. EXERCISES 77

• Spanning trees and minimal cuts

• st-paths and minimal st-cuts.

• Minimal postman sets and minimal odd cuts. (A set E′ ⊆ E is a
postman set if G = (V,E \E′) is an Eulerian graph and a cut is odd if
it contains an odd number of edges.) Assume that G is not an Eulerian
graph.

Exercise 2.13. Construct an example showing that the formulation (2.4)
is not perfect.

Exercise 2.14. Show that a graph is bipartite if and only if it contains no
odd cycle.

Exercise 2.15. (Chromatic number) The following is (a simplified version
of) a frequency assignment problem in telecommunications. Transmitters
1, . . . , n broadcast different signals using preassigned frequencies. Transmit-
ters that are geographically close might interfere and they must therefore use
distinct frequencies. The problem is to determine the minimum number of
frequencies that need to be assigned to the transmitters so that interference
is avoided.

This problem has a natural graph-theoretic counterpart: The chromatic
number χ(G) of an undirected graph G = (V,E) is the minimum number
of colors to be assigned to the nodes of G so that adjacent nodes receive
distinct colors. Equivalently, the chromatic number is the minimum number
of (maximal) stable sets whose union is V .

Define the interference graph of a frequency assignment problem to be
the undirected graph G = (V,E) where V represents the set of transmitters
and E represents the set of pairs of transmitters that would interfere with
each other if they were assigned the same frequency. Then the minimum
number of frequencies to be assigned so that interference is avoided is the
chromatic number of the interference graph.

Consider the following integer programs. Let S be the family of all
maximal stable sets of G. The first one has one variable xS for each maximal
stable set S of G, where xS = 1 if S is used as a color, xS = 0 otherwise.

χ1(G) = min
∑
S∈S

xS

∑
S⊇{v}

xS ≥ 1 v ∈ V

xS ∈ {0, 1} S ∈ S.

78 CHAPTER 2. INTEGER PROGRAMMING MODELS

The second one has one variable xv,c for each node v in V and color c
in a set C of available colors (with |C| ≥ χ(G)), where xv,c = 1 if color c is
assigned to node v, 0 otherwise. It also has color variables, yc = 1 if color c
used, 0 otherwise.

χ2(G) = min
∑
c∈C

yc

xu,c + xv,c ≤ 1 ∀uv ∈ E and c ∈ C

xv,c ≤ yc v ∈ V, c ∈ C∑
c∈C

xv,c = 1 v ∈ V

xv,c ∈ {0, 1}, yc ≥ 0 v ∈ V, c ∈ C.

• Show that χ1(G) = χ2(G) = χ(G).

• Let χ∗
1(G), χ∗

2(G) be the optimal values of the linear programming
relaxations of the above integer programs. Prove that χ∗

1(G) ≥ χ∗
2(G)

for all graphs G. Prove that χ∗
1(G) > χ∗

2(G) for some graph G.

Exercise 2.16 (Combinatorial auctions). A company sets an auction for N
objects. Bidders place their bids for some subsets of the N objects that they
like. The auction house has received n bids, namely bids bj for subset Sj,
for j = 1, . . . , n. The auction house is faced with the problem of choosing
the winning bids so that profit is maximized and each of the N objects is
given to at most one bidder. Formulate the optimization problem faced by
the auction house as a set packing problem.

Exercise 2.17. (Single machine scheduling) Jobs {1, . . . , n} must be pro-
cessed on a single machine. Each job is available for processing after a
certain time, called release time. For each job we are given its release time
ri, its processing time pi and its weight wi. Formulate as an integer linear
program the problem of sequencing the jobs without overlap or interruption
so that the sum of the weighted completion times is minimized.

Exercise 2.18. (Lot sizing) The demand for a product is known to be dt
units in periods t = 1, . . . , n. If we produce the product in period t, we
incur a machine setup cost ft which does not depend on the number of units
produced plus a production cost pt per unit produced. We may produce
any number of units in any period. Any inventory carried over from period
t to period t + 1 incurs an inventory cost it per unit carried over. Initial
inventory is s0. Formulate a mixed integer linear program in order to meet
the demand over the n periods while minimizing overall costs.

2.14. EXERCISES 79

Exercise 2.19. A firm is considering project A,B, . . . ,H. Using binary
variables xa, . . . , xh and linear constraints, model the following conditions
on the projects to be undertaken.

1. At most one of A,B, . . . ,H.

2. Exactly two of A,B, . . . ,H.

3. If A then B.

4. If A then not B.

5. If not A then B.

6. If A then B, and if B then A.

7. If A then B and C.

8. If A then B or C.

9. If B or C then A.

10. If B and C then A.

11. If two or more of B, C,D, E then A.

12. If m or more than n projects B, . . . ,H then A.

Exercise 2.20. Prove or disprove that the formulation F = {x ∈ {0, 1}n2
,∑n

i=1 xij = 1 for 1 ≤ j ≤ n,
∑n

j=1 xij = 1 for 1 ≤ i ≤ n} describes the set
of n× n permutation matrices.

Exercise 2.21. For the following subsets of edges of an undirected graph
G = (V,E), find an integer linear formulation and prove its correctness:

• The family of Hamiltonian paths of G with endnodes u, v. (A Hamil-
tonian path is a path that goes exactly once through each node of the
graph.)

• The family of all Hamiltonian paths of G.

• The family of edge sets that induce a triangle of G.

• Assuming that G has 3n nodes, the family of n node-disjoint triangles.

• The family of odd cycles of G.

80 CHAPTER 2. INTEGER PROGRAMMING MODELS

Exercise 2.22. Consider a connected undirected graph G = (V,E). For
S ⊆ V , denote by E(S) the set of edges with both ends in S. For i ∈ V ,
denote by δ(i) the set of edges incident with i. Prove or disprove that the
following formulation produces a spanning tree with maximum number of
leaves.

max
∑

i∈V zi∑
e∈E xe = |V | − 1∑

e∈E(S) xe ≤ |S| − 1 S ⊂ V, |S| ≥ 2∑
e∈δ(i) xe + (|δ(i)| − 1)zi ≤ |δ(i)| i ∈ V

xe ∈ {0, 1} e ∈ E
zi ∈ {0, 1} i ∈ V.

Exercise 2.23. One sometimes would like to maximize the sum of nonlinear
functions

∑n
i=1 fi(xi) subject to x ∈ P , where fi : R → R for i = 1, . . . , n and

P is a polytope. Assume P ⊂ [l, u] for l, u ∈ R
n. Show that, if the functions

fi are piecewise linear, this problem can be formulated as a mixed integer
linear program. For example a utility function might be approximated by
fi as shown in Fig. 2.5 (risk-averse individuals dislike more a monetary loss
of y than they like a monetary gain of y dollars).

utility

monetary value

Figure 2.5: Example of a piecewise linear utility function

Exercise 2.24.

(i) Write the logic statement (x1 ∧ x2 ∧ ¬x3) ∨ (¬(x1 ∧ x2) ∧ x3) in con-
junctive normal form.

(ii) Formulate the following logical inference problem as an integer linear
program. “Does the proposition (x1 ∧ x2 ∧ ¬x3) ∨ (¬(x1 ∧ x2) ∧ x3)
imply x1 ∨ x2 ∨ x3?”

Exercise 2.25. Let x1, . . . , xn be atomic propositions and let A and B be
two logic statements in CNF. The logic statement A =⇒ B is satisfied if
any truth assignment that satisfies A also satisfies B. Prove that A =⇒ B
is satisfied if and only if the logic statement ¬A ∨B is satisfied.

2.14. EXERCISES 81

Exercise 2.26. Consider a 0,1 set S := {x ∈ {0, 1}n : Ax ≤ b} where
A ∈ R

m×n and b ∈ R
m. Prove that S can be written in the form S = {x ∈

{0, 1}n : Dx ≤ d} where D is a matrix all of whose entries are 0,+1 or −1
(Matrices D and A may have a different number of rows).

Exercise 2.27 (Excluding (0, 1)-vectors). Find integer linear formulations
for the following integer sets (Hint: Use the generalized set covering inequal-
ities).

• The set of all (0, 1)-vectors in R
4 except

⎛
⎜⎜⎝
0
1
1
0

⎞
⎟⎟⎠.

• The set of all (0, 1)-vectors in R
6 except

⎛
⎜⎜⎜⎜⎜⎜⎝

0
1
1
0
1
1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

0
1
0
1
1
0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎠
.

• The set of all (0, 1)-vectors in R
6 except all the vectors having exactly

two 1s in the first 3 components and one 1 in the last 3 components.

• The set of all (0, 1)-vectors in R
n with an even number of 1s.

• The set of all (0, 1)-vectors in R
n with an odd number of 1’s.

Exercise 2.28. Show that if P = {x ∈ R
n : Ax ≤ b} is such that P ∩ Z

n

is the set of 0–1 vectors with an even number of 1’s, then Ax ≤ b contains
at least 2n−1 inequalities.

Exercise 2.29. Given a Sudoku game and a solution x̄, formulate as an
integer linear program the problem of certifying that x̄ is the unique solution.

Exercise 2.30 (Crucipixel Game). Given a m× n grid, the purpose of the
game is to darken some of the cells so that in every row (resp. column)
the darkened cells form distinct strings of the lengths and in the order pre-
scribed by the numbers on the left of the row (resp. on top of the column).

82 CHAPTER 2. INTEGER PROGRAMMING MODELS

Two strings are distinct if they are separated by at least one white cell.
For instance, in the figure below the tenth column must contain a string of
length 6 followed by some white cells and then a sting of length 2. The game
consists in darkening the cells to satisfy the requirements.

1

1

111

1111

1111

111

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

22

2

2

2

2

2

2

2

22

3

3

3

3

3

3

3

3

3

4

4

4

4

6

• Formulate the game as an integer linear program.

• Formulate the problem of certifying that a given solution is unique as
an integer linear program.

• Play the game in the figure.

Exercise 2.31. Let P = {A1x ≤ b1} be a polytope and S = {A2x < b2}.
Formulate the problem of maximizing a linear function over P \S as a mixed
0,1 program.

Exercise 2.32. Consider continuous variables yj that can take any value
between 0 and uj, for j = 1, . . . , k. Write a set of mixed integer linear
constraints to impose that at most 	 of the k variables yj can take a nonzero
value. [Hint: use k binary variables xj ∈ {0, 1}.] Either prove that your
formulation is perfect, in the spirit of Proposition 2.6, or give an example
showing that it is not.

2.14. EXERCISES 83

Exercise 2.33. Assume c ∈ Z
n, A ∈ Z

m×n, b ∈ Z
m. Give a polynomial

transformation of the 0,1 linear program

max cx
Ax ≤ b
x ∈ {0, 1}n

into a quadratic program

max cx−MxT (1− x)
Ax ≤ b
0 ≤ x ≤ 1,

i.e., show how to choose the scalar M as a function of A, b and c so that an
optimal solution of the quadratic program is always an optimal solution of
the 0,1 linear program (if any).

The authors working on Chap. 2

84 CHAPTER 2. INTEGER PROGRAMMING MODELS

Giacomo Zambelli at the US border. Immigration Officer: What is the
purpose of your trip? Giacomo: Visiting a colleague; I am a mathematician.
Immigration Officer: What do mathematicians do? Giacomo: Sit in a chair
and think.

Chapter 3

Linear Inequalities
and Polyhedra

The focus of this chapter is on the study of systems of linear inequalities
Ax ≤ b. We look at this subject from two different angles. The first, more
algebraic, addresses the issue of solvability of Ax ≤ b. The second studies
the geometric properties of the set of solutions {x ∈ R

n : Ax ≤ b} of
such systems. In particular, this chapter covers Fourier’s elimination proce-
dure, Farkas’ lemma, linear programming, the theorem of Minkowski–Weyl,
polarity, Carathéorory’s theorem, projections and minimal representations
of the set {x ∈ R

n : Ax ≤ b}.

3.1 Fourier Elimination

The most basic question concerning a system of linear inequalities is whether
or not it has a solution. Fourier [145] devised a simple method to address
this problem. Fourier’s method is similar to Gaussian elimination, in that
it performs row operations to eliminate one variable at a time.

Let A ∈ R
m×n and b ∈ R

m, and suppose we want to determine if the
system Ax ≤ b has a solution. We first reduce this question to one about a
system with n− 1 variables. Namely, we determine necessary and sufficient
conditions for which, given a vector (x̄1, . . . , x̄n−1) ∈ R

n−1, there exists
x̄n ∈ R such that (x̄1, . . . , x̄n) satisfies Ax ≤ b. Let I := {1, . . . ,m} and
define

I+ := {i∈ I : ain > 0}, I− := {i∈ I : ain < 0}, I0 := {i∈ I : ain = 0}.

© Springer International Publishing Switzerland 2014
M. Conforti et al., Integer Programming, Graduate Texts
in Mathematics 271, DOI 10.1007/978-3-319-11008-0 3

85

86 CHAPTER 3. LINEAR INEQUALITIES AND POLYHEDRA

Dividing the ith row by |ain| for each i ∈ I+∪I−, we obtain the following
system, which is equivalent to Ax ≤ b:

∑n−1
j=1 a

′
ijxj +xn ≤ b′i, i ∈ I+∑n−1

j=1 a
′
ijxj −xn ≤ b′i, i ∈ I−∑n−1

j=1 aijxj ≤ bi, i ∈ I0
(3.1)

where a′ij = aij/|ain| and b′i = bi/|ain| for i ∈ I+ ∪ I−.
For each pair i ∈ I+ and k ∈ I−, we sum the two inequalities indexed by i

and k, and we add the resulting inequality to the system (3.1). Furthermore,
we remove the inequalities indexed by I+ and I−. This way, we obtain the
following system:

∑n−1
j=1 (a

′
ij + a′kj)xj ≤ b′i + b′k, i ∈ I+, k ∈ I−,∑n−1

j=1 aijxj ≤ bi, i ∈ I0.
(3.2)

If (x̄1, . . . , x̄n−1, x̄n) satisfies Ax ≤ b, then (x̄1, . . . , x̄n−1) satisfies (3.2). The
next theorem states that the converse also holds.

Theorem 3.1. A vector (x̄1, . . . , x̄n−1) satisfies the system (3.2) if and only
if there exists x̄n such that (x̄1, . . . , x̄n−1, x̄n) satisfies Ax ≤ b.

Proof. We already remarked the “if” statement. For the converse, assume
there is a vector (x̄1, . . . , x̄n−1) satisfying (3.2). Note that the first set of
inequalities in (3.2) can be rewritten as

n−1∑
j=1

a′kjxj − b′k ≤ b′i −
n−1∑
j=1

a′ijxj, i ∈ I+, k ∈ I−. (3.3)

Let l := maxk∈I−{
∑n−1

j=1 a
′
kjx̄j − b′k} and u := mini∈I+{b′i −

∑n−1
j=1 a

′
ijx̄j},

where we define l := −∞ if I− = ∅ and u := +∞ if I+ = ∅. Since
(x̄1, . . . , x̄n−1) satisfies (3.3), we have that l ≤ u. Therefore, for any x̄n such
that l ≤ x̄n ≤ u, the vector (x̄1, . . . , x̄n) satisfies the system (3.1), which is
equivalent to Ax ≤ b.

Therefore, the problem of finding a solution to Ax ≤ b is reduced to
finding a solution to (3.2), which is a system of linear inequalities in n − 1
variables. Fourier’s elimination method is:

Given a system of linear inequalities Ax ≤ b, let An := A, bn := b;
For i = n, . . . , 1, eliminate variable xi from Aix ≤ bi with the above proce-
dure to obtain system Ai−1x ≤ bi−1.

3.1. FOURIER ELIMINATION 87

System A1x ≤ b1, which involves variable x1 only, is of the type, x1 ≤ b1p,
p ∈ P , −x1 ≤ b1q , q ∈ N , and 0 ≤ b1i , i ∈ Z.

System A0x ≤ b0 has the following inequalities: 0 ≤ b0pq := b1p + b1q,
p ∈ P, q ∈ N , 0 ≤ b0i := b1i , i ∈ Z.

Applying Theorem 3.1, we obtain that Ax ≤ b is feasible if and only
if A0x ≤ b0 is feasible, and this happens when the b0pq and b0i are all
nonnegative.

Remark 3.2.

(i) At each iteration, Fourier’s method removes |I+| + |I−| inequalities
and adds |I+|× |I−| inequalities, hence the number of inequalities may
roughly be squared at each iteration. Thus, after eliminating p vari-
ables, the number of inequalities may be exponential in p.

(ii) If matrix A and vector b have only rational entries, then all coefficients
in (3.2) are rational.

(iii) Every inequality of Aix ≤ bi is a nonnegative combination of inequal-
ities of Ax ≤ b.

Example 3.3. Consider the system A3x ≤ b3 of linear inequalities in three
variables

− x1 ≤ −1
− x2 ≤ −1

− x3 ≤ −1
− x1 − x2 ≤ −3
− x1 − x3 ≤ −3

− x2 − x3 ≤ −3
x1 + x2 + x3 ≤ 6

Applying Fourier’s procedure to eliminate variable x3, we obtain the system
A2x ≤ b2:

− x1 ≤ −1
− x2 ≤ −1

− x1 − x2 ≤ −3
x1 + x2 ≤ 5

x2 ≤ 3
x1 ≤ 3

where the last three inequalities are obtained from A3x ≤ b3 by summing
the third, fifth, and sixth inequality, respectively, with the last inequality.
Eliminating variable x2, we obtain A1x ≤ b1

88 CHAPTER 3. LINEAR INEQUALITIES AND POLYHEDRA

− x1 ≤ −1
x1 ≤ 3
x1 ≤ 4
0 ≤ 2
0 ≤ 2

− x1 ≤ 0

Finally A0x ≤ b0 is

0 ≤ 3− 1
0 ≤ 4− 1
0 ≤ 3
0 ≤ 4
0 ≤ 2
0 ≤ 2

Therefore A0x ≤ b0 is feasible. A solution can now be found by backward
substitution. System A1x ≤ b1 is equivalent to 1 ≤ x1 ≤ 3. Since x1 can
take any value in this interval, choose x̄1 = 3. Substituting x1 = 3 in
A2x ≤ b2, we obtain 1 ≤ x2 ≤ 2. If we choose x̄2 = 1 and substitute x2 = 1
and x1 = 3 in A3x ≤ b3, we finally obtain x3 = 2. This gives the solution
x̄ = (3, 1, 2). �

3.2 Farkas’ Lemma

Next we present Farkas’ lemma, which gives a simple necessary and sufficient
condition for the existence of a solution to a system of linear inequalities.
Farkas’ lemma is the analogue of the Fredholm alternative for a system of
linear equalities (Theorem 1.19).

Theorem 3.4 (Farkas’ Lemma). A system of linear inequalities Ax ≤ b is
infeasible if and only if the system uA = 0, ub < 0, u ≥ 0 is feasible.

Proof. Assume uA = 0, ub < 0, u ≥ 0 is feasible. Then 0 = uAx ≤ ub < 0
for any x satisfying Ax ≤ b. It follows that Ax ≤ b is infeasible and this
proves the “if” part.

We now prove the “only if” part. Assume that Ax ≤ b has no solution.
Apply the Fourier elimination method to Ax ≤ b to eliminate all variables
xn, . . . , x1. System A0x ≤ b0 is of the form 0 ≤ b0, and the system Ax ≤ b
has a solution if and only if all the entries of b0 are nonnegative. Since
Ax ≤ b has no solution, it follows that b0 has a negative entry, say b0i < 0.

3.3. LINEAR PROGRAMMING 89

By Remark 3.2(iii), every inequality of the system 0 ≤ b0 is a nonnegative
combination of inequalities of Ax ≤ b. In particular, there exists some vector
u ≥ 0 such that the inequality 0 ≤ b0i is identical to uAx ≤ ub. That is,
u ≥ 0, uA = 0, ub = b0i < 0 is feasible.

Farkas’ lemma is sometimes referred to as a theorem of the alternative
because it can be restated as follows.

Exactly one among the system Ax ≤ b and the system uA = 0, ub < 0,
u ≥ 0 is feasible.

The following is Farkas’ lemma for systems of equations in nonnegative
variables.

Theorem 3.5. The system Ax = b, x ≥ 0 is feasible if and only if ub ≤ 0
for every u satisfying uA ≤ 0.

Proof. If Ax = b, x ≥ 0 is feasible, then ub ≤ 0 for every u satisfying
uA ≤ 0. For the converse, suppose that Ax = b, x ≥ 0 is infeasible. Then
the system Ax ≤ b, −Ax ≤ −b, −x ≤ 0 is infeasible. By Theorem 3.4 there
exists (v, v′, w) ≥ 0 such that vA−v′A−w = 0 and vb−v′b < 0. The vector
u := v′ − v satisfies ub > 0 and since w ≥ 0, u satisfies uA ≤ 0.

We finally present a more general, yet still equivalent, form of Farkas’
lemma.

Theorem 3.6. The system Ax + By ≤ f, Cx + Dy = g, x ≥ 0 is
feasible if and only if uf + vg ≥ 0 for every (u, v) satisfying uA+ vC ≥ 0,
uB+vD=0, u ≥ 0.

Theorem 3.6 can be derived from Theorem 3.4. We leave this proof as
an exercise.

3.3 Linear Programming

Linear programming is the problem of maximizing a linear function sub-
ject to a finite number of linear constraints. Given a matrix A ∈ R

m×n

and vectors c ∈ R
n, b ∈ R

m, the dual of the linear programming problem
max{cx : Ax ≤ b} is the problem min{ub : uA = c, u ≥ 0}. Next we derive
the fundamental theorem of linear programming, stating that the optimum
values of the primal and dual problems coincide whenever both problems
have a feasible solution. This property is called strong duality.

90 CHAPTER 3. LINEAR INEQUALITIES AND POLYHEDRA

Theorem 3.7 (Linear Programming Duality). Given a matrix A ∈ R
m×n

and vectors c ∈ R
n, b ∈ R

m, let P := {x : Ax ≤ b} and D := {u : uA =
c, u ≥ 0}. If P and D are both nonempty, then

max{cx : Ax ≤ b} = min{ub : uA = c, u ≥ 0}, (3.4)

and there exist x∗ ∈ P and y∗ ∈ D such that cx∗ = u∗b.

Proof. For every x ∈ P and u ∈ D, we have cx = uAx ≤ ub, where the
equality follows from uA = c and the inequality follows from u ≥ 0, Ax ≤ b.
Hence max{cx : x ∈ P} ≤ min{ub : u ∈ D}. Since D �= ∅, this also implies
that max{cx : x ∈ P} is bounded.

Note that max{cx : x ∈ P} = max{z : z − cx ≤ 0, Ax ≤ b}. Apply
Fourier’s method to the system z−cx ≤ 0, Ax ≤ b, to eliminate the variables
x1, . . . , xn. The result is a system āz ≤ b̄ in the variable z, where ā and b̄ are
vectors. We may assume that the entries of ā are 0,±1. By Theorem 3.1,
max{z : z − cx ≤ 0, Ax ≤ b} = max{z : āz ≤ b̄}, and there exists x∗ ∈ P
such that cx∗ achieves the maximum. Since max{z : āz ≤ b̄} is bounded,
at least one entry of ā equals 1, and max{z : āz ≤ b̄} = mini : āi=1 b̄i.
Let h be an index achieving the minimum in the previous equation. By
Remark 3.2(iii), inequality z ≤ b̄h is a nonnegative combination of the m+1
inequalities z − cx ≤ 0, Ax ≤ b. Thus there exists a nonnegative vector
(u0, u

∗) ∈ R+ × R
m
+ such that u0 = 1, (u0, u

∗)
(−c
A

)
= 0 and u∗b = b̄h.

It follows that u∗ ∈ D and u∗b = max{cx : x ∈ P}.

Theorem 3.8 (Complementary Slackness). Given a matrix A ∈ R
m×n and

vectors c ∈ R
n, b ∈ R

m, let P := {x : Ax ≤ b} and D : ={u : uA=c, u ≥ 0}.
Given x∗ ∈ P and u∗ ∈ D, x∗ and u∗ are optimal solutions for the primal
and dual problem max{cx : x ∈ P} and min{ub : u ∈ D}, respectively, if
and only if the following complementary slackness conditions hold

u∗i (a
ix∗ − bi) = 0 for i = 1, . . . ,m.

Proof. We have that cx∗ = u∗Ax∗ ≤ u∗b, and by Theorem 3.7 equality
holds if and only if x∗ and u∗ are optimal solutions for max{cx : x ∈ P}
and min{ub : u ∈ D}. Since aix∗ ≤ bi and u∗i ≥ 0, equality holds if and
only if, for i = 1, . . . ,m, u∗i (a

ix∗ − bi) = 0.

Here is another consequence of Farkas’ lemma:

Proposition 3.9. Let P := {x : Ax ≤ b} and D := {u : uA = c, u ≥ 0},
and suppose P �= ∅. Then max{cx : x ∈ P} is unbounded if and only if
D = ∅. Equivalently, max{cx : x ∈ P} is unbounded if and only if there
exists a vector ȳ such that Aȳ ≤ 0 and cȳ > 0.

3.4. AFFINE, CONVEX, AND CONIC COMBINATIONS 91

Proof. By Farkas’ lemma (Theorem 3.5), D = ∅ if and only if there exists
a vector ȳ such that Aȳ ≤ 0 and cȳ > 0. If D �= ∅, then by Theorem 3.7
max{cx : x ∈ P} = min{ub : u ∈ D}, therefore max{cx : x ∈ P}
is bounded. Conversely, assume D = ∅. Given x̄ ∈ P and ȳ such that
Aȳ ≤ 0 and cȳ > 0, it follows that x̄ + λȳ ∈ P for every λ ≥ 0 and
limλ→+∞ c(x̄+ λȳ) = +∞. Thus max{cx : x ∈ P} is unbounded.

Remark 3.10. Let P := {x : Ax ≤ b}. Define max{cx : x ∈ P} to be −∞
when P = ∅ and +∞ when the problem is unbounded; similarly min{cx :
x ∈ P} = +∞ when P = ∅ and −∞ when this minimization problem is
unbounded. Then, for P := {x : Ax ≤ b} and D := {u : uA = c, u ≥ 0},
the duality equation max{cx : x ∈ P} = min{ub : u ∈ D} holds in all cases
except when P and D are both empty.

3.4 Affine, Convex, and Conic Combinations

3.4.1 Linear Combinations, Linear Spaces

Vector x ∈ R
n is a linear combination of the vectors x1, . . . , xq ∈ R

n if there
exist scalars λ1, . . . , λq such that

x =

q∑
j=1

λjx
j.

Vectors x1, . . . , xq ∈ R
n are linearly independent if λ1 = . . . = λq = 0 is the

unique solution to the system
∑q

j=1 λjx
j = 0.

A nonempty subset L of Rn is a linear space if L is closed under taking
linear combinations, i.e., every linear combination of vectors in L belongs to
L. A subset L of Rn is a linear space if and only if L = {x ∈ R

n : Ax = 0}
for some matrix A (Exercise 3.6).

A basis of a linear space L is a maximal set of linearly independent vectors
in L. All bases have the same cardinality (Exercise 3.5). This cardinality is
called the dimension of L. If L = {x ∈ R

n : Ax = 0}, then the dimension
of L is n− rank(A) (Exercise 3.6).

The inclusionwise minimal linear space containing a set S ⊆ R
n is the

linear space generated by S, and is denoted by 〈S〉. Given any maximal set
S′ of linearly independent vectors in S, we have that 〈S〉 = 〈S′〉.

92 CHAPTER 3. LINEAR INEQUALITIES AND POLYHEDRA

3.4.2 Affine Combinations, Affine Spaces

A point x ∈ R
n is an affine combination of x1, . . . , xq ∈ R

n if there exist
scalars λ1, . . . , λq such that

x =

q∑
j=1

λjx
j ,

q∑
j=1

λj = 1.

Points x0, x1, . . . , xq ∈ R
n are affinely independent if λ0 = λ1 = . . . = λq = 0

is the unique solution to the system

q∑
j=0

λjx
j = 0,

q∑
j=0

λj = 0.

Equivalently, x0, x1, . . . , xq ∈ R
n are affinely independent if and only if no

point in x0, . . . , xq can be written as an affine combination of the others.
A subset A of Rn is an affine space if A is closed under taking affine

combinations. A basis of an affine subspace A ⊆ R
n is a maximal set of

affinely independent points in A. All bases of A have the same cardinality.
Equivalently, A ⊆ R

n is an affine subspace if and only if, for every dis-
tinct x, y ∈ A, the line {λx + (1 − λ)y} passing through x and y belongs
to A. Furthermore a subset A of R

n is an affine space if and only if
A = {x ∈ R

n : Ax = b} for some matrix A and vector b (Exercise 3.8).
Note that the linear subspaces are precisely the affine subspaces containing
the origin.

The dimension of a set S ⊆ R
n, denoted by dim(S), is the maximum

number of affinely independent points in S minus one. So the dimension
of the empty set is −1, the dimension of a point is 0 and the dimension of
a segment is 1. If A = {x ∈ R

n : Ax = b} is nonempty, then dim(A) =
n− rank(A) (Exercise 3.8).

The inclusionwise minimal affine space containing a set S ⊆ R
n is called

the affine hull of S and is denoted by aff(S). Since the intersection of
affine spaces is an affine space, the affine hull is well defined. Note that
dim(S) = dim(aff(S)).

3.4.3 Convex Combinations, Convex Sets

A point x in R
n is a convex combination of the points x1, . . . , xq ∈ R

n if
there exist nonnegative scalars λ1, . . . , λq such that

x =

q∑
j=1

λjx
j,

q∑
j=1

λj = 1.

3.4. AFFINE, CONVEX, AND CONIC COMBINATIONS 93

A set C ⊆ R
n is convex if C contains all convex combinations of points

in C. Equivalently, C ⊆ R
n is convex if for any two points x, y ∈ C, the line

segment {λx + (1 − λ)y, 0 ≤ λ ≤ 1} with endpoints x, y is contained in C.
(This is the definition given in Sect. 1.4).

Given a set S ⊆ R
n, the convex hull of S, denoted by conv(S), is the

inclusionwise minimal convex set containing S. As the intersection of convex
sets is a convex set, conv(S) exists. As observed in Sect. 1.4, it is the set of
all points that are convex combinations of points in S. That is

conv(S) = {
q∑

j=1

λjx
j : x1, . . . , xq ∈ S, λ1, . . . , λq ≥ 0,

q∑
j=1

λj = 1}.

3.4.4 Conic Combinations, Convex Cones

A vector x ∈ R
n is a conic combination of vectors x1, . . . , xq ∈ R

n if there
exist scalars λj ≥ 0, j = 1, . . . , q, such that

x =

q∑
j=1

λjr
j.

A set C ⊆ R
n is a cone if 0 ∈ C and for every x ∈ C and λ ≥ 0, λx

belongs to C. In other words, C is a cone if and only if 0 ∈ C and, for
every x ∈ C \ {0}, C contains the half line starting from the origin in the
direction x.

A cone C is a convex cone if C contains every conic combination of
vectors in C. A convex cone is a convex set, since by definition every convex
combination of points is also a conic combination.

Given a nonempty set S ⊆ R
n, the cone of S, denoted by cone(S), is

the inclusionwise minimal convex cone containing S. As the intersection
of convex cones is a convex cone, cone(S) exists. It is the set of all conic
combinations of vectors in S. We say that cone(S) is the cone generated
by S. For convenience, we define cone(∅) := {0}.

Given a cone C and a vector r ∈ C \ {0}, the half line cone(r) = {λr,
λ ≥ 0} is called a ray of C. We will often simply refer to a vector r ∈ C \{0}
as a ray of C to denote the corresponding ray cone(r). Since cone(λr) =
cone(r) for every λ > 0, we say that two rays r and r′ of a cone are distinct
when there is no μ > 0 such that r = μr′.

94 CHAPTER 3. LINEAR INEQUALITIES AND POLYHEDRA

3.5 Polyhedra and the Theorem
of Minkowski–Weyl

A subset P of Rn is a polyhedron if there exists a positive integer m, an
m× n matrix A, and a vector b ∈ R

m, such that

P = {x ∈ R
n : Ax ≤ b}.

For example Rn is a polyhedron because it is obtained as 0x ≤ 0. If ai �= 0 is
a row of A, the corresponding inequality aix ≤ bi defines a half-space of Rn.
Therefore a polyhedron is the intersection of a finite number of half-spaces.
It follows immediately from the definition that the intersection of a finite
number of polyhedra is again a polyhedron.

A polyhedron P is said to be a rational polyhedron if there exists a
rational matrix A ∈ Q

m×n and a rational vector b ∈ Q
m such that P = {x ∈

R
n : Ax ≤ b}.
A set C ⊆ R

n is a polyhedral cone if C is the intersection of a finite
number of half-spaces containing the origin on their boundaries. That is,

C := {x ∈ R
n : Ax ≤ 0}

for some m× n matrix A.

3.5.1 Minkowski–Weyl Theorem for Polyhedral Cones

A set C ⊆ R
n is a finitely generated cone if C is the convex cone generated

by a finite set of vectors r1, . . . , rk ∈ R
n, for k ≥ 1. We write C =

cone(r1, . . . , rk), and we say that r1, . . . , rk are the generators of C. If R
is the n × k matrix with columns r1, . . . , rk, we sometimes write cone(R)
instead of cone(r1, . . . , rk). Note that

cone(R) = {x ∈ R
n : ∃μ ≥ 0 s.t. x = Rμ}.

Theorem 3.11 (Minkowski–Weyl Theorem for Cones). A subset of Rn is
a finitely generated cone if and only if it is a polyhedral cone.

Proof. We first show that if C ⊆ R
n is a finitely generated cone, then C

is polyhedral. Let R be an n × k matrix such that C = {x ∈ R
n : ∃μ ≥

0 s.t. x = Rμ}. We need to show that there exists a matrix A such that
C = {x ∈ R

n : Ax ≤ 0}. By applying Fourier’s elimination method k times
to the system x − Rμ = 0, μ ≥ 0 to eliminate all variables μ1, . . . , μk, we
obtain a system of linear inequalities involving only the variables x1, . . . , xn.

3.5. POLYHEDRA AND THE THEOREM . . . 95

Note that, if we apply an iteration of Fourier’s method to a homogeneous
system, we again obtain a homogeneous system, therefore the output of
the k iterations of Fourier’s method is a system of the form Ax ≤ 0. By
Theorem 3.1, we have C = {x ∈ R

n : Ax ≤ 0}.
We now prove that, if C ⊆ R

n is a polyhedral cone, then C is finitely
generated. Let A be an m × n matrix such that C = {x ∈ R

n : Ax ≤ 0}.
We need to show that there exists a matrix R such that C = cone(R).
Consider the finitely generated cone C∗ := {y ∈ R

n : ∃ ν ≥ 0 s.t. y = νA}.
Since we have shown that every finitely generated cone is polyhedral, there
exists a matrix R such that C∗ = {y ∈ R

n : yR ≤ 0}. We will show that
C = cone(R).

To show “C ⊇ cone(R),” we need to prove that, for every μ ≥ 0, the
point x := Rμ satisfies Ax ≤ 0. Note that every row of A is in C∗, since it
is the product a unit row vector in R

m and A. Therefore, by definition of
R, AR ≤ 0. We have that Ax = ARμ ≤ 0 because AR ≤ 0 and μ ≥ 0.

We show “C ⊆ cone(R).” Consider x̄ /∈ cone(R). It suffices to show that
x̄ /∈ C. Since x̄ /∈ cone(R), the system Rμ = x̄, μ ≥ 0 in the variables μ is
infeasible. By Farkas lemma (Theorem 3.5), there exists y ∈ R

n such that
yR ≤ 0 and yx̄ > 0. Since yR ≤ 0, we have that y ∈ C∗, therefore there
exists ν ≥ 0 such that y = νA. Since yx̄ > 0, we have that νAx̄ > 0. The
latter and the fact that ν ≥ 0 imply that at least one component of Ax̄ must
be positive. This shows that x̄ /∈ C.

Proposition 3.12. Given a rational matrix A ∈ R
m×n, there exist rational

vectors r1, . . . , rk ∈ R
n such that {x : Ax ≤ 0} = cone(r1, . . . , rk).

Conversely, given rational vectors r1, . . . , rk ∈ R
n, there exists a rational

matrix A ∈ R
m×n such that cone(r1, . . . , rk) = {x : Ax ≤ 0}.

Proof. The statement follows from the proof of Theorem 3.11 and Remark
3.2(ii).

3.5.2 Minkowski–Weyl Theorem for Polyhedra

Polyhedra are isomorphic to sections of polyhedral cones. Indeed, given
P := {x ∈ R

n : Ax ≤ b}, consider the cone CP := {(x, y) ∈ R
n × R :

Ax − by ≤ 0, y ≥ 0}. Then P = {x ∈ R
n : (x, 1) ∈ CP }. That is, any

polyhedron can be seen as the intersection of a polyhedral cone (in a space
whose dimension is increased by 1) with the hyperplane of equation y = 1.
See Fig. 3.1.

A subset Q of Rn is a polytope if Q is the convex hull of a finite set of
vectors in R

n.

96 CHAPTER 3. LINEAR INEQUALITIES AND POLYHEDRA

P

CP

Figure 3.1: Polyhedron as the intersection of a polyhedral cone with a
hyperplane

Given subsets V , R of Rn, the Minkowski sum of V, R is the set

V +R := {x ∈ R
n : there exist v ∈ V, r ∈ R such that x = v + r}.

If one of V , R is empty, the Minkowski sum of V, R is empty. The next
theorem shows that a polyhedron can be expressed as the Minkowski sum
of a polytope and a finitely generated cone (Fig. 3.2).

Theorem 3.13 (Minkowski–Weyl Theorem [279, 348]). A subset P of Rn

is a polyhedron if and only if P = Q + C for some polytope Q ⊂ R
n and

finitely generated cone C ⊆ R
n.

Proof. Let P be a subset of Rn. We need to show that the following two
conditions are equivalent.

+ =
Q C P

Figure 3.2: Illustration of the Minkowski–Weyl theorem for polyhedra

1. There exist a matrix A and a vector b such that P = {x ∈ R
n :

Ax ≤ b}.

2. There exist v1, . . . , vp ∈ R
n and r1, . . . , rq ∈ R

n such that

P = conv(v1, . . . , vp) + cone(r1, . . . , rq).

3.6. LINEALITY SPACE AND RECESSION CONE 97

We show that (1) implies (2). Assume that (1) holds, and consider
the polyhedral cone CP := {(x, y) ∈ R

n+1 : Ax − by ≤ 0, y ≥ 0}. By
Theorem 3.11, the cone CP is finitely generated. Since y ≥ 0 for every
vector (x, y) ∈ CP , the generators of CP can be normalized so that their
(n + 1)th component is either 0 or 1. That is, there exist v1, . . . , vp ∈ R

n

and r1, . . . , rq ∈ R
n such that

CP = cone

{(
v1

1

)
, . . . ,

(
vp

1

)
,

(
r1

0

)
, . . . ,

(
rq

0

)}
. (3.5)

Since P = {x : (x, 1) ∈ CP }, this implies that P = conv{v1, . . . , vp} +
cone{r1, . . . , rq}.

We show that (2) implies (1). Assume that (2) holds, and let CP ∈ R
n+1

be the finitely generated cone defined by (3.5). Note that, by definition,
P = {x : (x, 1) ∈ CP }. By Theorem 3.11, CP is a polyhedral cone, therefore
there exists a matrix (A, b) such that CP := {(x, y) ∈ R

n+1 : Ax− by ≤ 0}.
It follows that P = {x ∈ R

n : Ax ≤ b}.

Corollary 3.14. (Minkowski–Weyl Theorem for Polytopes) A set Q ⊆ R
n

is a polytope if and only if Q is a bounded polyhedron.

3.6 Lineality Space and Recession Cone

Given a nonempty polyhedron P , the recession cone of P is the set

rec(P) := {r ∈ R
n : x+ λr ∈ P for all x ∈ P and λ ∈ R+}.

It follows from the definition that rec(P) is indeed a cone. We will refer to
the rays of rec(P) as the rays of the polyhedron P .

The lineality space of P is the set

lin(P) := {r ∈ R
n : x+ λr ∈ P for all x ∈ P and λ ∈ R}.

Note that lin(P) = rec(P) ∩ −rec(P). When lin(P) = {0}, we say that the
polyhedron P is pointed. In other words, a nonempty polyhedron is pointed
when it does not contain any line.

Proposition 3.15. Let P := {x ∈ R
n : Ax ≤ b} = conv(v1, . . . , vp) +

cone(r1, . . . , rq) be a nonempty polyhedron. Then

rec(P) = {r ∈ R
n : Ar ≤ 0} = cone(r1, . . . , rq)

and lin(P) = {r ∈ R
n : Ar = 0}.

98 CHAPTER 3. LINEAR INEQUALITIES AND POLYHEDRA

Proof. If r̄ satisfies Ar ≤ 0, then A(x+ λr̄) ≤ b+ λAr̄ ≤ b, for every x ∈ P
and λ ∈ R+, so x + λr̄ ∈ P . It follows that rec(P) ⊇ {r ∈ R

n : Ar ≤ 0}.
For the reverse inclusion, if r̄ ∈ R

n does not satisfy Ar ≤ 0, then for any
x ∈ P there is a λ̄ > 0 such that x+ λ̄r̄ does not satisfy Ax ≤ b, therefore
r̄ /∈ rec(P). This shows that rec(P) = {r ∈ R

n : Ar ≤ 0}.
If r̄ is in cone(r1, . . . , rq), then, because P = conv(v1, . . . , vp) + cone

(r1, . . . , rq), it follows that x + λr̄ ∈ P for all x ∈ P and λ ∈ R+. Thus
rec(P) ⊇ cone(r1, . . . , rq). For the reverse inclusion, let r̄ ∈ rec(P). Then,
given x ∈ conv(v1, . . . , vp), it follows that x + λr̄ ∈ P for all λ ∈ R+.
Since conv(v1, . . . , vp) is a bounded set, it follows that r̄ ∈ cone(r1, . . . , rq).
Therefore rec(P) = cone(r1, . . . , rq).

Finally, since lin(P) = rec(P) ∩ −rec(P) and rec(P) = {r ∈ R
n :

Ar ≤ 0}, we have that lin(P) = {r ∈ R
n : Ar = 0}.

3.7 Implicit Equalities, Affine Hull,
and Dimension

Given a system of linear inequalities Ax ≤ b, we denote by aix ≤ bi, i ∈ M ,
the inequalities in the system. We say that aix ≤ bi is an implicit equality
of Ax ≤ b if aix = bi is satisfied by every solution of Ax ≤ b. Equivalently,
aix ≤ bi is an implicit equality of Ax ≤ b if the polyhedron P := {x ∈ R

n :
Ax ≤ b} is contained in the hyperplane {x ∈ R

n : aix = bi}.
In the remainder of this chapter, whenever we have a linear system

Ax ≤ b, we denote by A=x ≤ b= the system comprising all implicit equali-
ties of Ax ≤ b, and by A<x ≤ b< the system comprising all the remaining
inequalities of Ax ≤ b. Thus, P = {x ∈ R

n : A=x ≤ b=, A<x ≤ b<} =
{x ∈ R

n : A=x = b=, A<x ≤ b<}.
We will let I= ⊆ M be the set of indices of the implicit equalities, and

I< ⊆ M the set of indices of the remaining inequalities. For every i ∈ I<

there exists x̄ ∈ P such that aix̄ < bi. Note that in particular I< = ∅
whenever P = ∅.

Remark 3.16. If P �= ∅, then P contains a point x̄ such that A<x̄ < b<.

Proof. By definition of implicit equality, for every i ∈ I<, there is a point
xi ∈ P such that aixi < bi. The statement is therefore satisfied by the point
x̄ := 1

|I<|
∑

i∈I< xi.

3.7. IMPLICIT EQUALITIES, AFFINE HULL, AND DIMENSION 99

Theorem 3.17. Let P := {x ∈ R
n : Ax ≤ b} be a nonempty polyhedron.

Then

aff(P) = {x ∈ R
n : A=x = b=} = {x ∈ R

n : A=x ≤ b=}.

Furthermore dim(P) = n− rank(A=).

Proof. Since P is contained in the affine space {x ∈ R
n : A=x = b=}, then

aff(P) ⊆ {x ∈ R
n : A=x = b=}. Also, trivially {x ∈ R

n : A=x = b=} ⊆
{x ∈ R

n : A=x ≤ b=}.
We now prove {x ∈ R

n : A=x ≤ b=} ⊆ aff(P). Let x̂ ∈ R
n be such

that A=x̂ ≤ b=. We need to show that x̂ ∈ aff(P). By Remark 3.16, P
contains a point x̄ such that A<x̄ < b<. For some ε > 0 small enough, the
point x̃ := x̄+ ε(x̂− x̄) satisfies A<x̃ ≤ b<. Since A=x̄ = b= and A=x̂ ≤ b=,
it follows that A=x̃ ≤ b=, therefore x̃ ∈ P . Since x̄, x̃ ∈ P , it follows that
aff(P) contains the whole line L passing through x̄ and x̃. Note that x̂ ∈ L,
therefore x̂ ∈ aff(P).

The last part of the statement follows from the fact that aff(P) = {x ∈
R
n : A=x = b=}, thus, by standard linear algebra, dim(aff(P)) = n −

rank(A=).

A polyhedron P ⊆ R
n is full-dimensional if dim(P) = n. By Theorem

3.17, this is equivalent to saying that any system Ax ≤ b that defines P has
no implicit equality, except possibly for the trivial equality 0 = 0.

Example 3.18. The assignment polytope is the following

P :=

⎧⎨
⎩x ∈ R

n2
:

∑n
j=1 xij = 1, i = 1, . . . n∑n
i=1 xij = 1, j = 1, . . . n

xij ≥ 0, i, j = 1, . . . n

⎫⎬
⎭ .

We show that dim(P) = n2 − 2n+ 1.

Let Ax = 1 be the system comprising the 2n equations in the definition
of P , where 1 denotes the vector of all ones. Thus A is a 2n × n2 matrix.
We first show that rank(A) = 2n − 1. Note that taking the sum the rows
of A relative to the equations

∑n
j=1 xij = 1, i = 1, . . . n minus the some

of the rows of A relative to the equations
∑n

i=1 xij = 1, j = 1, . . . n, we
obtain the 0 vector. Thus rank(A) ≤ 2n − 1. To prove equality, consider
the columns of A corresponding to the 2n−1 variables xii, i = 1, . . . , n, and
xi,i+1, i = 1, . . . , n− 1. One can easily show that these 2n− 1 columns of A
are linearly independent, hence rank(A) = 2n− 1.

100 CHAPTER 3. LINEAR INEQUALITIES AND POLYHEDRA

This shows that dim(P) ≤ n2 − (2n − 1). On the other hand, it is
immediate to see that xij ≥ 0 is not an implicit equality for P , 1 ≤ i, j ≤ n.
Therefore, by Theorem 3.17, dim(P) = n2 − rank(A) = n2 − 2n+ 1. �

In the previous example, the polyhedron P was given explicitly. In
integer programming, P is usually given as the convex hull of a set of integer
points. We illustrate in the next three examples how to compute the dimen-
sion of P in such a situation.

Example 3.19. The 0,1 knapsack polytope is the convex hull of the 0, 1
knapsack set defined in Sect. 2.1. That is, the polyhedron

P := conv({x ∈ {0, 1}n : ax ≤ b})

where a ∈ R
n
+ and b > 0.

Let J ⊆ {1, . . . , n} be the set of indices j such that aj > b. Note that
P ⊆ {x ∈ R

n : xj = 0, j ∈ J}. This shows that dim(P) ≤ n− |J |. On the
other hand, for every j /∈ J , the jth unit vector ej is a point of P . Also the
origin is in P , thus 0, ej , j /∈ J , are n− |J |+ 1 affinely independent points
in P . This shows that dim(P) = n− |J |. �

The above example illustrates a way to prove that a given nonempty set
S ⊂ R

n has a certain dimension k:

(a) Find a system Ax = b of equations such that S ⊆ {x ∈ R
n : Ax = b}

and rank(A) = n− k;

(b) Exhibit k + 1 affinely independent points in S.

Another way is to find a system Ax = b as in (a), and then prove that
every equation αx = β satisfied by all x ∈ S is a linear combination of the
equations Ax = b, namely there exists a vector u such that α = uA and
β = ub. Then the system Ax = b is the affine hull of S and therefore S has
dimension k. We give two examples.

Example 3.20. The permutahedron Πn ⊂ R
n is the convex hull of the set

Sn of the n! vectors that can be obtained by permuting the entries of the
vector (1, 2, . . . , n− 1, n). We will show that dim(Πn) = n− 1.

Note that, for every vector in Sn, the sum of the components is 1 +
2 + · · · + n =

(
n+1
2

)
, thus Πn is contained in the hyperplane {x ∈ R

n :∑n
i=1 xi =

(n+1
2

)
}. Therefore dim(Πn) ≤ n− 1. To prove equality, we show

that any equation αx = β satisfied by every x ∈ Sn must be a multiple of∑n
i=1 xi =

(
n+1
2

)
. We may of course assume that α �= 0. Note that, by

definition of Sn, in order for αx = β to hold for every x ∈ Sn, we must have

3.8. FACES 101

αi = αj for all i, j ∈ {1, . . . , n}. Hence we may assume, up to multiplying
α by a nonzero scalar, that αi = 1, i = 1, . . . , n. By substituting the point
(1, . . . , n) in αx = β, we obtain β =

(n+1
2

)
. �

Example 3.21. The Hamiltonian-path polytope of a graph G = (V,E) is
the convex hull of incidence vectors of the Hamiltonian paths of G. Recall
that a Hamiltonian path in G is a path that goes exactly once through each
node. We show the following.

The dimension of the Hamiltonian-path polytope of the complete graph
on n nodes is

(n
2

)
− 1.

Let P ⊂ R
(n2) be the Hamiltonian-path polytope of the complete graph

G on n nodes. Note that, since all Hamiltonian paths on a graph with n
nodes have n− 1 edges, the Hamiltonian-path polytope is contained in the
hyperplane of equation

∑
e∈E xe = n − 1. Therefore dim(P) ≤

(n
2

)
− 1.

To prove equality, we show that, given any equation αx = β satisfied by
all points in P , α �= 0, the equations αx = β and

∑
e∈E xe = n − 1 are

identical up to scalar multiplication. It suffices to show that αe = αe′ for
every e, e′ ∈ E. Given e, e′ ∈ E, let H be a Hamiltonian tour in G containing
both e and e′. Note that Q = H \ {e} and Q′ = H \ {e′} are Hamiltonian
paths. Thus, if x̄ and x̄′ are the incidence vectors of Q and Q′, respectively,
we have 0 = αx̄− αx̄′ = αe′ − αe. �

3.8 Faces

An inequality cx ≤ δ is valid for the set P ⊆ R
n if cx ≤ δ is satisfied by

every point in P . Note that we allow c = 0 in our definition, in which case
the inequality 0 ≤ δ is valid for every set P if δ ≥ 0, and it is valid only for
the empty set if δ < 0.

Theorem 3.22. Let P := {x ∈ R
n : Ax ≤ b} be a nonempty polyhedron.

An inequality cx ≤ δ is valid for P if and only if there exists u ≥ 0 such
that uA = c and ub ≤ δ.

Proof. Let c ∈ R
n and δ ∈ R. Assume uA = c, ub ≤ δ, u ≥ 0 is feasible.

Then, for all x ∈ P , we have cx = uAx ≤ ub ≤ δ. This shows that cx ≤ δ is
valid for P .

Conversely, assume that the inequality cx ≤ δ is valid for P . Consider
the linear program max{cx : x ∈ P}. Since P �= ∅ and cx ≤ δ is a
valid inequality for P , the above program admits a finite optimum and its

102 CHAPTER 3. LINEAR INEQUALITIES AND POLYHEDRA

value is δ′ ≤ δ. By Proposition 3.9, the set D = {u : uA = c, u ≥ 0} is
nonempty. By Theorem 3.7 the dual min{ub : u ∈ D} has value δ′, and
there exists u ∈ D such that ub = δ′. Thus uA = c, ub ≤ δ, u ≥ 0.

Theorem 3.22 can be used to show the following variant (Exercise 3.17).

Corollary 3.23. Let P := {x : Ax ≤ b, Cx = d} be a nonempty polyhedron.
An inequality cx ≤ δ is valid for P if and only if the system uA+vC=c,
ub+ vd ≤ δ, u ≥ 0 is feasible.

A face of a polyhedron P is a set of the form

F := P ∩ {x ∈ R
n : cx = δ}

where cx ≤ δ is a valid inequality for P . We say that the inequality
cx ≤ δ defines the face F . If a valid inequality cx ≤ δ with c �= 0 defines a
nonempty face of P , the hyperplane {x ∈ R

n : cx = δ} is called a supporting
hyperplane of P . A face is itself a polyhedron since it is the intersection of
the polyhedron P with another polyhedron (the hyperplane cx = δ when
c �= 0). Note that ∅ and P are always faces of P , since they are the faces
defined by the valid inequalities 0 ≤ −1 and 0 ≤ 0, respectively. A face of
P is said to be proper if it is nonempty and properly contained in P .

Inclusionwise maximal proper faces of P are called facets. Thus any face
distinct from P is contained in a facet. Any valid inequality for P that
defines a facet is called a facet-defining inequality (Fig. 3.3).

PP

F

Figure 3.3: The polyhedron on the left (a half-line) has one proper face F ,
which is a facet; the unbounded polyhedron on the right has three proper
faces, two of which have dimension one and are facets, while the third proper
face has dimension zero

Theorem 3.24 (Characterization of the Faces). Let P := {x ∈ R
n : aix ≤

bi, i ∈ M} be a nonempty polyhedron. For any I ⊆ M , the set

FI := {x ∈ R
n : aix = bi, i ∈ I, aix ≤ bi, i ∈ M \ I}

is a face of P . Conversely, if F is a nonempty face of P , then F = FI for
some I ⊆ M .

3.8. FACES 103

Proof. For the first part of the statement, let c :=
∑

i∈I a
i, δ :=

∑
i∈I bi.

Then cx ≤ δ is a valid inequality. Furthermore, given x ∈ P , x satisfies
cx = δ if and only if it satisfies aix = bi, i ∈ I. Thus FI = P ∩ {x ∈ R

n :
cx = δ}, so FI is a face.

Conversely, let F := {x ∈ P : cx = δ} be a nonempty face of P defined
by the valid inequality cx ≤ δ. Then F is the set of optimal solutions of
the linear program max{cx : x ∈ P}. Let ū be an optimal solution to the
dual problem min{ub : uA = c, u ≥ 0}, and I = {i ∈ M : ūi > 0}. By
Theorem 3.8, F = FI .

Proposition 3.25. Given a polyhedron P , the following hold.

(i) The number of faces of P is finite.

(ii) For every nonempty face F of P , lin(F) = lin(P).

(iii) Given faces F and F ′ of P , F ∩F ′ is a face of P and there is a unique
minimal face of P containing F ∪ F ′.

(iv) Two faces F and F ′ of P are distinct if and only if aff(F) �= aff(F ′).

(v) If F and F ′ are faces of P and F ⊂ F ′, then dim(F) ≤ dim(F ′)− 1.

(vi) Given a face F of P , the faces of F are exactly the faces of P contained
in F .

Proof. Let P := {x ∈ R
n : aix ≤ bi, i ∈ M}.

(i) By Theorem 3.24, the number of faces of P does not exceed 2|M |.

(ii) It follows from Proposition 3.15 and Theorem 3.24 that lin(F) = {x ∈
R
n : aix = 0, i ∈ M} = lin(P).

(iii) Let I be the set of all i ∈ M such that aix = bi is satisfied by all x ∈ F
(in particular I = M if F = ∅), and J be the set of all i ∈ M such
that aix = bi is satisfied by all x ∈ F ′. By Theorem 3.24, F = FI and
F ′ = FJ . It follows that F ∩ F ′ = FI∪J . Furthermore, FI∩J is the
unique minimal face of P containing F ∪ F ′.

(iv) The “if” direction is obvious. We prove the “only if” statement. Let F
and F ′ be distinct faces of P . We assume F and F ′ are both nonempty,
otherwise the statement holds. By Theorem 3.24, these exist distinct
subsets I, J ⊆ M such that F = FI and F ′ = FJ . Since F �= F ′,
we may assume that there is a point x̄ ∈ F \ F ′. Thus, there must

104 CHAPTER 3. LINEAR INEQUALITIES AND POLYHEDRA

exist some index j ∈ J such that aj x̄ < bj. Since j ∈ J , we have
that aff(F ′) ⊆ {x ∈ R

n : ajx = bj} and since x̄ ∈ F , we have that x̄
belongs to aff(F) \ aff(F ′). Hence aff(F) �= aff(F ′).

(v) If F ⊂ F ′, then aff(F) ⊆ aff(F ′). By (iv), aff(F) �= aff(F ′), therefore
dim(F) ≤ dim(F ′)− 1.

(vi) is obvious.

3.9 Minimal Representation and Facets

Given a polyhedron P := {x ∈ R
n : Ax ≤ b}, we partition the rows of A

into the implicit equalities and the rest. Namely P = {x ∈ R
n : aix =

bi, i ∈ I=, aix ≤ bi, i ∈ I<} where, for every i ∈ I<, there exists x̄ ∈ P
such that aix̄ < bi.

For any j ∈ I= ∪ I<, we say that the jth constraint of the system is
redundant if P = {x ∈ R

n : aix = bi, i ∈ I= \ {j}, aix ≤ bi, i ∈ I< \ {j}}.
In other words, a constraint is redundant if removing it from the system
does not change the feasible region. Constraints that are not redundant
are called irredundant. Note that all constraints in the system defining P
may be redundant; for example, if every inequality in the system is repeated
twice.

Lemma 3.26. Let P := {x ∈ R
n : Ax ≤ b} be a nonempty polyhedron.

Given j ∈ I< such that the inequality ajx ≤ bj is irredundant, let F := {x ∈
P : ajx = bj}. The following hold.

(i) The face F contains a point x̂ such that aix̂ < bi for all i ∈ I< \ {j}.

(ii) aff(F) = {x ∈ R
n : aix = bi, i ∈ I= ∪ {j}}.

(iii) dim(F) = dim(P)− 1.

Proof. (i) By Theorem 3.24, F is a face of P . By Remark 3.16, there
exists x̄ ∈ P satisfying aix̄ < bi for all i ∈ I<. Furthermore, since
ajx ≤ bj is not redundant, there exists a point x̃ satisfying

aix̃ = bi ∀ i ∈ I=, aix̃ ≤ bi ∀ i ∈ I< \ {j}, aj x̃ > bj.

Let x̂ be the unique point in the intersection of F with the line segment
joining x̄ and x̃. Then aix̂ < bi for all i ∈ I< \ {j}.

3.9. MINIMAL REPRESENTATION AND FACETS 105

(ii) By (i), the implicit equalities of the system aix = bi, i ∈ I= ∪ {j},
aix ≤ bi, i ∈ I<\{j}, are precisely the equations aix = bi, i ∈ I=∪{j}.
Thus, by Theorem 3.17, aff(F) = {x ∈ R

n : aix = bi, i ∈ I= ∪ {j}}.

(iii) Since ajx = bj is not an implicit equation of P , it follows that F
is strictly contained in P , therefore by Proposition 3.25 dim(F) ≤
dim(P) − 1. By (ii) and Theorem 3.17, dim(F) ≥ dim(P) − 1. Thus
dim(F) = dim(P)− 1.

The system aix = bi, i ∈ I=, aix ≤ bi, i ∈ I<, defining P is said to be
a minimal representation for P if all its constraints are irredundant. Note
that every polyhedron P admits a minimal representation, since this can
be obtained, starting from any system defining P , by iteratively removing a
redundant constraint as long as one exists.

Theorem 3.27 (Characterization of the Facets). Let P := {x ∈ R
n :

Ax ≤ b} be a nonempty polyhedron, and let f be the number of its facets.

(i) For each facet F of P , there exists j ∈ I< such that the inequality
ajx ≤ bj defines F .

(ii) If aix = bi, i ∈ I=, aix ≤ bi, i ∈ I< is a minimal representation for
P , then |I<| = f and the facets of P are Fi := {x ∈ P : aix = bi},
for i ∈ I<.

(iii) A face F of P is a facet if and only if F is nonempty and dim(F) =
dim(P)− 1.

Proof. (i) Given a facet F of P , by Theorem 3.24 there exists I ⊆ I<

such that F = {x ∈ P : aix = bi, i ∈ I}. Since F �= P , it follows that
I �= ∅. Choose j ∈ I and let F ′ := {x ∈ P : ajx = bj}. Since j ∈ I,
F ⊆ F ′ ⊂ P . Since F is a facet, it follows by maximality that F = F ′.
Thus F is defined by the inequality ajx ≤ bj.

(ii) Assume aix = bi, i ∈ I=, aix ≤ bi, i ∈ I< is a minimal representation
for P . Since aix ≤ bi is irredundant for every i ∈ I<, it follows from
Lemma 3.26 that Fi is a facet for every i ∈ I<. Conversely, from (i) we
have that every facet of P is of the form Fi for some i ∈ I<. Therefore
we only need to show that, for j, k ∈ I<, j �= k, the facets Fj and Fk

are distinct. Indeed, by Lemma 3.26, there exists x̂ ∈ Fj such that
aix̂ < bi for all i ∈ I< \ {j}, therefore x̂ ∈ Fj \ Fk.

(iii) follows from (ii) and from Lemma 3.26(iii).

106 CHAPTER 3. LINEAR INEQUALITIES AND POLYHEDRA

Example 3.28. The stable set problem has been introduced in Chap. 2.
Given a graph G = (V,E) the stable set polytope STAB(G) is the convex hull
of the characteristic vectors of all the stable sets of G. STAB(G) is a full-
dimensional polytope in R

V , since it contains the origin and the unit vectors
ev, v ∈ V . Let K ⊆ V be a maximal clique of G. The clique inequality∑

v∈K xv ≤ 1 is valid for STAB(G) (see Sect. 2.4.3). We show that it is
facet-defining. Since K is a maximal clique of G, every node in V \ K is
contained in a stable set of size 2 containing one node ofK. Consider the |V |
stable sets consisting of the |V \K| stable sets just defined, together with |K|
stable sets each consisting of a single node v ∈ K. Since the characteristic
vectors of these |V | stable sets are linearly independent, they are affinely
independent as well. Therefore the inequality

∑
v∈K xv ≤ 1 defines a facet

of STAB(G). �

Example 3.29. Consider the permutahedron Πn and the set Sn of permu-
tation vectors defined in Example 3.20. Note that, for any K ⊂ {1, . . . , n},
letting k = |K|, the inequality

∑
i∈K

xi ≥
(
k + 1

2

)
(3.6)

is valid for Πn. Indeed, given any permutation vector x̄ ∈ Sn,
∑

i∈K x̄i ≥
1 + 2 + · · · + k =

(k+1
2

)
, where equality holds if and only if {x̄i : i ∈ K} =

{1, . . . , k}. We show that (3.6) is facet-defining. Let F be the face of Πn

defined by (3.6). Since it is a proper face, it is contained in some facet, thus
there exists a facet-defining inequality αx ≥ β for Πn such that αx = β
for all x ∈ F . We will show that inequality (3.6) defines the same face as
αx ≥ β, which implies that F is a facet.

We first show that αi = αj if i, j ∈ K or if i, j ∈ {1, . . . , n} \K. Indeed,
given i, j ∈ K, i �= j, and any vector x̄ ∈ F∩Sn, the vector x̃ obtained from x̄
by swapping the entries x̄i and x̄j belongs to F as well. Thus 0 = αx̄−αx̃ =
αi(x̄i − x̃i) + αj(x̄j − x̃j) = (αi − αj)(x̄i − x̄j). Since x̄i − x̄j �= 0, it follows
that αi = αj . The proof that αi = αj for all i, j ∈ {1, . . . , n}\K is identical.
Thus the inequality αx ≥ β is of the form λ

∑
i∈K xi + λ′∑

i/∈K xi ≥ β.
We further notice that λ ≥ λ′. Indeed, given x̄ ∈ F ∩ Sn, the vector x̃
obtained by swapping an entry x̄i, i ∈ K, with an entry x̄j , j /∈ K, is also
an element of Sn, and thus it satisfies αx̃ ≥ β. It follows that 0 ≤ αx̃−αx̄ =
(λ − λ′)(x̄j − x̄i). Since x̄ ∈ F ∩ Sn, x̄j > x̄i, thus λ ≥ λ′. It follows that
αx ≥ β is obtained by taking the sum of the equation

∑n
i=1 xi =

(n+1
2

)
multiplied by λ′ and the inequality (3.6) multiplied by λ − λ′. This shows
that (3.6) and αx ≥ β define the same face. �

3.9. MINIMAL REPRESENTATION AND FACETS 107

The next theorem shows that minimal representations of a polyhedron
are essentially unique.

Theorem 3.30 (Uniqueness of the Minimal Representation).
Let P ⊆ R

n be a nonempty polyhedron. Let k := dim(P) and f be the number
of facets of P . Let A=x = b=, A<x ≤ b< and C=x = d=, C<x ≤ d< be two
minimal representations for P . The following hold.

(i) The systems A=x = b= and C=x = d= have n − k equations and
every equation of C=x = d= is of the form (uA=)x = ub= for some
u ∈ R

n−k.

(ii) The systems A<x ≤ b< and C<x ≤ d< are comprised of f inequalities,
say aix ≤ bi, i = 1, . . . , f , and cix ≤ di, i = 1, . . . , f , respectively.
Up to permuting the indices of the inequalities, for j = 1, . . . , f , there
exists λ > 0 and u ∈ R

n−k such that

cj = λaj + uA=, dj = λbj + ub=.

Proof. (i) Both matrices A=, C= have full row-rank, otherwise A=x = b=

or C=x = d= would contain some redundant equation. By Theorem
3.17, {x ∈ R

n : A=x = b=} = {x ∈ R
n : C=x = d=} = aff(P).

Thus, by standard linear algebra rank(A=) = rank(C=) = n− k, and
every equation of C=x = d= is a linear combination of equations of
A=x = b=.

(ii) By Theorem 3.27(ii), A<x ≤ b< and C<x ≤ d< have f inequalities,
all facet-defining, say aix ≤ bi, i = 1, . . . , f , and cix ≤ di, i = 1, . . . , f ,
respectively. Up to permuting the indices, we may assume that aix ≤
bi and cix ≤ di define the same facet Fi.

Let j ∈ {1, . . . , f}. By Lemma 3.26, aff(Fj) = aff(P)∩{x : ajx = bj} =
aff(P) ∩ {x : cjx = dj}. It follows that cjx = dj is a linear combination of
the equations A=x = b=, ajx = bj , that is, there exists λ ∈ R, u ∈ R

n−k such
that cj = λaj + uA= and dj = λbj + ub=. To show λ > 0, consider a point
x̃ ∈ P \ Fj . Then 0 < dj − cj x̃ = λ(bj − aj x̃) + u(b= −A=x̃) = λ(bj − aj x̃),
which implies λ > 0 because bj − aj x̃ > 0.

For full-dimensional polyhedra the above theorem has a simpler form.

Corollary 3.31. Let P be a full-dimensional polyhedron and let Ax ≤ b
be a minimal representation of P . Then Ax ≤ b is uniquely defined up to
multiplying inequalities by a positive scalar.

108 CHAPTER 3. LINEAR INEQUALITIES AND POLYHEDRA

Theorems 3.27 and 3.30 imply the following characterization of minimal
representations.

Corollary 3.32. Let P = {x ∈ A=x = b=, A<x ≤ b<} be a nonempty
polyhedron. The system A=x = b=, A<x ≤ b< is a minimal representation
for P if and only if A= has full row rank, rank(A=) = n − dim(P), and
A<x ≤ b< has as many inequalities as the number of facets of P .

3.10 Minimal Faces

Let P be a nonempty polyhedron in R
n. A set F ⊆ R

n is a minimal face of
P if F is a nonempty face of P that contains no proper face. The following
characterization of minimal faces is due to Hoffman and Kruskal [204].

Theorem 3.33. Let P := {x ∈ R
n : Ax ≤ b} be a nonempty polyhedron.

(i) A nonempty face F of P is minimal if and only if F = {x ∈ R
n :

A′x = b′} for some system A′x ≤ b′ of inequalities from Ax ≤ b such
that rank(A′) = rank(A). Hence F is a translate of lin(P).

(ii) The dimensions of the nonempty faces of P take all values between
dim(lin(P)) and dim(P).

Proof. We prove (i). Let F be a nonempty face of P . We first show the
“if” part of the statement. Suppose F = {x : A′x = b′} where A′x ≤ b′

comprises some of the inequalities from Ax ≤ b. Then F is an affine space,
and therefore it has no proper face, implying that F is a minimal face of P .
For the “only if” part, assume F is a minimal face. It follows that F has no
facet. Let A′x ≤ b′ be the system comprising all inequalities of Ax ≤ b that
are satisfied at equality by every point in F , and let A′′x ≤ b′′ be the system
comprising all remaining inequalities of Ax ≤ b. By Theorem 3.24, F =
{x ∈ R

n : A′x = b′, A′′x ≤ b′′}. Let C=x = d=, C<x ≤ d< be a minimal
representation of F comprising constraints from A′x = b′, A′′x ≤ b′′. Since
F has no facet, it follows from Theorem 3.27 that F = {x : C=x = d=}.
This implies that F = {x ∈ R

n : A′x = b′}. It follows that F is an affine
space, therefore F = {v} + lin(F) for any v ∈ F . By Proposition 3.25(ii),
lin(F) = lin(P), therefore dim(F) = dim(lin(P)). It follows that rank(A′) =
n− dim(F) = n− dim(lin(P)) = rank(A).

(ii) follows from Theorem 3.27(iii), since this result implies that any face
F of P of dimension greater than dim(lin(P)) contains a face of dimension
dim(F)− 1.

3.11. EDGES AND EXTREME RAYS 109

Note that any polyhedral cone has a unique minimal face, namely, its
lineality space.

Vertices

A face of dimension 0 is a vertex of P . By Theorem 3.33, P has a vertex if
and only if lin(P) = {0}, that is: P has a vertex if and only if P is pointed.

Theorem 3.34. Let P := {x ∈ R
n : Ax ≤ b} be a pointed polyhedron, and

let x̄ ∈ P . The following statements are equivalent.

(i) x̄ is a vertex.

(ii) x̄ satisfies at equality n linearly independent inequalities of Ax ≤ b.

(iii) x̄ is not a proper convex combination of two distinct points in P (i.e.,
no distinct points x′, x′′ ∈ P exist such that x̄ = λx′ + (1 − λ)x′′ for
some 0 < λ < 1).

Proof. By Theorem 3.33, (i) and (ii) are equivalent. We show next that
(i) implies (iii). Indeed, suppose x̄ is a vertex, and let cx ≤ δ be a valid
inequality for P such that {x̄} = P ∩ {x : cx = δ}. Given x′, x′′ ∈ P
and 0 < λ < 1, such that x̄ = λx′ + (1 − λ)x′′, it follows that δ = cx̄ =
λcx′ + (1− λ)cx′′ ≤ δ, therefore cx′ = cx′′ = δ, hence x′ = x′′ = x̄.

It remains to show that (iii) implies (ii). Let A′x ≤ b′ be the system
comprising all inequalities of Ax ≤ b satisfied at equality by x̄. We will
show that, if rank(A′) < n, then x̄ is a proper convex combination of two
points in P . If rank(A′) < n, then there exists a vector ȳ �= 0 such that
A′ȳ = 0. Let A′′x ≤ b′′ be the system of inequalities of Ax ≤ b not in
A′x ≤ b′. By definition, A′′x̄ < b′′. Thus, for ε > 0 sufficiently small, the
points x′ = x̄ + εȳ and x′′ = x̄ − εȳ are both in P . It is now clear that
x̄ �= x′, x′′ and x̄ = 1

2x
′ + 1

2x
′′.

3.11 Edges and Extreme Rays

Let P be a nonempty polyhedron in R
n. A face of dimension 1 is an edge

of P . Note that an edge has at most two vertices, and it is bounded if and
only if it has two vertices. Furthermore, if P is pointed, any edge has at
least one vertex. If an edge F has two vertices x′ and x′′, then F is the line
segment joining x′ and x′′. If an edge F of P has precisely one vertex, say
x̄, then F is a half-line starting from x̄, that is, F = {x̄ + λr : λ ≥ 0} for
some ray r of rec(P).

110 CHAPTER 3. LINEAR INEQUALITIES AND POLYHEDRA

In particular, the edges of a pointed polyhedral cone are half-lines starting
at the origin. An extreme ray of a pointed polyhedral cone C is an edge of
C. The extreme rays of a pointed polyhedron P are the extreme rays of the
recession cone of P .

Theorem 3.35. Let C := {x ∈ R
n : Ax ≤ 0} be a pointed cone, and let r̄

be a ray of C. The following are equivalent.

(i) r̄ is an extreme ray of C.

(ii) r̄ satisfies at equality n−1 linearly independent inequalities of Ax ≤ 0.

(iii) r̄ is not a proper conic combination of two distinct rays in C (i.e., no
distinct rays r′, r′′ ∈ C exist such that r̄ = μ′r′+μ′′r′′ for some μ′ > 0,
μ′′ > 0).

Proof. Consider r̄ ∈ C \ {0}. Let α ∈ R
n be the sum of the rows of A

and let P := {x ∈ C : αx ≥ −1}. Since C is pointed, rank(A) = n
(Proposition 3.15). Therefore, αx < 0 for every x ∈ C \{0}. In particular P
is a polytope, because rec(P) = {x ∈ C : αx ≥ 0} = {0}. Up to multiplying
r̄ by a positive scalar, we may assume αr̄ = −1. The theorem now follows
by Theorem 3.34. Indeed, r̄ satisfies n− 1 linearly independent inequalities
of Ax ≤ 0 at equality if and only if r̄ is a vertex of P , and this is the case
if and only if r̄ is not a proper convex combination of two distinct points in
P . One can readily check that the latter condition is equivalent to (iii).

The skeleton of a polytope P is the graph G(P) whose nodes are the
vertices of P and whose edges are the edges of P ; that is, two nodes are
adjacent in G(P) if and only if there is an edge of P containing the two
corresponding vertices.

Example 3.36. Let G = (V,E) be the complete graph on n nodes. The

cut polytope P cut
n ⊆ R

(n2) is the convex hull of the set Sn of characteristic
vectors of the cuts of G. Note that |Sn| = 2n−1 since T ⊆ V and V \ T
define the same cut. We show that the cut polytope is a neighborly polytope,
that is, any pair of vertices of P cut

n is contained in an edge of P cut
n (in other

words, the skeleton of P cut
n is a clique on 2n−1 nodes).

The vertices of P cut
n are precisely the characteristic vectors of the cuts

of G (this follows from Exercise 3.25).

Let S, T ⊆ V such that δ(S) �= δ(T). We show that the characteristic
vectors xS of δ(S) and xT of δ(T) are adjacent in P cut

n . For this, we need
to show that there exists an edge F of P cut

n that contains xS and xT . We

3.12. DECOMPOSITION THEOREM FOR POLYHEDRA 111

will describe a valid inequality αx ≤ β for P cut
n such that αxS = αxT = β

and αx < β for all x ∈ Sn \ {xS , xT }. This will imply that F := P cut
n ∩ {x :

αx = β} is an edge of P cut
n whose vertices are xS and xT .

We define α as follows. For all uv ∈ E, let

αuv :=

⎧⎪⎪⎨
⎪⎪⎩

1 if u ∈ S ∩ T and v ∈ V \ (S ∪ T);

1 if u ∈ S \ T and v ∈ T \ S;
−1 if u, v ∈ S \ T, or u, v ∈ T \ S, or u, v ∈ S ∩ T, or u, v ∈ V \ (S ∪ T);

0 otherwise.

Let β be the number of edges uv such that αuv = 1. By construction,
αxS = αxT = β, while αx ≤ β for every x ∈ Sn. On the other hand, given
W ⊆ V , the characteristic vector xW satisfies αx = β if and only if δ(W)
does not contain any edge uv such that αuv = −1 and δ(W) contains all
the edges uv such that αuv = 1. One can verify that the only way this can
happen is if W is one of the set S, V \S, T , or V \T . Since δ(S) = δ(V \S)
and δ(T) = δ(V \ T), it follows that xW must be either xS or xT . �

3.12 Decomposition Theorem for Polyhedra

Theorem 3.37 (Decomposition Theorem for Polyhedra). Let P ⊆ R
n be a

nonempty polyhedron, and let t := dim(lin(P)). Let F1, . . . , Fp be the family
of minimal faces of P , and R1, . . . , Rq the family of (t+1)-dimensional faces
of rec(P). Let vi ∈ Fi, i = 1, . . . , p, and ri ∈ Ri \ lin(P), i = 1, . . . , q. Then

P = conv(v1, . . . , vp) + cone(r1, . . . , rq) + lin(P).

Furthermore if P = conv(X)+cone(Y)+lin(P), where cone(Y) is a pointed
cone, then X contains a point in every t-dimensional face of P and Y con-
tains a ray in each (t+ 1)-dimensional face of rec(P).

Proof. Assume first that P is pointed, i.e., dim(lin(P)) = 0. Then mini-
mal faces are the vertices of P and one-dimensional faces of rec(P) are the
extreme rays of rec(P). In this case the above theorem reduces to:

Let v1, . . . , vp be the vertices of P , and r1, . . . , rq the extreme rays of
rec(P). Then P = conv(v1, . . . , vp) + cone(r1, . . . , rq). Furthermore if
P = conv(X) + cone(Y), then {v1, . . . , vp} ⊆ X and {r1, . . . , rq} ⊆ Y .

We prove the above statement. Assume P = conv(X) + cone(Y) is a
pointed polyhedron. By Theorem 3.34 all the vertices of P belong to X and
if xj ∈ X is not a vertex of P , then P = conv(X \ {xj}) + cone(Y).

112 CHAPTER 3. LINEAR INEQUALITIES AND POLYHEDRA

By Proposition 3.15, rec(P) = cone(Y). Therefore by Theorem 3.35, Y
contains all the extreme rays of rec(P) and if yj ∈ Y is not an extreme ray
of rec(P), then P = conv(X) + cone(Y \ {yj}).

Assume now that P is not pointed, i.e., t := dim(lin(P)) ≥ 1. Let
a1, . . . , at be a basis of lin(P) and consider the polyhedron Q := {x ∈ P :
aix = 0, i = 1, . . . , t}. Note that Q is a pointed polyhedron and P =
Q+lin(P). Let v1, . . . , vp be the vertices of Q, and r1, . . . , rq be the extreme
rays of rec(Q). The statement above shows that Q = conv(v1, . . . , vp) +
cone(r1, . . . , rq). Hence P = conv(v1, . . . , vp)+cone(r1, . . . , rq)+ lin(P) and
this is a representation of P where cone(r1, . . . , rq) is pointed and p and q
are smallest.

By Theorem 3.33, the minimal faces of P are Fi = vi + lin(P),
i = 1, . . . , p. Furthermore the (t + 1)-dimensional faces of rec(P) are
Ri = cone(ri) + lin(P), i = 1, . . . , p. Hence in the representation P =
conv(v1, . . . , vp) + cone(r1, . . . , rq) + lin(P), any point in Fi can be substi-
tuted for vi, i = 1, . . . , p and any ray in the cone Ri can be substituted for
ri, i = 1, . . . , q.

3.13 Encoding Size of Vertices, Extreme Rays,
and Facets

Theorem 3.38. Let P := {x ∈ R
n : Ax ≤ b} be a pointed polyhedron where

A and b have rational entries. Let v1, . . . , vp ∈ Q
n be the vertices of P , and

r1, . . . , rq ∈ Q
n its extreme rays. If the encoding size of each coefficient of

(A, b) is at most L, then each of the vectors v1, . . . , vp and r1, . . . , rq can be
written so that their encoding size is polynomially bounded by n and L.

Proof. By Theorem 3.34, a point x̄ ∈ P is a vertex if and only if there
exists a system Āx ≤ b̄ comprising n linearly independent inequalities from
Ax ≤ b such that x̄ is the unique solution of Āx = b̄. By Proposition 1.2,
the encoding size of x̄ is polynomially bounded by n and L.
By Theorem 3.35, a ray r of P is extreme if and only if there exists a system
Āx ≤ 0 comprising n−1 linearly independent inequalities from Ax ≤ 0 such
that r is a solution of Āx = 0. Since r �= 0 and rank(A) = n, there exists
some inequality αx ≤ 0 of Ax ≤ 0 such that αr < 0. We may therefore
assume that αr = −1, thus, by Proposition 1.2, the encoding size of r is
polynomially bounded by n and L.

The above theorem can be easily extended to non-pointed polyhedra,
showing that P can be written as P = conv(v1, . . . , vp) + cone(r1, . . . , rq)

3.14. CARATHÉODORY’S THEOREM 113

where the encoding sizes of v1, . . . , vp and r1, . . . , rq are polynomially
bounded by n and L, but for simplicity we only prove it in the pointed case.

Theorem 3.39. Let P = conv(v1, . . . , vp) + cone(r1, . . . , rq) be a polyhe-
dron, where v1, . . . , vp and r1, . . . , rq are given rational vectors in R

n. If
the encoding size of each vector v1, . . . , vp and r1, . . . , rq is at most L, then
there exist a rational matrix A and vector b such that P = {x : Ax ≤ b}
and the encoding size of each entry of (A, b) is polynomially bounded by n
and L.

Proof. By Theorem 3.27, it suffices to show that, given any facet F of P ,
there exists a valid inequality αx ≤ β for P defining F whose encoding size
is polynomially bounded by n and L. Let d = dim(P). Let q1, . . . , qd be d
affinely independent points in F and let q0 ∈ P \F . We may choose q0, . . . , qd

to be elements of {v1, . . . , vp}+ {0, r1, . . . , rq}, therefore the encoding sizes
of q0, . . . , qd are polynomially bounded by n and L. Consider the system of
equations in n+ 1 variables α1, . . . , αn, β and d+ 1 constraints

αq0 − β = −1
αqi − β = 0 i = 1, . . . , d.

(3.7)

Since q0, . . . , qd are affinely independent, the constraint matrix of (3.7) has
rank d + 1, thus the system admits a solution. By Lemma 1.2, any basic
solution (α, β) of (3.7) has encoding size that is polynomially bounded by
n and L. It follows by construction that αx ≤ β is valid for P and defines
F .

3.14 Carathéodory’s Theorem

Theorem 3.40 (Carathéodory). If a vector v ∈ R
n is a conic combination

of vectors in some set X ⊆ R
n, then it is a conic combination of at most

dim(X) linearly independent vectors in X.

Proof. We can assume that X is finite, say X = {v1, . . . , vk}. Since
v ∈ cone(X), it follows that the polyhedron P := {λ ∈ R

k
+ :

∑k
i=1 λiv

i = v}
is nonempty. Polyhedron P is pointed because it is contained in R

k
+, there-

fore it has a vertex λ̄. By Theorem 3.34 λ̄ satisfies at equality k linearly
independent constraints of the system

∑k
i=1 λiv

i = v, λ ≥ 0. It follows that
the vectors in {vi : λ̄i > 0} are linearly independent.

A direct proof of Carathéodory’s theorem. Let S be an inclusionwise minimal
subset of X such that v ∈ cone(S). Clearly S is finite, say S = {v1, . . . , vk},

114 CHAPTER 3. LINEAR INEQUALITIES AND POLYHEDRA

and there exists λ ∈ R
k
+ such that

∑k
i=1 λiv

i = v. It suffices to show that
the vectors in S are linearly independent. Suppose not, and let μ ∈ R

k,
μ �= 0, such

∑k
i=1 μiv

i = 0. Assuming without loss of generality that μ
has a positive component, let θ := mini :μi>0

λi
μi
, and let h be an index for

which this minimum is attained. Defining λ′ := λ−θμ, we have that λ′ ≥ 0,∑k
i=1 λ

′
iv

i = v, and λ′
h = 0. It follows that v ∈ cone(S \{vh}), contradicting

the minimality of S.

The following is another form of Carathéodory’s theorem.

Corollary 3.41. If a point v ∈ R
n is a convex combination of points in

some set X ⊆ R
n, then it is a convex combination of at most dim(X) + 1

affinely independent points in X.

Proof. If v ∈ conv(X), then
(v
1

)
∈ R

n+1 is a conic combination of points in
X×{1}. By Theorem 3.40, there exist v1, . . . , vk ∈ X and λ ∈ R

k
+ such that(v1

1

)
, . . . ,

(vk
1

)
are linearly independent,

∑k
i=1 λiv

i = v, and
∑k

i=1 λi = 1. In
particular v1, . . . , vk are affinely independent and the statement follows.

Finally, Carathéodory’s theorem has the following implication for pointed
polyhedra.

Corollary 3.42. Let P be a pointed polyhedron. Every point of P is the
sum of a convex combination of at most dim(P) + 1 affinely independent
vertices of P and of a conic combination of at most dim(rec(P)) linearly
independent extreme rays of P .

Here are two more theorems on convexity.

Theorem 3.43 (Radon). Let S be a subset of Rd with at least d+2 points.
Then S can be partitioned into two sets S1 and S2 so that conv(S1) ∩
conv(S2) �= ∅.

Theorem 3.44 (Helly). Let C1, C2, . . . , Ch be convex sets in R
d such that

C1 ∩C2 ∩ · · · ∩Ch = ∅, where h ≥ d+ 1. Then there exist d+ 1 sets among
C1, C2, . . . , Ch whose intersection is empty.

The proofs are left as an exercise, see Exercises 3.30, 3.31.

3.14. CARATHÉODORY’S THEOREM 115

Systems in Standard Equality Form and Basic
Feasible Solutions

Let A ∈ R
m×n and b ∈ R

m. A system of the form

Ax = b
x ≥ 0

(3.8)

is said to be in standard equality form.

A solution x̄ of Ax = b is said to be basic if the columns of A corre-
sponding to positive entries of x̄ are linearly independent. A basic solution
that satisfies (3.8) is a basic feasible solution. It follows from Carathéodory
theorem (Theorem 3.40) that (3.8) has basic feasible solutions whenever it
is feasible.

Note that, if (3.8) is feasible, then we may assume without loss of gen-
erality that the matrix A has full row rank. Given a basic solution x̄, there
exists a set B ⊆ {1, . . . , n}, such that |B| = m, x̄j = 0 for all j /∈ B, and
the columns of A indexed by B form a square nonsingular matrix AB. Such
a set B is called a basis.

Assuming, possibly by permuting the columns ofA, that B = {1, . . . ,m},
the matrix A is of the form A = (AB , AN). Splitting the entries of x̄ acc-
ordingly, it then follows that Ax̄ = AB x̄B = b. Since AB is square and
nonsingular, x̄ is defined as follows

x̄B = A−1
B b (3.9)

x̄N = 0.

For a linear program max{cx : Ax = b, x ≥ 0}, we say that a basis B
is primal feasible if the solution x̄ in (3.9) is feasible (i.e., if A−1

B b ≥ 0). We
say that B is dual feasible if the vector ȳ = cBA

−1
B is feasible for the dual

min{yb : yA ≥ c}. The reduced costs associated with B are the coefficients
of the vector c̄ = c − ȳA. Note that, by construction, c̄j = 0 for all j ∈ B,
and ȳ is feasible for the dual if and only if c̄j ≤ 0 for all j ∈ N . If B is both
primal and dual feasible, then by linear programming duality (Theorem 3.7)
x̄ is an optimal solution for the primal and ȳ is an optimal solution for the
dual, since cx̄ = cBA

−1
B b = ȳb. Therefore we say that B is an optimal basis

in this case. It can be shown that there exists an optimal basis whenever
the linear program max{cx : Ax = b, x ≥ 0} admits a finite optimum.
Indeed, the simplex method terminates with an optimal basis in this case.

116 CHAPTER 3. LINEAR INEQUALITIES AND POLYHEDRA

3.15 Projections

The orthogonal projection of a set S ⊂ R
n+p onto the linear subspace

R
n × {0}p is

projx(S) := {x ∈ R
n : ∃z ∈ R

p s.t. (x, z) ∈ S}.
Figure 3.4 illustrates this definition.

projx(P)

P

x1

x2

z

Figure 3.4: Projection projx(P) of three-dimensional cube onto a two-
dimensional space

In this book, our interest in projections comes from the fact that the two
programs

max{f(x) : x ∈ projx(S)} and max{f(x) + 0z : (x, z) ∈ S}
have the same optimal solution x∗, but one of these two programs might be
easier to solve than the other. We elaborate below.

Given a polyhedron P := {(x, z) ∈ R
n × R

p : Ax + Gz ≤ b}, Fourier’s
method applied to the system Ax+Gz ≤ b to eliminate all components of
z, produces a system of inequalities A∗x ≤ b∗ such that {x ∈ R

n : A∗x ≤
b∗} = {x ∈ R

n : ∃z ∈ R
p s.t. (x, z) ∈ P}. By definition, this polyhedron is

projx(P).
The size of an irredundant system describing projx(P) may be exponen-

tial in the size of the system describing P . To construct such an example,
we take a polytope (in the x-space) with few vertices and an exponential
number of facets. Its formulation as the convex hull of its vertices is small,
but involves new variables z to express the convex combination; its projec-
tion onto the x-space has an exponential number of inequalities (Fig. 3.5).

3.15. PROJECTIONS 117

Example 3.45. Given a positive integer n, the octahedron is the following
polytope:

octn := {x ∈ R
n :

∑
i∈S

xi −
∑
i/∈S

xi ≤ 1 S ⊆ {1, . . . , n}}.

x1

x2

0 1-1

-1

1

Figure 3.5: The set oct2

We leave it as an exercise (Exercise 3.33) to show that:

(i) All the 2n inequalities
∑

i∈S xi −
∑

i/∈S xi ≤ 1, S ⊆ {1, . . . , n} define
facets of octn.

(ii) octn has 2n vertices, namely the unit vectors ei and their negatives
−ei, i = 1, . . . , n.

Therefore if we define

P := {(x, z) ∈ R
n × R

2n : x =

n∑
i=1

zie
i −

n∑
i=1

zn+ie
i,

2n∑
i=1

zi = 1, zi ≥ 0}

we have that projx(P) = octn. The reader can verify that dim(P) = 2n− 1
and that P has exactly 2n facets, defined by the inequalities zi ≥ 0 for
i = 1, . . . , 2n. �

The above example shows that a polyhedron Q ⊂ R
n with a very large

number of facets can sometimes be obtained as the projection of a polyhe-
dron P in a higher-dimensional space that has a much smaller number of
facets. A description of P by a system of linear inequalities is called an
extended formulation of Q. When this system only has a number of vari-
ables and constraints that is polynomial in the size of the input used to
describe Q, the extended formulation is said to be compact.

118 CHAPTER 3. LINEAR INEQUALITIES AND POLYHEDRA

The Projection Cone

Given a polyhedron P := {(x, z) ∈ R
n×R

p : Ax+Bz ≤ b}, consider a valid
inequality ax ≤ b for P that does not involve the variables z. It follows
from the definition of projx(P) that ax ≤ b is also a valid inequality for
projx(P). Since, for every vector u satisfying u ≥ 0, uB = 0, the inequality
uAx ≤ ub is valid for P , this observation shows that uAx ≤ ub is also valid
for projx(P). The next theorem states that the converse also holds.

Define the projection cone of a polyhedron P := {(x, z) ∈ R
n × R

p :
Ax+Bz ≤ b} as the polyhedral cone CP := {u ∈ R

m : uB = 0, u ≥ 0}. The
reader can verify that projx(P) = R

n when CP = {0} (Exercise 3.35). So
we assume now that CP �= {0}. Since CP is a pointed polyhedral cone, by
Theorem 3.11 CP = cone(r1, . . . , rq), where r1, . . . , rq are the extreme rays
of CP .

Theorem 3.46. Consider a polyhedron P := {(x, z) ∈ R
n×R

p : Ax+Bz ≤
b}, and let r1, . . . , rq be the extreme rays of CP . Then projx(P) = {x ∈ R

n :
rtAx ≤ rtb for t = 1, . . . , q}.

Proof. It suffices to show that, for any x̄ ∈ R
n, x̄ �∈ projx(P) if and only if

rtAx̄ > rtb for some t = 1, . . . , q. By definition, x̄ �∈ projx(P) if and only if
the system Bz ≤ b−Ax̄ is infeasible. By Farkas’ lemma (Theorem 3.4), the
latter system is infeasible if and only if there exists a vector u ∈ CP such
uAx̄ > ub. Since CP = cone(r1, . . . , rq), such a vector u exists if and only if
rtAx̄ > rtb for some t = 1, . . . , q.

The projection cone has different descriptions depending on the form
in which the polyhedron P is given. As an example, we state the result
when the system defining P has equality constraints and the variables to be
projected are nonnegative.

Corollary 3.47. Given a polyhedron P := {(x, z) ∈ R
n × R

p : Ax+ Bz =
b, z ≥ 0}, its projection is projx(P) = {x ∈ R

n : uAx ≤ ub for all u s.t.
uB ≥ 0}.

Remark 3.48. Theorem 3.46 shows that the inequalities rtAx ≤ rtb, 1 ≤
t ≤ q, are sufficient to describe projx(P). However, some of these inequali-
ties might be redundant even though r1, . . . , rq are extreme rays.

We will give an example of projection using extreme rays of the projec-
tion cone in Theorem 4.11.

3.16. POLARITY 119

3.16 Polarity

Given a set S ⊆ R
n, the polar of S is the set S∗ := {y ∈ R

n : yx ≤
1 for all x ∈ S}. Note that S∗ is a convex set that contains the origin. The
polar of a polyhedron containing the origin has a simple expression.

Theorem 3.49. Given a1, . . . , am ∈ R
n and 0 ≤ k ≤ m, let P := {x ∈ R

n :
aix ≤ 1, i=1 . . . , k; aix ≤ 0, i=k+1 . . . ,m} and Q := conv(0, a1, . . . , ak) +
cone(ak+1, . . . , am). Then P ∗ = Q and Q∗ = P .

Proof. We first show that Q ⊆ P ∗ and P ⊆ Q∗. It is sufficient to prove
that, given x ∈ P and y ∈ Q, yx ≤ 1. If y ∈ Q then there exists ν ∈ R

m

such that y =
∑m

i=1 νia
i, where ν ≥ 0, and

∑k
i=1 νi ≤ 1. Thus every x ∈ P

satisfies yx =
∑m

i=1 νia
ix ≤

∑k
i=1 νi ≤ 1.

To show P ∗ ⊆ Q, consider ȳ ∈ P ∗. By the definition of polar, ȳx ≤ 1
is a valid inequality for P . By Theorem 3.22, there exists ν ≥ 0 such that
ȳ =

∑m
i=1 νia

i and
∑k

i=1 νi ≤ 1. Thus ȳ ∈ Q.

We now prove that Q∗ ⊆ P . Let x̄ ∈ Q∗. By the definition of polar
aix̄ ≤ 1 for i = 1, . . . , k. Since 0 ∈ Q, λai ∈ Q for all λ > 0, i = k+1, . . . ,m.
Since x̄ ∈ Q∗, λaix̄ ≤ 1 for all λ ≥ 0, i = k + 1, . . . ,m, hence aix̄ ≤ 0. This
shows x̄ ∈ P and thus Q∗ ⊆ P .

This result, together with Minkowski–Weyl’s theorem (Theorem 3.13),
shows that, if P is a polyhedron containing the origin, then its polar P ∗ is
also a polyhedron containing the origin. Furthermore, if C is a polyhedral
cone, then C∗ = {y ∈ R

n : xy ≤ 0 for all x ∈ C} is also a polyhedral cone.

Given a linear subspace L of Rn, the orthogonal complement of L is the
space L⊥ := {x ∈ R

n : yx = 0 for all y ∈ L}. It is a basic fact in linear
algebra that, given a basis 	1, . . . , 	t of L, we have L⊥={x ∈ R

n : 	ix=0,
i = 1, . . . , t}. In particular dim(L) + dim(L⊥) = n. We remark that L⊥ is
the polar of L.

Corollary 3.50. Let P ⊆ R
n be a polyhedron containing the origin. The

following hold.

(i) P ∗∗ = P .

(ii) P ∗ is bounded if and only if P contains the origin in its interior.

(iii) aff(P ∗) is the orthogonal complement of lin(P). In particular
dim(P ∗)=n− dim(lin(P)).

120 CHAPTER 3. LINEAR INEQUALITIES AND POLYHEDRA

Proof. Let A ∈ R
m×n and b ∈ R

m such that P = {x ∈ R
n : Ax ≤ b}. Since

0 ∈ P , it follows that b ≥ 0. Thus we can assume that P = {x ∈ R
n : aix ≤ 1,

i = 1 . . . , k; aix ≤ 0, i = k + 1 . . . ,m}. Without loss of generality we as-
sume that, if A contains a row ai = 0, then i ≤ k. Note that 0 is in the
interior of P if and only if k = m, i.e., P = {x : Ax ≤ 1}.

(i) By applying Theorem 3.49 to P and to P ∗, we get P ∗∗ = P .

(ii) By Theorem 3.49, P ∗=conv(0, a1, . . . , ak)+cone(ak+1, . . . , am). Hence
P ∗ is bounded if and only if k = m. That is P ∗ is bounded if and only
if P = {x : Ax ≤ 1}. This shows ii).

(iii) Since P ∗ = conv(0, a1, . . . , ak) + cone(ak+1, . . . , am), it follows that
dim(P ∗) is equal to the number of linearly independent vectors in
a1, . . . , am. That is, dim(P ∗) = rank(A). Since lin(P) = {x ∈ R

n :
Ax = 0}, it follows that dim(lin(P)) = n− rank(A). Thus dim(P ∗) =
n− dim(lin(P)). Furthermore, aff(P ∗) = 〈a1, . . . , am〉, thus aff(P ∗) is
orthogonal to lin(P).

3.17 Further Readings

There are many general references on polyhedral theory. Grünbaum [190]
and Ziegler [357] are two excellent ones, with extensive treatments of the
combinatorics and geometry of polytopes. Schrijver [325] gives a detailed
account of topics related to optimization. Fukuda [153] provides a clear and
accessible introduction.

As remarked in Sect. 3.1, Fourier’s elimination procedure is not a poly-
nomial algorithm for the problem of checking the feasibility of a system of
linear inequalities. One of the most widely used algorithms to solve linear
programs is the simplex method, which also has exponential-time worst-
case complexity for most known pivoting rules (see, e.g., Klee and Minty
[240]). However linear programs can be solved in polynomial time. The first
polynomial-time algorithm to be discovered was the ellipsoid algorithm of
Khachiyan [235], introduced earlier in the context of convex programming by
Yudin and Nemirovski [356] and by Shor [332]. Maurras [272, 273] had previ-
ously described a polynomial algorithm for linear programs with totally uni-
modular constraint matrices. While the ellipsoid method is not efficient in
practice, interior point algorithms provide both polynomial-time worst-case

3.17. FURTHER READINGS 121

complexity and excellent performance. The first interior point method was
introduced by Karmarkar [229]. We refer the readers to the book “Geometric
Algorithms and Combinatorial Optimization,” by Grötschel, Lovász, Schri-
jver [188], for a treatment of ellipsoid methods, and to “Linear Programming:
Foundations and Extensions” by Vanderbei [343] for interior point methods.

Free software packages are available for generating the vertices and
extreme rays of a polyhedron described by inequalities or, vice versa, for gen-
erating the inequalities when the vertices and extreme rays are given. Porta
and cdd are two such packages based on the double description method.
Another approach, the reverse search method of Avis and Fukuda [20], is
the basis of the package lrs. In general cdd and Porta tend to be efficient for
highly degenerate inputs whereas lrs tends to be efficient for nondegenerate
or slightly degenerate problems. We discuss briefly the double description
method.

The Double Description Method

We say that a pair of matrices (A,R), where A is an m× n matrix and R
an n× k matrix, is an MW-pair if {x ∈ R

n : Ax ≤ 0} = cone(R).
The double description method [280] is an algorithm that, given an m×n

matrix A, constructs a matrix R such that (A,R) is an MW-pair, thus
providing a constructive proof of Theorem 3.11. It has a similar flavor to
the Fourier elimination procedure, which should not come as a surprise due
to the correspondence through polarity. We give a description of the double
description method.

Let Ai be the submatrix of A containing the first i rows. Suppose Ri

is a matrix such that (Ai, Ri) is an MW-pair and let ai+1x ≤ 0 be the
inequality associated with the (i + 1)st row of A. The double description
method constructs a matrix Ri+1 such that (Ai+1, Ri+1) is an MW-pair as
follows.

Let rj, j ∈ J , denote the columns of Ri, and consider the following
partition of J :

J+ = {j ∈ J : ai+1rj > 0}
J0 = {j ∈ J : ai+1rj = 0}
J− = {j ∈ J : ai+1rj < 0}
Note that rj is in {x : Ai+1x ≤ 0} if and only if j ∈ J− ∪ J0. Further-

more, for every j ∈ J−, k ∈ J+, the vector

rjk = (ai+1rk)rj − (ai+1rj)rk (3.10)

is the unique ray in cone(rj, rk) ∩ {x : ai+1x = 0}.

122 CHAPTER 3. LINEAR INEQUALITIES AND POLYHEDRA

Let Ri+1 be the matrix whose columns are the vectors rj, j ∈ J0 ∪
J−, and rjk, j ∈ J−, k ∈ J+, defined in (3.10). Lemma 3.51 states that
(Ai+1, Ri+1) is an MW-pair.

The double description method iterates this procedure until the MW-pair
A = (An, Rn) is constructed.

The algorithm must start with an MW-pair (A1, R1). Note that the
matrix R1 can be constructed by choosing the vector −a1 together with a
basis for the subspace {x : a1x = 0}.

Lemma 3.51. Let (Ai, Ri) be an MW-pair and let Ai+1 be obtained from
Ai by adding row ai+1. Let Ri+1 be the matrix constructed by the double
description method. Then (Ai+1, Ri+1) is an MW-pair.

Proof. Let C := {x : Ai+1x ≤ 0} and Q := cone(Ri+1). By construction,
every column r of Ri+1 satisfies Ai+1r ≤ 0, therefore Q ⊆ C.

To prove Q ⊇ C, consider x̄ ∈ C. We need to prove that x̄ ∈ cone(Ri+1),
that is, there exists μ ≥ 0 such that Ri+1μ = x̄.

Since Aix̄ ≤ 0 and (Ai, Ri) is an MW-pair, it follows that x̄ ∈ cone(Ri),
thus there exists μ̄ ≥ 0 such that Riμ̄ = x̄. If μ̄k = 0 for every k ∈ J+ then
x̄ ∈ cone(Ri+1) and we are done. Otherwise, let k ∈ J+ such that μ̄k > 0.
Since ai+1x̄ ≤ 0, there must exist an index j ∈ J− such that μ̄j > 0. By
construction, the vector rjk defined in (3.10) is a column of Ri+1. Let μ̃ be
obtained from μ̄ by setting μ̃j := μ̄j − α(ai+1rk) and μ̃k := μ̄k + α(ai+1rj),
where α is the largest number such that μ̃j , μ̃k ≥ 0. It follows from (3.10)
that x̄ = Riμ̃ + αrjk and that at least one among μ̃j and μ̃k is 0. That is,
we obtain an expression of x̄ as a conic combination of the vectors in Ri and
of rjk, except that one less vector in Ri appears in the combination. Repeat
this process until no vector rk, k ∈ J+, appears in the combination.

A constructive proof of Theorem 3.11. We have already shown in Sect. 3.5.1
how to use Fourier elimination to obtain from a matrix R a matrix A such
that (A,R) in an MW-pair. The double description method, whose correct-
ness has been proven in Lemma 3.51, shows constructively how to obtain
from a matrix A a matrix R such that (A,R) in an MW-pair.

Observe that at each iteration of the double description method, if Ri has
q columns then the matrix Ri+1 might have up to (q/2)2 columns. So this
method produces a matrix Rn with a finite set of columns, but potentially
very large. In general not all the newly added columns are extreme rays of
{x : Ai+1x ≤ 0} and to control the process it may be desirable to eliminate

3.17. FURTHER READINGS 123

the ones that are not extreme. In general, testing if a ray is extreme is
equivalent to testing feasibility of a system of inequalities and this can be
done using linear programming. Even if at the end of each iteration only
the extreme rays are kept, it is possible that the number of extreme rays
that are computed by the algorithm is exponentially large, in terms of the
size of the matrix A and the final number of extreme rays.

Vertex Enumeration, Polytope Verification

We describe fundamental complexity issues associated with the Minkowski–
Weyl theorem. For simplicity, we state them for full-dimensional poly-
topes. We distinguish polytopes by their representation. A V -polytope is
the convex hull of a finite set of points and an H-polytope is the intersection
of a finite number of half spaces.

The vertex enumeration problem asks to enumerate all vertices of an
H-polytope PH . It is not known whether there is an algorithm to solve
this problem whose complexity is polynomial in the size of the input plus
the size of the output. (That is, the number of facets and vertices of PH).
Avis and Fukuda [20] give such an algorithm when PH is nondegenerate,
i.e., every vertex of PH belongs to exactly n facets. Vertex enumeration
is obviously equivalent to facet enumeration: Compute all the facets of a
V -polytope. The method of Fourier or the double description method solve
these problems, but they are not polynomial algorithms, as discussed.

Given a V -polytope PV and anH-polytope PH , polytope verification asks
whether PV = PH . Checking if every vertex of PV satisfies the inequality
description of PH settles the question PV ⊆ PH . Freund and Orlin [150]
show that the question PH ⊆ PV is co-NP-complete. (The problem is in
co-NP because the “no” answer has a short certificate, namely a point v in
PH and a valid inequality for PV that strictly separates v from PV .) However
the complexity status of the question PH ⊆ PV , assuming PV ⊆ PH , is not
known. Hence the complexity status of polytope verification is also open. Is
can be easily shown that if polytope verification can be solved in polynomial
time, then vertex enumeration can also be solved in polynomial time. These
questions and other computational issues for polyhedra are surveyed by
Fukuda [152].

Khachiyan et al. [236] show that the following decision problem is
NP-hard: “Given an H polyhedron PH and a set V of vertices, does there
exist a set R of rays such that PH = conv(V) + cone(R)?”

124 CHAPTER 3. LINEAR INEQUALITIES AND POLYHEDRA

3.18 Exercises

Exercise 3.1. Prove Theorem 3.6 using Theorem 3.4.

Exercise 3.2. Given an m × n matrix, show that the system Ax < 0 is
feasible if and only if uA = 0, u ≥ 0, u1 = 1 is infeasible.

Exercise 3.3. The fractional knapsack problem is the linear relaxation of the
0, 1 knapsack problem, i.e., max{

∑n
j=1 cjxj :

∑n
j=1 ajxj ≤ b, 0 ≤ x ≤ 1}

where aj > 0, j = 1, . . . , n, and c ∈ R
n
+. Using complementary slackness,

show that an optimal solution x∗ of the fractional knapsack problem is the
following: assuming w.l.o.g. that c1

a1
≥ c2

a2
≥ . . . ≥ cn

an
, let h be the largest

index such that
∑h

j=1 aj ≤ b, set x∗j = 1 for j = 1, . . . , h, x∗h+1 =
b−

∑h
j=1 aj

ah+1
,

x∗j = 0 for j = h+ 2, . . . , n.

Exercise 3.4. Let V be the set of vertices of a polytope P , let S be a subset
of V with the property that, for every v ∈ V \ S, the set S contains all the
vertices adjacent to v.

(i) Show that the following algorithm solves the problem min{cx : x ∈ S}.

Compute a vertex v of P minimizing {cx : x ∈ P}.
If v ∈ S, return v.

Otherwise return a vertex v′ of P minimizing {cx : x is adjacentto v}.
[Hint: Use the simplex algorithm.]

(ii) Give a polynomial algorithm to optimize a linear function over the set
of 0,1 vectors in R

n with an even number of 1’s.

Exercise 3.5. Show that all bases of a linear space have the same cardinality.

Exercise 3.6. Using the definition of linear space given in Sect. 3.4, prove
that:

(i) A subset L of Rn is a linear space if and only if L = {x ∈ R
n : Ax = 0}

for some matrix A.

(ii) If L = {x ∈ R
n : Ax = 0}, then the dimension of L is n− rank(A).

Exercise 3.7. Let x0, x1, . . . , xq ∈ R
n. Show that the following statements

are equivalent.

(i) x0, x1, . . . , xq are affinely independent;

3.18. EXERCISES 125

(ii) x1 − x0, . . . , xq − x0 are linearly independent;

(iii) The vectors
(x0

1

)
, . . . ,

(xq

1

)
∈ R

n+1 are linearly independent.

Exercise 3.8. Using the definition of affine space given in Sect. 3.4, prove
that

(i) A set A ⊆ R
n is an affine space if and only if there exists a linear space

L such that for any x∗ ∈ A, A = {x∗}+ L;

(ii) A set A ⊆ R
n is an affine space if and only if there is a matrix A and

a vector b such that A = {x : Ax = b}. Furthermore L defined in (i)
satisfies L := {x ∈ R

n : Ax = 0} and dim(A) = dim(L)

Exercise 3.9. The intersection of any family of convex sets is a convex set.

Exercise 3.10. Let V,R ⊆ R
n. Show that conv(V + R) = conv(V) +

conv(R), i.e., the convex hull of a Minkowski sum is the Minkowski sum of
the convex hulls.

Exercise 3.11. Given a polyhedron P := {x ∈ R
n : aix ≤ bi, i ∈ I}, let

I ′ ⊆ I be the set of indices i such that air = 0 for every r ∈ rec(P). Show
that the polyhedron P+rec(−P) is described by the system aix ≤ bi, i ∈ I ′.

Exercise 3.12. Given a nonempty polyhedron P = {x ∈ R
n : Ax ≤ b},

consider the polyhedron Q = {y ∈ R
n : ∃u ≥ 0, v ≤ 0 : y = uA = vA,

ub = vb}. Show that dim(P) + dim(Q) = n.

Exercise 3.13. Does Theorem 3.22 hold without the assumption P �= ∅?
Prove or give a counterexample.

Exercise 3.14. Let P := {x ∈ R
n : Ax ≤ b} be a polyhedron such that

dim(P) > dim(rec(P)). Show that an inequality cx ≤ δ is valid for P if and
only if there exists u ≥ 0 such that uA = c and ub = δ.

Does the statement still hold if we replace the hypotheses that dim(P) >
dim(rec(P)) by the hypothesis P �= ∅?

Exercise 3.15. Let P := {x ∈ R
n : Ax ≥ b} be a polyhedron. Let

j ∈ {1, . . . , n}, and suppose that Π := P ∩ {x ∈ R
n : xj = 0} �= ∅. Show

that if αx ≥ β is a valid inequality for Π, there exists a λ ∈ R such that
αx+ λxj ≥ β is valid for P .

Exercise 3.16. Let a1x ≤ b1, a2x ≤ b2 be redundant inequalities for
Ax ≤ b. Let A2x ≤ b2 be the system obtained from Ax ≤ b by remov-
ing the second inequality. Is a1x ≤ b1 always a redundant inequality for
A2x ≤ b2?

126 CHAPTER 3. LINEAR INEQUALITIES AND POLYHEDRA

Exercise 3.17. Prove Corollary 3.23.

Exercise 3.18. Let P be a nonempty affine space, and cx ≤ δ be a valid
inequality for P . Show that either cx = δ for every x ∈ P , or cx < δ for
every x ∈ P .

Exercise 3.19. Let n ≥ 2 be an integer. Find the dimension of the polytope
{x ∈ [0, 1]n :

∑
j∈J xj +

∑
j �∈J(1− xj) ≥ n

2 , for all J ⊆ {1, 2, · · · , n}}.

Exercise 3.20. Show that the cut polytope, defined in Example 3.36, is
full dimensional.

Exercise 3.21. List all the facets of the assignment polytope

{x ∈ R
n2

:
∑n

j=1 xij = 1 for all i = 1, . . . n∑n
i=1 xij = 1 for all j = 1, . . . n

xij ≥ 0 for all i, j = 1, . . . n}.
(Hint: Distinguish the cases n = 1, n = 2 and n ≥ 3.)

Exercise 3.22. Let n ≥ 3 and m ≥ 2 be two integers. The simple plant
location polytope is the convex hull of the points (x, y) ∈ {0, 1}m×n×{0, 1}n
satisfying

∑n
j=1 xij = 1 i = 1, . . . ,m

0 ≤ xij ≤ yj ≤ 1 i = 1, . . . ,m, j = 1, . . . , n

(i) Find the dimension of the simple plant location polytope.

(ii) Show that xij ≥ 0 defines a facet of the simple plant location polytope
for all i = 1, . . . ,m and j = 1, . . . , n.

(iii) Show that yj ≤ 1 defines a facet of the simple plant location polytope
for all j = 1, . . . , n.

(iv) Show that xij ≤ yj defines a facet of the simple plant location polytope
for all i = 1, . . . ,m and j = 1, . . . , n.

Exercise 3.23. A nonempty polytope P is simple if every vertex of P
belongs to exactly dim(P) facets of P . Prove that the permutahedron Πn

is a simple polytope.

Exercise 3.24. Using a polynomial-time algorithm for linear programming
as subroutine, give a polynomial-time algorithm to solve the following
problem. Given two systems of linear inequalities Ax ≤ b, Cx ≤ d in n
variables, decide whether {x ∈ R

n : Ax ≤ b} = {x ∈ R
n : Cx ≤ d}.

3.18. EXERCISES 127

Exercise 3.25. Let S ⊆ {0, 1}n, and let P = conv(S). Show that S is the
set of vertices of P .

Exercise 3.26. Show that a closed convex set S ⊆ R
n is bounded if and

only if S contains no ray.

Exercise 3.27. Prove that, given a pointed polyhedron P and extreme ray
r of P , there exists an edge of P of the form {x̄ + λr : λ ≥ 0} for some
vertex x̄ of P .

Exercise 3.28. Prove that two distinct vertices v,w of a polyhedron P are
adjacent if and only if the midpoint 1

2(v + w) is not a convex combination
of two points of P outside the line segment joining v and w.

Exercise 3.29. Consider the polyhedron P = {(x0, . . . , xn) ∈ R
n+1 : x0 +

xt ≥ bt, t = 1, . . . , n, x0 ≥ 0}. Show that P is pointed, (0, b1, . . . , bn) is the
unique vertex of P , and that the extreme rays of P are precisely the n + 1
vectors r0, . . . , rn defined by:

r0i =

{
1 for i = 0

−1 otherwise
rti =

{
1 for i = t
0 otherwise

t = 1, . . . , n.

Exercise 3.30. Prove Theorem 3.43. Hint: Since S ⊆ R
d and |S| ≥ d+ 2,

the points in S are affinely dependent. Use this fact to find the required
partition into S1 and S2.

Exercise 3.31. Prove Theorem 3.44. Hint: Use induction on h. If h = d+ 1,
the theorem is trivial. Assume that the theorem is true for h < k(≥ d+ 2)
and prove that the theorem holds for h = k as follows: Assume by contradic-
tion that for all j = 1, . . . h, Sj :=

⋂
i�=j Ci �= ∅. Use the fact that h ≥ d+ 2

and apply Radon’s Theorem 3.43.

Exercise 3.32. Show that the convexity assumption in Theorem 3.44 is
necessary.

Exercise 3.33. Consider the octahedron octn defined in Example 3.45.
Show that:

(i) All the 2n inequalities
∑

i∈S xi−
∑

i/∈S xi ≤ 1, S ⊆ {1, . . . , n}, define
facets of octn.

(ii) octn has 2n vertices, namely the unit vectors ei and their negatives
−ei, i = 1, . . . , n.

128 CHAPTER 3. LINEAR INEQUALITIES AND POLYHEDRA

Define P = {(x, z) ∈ R
n × R

2n : x =
∑n

i=1 zie
i −

∑n
i=1 zn+ie

i,
∑2n

i=1

zi = 1, zi ≥ 0}. Show that

(iii) projx(P) = octn.

(iv) dim(P) = 2n − 1.

(v) P has exactly 2n facets, defined by the inequalities zi ≥ 0 for
i = 1, . . . , 2n.

Exercise 3.34. Show that the operations of taking the projection and tak-
ing the convex hull commute. Specifically, for S ⊆ R

n+p, define as usual
projx(S) := {x ∈ R

n : ∃y ∈ R
p (x, y) ∈ S}. Show that projx(conv(S)) =

conv(projx(S)).

Exercise 3.35. Consider a polyhedron P : ={(x, z) ∈ R
n ×R

p : Ax+Bz ≤
b}. Show that if its projection cone CP is equal to {0}, then projx(P) = R

n.

Exercise 3.36. Prove Corollary 3.47.

Exercise 3.37. Let P ∈ R
n be a full-dimensional pointed polyhedron, and

let v1, . . . , vp and r1, . . . , rq be its vertices and extreme rays, respectively.
Then P is the orthogonal projection onto the space of the x variables of the
polyhedron Q = {(x, λ, μ) ∈ R

m × R
p
+ × R

q
+ : x − V λ − Rμ = 0, 1λ = 1},

where V is the matrix with columns v1, . . . , vp and R is the matrix with
columns r1, . . . , rq, while 1 is the vector of all ones in R

p. Show that an
inequality αx ≤ β is facet-defining for P if and only if (α, β) is an extreme
ray of the pointed cone C = {(α, β) ∈ R

n+1 : αV − 1β ≤ 0, αR ≤ 0}.

Chapter 4

Perfect Formulations

A perfect formulation of a set S ⊆ R
n is a linear system of inequalities

Ax ≤ b such that conv(S) = {x ∈ R
n : Ax ≤ b}. For example, Proposition

1.5 gives a perfect formulation of a 2-variable mixed integer linear set. When
a perfect formulation is available for a mixed integer linear set, the corre-
sponding integer program can be solved as a linear program. In this chapter,
we present several classes of integer programming problems for which a per-
fect formulation is known. For pure integer linear sets, a classical case is
when the constraint matrix is totally unimodular. Important combinatorial
problems on directed or undirected graphs such as network flows and match-
ings in bipartite graphs have a totally unimodular constraint matrix. We also
give a perfect formulation for nonbipartite matchings and spanning trees. It
is often the case that perfect formulations go together with polynomial-time
algorithms to solve the associated integer programs. In particular, we will
describe polynomial algorithms for maximum flow, matchings and minimum
cost spanning trees. Perfect formulations can be obtained from linear sys-
tems of inequalities that are total dual integral. We give the example of the
submodular polyhedron. We show a fundamental result of Meyer, which
states that every mixed integer linear set has a perfect formulation when
the data are rational. We then prove a theorem of Balas on the union of
polyhedra. For selected mixed integer linear sets, this theorem can lead to
perfect formulations, albeit ones that use additional variables. More gener-
ally, we discuss extended formulations and a theorem of Yannakakis on the
smallest size of an extended formulation.

© Springer International Publishing Switzerland 2014
M. Conforti et al., Integer Programming, Graduate Texts
in Mathematics 271, DOI 10.1007/978-3-319-11008-0 4

129

130 CHAPTER 4. PERFECT FORMULATIONS

4.1 Properties of Integral Polyhedra

A convex set P ⊆ R
n is integral if P = conv(P ∩ Z

n).

Theorem 4.1. Let P be a rational polyhedron. The following conditions
are equivalent.

(i) P is an integral polyhedron.

(ii) Every minimal face of P contains an integral point.

(iii) max{cx : x ∈ P} is attained by an integral vector x for each c ∈ R
n

for which the maximum is finite.

(iv) max{cx : x ∈ P} is integer for each integral c for which the maximum
is finite.

Proof. (i)⇒(ii) Since P is integral, every x ∈ P is a convex combina-
tion of integral points in P . Given a minimal face F of P , let x ∈ F .
Then x =

∑k
j=1 λjx

j , where x1, . . . , xk ∈ P ∩ Z
n, λj > 0, j = 1, . . . , k,∑k

j=1 λj = 1. This implies that x1, . . . , xk are integral points in F .
The implication (ii)⇒(iii) follows from the definition of a face. The impli-
cation (iii)⇒(iv) is immediate.

(iv)⇒(ii) We prove the result by contradiction. Let P := {x ∈ R
n :

Ax ≤ b} where A ∈ Z
m×n and b ∈ Z

m. Suppose that a minimal face F
does not contain an integral point. By Theorem 3.33, there is a subsystem
AFx ≤ bF of Ax ≤ b such that F = {x ∈ R

n : AFx = bF }. Since the system
AFx = bF has no integral solution, it follows from Theorem 1.20 that there
exists u ∈ R

m such that c := uA is integral, z := ub is fractional, and ui = 0
for those rows of Ax ≤ b that are not in AFx ≤ bF . Since A, b are integral,
we may assume that u ≥ 0 (possibly by replacing u with u−
u�).

For x ∈ P , cx = uAx ≤ ub = z where the inequality holds as an equality
for x ∈ F . Therefore max{cx : x ∈ P} = z, which is fractional. This
contradicts (iv).

(ii)⇒(i) Let F1, . . . , Fp be the minimal faces of P , and let vi be an
integral point in Fi, i = 1, . . . , p. By Theorem 3.37, P = conv(v1, . . . , vp) +
cone(r1, . . . , rq), where r1, . . . , rq are generators of rec(P). Since rec(P) is
a rational cone, by Proposition 3.12 we can choose r1, . . . , rq to be rational,
and so in particular we can assume that r1, . . . , rq are integral. Therefore
conv(P ∩ Z

n) ⊇ conv(v1, . . . , vp) + cone(r1, . . . , rq) = P .

Corollary 4.2. A rational polyhedron P is integral if and only if every
rational supporting hyperplane for P contains an integral point.

4.2. TOTAL UNIMODULARITY 131

Proof. “=⇒” Assume P is an integral polyhedron and let H be a supporting
hyperplane. Then H∩P contains a minimal face F of P . Since P is integral,
by Theorem 4.1(ii) F contains an integral point.
“⇐=” Assume that P ⊆ R

n is a rational polyhedron and every rational sup-
porting hyperplane of P contains an integral point. Then max{cx : x ∈ P}
is an integer for every c ∈ Z

n for which the maximum is finite. By Theorem
4.1, P is an integral polyhedron.

Theorem 4.1 can be extended, in part, to the mixed integer case.

Theorem 4.3. Let P ⊆ R
n × R

p be a rational polyhedron, and let
S := P ∩ (Zn × R

p). The following are equivalent.

(i) P = conv(S).

(ii) Every minimal face of P contains a point in Z
n × R

p.

(iii) max{cx+ hy : (x, y) ∈ P} is attained by a point in Z
n × R

p for each
(c, h) ∈ R

n × R
p for which the maximum is finite.

The proof of this theorem is similar to the proof of Theorem 4.1 (we
leave it to the reader to check this). Corollary 4.2 does not extend to the
mixed integer case (see Exercise 4.3).

4.2 Total Unimodularity

In this section we address the following question:

Which integral matrices A have the property that the polyhedron {x :
Ax ≤ b, x ≥ 0} is integral for every integral vector b?

A matrix A is totally unimodular if every square submatrix has determi-
nant 0,±1. It follows from the definition that a totally unimodular matrix
has all entries equal to 0,±1. For example, the matrix

⎛
⎝

−1 1 0
1 0 1
0 1 1

⎞
⎠

is totally unimodular because its determinant is 0 and all its proper square
submatrices are triangular after permutation of rows and columns, and thus
they have determinant equal to 0,±1.

132 CHAPTER 4. PERFECT FORMULATIONS

Theorem 4.4 (Hoffman and Kruskal). Let A be an m× n integral matrix.
The polyhedron {x : Ax ≤ b, x ≥ 0} is integral for every b ∈ Z

m if and only
if A is totally unimodular.

Proof. For all b ∈ Z
m, let P (b) := {x : Ax ≤ b, x ≥ 0}. Since P (b) is

a rational pointed polyhedron for all b ∈ Z
m, by Theorem 4.1 P (b) is an

integral polyhedron if and only if all its vertices are integral.
We first prove the “if” part of the theorem. Assume that A is a totally

unimodular matrix, let b ∈ Z
m and x̄ be a vertex of P (b). We need to

show that x̄ is integral. By Theorem 3.34, x̄ satisfies at equality n linearly
independent inequalities of Ax ≤ b, x ≥ 0. Let Bx = d be a system
comprised of n such equations. Then x̄ = B−1d. Up to permuting columns,
we may assume that B is a matrix of the form

B =

(
C D
0 I

)
. (4.1)

In particular C is a square nonsingular submatrix of A and det(B) = det(C).
Since A is totally unimodular, det(B) = det(C) = ±1. By Cramer’s rule,
B−1 is equal to the adjugate matrix of B divided by det(B). Since B is an
integral matrix, its adjugate is integral as well, therefore B−1 is also integral.
It follows that x̄ is integral because d is an integral vector.

We show the “only if” part of the theorem. Suppose A is not totally
unimodular and let C be a square submatrix of A with det(C) �= 0,±1.
Up to permuting rows and columns, we may assume that C is indexed by
the first k rows and columns of A. Since det(C−1) = 1/det(C) is not an
integer, C−1 is not an integral matrix. Let γ be a column of C−1 with a
fractional entry. Define x̄ ∈ R

n by x̄j = �γj−γj for j = 1, . . . , k, x̄j = 0 for
j = k+1, . . . , n. Let b := �Ax̄. Clearly b is an integral vector and x̄ ∈ P (b).
Observe that x̄ satisfies at equality the first k inequalities of Ax ≤ b, x ≥ 0.
Indeed, if we let (A′, b′) be the matrix comprised of the first k rows of (A, b),
by construction A′x̄ = C�γ−Cγ = b′, where the last equality follows from
the fact that Cγ is integral because it is a unit vector, and from the fact that
b′ = �A′x̄. The point x̄ satisfies at equality also the n − k nonnegativity
constraints xj ≥ 0, j = k + 1, . . . , n. The constraint matrix B relative to
these n constraints has the form (4.1), therefore B is nonsingular because
det(B) = det(C). In particular x̄ is a vertex of P (b) but x̄ /∈ Z

n. This shows
that P (b) is not an integral polyhedron.

Exercise 4.5 shows that the Hoffman–Kruskal theorem can be restated
in the following form.

4.2. TOTAL UNIMODULARITY 133

Theorem 4.5. Let A be an m × n integral matrix. The polyhedron Q :=
{x : c ≤ Ax ≤ d, l ≤ x ≤ u} is integral for all integral vectors c, d, l, u if
and only if A is totally unimodular.

Ghouila-Houri [165] gives a useful characterization of total unimodu-
larity. An equitable bicoloring of a matrix A is a partition of its columns
into two sets (one of which may possibly be empty), say “red” and “blue”
columns, such that the sum of the red columns minus the sum of the blue
columns is a vector whose entries are 0,±1.

Theorem 4.6. A matrix A is totally unimodular if and only if every column
submatrix of A admits an equitable bicoloring.

Proof. For the “only if” part, let A be a totally unimodular matrix and let
B be a column submatrix of A. Let PB be the polytope described by the
system

1
2
B1� ≤ Bx ≤ �1

2
B1

0 ≤ x ≤ 1

where 1 denotes the vector of all ones. The polytope PB is nonempty, since
it contains the point 1

21, and by Theorem 4.5, PB is integral. Therefore PB

contains a 0, 1 vector x̄. An equitable bicoloring of B is obtained by painting
red the columns j where x̄j = 1 and blue the columns j where x̄j = 0.

For the “if” part, let us assume that every column submatrix of A admits
an equitable bicoloring. We prove that the determinant of every k × k
submatrix of A is 0,±1. We proceed by induction on k. The fact that every
matrix consisting of only one column of A admits an equitable bicoloring
implies that the entries of A are 0,±1; this establishes the base case k = 1.
We assume by induction that the determinant of every k × k submatrix of
A is 0,±1. Let B be a (k+1)× (k+1) submatrix of A, and let δ := det(B).
We need to show that δ = 0,±1. We assume that δ �= 0, otherwise we are
done. Since the determinant of every k × k submatrix of B is 0,±1, by
Cramer’s rule the entries of the matrix δB−1 are 0,±1. Let d be the first
column of δB−1. Then Bd = δe1. Let B∗ be the submatrix of B containing
the columns j for which dj = ±1. Since Bd = δe1, the sum of the elements
in rows 2, . . . , k + 1 of B∗ is even. Assume first that δ is even. Then the
sum of the elements in every row of B∗ is even. Since B∗ is bicolorable, the
columns of B∗ are linearly dependent because the 0-vector can be obtained
by summing the red columns and subtracting the sum of the blue columns
of B∗. Hence B is a singular matrix and δ = 0. Assume now that δ is odd.

134 CHAPTER 4. PERFECT FORMULATIONS

The bicoloring assumption applied to B∗ shows that there is a 0,±1 vector
x̄ (which has the same support as d) such that Bx̄ = e1. Since Bd = δe1

and B is nonsingular, we have that δx̄ = d. Since d and x̄ are 0,±1-vectors,
this shows that δ = ±1.

We will also use the above theorem in its transposed form. An equitable
row-bicoloring of a matrix A is a partition of its rows into two sets, red and
blue, such that the sum of the red rows minus the sum of the blue rows is a
vector whose entries are 0,±1.

Corollary 4.7. A matrix A is totally unimodular if and only if every row
submatrix of A admits an equitable row-bicoloring.

When A has at most two nonzero entries per column, Corollary 4.7 can
be simplified to the following result of Heller and Tompkins [199].

Corollary 4.8. A 0,±1 matrix A with at most two nonzero elements in
each column is totally unimodular if and only if A admits an equitable row-
bicoloring.

This is because, when A has at most two nonzero entries per column, an
equitable row-bicoloring of A trivially induces one for any row submatrix.

4.3 Networks

In this section we relate total unimodularity to several well-known combi-
natorial optimization problems on graphs.

Given a digraph D = (V,A), an arc e of D has a tail u and a head v
with u �= v, and it is denoted by uv. The incidence matrix AD of a digraph
D = (V,A) is the |V | × |A| matrix whose rows correspond to the nodes of
D, whose columns correspond to the arcs of D, and whose entries are, for
every node w and arc e = uv,

awe =

⎧⎨
⎩

−1 if w = u,
1 if w = v,
0 if w �= u, v.

Note that the incidence matrices of digraphs are those 0,±1 matrices
with exactly one +1 and one −1 in each column. In particular, the rows of
the incidence matrix of a digraph are not linearly independent, since they
sum to the zero vector (see Exercise 4.12 for a precise characterization of
the rank of incidence matrices).

4.3. NETWORKS 135

Theorem 4.9. Incidence matrices of digraphs are totally unimodular.

Proof. Since the incidence matrix of a digraph has two nonzero entries in
each column, the statement follows from Corollary 4.8 by coloring all rows
the same color.

This theorem implies that several classical network problems can be
formulated as linear programs. We will give examples in the remainder of
this section. In each case there is a faster “ad-hoc” algorithm than solving
the straightforward linear program.

4.3.1 Circulations

Let D = (V,A) be a digraph. A vector x ∈ R
|A| that satisfies ADx = 0,

x ≥ 0 is called a circulation. The set of circulations of D is a polyhedral
cone, called the circulation cone.

A circuit C in D is a set of arcs such that the digraph induced by C
is connected and, for every node v ∈ V , the number of arcs of C entering
v equals the number of arc of C leaving v. A circuit C is simple if every
node of the digraph induced by C has exactly one arc of C entering and one
leaving. Note that every circuit is the disjoint union of simple circuits. It is
easy to show that the characteristic vector of a simple circuit is an extreme
ray of the circulation cone (Exercise 4.13). We prove that the converse is
also true.

Lemma 4.10. Let D be a digraph. The extreme rays of the circulation cone
are the characteristic vectors of the simple circuits of D.

Proof. Let x̄ be an extreme ray of {x ∈ R
A : ADx = 0, x ≥ 0}. Possibly

by multiplying x̄ by a positive scalar, we may assume that x̄ ≤ 1 and that
x̄ is a vertex of the polytope Q := {x ∈ R

A : ADx = 0, 0 ≤ x ≤ 1}. Since
AD is totally unimodular by Theorem 4.9, it follows from Theorem 4.5 that
x̄ is a 0, 1 vector. Let C := {e ∈ A : x̄e = 1}. Then x̄ is the characteristic
vector of C. Since ADx̄ = 0, it follows that the number of arcs in C entering
any node of D is equal to the number of arcs leaving the node. Therefore
the connected components of C are circuits. In particular, C is the disjoint
union of simple circuits C1, . . . , Ck, hence x̄ is the sum of the characteristic
vectors of C1, . . . , Ck. Since x̄ is an extreme ray of the circulation cone, it
follows that C is a simple circuit.

136 CHAPTER 4. PERFECT FORMULATIONS

Application: Comparing Formulations for the Traveling Salesman
Problem

In Sect. 2.7 we described several formulations for the traveling salesman
problem; the one proposed by Dantzig et al. [103] in 1954 is based on
subtour elimination constraints; the one proposed by Miller et al. [278]
in 1960 is more compact but involves additional variables. How do these
two formulations compare? To answer this question, we will apply what
we learned about circulations. Since the Miller–Tucker–Zemlin formulation
involves more variables, in order to compare it with the subtour formulation
we will need to project out these extra variables using Theorem 3.46.

Consider a digraph D = (V,A) with costs ca, a ∈ A, on the arcs. Assume
V = {1, . . . , n}. Recall from Sect. 2.7 that both formulations have binary
variables xij for every arc ij ∈ A, that must satisfy the constraints

∑
a∈δ+(i)

xa = 1 for all i ∈ V

∑
a∈δ−(i)

xa = 1 for all i ∈ V

xa ≥ 0 for all a ∈ A.

(4.2)

These constraints ensure that every node has exactly one arc of the
tour entering and one arc leaving, but additional constraints are needed
to exclude subtours. In the Dantzig–Fulkerson–Johnson formulation this is
achieved using exponentially many constraints

∑
a∈δ+(S) xa ≥ 1 for ∅ ⊂ S ⊂ V. (4.3)

Summing the equations
∑

a∈δ+(i) xa = 1 from (4.2) for all i ∈ S and
subtracting (4.3), we get an equivalent form of (4.3):

∑
i,j∈S : ij∈A

xij ≤ |S| − 1 for ∅ ⊂ S ⊂ V. (4.4)

In the Miller–Tucker–Zemlin formulation, instead of (4.4), we have extra
variables ui that represent the position of node i ≥ 2 in the tour, and we
have the following constraints

ui − uj + 1 ≤ n(1− xij) for all ij ∈ A such that i, j �= 1. (4.5)

In order to compare the two formulations, define

PMTZ := {(x, u) ∈ R
A × R

V \{1} : (x, u) satisfies (4.2), (4.5)},
Psubtour := {x ∈ R

A : satisfies (4.2), (4.4)}.
We project PMTZ onto the x-space to be able to compare it with Psubtour.

4.3. NETWORKS 137

Theorem 4.11. Psubtour ⊂ projx(PMTZ).

Proof. By Theorem 3.46 we have that

projx(PMTZ) = {x ∈ R
A : x satisfies (4.2) and v((n−1)1−nx) ≥ 0

for all v ∈ Q}
where Q := {v ≥ 0 :

∑
j �=1:ij∈A vij −

∑
j �=1:ji∈A vji = 0 for all i ∈ V \ {1}}

is the projection cone.
Observe that the polyhedral cone Q is the set of circulations in D \ {1}.

By Lemma 4.10, the extreme rays of Q are the characteristic vectors of the
simple circuits of D \ {1}. Then, if we denote by C the set of simple circuits
of D \ {1},
projx(PMTZ) = {x ∈ R

A : x satisfies (4.2) and (n−1)|C|−n
∑

ij∈C

xij ≥ 0 for all C ∈ C}.

The inequality (n − 1)|C| − n
∑

ij∈C xij ≥ 0 can be rewritten as

∑
ij∈C

xij ≤ |C| − |C|
n

.

This inequality is much weaker than the inequality (4.4) for the set S
of nodes in the simple circuit C, since the latter has more terms on the
left-hand side as well as a smaller right-hand side.

It is therefore not surprising that the Miller–Tucker–Zemlin formulation
is effective only for small values of n. For large instances, tighter formu-
lations such as Psubtour are needed. We will come back to the solution of
traveling salesman problems in Chap. 7.

4.3.2 Shortest Paths

Consider a digraph D = (V,A) with lengths 	e on its arcs e ∈ A, and
two distinct nodes s, t ∈ V . A directed s, t-path is a minimal set of arcs of
the form sv1, v1v2, . . . , vkt. In this section we will simply write “s, t-path”
for “directed s, t-path.” The length of an s, t path is 	(P) :=

∑
e∈P 	e.

The shortest path problem consists in finding an s, t-path P of minimum
length 	(P).

Let us assume for simplicity that there exists at least one s, t-path in D.
The problem can be formulated as follows. We introduce a binary variable
xe for each e ∈ A, where xe = 1 if e is in the path P , 0 otherwise. For every
node v �= s, t, the number of arcs of P entering v (none or one) equals the
number of arcs of P leaving v. Furthermore, there must be exactly one arc
leaving s and one arc entering t in P . These conditions can be expressed by
the equations

138 CHAPTER 4. PERFECT FORMULATIONS

∑
e∈δ−(v) xe −

∑
e∈δ+(v) xe = 0 v ∈ V \ {s, t}∑

e∈δ−(s) xe −
∑

e∈δ+(s) xe = −1∑
e∈δ−(t) xe −

∑
e∈δ+(t) xe = 1.

(4.6)

The above system can be written as ADx = b where b ∈ R
V is the vector

with zero in all components except bs = −1, bt = 1. We formulate the
shortest path problem as follows.

min 	x
ADx = b
x ≥ 0.

(4.7)

Since AD is totally unimodular, the polyhedron Q := {x ∈ R
A : ADx =

b, x ≥ 0} is integral. The recession cone of Q is rec(Q) = {x ∈ R
A : ADx =

0, x ≥ 0}, which is the set of circulations of D. By Proposition 4.10, the
extreme rays of Q are the characteristic vectors of the simple circuits of
D. Since Q is an integral polyhedron and the extreme rays of Q are the
characteristic vectors of the simple circuits of D, one can readily verify that
the vertices of Q are the characteristic vectors of the s, t-paths. We say that
a circuit C of D is a negative-length circuit if 	(C) < 0.

Remark 4.12. If D contains a negative-length circuit, then (4.7) is unb-
ounded. If D does not contain a negative-length circuit, then (4.7) has an
optimal solution, and any basic optimal solution is the characteristic vector
of a shortest s, t-path.

Thus, when D has no negative-length circuit, we can determine in
polynomial time a shortest s, t-path by solving (4.7). On the other hand,
for general objective functions the shortest s, t-path problem is NP-hard
(see [158]). There are several specialized algorithms to solve the shortest
path problem in graphs without negative-length circuits.

Here we explain the algorithm of Bellman–Ford, which computes the
lengths of the shortest paths from s to all other nodes in V . The algorithm
is based on the following simple observation.

Observation 4.13. Given k ∈ {1, . . . , n − 1} and v ∈ V , let P be an
s, v-path such that |P | ≤ k and 	(P) is minimum among all s, v-paths of
cardinality at most k. Let uv be the last arc in P and let P ′ be the s, u-path
contained in P . If D has no negative-length circuit, then P ′ has minimum
length 	(P ′) among all s, u-paths of cardinality at most k − 1.

4.3. NETWORKS 139

Proof. Suppose that there exists an s, u-path R such that |R| ≤ k − 1 and
	(R) < 	(P ′). If v is not in R, then R′ = R ∪ uv is an s, v-path, |R| ≤ k
and 	(R′) < 	(P), a contradiction. Hence v must be in R. Let T and T ′

be, respectively, the s, v-path and the v, u-path contained in R. Note that
C := T ′ ∪ uv is a simple circuit. Since T is an s, v-path and |T | ≤ k, it
follows by the choice of P that 	(P) ≤ 	(T). Hence 	(C) = 	(T ′) + 	uv =
	(R) − 	(T) + 	uv < 	(P ′) − 	(P) + 	uv = 0. Thus C is a negative-length
circuit.

Assume D does not contain any negative-length circuit. For k = 0, . . . ,
n − 1 and every v ∈ V , let dk(v) be the minimum length of an s, v-path of
cardinality at most k (where dk(v) = ∞ if there is no such path). Clearly
d0(s) = 0 and d0(v) = ∞ for all v ∈ V \ {s}. By Observation 4.13, for all
v ∈ V and for k = 1, . . . , n− 1 we have the following recursion:

dk(v) = min{dk−1(v), min
uv∈A

(dk−1(u) + 	uv)}.

Since any path in D has cardinality at most n − 1, the length of a shortest
s, v-path, v ∈ V , is dn−1(v). By the above recursion, these numbers can be
computed in time O(|V ||A|).

We conclude by showing the connection of Bellman–Ford’s algorithm to
linear programming duality. Let yv := dn−1(v) for all v ∈ V . By Observa-
tion 4.13, the vector y ∈ R

V satisfies the conditions

yv − yu ≤ 	uv, for all uv ∈ A.

These conditions are precisely the constraints of the dual of (4.7). Further-
more, the value of the dual objective function is yt − ys = dn−1(t). Since
dn−1(t) is the length of a shortest s, t-path P , the characteristic vector xP

of P and the vector y are a primal and a dual solution to (4.7), respectively,
with the same objective value dn−1(t). Hence xP and y are primal and dual
optimal solutions.

4.3.3 Maximum Flow and Minimum Cut

Given a digraph D = (V,A) and two distinct nodes s, t ∈ V , an s, t-flow in
D is a nonnegative vector x ∈ R

A – where the quantity xe, e ∈ A, is called
the flow on arc e—such that the total amount of flow entering any node
v �= s, t equals the total amount of flow leaving v. That is,

∑
e∈δ−(v)

xe −
∑

e∈δ+(v)

xe = 0, v ∈ V \ {s, t}.

140 CHAPTER 4. PERFECT FORMULATIONS

It can be verified that the total amount of flow leaving node s equals the
total amount of flow entering node t. Such quantity is called the value of
the s, t-flow x, denoted by

val(x) :=
∑

e∈δ+(s)

xe −
∑

e∈δ−(s)

xe.

Given nonnegative capacities ce, e ∈ A, on the arcs, a feasible s, t-flow is
an s, t-flow which does not exceed the arc capacities, that is xe ≤ ce, e ∈ A.
An s, t-flow x is integral if it is an integral vector.

The maximum flow problem consists in finding a feasible s, t-flow of max-
imum value. See Fig. 4.1 for an example. The maximum flow problem can
be formulated as the following linear program

max ν ∑
e∈δ−(v) xe −

∑
e∈δ+(v) xe = 0 v ∈ V \ {s, t}

ν+
∑

e∈δ−(s) xe −
∑

e∈δ+(s) xe = 0

−ν+
∑

e∈δ−(t) xe −
∑

e∈δ+(t) xe = 0

0 ≤ xe ≤ ce e ∈ A.

(4.8)

Note that the constraint matrix of the |V | equations in the above linear
program is the incidence matrix of the digraph D′ obtained by adding to D
a new arc from t to s, corresponding to the variable ν. Thus the constraint
matrix of the above problem is totally unimodular. Whenever the capacities
ce, e ∈ A, are all integer numbers, Theorem 4.5 implies that the system
of linear constraints (4.8) describes an integral polyhedron. In particular,
finding a maximum integral s, t-flow amounts to solving a linear program.
For a thorough account on algorithms for solving max-flow problems we refer
the reader to [17].

4

2

1

2

2

13

2 6 4 2

2

1

s

a b c

t s t s t

Figure 4.1: (a) Network with capacities, (b) Maximum flow, (c) Minimum
cut

A closely related problem is the min-cut problem. An s, t-cut is a set of
arcs of the form Γ := δ+(S) where s ∈ S ⊆ V \ {t}. The capacity of the cut
Γ is c(Γ) :=

∑
e∈δ+(S) ce. The min-cut problem consists in finding an s, t-cut

of minimum capacity.

4.3. NETWORKS 141

Lemma 4.14. Given a digraph D, two distinct nodes s, t ∈ V , nonnegative
capacities ce, e ∈ A, a feasible s, t-flow x and an s, t-cut Γ = δ+(S), we have
that val(x) ≤ c(Γ). Furthermore val(x) = c(Γ) if and only if xe = ce, e ∈
δ+(S) and xe = 0, e ∈ δ−(S). In this case x is a maximum s, t-flow and Γ
is an s, t-cut of minimum capacity.

Proof. Since Γ := δ+(S) is an s, t-cut, s ∈ S and t �∈ S. Therefore adding
all the equations (4.8) for the nodes in S one obtains

val(x) =
∑

e∈δ+(S)

xe −
∑

e∈δ−(S)

xe ≤ c(Γ)

where the inequality follows from xe ≤ ce, e ∈ δ+(S) and −xe ≤ 0,
e ∈ δ−(S). Therefore val(x) = c(Γ) if and only if x satisfies all these
inequalities at equality.

A classical theorem of Ford and Fulkerson states that the maximum value
of an s, t-flow and the minimum capacity of an s, t-cut coincide. We give two
proofs of this fact. The first one uses linear programming duality and total
unimodularity, while the second is based on an algorithm that explicitly
computes a feasible s, t-flow x and an s, t-cut Γ such that val(x) = c(Γ).

The following is the dual of the linear program (4.8), where the dual
variable yv corresponds to the equation relative to node v, and the dual
variable ze to the constraint xe ≤ ce, e ∈ A.

min
∑

e∈A ceze
yv − yu +zuv ≥ 0 uv ∈ A
ys − yt = 1

z ≥ 0.

(4.9)

Theorem 4.15 (Max-Flow Min-Cut Theorem). Given a digraph D, two
distinct nodes s, t ∈ V , and nonnegative capacities ce, e ∈ A,

max{val(x) : x is a feasible s, t-flow} = min{c(Γ) : Γ is an s, t-cut}.
(4.10)

Proof. Let x∗ be a feasible s, t-flow of maximum value. By Lemma 4.14 it
suffices to show that there exists an s, t-cut Γ such that val(x∗) ≥ c(Γ). Let
(y∗, z∗) be an optimal solution for (4.9). Since the constraint matrix of (4.9)
is totally unimodular and the right-hand side is integral, we may assume that
(y∗, z∗) is an integral vector. By linear programming duality (Theorem 3.7),
val(x∗) =

∑
e∈A cez

∗
e . Let Ā = {e ∈ A : z∗e > 0}. We will show that Ā

142 CHAPTER 4. PERFECT FORMULATIONS

contains some s, t-cut Γ. It will then follow that val(x∗) =
∑

e∈A cez
∗
e ≥∑

e∈Ā c̄e ≥ c(Γ), where the first inequality follows from the fact that z∗ is a
nonnegative integral vector, and the second from the fact that Γ ⊆ Ā.

Consider an s, t-path P = v0v1, v1v2, . . . , vk−1vk (thus v0 = s, vk = t).
We have

∑
e∈P z∗e =

∑k
i=1 z

∗
vi−1vi ≥

∑k
i=1(y

∗
vi−1

− y∗vi) = y∗s − y∗t = 1. Thus,

every s, t-path P in D has at least one arc in Ā, that is, there is no s, t-path
in A \ Ā. Let S be the set of all nodes v ∈ V such that there exists an
s, v-path in A \ Ā (in particular s ∈ S), and let Γ := δ+(S). Since there is
no s, t-path in A \ Ā, it follows that t /∈ S and Γ ⊆ Ā.

Given a digraph D = (V,A), nodes s, t in V , nonnegative capacities
ce, e ∈ A and a feasible s, t-flow x, the residual digraph (relative to x)

Dx := (V,Ax) has the same node set as D and Ax :=
−→
Ax ∪←−

Ax (Fig. 4.2),
where

−→
Ax := {uv : uv ∈ A, xuv < cuv} and

←−
Ax := {vu : uv ∈ A, xuv > 0}.

(1, 0)

(3, 0)

(2, 2)
(4, 2)

(4, 3)

(3, 3) (3, 3)

(4, 2)
s t

Figure 4.2: Figure to the left : labels on the arcs are pairs of numbers, where
the first component represents the arc capacity and the second represents the
flow on the arc. Figure to the right : residual graph. Dashed arcs represent
an augmenting path

Theorem 4.16. Given a digraph D, two distinct nodes s, t ∈ V , and non-
negative capacities ce, e ∈ A, a feasible flow x is maximum if and only if the
residual digraph Dx = (V,Ax) contains no s, t-path.

Proof. Assume first Dx = (V,Ax) contains an s, t-path P . Let

ε := min

{
min

uv∈−→Ax∩P
cuv − xuv, min

vu∈←−Ax∩P
xuv

}
.

4.3. NETWORKS 143

Since P is a path in Dx, ε > 0. Let x′ be defined as follows:

x′uv =

⎧⎪⎨
⎪⎩

xuv + ε uv ∈ −→
Ax ∩ P

xuv − ε vu ∈ ←−
Ax ∩ P

xuv otherwise.

(4.11)

It is routine to check that x′ is a feasible flow and val(x′) = val(x) + ε.
Thus x is not a maximum flow.

For the converse, assume that Dx contains no s, t-path. Let S be the
subset of nodes of V that can be reached by a directed path inDx originating
at s. Then s ∈ S and t �∈ S, so Γ := δ+(S) is an s, t-cut. Since no arc of
Ax leaves S, it follows by construction of Dx that xuv = cuv for every arc
uv ∈ δ+(S) and xuv = 0 for every arc of uv ∈ δ−(S). Thus, by Lemma 4.14,
x is a maximum s, t-flow and Γ is a minimum s, t-cut.

Given a feasible s, t-flow x, an s, t-path P inDx is called an x-augmenting
path, and the new flow x′ defined in (4.11) is said to be obtained by augment-
ing x along P . The above proof gives an algorithm to solve the max-flow
problem.

Augmenting Paths Algorithm. Start with the initial flow x := 0. While
there exists an s, t-path P in the residual digraph Dx, augment the current
s, t-flow x along P .

Upon termination of the algorithm, x is a maximum s, t-flow. Moreover,
if we let S be the set of nodes reachable from s by a directed path in Dx at
termination of the algorithm, the proof of Theorem 4.16 shows that δ+(S)
is a minimum s, t-cut whose capacity equals the value of the optimum flow.

If the capacities ce are rational, the algorithm terminates because in each
iteration the flow augmentation ε is bounded away from 0 by 1

D where D is
the least common denominator of the positive capacities. If the capacities ce
are integer, then ε is an integer whenever the current s, t-flow is integral, and
therefore the s, t-flow obtained by augmenting along P is also integral. Since
we start with the feasible integral s, t-flow x := 0, the algorithm terminates
with an s, t-flow of maximum value which is integral.

The augmenting paths algorithm does not guarantee polynomial-time
convergence in general (see Exercise 4.16 for an example). However, it can
be easily modified to run in polynomial time as follows. At each iteration,
given the current feasible flow x, if x is not maximal then augment x along
a shortest s, t-path P in Dx (here the length of a path is its number of arcs).

144 CHAPTER 4. PERFECT FORMULATIONS

This algorithm is referred to as the shortest augmenting path algorithm.
The following theorem was discovered independently by Dinic [120] and
Edmonds-Karp [129].

Theorem 4.17. Given a digraph D = (V,A), distinct nodes s, t ∈ V , and
nonnegative capacities ce, e ∈ A, the shortest augmenting path algorithm
terminates in at most |V ||A| iterations.

Proof. Given a feasible s, t-flow x, denote by d(u, v) the distance from u ∈ V
to v ∈ V in the residual digraph Dx = (V,Ax). Let us say that an arc of Ax

is relevant in Dx if it is contained in a shortest s, t-path in Dx. If there is no
s, t-path, then no arc is relevant in Dx. Note that for every uv ∈ Ax we have
d(s, v) ≤ d(s, u)+1, and if uv is relevant in Dx we have d(s, v) = d(s, u)+1.

Let x′ be the s, t-flow obtained by augmenting x along a shortest s, t-path
P in Dx. Then

Ax \Ax′ = {uv ∈ −→
Ax ∩ P : cuv − xuv = ε} ∪ {uv ∈ ←−

Ax ∩ P : xvu = ε} 	= ∅;
(4.12)

Ax′ \ Ax = {uv : vu ∈ −→
Ax ∩ P, xvu = 0} ∪ {uv : vu ∈ ←−

Ax ∩ P : xuv = cuv}.
(4.13)

Denote by d′(u, v) the distance from u ∈ V to v ∈ V in Dx′ . We prove next
that, for every v ∈ V , d(s, v) ≤ d′(s, v) and d(v, t) ≤ d′(v, t). If not, there
must exist at least one arc uw ∈ Ax′ such that d(s,w) > d(s, u)+1. It follows
that uw /∈ Ax, so wu ∈ P by (4.13), but we should have d(s, u) = d(s,w)+1
because P is a shortest path, a contradiction.

We now show that, if d′(s, t) = d(s, t), then the number of relevant arcs
in Dx′ is strictly less than in Dx. Note that (4.12) implies that at least
one relevant arc of Dx is not present in Ax′ . Thus it suffices to show that,
for any relevant arc uv of Dx′ , uv is also relevant in Dx. Suppose uv /∈ Ax.
By (4.13) vu ∈ P , thus d′(s, u) ≥ d(s, u) = d(s, v)+1 and d′(v, t) ≥ d(v, t) =
d(s, t)− d(s, v). It follows that any s, t-path in Dx′ that uses uv has length
at least d(s, t) + 2, contradicting the fact that uv is relevant in Dx′ . Thus
uv ∈ Ax. We have that d(s, u) + d(v, t) ≤ d′(s, u) + d′(v, t) = d(s, t) − 1,
therefore uv is relevant in Dx.

Thus, at each iteration, the distance from s to t in the residual graph
does not increase, and when it does not decrease the number of relevant
arcs decreases. The distance from s to t is never more than |V | − 1, and the
number of relevant arcs is never more than |A|. It follows that the shortest
augmenting path algorithm terminates after at most |V ||A| iterations.

4.4. MATCHINGS IN GRAPHS 145

4.4 Matchings in Graphs

A matching in an undirected graph G = (V,E) is a set M ⊆ E of pairwise
disjoint edges, where an edge is viewed here as a set of two distinct nodes.
A matching is perfect if it covers every node of the graph (that is, every

node is contained in exactly one edge of the matching).
A basic problem in combinatorial optimization is the maximum cardi-

nality matching problem, that is, finding a matching of G of maximum
cardinality. Obviously a perfect matching of G has maximum cardinality,
but in general a perfect matching might not exist. The problem can be
formulated as an integer program with binary variables xe, e ∈ E, where
xe = 1 if and only if e belongs to the matching M . Since each node v ∈ V
can be covered by at most one edge of M , it follows that x must satisfy the
degree constraints

∑
e∈δ(v) xe ≤ 1, v ∈ V . Hence the maximum cardinality

problem can be formulated as

max
∑
e∈E

xe

∑
e∈δ(v)

xe ≤ 1, v ∈ V

x ∈ {0, 1}E .

(4.14)

The incidence matrix AG of a graph G = (V,E) is the |V | × |E| matrix
whose rows correspond to the nodes of G and columns correspond to the
edges of G, and whose entries are defined as follows: For every edge e = uv,
aue = ave = 1 and awe = 0 for all w ∈ V \ {u, v}.
Note that any 0, 1 matrix AG with exactly two nonzero entries in each
column is the incidence matrix of some graph G.

Formulation (4.14) can be written in terms of the incidence matrix AG

max
∑

e∈E xe
AGx ≤ 1
x ∈ {0, 1}E ,

where 1 is the vector of all ones in R
V . G has a perfect matching if AGx = 1

admits a solution x ∈ {0, 1}E .

Theorem 4.18. Let AG be the incidence matrix of a graph G. Then AG is
totally unimodular if and only if G is bipartite.

Proof. Since AG has two nonzero entries in each column, by Corollary 4.8
AG is totally unimodular if and only if it has an equitable row-bicoloring.

146 CHAPTER 4. PERFECT FORMULATIONS

Note that an equitable row-bicoloring of AG corresponds to a bipartition
of the nodes of G such that each edge has an endnode in each side of the
bipartition. Such a bicoloring exists if and only if G is bipartite.

The matching polytope of G is the convex hull of all characteristic vectors
of matchings of G, and the perfect matching polytope of G is the convex hull
of characteristic vectors of perfect matchings in G. Note that the perfect
matching polytope of G is the face of the matching polytope of G defined
by setting the degree constraints at equality. By Theorems 4.4 and 4.18, the
polytope {x ∈ R

E : AGx ≤ 1, x ≥ 0} is integral when G is bipartite, thus
we have the following.

Corollary 4.19. If G is a bipartite graph, then the matching polytope of G
is the set {x ∈ R

E : AGx ≤ 1, x ≥ 0}, and the perfect matching polytope of
G is the set {x ∈ R

E : AGx = 1, x ≥ 0}.

This shows that in the bipartite case finding the maximum cardinality
matching amounts to solving the linear relaxation of (4.14). We will see in
Sect. 4.4.4 that a set of inequalities describing the matching polytope can be
given even for general graphs, but it is considerably more involved.

4.4.1 Augmenting Paths

There are specialized polynomial-time algorithms to solve the maximum
cardinality matching problem. These algorithms rely on the concept of
augmenting path.

a b

Figure 4.3: (a) A graph and a matching M in bold, (b) an M -augmenting
path

Given a matching M , a path P in G = (V,E) is said to be M -alternating
if each node in P , except the two endnodes, belongs to one edge inM and one
edge in E \M . In other words, the edges alternate along P between edges in
M and edges in E\M . AnM -alternating path P is said to beM -augmenting
if the two endnodes of P are not covered by any edge of M . See Fig. 4.3 for

4.4. MATCHINGS IN GRAPHS 147

an example. If P is an M -augmenting path, then |P \M | = |P ∩ M | + 1.
By definition of M -augmenting path, the set

N := M � P = (M \ P) ∪ (P \M)

is a matching, and |N | = |M |+ |P \M |− |P ∩M | = |M |+1. The matching
N is said to be obtained by augmenting M along P . In particular, if there
is an M -augmenting path, then M is not optimal and we can find a larger
matching. A classic result of Petersen [307], later rediscovered by Berge [50],
states that the converse also holds.

Theorem 4.20. A matching M has maximum cardinality if and only if
there is no M -augmenting path.

Proof. We already proved the “only if” part of the statement. We now show
that, ifM is not of maximum cardinality, then there exists anM -augmenting
path. Let N be a matching in G such that |N | > |M |, and consider the
graph G′ = (V,E′), where E′ = M � N . Note that, since every edge in
E′ belongs to M or N , but not both, and since every node of V belongs
to at most one element of M and at most one element of N , every node in
G′ has degree at most two. In particular, E′ is the node-disjoint union of
cycles C1, . . . , Cp and paths P 1, . . . , P q. Note that every node in a cycle Ci,
i = 1, . . . , p, belongs to one edge in Ci ∩ M and one edge in Ci ∩ N , thus
|Ci ∩ M | = |Ci ∩ N |. Since |N | > |M |, there must therefore exist a path
P i, i ∈ {1, . . . , q}, such that |P i ∩N | > |P i ∩M |. Since every node in P i,
except possibly the endnodes, belong to an edge in P i ∩M and one edge in
P i ∩ N , it follows that the two endnodes of P i are covered by N but not
by M . Therefore P i is an M -augmenting path.

The above theorem suggests the following algorithm for the maximum
cardinality matching: start with any matching M of G and look for an
M -augmenting path. If one exists, then augment M and repeat, else M is
optimal. The issue at this point is of course how to find an M -augmenting
path. In the general case it is far from obvious how to find one in polynomial
time, and this problem was settled by Edmonds [123]. In the bipartite case
the situation is much easier.

4.4.2 Cardinality Bipartite Matchings

We now describe an algorithm for finding a maximum cardinality matching
in a bipartite graph G = (V,E). Let the two sides of the bipartition be
the sets U and W . Let M be a matching in G. We construct the following

148 CHAPTER 4. PERFECT FORMULATIONS

auxiliary digraph (with respect to M). Let DM = (V,AM) be the digraph
with the same nodeset as G, where the arcs in AM are obtained by orienting
the edges in E from U to W if they do not belong to M , and from W to U

otherwise. That is, AM :=
−→
AM ∪←−

AM , where

−→
AM := {uv : u ∈ U, v ∈ W,uv ∈ E \M}, ←−

AM := {vu : u ∈ U, v ∈ W,uv ∈ M}.
(4.15)

To simplify notation, we identify any arc in AM with the corresponding edge
in E.

Let S denote the set of nodes of U that are not covered by M , and let
T be the set of nodes of W not covered by M . Observe that, if P is an
M -augmenting path in G, then P has odd length, thus one endnode of P
is in S and the other in T . Also, since the edges of P alternate between
edges in M and edges in E \M , it follows from the construction of DM that
P is a directed path in DM from a node in S to a node in T . Conversely,
if P is a directed path in DM from a node in S to a node in T , it follows
similarly that P is an M -augmenting path. Thus, the problem of finding an
M -augmenting path in G amounts to determining if there exists a directed
path in DM from a node in S to a node in T , which can be achieved by any
algorithm to explore a digraph (such as, for example, breadth-first search or
depth-first search).

1

1

1

1

1 11

ts

U WU W
DG

+∞

+∞

+∞

+∞

+∞
+∞

Figure 4.4: Transformation of bipartite matching into maximum flow

One can also solve the maximum cardinality matching problem in a
bipartite graph by transforming it into a maximum flow problem (Fig. 4.4).
Let G = (V,E) be a bipartite graph and let U and W be the two sides of
the bipartition. Define the digraph D = (V ′, A) as follows:

V ′ := V ∪ {s, t}, A := {su : u ∈ U} ∪ {uw : u ∈ U, w ∈ W, uw ∈ E} ∪ {wt : w ∈ W }.

For e ∈ A, define capacity ce = 1 if s or t belongs to e and ce = ∞
otherwise. Since δ−(u) = {su} for every u ∈ U , δ+(w) = {wt} for every

4.4. MATCHINGS IN GRAPHS 149

w ∈ W and ce = 1 if s or t belongs to e, it follows that an integral s, t-flow
x is a 0, 1 vector, the set M := {e ∈ E : xe = 1} is a matching of G, and
val(x) = |M |.

4.4.3 Minimum Weight Perfect Matchings
in Bipartite Graphs

Let G = (V,E) be a graph with weights we, e ∈ E on the edges. The min-
imum weight perfect matching problem is to determine a perfect matching
M of minimum total weight w(M) :=

∑
e∈M we. In this section, we assume

that G is bipartite and we let U and W be the sides of the bipartition.
Clearly, in order for a perfect matching to exist, U and W must have the
same cardinality, say n. A matching M in G is perfect if and only if it has
cardinality n. The minimum weight perfect matching problem in a bipartite
graph is also known under the name of assignment problem (recall (1.4)).

By Corollary 4.19, the minimum weight perfect matching can be deter-
mined by solving the linear program min{

∑
e∈E wexe : AGx = 1, x ≥ 0}.

Next we present an “ad-hoc” algorithm to solve the minimum weight per-
fect matching problem, which is known in the literature as the Hungarian
method [245].

The Hungarian method consists of at most n iterations. At the kth
iterations, 0 ≤ k ≤ n − 1, we have a matching M of cardinality k such
that w(M) is minimum among all matchings of cardinality k. We want to
compute a minimum weight matching of cardinality k + 1. We reduce this
problem to a shortest path problem.

Construct the auxiliary digraph DM = (V,AM) relative to M , where

AM =
−→
AM ∪←−

AM , and
−→
AM ,

←−
AM are defined in (4.15). Define a length 	e

for each arc e ∈ AM by

	e = we for all e ∈ −→
AM , 	e = −we for all e ∈ ←−

AM .

Observation 4.21. DM does not contain any negative-length circuit.

Proof. By contradiction, suppose there exists a circuit C of DM with

	(C) < 0. Since C is a circuit, the arcs in C alternate between arcs in
−→
AM

and arcs in
←−
AM . That is, the edges in C alternate between edges in M and

edges in E\M . Thus, the setM ′ = M�C is a matching of cardinality k. We
have that w(M ′) = w(M)−w(M ∩C)+w(C \M) = w(M)+ 	(C) < w(M),
contradicting the fact that M has minimum weight among all matchings of
cardinality k.

150 CHAPTER 4. PERFECT FORMULATIONS

Let S denote the set of nodes of U that are not covered by M , and let
T be the set of nodes of W not covered by M . By Theorem 4.20, G has a
matching of cardinality k + 1 if and only if G has an M -augmenting path.
As seen in the previous section, this is the case if and only if there exists
a directed path in DM between a node of S and a node of T . If no such
path exists, then we conclude that G has no perfect matching, otherwise we
choose a shortest such path P with respect to the length 	.

Such a path can be computed in polynomial time with Bellman–Ford’s
algorithm (Sect. 4.3.2), because there are no negative-length circuits in DM .
Let N := M � P . Then N is a matching of cardinality k + 1 and w(N) =
w(M) + w(P \M)−w(P ∩M) = w(M) + 	(P).

Observation 4.22. N has minimum weight among all matchings of G of
cardinality k + 1.

Proof. Consider a matching N ′ of G with |N ′| = k + 1. We need to show
that w(N ′) ≥ w(N). Since |N ′| > |M |, it follows that M �N ′ contains an
M -augmenting path P ′. By the choice of P , we have 	(P) ≤ 	(P ′). Let
M ′ := N ′ � P ′. Since P ′ is an M -augmenting path contained in M � N ′,
it follows that P ′ is N ′-alternating and that its endnodes are covered by
N ′, hence M ′ is a matching of cardinality k. Since M has minimum weight
among all matchings of cardinality k, we have w(M) ≤ w(M ′). Finally,
observe that w(N ′) = w(M ′) + 	(P ′) ≥ w(M) + 	(P) = w(N), where the
inequality follows from the facts that w(M) ≤ w(M ′) and 	(P) ≤ 	(P ′).

4.4.4 The Matching Polytope

Let G = (V,E) be a graph. Corollary 4.19 states that, whenever G is bip-
artite, its matching polytope is described by the nonnegativity constraints
x ≥ 0 and the degree constraints

∑
e∈δ(v)

xe ≤ 1, v ∈ V. (4.16)

This statement does not carry through in the general case. For example,
suppose G is just a triangle, with nodes {1, 2, 3} and edges 12, 13, 23. The
system formed by the degree and nonnegativity constraints is

x12 +x13 ≤ 1
x12 +x23 ≤ 1

x13 +x23 ≤ 1
x ≥ 0.

4.4. MATCHINGS IN GRAPHS 151

Point (1/2, 1/2, 1/2) is a vertex of the polytope described by the above
constraints, which shows that these are not sufficient to describe the match-
ing polytope of the triangle. What are the conditions not captured by the
degree constraints in this example?

For a graph G = (V,E) and a set of nodes U ⊆ V , let E[U] := {uv ∈
E : u, v ∈ U}. Given a matching M of G, every edge of M ∩ E[U] covers
two nodes of U . Since each node of U is covered by at most one edge of M ,
it follows that |M ∩E[U]| ≤ |U |/2. If U has odd cardinality, this means that
|M ∩E[U]| ≤ (|U | − 1)/2. Thus the characteristic vector x of any matching
must satisfy the blossom inequality

∑
e∈E[U]

xe ≤
|U | − 1

2
, U ⊆ V, |U | odd. (4.17)

In the above example, the blossom inequality relative to the odd set {1, 2, 3}
would be x12 + x13 + x23 ≤ 1. Adding this inequality cuts off the point
(1/2, 1/2, 1/2).

Edmonds [124] showed that, in fact, adding the blossom inequalities to
the nonnegativity and degree constraints is always sufficient to describe the
matching polytope (Theorem 4.24).

Recall that the perfect matching polytope of G is the convex hull of all
characteristic vectors of perfect matchings. It is the face of the matching
polytope of G obtained by setting the degree constraints at equality

∑
e∈δ(v)

xe = 1, v ∈ V. (4.18)

For the perfect matching polytope, the blossom inequalities (4.17) can be
written in an equivalent form. Given an odd set U ⊆ V , summing (4.18)
over all v ∈ U gives |U | =

∑
v∈U

∑
e∈δ(v) xe =

∑
e∈δ(U) xe + 2

∑
e∈E[U] xe.

Subtracting the blossom inequality relative to U multiplied by 2, we obtain
the so-called odd cut inequality

∑
e∈δ(U)

xe ≥ 1, U ⊆ V, |U | odd. (4.19)

The odd cut inequalities define the same faces of the perfect matching poly-
tope as the blossom inequalities. They express the fact that, for every odd
set U , some node in U is matched to some node in V \ U in every perfect
matching. When U or V \ U is a singleton, the odd cut inequality relative
to U is implied by one of the degree constraints (4.18).

152 CHAPTER 4. PERFECT FORMULATIONS

Theorem 4.23 (Perfect Matching Polytope Theorem). The perfect
matching polytope of a graph G = (V,E) is the set {x ∈ R

E : x ≥ 0,
x satisfies (4.18)(4.19)}.

Proof. Let P (G) := {x ∈ R
E : x ≥ 0, x satisfies (4.18)(4.19)}. Clearly

P (G)∩Z
E is the set of characteristic vectors of the perfect matchings of G,

therefore it suffices to show that P (G) is an integral polytope. Assume not
and let G = (V,E) be a graph with |V | + |E| smallest possible such that
P (G) is not an integral polytope. Let x̄ be a fractional vertex of P (G). By
the minimality of G, G is connected and 0 < x̄e < 1 for every edge e ∈ E.
By Corollary 4.19 G is not bipartite. If |V | is odd then P (G) = ∅ because
the odd cut inequality relative to V implies 1 ≤

∑
e∈δ(V) xe = 0, therefore

|V | must be even.
We show next that

∑
e∈δ(U) x̄e = 1 for some U ⊆ V such that |U | odd,

|U | ≥ 3, |V \ U | ≥ 3. Suppose not. Since x̄e > 0 for every e ∈ E, x̄ is
the unique solution of the |V | equalities (4.18). It follows that |E| ≤ |V |.
Then G must be a tree plus possibly an edge, because G is connected. Since
x̄e < 1 for every e ∈ E and x̄ satisfies (4.18), it follows that every node of G
has degree at least 2, so G is a cycle. Since |V | is even, G is an even cycle,
contradicting the fact that G is not bipartite.

Let U ⊆ V be an odd set such that |U | ≥ 3, |V \U | ≥ 3, and
∑

e∈δ(U) x̄e=1.

Let G′ = (V ′, E′) be the graph obtained from G by shrinking U into a single
node v′ (we identify the edges in δG′(v′) with the original ones in δG(U),
and we may create parallel edges). Analogously, let G′′ = (V ′′, E′′) be the
graph obtained by shrinking V \U into a single node v′′. Since |U | ≥ 3 and
|V \U | ≥ 3, both G′, G′′ are smaller than G. By the minimality of G, both
polytopes P (G′), P (G′′) are integral. Let x̄′ and x̄′′ be the restrictions of
x̄ to the edges of G′, G′′ respectively. Next we show that x̄′ ∈ P (G′) and
x̄′′ ∈ P (G′′). By symmetry, it suffices to show that x̄′ ∈ P (G′). First observe
that

∑
e∈δG′ (v′) x̄

′
e =

∑
e∈δ(U) x̄e = 1. Furthermore, consider W ′ ⊆ V ′ such

that |W ′| is odd. Let W := W ′ if v′ /∈ W ′, and W := W ′ \ {v′} ∪ U if
v′ ∈ W ′. Then

∑
e∈δG′ (W ′) x̄

′
e =

∑
e∈δ(W) x̄e ≥ 1.

It follows that x̄′ ∈ P (G′) and x̄′′ ∈ P (G′′), thus x̄′ and x̄′′ can be
written as convex combinations of incidence vectors of perfect matchings
of G′ and G′′. Equivalently, there is a positive integer k such that kx̄′

and kx̄′′ are the sum of k incidence vectors of perfect matchings of G′ and
G′′, say M ′

1, . . . ,M
′
k and M ′′

1 , . . . ,M
′′
k , respectively. Note that every edge

e ∈ δ(U) is contained in exactly kx̄e matchings among M ′
1, . . . ,M

′
k and kx̄e

matchings among M ′′
1 , . . . ,M

′′
k . Thus we may relabel the indices so that

M ′
i ∩ δ(U) = M ′′

i ∩ δ(U) for i = 1, . . . , k. If we define Mi := M ′
i ∪ M ′′

i ,

4.5. SPANNING TREES 153

i = 1, . . . , k, it follows that M1, . . . ,Mk are perfect matchings of G and kx̄
is the sum of their incidence vectors. Hence x̄ is a convex combination of
incidence vectors of matchings of G, contradicting the assumption that x̄ is
a fractional vertex of P (G).

Theorem 4.24 (Matching Polytope Theorem). The matching polytope of
a graph G = (V,E) is the set {x ∈ R

E : x ≥ 0, x satisfies (4.16)(4.17)}.

Proof. Let G̃ = (Ṽ , Ẽ) be the graph defined by creating two disjoint copies of
G and connecting every pair of corresponding nodes. Formally, Ṽ := V ∪V ′,
where V ′ contains a copy v′ of each node v ∈ V , and Ẽ := E ∪ E′ ∪ {vv′ :
v ∈ V }, where E′ := {u′v′ : uv ∈ E}. The restriction to G of a perfect
matching of G̃ is a matching of G and, conversely, any matching of G can
be extended to a perfect matching of G̃. Therefore the matching polytope
of G is the projection onto R

E of the perfect matching polytope P (G̃) of G̃.

Thus, it suffices to show that, given x̄ ∈ R
E
+, satisfying (4.16)(4.17),

there exists x̃ ∈ P (G̃) such that x̄e = x̃e for all e ∈ E. We define x̃ ∈ R
Ẽ

by x̃uv := x̃u′v′ := x̄uv for every uv ∈ E, and x̃vv′ := 1 −
∑

e∈δG(v) x̄e for

every v ∈ V . By construction, x̃ ≥ 0 and
∑

e∈δG̃(w) x̃e = 1 for all w ∈ Ṽ .

Let Ũ ⊆ Ṽ be an odd set. Let U := {v ∈ V : |{v, v′} ∩ Ũ | = 1} and

T := {v ∈ V : v, v′ ∈ Ũ}. Since |Ũ | = |U | + 2|T |, |U | is odd. Denoting
(U : T) := {uv ∈ E : u ∈ U, v ∈ T}, one can verify that

∑

e∈Ẽ[Ũ]

x̃e ≤
∑

e∈E[U]

x̄e + 2
∑

e∈E[T]

x̄e +
∑

e∈(U :T)

x̄e +
∑
v∈T

x̃vv′ ≤ |U | − 1

2
+ |T | = |Ũ | − 1

2
,

where the second inequality follows from the fact that
∑

v∈T x̃vv′=|T |−2
∑

e∈E[T]

x̄e −
∑

e∈δ(T) x̄e. Now Theorem 4.23 implies that x̃ ∈ P (G̃).

4.5 Spanning Trees

In a graph G = (V,E), a spanning tree is a set T ⊆ E of edges such that
the graph (V, T) is acyclic and connected. See Fig. 4.5 for an example. The
convex hull of the incidence vectors of all spanning trees of G is the spanning
tree polytope of G. It is well known that G has a spanning tree if and only
if G is connected, and that, if T is a spanning tree, then |T | = |V | − 1 and
|T ∩ E[S]| ≤ |S| − 1 for every ∅ �= S ⊂ V .

154 CHAPTER 4. PERFECT FORMULATIONS

a b

Figure 4.5: (a) A graph, (b) a spanning tree

Theorem 4.25. Let G = (V,E) be a graph. The spanning tree polytope of
G is described by the following inequalities

∑
e∈E[S] xe ≤ |S| − 1 ∅ �= S ⊂ V∑

e∈E xe = |V | − 1
xe ≥ 0 e ∈ E.

(4.20)

Proof. The statement is true if G is not connected, since in that case the
spanning tree polytope is empty and the system (4.20) is infeasible. Indeed,
given a connected component S �= ∅, we have that

∑
e∈E xe =

∑
e∈E[S] xe +∑

e∈E[V \S] xe ≤ (|S| − 1) + (|V \ S| − 1) = |V | − 2.
Hence we assume that G is connected. It suffices to show that, for every

c ∈ R
E , the linear programming problem max{cx : x satisfies (4.20)} has

an optimal solution that is the incidence vector of a spanning tree. In order
to show this, we present an algorithm that constructs such a tree. We refer
to ce as the cost of edge e ∈ E.

Let F0 := ∅. For i = 1, . . . , n − 1, let ei be an edge of maximum cost
among all edges with endnodes in distinct connected components of (V, Fi−1),
and let Fi := Fi−1 ∪ {ei}.

Clearly, Fn−1 is a spanning tree, and therefore its incidence vector x∗ is
a feasible solution to (4.20). To show that it is an optimal solution to the
linear program, we give a feasible dual solution y∗ such that x∗, y∗ satisfy
complementary slackness (Theorem 3.8). The dual is

min
∑

∅�=S⊆V (|S| − 1)yS∑
S : e∈E[S] yS ≥ ce e ∈ E

yS ≥ 0 ∅ �= S ⊂ V.

(4.21)

Note that the variable yV is unrestricted in sign.

4.6. TOTAL DUAL INTEGRALITY 155

For i = 1, . . . , n − 1, let Si be the connected component of (V, Fi)
containing both endnodes of ei. Note that Sn−1 = V . For i = 1, . . . , n − 2,
we define y∗Si

:= cei − cej , where j is the smallest index in {i+1, . . . , n− 1}
such that Si ⊂ Sj . Let y∗V = cen−1 and y∗S = 0 for all S ⊂ V such that
S �= S1, . . . , Sn−1. Note that ce1 ≥ ce2 ≥ . . . ≥ cen−1 , therefore y

∗
S is nonneg-

ative for every S ⊂ V .
We show that y∗ is a feasible dual solution. Consider e ∈ E and let

I := {i : e ∈ E[Si]}. Assume I = {j1, j2, . . . , jk} where j1 ≤ j2 ≤ . . . ≤ jk.
Clearly jk = n − 1. By definition both edges e and ej1 have endnodes in
distinct components of (V, Fj1−1), hence by the algorithm described above
cej1 ≥ ce. Therefore

∑
S : e∈E[S]

y∗S =

k∑
i=1

y∗Sji
=

k−1∑
i=1

(ceji − ceji+1
) + cen−1 = cej1 ≥ ce.

This shows that y∗ is feasible and that, for i = 1, . . . , n − 1, the dual con-
straint corresponding to edge ei is satisfied at equality. Thus, in order
to prove that x∗ and y∗ satisfy complementary slackness, we only need to
observe that, for i = 1, . . . , n− 1, |Fi ∩E[Si]| = |Si| − 1, which implies that∑

e∈E[Si]
x∗e = |Si| − 1.

The algorithm presented in the proof of Theorem 4.25 solves the problem
of computing a maximum cost spanning tree in a graph with costs on the
edges. The algorithm is due to Kruskal [244]. It can be modified in a
straightforward way to compute also a minimum cost spanning tree.

4.6 Total Dual Integrality

A rational system Ax ≤ b is totally dual integral (TDI, for short) if, for every
integral vector c for which the the linear program max{cx : Ax ≤ b} admits
a finite optimum, its dual min{yb : yA = c, y ≥ 0} admits an integral
optimal solution.

For example, the system (4.20) in the previous section is TDI, since the
dual solution constructed in the proof of Theorem 4.25 is integral whenever
the vector c is integral.

Theorem 4.26. Let Ax ≤ b be a totally dual integral system and b be an
integral vector. Then P := {x : Ax ≤ b} is an integral polyhedron.

Proof. For every c for which the value zc := max{cx : Ax ≤ b} is finite, we
have that zc is integer since zc = by for some integral optimal solution y to
the dual min{yb : yA = c, y ≥ 0}. By Theorem 4.1(iv), P is an integral
polyhedron.

156 CHAPTER 4. PERFECT FORMULATIONS

In combinatorial optimization, total dual integrality plays a central role
in the derivation of min–max theorems (see Schrijver [327] for an extensive
treatment).

The property of being totally dual integral pertains to the system Ax ≤ b
and is not invariant under scaling of the system (see Exercise 4.23).

It must be emphasized that there are integral polyhedra {x : Ax ≤ b}
where A, b are integral but the system Ax ≤ b is not TDI (see Exercise 4.24
for example). However, any integral polyhedron can always be represented
by a TDI system whose coefficients are all integer.

Theorem 4.27. If P is a rational polyhedron then there exists a TDI system
Ax ≤ b with an integral matrix A such that P = {x : Ax ≤ b}. Furthermore,
if P is an integral polyhedron, then the vector b can be chosen to be integral.

Proof. If P = ∅, then the theorem holds by writing P as P = {x : 0x ≤ −1}.
Thus we assume P �= ∅. Since P is a rational polyhedron, we may assume
that P := {x : Mx ≤ d} where M is an m× n integral matrix. Let

C := {c ∈ Z
m : c = λM, 0 ≤ λ ≤ 1}.

Note that the set C is finite, since it is the set of integral vectors in a
polytope. For every c ∈ C, let δc := max{cx : x ∈ P} (since P �= ∅
this program admits a finite optimum bounded above by λd). Let Ax ≤ b
be the system comprising the inequalities cx ≤ δc, for all c ∈ C. Clearly,
P ⊆ {x : Ax ≤ b}. Since every row of M is in A, we actually have
P = {x : Mx ≤ d} = {x : Ax ≤ b}. Furthermore, by Theorem 4.1, b is an
integral vector whenever P is an integral polyhedron. We show next that
Ax ≤ b is TDI.

Let c be an integral vector such that max{cx : Ax ≤ b} is finite. We
will show how to construct an integral optimal solution to the dual problem
min{zb : zA = c, z ≥ 0}. We have max{cx : Ax ≤ b} = max{cx : x ∈ P}.
Let y∗ be an optimal solution of the dual problem min{yd : yM = c, y ≥ 0}.
Let λ = y∗−
y∗� and let c′ = λM , c′′ =
y∗�M . Note that, since c = c′+ c′′

and y∗ is optimal for min{yd : yM = c, y ≥ 0}, it follows that λ is an
optimal solution for the problem min{yd : yM = c′, y ≥ 0} and
y∗� is an
optimal solution for min{yd : yM = c′′, y ≥ 0}.

Also, c′ = c−c′′ is an integral vector because c and c′′ are integral vectors,
thus c′ ∈ C because 0 ≤ λ ≤ 1. In particular, c′x ≤ δc′ is an inequality in
the system Ax ≤ b.

Let us assume without loss of generality that (M,d) is the matrix defined
by the first m rows of (A, b). Let k be the number of rows of A and assume

4.7. SUBMODULAR POLYHEDRA 157

that c′x ≤ δc′ is the hth inequality of Ax ≤ b. Note that the hth unit vector
eh of Rk is an optimal solution to the problem min{zb : zA = c′, z ≥ 0}
since ehb = δc′ = max{c′x : x ∈ P}, and that the vector z̄, defined by
z̄i =
y∗i � for i = 1, . . . ,m, z̄i = 0 for i = m+1, . . . , k, is an optimal solution
to min{zb : zA = c′′, z ≥ 0}. It follows that the vector z∗ = z̄ + eh is an
integral optimal solution to the program min{zb : zA = c, z ≥ 0}.

4.7 Submodular Polyhedra

In this section, we introduce an integral polyhedron defined by a TDI system
of inequalities. Given a finite set N := {1, . . . , n}, a set function f : 2N → R

is submodular if

f(S) + f(T) ≥ f(S ∩ T) + f(S ∪ T) for all S, T ⊆ N. (4.22)

Example 4.28. Given a graph G = (V,E), the cut function of G is the
function f : 2V → R defined by f(S) = |δ(S)| for all S ⊆ V . An easy
counting argument shows that, for any S, T ⊆ V the following holds:

|δ(S)| + |δ(T)| = |δ(S ∩ T)|+ |δ(S ∪ T)|+ 2|(T \ S : S \ T)|

where (T \ S : S \ T) is the set of edges with one endnode in S \ T and the
other in T \ S. Therefore the cut function is submodular. �

Given a set N := {1, . . . , n} and a submodular function f : 2N → R, the
submodular polyhedron is the set

P := {x ∈ R
n :

∑
j∈S

xj ≤ f(S) for all S ⊆ N}. (4.23)

Theorem 4.29. Let N := {1, . . . , n} and let f : 2N → Z be an integer-
valued submodular function such that f(∅) = 0. Then the submodular poly-
hedron (4.23) is integral. Furthermore, the system

∑
j∈S xj ≤ f(S), S ⊆ N ,

is TDI.

Proof. We show that both the linear program

max{cx :
∑
j∈S

xj ≤ f(S), S ⊆ N} (4.24)

and its dual have optimal solutions that are integral for each c ∈ Z
n for

which the maximum in (4.24) is finite. Observe that the maximum is finite
if and only if c is a nonnegative vector.

158 CHAPTER 4. PERFECT FORMULATIONS

We may assume c1 ≥ c2 ≥ . . . ≥ cn ≥ 0. Let S0 := ∅ and Sj := {1, . . . , j}
for j ∈ N . For j ∈ N , let x̄j := f(Sj)− f(Sj−1). Since f is integer valued,
x̄ is an integral vector. We claim that x̄ is an optimal solution.

We first show that x̄ ∈ P . We need to show that, for every T ⊆ N ,
x̄(T) ≤ f(T) (Here we use the notation x(T) :=

∑
j∈T xj). The proof is by

induction on |T |, the case T = ∅ being trivial. Let k := max{j ∈ T}. Note
that T ⊆ Sk. By induction, x̄(T \ {k}) ≤ f(T \ {k}). Therefore

x̄(T) = x̄(T\{k})+x̄k ≤ f(T\{k})+x̄k = f(T\{k})+f(Sk)−f(Sk−1) ≤ f(T)

where the last inequality follows from the submodularity of f , since T ∩
Sk−1 = T \ {k} and T ∪ Sk−1 = Sk.

To show that x̄ is optimal, we give an integral feasible solution for the
dual of (4.24) whose objective value equals cx̄. The dual is the following.

min
∑

S⊆N f(S)yS∑
S�j yS = cj j ∈ N

yS ≥ 0 S ⊆ N.

We define a dual solution ȳ as follows.

ȳS :=

⎧⎨
⎩

cj − cj+1 for S = Sj, j = 1, . . . , n− 1
cn for S = N
0 otherwise.

Since c ∈ Z
n, ȳ is integral. It is immediate to verify that ȳ is dual feasible.

Furthermore

∑
S⊆N

f(S)ȳS =

n−1∑
j=1

f(Sj)(cj − cj+1) + f(N)cn =

n∑
j=1

(f(Sj)− f(Sj−1))cj =

n∑
j=1

cj x̄j ,

where the second equation follows from f(∅) = 0. Therefore x̄ is optimal for
the primal and ȳ is optimal for the dual.

The proof of the above theorem gives an algorithm to compute the opti-
mum of (4.24). Namely, order the variables so that c1 ≥ c2 ≥ . . . ≥ cn ≥ 0,
and let S0 := ∅ and Sj := {1, . . . , j} for j ∈ N . An optimal solution x̄ is
defined by x̄j := f(Sj)− f(Sj−1) for j ∈ N . This algorithm is known as the
greedy algorithm.

4.8. THE FUNDAMENTAL THEOREM OF INTEGER. . . 159

4.8 The Fundamental Theorem
of Integer Programming

Let S := {(x, y) ∈ Z
n × R

p : Ax + Gy ≤ b} be a mixed integer linear
set, where matrices A, G and vector b have rational entries. We prove in
this section that conv(S) admits a perfect formulation that is a rational
polyhedron.

Note first that, if S contains finitely many vectors (for instance this
happens when S is the set of integral points in a polytope), the above result
follows from Corollary 3.14.

Theorem 4.30 (Meyer [276]). Given rational matrices A,G and a rational
vector b, let P := {(x, y) : Ax + Gy ≤ b} and let S := {(x, y) ∈ P :
x integral}.

1. There exist rational matrices A′, G′ and a rational vector b′ such that
conv(S) = {(x, y) : A′x+G′y ≤ b′}.

2. If S is nonempty, the recession cones of conv(S) and P coincide.

Fig. 4.6 illustrates Meyer’s theorem and its proof.

Proof. The theorem is obvious if S is empty, so we assume that S is
nonempty. By Theorem 3.13, there exist v1, . . . , vt and r1, . . . , rq such that
P = conv(v1, . . . , vt) + cone(r1, . . . , rq). Since P is a rational polyhedron,
by Proposition 3.12 we can assume that the vectors v1, . . . , vt are rational
and that r1, . . . , rq are integral. Consider the following truncation of P

T := {(x, y) : (x, y) =
t∑

i=1

λiv
i +

q∑
j=1

μjr
j,

t∑
i=1

λi = 1, λ ≥ 0, 0 ≤ μ ≤ 1}.

(4.25)
T is a polytope whose vertices are of the form vi +

∑
j∈Q rj for some

i ∈ {1, . . . , t} and some Q ⊆ {1, . . . , q}. Since v1, . . . , vt and r1, . . . , rq

are rational, T is a rational polytope. Let TI := {(x, y) ∈ T : x integral},
and let RI := {

∑q
i=1 μir

i : μ ∈ Z
q
+}. We show next that

S = TI +RI . (4.26)

Clearly S ⊇ TI + RI . For the reverse inclusion, let (x̄, ȳ) be a point in S.
Then x̄ is integral and there exist multipliers λ ≥ 0,

∑t
i=1 λi = 1, and μ ≥ 0

such that

(x̄, ȳ) =

t∑
i=1

λiv
i +

q∑
j=1

μjr
j.

160 CHAPTER 4. PERFECT FORMULATIONS

P

S

T

TI

r1

r2

conv(S)

v1

v2

a b

Figure 4.6: (a) Illustration of Meyer’s theorem, (b) illustration of the proof

Let (x′, y′) :=
∑t

i=1 λiv
i +

∑q
j=1(μj −
μj�)rj and r :=

∑q
j=1
μj�rj. Then

(x̄, ȳ) = (x′, y′)+ r. Note that r is integral and thus also x′ is integral. Since
0 ≤ μj −
μj� ≤ 1, the point (x′, y′) is in TI , while by definition r ∈ RI .
It follows that (x̄, ȳ) ∈ TI +RI .

Claim. conv(TI) is a rational polytope.

Since T is a polytope, the set X := {x : ∃y s.t. (x, y) ∈ TI} is finite. For
fixed x̄ ∈ X, the set Tx̄ := {(x̄, y) : (x̄, y) ∈ TI} is a rational polytope, thus
it is the convex hull of the set Vx̄ of its vertices. Since the set X is finite,
also the set V :=

⋃
x̄∈X Vx̄ is finite. Since conv(TI) = conv(V), we have that

conv(TI) is a rational polytope and this proves the claim.

Recall that the convex hull of a Minkowski sum is the Minkowski sum
of the convex hulls (Exercise 3.10). Therefore (4.26) implies conv(S) =
conv(TI)+conv(RI). Since conv(RI) = cone(r1, . . . , rq), we have conv(S) =
conv(TI) + cone(r1, . . . , rq). By the above claim, conv(TI) is a rational
polytope. Thus conv(S) is a rational polyhedron having the same recession
cone as P , namely cone(r1, . . . , rq).

Given R ⊆ R
n, we denote by intcone(R) the set of nonnegative integer

combinations of vectors in R, i.e., intcone(R) := {
∑t

i=1 μir
i : ri ∈ R, μi ∈

Z+, i = 1, . . . , t}.

Corollary 4.31. Let P ⊆ R
n+p be a rational polyhedron and S := P ∩

(Zn × R
p). There exist finitely many rational polytopes P1, . . . , Pk ⊆ R

n+p

and vectors r1, . . . , rq ∈ Z
n+p such that

S =

k⋃
i=1

Pi + intcone
{
r1, . . . , rq

}
.

4.8. THE FUNDAMENTAL THEOREM OF INTEGER. . . 161

Proof. Following the proof of Theorem 4.30, by (4.26) S = TI + RI , where
RI = intcone

{
r1, . . . , rq

}
and TI is the union of finitely many rational

polytopes.

Remark 4.32. In Theorem 4.30:

• If matrices A, G are not rational, then conv(S) may not be a polyhe-
dron, see Exercise 4.30.

• If A, G are rational matrices but b is not rational, then conv(S) is a
polyhedron that has the same recession cone as P . However conv(S) is
not always a rational polyhedron. (This can be inferred from the above
proof).

Next we give an explicit construction of conv(S) for the case of the
“mixing set” (recall Sect. 2.9).

4.8.1 An Example: The Mixing Set

We consider the mixed integer linear set, known as the mixing set :

MIX := {(x0, . . . , xn) ∈ R× Z
n : x0 + xt ≥ bt, t = 1, . . . , n, x0 ≥ 0},

where b1, . . . , bn ∈ Q. Let ft = bt −
bt�. We assume that 0 ≤ f1 ≤ · · · ≤ fn
and we define f0 := 0. Note that MIX is always nonempty.

Let Pmix := conv(MIX). Since Pmix is nonempty, it follows by Theorem
4.30 that Pmix is a rational polyhedron, and that its recession cone is equal
to the recession cone of the polyhedron P := {x ∈ R

n+1 : x0 + xt ≥ bt,
t = 1, . . . , n, x0 ≥ 0}. Note that P is the polyhedron considered in Exercise
3.29 and the extreme rays of Pmix are the n+1 vectors r0, . . . , rn defined by:

r0i =

{
1 for i = 0

−1 otherwise
rti =

{
1 for i = t
0 otherwise

t = 1, . . . , n.

Proposition 4.33. The number of vertices of Pmix is the number of distinct
values in the sequence f0, f1, . . . , fn. Furthermore, the vertices of Pmix are
among the n+ 1 points v0, . . . , vn defined by

vti =

⎧⎨
⎩

ft if i = 0

bi� if 1 ≤ i ≤ t
�bi if t+ 1 ≤ i ≤ n

t = 0, . . . , n.

162 CHAPTER 4. PERFECT FORMULATIONS

Proof. Let x̄ be a vertex of Pmix. We first show x̄0 < 1. Suppose not. Then
Pmix contains both points x̄+r0 and x̄−r0. Since x̄ = 1

2((x̄+r0)+(x̄−r0)),
x̄ is not a vertex, a contradiction.

We next show that either x̄0 = 0 or x̄0 = ft for some t = 1, . . . , n.
Suppose that x̄0 �= 0 and x̄0 �= ft, 1 ≤ t ≤ n. Since x̄1 . . . , x̄n are integer, x̄
does not satisfy at equality any of the inequalities x0 + xt ≥ bt, 1 ≤ t ≤ n,
x0 ≥ 0. Therefore (x̄0 ± ε, x̄1, . . . , x̄n) ∈ Pmix for ε > 0 sufficiently small,
thus x̄ is not a vertex.

A similar argument shows that x̄i = �bi− x̄0, i = 1, . . . , n. Hence x̄ = vt

for some t ∈ {0, . . . , n}, and the number of vertices of Pmix is the number
of distinct values in the sequence f0, f1, . . . , fn.

From the above proposition, Pmix = conv(v0, . . . , vn) + cone(r0, . . . , rn).
Therefore Pmix = {x ∈ R

n+1 : ∃(λ, μ) ∈ R
n+1
+ × R

n+1
+ s.t. (x, λ, μ) ∈ Q},

where Q is

{(x, λ, μ) ∈ R
n+1 × R

n+1
+ × R

n+1
+ : x−

n∑
t=0

vtλt −
n∑

t=0

rtμt = 0,
n∑

t=0

λt = 1}.

(4.27)

We now obtain Pmix by projecting Q onto the space of x variables.
By Theorem 3.46, every facet-defining inequality for Pmix is of the form∑n

i=0 αixi ≥ β, where (α0, . . . , αn, β) is an extreme ray of the projection
cone, which is described by the following inequalities

−αvt + β ≤ 0 t = 0, . . . , n
−αrt ≤ 0 t = 0, . . . , n.

By the change of variables xt := xt−
bt�, t = 1, . . . , n, we may assume that
bt = ft. Under this transformation, the points vt become

vti =

⎧⎨
⎩

ft if i = 0
0 if 1 ≤ i ≤ t
1 if t+ 1 ≤ i ≤ n

t = 0, . . . , n.

Therefore the above system can be written as

ftα0+
∑n

i=t+1 αi ≥ β t = 0, . . . , n− 1
fnα0 ≥ β

α0 −
∑n

i=1 αi ≥ 0
α1, . . . , αn ≥ 0.

(4.28)

Let (ᾱ, β̄) be an extreme ray of the projection cone. Note that the
inequalities α0−

∑n
i=1 αi ≥ 0 and α1, . . . , αn ≥ 0 imply that ᾱ0 > 0. We may

therefore assume that ᾱ0 = 1. Hence if ᾱ1, . . . , ᾱn = 0, since f0 = 0, we must

4.8. THE FUNDAMENTAL THEOREM OF INTEGER. . . 163

also have β̄ = 0, and the inequality corresponding to this solution is x0 ≥ 0.
We now assume that the set I := {i ∈ {1, . . . , n} : ᾱi > 0} is nonempty and
suppose I = {i1, . . . , im}, where i1 < . . . < im. Then (1, ᾱ1, . . . , ᾱn, β̄) is
an extreme ray of (4.28) if and only if (ᾱi1 , . . . , ᾱim , β̄) satisfies at equality
m+ 1 linearly independent inequalities among the following m+ 2

∑m
h=1 αih ≥ β

fik+
∑m

h=k+1 αih ≥ β k = 1, . . . ,m− 1
fim ≥ β∑m

h=1 αih ≤ 1.

Since
∑m

h=1 αih ≥ β and
∑m

h=1 αih ≤ 1 are linearly dependent inequali-
ties, all remaining m inequalities must be satisfied at equality and we have
two possibilities.

If
∑m

h=1 ᾱih = β̄, then it can be readily verified that the solution is
β̄ = fim, ᾱi1 = fi1 , ᾱik = fik − fik−1

(k = 2, . . . ,m), which corresponds to
the inequality

x0 + fi1(xi1 −
bi1�) +
m∑
k=2

(fik − fik−1
)(xik −
bik�) ≥ fim. (4.29)

If
∑m

h=1 ᾱih = 1, then it can be readily verified that the solution is
β̄ = fim , ᾱi1 = 1 + fi1 − fim, ᾱik = fik − fik−1

(k = 2, . . . ,m), which
corresponds to the inequality

x0+(1+ fi1 − fim)(xi1 −
bi1�)+
m∑
k=2

(fik − fik−1
)(xik −
bik�) ≥ fim. (4.30)

Observe that, in both cases, we must have 0 < fi1 < . . . < fim because
ᾱj > 0 for all j ∈ I. Inequalities (4.29), (4.30) are called the mixing ine-
qualities. Note that inequalities (4.30) comprise x0 + xt ≥ bt, t = 1, . . . , n
(obtained when m = 1 and i1 = t in (4.30)). We have just proved the
following result due to Günlük and Pochet [195].

Theorem 4.34. Pmix is described by the inequality x0 ≥ 0 and the mixing
inequalities (4.29),(4.30), for all sequences 1 ≤ i1 < . . . < im ≤ n such that
0 < fi1 < . . . < fim.

4.8.2 Mixed Integer Linear Programming is in NP

We conclude this section by proving an important consequence of Theorem
4.30, namely, that the problem of deciding whether a mixed integer linear

164 CHAPTER 4. PERFECT FORMULATIONS

set is nonempty is in NP. Since we can always express a free variable as the
difference of two nonnegative variables, we can assume that all variables in
the mixed integer linear set are nonnegative.

Lemma 4.35. Given A ∈ Q
m×n, G ∈ Q

m×p, and b ∈ Q
m, let S := {(x, y) ∈

Z
n × R

p : Ax + Gy ≤ b, x ≥ 0, y ≥ 0}. If the encoding size of every
coefficient of (A,G, b) is at most L, then every vertex of conv(S) has an
encoding whose size is polynomially bounded by n+ p and L.

Proof. Let P := {(x, y) : Ax + Gy ≤ b, x ≥ 0, y ≥ 0}. Let v1, . . . , vt

be the vertices of P and r1, . . . , rq be its extreme rays. By Theorem 3.38,
v1, . . . , vt and r1, . . . , rq can be written as rational vectors whose encoding
size is polynomially bounded by n + p and L. By Remark 1.1, we may
assume that r1, . . . , rq are integral vectors.

Let (x̄, ȳ) be a vertex of conv(S). Then x̄ is integral and there exist
multipliers λ ≥ 0,

∑t
i=1 λi = 1 and μ ≥ 0 such that (x̄, ȳ) =

∑t
i=1 λiv

i +∑q
j=1 μjr

j.
By Carathéodory’s theorem (Theorem 3.42), we may assume that at

most n+p+1 components of (λ, μ) are positive. Furthermore, it follows from
the proof of Meyer’s theorem (Theorem 4.30) that μi ≤ 1 for i = 1, . . . , q. If θ
is the largest absolute value of an entry in the vectors v1, . . . , vt, r1, . . . , rq,
it follows that |x̄i| ≤ (n+ p+1)θ, i = 1, . . . , n. Since x̄ is integral, it follows
that the encoding size of x̄ is polynomially bounded by n+ p and L.

Furthermore, since (x̄, ȳ) is a vertex of conv(S), it follows that ȳ is a
vertex of the polyhedron {y ∈ R

p : Gy ≤ b − Ax̄, y ≥ 0}. Since the
encoding size of x̄ is polynomial, Theorem 3.38 implies that the encoding
size of ȳ is also polynomially bounded by n+ p and L.

Note that the polynomial bound in the above lemma does not depend
on the number m of constraints.

The MILP feasibility problem is the following: “Given A ∈ Q
m×n, G ∈

Q
m×p, and b ∈ Q

m, is the mixed integer linear set S := {(x, y) ∈ Z
n × R

p :
Ax+Gy ≤ b, x ≥ 0, y ≥ 0} nonempty?.”

Theorem 4.36. The MILP feasibility problem is in NP.

Proof. We need to show that, if an instance of the MILP feasibility problem
has a “yes” answer, then there exists a certificate that can be checked in
polynomial time. Since S �= ∅, conv(S) has a vertex (x̄, ȳ). By Lemma 4.35,
(x̄, ȳ) provides such a certificate, since one can verify in polynomial time
that x̄ is integral and Ax̄+Gȳ ≤ b.

4.8. THE FUNDAMENTAL THEOREM OF INTEGER. . . 165

The following fact is a consequence of Lemma 4.35, and will be used
in Chap. 9 when discussing Lenstra’s polynomial-time algorithm for pure
integer linear programming in fixed dimension.

Corollary 4.37. Given A ∈ Q
m×n and b ∈ Q

m, let L be the maximum
encoding size of the coefficients of (A, b). If the system Ax ≤ b has an
integral solution, then it has an integral solution x̄ whose encoding size is
polynomially bounded by n and L.

Proof. The only difficulty arises from the fact that P := {x ∈ R
n : Ax ≤ b}

might not be pointed. However, Ax ≤ b has an integral solution if and
only if the system Ax+ − Ax− ≤ b, x+, x− ≥ 0 has an integral solution.
By Lemma 4.35, if the latter has an integral solution, then it has one, say
(x̄+, x̄−), whose encoding size is polynomially bounded by n and L. It
follows that x̄ := x̄+ − x̄− is an integral solution of Ax ≤ b whose encoding
size is polynomially bounded by n and L.

It is important to note that, in all these results, explicit polynomial
bounds could always be constructed by working carefully through the proofs.
This, however, is quite laborious. We refer to [325], Sect. 17.1.

4.8.3 Polynomial Encoding of the Facets of the Integer Hull

Lemma 4.38. Given A ∈ Q
m×n, G ∈ Q

m×p, and b ∈ Q
m, let S := {(x, y) ∈

Z
n × R

p : Ax + Gy ≤ b, x ≥ 0, y ≥ 0}. If the encoding size of every
coefficient of (A,G, b) is at most L, then for every facet F of conv(S) there
exists an inequality αz ≤ β defining F such that the encoding size of the
vector (α, β) is polynomially bounded by n+ p and L.

Proof. By Lemma 4.35 the encoding size of the vertices of conv(S) is poly-
nomially bounded by n+ p and L. By Theorem 4.30, the recession cone of
conv(S) is {(x, y) : Ax+Gy ≤ 0, x ≥ 0, y ≥ 0}, therefore by Theorem 3.38
the extreme rays of conv(S) can be written as rational vectors whose size
is polynomially bounded by n + p and L. The statement now follows from
Theorem 3.39.

Explicit bounds for the length of the encoding of a facet of conv(S) are
given in [325], Sect. 17.4.

166 CHAPTER 4. PERFECT FORMULATIONS

4.9 Union of Polyhedra

In this section, we present a result of Balas [24, 26] about the union of k
polyhedra in R

n. See Fig. 4.7 for an example. Recall that we treated the
special case of bounded polyhedra in Sect. 2.11. We now present the general
case.

P

P1

P2

a b

Figure 4.7: (a) Polyhedra P1 and P2 (note that P2 is unbounded) (b) P :=
conv(P1 ∪ P2)

Theorem 4.39 (Balas [24, 26]). Given k polyhedra Pi := {x ∈ R
n : Aix ≤

bi}, i = 1, . . . k, let Ci := {x : Aix ≤ 0}, and let Ri ⊂ R
n be a finite set

such that Ci = cone(Ri). For every i ∈ {1, . . . , k} such that Pi �= ∅, let
V i ⊂ R

n be a finite set such that Pi = conv(V i) + cone(Ri).
Consider the polyhedron

P := conv(
⋃

i:Pi �=∅
V i) + cone(

k⋃
i=1

Ri)

and let Y ⊆ R
n × (Rn)k × R

k be the polyhedron described by the following
system

Aix
i ≤ δib

i i = 1, . . . , k∑k
i=1 x

i = x∑k
i=1 δi = 1

δi ≥ 0 i = 1, . . . , k.

(4.31)

Then P = projx(Y) := {x ∈ R
n : ∃(x1, . . . , xk, δ) ∈ (Rn)k × R

k s.t.
(x, x1, . . . , xk, δ) ∈ Y }.

Proof. Assume first that P = ∅. This implies Pi = ∅ for all i = 1, . . . , k.
Since the system describing Y , includes δi ≥ 0, i = 1, . . . , k, and

∑k
i=1 δi=1,

then at least one of the variables δi is positive. Since the system Aix
i ≤ bi

is infeasible, the system describing Y is also infeasible. This shows that the
theorem holds in this case.

4.9. UNION OF POLYHEDRA 167

We now assume that P is nonempty, i.e., the index set K := {1, . . . , k}
can be partitioned into a nonempty set KN := {i : Pi �= ∅} and
KE := K \KN .

Let x ∈ P . Then there exist points vi ∈ conv(V i) and scalars δi ≥ 0 for
i ∈ KN , and vectors ri ∈ Ci for i ∈ K, such that

x =
∑
i∈KN

δiv
i +

∑
i∈KN

ri +
∑
i∈KE

ri,
∑
i∈KN

δi = 1.

For i ∈ KN define xi := δiv
i+ ri, and for i ∈ KE define xi := ri and δi := 0.

By construction, x =
∑

i∈K xi. Since ri ∈ Ci, it follows that Aix
i ≤ δib

i for
all i ∈ K. Thus (x, x1, . . . , xk, δ) ∈ Y . This shows P ⊆ projx(Y).

Let (x, x1, . . . , xk, δ) be a vector in Y . Let KP := {i ∈ K : δi > 0}
and let zi := xi

δi
, i ∈ KP . Then Aiz

i ≤ bi. So Pi �= ∅ in this case and

zi ∈ conv(V i) + cone(Ri).
For i ∈ K \ KP , Aix

i ≤ 0, and therefore xi ∈ cone(Ri). Since x =∑
i∈KP δiz

i +
∑

i∈K\KP xi and
∑

i∈KP δi = 1, δi ≥ 0, it follows that x ∈
conv(

⋃
i∈KP V i) + cone(

⋃
i∈K Ri) and therefore x ∈ P . This shows that

projx(Y) ⊆ P .

Remark 4.40. Theorem 4.39 shows that the system of inequalities describ-
ing Y gives an extended formulation of the polyhedron P that uses nk+n+k
variables and the size of this formulation is approximately the sum of the
sizes of the formulations that describe the polyhedra Pi.

The polyhedron P defined in Theorem 4.39 contains the convex hull of⋃k
i=1 Pi but in general this inclusion is strict. Indeed, the recession cone

of P contains cone Ci, i = 1, . . . , k, even if Pi is empty. Furthermore, even
if the polyhedra Pi are all nonempty but have different recession cones,
the set conv(

⋃k
i=1 Pi) may not be closed, and therefore it may not be a

polyhedron. For example, in R
2, the convex hull of a line L and a point not

in L is not a closed set. The next lemma shows that, when the polyhedra
Pi are all nonempty, the polyhedron P defined in Theorem 4.39 satisfies
P = conv(∪k

i=1Pi) (where for any set X ⊆ R
n we denote by conv(X) the

topological closure of conv(X)).

Lemma 4.41. Let P1, . . . , Pk ⊆ R
n be nonempty polyhedra. For i = 1, . . . , k,

let V i, Ri ⊂ R
n be finite sets such that Pi = conv(V i) + cone(Ri). Then

conv(∪k
i=1Pi) = conv(∪k

i=1V
i) + cone(∪k

i=1R
i).

168 CHAPTER 4. PERFECT FORMULATIONS

Proof. Let Q := conv(∪k
i=1V

i) and C := cone(∪k
i=1R

i).

We first show conv(∪k
i=1Pi) ⊆ Q + C. Note that we just need to show

conv(∪k
i=1Pi) ⊆ Q+ C because Q + C is a polyhedron, and so it is closed.

Let x ∈ conv(∪k
i=1Pi). Then x is a convex combination of a finite number of

points in ∪k
i=1Pi. Since Pi is convex, we can write x as a convex combination

of points xi ∈ Pi, say x =
∑k

i=1 λix
i where λi ≥ 0 for i = 1, . . . , k and∑k

i=1 λi = 1. Since Pi = conv(V i) + cone(Ri), xi = vi + ri where vi ∈
conv(V i), ri ∈ cone(Ri), thus x =

∑k
i=1 λiv

i+
∑k

i=1 λir
i, so x ∈ Q+C since∑k

i=1 λiv
i ∈ Q and

∑k
i=1 λir

i ∈ C.

We now show Q+C⊆conv(∪k
i=1Pi). Let x ∈ Q+C. Then x=

∑k
i=1 λiv

i+∑k
i=1 r

i where vi ∈ conv(V i), ri ∈ cone(Ri), λi ≥ 0 for i = 1, . . . , k, and∑k
i=1 λi = 1. We need to show that there exist points in conv(∪k

i=1Pi) that
are arbitrarily close to x.

Let I := {i : λi > 0}. For all ε > 0 small enough so that λi − k
|I|ε ≥ 0

for all i ∈ I, define the point

xε :=
∑
i∈I

(λi −
k

|I|ε)v
i +

k∑
i=1

ε(vi +
1

ε
ri).

Observe that xε ∈ conv(∪k
i=1Pi) because

∑
i∈I(λi − k

|I|ε) +
∑k

i=1 ε = 1

and vi+1
ε r

i ∈ Pi. Since limε→0+ xε = x, it follows that x ∈ conv(∪k
i=1Pi).

Theorem 4.42 (Balas [24, 26]). Let Pi := {x ∈ R
n : Aix ≤ bi} be k

polyhedra such that ∪k
i=1Pi �= ∅, and let Y be the polyhedron defined in

Theorem 4.39. Let Ci := {x : Aix ≤ 0} and let Ri ⊂ R
n be a finite set such

that Ci = cone(Ri), i = 1, . . . , k. Then conv(∪k
i=1Pi) is the projection of Y

onto the x-space if and only if Cj ⊆ cone(
⋃

i :Pi �=∅ R
i) for every j = 1, . . . , k.

Proof. For every i ∈ {1, . . . , k} such that Pi �= ∅, let V i ⊂ R
n be a finite set

such that Pi = conv(V i) + Ci. Let P := conv(
⋃

i:Pi �=∅ V
i) + cone(

⋃k
i=1R

i)

and let P ′ := conv(
⋃

i:Pi �=∅ V
i) + cone(

⋃
i:Pi �=∅ R

i). By Theorem 4.39 P =

projx(Y), whereas by Lemma 4.41 P ′ = conv(∪k
i=1Pi).

By definition, P = P ′ if and only if cone(
⋃k

i=1 R
i) = cone(

⋃
i:Pi �=∅R

i).

In turn, this occurs if and only if Cj ⊆ cone(
⋃

i :Pi �=∅ R
i) for every j =

1, . . . , k.

Remark 4.43. Note that if the k polyhedra Pi := {x ∈ R
n : Aix ≤ bi} are

all nonempty, then Theorem 4.42 implies that conv(∪k
i=1Pi) is the projection

of Y onto the x-space.

4.9. UNION OF POLYHEDRA 169

Corollary 4.44. If P1, . . . , Pk are nonempty polyhedra with identical
recession cones, then conv(∪k

i=1Pi) is a polyhedron.

Proof. We leave it as an exercise for the reader to check how the last part
of the proof of Lemma 4.41 simplifies to show Q+ C ⊆ conv(∪k

i=1Pi).

4.9.1 Example: Modeling Disjunctions

Suppose we are given a system of linear constraints in n variables Ax ≤ b,
and we want to further impose the following disjunctive constraint

cx ≤ d1 or cx ≥ d2,

where c ∈ R
n and d1 < d2.

If we define P := {x ∈ R
n : Ax ≤ b}, P1 := {x ∈ P : cx ≤ d1},

P2 := {x ∈ P : cx ≥ d2}, the set of feasible solutions is P1 ∪ P2. The
next lemma shows that conv(P1 ∪ P2) is a polyhedron. Note that, to prove
this, we cannot apply Corollary 4.44 because P1 and P2 may have different
recession cones.

Lemma 4.45. The set conv(P1∪P2) is a polyhedron. Furthermore, conv(P1∪
P2) is the projection onto the space of x variables of the polyhedron Q de-
scribed by

Ax1 ≤ λb
cx1 ≤ λd1
Ax2 ≤ (1− λ)b
cx2 ≥ (1− λ)d2

x1 + x2 = x
0 ≤ λ ≤ 1.

Proof. The lemma holds when P1 = P2 = ∅ by Theorem 4.39. We assume
in the remainder that P1 ∪ P2 �= ∅. Let C1 = {r : Ar ≤ 0, cr ≤ 0} and
C2 = {r : Ar ≤ 0, cr ≥ 0}. Note that rec(P) = C1 ∪C2.

We observe that, given a point x̄ ∈ P1 and a vector r ∈ C2 \ C1, (resp.
x̄ ∈ P2, r ∈ C1 \ C2), we have x̄ + r ∈ conv(P1 ∪ P2) and P2 �= ∅ (resp.
P1 �= ∅). Indeed, given x̄ ∈ P1 and r ∈ C2 \C1, it follows that cr > 0 and, if
we let λ := max(1, d2−cx̄

cr), the point x̄+ λr is in P2 and x̄+ r is in the line
segment joining x̄ and x̄+ λr.

The above observation shows that, if P2 = ∅ (resp. P1 = ∅), then
C2 ⊆ C1 (resp. C1 ⊆ C2), therefore the cone condition of Theorem 4.42
holds in this case. It also trivially holds when both P1, P2 �= ∅. Thus, in
all cases, Theorem 4.42 implies that conv(P1 ∪ P2) is the projection onto
the space of x variables of the polyhedron Q defined in the statement of the
lemma.

170 CHAPTER 4. PERFECT FORMULATIONS

Therefore, to prove the lemma, we only need to show conv(P1 ∪ P2) =
conv(P1∪P2). We assume P1, P2 �= ∅ otherwise the statement is obvious. Let
Q1, Q2 ⊂ R

n be two polytopes such that P1 = Q1+C1 and P2 = Q2+C2. By
Lemma 4.41, and because rec(P) = C1∪C2, conv(P1∪P2) = conv(Q1∪Q2)+
rec(P), thus we only need to show that conv(Q1∪Q2)+rec(P) ⊆ conv(P1∪
P2). Let x̄ ∈ conv(Q1 ∪Q2) + rec(P). Then there exist x1 ∈ Q1, x

2 ∈ Q2,
0 ≤ λ ≤ 1, r ∈ rec(P), such that x̄ = λx1 + (1− λ)x2 + r. By symmetry we
may assume λ > 0. By the initial observation, x1 + r

λ ∈ conv(P1 ∪P2), thus
x̄ = λ(x1 + r

λ) + (1− λ)x2 ∈ conv(P1 ∪ P2).

4.9.2 Example: All the Even Subsets of a Set

Consider the “all even” set Seven
n := {x ∈ {0, 1}n : x has an even number of

ones}. The following theorem, due to Jeroslow [212], characterizes the facet-
defining inequalities of conv(Seven

n). We do not give the proof, but we give
some further details in Exercise 4.31.

Theorem 4.46. Let S be the family of subsets of N = {1, . . . , n} having
odd cardinality. Then

conv(Seven
n) =

{
x ∈ R

n :

∑
i∈S xi −

∑
i∈N\S xi ≤ |S| − 1, S ∈ S

0 ≤ xi ≤ 1, i ∈ N

}
.

The formulation of conv(Seven
n) given in Theorem 4.46 has exponentially

many constraints. However, Theorem 4.39 gives us the means of obtaining
a compact extended formulation. We present it next.

Let Sk
n :={x ∈ {0, 1}n : x has k ones}. It is easy to show that conv(Sk

n)=
{x ∈ R

n : 0 ≤ xi ≤ 1, i ∈ N ;
∑

i∈N xi = k} (for example, this follows from
the total unimodularity of the constraint matrix).

Let N even := {k : 0 ≤ k ≤ n, k even}. Consider the polytope Q des-
cribed by the following system:

xi −
∑

k∈Neven

xki = 0 i ∈ N

∑
i∈N

xki = kλk k ∈ N even

∑
k∈Neven

λk = 1

xki ≤ λk i ∈ N, k ∈ N even

xki ≥ 0 i ∈ N, k ∈ N even

λk ≥ 0 k ∈ N even.

4.9. UNION OF POLYHEDRA 171

Since Seven
n =

⋃
k∈Neven Sk

n, by Theorem 4.39, we have that conv(Seven
n) =

projx(Q).

4.9.3 Mixed Integer Linear Representability

Here we present a result of Jeroslow and Lowe [213]. Given a set S ⊆ R
n,

we are interested in understanding whether S can be described as the set
of feasible solutions to a mixed integer linear set, possibly using additional
variables. Clearly, optimizing a linear function over S and over conv(S)
is equivalent, but if the objective function is nonlinear, then this is not
the same, so the problem arises. We say that S is mixed integer linear
representable if there exist rational matrices A,B,C and a rational vector d
such that S is the set of points x for which there exist y and z satisfying

Ax+By + Cz ≤ d (4.32)

x ∈ R
n, y ∈ R

p, z ∈ Z
q. (4.33)

In other words, S is mixed integer linear representable if it is the projection
onto the x-space of the region described by (4.32)–(4.33). Deciding whether
a set S has this property is an interesting problem already for n = 1.

As a first example, consider the set S1 := {0} ∪ [2, 3] ∪ [4, 5] ∪ [6, 7] ∪ . . .
(first set in Fig. 4.8). This set can be represented as the following mixed
integer linear set:

x = y + 2z

0 ≤ y ≤ 1, y ≤ z, z ≥ 0

x ∈ R, y ∈ R, z ∈ Z.

Similarly, the set S2 := {0} ∪ [3/2,+∞) (second set in Fig. 4.8) has the
following mixed integer linear representation:

x = y + (3/2)z

0 ≤ y ≤ 3/2, y ≤ (3/2)z, z ≥ 0

x ∈ R, y ∈ R, z ∈ Z.

Now consider the set S3 := [0, 1] ∪ {2, 3, 4, . . . } (third set in Fig. 4.8),
which can be seen as a counterpart of S1 with the roles of segments and
points switched. We will see that, unlike S1, set S3 is not mixed integer
linear representable. The same holds for the sets S4 := {x : x = 2r, r ∈ N}
and S5 := (−∞, 0] ∪ [1,+∞) (last two sets in Fig. 4.8).

172 CHAPTER 4. PERFECT FORMULATIONS

Theorem 4.47. A set S ⊆ R
n is mixed integer linear representable if and

only if there exist rational polytopes P1, . . . , Pk ⊆ R
n and vectors r1, . . . , rt ∈

Z
n such that

S =
k⋃

i=1

Pi + intcone
{
r1, . . . , rt

}
. (4.34)

Proof. We first prove the “only if” part. Let S ⊆ R
n be a mixed integer

linear representable set. Then S is the projection onto the x-space of a set S̃
of the form (4.32)–(4.33), where A,B,C are rational matrices and d is a ra-
tional vector. Let Q be the rational polyhedron described by system (4.32),
and let S̃ := {(x, y, z) ∈ Q : z ∈ Z

q}. By Corollary 4.31, there exist finitely
many rational polytopes Q1, . . . , Qk and integral vectors s1, . . . , st such that
S̃ = ∪k

i=1Qi + intcone
{
s1, . . . , st

}
.

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1

Figure 4.8: Only the first two of these five subsets of R are mixed integer
linear representable

Defining Pi := projxQi, i = 1, . . . , k, and letting rj be the vector
obtained from sj by dropping the y and z-components, j = 1, . . . , t, we have
S = ∪k

i=1Pi + intcone
{
r1, . . . , rt

}
. Since each set Pi is a rational polytope,

the conclusion follows.

For the converse, assume that S has the form (4.34). For i = 1, . . . , k,
let Aix ≤ bi be a rational linear system describing Pi. By introducing, for
each i = 1, . . . , k, an indicator variable δi whose value is 1 if and only if we
select a point in Pi, we can write S as the set of vectors x ∈ R

n that satisfy
the following conditions:

4.9. UNION OF POLYHEDRA 173

x =

k∑
i=1

xi +

t∑
j=1

μjr
j

Aix
i ≤ δib

i, i = 1, . . . , k

k∑
i=1

δi = 1 (4.35)

δ, μ ≥ 0

δ ∈ Z
k, μ ∈ Z

t. (4.36)

(Note that since each Pi is a polytope, when δi = 0 we have xi = 0.) Thus
S is mixed integer linear representable.

We remark that, in the statement of Theorem 4.47, the vectors r1, . . . , rt

can equivalently be required to be rational instead of integral. We also note
that the family of sets that can be written in the form (4.34) contains all
rational polyhedra: indeed, it is known (and shown in the above proof) that
a rational polyhedronQ can always be written asQ = P+intcone{r1, . . . , rt}
for some polytope P and some integral vectors r1, . . . , rt.

We remark that the sets S3, S4 and S5 are not mixed integer linear
representable, as they cannot be written in the form (4.34). Consider for
instance the set S3 and assume by contradiction that it can be written in
the form (4.34). Since S3 is not bounded from above, the set {r1, . . . , rt}
contains at least one positive integer; and since S3 contains the segments
[0, 1], at least one of the polytopes P1, . . . , Pk, say P1, is a segment. But
then P1 + intcone{r1, . . . , rt} would necessarily contain some point not in
S3, a contradiction.

Finally, we observe that if a set is mixed integer linear representable, then
its convex hull is the projection of the polyhedron described by the linear
relaxation of the representation (4.35) given in the proof of Theorem 4.47.

Corollary 4.48. Let S be a set of the form (4.34). For i = 1, . . . , k, let
Aix ≤ bi be a rational linear system describing Pi. Let Q be the polyhedron
defined by the inequalities in (4.35). Then conv(S) = projx(Q).

Proof. If (4.34) holds, then clearly

S ⊆ conv(P1 ∪ · · · ∪ Pk) + cone{r1, . . . , rt} ⊆ conv(S).

174 CHAPTER 4. PERFECT FORMULATIONS

Because the set in the middle is a polyhedron and conv(S) is the smallest
convex set containing S, we have indeed conv(S) = conv(P1 ∪ · · · ∪ Pk) +
cone{r1, . . . , rt}. Since P1, . . . , Pk are polytopes, a description of conv(P1 ∪
· · · ∪ Pk) by means of linear inequalities is given by Theorem 4.39:

x =
k∑

i=1

xi

Aix
i ≤ δib

i, i = 1, . . . , k

k∑
i=1

δi = 1

δi ≥ 0, i = 1, . . . , k.

Now, in order to obtain a linear formulation for conv(S), we have to take
into account the rays r1, . . . , rt. This yields precisely the formulation given
by the inequalities in (4.35).

4.10 The Size of a Smallest Perfect Formulation

Many integral polyhedra of interest in combinatorial optimization have an
exponential number of facet-defining inequalities (the matching polytope,
the traveling salesman polytope, the spanning tree polytope and many
others). Let P := {x ∈ R

n : Ax ≤ b} be such a polyhedron. By intro-
ducing a polynomial number of new variables, it is sometimes possible to
obtain an extended formulation with polynomially many constraints whose
projection onto the original space R

n is the polyhedron P itself. For exam-
ple, the convex hull Pmix ⊆ R

n+1 of the mixing set (discussed in Sect. 4.8.1)
has an exponential number of facet-defining inequalities, but it can be rep-
resented as the projection of the higher dimensional polyhedron Q defined
in (4.27), where Q can be described by a system of inequalities in 3n + 3
variables and 3n+4 constraints. Martin [270] shows that the spanning tree
polytope (recall Theorem 4.25) is the projection of a polytope defined by
O(n3) inequalities, where n is the number of nodes in the graph.

Given a polyhedron P ⊆ R
n, what is the smallest number of variables

and constraints needed in an extended formulation? Yannakakis [355] gave
an elegant answer to this question.

Let S be an m × n nonnegative matrix. The nonnegative rank of S is
the smallest integer t such that S = FW where F and W are nonnegative
matrices of size m× t and t× p.

4.10. THE SIZE OF A SMALLEST PERFECT FORMULATION 175

Given a polytope P ⊆ R
n, let v1, . . . , vp be its vertices and let Ax ≤ b

be a system of linear inequalities such that P = {x ∈ R
n : Ax ≤ b}. Let

aix ≤ bi, i = 1, . . . ,m, denote the inequalities in Ax ≤ b. Define the slack
matrix of Ax ≤ b to be the m× p matrix S where the entry

sij := bi − aivj

is the slack in the ith inequality when computed at vertex vj . Note that S
is a nonnegative matrix.

Lemma 4.49. Let Ax ≤ b and Cx ≤ d be systems describing the same
polytope P and let S, S′ be the corresponding slack matrices. Then the
nonnegative ranks of S and S′ coincide.

In particular, adding redundant inequalities to a linear system Ax ≤ b
does not modify the nonnegative rank of the slack matrix. To prove Lemma
4.49, we will need the following result on polytopes.

Lemma 4.50. Let P := {x ∈ R
n : Ax ≤ b} be a polytope of dimension

at least one. An inequality cx ≤ δ is valid for P if and only if there exists
u ≥ 0 such that uA = c and ub = δ.

Proof. Let cx ≤ δ be valid for P . By Theorem 3.22 there exists u ≥ 0 such
that uA = c and ub ≤ δ. Since P is a polytope and dim(P) ≥ 1, there exists
r ∈ R

n such that both δ1 := min{rx : x ∈ P} and δ2 := max{rx : x ∈ P}
are finite, and such that δ1 < δ2. Possibly by multiplying r by some positive
number we may assume δ2− δ1 = 1. By strong duality (Theorem 3.7), there
exist u1, u2 ≥ 0 such that u1A = −r, u1b = −δ1, u

2A = r, u2b = δ2. Define
ū := u+ (δ − ub)(u2 + u1). It follows that ū ≥ 0, ūA = c and ūb = δ.

Proof of Lemma 4.49. The statement is obvious if P consists of only one
point, thus we assume dim(P) ≥ 1. By symmetry it suffices to show that the
nonnegative rank of S′ is at most the nonnegative rank of S. By Lemma 4.50
there exists a nonnegative matrix L such that C = LA and d = Lb. It
follows that S′ = LS. Given any factorization S = FW where F , W are
nonnegative matrices, if we let F ′ = LF , we have that F ′ is a nonnegative
matrix and S′ = F ′W .

By Lemma 4.49, we may define the nonnegative rank of the polytope P
as the nonnegative rank of the slack matrix S of any system describing P .

176 CHAPTER 4. PERFECT FORMULATIONS

Theorem 4.51 (Yannakakis). Let P ⊂ R
n be a polytope, and let t be its

nonnegative rank. Every extended formulation of P has at least t constraints,
and there exists an extended formulation of P with at most t+n constraints
and t+ n variables.

Proof. The statement is obvious if P consists of only one point, thus we may
assume that dim(P) ≥ 1. Let Ax ≤ b be a system describing P , and let S
be the slack matrix of Ax ≤ b.

We first prove that every extended formulation has at least t constraints.
Indeed, let

Q = {(x, z) ∈ R
n × R

k : Rx+ Tz ≤ d}

be a polyhedron such that P = projx(Q), where (R,T) is an h × (n + k)
matrix. By Lemma 4.50, there exists a nonnegative vector f i ∈ R

h such
that f iT = 0, f iR = ai, f id = bi, i = 1, . . . ,m. Also, for any vertex vj of
P there exists uj ∈ R

k such that (vj , uj) ∈ Q. Let wj := d − Rvj − Tuj,
j = 1, . . . , p. Note that wj is nonnegative. For i = 1, . . . ,m and j = 1, . . . , p,
we have f iwj = f i(d−Rvj−Tuj) = bi−aivj. If we define the m×h matrix
F with rows f i, i = 1, . . . ,m, and the h × p matrix W with columns wj ,
j = 1, . . . , p, we have S = FW . Since F and W are nonnegative matrices
and F has h columns, it follows that t ≤ h.

Next we show that there exists an extended formulation with at most
t+ n constraints and t+ n variables. Indeed, let F and W be nonnegative
matrices of size m× t and t× p such that S = FW . Let f1, . . . , fm ∈ R

t be
the rows of F and w1, . . . , wp ∈ R

t be the columns of W . Define

Q := {(x, z) ∈ R
n × R

t : Ax+ Fz = b, z ≥ 0}.

We will show that P = projx(Q). To prove the inclusion projx(Q) ⊆ P ,
note that for any (x, z) ∈ Q we have that Ax = b− Fz ≤ b, because F ≥ 0
and z ≥ 0, and therefore x ∈ P . For the inclusion P ⊆ projx(Q), it suffices
to show that every vertex vj of P is contained in projx(Q). This is the case
since, for any vertex vj of P , the point (vj , wj) is in Q because wj ≥ 0 and
f iwj = bi − aivj for i = 1, . . . ,m.

We have shown that P = projx(Q). Since Q ⊆ R
n × R

t, at most n + t
of the equations Ax + Fz = b are linearly independent. Expressing basic
variables in terms of nonbasic variables and substituting any basic z� variable
into the inequality z� ≥ 0, we are left with at most n equations and t
inequalities. Thus Q can be described with at most t + n constraints and
t+ n variables.

4.10. THE SIZE OF A SMALLEST PERFECT FORMULATION 177

Note that expressing the polytope P by a linear system in the original
variables corresponds to the factorization S = IS with the identity matrix I.

Given a factorization of S as FW , the proof of Yannakakis’ theorem is
constructive for obtaining an extended formulation. The catch is that fac-
torizing S is a difficult task in general. Vavasis [344] shows that the problem
of testing whether the rank of a given matrix coincides with its nonnegative
rank is NP-complete. On the other hand, Yannakakis’ theorem is a powerful
tool for proving lower bounds on the size of extended formulation. Indeed,
the following problem posed by Yannakakis [355] in 1991,

“prove that the matching and traveling salesman polytopes cannot
be expressed by polynomial size linear programs”,

was solved by Fiorini et al. [136] in 2012 for the case of the traveling sales-
man polytope, and by Rothvoß [318] in 2014 for the case of the matching
polytope, by providing exponential lower-bounds of the nonnegative rank of
the slack matrices. We give more details on these proofs in the next three
sections. We first state the following easy lemma.

Lemma 4.52. Let S be an m × n nonnegative matrix with at least one
positive entry. The nonnegative rank of S is the smallest number t such that
S is the sum of t nonnegative rank-1 matrices.

Proof. Let φ1, . . . , φt ∈ R
m be nonnegative column vectors, and ω1, . . . , ωt ∈

R
n be nonnegative row vectors. Let F ∈ R

m×t be the matrix with columns
φ1, . . . , φt, W ∈ R

t×n be the matrix with rows ω1, . . . , ωt, and let T h ∈ R
m×n

be the nonnegative rank-1 matrix defined by T h = φhωh, h = 1, . . . , t. The
statement now follows from the simple observation that S = FW if and only
if S =

∑t
h=1 T

h.

4.10.1 Rectangle Covering Bound

In this section, we define the “rectangle covering number” of a matrix and we
show that, when applied to the slack matrix of any system of linear inequal-
ities describing a polytope, it provides a lower bound on the nonnegative
rank of the polytope. We then give a family of matrices Un whose rectangle
covering number grows exponentially with n. The matrix Un will appear in
Sect. 4.10.2 and its rectangle covering number will be a lower bound on the
nonnegative rank of the cut polytope. By Yannakakis’ theorem (Theorem
4.51), this will give a lower bound on the size of any extended formulation
of the cut polytope.

178 CHAPTER 4. PERFECT FORMULATIONS

An m×n matrix is a rectangle matrix if it is a 0, 1 matrix whose support
is of the form I × J for some nonempty sets I ⊆ {1, . . . ,m} and J ⊆
{1, . . . , n}. Note that rectangle matrices are precisely the 0, 1 matrices of
rank 1. Given a matrix S ∈ R

m×n, a rectangle cover of S is a family of
rectangle matrices R1, . . . , Rk such that the support of S (the set {(i, j) ∈
{1, . . . ,m}× {1, . . . , n} : sij �= 0}) is equal to the support of R1 + · · ·+Rk.
The rectangle covering number of S is the smallest cardinality k of a rectangle
cover of S.

Lemma 4.53. Let P ⊂ R
n be a polytope. Every extended formulation of P

has a number of constraints at least equal to the rectangle covering number
of the slack matrix of any system of linear inequalities describing P .

Proof. Let S ∈ R
m×n be the slack matrix of a system describing P , and let t

be its nonnegative rank. The lemma holds when S = 0, so we assume S �= 0.
By Lemma 4.52, S =

∑t
h=1 T

h where T 1, . . . , T t are m × n nonnegative
matrices with rank 1. For h = 1, . . . , t, define the m × n matrix Rh whose
entries have value 1 if they belong to the support of T h, and 0 otherwise.
One can readily verify that R1, . . . , Rt is a rectangle cover of S, therefore
the nonnegative rank of S is at least the rectangle covering number of S.
The statement now follows from Theorem 4.51.

Rectangle Covering Number of the Unique Disjointness Matrix.
The unique disjointness matrix Un is the 2n×2n 0, 1 matrix whose rows and
columns are indexed by the 2n subsets of the set {1, . . . , n}, defined by

Un
ab =

{
1 if |a ∩ b| �= 1,
0 if |a ∩ b| = 1,

for all a, b ⊆ {1, . . . , n}.

We show next that the rectangle covering number of Un grows exponentially
with n. This result, due to Razborov [313], will be used in the next section
to prove exponential bounds on the extended formulations of certain families
of polytopes. The proof given here is due to Kaibel and Weltge [223].

Theorem 4.54. The rectangle covering number of Un is at least 1.5n.

Proof. Let D := {(a, b) : a, b ⊆ {1, . . . , n} and a ∩ b = ∅}. Note that
|D| = 3n, since for each j ∈ {1, . . . , n} we have three possibilities for a, b,
namely (i) a � j, b �� j, (ii) a �� j, b � j, and (iii) a �� j, b �� j.

Given D ⊆ D, we define AD := {a : (a, b) ∈ D for some b} and BD :=
{b : (a, b) ∈ D for some a}. We say that D ⊆ D is a valid family for n if
|a ∩ b| �= 1 for every (a, b) ∈ AD × BD. That is, D is valid if and only if

4.10. THE SIZE OF A SMALLEST PERFECT FORMULATION 179

the submatrix of Un whose rows are indexed by AD and whose columns are
indexed by BD has all entries equal to 1. We denote by �(n) the largest
cardinality of a valid family for n.

We now compute a lower bound on the rectangle covering number of Un

using D and �(n). Note that, for every 2n × 2n rectangle matrix R whose
support is contained in the support of Un, the family DR := {(a, b) ∈ D :
Rab = 1} is valid. It follows that any rectangle covering of Un contains at

least |D|
�(n) =

3n

�(n) elements. We will show next that �(n) = 2n. This implies

that |D|
�(n) = 1.5n, and the main statement follows.

First, �(n) ≥ 2n because {(a, ∅) : a ⊆ {1, . . . , n}} is a valid family. We
show �(n) ≤ 2n by induction on n. The case n = 0 holds because �(0) = 1
({(∅, ∅)} is the only valid family in this case). Let D be a valid family for
n ≥ 1. Define

D′
1 := {(a, b) ∈ D : n ∈ a} ∪ {(a, b) ∈ D : n �∈ b and (a ∪ {n}, b) �∈ D},

D′
2 := {(a, b) ∈ D : n ∈ b} ∪ {(a, b) ∈ D : n �∈ a and (a, b ∪ {n}) �∈ D}.

We show next that D ⊆ D′
1∪D′

2. Let (a, b) ∈ D. Then (a, b) ∈ D′
1∪D′

2 when
n ∈ a or n ∈ b. Assume that n /∈ a and n /∈ b. Since |(a∪{n})∩(b∪{n})| = 1
and D is a valid family, we have that at least one between (a ∪ {n}, b) and
(a, b ∪ {n}) is not in D. Therefore (a, b) ∈ D′

1 ∪ D′
2 and this proves that

D ⊆ D′
1 ∪D′

2.
Let D1 := {(a \ {n}, b) : (a, b) ∈ D′

1} and D2 := {(a, b \ {n}) : (a, b)
∈ D′

2}. By the definition of D′
1, D

′
2, we have that |D1|=|D′

1| and |D2|=|D′
2|.

Note that a ⊆ {1, . . . , n − 1} for every (a, b) in D′
2 and b ⊆ {1, . . . , n − 1}

for every (a, b) in D′
1. It follows that D1, D2 are valid families for n− 1. By

the inductive hypothesis and the fact that D ⊆ D′
1 ∪D′

2, we conclude that
|D| ≤ |D′

1|+ |D′
2| = |D1|+ |D2| ≤ 2�(n− 1) = 2n.

4.10.2 An Exponential Lower-Bound for the Cut Polytope

Fiorini et al. [136] showed that the traveling salesman, cut and stable set
polytopes cannot have a polynomial-size extended formulation. Here we
present the proof for the cut polytope.

Let P cut
n be the cut polytope of order n, that is, the convex hull of the

characteristic vectors of all the cuts of the complete graph Gn = (Vn, En)
on n nodes (including δ(Vn) = ∅).

The proof of the lower bound is not done directly on the cut polytope, but
on a polytope that is linearly isomorphic to it. Two polytopes P ⊆ R

p and
Q ⊆ R

q are linearly isomorphic if there exists a linear function f : Rp → R
q

180 CHAPTER 4. PERFECT FORMULATIONS

such that f(P) = Q and for all y ∈ Q there is a unique x ∈ P for which
f(x) = y. Exercise 4.37 shows that this notion is symmetric (P,Q are
linearly isomorphic if and only if Q,P are linearly isomorphic).

The correlation polytope P corr
n of order n is the convex hull of the 2n

n× n matrices of the form bbT , for all column vectors b ∈ {0, 1}n.

Lemma 4.55. For all n, P corr
n and P cut

n+1 are linearly isomorphic.

Proof. Let f : R
n×n → R

En+1 be the linear function that maps each
x ∈ R

n×n to the element y ∈ R
En+1 defined by

yij =

{
xii if 1 ≤ i ≤ n, j = n+ 1
xii + xjj − 2xij if 1 ≤ i < j ≤ n.

One can verify that f(P corr
n) = P cut

n+1 and, for every y ∈ P cut
n+1, the point

x ∈ R
n×n defined by

xij =

{
yi,n+1 if i = j
1
2(yi,n+1 + yj,n+1 − yij) if i �= j

i, j = 1, . . . , n.

is the only point in P corr
n such that f(x) = y.

Given a vector a ∈ R
n, we denote by Diag(a) the n × n matrix with

a on the diagonal and 0 everywhere else. We denote by 〈·, ·〉 the Frobe-
nius product of two matrices having the same dimensions, that is 〈A,B〉 :=∑

i

∑
j aijbij . We recall that the trace of a square matrix C, denoted by

tr(C), is the sum of its diagonal entries. It is easy to verify that

〈A,B〉 = tr(ATB) = tr(BAT). (4.37)

Lemma 4.56. For all column vectors a ∈ {0, 1}n, the inequality

〈2Diag(a)− aaT , Y 〉 ≤ 1 (4.38)

is valid for P corr
n . Furthermore, the slack of each vertex Y = bbT with

b ∈ {0, 1}n, is (1− aT b)2.

Proof. For all column vectors a, b ∈ {0, 1}n, we have

1−〈2Diag(a)− aaT , bbT 〉 = 1− 2aT b+tr(aaT bbT) = 1− 2aT b+tr(bT aaT b) = (1− aT b)2

where the first equality follows from the fact that b ∈ {0, 1}n, the second fol-
lows from (4.37), and the third because aT b is a scalar. Since (1− aT b)2 ≥ 0,
(4.38) is a valid inequality for P corr

n .

4.10. THE SIZE OF A SMALLEST PERFECT FORMULATION 181

Theorem 4.57. Every extended formulation for P cut
n has at least 1.5n

constraints.

Proof. Let Ay ≤ b be a system of inequalities such that P corr
n = {y ∈ R

n×n :
Ay ≤ b} and such that all the inequalities (4.38) are included in Ay ≤ b.
Define S to be the slack matrix of Ay ≤ b and let M be the 2n × 2n matrix
whose rows and columns are indexed by the vectors in {0, 1}n, defined by
Mab = (1− aT b)2 for all a, b ∈ {0, 1}n. Then M is the row-submatrix of the
slack matrix S relative to the 2n constraints (4.38). By Lemma 4.56, Mab = 0
if and only if |a ∩ b| = 1, therefore the rectangle covering number of M and
of the unique disjointness matrix Un coincide. It follows by Theorem 4.51
and Lemma 4.53 that every extended formulation for P corr

n has at least 1.5n

constraints. By Lemma 4.55, the same holds for P cut
n+1.

Recall that, for a graph G, the stable set polytope STAB(G) is the convex
hull of the characteristic vectors of all the stable sets in G. Fiorini et al.
[136] show that, for every n, there exists a graph H with O(n2) nodes such
that STAB(H) has a face that is an extended formulation for P cut

n . This
implies that there exists an infinite family of graphs {Hn}n∈N such that
every extended formulation for STAB(Hn) has at least 1.5

√
n constraints.

4.10.3 An Exponential Lower-Bound for the
Matching Polytope

Yannakakis’ problem of showing that the matching polytope does not admit
compact extended formulations was solved by Rothvoß [318]. He showed
that “Every extended formulation for the perfect matching polytope on a
complete graph with n vertices (obviously n even) needs at least 2cn con-
straints for some constant c > 0.”

This is the first problem that is polynomially solvable for which it is
proven that no compact extended formulation exists.

Since the slack matrix of the perfect matching polytope (4.23) on a com-
plete graph with n vertices can be covered with n2 rectangles (see Exercise
4.36), the rectangle covering bound used to prove that the cut polytope does
not admit a compact extended formulation is too weak to prove exponential
lower bounds for the perfect matching polytope.

Rothvoß uses the following known but unpublished “hyperplane sepa-
ration bound,” which he learned from Fiorini. Intuitively, the hyperplane
separation bound says that, given anm×n nonnegative matrix S, if a matrix
W exists such that 〈W,S〉 is large but 〈W,R〉 is small for every rectangle R
of S, then the nonnegative rank of S is large.

182 CHAPTER 4. PERFECT FORMULATIONS

Theorem 4.58. Let S be an m × n nonnegative matrix and let t be its
nonnegative rank. Then, for every m× n matrix W ,

t ≥ 〈W,S〉
α · ‖S‖∞

where α := max{〈W,R〉 : R is an m× n rectangle matrix}.

Proof. Let α∗ = max{〈W,R〉 : R is a rank-1 matrix in [0, 1]m×n} be the
linear relaxation of α. Since any rank-1 matrix R ∈ [0, 1]m×n can be
written as R = xyT , where x ∈ [0, 1]m and y ∈ [0, 1]n, we have that
α∗ = max{

∑m
i=1

∑n
j=1wijxiyj : xi ∈ [0, 1], yj ∈ [0, 1]}. Since for fixed

x the objective function is linear in y and vice versa, there exist x ∈ {0, 1}m
and y ∈ {0, 1}n that achieve this maximum. This shows α∗ = α.

By Lemma 4.52, there exist rank-1 nonnegative matrices R1, . . . , Rt such
that S =

∑t
i=1Ri. We obtain

〈W,S〉 =
t∑

i=1

‖Ri‖∞〈W,
Ri

‖Ri‖∞
〉 ≤ α

t∑
i=1

‖Ri‖∞ ≤ αt‖S‖∞

where the first inequality follows from the fact that 〈W, Ri
‖Ri‖∞ 〉 ≤ α∗ = α

and the second inequality from the fact that ‖Ri‖∞ ≤ ‖S‖∞.

When S is the slack matrix of the perfect matching polytope, Rothvoß
constructs a matrix W for which the hyperplane separation bound is expo-
nential. However his beautiful construction is too involved to be presented
here.

Given a graph G, the traveling salesman polytope is the convex hull of
the characteristic vectors of all the edge sets that induce a Hamiltonian tour
in G. Yannakakis [355] showed that the perfect matching polytope on n
nodes is a face of the traveling salesman polytope on 3n nodes. Using this
reduction, together with the exponential bound on the matching polytope,
Rothvoß proves that every extended formulation for the traveling salesman
polytope needs a number of inequalities that is exponential in the number
of nodes, thus improving the bound 2

√
n of Fiorini et al. [136].

4.11 Further Readings

Combinatorial Optimization

Following the pioneering work of Fulkerson, Edmonds, Hoffman (among
others), there has been a tremendous amount of research in polyhedral

4.11. FURTHER READINGS 183

combinatorics and combinatorial optimization. This is treated in the
monumental monograph of Schrijver [327], which is (and will remain for
many years) the main reference for researchers in the area.

A first, important book that explores the link between polynomial-time
algorithms and perfect formulations for combinatorial problems is “Combi-
natorial Optimization: Networks and Matroids” by Lawler [252]. The books
by Cook et al. [87] and Korte and Vygen [243] are modern and well-written
accounts.

Integral Polyhedra

Papadimitriou and Yannakakis [311] showed that the following problem is
co-NP-complete: Given a rational system of inequalities Ax ≤ b, is the
polyhedron Q := {x : Ax ≤ b} integral?

Total Unimodularity

Connections with matroid theory are presented in the books of Truemper
[338] and Oxley [296]. Camion and Gomory give other characterizations
of totally unimodular matrices, see Theorem 19.3 in [325]. In particular,
Camion shows that

Theorem 4.59. A 0,±1 matrix A is totally unimodular if and only if A
does not contain a square submatrix with an even number of nonzero entries
in each row and column whose sum of the entries divided by 2 is odd.

Tutte [339] characterized the 0, 1 matrices that can be signed to be totally
unimodular (i.e., some +1 entries can be turned to −1 so that the resulting
matrix is totally unimodular), in terms of “forbidden minors.” Gerards [164]
gave a simple proof of Tutte’s theorem. Seymour [329] gave a structure
theorem for totally unimodular matrices which essentially says that every
totally unimodular matrix can be constructed by piecing together totally
unimodular matrices belonging to an infinite class (the incidence matrices
of digraphs, described below, and their transpose) and copies of specific 5×5
totally unimodular matrices. The piecing of two matrices is done so that
the gluing part that ties the two matrices has rank at most two. This result
has the following important computational consequence:

There exist polynomial algorithms that solve the following problems:

– Is a given matrix totally unimodular?

– Find an optimal solution for max{cx : Ax ≤ b, x integer}, where A is
totally unimodular.

184 CHAPTER 4. PERFECT FORMULATIONS

When A is totally unimodular and b is not an integral vector, solving the
integer program max{cx : Ax ≤ b, x ∈ Z

n
+} amounts to solving the linear

program max{cx : Ax ≤
b�, x ≥ 0}, see Exercise 4.6. Solving the mixed
integer linear program max{cx : Ax ≤ b, x ∈ Z

p
+ × R

n−p
+ } with 0 < p < n

is NP-Hard even when A is totally unimodular, see [81].

Perfect and Ideal Matrices

A 0, 1 matrix A is perfect if the set packing polytope {x ∈ R
n
+ : Ax ≤ 1} is

integral and A is ideal if the set covering polyhedron {x ∈ R
n
+ : Ax ≥ 1}

is integral. A 0, 1 totally unimodular matrix is obviously perfect and ideal.
The theory of perfect and ideal matrices is full of deep, elegant and difficult
results. These are surveyed in Cornuéjols’ monograph [92] and in Schrijver’s
book [327]. In 1960, Berge made two beautiful conjectures about perfection,
one stronger than the other. The first was solved by Lovász [259] in 1972
and is known as the “perfect graph theorem.” The second, now called the
“strong perfect graph theorem,” was solved by Chudnovsky et al. [72] in
2006. Polynomial recognition of perfect matrices was solved in [71]. The
situation for ideal matrices is still largely open.

Network Flows and Matchings

The minimum cut problem in a graph can be solved in polynomial time when
the edge weights are nonnegative (Nagamochi and Ibaraki [282], Stoer and
Wagner [333], Karger [230]). Formulation (2.4) is not perfect, but there exist
compact extended formulations (see Carr et al. [69] and [79] for instance).

The book of Ford and Fulkerson [147] provides a short and elegant
account of network flows and their connection with combinatorial theory.
A modern and comprehensive book focusing on algorithms is that by Ahuja
et al. [17].

The characterization of the matching polytope is due to Edmonds [124].
References for matching theory and flows are the book of Lovász and Plum-
mer [262] and Volume A of Schrijver’s monograph [327].

Total Dual Integrality

An extensive treatment of total dual integrality can be found in Chap. 22
of [325].

Theorem 4.26 is due to Edmonds and Giles [128] and extends previous
results of Fulkerson [154] and Hoffman [203]. Theorem 4.27 is due to Giles
and Pulleyblank [166] and Schrijver [324]. Total dual integrality provides

4.11. FURTHER READINGS 185

an elegant framework for some beautiful and important min–max relations
of graphs, see e.g., the book of Frank [148].

Vectors a1, . . . ak form a Hilbert basis if every integral vector in
cone(a1, . . . ak) can be written as a conic combination of a1, . . . ak with
integer coefficients. Every rational cone admits a Hilbert basis. However
the smallest such basis may be exponentially large with respect to the set
of generators of the cone. (see Exercise 4.39)

Giles and Pulleyblank [166] show the following.

Theorem 4.60. The rational system Ax ≤ b is TDI if and only if for each
face F of {x ∈ R

n : Ax ≤ b}, the set of active rows forms a Hilbert basis.

Cook et al. [89] show the following theorem of Carathéodory type.

Theorem 4.61. Let a1, . . . ak ∈ Z
n form a Hilbert basis and let cone

(a1, . . . ak) be pointed. Then every integral vector in cone(a1, . . . ak) can
be written as conic combination with integral coefficients of at most 2n − 1
vectors among a1, . . . ak.

Pap [304] proved that testing whether a given system of inequalities is
TDI is NP-hard.

Submodular Functions

Submodular functions are linked to the theory of matroid and polymatroids
and the greedy algorithm, as nondecreasing submodular functions are rank
functions of polymatroids. This was pioneered by Edmonds [126]. There
are combinatorial algorithms to minimize a submodular function [209, 326].

Submodular functions are also linked to connectivity problems on graphs.
This is covered in the recent book by Frank [148].

Mixed Integer Linear Representability

Section 4.9.3 is taken from a manuscript of Conforti, Di Summa, Faenza, and
Zambelli. Jeroslow [211] establishes that a subset S ⊆ R

n can be represented
as a mixed integer linear set with bounded (or, equivalently, binary) integer
variables if and only if S is the union of a finite number of polyhedra having
the same recession cone (Exercise 4.32). Vielma [347] has a comprehensive
survey that treats several issues on mixed integer linear representability.

186 CHAPTER 4. PERFECT FORMULATIONS

Extended Formulations

The survey of Vanderbeck and Wolsey [342] focuses on extended formula-
tions in integer programming, while the surveys of Conforti et al. [79] and
Kaibel [219] treat extended formulations in combinatorial optimization.

An early example of an extended formulation was given by Balas and
Pulleyblank for the “perfectly matchable subgraph polytope” [33]. The book
of Pochet and Wolsey [308] gives several examples of mixed integer linear
sets, mostly arising in production planning, that admit compact extended
formulations. Uncapacitated lot-sizing provides a nice illustration [37].

Martin [269] and Martin et al. [271] show that a large class of dynamic
programming recursions yield perfect extended formulations. Martin [270]
shows that given polyhedron P , separation for P can be expressed with a
compact linear program if and only if P admits a compact extended formu-
lation.

Balas’s extended formulation for the union of polyhedra (Theorem 4.39)
has been used by many authors to construct extended formulations for var-
ious mixed integer linear sets, several of which arising in production plan-
ning (see, for instance, Van Vyve [341], Atamtürk [15], and Conforti and
Wolsey [82]).

Kaibel and Pashkovich [220] show that reflection polytopes (that is,
polytopes of the form conv(P ∪ P ′) where P ′ is the reflection of polytope
P = {x : Ax ≤ b} with respect to a hyperplane H such that P lies on only
one side of H) admit an extended formulation that uses only one more vari-
able and two more constraints than Ax ≤ b. Using this result they were able
to provide compact extended formulations for families of polytopes whose
description in the original space is currently not known.

Goemans [170] gives an O(n log n) extended formulation for the permu-
tahedron, and shows that this is asymptotically the smallest possible.

Rothvoß [317] proves that there are matroid polytopes that do not have
polynomial-size extended formulations.

The fundamental paper of Yannakakis [355] was inspired by a series
of (incorrect) papers giving compact systems of inequalities that describe
a polytope that is nonempty if and only if a given graph is Hamiltonian.
He proves that under certain symmetry assumptions, the traveling salesman
polytope does not admit a compact extended formulation. Kaibel et al. [221]
show that there are polytopes that admit a compact extended formulation,
but no compact symmetric extended formulation.

The characterization of the smallest size of an extended formulation in
terms of nonnegative rank of the slack matrix (Theorem 4.51) has been a

4.12. EXERCISES 187

source of inspiration for a number of bounds, culminating in the exponential
lower bounds of Fiorini et al. [136] and of Rothvoß [318]. This result has
been generalized to other representations of a polytope in an extended space
(such as semi-definite representations) by Gouveia et al. [182].

An exponential lower bound on the rectangle covering number for the
unique disjointness matrix was given by De Wolf [111], based on a result of
Razborov [313]. The improved 1.5n bound given in Theorem 4.54, as well as
the self-contained proof we presented, are due to Kaibel and Weltge [223].
Rectangle covering bounds have been studied in the context of communica-
tion complexity [137].

4.12 Exercises

Exercise 4.1. Find a perfect formulation for the set:

x1 �= x2
x1 �= x3
x2 �= x3
1 ≤ xi ≤ 3, integer.

Exercise 4.2. Let Vn be the set of vertices of the n-hypercube Hn and V =
{v1, . . . , vk} be a subset of nonadjacent vertices in Hn. Let N := {1, . . . , n}.
Given vertex vi of Hn let Si ⊆ N be its support. Show that

conv(Vn \ V) = {x ∈ [0, 1]n :
∑
j∈Si

xj −
∑

j∈N\Si

xj ≤ |Si| − 1,∀i : vi ∈ V }

Exercise 4.3. Let P := {(x, y) ∈ R
n × R

p : Ax + Gy ≤ b} be a rational
polyhedron, and let S := P ∩ (Zn × R

p). Give a counter-example to the
following statement. P = conv(S) if and only if every rational supporting
hyperplane of P contains a point in Z

n × R
p.

Exercise 4.4. Show that the following matrix A is not totally unimodular
but that the polyhedron {x ∈ R

3 : Ax = b} is integral for every b ∈ Z
3.

A :=

⎛
⎝

1 1 1
0 −1 1
0 0 1

⎞
⎠

Exercise 4.5. Let A be an integral m× n matrix. Show that the following
are all equivalent.

188 CHAPTER 4. PERFECT FORMULATIONS

1. A is totally unimodular.

2. AT is totally unimodular.

3. The m× 2n matrix (A | −A) is totally unimodular.

4. The m× (n+m) matrix (A | I) is unimodular (recall the definition of
a unimodular matrix given in Chap. 1).

5. Any matrix A′ obtained from A by changing the signs of all entries in
some rows is totally unimodular.

Exercise 4.6. Given the integer set S := {x ∈ Z
n
+ : Ax ≤ b}, where A

is a totally unimodular matrix and b is a vector that may have fractional
components, show that conv(S) = {x ∈ R

n
+ : Ax ≤
b�}.

Exercise 4.7. A 0, 1 matrix can be signed to be totally unimodular if some
+1 entries can be turned into −1 so that the resulting matrix is totally
unimodular. Consider the two following 0,1 matrices. Show that the matrix
on the left cannot be signed to be totally unimodular, whereas the matrix
on the right can be signed to be totally unimodular.

⎛
⎝

1 1 1 0
1 0 1 1
1 1 0 1

⎞
⎠

⎛
⎜⎜⎜⎜⎝

1 1 0 0 1
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
1 0 0 1 1

⎞
⎟⎟⎟⎟⎠

Exercise 4.8. A 0, 1-matrix A has the consecutive 1’s property if aij =
ai� = 1, j < 	 implies aik = 1, j ≤ k ≤ 	.

1. Give a polynomial-time algorithm to test if a given 0, 1-matrix has the
consecutive 1’s property.

2. Prove that a 0, 1-matrix with the consecutive 1’s property is totally
unimodular.

Exercise 4.9. Let S be a family of subsets of a nonempty finite set V , and
let AS denote the |S| × |V | incidence matrix of S. The family S is laminar
if, for all S, T ∈ S such that S ∩ T �= ∅, either S ⊆ T or T ⊆ S. Show the
following.

1. If S is a laminar family, then |S| ≤ 2|V |.

2. If S is a laminar family, then AS is totally unimodular. (Hint: Apply
Corollary 4.7).

4.12. EXERCISES 189

Exercise 4.10. Given integer k ≥ 2, an equitable k-coloring of matrix A
is a partition of its columns into k sets or “colors” such that every pair of
colors I and J induces an equitable bicoloring of the submatrix AIJ formed
by the columns of A in I ∪ J . Prove that every totally unimodular matrix
admits an equitable k-coloring, for every k ≥ 2.

Exercise 4.11. Given a rational polyhedron P = {x ∈ R
n
+ : Ax ≤ b} and

integer k ≥ 1, let kP := {kx : x ∈ P} = {x ∈ R
n
+ : Ax ≤ kb}. We say

that P has the integer decomposition property if, for every integer k ≥ 1,
every integral vector in kP is the sum of k integral vectors in P . Show the
following.

1. If P has the integer decomposition property, then P is an integral
polyhedron.

2. If A is totally unimodular and b is integral, then P has the integer
decomposition property. (Hint: There are several possible proofs. One
idea is to use Exercise 4.10. Let x̄ be an integral vector in kP . Let
A′ be the matrix containing x̄j copies of column j of A. Consider an
equitable k-coloring of A′).

Exercise 4.12. Let D = (V,A) be a digraph. A cycle of D is a set of
arcs that forms a cycle in the underlying undirected graph (ignoring the
orientation of the arcs).

1. Let F ⊆ A be a set of arcs. Show that the columns of the incidence
matrix AD indexed by the elements of F are linearly independent if
and only if F does not contain any cycle.

2. Show that, ifD has k connected components, then rank(AD) = |V |−k.

Exercise 4.13. Show that the characteristic vector of a simple circuit is an
extreme ray of the circulation cone.

Exercise 4.14. Let D = (V,A) be a digraph. For every a ∈ A, let 	a, ua ∈ R

be given such that 	a ≤ ua. Show that the set of circulations {x ∈ R
|A| :

ADx = 0, 	 ≤ x ≤ u} is nonempty if and only if

∑
a∈δ−(X)

	a ≤
∑

a∈δ+(X)

ua for all X ⊆ V.

Exercise 4.15. Let G be a graph whose edge set C is a cycle. Show that
|det(AG)| = 2 if C is an odd cycle and det(AG) = 0 if C is an even cycle.

190 CHAPTER 4. PERFECT FORMULATIONS

Exercise 4.16. Consider the instances of the maximum s, t-flow problem on
the digraph in the figure below, where labels on the arcs represent capacities
and u is a positive integer.

u u

uu

1
s t

Show that, if at every iteration of the augmenting paths algorithm we choose
the longest s, t-augmenting path (here the length of a path is its number of
arcs), then the number of iterations is exponential in input size.

Exercise 4.17. Let G be a graph and AG be its incidence matrix. Let F
be the family of sets F ⊆ E such that every connected component of the
graph induced by F is a tree plus possibly an additional edge, which closes
an odd cycle.

1. Given F ⊆ E, let AF be the submatrix of AG whose columns are
indexed by the elements of F . Show that the columns of AF are
linearly independent if and only if F ∈ F . Furthermore, if F ∈ F is
not a tree, then AF is square and det(AF) = ±2.

2. Give a formula that involves parameters of G (number of nodes, num-
ber of components, etc.) that characterizes rank(AG).

Exercise 4.18. Let AG be the incidence matrix of a graph G and b be a
vector such that b

2 is integral. Show that {x : AGx ≤ b} is an integral
polyhedron.

Exercise 4.19. Let G = (V,E) be an (undirected) graph, with lengths 	e,
e ∈ E. Given nodes s, t ∈ V , the undirected shortest s, t-path problem
consists in finding an (undirected) path with endnodes s, t of minimum
length. Show that, if 	e ≥ 0 for all e ∈ E, then the undirected shortest
s, t-path problem in G can be reduced to solving the directed shortest s,
t-path problem on an appropriate digraph. Explain why the construction
cannot be applied if some of the lengths are negative.

Exercise 4.20. A vertex cover of a graph G = (V,E) is a set of nodes
U ⊆ V such that every edge in E contains at least an element of U .

1. Show that, for every matching M and every vertex cover U , |M | ≤ |U |.

2. Using linear programming duality and total unimodularity, show the
following statement: If G is bipartite, then max{|M | : M is a
matching} = min{|U | : U is a vertex cover}.

4.12. EXERCISES 191

3. Give another proof of the statement in 2) using the max-flow/min-cut
theorem (Theorem 4.15).

4. Does the statement in 2) hold if G is not bipartite?

Exercise 4.21. An edge cover of a graph G = (V,E) is a subset F of E
such that each node of G is covered by at least one edge of E′. Show the
following.

1. If S is a stable set of G and F is an edge cover, then |S| ≤ |F |.

2. Let S∗ and F ∗ be respectively a stable set of maximum cardinality
and an edge cover of minimum cardinality. Show that if G is bipartite,
|S∗| = |F ∗|.

3. Show a graph for which |S∗| < |F ∗|.

Exercise 4.22. Given a graph G = (V,E), the edge-chromatic number of
G is the minimum number of disjoint matchings that cover E. Let δmin and
δmax be, respectively, the minimum and maximum among the degrees of the
nodes of G. If G is bipartite, show that:

1. The edge-chromatic number of G equals δmax.

2. The maximum number of disjoint edge-covers of G equals δmin.

Exercise 4.23. Let Ax ≤ b be a rational system. Show that there exists a
positive integer k such that the system A

k x ≤ b
k is TDI.

Exercise 4.24. Let

A =

⎡
⎢⎢⎣

1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1
0 0 0 1 1 1

⎤
⎥⎥⎦ .

Show that

• The polyhedron P := {x ≥ 0 : Ax ≥ 1} is integral.

• The system x ≥ 0, Ax ≥ 1 is not TDI.

Exercise 4.25. Let N := {1, . . . , n} and let f : 2N → R be a submodular
integer-valued function such that f(∅) = 0. Let x̄ be a vertex of the polyhe-
dron P = {x ∈ R

n :
∑

j∈S xj ≤ f(S) for all S ⊆ N}. Show that x̄ satisfies
at equality n linearly independent inequalities

∑
j∈S xj ≤ f(Si) i = 1, . . . , n

such that the family {Si, i = 1, . . . , n} is laminar.

192 CHAPTER 4. PERFECT FORMULATIONS

Exercise 4.26. Show that the permutahedron Πn ⊂ R
n (introduced in

Example 3.20 and discussed in Chap. 3) is described by the following
inequalities. ∑

i∈S xi ≥
(|S|+1

2

)
∅ ⊂ S ⊂ V

∑n
i=1 xi =

(
n+1
2

)
.

Hint: note that the above system is equivalent to

∑
i∈S xi ≤

(n+1
2

)
−
(n−|S|+1

2

)
∅ ⊂ S ⊂ V

∑n
i=1 xi =

(n+1
2

)
.

In Chap. 3 it is shown that the equation defines the affine hull of Πn and
the inequalities are facet-defining.

Exercise 4.27 (Adjacencies of the Matching Polytope). Let G = (V,E)
be an undirected graph, and denote by P its matching polytope. Show the
following.

1. Given two matchings M and N in G, their incidence vectors are adja-
cent vertices of P if and only if M�N consists of a cycle or a path.

2. For k = 1, . . . , |V |, the polytope P ∩ {x ∈ R
E :

∑
e∈E xe = k} is the

convex hull of the characteristic vectors of matchings of cardinality k.
(Hint: use 1.)

Exercise 4.28. Let G = (V,E) be an undirected graph.

1. Show that the following system of inequalities describes the perfect
matching polytope:

∑
e∈δ(v) xe = 1 v ∈ V,∑
e∈δ(U) xe ≥ 1 U ⊆ V, |U | odd,

xe ≥ 0 e ∈ E.

2. Let G be a bridgeless cubic graph. Using the previous part, show that
for every edge e, G contains at least one perfect matching containing e
and at least two distinct perfect matchings not containing e. (A graph
is bridgeless if removing any edge does not increase the number of
connected components, and it is cubic if every node has degree three.)

Exercise 4.29. Given a graph G = (V,E), an edge cover C is a subset of
E such that every node of G is contained in some element of C.

4.12. EXERCISES 193

1. Show that C is a minimum cardinality edge cover if and only if C
is obtained from a maximum cardinality matching M by adding one
edge that is incident to each node that is not covered by M .

2. Give a perfect formulation for the edge-cover polytope (i.e., the convex-
hull of incidence vectors of edge covers).

Exercise 4.30. Consider the integer program

min
√
2x1 − x2

1 ≤ x2 ≤
√
2x1

x1, x2 integer.

(i) Show that this integer program has no optimal solution.

(ii) Construct feasible solutions xk such that limk→∞
√
2xk1 − xk2 = 0.

(iii) Prove that conv{x ∈ Z
2 : 1 ≤ x2 ≤

√
2x1} is not a polyhedron.

Exercise 4.31. The purpose of this exercise is to prove Theorem 4.46. For
every c ∈ R

n, consider the primal–dual pair of problems

max
∑

i∈N

cixi

∑

i∈S

xi −
∑

i∈N\S
xi ≤ |S| − 1 S ∈ S

xi ≤ 1 i ∈ N
xi ≥ 0 i ∈ N

min
∑

S∈S
(|S| − 1)yS +

∑

i∈N

zi

∑

S∈S,S�i

yS −
∑

S∈S,S ��i

yS + zi ≥ ci i ∈ N

zi ≥ 0 i ∈ N
yS ≥ 0 S ∈ S .

Characterize the optimal solution x∗ of the problem max{cx : x ∈ Seven
n },

and show that the dual problem (on the right) has a feasible solution (y∗, z∗)
of value cx∗.

Exercise 4.32. We say that a set S ⊆ Z
n × R

p is mixed binary linear
representable if there exists a system of constraints with rational coefficients

Ax+By + Cz ≤ d
x ∈ Z

n × R
p, y ∈ R

m, z ∈ {0, 1}q

such that S is the projection onto the space of x variables of the set of the
solutions of the above conditions.

Recall that a set S ⊆ Z
n × R

p is a mixed integer linear set if
S = P ∩ (Zn × R

p) for some rational polyhedron P ⊆ R
n+p. By Theorem

4.30, if S is a mixed integer linear set, then all polyhedra P satisfying
S = P ∩ (Zn × R

p) have the same recession cone, which we will refer to
as the recession cone of S. Prove the following:

194 CHAPTER 4. PERFECT FORMULATIONS

A nonempty set S = Z
n ×R

p is mixed binary linear representable if and
only if it is the union of finitely many mixed integer linear sets in Z

n × R
p

having the same recession cone.

Exercise 4.33. Let S ⊆ Z
n×R

p be bounded. Show that S is mixed integer
linear representable if and only if it is mixed binary linear representable (this
notion is defined in Exercise 4.32).

Exercise 4.34. Let P ⊆ R
n
+ be a polytope, and let k be a positive integer.

Show that the set {x ∈ P : x has at least k positive entries} is not mixed
integer linear representable, while the set {x ∈ P : x has at most k positive
entries} is mixed integer linear representable.

Exercise 4.35. Show that the rank of the slack matrix of any polytope
P ⊂ R

n is at most n+ 1.

Exercise 4.36. Show that the rectangle covering number of the slack matrix
of the perfect matching polytope on a complete graph on n nodes is at
most n4. (Hint: For every pair of edges consider the matchings and the odd
cuts that contain both of them.)

Exercise 4.37. Let P ⊂ R
p and Q ⊂ R

q be two polytopes. Show that P,Q
are linearly isomorphic if and only if Q,P are linearly isomorphic.

Exercise 4.38. Given polytopes P and Q such that P = projx(Q), show
that

1. Q has at least as many faces as P .

2. The number of facets of Q is at least the logarithm of the number of
faces of P .

3. If projx(Q) is the permutahedron Πn ⊂ R
n, then Q has at least n

2 log
n
2

facets.

Exercise 4.39. Consider the cone C ⊂ R
2 generated by (0, 1) and (k, 1).

Show that the unique minimal Hilbert basis for C consists of vectors (i, 1),
i = 0, . . . , k.

Chapter 5

Split and Gomory
Inequalities

Chapter 4 dealt with perfect formulations. What can one do when one is
handed a formulation that is not perfect? A possible option is to strengthen
the formulation in an attempt to make it closer to being perfect. One of
the most successful strengthening techniques in practice is the addition of
Gomory’s mixed integer cuts. These inequalities have a geometric interpre-
tation, in the context of Balas’ disjunctive programming. They are known
as split inequalities in this context, and they are the topic of interest in
this chapter. They are also related to the so-called mixed integer round-
ing inequalities. We show that the convex set defined by intersecting all
split inequalities is a polyhedron. For pure integer problems and mixed 0,1
problems, iterating this process a finite number of times produces a perfect
formulation. We study Chvátal inequalities and lift-and-project inequalities,
which are important special cases of split inequalities. Finally, we discuss
cutting planes algorithms based on Gomory inequalities and lift-and-project
inequalities, and provide convergence results.

5.1 Split Inequalities

Let P := {x ∈ R
n : Ax ≤ b} be a polyhedron, let I ⊆ {1, . . . , n}, and let

S := {x ∈ P : xj ∈ Z, j ∈ I} be a mixed integer set, where I indexes
the integer variables. We define C := {1, . . . , n} \ I to be the index set of
the continuous variables. In this chapter, we study a general principle for
generating valid inequalities for conv(S).

© Springer International Publishing Switzerland 2014
M. Conforti et al., Integer Programming, Graduate Texts
in Mathematics 271, DOI 10.1007/978-3-319-11008-0 5

195

196 CHAPTER 5. SPLIT AND GOMORY INEQUALITIES

Given a vector π ∈ Z
n such that πj = 0 for all j ∈ C, the scalar product

πx is integer for all x ∈ S. Thus, for any π0 ∈ Z, it follows that every
x ∈ S satisfies exactly one of the terms of the disjunction πx ≤ π0 or
πx ≥ π0 + 1. We refer to the latter as a split disjunction, and say that a
vector (π, π0) ∈ Z

n × Z such that πj = 0 for all j ∈ C is a split.
Given P and I, an inequality αx ≤ β is a split inequality [90] if there

exists a split (π, π0) such that αx ≤ β is valid for both sets

Π1 := P ∩ {x : πx ≤ π0}
Π2 := P ∩ {x : πx ≥ π0 + 1}. (5.1)

It follows from the above discussion that S ⊆ Π1 ∪ Π2, therefore split
inequalities are valid for conv(S). We define P (π,π0) := conv(Π1 ∪ Π2).
Clearly conv(S) ⊆ P (π,π0) and an inequality is a split inequality if and only
if it is valid for P (π,π0) for some split (π, π0) (see Fig. 5.1).

Π1 Π2P

πx ≤ π0 πx ≥ π0 +1

split inequality

Figure 5.1: A split inequality

By Lemma 4.45, P (π,π0) is a polyhedron. Furthermore P (π,π0) is the
projection in the x-space of the polyhedron defined by the system

Ax1 ≤ λb
πx1 ≤ λπ0
Ax2 ≤ (1− λ)b
πx2 ≥ (1− λ)(π0 + 1)

x1 + x2 = x
0 ≤ λ ≤ 1.

(5.2)

The polyhedron P (π,π0) could have a large number of facets compared to the
number of constraints defining P (see Exercise 5.2). However, the extended
formulation (5.2) has only 2m + n + 4 constraints, where m is the number
of constraints in the system Ax ≤ b.

5.1. SPLIT INEQUALITIES 197

The split closure of P is the set defined by

P split :=
⋂

P (π,π0), (5.3)

where the intersection is taken over all splits (π, π0). Clearly conv(S) ⊆
P split ⊆ P . Although each of the sets P (π,π0) is a polyhedron, it is not
obvious that P split itself is a polyhedron, since it is defined as the intersection
of an infinite number of polyhedra. We will prove in Sect. 5.1.2 that, if P is
a rational polyhedron, then P split is also a rational polyhedron.

Remark 5.1. Given a split (π, π0), let g be the greatest common divisor of
the entries of vector π, and let (π′, π′

0) be the split defined by π′
j =

πj

g for

j ∈ I, and π′
0 =
π0

g �. Since π′
0 ≤ π0

g and π′
0 + 1 ≥ π0+1

g , it follows that

P (π′,π′
0) ⊆ P (π,π0). In particular P split is the intersection of all polyhedra

P (π,π0) relative to splits (π, π0) such that the entries of π are relatively prime.

Proposition 5.2. Assume that the polyhedron P is nonempty.

(i) Let (π, π0) be a split. If Π1,Π2 �= ∅ and V1, V2 ⊆ R
n are finite sets

such that Π1 = conv(V1)+ rec(Π1) and Π2 = conv(V2)+ rec(Π2), then
P (π,π0) = conv(V1 ∪ V2) + rec(P).

(ii) Let (π, π0) be a split. There is strict inclusion P (π,π0) ⊂ P if and only if
some minimal face of P lies in the region defined by π0 < πx < π0+1.

(iii) If P is a rational polyhedron, P split ⊂ P if and only if conv(S) ⊂ P .

Proof. By Lemma 4.45, P (π,π0) is a polyhedron, i.e., P (π,π0) := conv(Π1 ∪
Π2) = conv(Π1 ∪ Π2). Therefore (i) follows from Lemma 4.41 and the fact
that rec(Π1) ∪ rec(Π2) = rec(P). For the sake of simplicity, we prove (ii)
and (iii) under the hypothesis that P is pointed.

(ii) Assuming P is pointed, let V be the set of vertices of P . By Theo-
rem 3.37, P = conv(V) + rec(P). If no point of V lies in the region
defined by π0 < πx < π0+1, then conv(V) ⊆ conv(Π1∪Π2), therefore
P ⊆ P (π,π0). Conversely, given v ∈ V such that π0 < πv < π0 + 1, it
follows from Theorem 3.34(iii) that v /∈ P (π,π0).

(iii) If conv(S) = P then clearly P = P split. Conversely, assume
conv(S) ⊂ P . Since P is a rational pointed polyhedron, by Theorem
4.3 there exists a vertex v of P and an index j ∈ I such that vj /∈ Z.

By (ii), since
vj� < vj <
vj� + 1, v does not belong to P (ej ,�vj�),
where ej is the jth unit vector in R

n. Thus v /∈ P split.

198 CHAPTER 5. SPLIT AND GOMORY INEQUALITIES

Let (π, π0) ∈ Z
n × Z be a split (i.e., πj = 0 for all j ∈ C). The next

lemma, due to Bonami [58], gives a necessary and sufficient condition for a
point to be in P (π,π0).

Lemma 5.3. Given x̄ ∈ P such that π0 < πx̄ < π0 +1, x̄ belongs to P (π,π0)

if and only if there exists x̃ ∈ Π2 such that

b−Ax̃ ≤ b−Ax̄

πx̄− π0
. (5.4)

Proof. For the “if” direction, let x̃ be as in the statement and define λ :=
πx̄−π0

π0+1−πx̄ . Note that λ > 0. We show that the point x̂ = x̄+λ(x̄− x̃) belongs

to Π1, thus x̄ ∈ P (π,π0) since it is a convex combination of x̃ ∈ Π2 and
x̂ ∈ Π1. Indeed,

πx̂ = πx̄+ λ(πx̄− πx̃) ≤ πx̄+ λ(πx̄− (π0 + 1)) = π0,

Ax̂− b = (1 + λ)Ax̄− λAx̃− b = (1 + λ)(Ax̄− b) + λ(b−Ax̃) ≤ 0,

where the last inequality follows from (5.4) and the fact that λ
1+λ = πx̄−π0.

Thus x̂ ∈ Π1 and x̄ ∈ P (π,π0).
For the “only if” part, suppose there exist x1 ∈ Π1 and x2 ∈ Π2 such

that x̄ = (1−λ)x1+λx2 where 0 < λ < 1. We can choose x1 and x2 so that
πx1 = π0 and πx2 = π0 + 1. It follows that πx̄ = π0 + λ, thus λ = πx̄− π0.
We show that x̃ := x2 satisfies (5.4). Indeed,

b−Ax̃ = b− Ax̄− (1− λ)Ax1

λ
=

b−Ax̄− (1− λ)(b−Ax1)

λ
≤ b−Ax̄

πx̄− π0
,

where the last inequality follows from λ < 1 and Ax1 ≤ b.

By Lemma 5.3, given x̄ ∈ P such that π0 < πx̄ < π0 + 1, in order to
decide whether x̄ is in P (π,π0) one can solve the following linear programming
problem

max πx

b− b−Ax̄

πx̄− π0
≤ Ax ≤ b.

(5.5)

If the optimal value is greater than or equal to π0 + 1, then x̄ ∈ P (π,π0),
otherwise x̄ /∈ P (π,π0).

5.1. SPLIT INEQUALITIES 199

5.1.1 Inequality Description of the Split Closure

Let P := {x ∈ R
n : Ax ≤ b} be a polyhedron, let I ⊆ {1, . . . , n} and

C := {1, . . . , n} \ I index integer and continuous variables respectively, and
let S := {x ∈ P : xj ∈ Z, j ∈ I} be the corresponding mixed integer set.

The main goal of this section is to prove that all split inequalities that
are necessary to describe P (π,π0) can be written in the following form. Let
m be the number of rows of A. For u ∈ R

m, let u+ be defined by u+i :=
max{0, ui}, i = 1, . . . ,m, and let u− := (−u)+, so u = u+−u−. Throughout
this chapter, we denote by AI and AC the matrices comprising the columns
of A with indices in I and C, respectively, and for any vector α ∈ R

n we
define αI and αC accordingly.

For u ∈ R
m such that uAI is integral, uAC = 0, and ub /∈ Z, consider

the inequality

u+(b−Ax)

f
+

u−(b−Ax)

1− f
≥ 1, (5.6)

where f := ub−
ub�.

Lemma 5.4. Let u ∈ R
m such that uAI is integral, uAC = 0, and ub /∈ Z.

Define π := uA and π0 :=
ub�. The inequality (5.6) is valid for P (π,π0),
thus it is a split inequality for P .

Proof. By definition, πI is integral and πC = 0, thus (π, π0) is a split. It
suffices to show that (5.6) is valid for P (π,π0). We show that (5.6) is valid
for Π1, the argument for Π2 being symmetric. Given x̄ ∈ Π1, let s1 :=
u+(b−Ax̄) and s2 := u−(b−Ax̄). Observe that s1−s2 = ub−uAx̄ = ub−πx̄.
Thus (1−f)s1+fs2 = (1−f)(s1−s2)+s2 = (1−f)(ub−πx̄)+s2 ≥ (1−f)f ,
where the last inequality follows from πx̄ ≤ π0 and from s2 ≥ 0.

Let Bπ ⊆ R
m denote the set of basic solutions to the system uA = π.

(Recall that u is basic if the rows of A corresponding to the nonzero entries
of u are linearly independent.)

Theorem 5.5. Let P := {x ∈ R
n : Ax ≤ b} be a polyhedron, let

I ⊆ {1, . . . , n}, and let S := {x ∈ P : xj ∈ Z, j ∈ I}. Given a split
(π, π0) ∈ Z

n+1, P (π,π0) is the set of all points in P satisfying the inequalities

u+(b−Ax)

ub− π0
+

u−(b−Ax)

π0 + 1− ub
≥ 1, for all u ∈ Bπ s.t. π0 < ub < π0 + 1.

(5.7)

200 CHAPTER 5. SPLIT AND GOMORY INEQUALITIES

Proof. It follows from Lemma 5.4 that the inequalities (5.7) are valid for
P (π,π0). Thus we only need to show that, given a point x̄ ∈ P \ P (π,π0),
there exists an inequality (5.7) violated by x̄. Since x̄ ∈ P \ P (π,π0), it
satisfies π0 < πx̄ < π0 + 1, and it follows from Lemma 5.3 that the linear
program (5.5) has optimal value less than π0 + 1. The dual of (5.5) is

min (u1 − u2)b+ u2
b−Ax̄

πx̄− π0
(u1 − u2)A = π
u1, u2 ≥ 0.

(5.8)

Let (u1, u2) be an optimal basic solution of (5.8), and let u := u1 − u2.
Since (u1, u2) is basic, it follows that, for i = 1, . . . ,m, at most one among u1i
and u2i is nonzero, therefore u+ = u1 and u− = u2. Furthermore, the rows
of A corresponding to nonzero components of u are linearly independent,
hence u ∈ Bπ. By the linear programming duality theorem (Theorem 3.7),
Problem (5.8) has optimal value less than π0 + 1, thus

ub+ u−
b−Ax̄

πx̄− π0
< π0 + 1. (5.9)

Using the fact that uA = π and πx̄− π0 > 0, (5.9) is equivalent to

u−(b−Ax̄) < (π0 + 1− ub)(uAx̄ − π0). (5.10)

Since uAx̄− π0 = ub− π0 − u(b−Ax̄), (5.10) can be expressed as

(π0+1−ub)u+(b−Ax̄)+(ub−π0)u
−(b−Ax̄) < (ub−π0)(π0+1−ub). (5.11)

We prove that π0 < ub < π0 + 1. Since u− b−Ax̄
πx̄−π0

≥ 0, (5.9) implies that

ub < π0 + 1. Inequality (5.11) is equivalent to u+(b−Ax̄) < (ub− π0)(π0 +
1− ub+ u(b −Ax̄)). Since u+(b −Ax̄) ≥ 0 and π0 + 1− ub+ u(b −Ax̄) =
π0 + 1− πx̄ > 0, it follows that ub− π0 > 0.

Therefore (ub − π0)(π0 + 1 − ub) > 0, which implies that (5.11) can be
rewritten as

u+(b−Ax̄)

ub− π0
+

u−(b−Ax̄)

π0 + 1− ub
< 1,

showing that x̄ violates the inequality (5.7) relative to u.

Theorem 5.5 implies the following characterization of P split.

Corollary 5.6. P split is the set of all points in P satisfying the inequali-
ties (5.6) for all u ∈ R

m such that uAI is integral, uAC = 0, ub /∈ Z, and the
rows of A corresponding to nonzero entries of u are linearly independent.

5.1. SPLIT INEQUALITIES 201

Another consequence of Theorem 5.5 is the following result of Andersen
et al. [11]. Let a1, . . . , am denote the rows of A. Let k := rank(A), and
denote by B the family of bases of Ax ≤ b, that is, sets B ⊆ {1, . . . ,m} such
that |B| = k and the vectors ai, i ∈ B, are linearly independent. For every
B ∈ B, let PB := {x : aix ≤ bi, i ∈ B}.

Corollary 5.7. P split =
⋂
B∈B

P split
B .

Note that, given B ∈ B, the polyhedron PB := {x : aix ≤ bi, i ∈ B} has
a unique minimal face, namely FB := {x : aix = bi, i ∈ B}. In particular
PB is a translate of its recession cone, that is, PB = v + rec(PB) for any

v ∈ FB . Theorem 5.5 implies that the polyhedron P
(π,π0)
B is defined by

introducing only one split inequality.

Remark 5.8. Let (π, π0) be a split. For all B ∈ B such that P
(π,π0)
B �= PB,

P
(π,π0)
B = PB ∩

{
x :

ū+(b−Ax)

ūb− π0
+

ū−(b−Ax)

π0 + 1− ūb
≥ 1

}
,

where ū is the unique vector such that ūA = π and ūi = 0 for all i /∈ B.

Any basic solution u in Bπ needed in Theorem 5.5 is defined by some
B ∈ B by uA = π and ui = 0 for all i /∈ B. Note that B needs not be
a feasible basis of the system Ax ≤ b defining P . By this we mean that
the minimal face FB of PB may not be a face of P , since it could be that
FB ∩ P = ∅. Figure 5.2 illustrates the fact that the description of P (π,π0)

may require split inequalities generated from infeasible bases. Indeed, the

P

a polyhedron
and a disjunction

split inequalities
from

feasible bases

split inequality
from an

infeasible basis

Figure 5.2: A split inequality from an infeasible basis can be stronger than
split inequalities from feasible bases

202 CHAPTER 5. SPLIT AND GOMORY INEQUALITIES

polyhedron P on the left has two feasible bases and one infeasible one. Split
inequalities from the two feasible bases give the dark polyhedron in the
middle. The split inequality defined by the infeasible basis gives the dark
polyhedron on the right; in this case this single split inequality is sufficient
to define P (π,π0).

5.1.2 Polyhedrality of the Split Closure

Let P ⊆ R
n be a polyhedron, let I ⊆ {1, . . . , n}, let C := {1, . . . , n} \ I,

and let S := P ∩ (ZI ×R
C). Cook et al. [90] showed that, if P is a rational

polyhedron, then P split is also a polyhedron. Next we present a simpler proof
of this fact, due to Dash et al. [107]. The idea is to prove that a finite number
of splits (π, π0) are sufficient to generate P split defined in (5.3). The result
follows, since then P split is the intersection of a finite number of polyhedra
P (π,π0) and therefore is a polyhedron.

Throughout the rest of this section, we will assume that P is rational.
Therefore, we may assume without loss of generality that P = {x ∈ R

n :
Ax ≤ b} where A and b are integral. We say that a split inequality αx ≤ β
is dominated by another split inequality α′x ≤ β′ if P ∩ {x : α′x ≤ β′} ⊂
P ∩ {x : αx ≤ β}. If αx ≤ β is not dominated by any split inequality we
say that it is undominated.

Lemma 5.9. Let Δ be the largest among 1 and the absolute values of all sub-
determinants of AC . Let u ∈ R

m be such that uAI ∈ Z
I , uAC = 0, ub /∈ Z,

and the inequality (5.6) is undominated. Then |ui| ≤ mΔ, i = 1, . . . ,m.

Proof. Let u ∈ R
m be as in the statement, and let f := ub−
ub�. Consider

the set of indices M− := {i ∈ [m] : ui < 0} and M+ := {i ∈ [m] : ui ≥ 0},
and define Cu := {w ∈ R

m : wAC = 0; wi ≤ 0, i ∈ M−; wi ≥ 0, i ∈ M+}.
Note that Cu is a pointed cone. We first observe that, if there exist u1, u2 ∈
Cu such that u = u1+u2 and u2 ∈ Z

m\{0}, the split inequality (5.6) defined
by u is dominated. Indeed, since u2 ∈ Z

m, we have that u1AI ∈ Z
I and

u1b−
u1b� = f , thus u1 defines the split inequality

(u1)+
b−Ax

f
+ (u1)−

b−Ax

1− f
≥ 1,

which dominates (5.6) because (u1)+ ≤ u+ and (u1)− ≤ u−, since u1,
u2 ∈ Cu.

Suppose now that u does not satisfy −mΔ1 ≤ u ≤ mΔ1. We will
show that there exist u1, u2 ∈ Cu such that u = u1 + u2 and u2 ∈ Z

m \
{0}, thus concluding the proof. Let r1, . . . , rq ∈ R

m be the extreme rays
of Cu. Since AC is a rational matrix, we can choose r1, . . . , rq integral

5.1. SPLIT INEQUALITIES 203

(if C = ∅, r1, . . . , rq are chosen to be the unit vectors or their negatives),
and by standard linear algebra we can choose them so that −Δ1 ≤ rt ≤ Δ1,
t = 1, . . . , q. Since u ∈ Cu, by Carathéodory’s theorem u =

∑q
t=1 νtr

t

where at most m of the νt are positive, while the others are 0. Let u1 :=∑q
t=1(νt −
νt�)rt, u2 :=

∑q
t=1
νt�rt. Clearly u1, u2 ∈ Cu and u = u1 + u2.

Since r1, . . . , rq are integral vectors, u2 is integral. Finally, since at most
m of the νt are positive and −Δ1 ≤ rt ≤ Δ1, t = 1, . . . , q, it follows that
−mΔ1 ≤ u1 ≤ mΔ1, thus u2 �= 0, as u does not satisfy −mΔ1 ≤ u ≤
mΔ1.

Theorem 5.10 (Cook et al. [90]). Let P ⊆ R
n be a rational polyhedron and

let S := P ∩ (ZI × R
C). Then P split is a rational polyhedron.

Proof. Let (A, b) be an integral matrix such that P = {x ∈ R
n : Ax ≤ b}.

By Theorem 5.5 and Lemma 5.9, P split is the intersection of all polyhedra
P (π,π0) where (π, π0) is a split such that π = uA and π0 =
ub� for some
u ∈ R

m such that |ui| ≤ mΔ for i = 1, . . . ,m. Since (π, π0) is integral, there
is a finite number of such vectors (π, π0). Hence P

split is the intersection of a
finite number of rational polyhedra and hence is a rational polyhedron.

A natural question is whether one can optimize a linear function over
P split in polynomial time. It turns out that this problem is NP-hard (Caprara
and Letchford [68], Cornuéjols and Li [95]). The equivalence between opt-
imization and separation (see Theorem 7.26 stated later in this book) implies
that, given a positive integer n, a rational polyhedron P ⊂ R

n, a set
I ⊆ {1, . . . , n} of integer variables, and a rational point x̄ ∈ P , it is NP-hard
to find a split inequality that cuts off x̄ or show that none exists.

5.1.3 Split Rank

Let P := {x ∈ R
n : Ax ≤ b} be a rational polyhedron, let I ⊆ {1, . . . , n},

and let S := {x ∈ P : xj ∈ Z, j ∈ I}. Let us denote the split closure P split

of P by P 1 and, for k ≥ 2, let P k denote the split closure of P k−1. We
refer to P k as the kth split closure relative to P . By Theorem 5.10, P k is
a polyhedron for all k. One may ask whether, by repeatedly applying the
split closure operator, one eventually obtains conv(S). The next example,
due to Cook et al. [90], shows that this is not the case.

Example 5.11. Let S := {(x, y) ∈ Z
2
+ ×R+ : x1 ≥ y, x2 ≥ y, x1 + x2 +

2y ≤ 2}. Starting from P := {(x1, x2, y) ∈ R
3
+ : x1 ≥ y, x2 ≥ y, x1 + x2 +

2y ≤ 2}, we claim that there is no finite k such that P k = conv(S).

204 CHAPTER 5. SPLIT AND GOMORY INEQUALITIES

To see this, note that P is a simplex with vertices O = (0, 0, 0),
A = (2, 0, 0), B = (0, 2, 0) and C = (12 ,

1
2 ,

1
2) (see Fig. 5.3). S is contained in

the plane y = 0. So conv(S) = P ∩ {(x1, x2, y) : y ≤ 0}. More generally,
consider a simplex P with vertices O,A,B and C = (12 ,

1
2 , t) with t > 0.

Define C1 := C, let C2 be the point on the edge from C to A with coor-
dinate x1 = 1 and C3 the point on the edge from C to B with coordinate
x2 = 1. Observe that no split inequality removes all three points C1, C2, C3

Indeed, the projections of C1, C2, C3 onto the plane y = 0 are inner points
on the edges of the triangle T with vertices (1, 0), (0, 1), (1, 1). Since these
vertices are integral, any split leaves at least one edge of T entirely on one
side of the disjunction. It follows that the corresponding Ci is not removed
by the split inequality.

Let Qi be the intersection of all split inequalities that do not cut off
Ci. All split inequalities belong to at least one of these three sets, thus
P 1 = Q1∩Q2∩Q3. Let Si be the simplex with vertices O,A,B,Ci. Clearly,
Si ⊆ Qi. Thus S1 ∩ S2 ∩ S3 ⊆ P 1. It is easy to verify that (12 ,

1
2 ,

t
3) ∈ Si

for i = 1, 2 and 3. Thus (12 ,
1
2 ,

t
3) ∈ P 1. By induction, (12 ,

1
2 ,

t
3k
) ∈ P k.

Therefore P k �= conv(S) for every positive integer k. �

A

B

C

C2

C3

T
O

x1

x2

Figure 5.3: Example showing that the split rank can be unbounded, and
representation of the proof

The smallest k such that P k = conv(S) is called the split rank of P ,
if such an integer k exists. The split rank of a valid inequality αx ≤ β
for conv(S) is the smallest k such that αx ≤ β is valid for P k. In the
above example the inequality y ≤ 0 does not have finite split rank. By
contrast, we will see that the split rank is always finite for pure integer
programs (Theorem 5.18) and at most |I| for mixed 0,1 linear programs
(Theorem 5.22).

5.1. SPLIT INEQUALITIES 205

5.1.4 Gomory’s Mixed Integer Inequalities

Gomory’s mixed integer inequalities [176], introduced in 1960, were the
first example of general-purpose valid inequalities for mixed integer linear
programs. They can be interpreted as split inequalities for problems writ-
ten in standard equality form. Let P := {x ∈ R

n : Ax = b, x ≥ 0}
be a polyhedron expressed in standard equality form. Let I ⊆ {1, . . . , n},
C := {1, . . . , n} \ I, and S := {x ∈ P : xj ∈ Z, j ∈ I}.

By Corollary 5.6 applied to P = {x ∈ R
n : Ax ≤ b, −Ax ≤ −b, −x ≤ 0},

any undominated split inequality is determined by a vector (u, v) ∈ R
m×R

n

such that uAI − vI ∈ Z
I , uAC − vC = 0, and ub /∈ Z, and can be written in

the form
v+x

f
+

v−x

1− f
≥ 1, (5.12)

where f := ub−
ub� > 0.
Let α := uA, β := ub, and fj := αj −
αj�, j ∈ I. Since the variables

defining P are all nonnegative, for a given u, the choice of vj = v+j −v−j , j ∈ I
that gives the strongest inequality is the smallest possible value that satisfies
the requirement αj − (v+j − v−j) ∈ Z. Therefore vj = fj whenever vj = v+j

and vj = fj − 1 whenever vj = −v−j . This implies that vj = v+j if
fj
f ≤ 1−fj

1−f

(i.e., if fj ≤ f), and vj = v−j otherwise. Finally observe that uAC − vC = 0

is equivalent to v+j − v−j = αj , j ∈ C. Hence v+j = αj if αj ≥ 0, otherwise

v−j = −αj . It follows that the undominated split inequalities are of the form

∑
j∈I
fj≤f

fj
f
xj +

∑
j∈I
fj>f

1− fj
1− f

xj +
∑
j∈C
αj≥0

αj

f
xj −

∑
j∈C
αj<0

αj

1− f
xj ≥ 1. (5.13)

This is Gomory’s mixed integer inequality derived from the equation αx =
β [176]. Note that (5.13) is a split inequality relative to the split (π, π0)
defined by π0 =
ub� and, for j = 1, . . . , n,

πj =

⎧⎨
⎩

αj� if j ∈ I and fj ≤ f0
�αj if j ∈ I and fj > f0
0 if j ∈ C.

(5.14)

In practice, Gomory’s mixed integer inequalities have turned out to be
effective cutting planes in branch-and-cut algorithms. Implementation of
the mixed integer inequalities will be discussed in Sect. 5.3.

206 CHAPTER 5. SPLIT AND GOMORY INEQUALITIES

5.1.5 Mixed Integer Rounding Inequalities

Mixed integer rounding inequalities, introduced by Nemhauser and Wolsey
[286], offer an alternative, yet equivalent, definition of the split inequalities.

As seen in Sect. 1.4.1, the convex hull of the two-dimensional mixed
integer set {(ξ, υ) ∈ Z×R+ : ξ−υ ≤ β} is defined by the original inequalities
υ ≥ 0, ξ − υ ≤ β and the simple rounding inequality

ξ − 1

1− f
υ ≤
β�,

where f := β −
β�. The simple rounding inequality is a split inequality,
relative to the split disjunction (ξ ≤
β�) ∨ (ξ ≥ �β).

Mixed integer rounding inequalities for general mixed integer linear sets
are inequalities that can be derived as a simple rounding inequality using
variable aggregation. Formally, let P := {x ∈ R

n : Ax ≤ b}, S := {x ∈
P : xj ∈ Z, j ∈ I}, and C := {1, . . . , n} \ I. Suppose that a given valid
inequality for P can be written, rearranging the variables, in the form

πx− (γ − cx) ≤ β (5.15)

such that πI is integral, πC = 0, and cx ≤ γ is a valid inequality for P .
Clearly πx is an integer and γ − cx ≥ 0 for all x ∈ S. Deriving the simple
mixed integer rounding with the variable substitution ξ = πx as an integer
variable and υ = γ− cx as a nonnegative continuous variable, we obtain the
inequality

πx− 1

1− f
(γ − cx) ≤
β�. (5.16)

Inequalities that can be obtained with the above derivation are the mixed
integer rounding inequalities. Nemhauser–Wolsey [286] showed that mixed
integer rounding and split inequalities are equivalent. More formally, define
the mixed integer rounding closure PMIR of P as the set of points in P
satisfying all mixed integer rounding inequalities.

Theorem 5.12. PMIR = P split.

Proof. By construction, the mixed integer rounding inequality (5.16) is a
split inequality relative to the split (π,
β�), thus PMIR ⊇ P split.

To prove the converse, by Theorem 5.5 it suffices to show that any in-
equality of the form (5.6) is a mixed integer rounding inequality. Let u ∈ R

m

such that uAI is integral and uAC = 0. The inequality u+Ax ≤ u+b is valid
for P , and it can be written as

uAx− u−(b−Ax) ≤ ub.

5.2. CHVÁTAL INEQUALITIES 207

Since u−Ax ≤ u−b is valid for P , we can derive the mixed integer rounding
inequality

uAx− u−

1− f
(b−Ax) ≤
ub� (5.17)

where f := ub−
ub�. One can readily verify that (5.17) is equivalent to the
split inequality (5.6).

5.2 Chvátal Inequalities

Given a polyhedron P := {x ∈ R
n : Ax ≤ b}, let I ⊆ {1, . . . , n}, C :=

{1, . . . , n} \ I, and S := {x ∈ P : xj ∈ Z, j ∈ I}. Given a split (π, π0), the
inequality πx ≤ π0 is a Chvátal inequality if P ∩ {x : πx ≥ π0 + 1} = ∅.
Chvátal inequalities are valid for conv(S), since πx is an integer for every
x ∈ S. Note that Chvátal inequalities are split inequalities, relative to the
split (π, π0).

For π ∈ Z
n, setting δ := max{πx : x ∈ P} and π0 =
δ�, the Chvátal

inequality πx ≤ π0 cuts off a part of P if and only if δ /∈ Z (see Fig. 5.4). By
Remark 5.1, the only relevant Chvátal inequalities are the ones for which
the coefficients of π are relatively prime. When the coefficients of π are
relatively prime, by Corollary 1.9 the equation πx = π0 admits an integral
solution, therefore, by Theorem 4.3, conv{x ∈ Z

I × R
C : πx ≤ δ} = {x ∈

R
n : πx ≤ π0}.
Assume that P �= ∅ and let (π, π0) be a split. By Theorem 3.22, πx ≤ π0

is a Chvátal inequality if and only if there exists a vector u such that

u ≥ 0, uA = π, π0 ≥
ub�. (5.18)

P
Chvatal inequality
πx ≤ π0 := δ

πx = δ

´

Figure 5.4: Chvátal inequality

208 CHAPTER 5. SPLIT AND GOMORY INEQUALITIES

The Chvátal closure PCh of P is the set of points in P satisfying all the
Chvátal inequalities. Equivalently,

PCh := {x ∈ P : (uA)x ≤
ub� for all u ≥ 0 s.t. uAI ∈ Z
I , uAC = 0}.

(5.19)
Note that S ⊆ P split ⊆ PCh ⊆ P .

5.2.1 The Chvátal Closure of a Pure Integer Linear Set

The above presentation of Chvátal inequalities is not the most standard:
Chvátal’s seminal paper [73] introduced the closure PCh for pure integer
linear sets.

In this section, we focus on pure integer sets of the type S := P ∩ Z
n,

where P := {x ∈ R
n : Ax ≤ b} is a rational polyhedron. Thus we can

assume that A, b have integer entries. A Chvátal inequality πx ≤ π0 is
derived from a vector u satisfying

u ≥ 0, uA = π ∈ Z
n,
ub� = π0. (5.20)

As before, PCh is the set of points in P satisfying all the Chvátal inequalities.
The next lemma shows that the vectors u with some of their components
equal to 1 or larger are not needed in the description of PCh.

Lemma 5.13. PCh is the set of all points in P satisfying the Chvátal ine-
qualities uAx ≤
ub� for all u such that uA ∈ Z

n and 0 ≤ u ≤ 1.

Proof. Given u ≥ 0 such that uA is integral, let u1 := u−
u� and u2 =
u�.
Note that u2 ≥ 0, thus (u2A)x ≤ u2b is valid for P . Since u2 is an integral
vector and A, b are integral, u2A is an integral vector and u2b ∈ Z. Because
uA is integral, it follows that u1A = uA− u2A is integral as well. Further-
more, by definition 0 ≤ u1 ≤ 1. The Chvátal inequality uAx ≤
ub� is the
sum of u1Ax ≤
u1b� and u2Ax ≤ u2b. Since u2Ax ≤ u2b is valid for P , it
follows that P ∩ {x : u1Ax ≤
u1b�} ⊆ P ∩ {x : uAx ≤
ub�}.

Theorem 5.14 (Chvátal [73]). PCh is a rational polyhedron.

Proof. Since {uA ∈ R
n : 0 ≤ u < 1} is a bounded set, the set {uA ∈

Z
n : 0 ≤ u < 1} is finite. It follows from Lemma 5.13 that PCh is a

polyhedron.

As for the split closure, the membership problem for the Chvátal closure
PCh “Given a rational polyhedron P ⊂ R

n and a rational point x̄ ∈ P , does
x̄ ∈ PCh?” is NP-hard, as proved by Eisenbrand [130].

5.2. CHVÁTAL INEQUALITIES 209

5.2.2 Chvátal Rank

In this section, we consider a pure integer set S := P ∩Z
n where P := {x ∈

R
n : Ax ≤ b} is a rational polyhedron. We denote conv(S) by PI . The

Chvátal closure PCh of P will be denoted by P (1) in this section. We can
iterate the closure process to obtain the Chvátal closure of P (1). We denote
by P (2) this second Chvátal closure. Iteratively, we define the tth Chvátal
closure P (t) of P to be the Chvátal closure of P (t−1), for t ≥ 2 integer. An
inequality that is valid for P (t) but not P (t−1) is said to have Chvátal rank
t. Are there inequalities of arbitrary large Chvátal rank or is there a value t
after which P (t) = P (t+1)? The main result of this section is that the second
statement is the correct one. In fact, we will prove that there exists a finite
t such that P (t) = PI . The smallest such t is called the Chvátal rank of
the polyhedron P . Therefore, every valid inequality for PI := conv(S) has a
bounded Chvátal rank. This result for the pure integer case is in contrast
to the situation for the mixed case, as we saw in Example 5.11.

Lemma 5.15. Let P ⊆ R
n be a nonempty rational polyhedron such that

aff(P) ∩ Z
n �= ∅. If PI = ∅, then dim(rec(P)) < dim(P).

Proof. Let d := dim(P) = dim(aff(P)) and assume PI = ∅. Suppose, by
contradiction, that dim(rec(P)) = d. Then, since P is a rational polyhe-
dron, there exist d linearly independent integral vectors r1, . . . , rd ∈ rec(P).
Given z ∈ P , the points z, z + r1, . . . , z + rd define a basis of aff(P).
Since aff(P) ∩ Z

n �= ∅, it follows that there exist μ1, . . . , μd ∈ R such that
z +

∑d
i=1 μir

i ∈ Z
n. Thus z +

∑d
i=1(μi −
μi�)ri is an integral point in P ,

contradicting the fact that PI = ∅.

A consequence of the above lemma is that every rational polyhedron
having full-dimensional recession cone contains an integer point.

Lemma 5.16. Let P ⊆ R
n be a nonempty rational polyhedron such that

aff(P) ∩Z
n �= ∅. Then PI = {x : Ax ≤ b} ∩ aff(P) for some integral A and

b such that, for every row ai of A,

1. ai is not orthogonal to aff(P);

2. there exists di ∈ R such that aix ≤ di is valid for P .

Proof. Assume first PI �= ∅. Then by Meyer’s theorem (Theorem 4.30) there
exist an integral matrix A and an integral vector b such that PI = {x : Ax ≤
b} ∩ aff(P) and no row of A is orthogonal to aff(P). We prove 2). Since
rec(PI) = rec(P) by Theorem 4.30, for every row ai of A, di = max{aix :
x ∈ P} is finite, thus aix ≤ di is valid for P .

210 CHAPTER 5. SPLIT AND GOMORY INEQUALITIES

Assume now PI = ∅. By standard linear algebra, aff(P) = z + L where
z ∈ P and L is a rational linear subspace of Rn such that dim(L) = dim(P).
Notice that rec(P) ⊆ L. By Lemma 5.15, dim(rec(P)) < dim(P), thus there
exists an integral a ∈ L such that a is orthogonal to rec(P). Hence both
u = max{ax : x ∈ P} and l = min{ax : x ∈ P} are finite. Therefore
PI = {x : ax ≤ −1, −ax ≤ 0} = ∅, a,−a are not orthogonal to aff(P), and
ax ≤ u, −ax ≤ −l are valid for P .

Lemma 5.17. Let P be a rational polyhedron and F a nonempty face of P .
Then F (s) = P (s) ∩ F for every positive integer s.

Proof. Since P is a rational polyhedron, we may assume that P := {x ∈
R
n : Ax ≤ b} where (A, b) is an integral matrix.
Since every Chvátal inequality for P is also a Chvátal inequality for F ,

it follows that F (1) ⊆ P (1) ∩ F . To show that F (1) ⊇ P (1) ∩ F it suffices to
prove the following statement.

Consider any valid inequality cx ≤ d for F where c ∈ Z
n. Then there

is a valid inequality c∗x ≤ d∗ for P with c∗ ∈ Z
n such that F ∩ {x : c∗x ≤

d∗�} ⊆ F ∩ {x : cx ≤
d�}.
By Theorem 3.24, we can partition the inequalities in Ax ≤ b into two

systems A′x ≤ b′ and A′′x ≤ b′′ so that F = {x : A′x ≤ b′, A′′x = b′′}. Since
cx ≤ d is valid for F , d ≥ max{cx : x ∈ F}, thus by the linear programming
duality theorem (Theorem 3.7) there exist vectors y′, y′′ such that

y′A′ + y′′A′′ = c, y′b′ + y′′b′′ ≤ d, y′ ≥ 0.

If we define c∗ and d∗ as

c∗ := y′A′ + (y′′ −
y′′�)A′′, d∗ := y′b′ + (y′′ −
y′′�)b′′,

the inequality c∗x ≤ d∗ is valid for P since y′ and y′′ −
y′′� are nonnegative
vectors. We have c∗ = c −
y′′�A′′ and d∗ ≤ d −
y′′�b′′. Since A′′ is an
integral matrix and b′′, c are integral vectors, it follows that c∗ is integral
and
d∗� ≤
d� −
y′′�b′′. Therefore F ∩ {x : c∗x ≤
d∗�} = F ∩ {x :

y′′�A′′x =
y′′�b′′, c∗x ≤
d∗�} ⊆ F ∩ {x : cx ≤
d�}.

Theorem 5.18 (Chvátal [73], Schrijver [323]). Let P be a rational polyhe-
dron. Then there exists a positive integer t such that P (t) = PI .

Proof. The proof is by induction on d = dim(P), the cases d = −1, d = 0
being trivial. If aff(P) ∩ Z

n = ∅, by Theorem 1.20 there exist an inte-
gral vector a and a scalar d �∈ Z such that P ⊆ {x : ax = d}, hence

5.2. CHVÁTAL INEQUALITIES 211

PI = ∅ = {x : ax ≤
d�, −ax ≤ −�d} = P (1). Therefore we may assume
aff(P) ∩ Z

n �= ∅. By Lemma 5.16, PI = {x : Ax ≤ b} ∩ aff(P) for some
integral A and b such that, for every row ai of A, ai is not orthogonal to
aff(P) and aix ≤ di is valid for P for some di ∈ R.

We only need to show that, for any row ai of A, there exists a positive
integer t such that the inequality aix ≤ bi is valid for P (t). Suppose not.
Since aix ≤ di is valid for P (0) := P , there exist integers d > bi and r ≥ 0
such that, for every s ≥ r, aix ≤ d is valid for P (s) but aix ≤ d−1 is not valid
for P (s). Then F := P (r) ∩{x : aix = d} is a face of P (r) and FI = ∅ where
FI := conv(F ∩Z

n). Since ai is not orthogonal to aff(P), dim(F) < dim(P),
therefore, by induction, there exists h such that F (h) = ∅. By Lemma 5.17,
F (h) = P (r+h)∩F , hence aix < d for every x ∈ P (r+h), therefore aix ≤ d−1
is valid for P (r+h+1), contradicting the choice of d and r.

Eisenbrand and Schulz [132] prove that for any polytope P contained in
the unit cube [0, 1]n, one can choose t = O(n2 log n) in the above theorem.
Rothvoß and Sanitá [319] prove that there is a polytope contained in the
unit cube whose Chvátal rank has order n2, thus showing that the above
bound is tight, up to a logarithmic factor.

5.2.3 Chvátal Inequalities for Other Forms
of the Linear System

Consider a polyhedron P in the form P := {x ∈ R
n : Ax ≤ b, x ≥ 0}. Given

I ⊆ {1, . . . , n} and C := {1, . . . , n} \ I, let S := P ∩ {x : xj ∈ Z, j ∈ I}.
Any Chvátal inequality for the above system is of the form

(uA− v)x ≤
ub�,

where u ∈ R
m
+ , v ∈ R

n
+, uAI − vI ∈ Z

I and uAC − vC = 0. Let α := uA,
β := ub. Clearly vj = αj ≥ 0 for all j ∈ C, and vj ≥ αj −
αj� for all j ∈ I.
It follows that the only relevant Chvátal inequalities are of the form

∑
j∈I

uA�xj ≤
ub�, (5.21)

for all vectors u ∈ R
m
+ such that uAC ≥ 0.

Consider now a polyhedron P in the form P := {x ∈ R
n
+ : Ax = b} and,

given I ⊆ {1, . . . , n}, let S := P ∩ {x : xj ∈ Z, j ∈ I}. The same argument
as before shows that any irredundant Chvátal inequality for P is of the form∑

j∈I
uA�xj ≤
ub�, where u ∈ R
m is such that uAC ≥ 0 and ub /∈ Z.

212 CHAPTER 5. SPLIT AND GOMORY INEQUALITIES

5.2.4 Gomory’s Fractional Cuts

The first general-purpose cutting plane method was proposed by Gomory
[175]. The method is based on the so-called fractional cuts, and it applies to
pure integer linear programming problems. Gomory showed how to ensure
finite convergence of this method [177].

Given a rational m × n matrix A and a rational vector b ∈ R
n, let

P := {x ∈ R
n
+ : Ax = b} and let S := P ∩ Z

n.

Let c ∈ R
n, and consider the pure integer programming problem max{cx :

x ∈ S}. Let B be an optimal basis of the linear programming relaxation
max{cx : x ∈ P}, and let N := {1, . . . , n} \B. The tableau relative to B is
of the form

xi +
∑
j∈N

āijxj = b̄i, i ∈ B. (5.22)

The corresponding optimal solution to the linear programming relaxation
is x∗i = b̄i, i ∈ B, x∗j = 0, j ∈ N . If x∗ is integral, then it is an optimal
solution to the integer programming problem. Otherwise, there exists some
h ∈ B such that b̄h /∈ Z.

The Chvátal inequality relative to the hth row of the tableau is

xh +
∑
j∈N

āhj�xj ≤
b̄h�. (5.23)

Note that (5.23) cuts off x∗, since x∗h = b̄h >
b̄h� and x∗j = 0 for all
j ∈ N . Introducing a nonnegative slack variables xn+1, the above inequality
becomes

xh +
∑
j∈N

āhj�xj + xn+1 =
b̄h�. (5.24)

Note that, since all the coefficients of (5.23) are integer, xn+1 takes an integer
value for every integer solution x. Therefore we may impose the constraint
that xn+1 is also an integer variable. Finally, by subtracting the hth tableau
row xh +

∑
j∈N āhj = b̄h from (5.24), we obtain the Gomory fractional cut

∑
j∈N

−fjxj + xn+1 = −f0, (5.25)

where fj := āhj −
āhj� and f0 := b̄h −
b̄h�.
Juxtaposing the latter equation at the bottom of the tableau (5.22), we

obtain the tableau with respect to the basis B′ := B ∪ {n + 1}. The new
tableau is not primal feasible, since in the primal solution associated with
the tableau the variable xn+1 has value −f0 < 0. However, the new tableau

5.2. CHVÁTAL INEQUALITIES 213

is dual feasible because the reduced costs are unchanged, and so they are
all nonpositive. We may therefore apply the dual simplex method starting
from the basis B′ to solve the linear relaxation of the new problem, and
repeat the argument starting from the new optimal solution.

An example of this method was given in Sect. 1.2.2. We remark that the
method, as just described, does not guarantee finite convergence, but we will
show in the next section how the above cutting-plane scheme can be turned
into a finite algorithm by carefully choosing both the optimal basis of each
linear relaxation and the tableau row from which the cut is generated.

5.2.5 Gomory’s Lexicographic Method for Pure
Integer Programs

In light of Theorem 5.18 one can in principle solve any pure integer linear
programming problem by adding a finite number of Chvátal cuts. How to
discover such cuts is however not at all obvious. A finite cutting plane algo-
rithm for pure integer programming problems was described by Gomory [175,
177]. The algorithm is based on fractional cuts, and it guarantees finite con-
vergence by a careful choice of the basis defining the optimal solution that
we intend to cut off, and of the tableau row used to generate the cut (descrip-
tions and proofs of the method can be also found in [159, 325]). A difference
with the method described earlier in Sect. 5.2.4 is that here we also generate
cuts from the tableau row corresponding to the objective function.

Given a rational m × n matrix A, a rational vector b ∈ R
n, and an

integral vector c ∈ Z
n, we want to solve the pure integer program

max{x0 : x0 − cx = 0, Ax = b, x ≥ 0, (x0, x) ∈ Z
n+1}. (5.26)

Because c is an integral vector, also x0 = cx is integer for every x ∈ Z
n.

We will assume that the feasible region of the linear relaxation of (5.26)
is bounded. The latter assumption is without loss of generality, since by
Corollary 4.37 there exists a function f of n and of the maximum encoding
size L of the coefficients of (A, b) such that P ∩ {x ∈ R

n : x ≤ f(n,L)}
contains an optimal solution to (5.26), if any exists.

At each iteration, the linear programming relaxation of the current prob-
lem is solved, and if the optimal solution is not integral a new cut is gen-
erated. To express the new inequality as an equality, a slack variable is
added to the problem. Therefore, at each iteration t, the current linear
programming relaxation of (5.26) is of the form

max{x0 : x0 − cx = 0, A(t)x(t) = b(t), x(t) ≥ 0}, (5.27)

214 CHAPTER 5. SPLIT AND GOMORY INEQUALITIES

where x(t) denotes the vector with n+ t+1 variables defined by the original
variables x0, x1 . . . , xn of (5.26) and the slack variables xn+1, . . . , xn+t of the
t cuts added so far, and A(t) is an (m + t) × (n + t+ 1) matrix whose first
column is the vector of all zeroes. In particular, A(0) := (0, A) ∈ R

m×(n+1),
b(0) := b.

Assuming that (5.27) has a finite optimum, let B ⊆ {1, . . . , n+ t} be an
optimal basis and N := {1, . . . , n + t} \ B. The tableau relative to B is of
the form

xi +
∑
j∈N

āijxj = āi0, i ∈ B ∪ {0}. (5.28)

The corresponding basic optimal solution is xi = āi0, i ∈ B, xj = 0,
j ∈ N , with objective value x0 = ā00. If the solution has some fractional
component, say āh0 /∈ Z for some h ∈ B ∪ {0}, we may generate the cut

xh +
∑
j∈N

āhj�xj + xn+t+1 =
āh0�, (5.29)

where xn+t+1 is a nonnegative integer slack variable. The new cut is included
in the formulation, and the argument repeated until an optimal integral
solution is found.

Gomory [177] showed that, if one applies a certain lexicographic rule
both in the pivots of the simplex method and in the selection of the source
row of the cut, the algorithm converges in finite time. What we present next
is a slight variation of Gomory’s algorithm.

A vector (α0, . . . , αn) is lexicographically larger than a vector (β0, . . . , βn)
if there exists i ∈ {0, . . . , n} such that αi > βi and αk = βk for all k < i.
For example, the four vectors (3,−1,−2), (2, 5, 0), (2, 5,−2), (1, 12, 60) are
sorted from the lexicographically largest to the lexicographically smallest.
The algorithm requires, at each iteration t, to find the lexicographically
largest feasible solution (x̄0, . . . , x̄n+t) of (5.27). Note that such a solution
is basic and it is optimal for (5.27), since x̄0 is largest possible.

Given a feasible basis B ⊆ {1, . . . , n+ t} of (5.27), consider the tableau
(5.28) with respect to B. We say that B is lexicographically optimal if, for
every j ∈ N , the smallest index i ∈ {0} ∪B such that āij �= 0 satisfies i < j
and āij > 0.

One can verify that, if B is a lexicographically optimal basis, then the ba-
sic solution (x̄0, . . . , x̄n+t) associated with B is the lexicographically largest
feasible solution for (5.27). Since (5.27) is bounded, a lexicographically op-
timal basis exists whenever the problem is feasible, and it can be computed
with the simplex algorithm (Exercise 5.11).

5.2. CHVÁTAL INEQUALITIES 215

Gomory’s Lexicographic Cutting Plane Method

Start with t := 0;

1. If (5.27) has no solution, then (5.26) is infeasible. Otherwise, compute
a lexicographically optimal basis for (5.27) and let (x̄0, . . . , x̄n+t) be
the corresponding basic solution.

2. If (x̄1, . . . , x̄n) is integral, then it is optimal for (5.26). Otherwise

3. Let h ∈ {0, . . . , n} be the smallest index such that x̄h is fractional. Add
the cut (5.29) generated from the tableau row relative to variable xh.
Let t := t+ 1 and go to 1.

Theorem 5.19. Gomory’s lexicographic cutting plane method terminates
in a finite number of iterations.

Proof. At iteration t, let x̄t denote the basic solution of (5.27) computed in
Step 1. Observe that, by construction, the sequence of vectors (x̄t0, . . . , x̄

t
n)

is lexicographically nonincreasing as t increases.
We need to show that, for k = 0, . . . , n, after a finite number of iterations

the value of x̄tk is integer and does not change in subsequent iterations.
Suppose not, and let k be the smallest index contradicting the claim. In
particular, for i = 0, . . . , k − 1, after a finite number T of iterations, the
values of x̄ti are integer and do not change in subsequent iterations, i.e.,
x̄ti := x̄i ∈ Z for all t ≥ T , i = 0, . . . , k − 1.

By construction, the sequence {x̄tk}t>T is nonincreasing. Note that the
sequence is bounded from below because the feasible region of (5.27) is
bounded. This implies that limt→+∞ x̄tk := 	 exists. Therefore there exists
some iteration t̄ > T such that x̄t̄k =
	�+f , where 	−
	� ≤ f < 1. Observe
that f > 0, otherwise 	 is integer and x̄tk = 	 for all t ≥ t̄, contradicting
the choice of k. Since x̄t̄i = x̄i is integer for i = 0, . . . , k − 1, while x̄tk /∈ Z,
it follows that at Step 3 the procedure generates the cut (5.29) from the
tableau row relative to xk, namely

xk +
∑
j∈N

ākj�xj ≤
	�. (5.30)

If k = 0, then ākj ≥ 0 for every j ∈ N , since B is lexicographically
optimal. In particular (5.30) implies the inequality x0 ≤
	�. It follows
that, for every t ≥ t̄+ 1, xt0 ≤
	�, thus 	 is integer and xt0 = 	 for all t > t̄.

216 CHAPTER 5. SPLIT AND GOMORY INEQUALITIES

Assume k ≥ 1. Since B is a lexicographically optimal basis, for every
j ∈ N such that ākj < 0 there exists h ∈ {0} ∪ B, such that h < k and
āhj > 0. One can then easily determine numbers δi ≥ 0, i ∈ {0} ∪ (B ∩
{1, . . . , k − 1}), such that, for all j ∈ N ,

αj :=
k−1∑
i=0

i∈B∪{0}

δiāij +
ākj� ≥ 0.

If we let δi := 0 for all i ∈ N ∩ {1, . . . , k − 1}, (5.30) is equivalent to

k−1∑
i=0

δixi + xk +
∑
j∈N

αjxj ≤
	�+
k−1∑
i=0

δix̄i.

Since x̄ti = x̄i for every t ≥ t̄+ 1, i = 0, . . . , k − 1, it follows from the above
inequality and the fact that αj ≥ 0 for all j ∈ N that x̄tk ≤
	� for all
t ≥ t̄ + 1. Thus 	 must be integer and x̄tk = 	 for every t ≥ t̄ + 1. This
contradicts the choice of k.

One can infer from Example 5.11 that, for the mixed integer case, finite
convergence cannot be established for any cutting plane method based on
Gomory’s mixed integer inequalities. However, if we modify the algorithm
outlined in this section in a straightforward fashion by using the Gomory
mixed integer cuts described in Sect. 5.1.4 (see also Sect. 5.3) instead of the
Gomory fractional cuts, the same arguments as in the proof of Theorem 5.19
can be used to prove finite convergence if the objective function depends
only on the integer variables, or more generally if we can assume that the
objective function value x0 is integer.

5.3 Gomory’s Mixed Integer Cuts

Gomory generalized his fractional cuts to handle mixed integer linear pro-
grams [176]. These cuts have become known as the Gomory mixed integer
cuts.

Consider a rational polyhedron P := {x ∈ R
n
+ : Ax = b} defined by a

system of linear equations in nonnegative variables. Given I ⊆ {1, . . . , n},
let S := P ∩ {x : xj ∈ Z, j ∈ I} be a mixed integer set. As usual let
C = {1, . . . , n} \ I.

5.3. GOMORY’S MIXED INTEGER CUTS 217

Let B be a feasible basis of the system Ax = b, x ≥ 0. The tableau
associated with B is of the form

xi +
∑
j∈N

āijxj = b̄i, i ∈ B.

The basic solution associated with such a tableau is x∗i = b̄i, i ∈ B, x∗j = 0,

j ∈ N . This vector belongs to S if and only if b̄i ∈ Z for all i ∈ B ∩ I.
If not, consider an index i ∈ BI such that f0 := b̄i −
b̄i� > 0, and let
fj := aij −
aij� for all j ∈ N . The Gomory mixed integer inequality (5.13)
derived from the tableau equation relative to xi is

∑
j∈N∩I
fj≤f0

fj
f0

xj +
∑

j∈N∩I
fj>f0

1− fj
1− f0

xj +
∑

j∈N∩C
āij≥0

āij
f0

xj −
∑

j∈N∩C
āij<0

āij
1− f0

xj ≥ 1. (5.31)

Clearly the above inequality cuts off the basic solution x∗ defined by B,
since x∗j = 0 for all j ∈ N .

Remark 5.20. For pure integer sets (i.e., C = ∅), the Gomory mixed

integer cut (5.31) dominates the Gomory fractional cut (5.25), because
fj
f0

>
1−fj
1−f0

whenever fj > f0.

Example 5.21. Consider the following pure integer programming problem,
which we solved in Sect. 1.2.2 using Gomory fractional cuts.

max z = 5.5x1+2.1x2
−x1+ x2 ≤ 2
8x1+ 2x2 ≤ 17
x1, x2 ≥ 0
x1, x2 integer.

We first add slack variables x3 and x4 to turn the inequality constraints into
equalities. The problem becomes:

z −5.5x1 −2.1x2 = 0
−x1 +x2 +x3 = 2
8x1 +2x2 +x4 = 17
x1, x2, x3, x4 ≥ 0 integer.

218 CHAPTER 5. SPLIT AND GOMORY INEQUALITIES

Solving the linear programming relaxation, we get the optimal tableau:

z +0.58x3 +0.76x4 = 14.08
x2 +0.8x3 +0.1x4 = 3.3

x1 −0.2x3 +0.1x4 = 1.3
x1, x2, x3, x4 ≥ 0.

The corresponding basic solution is x∗3 = x∗4 = 0, x∗1 = 1.3, x∗2 = 3.3 and
z∗ = 14.08. This solution is not integer. Let us generate the Gomory mixed
integer cut corresponding to the equation

x2 + 0.8x3 + 0.1x4 = 3.3

found in the above optimal tableau. We have f0 = 0.3, f3 = 0.8 and f4 = 0.1.
Applying formula (5.31), we get the Gomory mixed integer cut

1− 0.8

1− 0.3
x3 +

0.1

0.3
x4 ≥ 1, i.e. 6x3 + 7x4 ≥ 21.

We could also generate a Gomory mixed integer cut from the other equation
in the final tableau x1 − 0.2x3 +0.1x4 = 1.3. It turns out that, in this case,
we get exactly the same Gomory mixed integer cut.

Since x3 = 2+x1−x2 and x4 = 17−8x1−2x2, we can express the above
Gomory mixed integer cut in the space (x1, x2). This yields

5x1 + 2x2 ≤ 11.

1.3

GMI cut

0.5

2

3

x2

x1

x∗

Figure 5.5: Formulation strengthened by a Gomory mixed integer cut

Adding this cut to the linear programming relaxation, we get the follow-
ing formulation (see Fig. 5.5).

max z = 5.5x1 + 2.1x2
−x1 + x2 ≤ 2
8x1 + 2x2 ≤ 17
5x1 + 2x2 ≤ 11
x1, x2 ≥ 0.

5.3. GOMORY’S MIXED INTEGER CUTS 219

Note that the Gomory mixed integer cut 5x1+2x2 ≤ 11 is stronger than
the Gomory fractional cut x2 ≤ 3 generated from the same row (recall the
solution of our example in Sect. 1.2.2). This is not surprising since, as noted
in Remark 5.20, Gomory mixed integer cuts are always at least as strong as
the fractional cuts generated from the same rows.

Solving the linear programming relaxation, we get the optimal tableau:

z +1/12x4 +29/30x5 = 12.05
x3 +7/6x4 −5/3x5 = 3.5

x1 +1/3x4 −1/3x5 = 2
x2 −5/6x4 +4/3x5 = 0.5

x1, x2, x3, x4, x5 ≥ 0.

The equation
x3 + 7/6x4 − 5/3x5 = 3.5

found in the above tableau produces the following Gomory mixed integer cut.

1/6

0.5
x4 +

1/3

0.5
x5 ≥ 1, i.e. x4 + 2x5 ≥ 3.

Expressing this cut in the original variables x1, x2 we get the inequality

3x1 + x2 ≤ 6.

Adding this inequality and resolving the linear relaxation, we find the
basic solution x1 = 1, x2 = 3 and z = 11.8. Since x1 and x2 are integer, this
is the optimal solution to the integer program. �

Implementing Gomory’s Mixed Integer Cuts

Gomory presented his results on fractional cuts in 1958 and it had an enor-
mous immediate impact: reducing integer linear programming to a sequence
of linear programs was a great theoretical breakthrough. However, when
Gomory programmed his fractional cutting plane algorithm later that year,
he was disappointed by the computational results. Convergence was often
very slow.

Gomory [176] extended his approach to mixed integer linear programs in
1960, inventing the Gomory mixed integer cuts. Three years later, in 1963,
Gomory [177] states that these cuts were “almost completely computation-
ally untested.” Surprisingly this statement was still true three decades later!
During that period, the general view was that the Gomory cuts are mathe-
matically elegant but impractical, even though there was scant evidence in

220 CHAPTER 5. SPLIT AND GOMORY INEQUALITIES

the literature to justify this negative attitude. Gomory’s mixed integer cuts
were revived in 1996 [30], based on an implementation that added several
cuts from the optimal simplex tableau at a time (instead of just one cut,
as tried by Gomory when testing fractional cuts), reoptimized the resulting
strengthened linear program, performed a few rounds of such cut generation,
and incorporated this procedure in a branch-and-cut framework (instead of
applying a pure cutting plane approach as Gomory had done). Incorporated
in this way, Gomory’s mixed integer cuts became an attractive component
of integer programming solvers. In addition, linear programming solvers had
become more stable by the 1990s.

Commercial integer programming solvers, such as Cplex, started incor-
porating the Gomory mixed integer cuts in 1999. Bixby et al. [57] give a
fascinating account of the evolution of the Cplex solver. They view 1999 as
the transition year from the “old generation” of Cplex to the “new genera-
tion.” Their paper lists some of the key features in a 2002 “new generation”
solver and compares the speedup in computing time obtained by enabling
one feature versus disabling it, while keeping everything else unchanged.
The average speedups obtained for each feature on a set of 106 instances are
summarized in the next table (we refer the reader to [57] for information on
the choice of the test set).

Feature Speedup factor

Cuts 54
Preprocessing 11
Branching variable selection 3
Heuristics 1.5

The clear winner in these tests was cutting planes. Eight types of cutting
planes were implemented in Cplex in 2002. Performing a similar experiment,
disabling only one of the cut generators at a time, they obtained the following
speedups in computing time.

Cut type Speedup factor

Gomory mixed integer 2.5
Mixed integer rounding 1.8
Knapsack cover 1.4
Flow cover 1.2
Implied bounds 1.2
Path 1.04
Clique 1.02
GUB cover 1.02

5.3. GOMORY’S MIXED INTEGER CUTS 221

Even when all the other cutting planes are used in Cplex (2002 version),
the addition of Gomory mixed integer cuts by itself produces a solver that
is two and a half times faster! As Bixby and his co-authors conclude
“Gomory cuts are the clear winner by this measure.” In the above table,
the Gomory mixed integer cuts are those generated from rows of optimal
simplex tableaux. Note also the excellent performance of the mixed inte-
ger rounding inequalities. These are obtained using formula (5.16) where
the inequality (5.15) is obtained by aggregating the constraints in Ax ≤ b
using various heuristics. Knapsack cover and flow cover inequalities will be
presented in Chap. 7.

Note, however, that the textbook formulas for generating Gomory mixed
integer and mixed integer rounding cuts are not used directly in open-source
and commercial software that use finite numerical precision in the compu-
tations. These solvers perform additional steps to avoid the generation of
invalid cuts, and of cuts that could substantially slow down the solution
of the linear programs. These steps come in two flavors: some modify the
cut coefficients slightly while others simply discard the cut. We will discuss
briefly both types of steps, starting with the first type. Consider a bounded
variable xj with upper and lower bounds no greater than L in absolute value
(for example L = 104). When the coefficient of xj has a very small absolute
value (say below 10−12) in a Gomory mixed integer cut, such a coefficient
is set to 0 and the right-hand side of the cut is adjusted accordingly (using
the upper bound when the coefficient of xj is positive, and the lower bound
when it is negative). The resulting inequality is a slight weakening of the
Gomory mixed integer cut, but it is numerically more stable. For the sec-
ond issue, several parameters of a Gomory mixed integer cut are checked
before adding it to the formulation. One such parameter is the value of f in
formula (5.13): if f or 1− f is too small, the cut is discarded. A reasonable
cut off point is 10−2, i.e., only add Gomory mixed integer cuts for which
0.01 ≤ f ≤ 0.99. One also usually discards cuts that have too large a ratio
between the absolute values of the largest and smallest nonzero coefficients
(this ratio is sometimes called the dynamism of the cut). A reasonable rule
might be to discard Gomory mixed integer cuts with a dynamism in excess
of 106. Furthermore, in order to avoid fill-in of the basis inverse when solv-
ing the linear programming relaxations, one also discards cuts that are too
dense. The first two parameters help reduce the generation of invalid cuts
while the third helps solving the linear programs. A paper of Cook et al. [88]
addresses the issue of always rounding coefficients in the “right” direction

222 CHAPTER 5. SPLIT AND GOMORY INEQUALITIES

to keep valid cuts. Despite the various steps to make the Gomory mixed
integer cut generation safer, it should be clear that any integer programming
solver based on finite precision arithmetic will fail on some instances.

Another issue that has attracted attention but still needs further investi-
gation is the choice of the equations used to generate the Gomory mixed inte-
ger cuts: Gomory proposed to use the rows of the optimal simplex tableau
but other equations can also be used. Balas and Saxena [34], and Dash
et al. [107] showed that integer programming formulations can typically
be strengthened very significantly by generating Gomory cuts from a well
chosen set of equations. However, finding such a good family of equations
efficiently remains a challenge.

5.4 Lift-and-Project

In this section, we consider mixed 0,1 linear programs.
Given I ⊆ {1, . . . , n}, we consider a polyhedron P := {x ∈ R

n : Ax ≤ b}
which is contained in {x ∈ R

n : 0 ≤ xj ≤ 1, j ∈ I} and we let S := P ∩{x ∈
R
n : xj ∈ {0, 1}, j ∈ I}. Given j ∈ I, let

Pj := conv ((P ∩ {x ∈ R
n : xj = 0}) ∪ (P ∩ {x ∈ R

n : xj = 1})) .

Note that since 0 ≤ xj ≤ 1 are valid inequalities for P , the set Pj is the
convex hull of two faces of P (Fig. 5.6). A lift-and-project inequality is a
split inequality for P relative to some disjunction xj = 0 or xj = 1, j ∈ I.
That is, αx ≤ β is a lift-and-project inequality if and only if, for some j ∈ I,
it is valid for Pj .

The term lift-and-project refers to the description of Pj as the projec-
tion of a polyhedron in a “lifted” space, namely Pj is the projection of the
extended formulation (5.2) where π = ej and π0 = 0. The lift-and-project
closure of P is the set of points satisfying all lift-and-project inequalities,
that is

P lift :=
⋂
j∈I

Pj .

Since Pj is a polyhedron for all j ∈ I, it follows that P lift is a polyhedron as
well. Furthermore, it follows from the definition that P split ⊆ P lift.

5.4. LIFT-AND-PROJECT 223

P

Pj

xj

0 1

Figure 5.6: Pj

5.4.1 Lift-and-Project Rank for Mixed 0,1
Linear Programs

Unlike general mixed integer linear sets, for which the split rank might not be
finite as seen in Example 5.11, mixed 0, 1 linear sets have the nice property
that the convex hull can be obtained by iteratively adding lift-and-project
inequalities. Indeed, a much stronger property holds, that we describe here.

Given I ⊆ {1, . . . , n}, consider a polyhedron P contained in {x ∈ R
n :

0 ≤ xj ≤ 1, j ∈ I} and let S := P ∩ {x ∈ R
n : xj ∈ {0, 1}, j ∈ I}. Possibly

by permuting the indices, we assume I = {1, . . . , p} and, for t = 1, . . . , p,
define

(P)t := ((P1)2 . . .)t.

The next theorem shows that (P)p = conv(S). Since P split ⊆ P lift ⊆ (P)1,
this implies that the split rank and the lift-and-project rank of P are at
most equal to the number p of 0, 1 variables.

Theorem 5.22 (Sequential Convexification Theorem, Balas [24]). Let
I = {1, . . . , p}, and let P be a polyhedron contained in {x ∈ R

n : 0 ≤
xj ≤ 1, j ∈ I}. Then, for t = 1, . . . , p, (P)t = conv({x ∈ P : xj ∈
{0, 1}, j = 1, . . . , t}). In particular, (P)p = conv(S).

Proof. Let St := {x ∈ P : xj ∈ {0, 1}, j = 1, . . . , t}. We need to show
(P)t = conv(St) for t = 1, . . . , p. We prove this result by induction.
The result holds for t = 1 since (P)1 = P1 = conv(S1) where the sec-
ond equality follows from the definition of P1. Assume inductively that
(P)t−1 = conv(St−1). Then

224 CHAPTER 5. SPLIT AND GOMORY INEQUALITIES

(P)t = ((P)t−1)t
= conv

((
(P)t−1 ∩ {x ∈ Rn : xt = 0}

)
∪
(
(P)t−1 ∩ {x ∈ Rn : xt = 1}

))

= conv
((
conv(St−1) ∩ {x ∈ Rn : xt = 0}

)
∪
(
conv(St−1) ∩ {x ∈ Rn : xt = 1}

))
.

We will need the following claim.

Claim. Consider a set A ⊂ R
n and a hyperplane H := {x ∈ R

n : γx = γ0}
such that γx ≤ γ0 for every x ∈ A. Then conv(A) ∩H = conv(A ∩H).

Clearly conv(A∩H) ⊆ conv(A)∩H. To show conv(A)∩H ⊆ conv(A∩H),
consider x ∈ conv(A) ∩ H. Then x =

∑k
i=1 λix

i where xi ∈ A, λi > 0 for

i = 1, . . . k, and
∑k

i=1 λi = 1. Since xi ∈ A, we have γxi ≤ γ0. Since x ∈ H,
we have γx = γ0. This implies xi ∈ H. Therefore xi ∈ A ∩H, proving the
claim.

Applying the claim to the set St−1 and the hyperplanes {x ∈ R
n : xt = 0}

and {x ∈ R
n : xt = 1}, we obtain

(P)t=conv
((
conv(St−1 ∩ {x ∈ R

n : xt=0})) ∪ (
conv(St−1 ∩ {x ∈ R

n : xt=1}))).
For any two sets A,B, it follows from the characterization of convex hulls

that conv(conv(A) ∪ conv(B)) = conv(A ∪B). This implies

(P)t = conv
(
(St−1 ∩ {x ∈ R

n : xt = 0}) ∪ (St−1 ∩ {x ∈ R
n : xt = 1}))

= conv(St).

Theorem 5.22 does not extend to the general mixed integer case (see
Exercise 5.21).

Example 5.23. The purpose of this example is to show that the split rank
of mixed 0, 1 linear programs might indeed be as large as the number of
binary variables. The example is due to Cornuéjols and Li [94]. Consider
the following polytope, studied by Chvátal, Cook, and Hartmann [75]

P := {x ∈ [0, 1]n :
∑
j∈J

xj +
∑
j �∈J

(1− xj) ≥
1

2
, for all J ⊆ {1, 2, · · · , n}}.

Note that P ∩ {0, 1}n = ∅. We will show that the (n− 1)th split closure
Pn−1 of P is nonempty, implying that the split rank of P is n.

For j = 1, . . . , n, let Fj be the set of all vectors x ∈ R
n such that j

components of x are 1
2 and each of the remaining n − j components are in

{0, 1}. Note that F1 ⊆ P (indeed, P is the convex hull of F1). Let P
0 := P .

We will show that P k contains Fk+1, k = 0, . . . , n− 1. Thus, Pn−1 �= ∅.
We proceed by induction on k. The statement holds for k = 0, thus we

assume that k ≥ 1 and that Fk ⊆ P k−1. We need to show that, for every

5.4. LIFT-AND-PROJECT 225

split (π, π0) ∈ Z
n × Z, Fk+1 is contained in (P k−1)(π,π0). Let v ∈ Fk+1. We

show that v ∈ (P k−1)(π,π0). We assume that π0 < πv < π0 + 1, otherwise
v ∈ (P k−1)(π,π0) by definition. Since all fractional components of v equal 1

2 ,
it follows that πv = π0+

1
2 . This implies that there exists j ∈ {1, . . . , n} such

that vj =
1
2 and |πj | ≥ 1. Assume πj ≥ 1 and let v0, v1 ∈ R

n be equal to v
except for the jth component, which is 0 and 1 respectively. By construction
v0, v1 ∈ Fk, therefore v0, v1 ∈ P k−1. Observe that πv0 = πv − 1

2πj ≤ π0,

while πv1 = πv + 1
2πj ≥ π0 + 1. Thus v0, v1 ∈ (P k−1)(π,π0), which implies

that v ∈ (P k−1)(π,π0) since v = v0+v1

2 . If πj ≤ −1 the proof is identical, with
the roles of v0, v1 interchanged. �

In view of Example 5.11 showing that no bound may exist on the split
rank when the integer variables are not restricted to be 0,1, and Theorem
5.22 showing that the rank is always bounded when they are 0,1 valued,
one is tempted to convert general integer variables into 0,1 variables. For a
bounded integer variable 0 ≤ x ≤ u, there are several natural transforma-
tions:

(i) a binary expansion of x (see Owen and Mehrotra [295]);

(ii) x =
∑u

i=1 izi,
∑

zi ≤ 1, zi ∈ {0, 1} (see Sherali and Adams [331] and
Köppe et al. [241]);

(iii) x =
∑u

i=1 zi, zi ≤ zi−1, zi ∈ {0, 1} (see Roy [320] and Bonami and
Margot [61]).

More studies are needed to determine whether any practical benefit can
be gained from such transformations.

5.4.2 A Finite Cutting Plane Algorithm for Mixed 0, 1
Linear Programming

Theorem 5.22 implies that, for mixed 0, 1 linear programs, the convex hull of
the feasible solutions can be described by a finite number of lift-and-project
cuts. However, the result does not immediately provide a finite cutting plane
algorithm for this type of problems. Next we describe such an algorithm,
due to Balas et al. [29].

We assume that we are given mixed 0, 1 programming problems in the
form

max cx
Ax ≤ b
xj ∈ {0, 1} j ∈ I

(5.32)

226 CHAPTER 5. SPLIT AND GOMORY INEQUALITIES

where Ax ≤ b is a linear system of m constraints in n variables which
includes the constraints 0 ≤ xj ≤ 1, j ∈ I, and where I ⊆ {1, . . . , n}.

At each iteration we strengthen the formulation by introducing a lift-
and-project cut, until the optimal solution of the linear relaxation satisfies
the integrality conditions. We denote by Akx ≤ bk the system after intro-
ducing k cuts, where A0 = A and b0 = b, and we let P k := {x ∈ R

n :
Akx ≤ bk}. At iteration k, we compute an optimal solution x̄ for the linear
programming relaxation max{cx : x ∈ P k}. If x̄ does not satisfy the
integrality conditions, we select an index j ∈ I such that 0 < x̄j < 1 and a
suitable subsystem Ãx ≤ b̃ of the system Akx ≤ bk, and compute an optimal
basic solution (u1, u2) of the cut-generating linear program (5.8)

min (u1 − u2)b̃+ u2
b̃− Ãx̄

x̄j
(u1 − u2)Ã = ej

u1, u2 ≥ 0.

(5.33)

Let u := u1 − u2. The lift-and-project inequality

u1
b̃− Ãx

ub̃
+ u2

b̃− Ãx

1− ub̃
≥ 1 (5.34)

is added to the formulation Akx ≤ bk, and the process repeated.
For every j ∈ I, the cuts generated by solving (5.33) with respect to

index j are called j-cuts. In the remainder, we assume that I = {1, . . . , p}.
For any iteration k and for j = 1, . . . , p, let Ak,jx ≤ bk,j denote the

system of linear inequalities comprising Ax ≤ b and all the h-cuts of Akx ≤
bk for h = 1, . . . , j. We define Ak,0 := A, bk,0 := b. Let P k,j := {x : Ak,jx ≤
bk,j}, j = 0, . . . , p. Note that P k,0 = P and P k,p = P k.

Specialized Lift-and-Project Algorithm

Start with k := 0.

1. Compute an optimal basic solution x̄ of the linear program max{cx :
x ∈ P k}.

2. If x̄1, . . . , x̄p ∈ {0, 1}, then x̄ is optimal for (5.32). Otherwise

3. Let j ∈ I be the largest index such that 0 < x̄j < 1. Let Ã := Ak,j−1

and b̃ := bk,j−1.
Compute an optimal basic solution (u1, u2) to the linear program (5.33),
and add the j-cut (5.34) to Akx ≤ bk.

4. Set k := k + 1 and go to 1.

5.5. FURTHER READINGS 227

Theorem 5.24. The specialized lift-and-project algorithm terminates after
a finite number of iterations for every mixed 0, 1 linear program.

Proof. The proof is in two steps.

(i) We prove that, at each iteration k, the j-cut computed in Step 3 of the
algorithm cuts off the solution x̄ computed in Step 1. We first show
that x̄ is a vertex of P k,j. Let H := {x : xt = x̄t, t = j + 1, . . . , p}.
By the choice of j, x̄t ∈ {0, 1} for t = j + 1, . . . , p, thus P k ∩ H

is a face of P k. Let (P k,j)j+1,...,p := ((P k,j
j+1)j+2 . . .)p and observe

that (P k,j)j+1,...,p ⊆ P k ⊆ P k,j. By Theorem 5.22, (P k,j)j+1,...,p =
conv(P k,j∩{x : xt ∈ {0, 1}, t = j+1, . . . , p}), therefore (P k,j)j+1,...,p∩
H = P k ∩H = P k,j ∩H. Since x̄ is a vertex of P k, it follows that it is
a vertex of P k ∩H = P k,j ∩H, and thus it is a vertex of P k,j. Since
0 < x̄j < 1, x̄ is not a vertex of (P k,j−1)j . Given that x̄ is a vertex
of P k,j and that (P k,j−1)j ⊆ P k,j, it follows that x̄ �∈ (P k,j−1)j . Thus
the j-cut computed in Step 3 cuts off x̄.

(ii) We show that, for j = 1, . . . , p, the number of j-cuts generated is
finite. Observe that no cut can be generated twice, since by (i) at
every iteration we cut off at least one vertex of the current relaxation.
Inductively, it suffices to show that, for j = 1, . . . , p and an iteration
k̄ such that no h-cut with h ≤ j − 1 is added after iteration k̄, only a
finite number of j-cuts are added after iteration k̄. Indeed, for k ≥ k̄,
Ak,j−1 = Ak̄,j−1, thus every j-cut added after iteration k̄ corresponds
to a basic solution of the system uAk̄,j−1 = ej . Since there are only
a finite number of such vectors u, it follows that a finite number of
j-cuts are added after iteration k̄.

5.5 Further Readings

Balas’ work on disjunctive programming and the union of polyhedra [24]
provided the initial framework for studying split inequalities. Following
this point of view, the polyhedron P (π,π0) is first formulated in an extended
space and this extended formulation is then projected back onto the original
space. The approach of Sect. 5.1.1 is new, providing a linear description of
P (π,π0) directly in the original space, see Conforti et al. [83]. The proof
uses a necessary and sufficient condition for a point to be in P (π,π0), due to
Bonami [58].

This perspective on split inequalities is geometric. Earlier, Gomory
[176] had introduced mixed integer inequalities in a paper whose flavor is

228 CHAPTER 5. SPLIT AND GOMORY INEQUALITIES

mainly arithmetic. It turns out that the two notions are equivalent. This
equivalence was observed by Nemhauser and Wolsey [286] who also intro-
duced another equivalent notion, that of mixed integer rounding inequalities.

The term of split inequality was coined by Cook et al. [90]. They showed
that the split closure is a polyhedron. Simpler proofs were later given by
Andersen et al. [11], Vielma [346] and Dash et al. [107].

Event though, as seen in Example 5.11, mixed integer linear program-
ming formulations may have infinite split rank, Owen and Merhotra [294]
showed that, for polytopes, iteratively taking the split closure does yield
conv(S) in the limit. Del Pia and Weismantel [113] extended the result to
general rational polyhedra.

Chvátal’s paper [73] was very influential. In particular, the notion of
Chvátal rank has become a common approach to understanding formulations
for pure integer linear programs. Eisenbrand and Schulz [132] give bounds on
the Chvátal rank for 0,1 polytopes. Contrary to the lift-and-project and split
ranks, which are at most n for mixed 0,1 linear sets with n binary variables,
they show that the Chvátal rank can be greater than n. Chvátal et al.
[75] study the rank of classes of inequalities for combinatorial optimization
problems. Caprara and Fischetti [67] study {0, 12} Chvátal inequalities.

Cut-Generating Linear Programs and Normalizations

Given a polyhedron P := {x ∈ R
n : Ax ≤ b} where A is an m× n-matrix,

and a split (π, π0), let P
(π,π0) := conv(Π1 ∪Π2), where Π1 := P ∩{x : πx ≤

π0} and Π2 := P ∩ {x : −πx ≤ −(π0 + 1)}.
An inequality αx ≤ β is valid for P (π,π0) if and only if it is valid for

both Π1 and Π2. Hence assuming that both Π1 and Π2 are nonempty, by
Theorem 3.22, αx ≤ β is valid for P (π,π0) if and only if there exist u, v ∈ R

m

and u0, v0 ∈ R such that

α = uA+u0π = vA−v0π, β ≤ ub+u0π0, β ≤ vb−v0(π0+1), u, u0, v, v0 ≥ 0.
(5.35)

Let C be the set of points (α, β, u, u0, v, v0) satisfying (5.35). A given
point x̄ is in P (π,π0) if and only if the linear program

min{β − αx̄ : (α, β, u, u0, v, v0) ∈ C} (5.36)

admits a solution with negative value. Since C is a cone, the value of the
linear program (5.36) is either 0 or −∞. Hence a normalization is needed,
i.e., the addition of an inequality that guarantees that the above linear

5.5. FURTHER READINGS 229

program always has a finite optimum. Note that, if the inequality αx ≤ β
is not valid for P , then u0, v0 > 0, therefore a possible normalization is

u0 + v0 = 1

With the addition of this constraint, the linear program (5.36) is equivalent
to the linear program (5.8), see, e.g., [59].

One of the most widely used (and effective) truncation condition, called
the “standard normalization condition” is

u+ u0 + v + v0 = 1.

This latter condition was proposed in Balas [27]. The choice of the
normalization condition turns out to be crucial for an effective selection of
a “strong” disjunctive cut. This is discussed by Fischetti et al. [142].

Computations

On the computational front, the strength of the Chvátal closure has been
investigated on instances from the MIPLIB library [56] (a publicly available
library of integer programming instances originating from various applica-
tions). Based on pure instances from MIPLIB 3, Fischetti and Lodi [141]
found that the Chvátal closure closes around 63% of the integrality gap
on average (the integrality gap is the difference between the values of the
objective function when optimized over conv(S) and over P respectively).
A similar experiment was performed by Balas and Saxena [34] for the split
closure. They found that the split closure closes 72% of the integrality gap
on average on the MIPLIB instances. These experiments show that the
Chvátal and split closures are surprisingly strong. Recall however that op-
timizing over these closures is NP-hard. It is therefore not surprising that
both experiments were very computational intensive. Finding deep split
inequalities efficiently remains a challenging practical issue.

Gomory’s mixed integer cuts [177] from the optimal simplex tableau are
easy to compute and turn out to be surprisingly good in practice (Bixby
et al. [57]). On MIPLIB 3 instances, adding these cuts already reduces
the integrality gap by 24% on average [60]. Marchand and Wolsey [266]
implemented an aggregation heuristic to generate mixed integer rounding
cuts with excellent computational results. For example, on the MIPLIB 3
instances, the Marchand–Wolsey aggregation heuristic (as available in the
COIN-OR repository) reduces the integrality gap by 23% on average [60].

The term lift-and-project was coined by Balas et al. [29]. Balas and
Jeroslow [31] show how to strengthen a lift-and-project inequality in the

230 CHAPTER 5. SPLIT AND GOMORY INEQUALITIES

manner described in Sect. 5.1.4. Balas and Perregaard [32] showed how to
generate lift-and-project inequalities directly in the space of the original vari-
ables: starting from a Gomory mixed integer cut from the optimal tableau,
a deeper lift-and-project cut can then be obtained by pivoting. Balas and
Bonami [28] made this cut available through an open-source implementation.

5.6 Exercises

Exercise 5.1. Consider S1, S2 ⊆ R
n
+. For i = 1, 2, let

∑n
j=1 α

i
jxj ≤ αi

0 be

a valid inequality for Si. Prove that
∑n

j=1min(α1
j , α

2
j)xj ≤ max(α1

0, α
2
0) is a

valid inequality for S1 ∪ S2.

Exercise 5.2. Let Π1 and Π2 be defined as in (5.1). Assume Π1 and Π2

have n1
k and n2

k faces of dimension k respectively, for k = 1, . . . , n + p − 2.
Give an upper bound on the number of facets of conv(Π1 ∪ Π2). Can you
construct a family of polyhedra P with m constraints such that the number
of facets of conv(Π1 ∪Π2) grows more than linearly with m?

Exercise 5.3. Let P := {(x1, x2, y) ∈ R
3 : x1 ≥ y, x2 ≥ y, x1+x2+2y ≤ 2,

y ≥ 0} and S := P ∩ (Z2 × R). Prove that x1 ≥ 3y and x2 ≥ 3y are split
inequalities.

Exercise 5.4. Let P := {(x1, x2, y) ∈ R
3 : x1 ≥ y, x2 ≥ y, x1+x2+2y ≤ 2,

y ≥ 0} and S := P ∩ (Z2 × R). Prove that P split = {(x1, x2, y) ∈ R
3 : x1 ≥

3y, x2 ≥ 3y, x1 + x2 + 2y ≤ 2, y ≥ 0}.

Exercise 5.5. Let P = {x ∈ R
n
+ : Ax = b} and let αx = β be a linear

combination of the equations in Ax = b. Derive explicitly the Gomory
mixed integer inequality (5.13) using the mixed integer rounding procedure
explained in Sect. 5.1.5.

Exercise 5.6. Let c ∈ R
n, g ∈ R

p, b ∈ R and S := {(x, y) ∈ Z
n × R

p :
cx+ gy ≤ b+αxk, cx+ gy ≤ b+ β(1− xk)} where 1 ≤ k ≤ n and α, β > 0.
Prove that cx+ gy ≤ b is a mixed integer rounding inequality for S.

Exercise 5.7. Let P := {(x, y) ∈ R
2 : 2x ≥ y, 2x + y ≤ 2, y ≥ 0} and

S := P ∩ (Z× R). Show that conv(S) �= P and that the Chvátal closure of
P is P itself.

Exercise 5.8. Let (a1, . . . , an) ∈ Z
n \ {0}, b ∈ R and S := {x ∈ Z

n :∑n
j=1 ajxj ≤ b}. Show that conv(S) = {x ∈ R

n :
∑n

j=1
aj
k xj ≤
 b

k �} where
k is the greatest common divisor of a1, . . . , an.

5.6. EXERCISES 231

Exercise 5.9. Given a ∈ Z
n, g ∈ R

p, b ∈ R, let S = {(x, y) ∈ Z
n × R

p :
ax+ gy ≤ b}. Give a perfect formulation for conv(S).

Exercise 5.10. Let S := {(x, y) ∈ Z
n × R

p
+ :

∑n
j=1 ajxj+

∑p
j=1 gjyj ≤ b}

where a1, . . . , an ∈ Z are not all equal to 0 and are relatively prime, g1, . . . ,
gp ∈ R and b ∈ R \Z. Let f := b−
b� and J− := {j ∈ {1, . . . , p} : gj < 0}.

1. Prove that the inequality
∑n

j=1
aj�xj + 1
1−f

∑
j∈J− gjyj ≤
b� is a

valid for S.

2. Prove that the above inequality defines a facet of conv(S).

Exercise 5.11. Let B ⊆ {1, . . . , n + t} be a feasible basis of (5.27). Prove
that, if B is a lexicographically optimal basis, then the basic solution
(x̄0, . . . , x̄n+t) associated with B is the lexicographically largest feasible
solution for (5.27). Prove that, if a lexicographically optimal basis exists, it
can be computed with the simplex algorithm.

Exercise 5.12. Consider a pure integer program. Suppose that Gomory
fractional cuts are added in an iterative fashion as outlined after Eq. (5.25).
Furthermore assume that Rules 1–3 of the Gomory’s lexicographic cutting
plane method are applied periodically, at iterations k, 2k, . . . , pk, . . . where
k is a positive integer. Prove that such a cutting plane method terminates
in a finite number of iterations.

Exercise 5.13. Consider a mixed integer linear program where the objec-
tive function value is integer. Modify Gomory’s lexicographic cutting plane
method in a straightforward fashion by using the Gomory mixed integer
cuts instead of the Gomory fractional cuts. Prove that such a cutting plane
method terminates in a finite number of iterations.

Exercise 5.14.

1. Let a1, . . . , an ∈ Q, b ∈ Q+ \ Z, and S := {x ∈ Z
n
+ :

∑n
j=1 ajxj = b}.

Show that
∑

j∈J xj ≥ 1 is a valid inequality for S where J := {j ∈
{1, . . . , n} : aj �∈ Z}.

2. For a pure integer program, consider a lexicographic cutting plane
algorithm based on the above cuts instead of the Gomory fractional
cuts. Prove that such a cutting plane method terminates in a finite
number of iterations.

232 CHAPTER 5. SPLIT AND GOMORY INEQUALITIES

Exercise 5.15. Consider the following mixed integer linear program

z = max 7x1 +5x2 +x3 +y1
x1 +3x2 +4y1 +y2 = 11

5x1 +x2 +3x3 +y3 = 12
2x3 +2y1 −y4 = 3

x1, x2, x3 ∈ Z+

y1, y2, y3, y4 ∈ R+.

The optimal tableau of the linear programming relaxation is:

z +0.357x3 +1.286y2 +1.143y3 +2.071y4 = 21.643
x1 +0.786x3 −0.071y2 +0.214y3 −0.143y4 = 2.214
x2 −0.929x3 +0.357y2 −0.071y3 +0.714y4 = 0.929
y1 +0.500x3 −0.500y4 = 1.500

1. The optimal linear programming solution is x1 = 2.214, x2 = 0.929,
y1 = 1.5 and x3 = y2 = y3 = y4 = 0. Use the equations where x1 and
x2 are basic to derive two Gomory mixed integer inequalities that cut
off this fractional solution.

2. The coefficients in the above optimal simplex tableau are rounded to
three decimals. Discuss how this may affect the validity of the Gomory
mixed integer inequalities you generated above.

Exercise 5.16. Assume that P := {x ∈ R
n : Ax ≤ b} is a rational

polyhedron and S := P ∩(ZI×R
C) is a mixed integer set. Define a restricted

Chvátal inequality as in (5.18) with the additional condition that u < 1.
Prove or disprove that PCh is the intersection of P with all restricted Chvátal
inequalities.

Exercise 5.17. Let P = {x ∈ R
n : Ax ≤ b} where Ax ≤ b is a TDI system,

and let S = P ∩ Z
n. Show that PCh = {x ∈ R

n : Ax ≤
b�}.

Exercise 5.18. Let C = {x ∈ R
n : Ax = 0, x ≥ 0} where A be an integral

matrix. Let Δ be the largest among the absolute values of the determinants
of the square submatrices of A. Show that the extreme rays r1, . . . , rq of C
can be chosen to be integral vectors satisfying −Δ1 ≤ rt ≤ Δ1, 1 ≤ t ≤ q.

Exercise 5.19. Consider P := {x ∈ R
n
+ : xi+xj ≤ 1 for all 1 ≤ i < j ≤ n},

and let S = P ∩ {0, 1}n.

1. Show that the inequality
∑n

j=1 xj ≤ 1 has Chvátal rank k ≥
log2 n�
for n ≥ 3.

2. Find an upper bound on the Chvátal rank of the inequality
∑n

j=1 xj≤1.

5.6. EXERCISES 233

Exercise 5.20. Given a positive integer t, consider P := {x ∈ R
2 : tx1 +

x2 ≤ 1+ t, −tx1+x2 ≤ 1} and S := P ∩Z
2. Show that P has Chvátal rank

at least t.

Exercise 5.21. Show that the sequential convexification theorem does
not extend to 0, 1, 2 variables. Specifically, consider P := {x ∈ R

n+p
+ :

Ax ≥ b} and S := {x ∈ {0, 1, 2}n × R
p
+ : Ax ≥ b}. Let Pj := conv

((P ∩ {xj = 0}) ∪ (P ∩ {xj = 1}) ∪ (P ∩ {xj = 2})) for j ≤ n. Give an

example where (P1)2 �= conv({x ∈ {0, 1, 2}2 × R
n−2+p
+ : Ax ≥ b}).

Do we always have (P1)2 = (P2)1?

Exercise 5.22. Consider a pure integer set S := P ∩ Z
n where P := {x ∈

R
n : Ax ≤ b} is a rational polyhedron. Define the two-side-split closure

S1 of P as the intersection of all split inequalities that are not one-side
split inequalities, i.e., they are obtained from split disjunctions πx ≤ π0 or
πx ≥ π0 + 1 such that both Π1 := P ∩ {x : πx ≤ π0} and Π2 := P ∩ {x :
πx ≥ π0+1} are nonempty. We can iterate the closure process to obtain the
tth two-side-split closure St for t ≥ 2 integer, by taking the two-side-split
closure of St−1. Using the following example, show that there is in general
no finite k such that Sk = conv(S).

S := P ∩ Z
2 where P := {x ∈ R

2 : x1 ≥ 0, x2,≥ 0, x2 ≤ 1 + 1
4x1, x1 ≤

1 + 1
4x2}.

Exercise 5.23. Show that the lift-and-project closure is strictly contained
in P whenever P �= conv(S).

Exercise 5.24. For the following two choices of polytope P ⊆ R
2 and

corresponding S = P ∩{0, 1}2, compute the lift-and-project and the Chvátal
closures. In each case, determine which closure gives the tighter relaxation.

1. P := {x ∈ [0, 1]2 : 2x1 + 2x2 ≤ 3}

2. P := {x ∈ [0, 1]2 : 2x1 + x2 ≤ 2, x2 ≤ 2x1}.

Exercise 5.25. Let P ⊆ R
n be a polyhedron and let S := P ∩ ({0, 1}p ×

R
n−p). Show that the kth lift-and-project closure of P is the set

⋂
J⊆{1,...,p}

|J |=k

conv{x ∈ P : xj ∈ {0, 1} for j ∈ J}.

234 CHAPTER 5. SPLIT AND GOMORY INEQUALITIES

Exercise 5.26. Consider the polytope P :={x ∈ R
n
+ : xi+xj ≤ 1 for all 1 ≤

i < j ≤ n} and S := P ∩ {0, 1}n. Show that the kth lift-and-project closure
of P is equal to

{x ∈ R
n
+ :

∑
j∈J

xj ≤ 1 for all J such that |J | = k + 2}.

The authors taking a break

Chapter 6

Intersection Cuts and Corner
Polyhedra

In this chapter, we present two classical points of view for approximating a
mixed integer linear set: Gomory’s corner polyhedron and Balas’ intersection
cuts. It turns out that they are equivalent: the nontrivial valid inequalities
for the corner polyhedron are exactly the intersection cuts. Within this
framework, we stress two ideas: the best possible intersection cuts are gen-
erated from maximal lattice-free convex sets, and formulas for these cuts
can be interpreted using the so-called infinite relaxation.

6.1 Corner Polyhedron

We consider a mixed integer linear set defined by the following constraints

Ax = b
xj ∈ Z for j = 1, . . . , p
xj ≥ 0 for j = 1, . . . , n

(6.1)

where p ≤ n, A ∈ Q
m×n and b ∈ Q

m is a column vector. We assume
that the matrix A has full row rank m. Given a feasible basis B, let N :=
{1, . . . , n}\B index the nonbasic variables. We rewrite the system Ax = b as

xi = b̄i −
∑

j∈N āijxj for i ∈ B (6.2)

where b̄i ≥ 0, i ∈ B. The corresponding basic solution is x̄i = b̄i,
i ∈ B, x̄j = 0, j ∈ N . If b̄i ∈ Z for all i ∈ B ∩ {1, . . . , p}, then x̄ is a
feasible solution to (6.1).

© Springer International Publishing Switzerland 2014
M. Conforti et al., Integer Programming, Graduate Texts
in Mathematics 271, DOI 10.1007/978-3-319-11008-0 6

235

236 CHAPTER 6. INTERSECTION CUTS AND CORNER

If this is not the case, we address the problem of finding valid inequal-
ities for the set (6.1) that are violated by the point x̄. Typically, x̄ is an
optimal solution of the linear programming relaxation of a mixed integer
linear program having (6.1) as feasible set.

The key idea is to work with the corner polyhedron introduced by Gomory
[178], which is obtained from (6.1) by dropping the nonnegativity restriction
on all the basic variables xi, i ∈ B. Note that in this relaxation we can drop
the constraints xi = b̄i −

∑
j∈N āijxj for all i ∈ B ∩ {p + 1, . . . , n} because

these variables xi are continuous and they only appear in one equation and
no other constraint (recall that we dropped the nonnegativity constraint on
these variables). Therefore from now on we assume that all basic variables
in (6.2) are integer variables, i.e., B ⊆ {1, . . . , p}.

Under this assumption, the relaxation of (6.1) introduced by Gomory is

xi = b̄i −
∑

j∈N āijxj for i ∈ B

xi ∈ Z for i = 1, . . . , p
xj ≥ 0 for j ∈ N.

(6.3)

The convex hull of the feasible solutions to (6.3) is called the corner
polyhedron relative to the basis B and it is denoted by corner(B) (Fig. 6.1).
Any valid inequality for the corner polyhedron is valid for the set (6.1).

b̄

P(B)

corner(B)

Figure 6.1: Corner polyhedron viewed in the space of the basic variables

Let P (B) be the linear relaxation of (6.3). P (B) is a polyhedron whose
vertices and extreme rays are simple to describe, a property that will be
useful in generating valid inequalities for corner(B). Indeed, the point x̄
defined by x̄i = b̄i, for i ∈ B, x̄j = 0, for j ∈ N , is the unique vertex
of P (B). In particular P (B) is a translate of its recession cone, that is
P (B) = {x̄} + rec(P (B)). The recession cone of P (B) is defined by the
following linear system.

6.1. CORNER POLYHEDRON 237

xi = −
∑

j∈N āijxj for i ∈ B

xj ≥ 0 for j ∈ N.

Since the projection of this cone onto R
N is defined by the inequalities

xj ≥ 0, j ∈ N , and the variables xi, i ∈ B, are defined by the above
equations, its extreme rays are the vectors satisfying at equality all but one
of the nonnegativity constraints. Thus there are |N | extreme rays, r̄j for
j ∈ N , defined by

r̄jh =

⎧⎨
⎩

−āhj if h ∈ B,
1 if h = j,
0 if h ∈ N \ {j}.

(6.4)

Remark 6.1. The vectors r̄j, j ∈ N , are linearly independent. Hence
P (B) is an |N |-dimensional polyhedron whose affine hull is defined by the
equations xi = b̄i −

∑
j∈N āijxj for i ∈ B.

The rationality assumption of the matrix A will be used in the proof of
the next lemma.

Lemma 6.2. If the affine hull of P (B) contains a point in Z
p×R

n−p, then
corner(B) is an |N |-dimensional polyhedron. Otherwise corner(B) is empty.

Proof. Since corner(B) is contained in the affine hull of P (B), corner(B) is
empty when the affine hull of P (B) contains no point in Z

p × R
n−p.

Next we assume that the affine hull of P (B) contains a point in Z
p×R

n−p,
and we show that corner(B) is an |N |-dimensional polyhedron. We first show
that corner(B) is nonempty.

Let x′ ∈ Z
p × R

n−p belong to the affine hull of P (B). By Remark 6.1
x′i = b̄i −

∑
j∈N āijx

′
j for i ∈ B.

Let N− := {j ∈ N : x′j < 0}. If N− is empty, then x′ ∈ corner(B). Let

D ∈ Z+ be such that Dāij ∈ Z for all i ∈ B and j ∈ N−. Define the point
x′′ as follows

x′′j := x′j , j ∈ N \N−; x′′j := x′j −Dx
′
j

D
�, j ∈ N−; x′′i := b̄i −

∑
j∈N

āijx
′′
j , i ∈ B.

By construction, x′′j ≥ 0 for all j ∈ N and x′′i is integer for i = 1, . . . , p. Since

x′′ satisfies x′′i = b̄i−
∑

j∈N āijx
′′
j , x

′′ belongs to corner(B). This shows that
corner(B) is nonempty.

The recession cones of P (B) and corner(B) coincide by Theorem 4.30,
because P (B) is a rational polyhedron. By Remark 6.1, this implies that
the dimension of corner(B) is |N |.

238 CHAPTER 6. INTERSECTION CUTS AND CORNER

Example 6.3. Consider the pure integer program

max 1
2x2 + x3

x1 + x2 + x3 ≤ 2
x1 − 1

2x3 ≥ 0
x2 − 1

2x3 ≥ 0
x1 +

1
2x3 ≤ 1

−x1 + x2 + x3 ≤ 1
x1, x2, x3 ∈ Z

x1, x2, x3 ≥ 0.

(6.5)

This problem has four feasible solutions (0, 0, 0), (1, 0, 0), (0, 1, 0), and
(1, 1, 0), all satisfying x3 = 0. These four points are shown in the (x1, x2)-
space in Fig. 6.2.

We first write the problem in standard form (6.1) by introducing contin-
uous slack or surplus variables x4, . . . , x8. Solving the linear programming
relaxation, we obtain

x1 = 1
2 +1

4x6 −3
4x7 +1

4x8
x2 = 1

2 +3
4x6 −1

4x7 −1
4x8

x3 = 1 −1
2x6 −1

2x7 −1
2x8

x4 = 0 −1
2x6 +3

2x7 +1
2x8

x5 = 0 +1
2x6 −1

2x7 +1
2x8

The optimal basic solution is x1 = x2 =
1
2 , x3 = 1, x4 = . . . = x8 = 0.

Relaxing the nonnegativity of the basic variables and dropping the two
constraints relative to the continuous basic variables x4 and x5, we obtain
the following realization of formulation (6.3) for this example:

x1 = 1
2 +1

4x6 −3
4x7 +1

4x8
x2 = 1

2 +3
4x6 −1

4x7 −1
4x8

x3 = 1 −1
2x6 −1

2x7 −1
2x8

x1, x2, x3 ∈ Z

x6, x7, x8 ≥ 0.

(6.6)

Let P (B) be the linear relaxation of (6.6). The projection of P (B) in
the space of original variables x1, x2, x3 is a polyhedron with unique vertex
b̄ = (12 ,

1
2 , 1). The extreme rays of its recession cone are v1 = (12 ,

3
2 ,−1),

v2 = (−3
2 ,−

1
2 ,−1) and v3 = (12 ,−

1
2 ,−1). In Fig. 6.2, the shaded region

(both light and dark) is the intersection of P (B) with the plane x3 = 0.
The last equation in (6.6) and the facts that x6 + x7 + x8 > 0 and

x3 ∈ Z in every solution of (6.6) imply that x3 ≤ 0 is a valid inequality for

6.1. CORNER POLYHEDRON 239

0 1

1

2

b̄

x1

x2

v1

v3

v2

Figure 6.2: Intersection of the corner polyhedron with the plane x3 = 0

corner(B). In fact, corner(B) is exactly the intersection of P (B) with x3 ≤ 0
since this later polyhedron has integral vertices and the same recession cone
as P (B). Therefore corner(B) is entirely defined by the inequalities x3 ≤ 0
and x6, x7, x8 ≥ 0. Equivalently, in the original (x1, x2, x3)-space, corner(B)
is entirely defined by x3 ≤ 0, x2− 1

2x3 ≥ 0, x1+
1
2x3 ≤ 1, −x1+x2+x3 ≤ 1.

In Fig. 6.2, the shaded region (both light and dark) is therefore also the
intersection of corner(B) with the plane x3 = 0.

Let P be the polyhedron defined by the inequalities of (6.5) that are
satisfied at equality by the point b̄ = (12 ,

1
2 , 1). The intersection of P with

the plane x3 = 0 is the dark shaded region in Fig. 6.2. Thus P is strictly
contained in P (B). �

Using the fact that every basic variable is a linear combination of nonba-
sic ones, note that every valid linear inequality for corner(B) can be written
in terms of the nonbasic variables xj for j ∈ N only, as

∑
j∈N γjxj ≥ δ.

We say that a valid inequality
∑

j∈N γjxj ≥ δ for corner(B) is trivial if it is
implied by the nonnegativity constraints xj ≥ 0, j ∈ N . This is the case if
and only if γj ≥ 0 for all j ∈ N and δ ≤ 0. A valid inequality is said to be
nontrivial otherwise.

Lemma 6.4. Assume corner(B) is nonempty. Every nontrivial valid ine-
quality for corner(B) can be written in the form

∑
j∈N γjxj ≥ 1 where γj ≥ 0

for all j ∈ N .

Proof. We already observed that every valid linear inequality for corner(B)
can be written as

∑
j∈N γjxj ≥ δ. We argue next that γj ≥ 0 for all j ∈ N .

Indeed, if γk < 0 for some k ∈ N , then consider r̄k defined in (6.4). We
have

∑
j∈N γj r̄

k
j = γk < 0, hence min{

∑
j∈N γjxj : x ∈ corner(B)} is

unbounded, because r̄k is in the recession cone of corner(B), contradicting
the fact that

∑
j∈N γjxj ≥ δ is valid for corner(B).

240 CHAPTER 6. INTERSECTION CUTS AND CORNER

If δ ≤ 0, the inequality
∑

j∈N γjxj ≥ δ is trivial since it is implied by
the nonnegativity constraints xj ≥ 0, j ∈ N . Hence δ > 0 and, up to
multiplying by δ−1, we may assume that δ = 1.

Since the variables xi, i ∈ B, are free integer variables, (6.3) can be
reformulated as follows:

∑
j∈N āijxj ≡ b̄i mod 1 for i ∈ B

xj ∈ Z for j ∈ {1, . . . , p} ∩N
xj ≥ 0 for j ∈ N.

(6.7)

This point of view was introduced by Gomory and extensively studied
by Gomory and Johnson. We will discuss it in Sect. 6.3.

6.2 Intersection Cuts

We describe a paradigm introduced by Balas [22] for constructing valid
inequalities for the corner polyhedron cutting off the basic solution x̄.

Consider a closed convex set C ⊆ R
n such that the interior of C contains

the point x̄. (Recall that x̄ belongs to the interior of C if C contains an
n-dimensional ball centered at x̄. This implies that C is full-dimensional).
Assume that the interior of C contains no point in Z

p×R
n−p. In particular

C does not contain any feasible point of (6.3) in its interior. For each of the
|N | extreme rays of corner(B), define

αj := max{α ≥ 0 : x̄+ αr̄j ∈ C}. (6.8)

Since x̄ is in the interior of C, αj > 0. When the half-line {x̄+αr̄j : α ≥ 0}
intersects the boundary of C, then αj is finite, the point x̄ + αj r̄

j belongs
to the boundary of C and the semi-open segment {x̄+ αr̄j, 0 ≤ α < αj} is
contained in the interior of C. When r̄j belongs to the recession cone of C,
we have αj = +∞. Define 1

+∞ := 0. The inequality

∑
j∈N

xj
αj

≥ 1 (6.9)

is the intersection cut defined by C for corner(B).

Theorem 6.5. Let C ⊂ R
n be a closed convex set whose interior contains

the point x̄ but no point in Z
p×R

n−p. The intersection cut (6.9) defined by
C is a valid inequality for corner(B).

6.2. INTERSECTION CUTS 241

Proof. The set of points of the linear relaxation P (B) of corner(B) that are
cut off by (6.9) is S := {x ∈ P (B) :

∑
j∈N

xj

αj
< 1}. We will show that S

is contained in the interior of C. Since the interior of C does not contain a
point in Z

p × R
n−p, the result will follow.

Consider polyhedron S̄ := {x ∈ P (B) :
∑

j∈N
xj

αj
≤ 1}. By Remark 6.1,

S̄ is a |N |-dimensional polyhedron with vertices x̄ and x̄+αj r̄
j for αj finite,

and extreme rays r̄j for αj = +∞. Since the vertices of S̄ that lie on the
hyperplane {x ∈ R

n :
∑

j∈N
xj

αj
= 1} are the points x̄ + αj r̄

j for αj finite,

every point in S can be expressed as a convex combination of points in the
segments {x̄ + αr̄j, 0 ≤ α < αj} for αj finite, plus a conic combination of
extreme rays r̄j, for αj = +∞. By the definition of αj , the interior of C
contains the segments {x̄+ αr̄j, 0 ≤ α < 1} when αj is finite, and the rays
r̄j belong to the recession cone of C when αj = +∞. Therefore, the set S
is contained in the interior of C.

The intersection cut has a simple geometric interpretation. Denoting the
interior of C by int(C), it follows that P (B) \ int(C) contains all points of
P (B) ∩ (Zp × R

n−p). If we define Q to be the closed convex hull of P (B) \
int(C), then corner(B) ⊆ Q. One can show that Q is also a polyhedron,
and indeed

Q = {x ∈ P (B) :
∑
j∈N

xj
αj

≥ 1},

where αj, j ∈ N , are defined as in (6.8) (see Exercise 6.6). In other words,
the intersection cut is the only inequality one needs to add to the description
of P (B) in order to obtain Q.

Note that Corollary 5.7 and Remark 5.8 imply that split inequalities are
a special case of intersection cuts, where the convex set C is of the form
C = {x : π0 ≤ πx ≤ π0 + 1} for some split (π, π0).

Consider two valid inequalities
∑

j∈N γjxj ≥ 1 and
∑

j∈N γ′jxj ≥ 1 for
corner(B). We say that the first inequality dominates the second if every
point x ∈ R

n
+ satisfying the second inequality also satisfies the first. Note

that
∑

j∈N γjxj ≥ 1 dominates
∑

j∈N γ′jxj ≥ 1 if and only if γj ≤ γ′j for all
j ∈ N .

Remark 6.6. Let C1, C2 be two closed convex sets whose interiors contain
x̄ but no point of Zp ×R

n−p. If C1 is contained in C2, then the intersection
cut defined by C2 dominates the intersection cut defined by C1.

A closed convex set C whose interior contains x̄ but no point of Zp×R
n−p

is maximal if C is not strictly contained in a closed convex set with the same

242 CHAPTER 6. INTERSECTION CUTS AND CORNER

properties. Any closed convex set whose interior contains x̄ but no point
of Zp × R

n−p is contained in a maximal such set [41]. This property and
Remark 6.6 imply that it is enough to consider intersection cuts defined
by maximal closed convex sets whose interior contains x̄ but no point of
Z
p × R

n−p.
A set K ⊂ R

p that contains no point of Zp in its interior is called Z
p-free

or lattice-free.

Remark 6.7. One way of constructing a closed convex set C whose interior
contains x̄ but no point of Zp × R

n−p is as follows. In the space R
p, con-

struct a Z
p-free closed convex set K whose interior contains the orthogonal

projection of x̄ onto R
p. The cylinder C = K ×R

n−p is a closed convex set
whose interior contains x̄ but no point of Zp × R

n−p.

Example 6.8. Consider the following 4-variable mixed integer linear set

x1 = b1 + a11y1 + a12y2
x2 = b2 + a21y1 + a22y2
x ∈ Z

2

y ≥ 0

(6.10)

where the rays r1 =

(
a11
a21

)
, r2 =

(
a12
a22

)
∈ R

2 are not collinear and

b =

(
b1
b2

)
/∈ Z

2.

r1

r2

K
b

x2

x1

p1

p2

intersection cut

r1

r2

b

x2

x1

p1

p2

intersection cutK

Figure 6.3: Intersection cuts determined by lattice-free convex sets

Figure 6.3 represents the projection of the feasible region of (6.10) in the
space of the variables x1, x2. The set of feasible points x ∈ R

2 for the linear
relaxation of (6.10) is the cone with apex b and extreme rays r1, r2. The
feasible points x ∈ Z

2 for (6.10) are represented by the black dots in this

6.2. INTERSECTION CUTS 243

cone. The shaded region represents the projection of the corner polyhedron
in the (x1, x2)-space. The figure depicts two examples of lattice-free convex
sets K ⊂ R

2 containing b in their interior, a disk in the left example and a
square that contains this disk on the right.

Because there are two nonbasic variables in this example, the intersection
cut can be represented by a line in the space of the basic variables, namely
the line passing through the intersection points p1, p2 of the boundary of K
with the half lines {b+ αr1 : α ≥ 0}, {b+ αr2 : α ≥ 0}.

The coefficients α1, α2 defining the intersection cut y1
α1

+ y2
α2

≥ 1 are

αj = ‖pj−b‖
‖rj‖ , j = 1, 2, using the definition of αj in (6.8). Note that the

intersection cut on the right dominates the one on the left, as observed in
Remark 6.6, because the lattice-free set on the right contains the one on the
left. �

Example 6.9. (Intersection Cut Defined by a Split)
Given π ∈ Z

p and π0 ∈ Z, let K := {x ∈ R
p : π0 ≤ πx ≤ π0 + 1}. The

set K is a Z
p-free convex set since either πx̄ ≤ π0 or πx̄ ≥ π0 + 1, for any

x̄ ∈ Z
p. Furthermore it is easy to verify that if the entries of π are relatively

prime, both hyperplanes {x ∈ R
p : πx = π0} and {x ∈ R

p : πx = π0 + 1}
contain points in Z

p (see Exercise 1.20). Therefore K is a maximal Zp-free
convex set in this case. Consider the cylinder C := K × R

n−p = {x ∈ R
n :

π0 ≤
∑p

j=1 πjxj ≤ π0+1}. Such a set C is called a split set. By Remark 6.7,

C is a convex set whose interior contains no point of Zp × R
n−p.

Given a corner polyhedron corner(B), let x̄ be the unique vertex of its
linear relaxation P (B). If x̄j �∈ Z for some j = 1, . . . , p, there exist π ∈ Z

p,
π0 ∈ Z such that π0 <

∑p
j=1 πj x̄j < π0 +1. Let πj := 0 for j = p+1, . . . , n.

Then the split set C defined above contains x̄ in its interior. We apply
formula (6.8) to C. Define ε := πx̄− π0. Since π0 < πx̄ < π0 + 1, we have
0 < ε < 1. Also, for j ∈ N , define scalars:

αj :=

⎧⎨
⎩

− ε
πr̄j

if πr̄j < 0,
1−ε
πr̄j

if πr̄j > 0,

+∞ otherwise,

(6.11)

where r̄j is defined in (6.4).
As observed earlier, the interpretation of αj is the following. Consider

the half-line x̄+ αr̄j , where α ≥ 0, starting from x̄ in the direction r̄j. The
value αj is the largest α ≥ 0 such that x̄ + αr̄j belongs to C. In other
words, when the above half-line intersects one of the hyperplanes πx = π0
or πx = π0 +1, this intersection point x̄+αj r̄

j defines αj (see Fig. 6.4) and

244 CHAPTER 6. INTERSECTION CUTS AND CORNER

πx ≥ π0 + 1

r̄2

x̄ + α1r̄
1

x̄πx ≤ π0

r̄1

x̄ + α2r̄
2

Figure 6.4: Intersection cut defined by a split set

when the direction r̄j is parallel to the hyperplane πx = π0, αj = +∞. The
intersection cut defined by the split set C is given by:

∑
j∈N

xj
αj

≥ 1. (6.12)

�

Example 6.10. (Gomory’s Mixed Integer Cuts from the Tableau)
We already mentioned that split cuts are intersection cuts. We can

interpret the formula of a Gomory mixed integer cut derived from a row of
the simplex tableau (6.2) in the context of an intersection cut defined by
a split set. The argument is as follows. Consider a simplex tableau (6.2),
the corresponding basic solution x̄, and the corner polyhedron corner(B)
described by the system (6.3). Let xi = b̄i−

∑
j∈N āijxj be an equation where

b̄i is fractional. Let f := b̄i−
b̄i� and fj := āij−
āij� for j ∈ N ∩{1, . . . , p}.
Define π0 :=
b̄i�, and for j = 1, . . . , p, define

πj :=

⎧⎪⎪⎨
⎪⎪⎩

āij� if j ∈ N and fj ≤ f,
�āij if j ∈ N and fj > f,

1 if j = i,
0 otherwise.

(6.13)

For j = p+ 1, . . . , n, define πj := 0. Note that π0 < πx̄ < π0 + 1.
Next we derive the intersection cut from the split set C := {x ∈ R

n :
π0 ≤ πx ≤ π0 + 1} following Example 6.9. We will compute αj for j ∈ N
using formula (6.11). To do this, we need to compute ε and πr̄j.

6.2. INTERSECTION CUTS 245

ε = πx̄− π0 =
∑
i∈B

πix̄i − π0 = x̄i −
x̄i� = f.

Let j ∈ N . Using (6.4) and (6.13), we get πr̄j =
∑

h∈N πhr̄
j
h+

∑
h∈B πhr̄

j
h =

πj r̄
j
j +πir̄

j
i because r̄jh = 0 for all h ∈ N \{j} and πh = 0 for all h ∈ B \{i}.

This gives us

πr̄j =

⎧⎨
⎩

āij� − āij = −fj if 1 ≤ j ≤ p and fj ≤ f,
�āij − āij = 1− fj if 1 ≤ j ≤ p and fj > f,

−āij if j ≥ p+ 1.
(6.14)

Now αj follows from formula (6.11). Therefore the intersection cut (6.12)
defined by the split set C is

∑
j∈N, j≤p

fj≤f

fj
f
xj +

∑
j∈N, j≤p

fj>f

1− fj
1− f

xj +
∑

p+1≤j≤n
āij>0

āij
f

xj −
∑

p+1≤j≤n
āij<0

āij
1− f

xj ≥ 1.

(6.15)

This is exactly the Gomory mixed integer cut (5.31).
The Gomory formula looks complicated, and it may help to think of it

as an inequality of the form

p∑
j=1

π(−āij)xj +
n∑

j=p+1

ψ(−āij)xj ≥ 1

where the functions π and ψ, associated with the integer and continuous
variables, respectively, are defined by

π(r) := min

{
r −
r�
1− f

,
1 +
r� − r)

f

}
, ψ(r) := max

{
r

1− f
,
−r

f

}
.

(6.16)

These two functions are illustration in Fig. 6.5. They produce the Go-
mory mixed integer cut. Section 6.3.3 studies properties that general func-
tions π and ψ must satisfy in order to produce valid inequalities for corner(B).
�

The next example shows that intersection cuts can be much stronger
than split inequalities.

Example 6.11. (Intersection Cuts Can Have an Arbitrarily Large Split
Rank)

We refer the reader to Sect. 5.1.3 for the definition of split rank of a
valid inequality. Consider the polytope P := {(x1, x2, y) ∈ R

3
+ : x1 ≥

246 CHAPTER 6. INTERSECTION CUTS AND CORNER

0

11

0

π(r)

r

ψ(r)

r

−f 1 − f −f 1 − f

Figure 6.5: Gomory functions

y, x2 ≥ y, x1 + x2 + 2y ≤ 2}, and let S := {(x1, x2, y) ∈ P : x1, x2 ∈ Z}.
Example 5.11 shows that the inequality y ≤ 0 does not have a finite split
rank. We show next that y ≤ 0 can be obtained as an intersection cut. By
adding slack or surplus variables, the system defining P is equivalent to

−x1 + y + s1 = 0

−x2 + y + s2 = 0

x1 + x2 + 2y + s3 = 2

x1, x2, y, s1, s2, s3 ≥ 0.

The tableau relative to the basis B defining the vertex x1 = 1
2 , x2 = 1

2 ,
y = 1

2 , s1 = s2 = s3 = 0 is

x1 = 1
2 +

3
4s1 −

1
4s2 −

1
4s3

x2 = 1
2 −

1
4s1 +

3
4s2 −

1
4s3

y = 1
2 −

1
4s1 −

1
4s2 −

1
4s3

x1, x2, y, s1, s2, s3 ≥ 0.

Since y is a continuous basic variable, we drop the corresponding tableau
row. The corner polyhedron corner(B) is the convex hull of the points
satisfying

x1 = 1
2 +

3
4s1 −

1
4s2 −

1
4s3

x2 = 1
2 −

1
4s1 +

3
4s2 −

1
4s3

s1, s2, s3 ≥ 0
x1, x2 ∈ Z.

The extreme rays of corner(B) are the vectors (34 ,−
1
4 , 1, 0, 0), (−

1
4 ,

3
4 , 0, 1, 0)

and (−1
4 ,−

1
4 , 0, 0, 1). Let K be the triangle conv{(0, 0), (2, 0), (0, 2)}, and

C := K × R
3. One can readily observe that K is lattice-free. We may

therefore consider the intersection cut defined by C. The largest α such
that (12 ,

1
2 , 0, 0, 0) + α(34 ,−

1
4 , 1, 0, 0) belongs to C is α1 = 2, the largest α

6.2. INTERSECTION CUTS 247

such that (12 ,
1
2 , 0, 0, 0) + α(−1

4 ,
3
4 , 0, 1, 0) belongs to C is α2 = 2 and the

largest α such that (12 ,
1
2 , 0, 0, 0) + α(−1

4 ,−
1
4 , 0, 0, 1) belongs to C is α3 = 2.

The intersection cut defined by C is therefore 1
2s1 +

1
2s2 +

1
2s3 ≥ 1. Since

y = 1
2 −

1
4s1 −

1
4s2 −

1
4s3, the intersection cut is equivalent to y ≤ 0. Adding

this single inequality to the initial formulation, we obtain conv(S). But, as
mentioned above, the intersection cut y ≤ 0 does not have finite split rank.

Dey and Louveaux [115] study the split rank of intersection cuts for
problems with two integer variables. Surprisingly, they show that all inter-
section cuts have finite split rank except for the ones defined by lattice-free
triangles with integral vertices and an integral point in the middle of each
side. These triangles are all unimodular transformations of the triangle K
defined above. �

Theorem 6.5 shows that intersection cuts are valid for corner(B). The
following theorem provides a converse statement, namely that corner(B)
is completely defined by the trivial inequalities and intersection cuts. We
assume here that corner(B) is nonempty.

Theorem 6.12. Every nontrivial facet-defining inequality for corner(B) is
an intersection cut.

Proof. We prove the theorem in the pure integer case, that is, when p = n
(see [78] for the general case). Consider a nontrivial valid inequality for
corner(B). By Lemma 6.4 it is of the form

∑
j∈N γjxj ≥ 1. We show that

it is an intersection cut.
Consider the polyhedron S := P (B)∩{x ∈ R

n :
∑

j∈N γjxj ≤ 1}. Since∑
j∈N γjxj ≥ 1 is a valid inequality for corner(B), all points of Zn∩S satisfy∑
j∈N γjxj = 1.
Since P (B) is a rational polyhedron, P (B) = {x ∈ R

n : Cx ≤ d} for
some integral matrix C and vector d. Let

T := {x ∈ R
n : Cx ≤ d+ 1,

∑
j∈N

γjxj ≤ 1}.

We first show that T is a Z
n-free convex set. Assume that the interior of

T contains an integral point x̃. That is, x̃ satisfies all inequalities defining
T strictly. Since Cx ≤ d + 1 is an integral system, then Cx̃ ≤ d and∑

j∈N γj x̃j < 1. This contradicts the fact that all points of Zn ∩ S satisfy∑
j∈N γjxj = 1.
Since the basic solution x̄ belongs to S and

∑
j∈N γjx̄j = 0, T is a

Z
n-free convex set containing x̄ in its interior. Note that the intersection

cut defined by T is
∑

j∈N γjx̄j ≥ 1.

248 CHAPTER 6. INTERSECTION CUTS AND CORNER

6.2.1 The Gauge Function

Intersection cuts have a nice description in the language of convex analysis.
Let K ⊆ R

n be a closed, convex set with the origin in its interior. A stan-
dard concept in convex analysis [201, 316] is that of gauge (also known as
Minkowski function), which is the function γK defined by

γK(r) := inf{t > 0 :
r

t
∈ K}, for all r ∈ R

n.

Since the origin is in the interior of K, γK(r) < +∞ for all r ∈ R
n.

Furthermore γK(r) ≤ 1 if and only if r ∈ K (Exercise 6.7).
The coefficients αj of the intersection cut defined in (6.8) can be expressed

in terms of the gauge of K := C − x̄, namely 1
αj

= γK(r̄j).

Remark 6.13. The intersection cut defined by a Z
p ×R

n−p-free convex set
C is precisely

∑
j∈N γK(r̄j)xj ≥ 1, where K := C − x̄.

Next we discuss some important properties of the gauge function. A func-
tion g : Rn → R is subadditive if g(r1)+g(r2) ≥ g(r1+r2) for all r1, r2 ∈ R

n.
The function g is positively homogeneous if g(λr) = λg(r) for every r ∈ R

n

and every λ > 0. The function g is sublinear if it is both subadditive and
positively homogeneous.

Note that if g : R
n → R is positively homogeneous, then g(0) = 0.

Indeed, for any λ > 0, we have that g(0) = g(λ0) = λg(0), which implies
that g(0) = 0.

Lemma 6.14. Given a closed convex set K with the origin in its interior,
the gauge γK is a nonnegative sublinear function.

Proof. It follows from the definition of gauge that γK is positively homo-
geneous and nonnegative. Since K is a closed convex set, γK is a convex
function. We now show that γK is subadditive. We have that γK(r1) +

γK(r2) ≥ 2γK(r
1+r2

2) = γK(r1 + r2), where the inequality follows by con-
vexity and the equality follows by positive homogeneity.

Lemma 6.15. Every sublinear function g : Rn → R is convex, and therefore
continuous.

Proof. Let g be a sublinear function. The convexity of g follows from
1
2(g(r

1) + g(r2)) = g(r
1

2) + g(r
2

2) ≥ g(r
1+r2

2) for every r1, r2 ∈ R
n, where

the equality follows by positive homogeneity and the inequality by subaddi-
tivity. Every convex function is continuous, see, e.g., Rockafellar [316].

6.2. INTERSECTION CUTS 249

Theorem 6.16. Let g : Rn → R be a nonnegative sublinear function and
let K := {r ∈ R

n : g(r) ≤ 1}. Then K is a closed convex set with the origin
in its interior and g is the gauge of K.

Proof. By Lemma 6.15, g is continuous and convex, therefore K is a closed
convex set. Since the interior of K is {r ∈ R

n : g(r) < 1} and g(0) = 0, the
origin is in the interior of K.

Let r ∈ R
n. We need to show that g(r) = γK(r). If the half-line

{αr : α ≥ 0} intersects the boundary of K, let α∗ > 0 be such that
g(α∗r) = 1. Since g is positively homogeneous, g(r) = 1

α∗ = inf{t > 0 :
r
t ∈ K} = γK(r). If {αr : α ≥ 0} does not intersect the boundary of K,
then, since g is positively homogeneous, g(αr) = αg(r) ≤ 1 for all α > 0,
therefore g(r) = 0 because g is nonnegative. Hence g(r) = 0 = inf{t > 0 :
r
t ∈ K} = γK(r).

6.2.2 Maximal Lattice-Free Convex Sets

For a good reference on lattices and convexity, we recommend Barvinok [39].
Here we will only work with the integer lattice Z

p. By Remark 6.6, the und-
ominated intersection cuts are the ones defined by full-dimensional maximal
Z
p×R

n−p-free convex sets in R
n, that is, full-dimensional subsets of Rn that

are convex, have no point of Zp × R
n−p in their interior, and are inclusion

maximal with respect to these two properties.

Lemma 6.17. Let C be a full-dimensional maximal Zp × R
n−p-free convex

set and let K be its orthogonal projection onto R
p. Then K is a maximal

Z
p-free convex set and C = K ×R

n−p.

Proof. A classical result in convex analysis implies that the interior of K
is the orthogonal projection onto R

p of the interior of C (see Theorem 6.6
in Rockafellar [316]). Since C is a Z

p × R
n−p-free convex set, it follows

that K is a Z
p-free convex set. Let K ′ be a maximal Zp-free convex set

containing K. Then the set K ′ × R
n−p is a Z

p × R
n−p-free convex set and

C ⊆ K × R
n−p ⊆ K ′ × R

n−p. Since C is maximal, these three sets coincide
and the result follows.

The above lemma shows that it suffices to study Z
p-free convex sets.

Next we state a characterization of lattice-free sets due to Lovász [261]. We
recall that the relative interior of a set S ⊆ R

n is the set of all points x ∈ S
for which there exists a ball B ⊆ R

n centered at x such that B ∩ aff(S) is
contained in S.

250 CHAPTER 6. INTERSECTION CUTS AND CORNER

Theorem 6.18 (Lovász [261]). Let K ⊂ R
p be a full-dimensional set. Then

K is a maximal lattice-free convex set if and only if K is a polyhedron that
does not contain any point of Z

p in its interior and there is at least one
point of Zp in the relative interior of each facet of K.

Furthermore, if K is a maximal lattice-free convex set, then rec(K) =
lin(K).

We prove the theorem under the assumption that K is a bounded set.
A complete proof of the above theorem appears in [41].

Proof of Theorem 6.18 in the bounded case. Let K be a maximal lattice-
free convex set and assume that K is bounded. Then there exist vectors
l, u in Z

p such that K is contained in the box B := {x ∈ R
p : l ≤ x ≤ u}.

Since K is a lattice-free convex set, for each v ∈ B ∩ Z
p there exists a half-

space {x ∈ R
p : αvx ≤ βv} containing K such that αvv = βv (see the

separation theorem for convex sets [39]). Since B is a bounded set, B ∩ Z
p

is a finite set. Therefore the set

P := {x ∈ R
p : l ≤ x ≤ u, αvx ≤ βv for all v ∈ B ∩ Z

p}

is a polytope. By construction, P is lattice-free and K ⊆ P , thus K = P by
maximality of K.

We now show that each facet of K contains a lattice point in its relative
interior. Assume K = {x : aix ≤ bi, i ∈ M}, where aix ≤ bi, i ∈ M , are all
distinct facet-defining inequalities for K. Assume by contradiction that the
facet Ft := {x ∈ K : atx = bt} does not contain a point of Zp in its relative
interior. Given ε > 0, let K ′ := {x : aix ≤ bi, i ∈ M \ {t}, atx ≤ bt + ε}.
Since the recession cones of K and K ′ coincide, K ′ is a polytope. Since K is
a maximal lattice-free convex set and K ⊂ K ′, K ′ contains points of Zp in its
interior. Since K ′ is a polytope, the number of points in int(K ′)∩Zp is finite,
hence there exists one such point minimizing atx, say z. Note that atz > bt.
By construction, the polytope K ′′ := {x : aix ≤ bi, i ∈ M \ {t}, atx ≤ atz}
does not contain any point of Zp in its interior, and the inclusion K ′′ ⊃ K
is strict. This contradicts the maximality of K.

Doignon [121], Bell [45] and Scarf [322] show the following.

Theorem 6.19. Any full-dimensional maximal lattice-free convex set
K ⊆ R

p has at most 2p facets.

Proof. By Theorem 6.18, each facet F contains an integral point xF in its
relative interior. If there are more than 2p facets, then there exist two

6.2. INTERSECTION CUTS 251

distinct facets F,F ′ such that xF and xF
′
are congruent modulo 2. Now

their middle point 1
2 (x

F + xF
′
) is integral and it is in the interior of K,

contradicting the fact that K is lattice-free.

In R
2, Theorem 6.19 implies that full-dimensional maximal lattice-free

convex sets have at most 4 facets (Fig. 6.6). Using Theorem 6.18, one can
show that they are either:

1. Splits, namely sets of the form {x ∈ R
2 : π0 ≤ π1x1 +π2x2 ≤ π0+1},

where π0, π1, π2 ∈ Z and π1, π2 are relatively prime;

2. Triangles with an integral point in the relative interior of each facet
and no integral point in the interior of the triangle;

3. Quadrilaterals with an integral point in the relative interior of each
facet and no integral point in the interior of the quadrilateral.

A sharpening of the above classification is given in Exercises 6.11 and 6.12.

Figure 6.6: Maximal lattice-free convex sets with nonempty interior in R
2

Consider the corner polyhedron corner(B) and the linear relaxation
P (B) of (6.3). As in Sect. 6.1, we denote by x̄ the apex of P (B) and by
r̄j, j ∈ N its extreme rays (recall (6.4)). By Remark 6.6, undominated int-
ersection cuts for corner(B) are defined by maximal Zp × R

n−p-free convex
sets containing x̄ in their interior. By Lemma 6.17 and Theorem 6.18, these
sets are polyhedra of the form K ×R

n−p, where K is a maximal lattice-free
polyhedron in R

p. The next theorem shows how to compute the coefficients
of the intersection cut from a facet description of K.

Theorem 6.20. Let K be a Z
p-free polyhedron containing (x̄1, . . . , x̄p) in

its interior. Then K can be uniquely written in the form K = {x ∈ R
p :∑p

h=1 d
i
h(xh − x̄h) ≤ 1, i = 1, . . . , t}, where t is the number of facets of K

252 CHAPTER 6. INTERSECTION CUTS AND CORNER

and d1, . . . , dt ∈ R
p. The coefficients in the intersection cut (6.9) defined by

C := K ×R
n−p are

1

αj
= max

i=1,...,t

p∑
h=1

dihr̄
j
h j ∈ N. (6.17)

Proof. Every facet-defining inequality for K can be written in the form∑p
h=1 dh(xh − x̄h) ≤ δ. Since (x̄1, . . . , x̄p) is in the interior of K, it follows

that
∑p

h=1 dh(x̄h−x̄h) < δ, thus δ > 0. Possibly by multiplying by δ−1, every
facet-defining inequality for K can be written in the form

∑p
h=1 dh(xh −

x̄h) ≤ 1.
We next show (6.17). Since αj := max{α ≥ 0 : x̄ + αr̄j ∈ C} and

C = {x ∈ R
n :

∑p
h=1 d

i
h(xh − x̄h) ≤ 1, i = 1, . . . , t}, it follows that 1

αj
=

max{0,
∑p

h=1 d
i
hr̄

j
h i = 1, . . . , t}. We only need to show that there exists

i ∈ {1, . . . , t} such that
∑p

h=1 d
i
hr̄

j
h ≥ 0.

Since K is contained in a maximal Zp-free convex set, it follows from the
last part of Theorem 6.18 that the recession cone of K has dimension less
than p, hence it has empty interior. Thus, the system of strict inequalities∑p

h=1 d
i
hrh < 0, i = 1, . . . , t admits no solution. This shows that there exists

i ∈ {1, . . . , t} such that
∑p

h=1 d
i
hr̄

j
h ≥ 0.

Let ρj ∈ R
p denote the restriction of r̄j ∈ R

n to the first p components.
Theorem 6.20 states that intersection cuts are of the form

∑
j∈N ψ(ρj)xj ≥ 1,

where ψ : Rp → R+ is defined by

ψ(ρ) := max
i=1,...,t

diρ. (6.18)

Note that ψ is the gauge of the set K − (x̄1, . . . , x̄p). The definition of
ψ depends only on the number p of integer variables and the values b̄i ∈ Q,
i ∈ B in (6.3). If these are fixed, then

∑
j∈N ψ(ρj)xj ≥ 1 is valid for

corner(B) regardless of the number of continuous variables or of the values
of the coefficients āij , i ∈ B, j ∈ N . So ψ gives a formula for generating
valid inequalities that is independent of the specific data of the problem.

In the next section we will establish a framework to study functions with
such a property, even when the number of integer variables is not fixed.

Example 6.21. Consider the following instance of (6.3) with no integer
nonbasic variable.

x1 = 1
2 +1

4x3 −3
4x4 −1

4x5 +x6

x2 = 1
2 +3

4x3 −1
4x4 +3

4x5 −3
4x6

x1, x2 ∈ Z

x3, x4, x5, x6 ≥ 0.

6.3. INFINITE RELAXATIONS 253

Let B be the triangle with vertices (0, 0), (2, 0), (0, 2). B is a maximal
Z
2-free convex set, since it contains no integral point in its interior and all

three sides have integral middle points, namely, (1, 0), (0, 1), (1, 1) (Fig. 6.7).

Note that b̄ =

(
1
2
1
2

)
is in the interior of B, and B can be written in the form

B = {x ∈ R
2 : −2(x1 −

1

2
) ≤ 1, −2(x2 −

1

2
) ≤ 1, (x1 −

1

2
) + (x2 −

1

2
) ≤ 1}.

The gauge of the set K := B − b̄ is the function defined by

ψ(ρ) = max{−2ρ1, −2ρ2, ρ1 + ρ2}, ρ ∈ R
2

Because ρ3 =

(
1
4
3
4

)
, ρ4 =

(
−3

4
−1

4

)
, ρ5 =

(
−1

4
3
4

)
, ρ6 =

(
1

−3
4

)
, the intersection

cut defined by B is therefore

x3 +
3

2
x4 +

1

2
x5 +

3

2
x6 ≥ 1.

�

b̄

ρ3

ρ4

ρ5

ρ6

Figure 6.7: Maximal Z2-free triangle B and vectors ρ3 . . . , ρ6

6.3 Infinite Relaxations

Theorem 6.20 gives a formula for computing the coefficients of an intersec-
tion cut, namely 1

αj
= ψ(ρj), where ψ is the function defined in (6.18). As

we pointed out, the definition of ψ does not depend on the number of contin-
uous variables nor on the vectors ρjs. Any function with such properties can
therefore be used as a “black box” to generate cuts from the tableau of any
integer program. Similarly, the functions π and ψ defined in (6.16) provide
a formula to generate valid inequalities from one equation of the simplex
tableau xi +

∑
j∈N āijxj = b̄i, namely the inequality

∑
j∈N, j≤p π(−āij)xj +∑

p+1≤j≤n ψ(−āij) ≥ 1.

254 CHAPTER 6. INTERSECTION CUTS AND CORNER

Gomory and Johnson [179] introduced a convenient setting to formalize
and study these functions. In this framework, one works with a model with
a fixed number of basic variables, but an infinite number of nonbasic ones,
namely one for every possible choice of variables coefficients in (6.3).

Consider the constraints (6.7). We rename fi := b̄i and rji := −āij for
i ∈ B and j ∈ N . In other words, defining q := |B|, the vector rj ∈ R

q is
the restriction of the vector r̄j ∈ R

n to the components i ∈ B. Renaming
the variables so that the nonbasic integer variables are xj , j ∈ I, and the
nonbasic continuous variables are yj, j ∈ C, (6.7) is written in the form

fi +
∑

j∈I r
j
ixj +

∑
j∈C rji yj ∈ Z i = 1, . . . , q

xj ∈ Z+ for all j ∈ I
yj ≥ 0 for all j ∈ C.

(6.19)

Gomory and Johnson [179] suggested relaxing the space of variables xj,
j ∈ I, yj, j ∈ C, to an infinite-dimensional space, where an integer variable
xr and a continuous variable yr are introduced for every r ∈ R

q. We obtain
the following infinite relaxation

f +
∑
r∈Rq

rxr +
∑
r∈Rq

ryr ∈ Z
q

xr ∈ Z+ for r ∈ R
q

yr ≥ 0 for r ∈ R
q

x, y have a finite support.

(6.20)

The infinite dimensional vectors x, y having finite support means that the
sets {r ∈ R

q : xr > 0} and {r ∈ R
q : yr > 0} are finite.

Every problem of the type (6.19) can be obtained from (6.20) by setting
to 0 all but a finite number of variables. This is why x and y are re-
stricted to have finite support in the above model. Furthermore, the study
of model (6.20) yields information on (6.19) that is independent of the data
in (6.19), but depends only on the vector f ∈ R

q.

We denote by Mf ⊂ Z
R
q × R

R
q
the set of feasible solutions to (6.20).

Note that Mf �= ∅ since defining xr = 1 for r = −f , xr = 0 otherwise, and
setting y = 0, yields a feasible solution to (6.20).

A function (π, ψ) : Rq × R
q → R is valid for Mf if π ≥ 0 and the linear

inequality ∑
r∈Rq

π(r)xr +
∑
r∈Rq

ψ(r)yr ≥ 1 (6.21)

is satisfied by all vectors in Mf .

6.3. INFINITE RELAXATIONS 255

The relevance of the above definition rests on the fact that any valid
function (π, ψ) yields a valid inequality for the original set defined in (6.19),
namely ∑

j∈I
π(rj)xj +

∑
j∈C

ψ(rj)yj ≥ 1.

Observe that, if we are given valid functions (π′, ψ′) and (π′′, ψ′′) for
Mf , such that ψ′ ≤ ψ′′ and π′ ≤ π′′, then the inequality (6.21) defined
by (π, ψ) := (π′, ψ′) is stronger than that defined by (π, ψ) := (π′′, ψ′′).
This observation naturally leads to the following definition: a valid function
(π, ψ) for Mf is minimal if there is no valid function (π′, ψ′), distinct from
(π, ψ), where π′ ≤ π and ψ′ ≤ ψ.

We remark, omitting the proof, that for every valid function (π, ψ)
there exists a minimal valid function (π′, ψ′) such that π′ ≤ π and ψ′ ≤
ψ. It follows that we only need to focus our attention on minimal valid
functions.

While the concept of valid function is natural, the assumption that π ≥ 0
in the definition might, however, seem artificial. Indeed, if we omitted this
assumption in the definition, then there would be valid functions for which
π takes negative values. However, we next show that any valid function
should be nonnegative over the rational vectors. Thus, since data in integer
programming problems are usually rational and valid functions should be
nonnegative over rational vectors, it makes sense to assume that π ≥ 0.

To show that π should be nonnegative over the rational vectors, consider
a function (π, ψ) such that (6.21) holds for every (x, y) ∈ Mf , and suppose
π(r̃) < 0 for some r̃ ∈ Q

q. Let D ∈ Z+ be such that Dr̃ is an integral
vector, and let (x̄, ȳ) ∈ Mf . Define x̃ by x̃r̃ := x̄r̃ + MD where M is a
positive integer, and x̃r := x̄r for r �= r̃. It follows that also (x̃, ȳ) is an
element of Mf . We have

∑
π(r)x̃r +

∑
ψ(r)ȳr =

∑
π(r)x̄r + π(r̃)MD +∑

ψ(r)ȳr. If we choose M > (
∑

π(r)x̄r +
∑

ψ(r)ȳr − 1)/(D|π(r̃)|), then∑
π(r)x̃r +

∑
ψ(r)ȳr < 1, contradicting the fact that (π, ψ) is valid.

In the next section we start by considering the pure integer case, namely
the case where yr = 0 for all r ∈ R

q. We will then focus on the “continuous
case,” where xr = 0 for all r ∈ R

q, and finally we will give a characterization
of minimal valid functions for the set Mf .

256 CHAPTER 6. INTERSECTION CUTS AND CORNER

6.3.1 Pure Integer Infinite Relaxation

If in (6.20) we disregard the continuous variables, we obtain the following
pure integer infinite relaxation.

f +
∑
r∈Rq

rxr ∈ Z
q

xr ∈ Z+ for all r ∈ R
q

x has a finite support.

(6.22)

Denote by Gf the set of feasible solutions to (6.22). Note that Gf �= ∅
since the vector x defined by xr = 1 for r = −f and xr = 0 otherwise is a
feasible solution to (6.22).

A function π : Rq → R is valid for Gf if π ≥ 0 and the linear inequality

∑
r∈Rq

π(r)xr ≥ 1 (6.23)

is satisfied by all feasible solutions of (6.22).

A valid function for Gf , π : R
q → R+, is minimal if there is no valid

function π′ �= π such that π′(r) ≤ π(r) for all r ∈ R
q.

Note that any minimal valid function π must satisfy π(r) ≤ 1 for all
r ∈ R

q because every x ∈ Gf has integral components, and therefore for all
r ∈ R

q either xr = 0 or xr ≥ 1. Furthermore, π must satisfy π(−f) = 1,
since the vector defined by x−f = 1, xr = 0 for all r �= −f is in Gf .

Observe that, given r̄ ∈ R
q, the vector x defined by xr̄ = x−f−r̄ = 1,

xr = 0 for all r �= r̄,−f− r̄, is an element of Gf , therefore π(r̄)+π(−f− r̄) ≥
1. A function π : R

q → R is said to satisfy the symmetry condition if
π(r) + π(−f − r) = 1 for all r ∈ R

q.

A function π : R
q → R is periodic if π(r) = π(r + w), for every w ∈ Z

q.
Therefore a periodic function is entirely defined by its values in [0, 1[q . The
next theorem shows that minimal valid functions are completely character-
ized by subadditivity, symmetry, and periodicity.

Theorem 6.22 (Gomory and Johnson [179]). A function π : Rq → R+ is
a minimal valid function for Gf if and only if π(0) = 0, π is subadditive,
periodic and satisfies the symmetry condition.

Proof. We first prove the “only if” part of the statement. Assume that π is
a minimal valid function for Gf . We need to show the following four facts.

6.3. INFINITE RELAXATIONS 257

(a) π(0) = 0. If x̄ is a feasible solution of Gf , then so is x̃ defined by
x̃r := x̄r for r �= 0, and x̃0 = 0. Therefore the function π′ defined by
π′(r) = π(r) for r �= 0 and π′(0) = 0 is also valid. Since π is minimal
and nonnegative, it follows that π(0) = 0.

(b) π is subadditive. Let r1, r2 ∈ R
q. We need to show π(r1) + π(r2) ≥

π(r1 + r2). This inequality holds when r1 = 0 or r2 = 0 because
π(0) = 0. Assume now that r1 �= 0 and r2 �= 0. Define the function π′

as follows.

π′(r) :=

{
π(r1) + π(r2) if r = r1 + r2

π(r) if r �= r1 + r2.

We show that π′ is valid. Consider any x̄ ∈ Gf . We need to show that∑
r π

′(r)x̄r ≥ 1. Define x̃ as follows

x̃r :=

⎧⎪⎪⎨
⎪⎪⎩

x̄r1 + x̄r1+r2 if r = r1

x̄r2 + x̄r1+r2 if r = r2

0 if r = r1 + r2

x̄r otherwise.

Note that x̃ ≥ 0 and f +
∑

rx̃r = f +
∑

rx̄r ∈ Z
q, thus x̃ ∈ Gf . Using the

definitions of π′ and x̃, it is easy to verify that
∑

r π
′(r)x̄r =

∑
r π(r)x̃r ≥ 1,

where the last inequality follows from the facts that π is valid and x̃ ∈ Gf .
This shows that π′ is valid. Since π is minimal, we get π(r1 + r2) ≤ π′(r1 +
r2) = π(r1) + π(r2).

(c) π is periodic. Suppose not. Then π(r̃) > π(r̃ + w) for some r̃ ∈ R
q

and w ∈ Z
q \ {0}. Define the function π′ by π′(r̃) := π(r̃ + w) and

π′(r) = π(r) for r �= r̃. We show that π′ is valid. Consider any x̄ ∈ Gf .
Let x̃ be defined by

x̃r :=

⎧⎨
⎩

x̄r if r �= r̃, r̃ + w
0 if r = r̃
x̄r̃ + x̄r̃+w if r = r̃ + w.

Since x̄ ∈ Gf and wx̄r̃ ∈ Z
q, we have that x̃ ∈ Gf . By the definition of

π′ and x̃,
∑

π′(r)x̄r =
∑

π(r)x̃r ≥ 1, where the last inequality follows
from the facts that π is valid and x̃ ∈ Gf . This contradicts the fact
that π is minimal, since π′ ≤ π and π′(r̃) < π(r̃).

258 CHAPTER 6. INTERSECTION CUTS AND CORNER

(d) π satisfies the symmetry condition. Suppose there exists r̃ ∈ R
q such

that π(r̃) + π(−f − r̃) �= 1. Since π is valid, π(r̃) + π(−f − r̃) = 1 + δ
where δ > 0. Note that, since π(r) ≤ 1 for all r ∈ R

q, it follows that
π(r̃) > 0. Define the function π′ by

π′(r) :=

{
1

1+δπ(r̃) if r = r̃,

π(r) if r �= r̃,
r ∈ R

q.

We show that π′ is valid. Consider any x̄ ∈ Gf . Note that

∑
r∈Rq

π′(r)x̄r =
∑
r∈Rq

r �=r̃

π(r)x̄r +
1

1 + δ
π(r̃)x̄r̃

If x̄r̃ = 0 then
∑

r∈Rq π′(r)x̄r =
∑

r∈Rq π(r)x̄r ≥ 1 because π is valid.
If x̄r̃ ≥ (1 + δ)/π(r̃) then

∑
r∈Rq π′(r)x̄r ≥ 1. Thus we can assume that

1 ≤ x̄r̃ < (1 + δ)/π(r̃).
Observe that

∑
r∈Rq r �=r̃

π(r)x̄r + π(r̃)(x̄r̃ − 1) ≥
∑

r∈Rq r �=r̃
π(rx̄r) +

π(r̃(x̄r̃ − 1)) ≥ π(
∑

r∈Rq r �=r̃
rx̄r + r̃(x̄r̃ − 1)) = π(−f − r̃), where the ine-

qualities follow by the subadditivity of π and the equality follows by the
periodicity of π. Therefore

∑
r∈Rq

π′(r)x̄r =
∑
r∈Rq

r �=r̃

π(r)x̄r + π(r̃)(x̄r̃ − 1) + π(r̃)− δ

1 + δ
π(r̃)x̄r̃

≥ π(−f − r̃) + π(r̃)− δ

= 1 + δ − δ = 1,

This shows that π′ is valid, contradicting the minimality of π.

We now prove the “if” part of the statement. Assume that π(0) = 0, π
is subadditive, periodic, and satisfies the symmetry condition.

We first show that π is valid. The symmetry condition implies π(0) +
π(−f) = 1. Since π(0) = 0, we have π(−f) = 1. Any x̄ ∈ Gf satisfies∑

rx̄r = −f + w for some w ∈ Z
q. We have that

∑
π(r)x̄r ≥ π(

∑
rx̄r) =

π(−f+w) = π(−f) = 1, where the inequality comes from subadditivity and
the second to last equality comes from periodicity. Thus π is valid.

To show that π is minimal, suppose by contradiction that there exists
a valid function π′ ≤ π such that π′(r̃) < π(r̃) for some r̃ ∈ R

q. Then
π(r̃) + π(−f − r̃) = 1 implies π′(r̃) + π′(−f − r̃) < 1, contradicting the
validity of π′.

6.3. INFINITE RELAXATIONS 259

Below, we give examples of minimal valid functions for the case q = 1
in (6.22). By periodicity it suffices to describe them in [0, 1]. These examples
share the following property.

A function π : [0, 1] → R is piecewise-linear if there are finitely many
values 0 = r0 < r1 < . . . < rk = 1 such that the function is of the form
π(r) = ajr + bj in interval]rj−1, rj [, for j = 1, . . . , k. The rjs for j =
0, . . . , k are the breakpoints. The slopes of a piecewise-linear function are the
different values of aj for j = 1, . . . , k. Note that a piecewise-linear function
π : [0, 1] → R is continuous if and only if π(r0) = a0r0+b0, π(rk) = akrk+bk
and, for j = 1, . . . , k − 1, π(rj) = ajrj + bj = aj+1rj + bj+1.

Example 6.23. Let q = 1 and 0 < t < f < 1. Consider the Gomory
function π defined in Example 6.10, and the functions π1, π2 defined in [0, 1]
as follows

π1(r) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r
1−f if 0 ≤ r ≤ 1− f
1−r+t−f

t if 1− f ≤ r ≤ 1− f + t/2
1−f+t

r−1/2
1−f if 1− f + t/2

1−f+t ≤ r ≤ 1− t/2
1−f+t

1−r
t if 1− t/2

1−f+t ≤ r ≤ 1

π2(r) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r
1−f if 0 ≤ r ≤ 1− f
1−r+t−f

t if 1− f ≤ r ≤ 1− f + t
2−f+t

r
2−f if 1− f + t

2−f+t ≤ r ≤ 1− t
2−f+t

1−r
t if 1− t

2−f+t ≤ r ≤ 1

and elsewhere by periodicity. The three functions are illustrated in Fig. 6.8.
Note the symmetry relative to the points (1−f

2 , 12) and (1− f
2 ,

1
2).

11

1 − f 1 − f 1 − f

1

000 111 r rr

Figure 6.8: Minimal valid functions π, π1, π2

Consider a continuous nonnegative periodic function π : R → R+ that is
piecewise-linear in the interval [0, 1] and satisfies π(0) = 0. By Theorem 6.22,
such a function π is minimal if it is subadditive and satisfies the symmetry
condition. Checking whether the symmetry condition π(r) + π(−f − r) =
1 holds for all r ∈ R is easy: It suffices to check it at the breakpoints

260 CHAPTER 6. INTERSECTION CUTS AND CORNER

of the function in the interval [0, 1]. Checking subadditivity of a function
is a nontrivial task in general. Gomory and Johnson [180] showed that,
for a nonnegative continuous periodic piecewise-linear function π that is
symmetric, it is enough to check that π(a) + π(b) ≥ π(a + b) for all pairs
of breakpoints a, b (possibly a = b) in the interval [0, 1] where the function
is locally convex. Using this, the reader can verify that all three functions
given above are minimal. �

Extreme Valid Functions and the Two-Slope Theorem

We have seen in Chap. 3 that, in order to describe a full-dimensional polyhe-
dron in R

n, the facet-defining inequalities suffice and they cannot be written
as nonnegative combinations of inequalities defining distinct faces. This con-
cept can be immediately generalized to the infinite-dimensional set Gf .

A valid function π for Gf is extreme if it cannot be expressed as a convex
combination of two distinct valid functions. That is, if π is extreme and
π = 1

2π1 +
1
2π2 where π1 and π2 are valid functions, then π = π1 = π2.

It follows from the definition that one is interested only in extreme valid
functions for Gf , since the inequality (6.23) defined by a valid function π
that is not extreme is implied by the two inequalities defined by π1 and π2,
where π = 1

2π1 +
1
2π2, π1, π2 �= π. It also follows easily from the definition

that extreme valid inequalities are minimal.

Example 6.24. The first two functions of Fig. 6.8 are extreme; this will
follow from the two-slope theorem (see below). The third function is extreme
when f ≥ t + 1/2; the proof is left as an exercise (Exercise 6.18). We
remark that extreme valid functions are not always continuous. Indeed, Dey,
Richard, Li and Miller [117] show that, for 0 < 1 − f < .5, the following
discontinuous valid function is extreme (see Fig. 6.9).

π(r) :=

{
r

1−f for 0 ≤ r ≤ 1− f
r

2−f for 1− f < r < 1

�
Given a minimal valid function π, we recall that π must be subadditive

(by Theorem 6.22). We denote by E(π) the (possibly infinite) set of all
possible inequalities π(r1) + π(r2) ≥ π(r1 + r2) that are satisfied as an
equality.

6.3. INFINITE RELAXATIONS 261

0 1

1

1 − f

Figure 6.9: A discontinuous extreme valid function

Lemma 6.25. Let π be a minimal valid function. Assume π = 1
2π1 +

1
2π2,

where π1 and π2 are valid functions. Then π1 and π2 are minimal functions
and E(π) ⊆ E(π1) ∩ E(π2).

Proof. Suppose π1 is not minimal. Let π′
1 �= π be a valid function, such

that π′
1 ≤ π1. Then π′ = 1

2π
′
1 +

1
2π2 is a valid function, distinct from π, and

π′ ≤ π. This contradicts the minimality of π.
Suppose E(π) �⊆ E(π1)∩E(π2). We may assume E(π) �⊆ E(π1). That is,

there exist r1, r2 such that π(r1)+π(r2) = π(r1+ r2) and π1(r
1)+π1(r

2) >
π1(r

1 + r2). Since π2 is minimal, it is subadditive by Theorem 6.22 and
therefore π2(r

1) + π2(r
2) ≥ π2(r

1 + r2). This contradicts the assumption
that π = 1

2π1 +
1
2π2.

No general characterization of the extreme valid functions is known.
In fact, checking that a valid function is extreme, or proving that a cer-
tain class of valid functions are extreme, can be challenging. Gomory and
Johnson [180] give an interesting class of extreme valid functions for the case
of a single row problem (q = 1 in model (6.22)). We present their result
in Theorem 6.27, the “two-slope theorem.” A useful tool for showing that
a given valid function is extreme is the so-called interval lemma, which we
prove next.

Lemma 6.26 (Interval Lemma). Let f : R → R be a function that is
bounded on every bounded interval. Let a1 < a2 and b1 < b2. Consider
the intervals A := [a1, a2], B := [b1, b2] and A + B := [a1 + b1, a2 + b2]. If
f(a) + f(b) = f(a+ b) for all a ∈ A and b ∈ B, then f is an affine function
in each of the sets A, B and A + B, and it has the same slope in each of
these sets.

Proof. We first show the following.

Claim 1.Let a ∈ A, and let ε > 0 such that b1+ε ∈ B. For every nonnegative
integer p such that a+pε ∈ A, we have f(a+pε)−f(a) = p(f(b1+ε)−f(b1)).

262 CHAPTER 6. INTERSECTION CUTS AND CORNER

For h = 1, . . . , p, by hypothesis f(a + hε) + f(b1) = f(a + hε + b1) =
f(a+(h−1)ε)+f(b1+ε). Thus f(a+hε)−f(a+(h−1)ε) = f(b1+ε)−f(b1),
for h = 1, . . . , p. By summing these p equations, we obtain f(a+pε)−f(a) =
p(f(b1 + ε)− f(b1)). This concludes the proof of Claim 1.

Let ā, ā′ ∈ A such that ā− ā′ ∈ Q and ā > ā′. Define c := f(ā)−f(ā′)
ā−ā′ .

Claim 2. For every a, a′ ∈ A such that a− a′ ∈ Q, we have f(a)− f(a′) =
c(a− a′).

We may assume a > a′. Choose a rational ε > 0 such that b1 + ε ∈ B
and the numbers p̄ := ā−ā′

ε and p = a−a′
ε are both integer. By Claim 1,

f(ā)−f(ā′) = p̄(f(b1+ε)−f(b1)) and f(a)−f(a′) = p(f(b1+ε)−f(b1)).

Dividing the last equality by a−a′ = pε and the second to last by ā−ā′ = p̄ε,
we obtain

f(b1 + ε)− f(b1)

ε
=

f(ā)− f(ā′)

ā− ā′
=

f(a)− f(a′)

a− a′
= c.

Thus f(a)− f(a′) = c(a− a′). This concludes the proof of Claim 2.

Claim 3. For every a ∈ A, f(a) = f(a1) + c(a− a1).

Let δ(x) := f(x)− cx. Since f is bounded on every bounded interval, δ
is bounded over A,B and A+B. Let M be a number such that |δ(x)| ≤ M
for all x ∈ A ∪B ∪ (A+B).

We will show that δ(a) = δ(a1) for all a ∈ A, which proves the claim.
Suppose by contradiction that, for some a∗ ∈ A, δ(a∗) �= δ(a1). Let N be a
positive integer such that N |δ(a∗)− δ(a1)| > 2M .

By Claim 2, δ(a∗) = δ(a) for every a ∈ A such that a∗ − a is rational.
Thus there exists ā such that δ(ā) = δ(a∗), a1 +N(ā− a1) ∈ A and b1+ ā−
a1 ∈ B. Let ε := ā− a1. By Claim 1,

δ(a1 +Nε)− δ(a1) = N(δ(b1 + ε)− δ(b1)) = N(δ(a1 + ε)− δ(a1)) = N(δ(ā)− δ(a1))

Thus |δ(a1+Nε)−δ(a1)| = N |δ(ā)−δ(a1)| = N |δ(a∗)−δ(a1)| > 2M , which
implies |δ(a1 + Nε)| + |δ(a1)| > 2M , a contradiction. This concludes the
proof of Claim 3.

By symmetry between A and B, Claim 3 implies that there exists some
constant c′ such that, for every b ∈ B, f(b) = f(b1) + c′(b − b1). We
show c′ = c. Indeed, given ε > 0 such that a1 + ε ∈ A and b1 + ε ∈ B,
cε = f(a1 + ε)− f(a1) = f(b1 + ε)− f(b1) = c′ε, where the second equality
follows from Claim 1.

6.3. INFINITE RELAXATIONS 263

Therefore, for every b ∈ B, f(b) = f(b1) + cf(b− b1). Finally, since f(a) +
f(b) = f(a+b) for every a ∈ A and b ∈ B, it follows that for every w ∈ A+B,
f(w) = f(a1 + b1) + c(w − a1 − b1).

Theorem 6.27 (Two-Slope Theorem). Let π : R → R be a minimal
valid function. If the restriction of π to the interval [0, 1] is a continuous
piecewise-linear function with only two slopes, then π is extreme.

Proof. Consider valid functions π1, π2 such that π = 1
2π1 + 1

2π2. By
Lemma 6.25, π1 and π2 are minimal valid functions. Since π, π1, π2 are min-
imal, by Theorem 6.22 they are nonnegative and π(0) = π1(0) = π2(0) = 0,
π(1) = π1(1) = π2(1) = 0, π(1 − f) = π1(1 − f) = π2(1 − f) = 1. We will
prove π = π1 = π2. We recall that minimal valid functions can only take
values between 0 and 1, thus π, π1, π2 are bounded everywhere.

Consider 0 = r0 < r1 < · · · < rk−1 < rk = 1, where r1, . . . , rk−1 are
the points in [0, 1] where the slope of π changes. Since π is continuous and
π(0) = π(1) = 0, one of the slopes must be positive and the other negative.
Let s+ and s− be the positive and negative slopes of π. Therefore π(r) = s+r
for 0 ≤ r ≤ r1 and π(r) = π(rk−1) + s−(r − rk−1) for rk−1 ≤ r ≤ rk = 1.
Furthermore π has slope s+ in interval [ri, ri+1] if i is even and slope s− if
i is odd, i = 0, . . . , k − 1.

We next show the following. π1, π2 are continuous piecewise-linear func-
tions with two slopes. In intervals [ri, ri+1], i even, π1, π2 have positive slopes
s+1 , s

+
2 . In intervals [ri, ri+1], i odd, π1, π2 have negative slopes s−1 , s

−
2 .

Let i ∈ {0, . . . , k}. Assume first i even. Let ε be a sufficiently small
positive number and define A = [0, ε], B = [ri, ri+1 − ε]. Then A + B =
[ri, ri+1] and π has slope s+ in all three intervals. Since π(0) = 0, then
π(a) + π(b) = π(a + b) for every a ∈ A and b ∈ B. By Lemma 6.25,
π1(a) + π1(b) = π1(a + b) and π2(a) + π2(b) = π2(a + b) for every a ∈ A
and b ∈ B. Thus, by the Interval lemma (Lemma 6.26), π1 and π2 are
affine functions in each of the closed intervals A, B and A + B, where π1
has positive slope s+1 and π2 has positive slope s+2 in each of these sets.
The proof for the case i odd is identical, only one needs to choose intervals
A = [ri + ε, ri+1], B = [1− ε, 1] and use the fact that π(1) = 0. This shows
that, for i even, π1(r) = π1(rj)+ s+1 (r− rj) and π2(r) = π2(rj)+ s+2 (r− rj),
while, for i odd, π1(r) = π1(rj)+ s−1 (r− rj) and π2(r) = π2(rj)+ s−2 (r− rj).
In particular π1 and π2 are continuous piecewise-linear functions.

Define L+
� and L+

r as the sum of the lengths of the intervals of positive
slope included in [0, 1− f] and [1− f, 1], respectively. Define L−

� and L−
r as

264 CHAPTER 6. INTERSECTION CUTS AND CORNER

the sum of the lengths of the intervals of negative slope included in [0, 1−f]
and [1− f, 1], respectively. Note that L+

� > 0 and L−
r > 0.

By the above claim, since π(0) = π1(0) = π2(0) = 0, π(1) = π1(1) =
π2(1) = 0 and π(1 − f) = π1(1 − f) = π2(1 − f) = 1, it follows that the
vectors (s+, s−), (s+1 , s

−
1), (s

+
2 , s

−
2) all satisfy the system

L+
� σ

+ + L−
� σ

− = 1

L+
r σ

+ + L−
r σ

− = −1.

Suppose the constraint matrix of the above system is singular. Then the vec-
tor (L+

r , L
−
r) is a multiple of (L+

� , L
−
�), so it must be a nonnegative multiple,

but this is impossible since the right-hand side of the two equations are one
positive and one negative. Thus the constraint matrix is nonsingular, so the
system has a unique solution. This implies that σ+ = s+ = s+1 = s+2 and
σ− = s− = s−1 = s−2 , and therefore π = π1 = π2.

6.3.2 Continuous Infinite Relaxation

If in (6.20) we disregard the integer variables, we obtain the following con-
tinuous infinite relaxation

f +
∑
r∈Rq

ryr ∈ Z
q

yr ≥ 0 for all r ∈ R
q

y has a finite support.

(6.24)

Denote by Rf the set of feasible solutions to (6.24). A function ψ : Rq →
R is valid for Rf if the linear inequality

∑
r∈Rq

ψ(r)yr ≥ 1 (6.25)

is satisfied by all vectors in Rf .
A valid function ψ : R

q → R for Rf is minimal if there is no valid
function ψ′ �= ψ such that ψ′(r) ≤ ψ(r) for all r ∈ R

q.

Note that the notions of valid function and minimal valid function de-
fined above are closely related to the notions introduced at the end of
Sect. 6.2. In particular, we will show a one-to-one correspondence between
minimal valid functions for Rf and maximal Zq-free convex sets containing
f in their interior.

The next lemma establishes how Z
q-free convex sets with f in their

interior naturally yield valid functions for Rf .

6.3. INFINITE RELAXATIONS 265

Lemma 6.28. Let B be a Z
q-free closed convex set with f in its interior.

Let ψ be the gauge of B − f . Then ψ is a valid function.

Proof. By Lemma 6.14, ψ is sublinear. Consider ȳ ∈ Rf . Then
∑

rȳr =
x̄− f , for some x̄ ∈ Z

q.

∑
ψ(r)ȳr =

∑
ψ(rȳr) ≥ ψ(

∑
rȳr) = ψ(x̄− f) ≥ 1

where the first equality follows by positive homogeneity, the first inequality
by subadditivity, and the last from the fact that B is a Z

q-free convex set
and that ψ is the gauge of B − f .

On the other hand, we will prove that all minimal valid functions are
gauges of maximal Zq-free convex sets containing f in their interior. First,
we need to prove the following.

Lemma 6.29. If ψ : R
q → R is a minimal valid function for Rf , then ψ

is nonnegative and sublinear.

Proof. We first note that ψ(0) ≥ 0. Indeed, consider any ȳ ∈ Rf . Let ỹ = ȳ
except for the component ỹ0 which is set to an arbitrarily large value M .
We have ỹ ∈ Rf . Therefore

∑
ψ(r)ỹr ≥ 1. For this inequality to hold for

all M > 0, we must have ψ(0) ≥ 0.

(a) ψ is sublinear. We first prove that ψ is subadditive. When r1 = 0 or
r2 = 0, ψ(r1)+ψ(r2) ≥ ψ(r1 + r2) follows from ψ(0) ≥ 0. The proof for the
case that r1, r2 �= 0 is identical to part (b) of the proof of Theorem 6.22.

We next show that ψ is positively homogeneous. Suppose there exists
r̃ ∈ R

q and λ > 0 such that ψ(λr̃) �= λψ(r̃). Without loss of generality we
may assume that ψ(λr̃) < λψ(r̃), else we can consider λr̃ instead of r̃ and
λ−1 instead of λ. Define a function ψ′ by ψ′(r̃) := λ−1ψ(λr̃), ψ′(r) := ψ(r)
for all r �= r̃. We will show that ψ′ is valid. Consider any ȳ ∈ Rf . We need
to show that

∑
r ψ

′(r)ȳr ≥ 1. Define ỹ as follows

ỹr :=

⎧⎨
⎩

0 if r = r̃
ȳλr̃ + λ−1ȳr̃ if r = λr̃
ȳr otherwise.

Note that f+
∑

rȳr = f+
∑

rỹr ∈ Z
q and ỹ ≥ 0, thus ỹ ∈ Rf . Using the

definitions of ψ′ and ỹ, it follows that
∑

r ψ
′(r)ȳr =

∑
r ψ(r)ỹr ≥ 1, where

the latter inequality follows from the facts that ψ is valid and ỹ ∈ Rf . This
shows that ψ′ is valid, contradicting the fact that ψ is minimal. Therefore
ψ is positively homogeneous.

266 CHAPTER 6. INTERSECTION CUTS AND CORNER

(b) ψ is nonnegative. Suppose ψ(r̃) < 0 for some r̃ ∈ Q
q. Let D ∈ Z+

such that Dr̃ is an integral vector, and let ȳ be a feasible solution of Rf

(for example ȳr = 1 for r = −f , ȳr = 0 otherwise). Let ỹ be defined by
ỹr̃ := ȳr̃ + MD where M is a positive integer, and ỹr := ȳr for r �= r̃. It
follows that ỹ is a feasible solution of Rf .

We have
∑

ψ(r)ỹr =
∑

ψ(r)ȳr + ψ(r̃)MD. Choose the integer M large

enough, namely M >
∑

ψ(r)ȳr −1
D|ψ(r̃)| . Then

∑
ψ(r)ỹr < 1, contradicting the

fact that ỹ is feasible.

Since ψ is sublinear, by Lemma 6.15 it is continuous. Thus, since ψ is
nonnegative over Qq and Q

q is dense in R
q, ψ is nonnegative over Rq.

Theorem 6.30. A function ψ is a minimal valid function for Rf if and
only if there exists some maximal Zq-free convex set B such that ψ is the
gauge of B − f .

Proof. For the “only if” part, let ψ be a minimal valid function. Define
B := {x ∈ R

q : ψ(x − f) ≤ 1}. Since ψ is a minimal valid function, by
Lemma 6.29, ψ is a nonnegative sublinear function. Thus, by Theorem 6.16,
B is a closed convex set with f in its interior and ψ is the gauge of B −
f . Furthermore, B is a Z

q-free convex set because, given that ψ is valid,
ψ(x̄− f) ≥ 1 for every x̄ ∈ Z

q. We only need to prove that B is a maximal
Z
q-free convex set. Suppose not, and let B′ be a Z

q-free convex set properly
containing B. Let ψ′ be the gauge of B′ − f . Then by definition of gauge
ψ′ ≤ ψ, and ψ′ �= ψ since B′ �= B. By Lemma 6.28, ψ′ is a valid function, a
contradiction to the minimality of ψ.

To prove the “if” part, assume that ψ is the gauge of B − f for some
maximal Zq-free convex set B. By Lemma 6.28 ψ is valid for Rf . Suppose
there exists a valid function ψ′ such that ψ′ ≤ ψ and ψ′ �= ψ. Then B′ :=
{x : ψ′(x − f) ≤ 1} is a Z

q-free convex set and B′ ⊃ B, contradicting the
maximality of B.

A function ψ : Rq → R is piecewise-linear if Rq can be covered by a finite
number of polyhedra P1, . . . , Pt whose interiors are pairwise disjoint, so that
the restriction of ψ to the interior of Pi, i = 1, . . . , t is an affine function.
The restrictions of ψ to Pi, i = 1, . . . , t are the pieces of ψ.

Given a maximal Zq-free convex set B containing f in its interior, if
follows from Theorem 6.18 that B is a polyhedron, thus by Theorem 6.20
B can be written in the form

B = {x ∈ R
q : di(x− f) ≤ 1, i = 1, . . . , t}

6.3. INFINITE RELAXATIONS 267

for some d1, . . . , dt ∈ R
q, and that the gauge of B − f is the function

defined by

ψ(r) := max
i=1,...,t

dir. (6.26)

Note that the function ψ defined by (6.26) is piecewise-linear, and it has as
many pieces as the number of facets of B. This discussion and Theorems
6.19, 6.30 imply the following.

Corollary 6.31. Every minimal valid function for Rf is a nonnegative
sublinear piecewise-linear function with at most 2q pieces.

Example 6.32. Consider the maximal Z2-free set B defined in Example

6.21, and let f =

(
1
2
1
2

)
. The corresponding function ψ has three pieces,

corresponding to the three polyhedral cones P1, P2, P3 shown in Fig. 6.10,
and we have

ψ(r) =

⎧⎨
⎩

−2r1 for r ∈ P1

−2r2 for r ∈ P2

r1 + r2 for r ∈ P3

r ∈ R
2.

�

0

P1

P2

P3

Figure 6.10: Set B − f , and the three pieces P1, P2, P3 of the associated
gauge ψ

268 CHAPTER 6. INTERSECTION CUTS AND CORNER

6.3.3 The Mixed Integer Infinite Relaxation

We finally return to the infinite relaxation (6.20) defined at the beginning
of Sect. 6.3:

f +
∑

r∈Rq rxr +
∑

r∈Rq ryr ∈ Z
q

xr ∈ Z+ for all r ∈ R
q

yr ≥ 0 for all r ∈ R
q

x, y have a finite support.

Recall that Mf denotes the set of feasible solutions to (6.20). The purpose of
this section is to provide a characterization of the minimal valid inequalities
for Mf .

Lemma 6.33. Let (π, ψ) be a minimal valid function for Mf . Then π ≤ ψ
and ψ is a nonnegative sublinear function.

Proof. The same proof as that in Lemma 6.29 shows that ψ is nonnegative
and sublinear. We next show that π ≤ ψ. Suppose not, and let r̃ ∈ R

q

such that π(r̃) > ψ(r̃). Let π′ be the function defined by π′(r̃) := ψ(r̃),
π′(r) := π(r) for r �= r̃. We will show that (π′, ψ) is valid for Mf . Given
(x̄, ȳ) ∈ Mf , define

x̃r :=

{
0 for r = r̃
x̄r for r �= r̃

ỹr :=

{
x̄r + yr for r = r̃
ȳr for r �= r̃.

It is immediate to check that (x̃, ỹ) ∈ Mf . It follows that
∑

r∈Rq π′(r)x̄r +∑
r∈Rq ψ(r)ȳr =

∑
r∈Rq π(r)x̃r +

∑
r∈Rq ψ(r)ỹr ≥ 1. This shows that (π′, ψ)

is a valid function, contradicting the minimality of (π, ψ).

The next theorem, due to Johnson [215], provides a characterization of
minimal valid functions, and it shows that in a minimal valid function (π, ψ)
for Mf , the function ψ is uniquely determined by π.

Theorem 6.34. Let (π, ψ) be a valid function for Mf . The function (π, ψ)
is minimal for Mf if and only if π is a minimal valid function for Gf and
ψ is defined by

ψ(r) = lim sup
ε→0+

π(εr)

ε
for every r ∈ R

q. (6.27)

Proof. Using the same arguments as in points (a)–(d) of the proof of Theorem
6.22, one can show that, if (π, ψ) is minimal, then the function π : Rq → R

6.3. INFINITE RELAXATIONS 269

is subadditive, periodic and satisfies the symmetry condition, and π(0) = 0.
Thus, by Theorem 6.22, if (π, ψ) is a minimal valid function for Mf then π
is a minimal valid function for Gf .

Therefore, we only need to show that, given a function (π, ψ) such that
π is minimal for Gf , (π, ψ) is a minimal valid function for Mf if and only if
ψ is defined by (6.27).

Let us define the function ψ′ by

ψ′(r) := lim sup
ε→0+

π(εr)

ε
for every r ∈ R

q.

We will show that ψ′ is well defined, (π, ψ′) is valid for Mf , and that
ψ′ ≤ ψ. This will imply that (π, ψ) is minimal if and only if ψ = ψ′, and
the statement will follow.

We now show that ψ′ is well defined. This amounts to showing that the
lim sup in (6.27) is always finite. We recall that

lim sup
ε→0+

π(εr)

ε
:= lim

α→0+
sup{π(εr)

ε
: 0 < ε ≤ α} = inf

α>0
sup{π(εr)

ε
: 0 < ε ≤ α}.

Let ψ′′ be a function such that ψ′′ ≤ ψ and (π, ψ′′) is a minimal valid
function for Mf (as mentioned at the beginning of Sect. 6.3, such a function
exists). By Lemma 6.33, π ≤ ψ′′ and ψ′′ is a sublinear function. Thus, for
every ε > 0 and every r ∈ R

q, it follows that

π(εr)

ε
≤ ψ′′(εr)

ε
= ψ′′(r)

thus

lim sup
ε→0+

π(εr)

ε
≤ ψ′′(r).

This shows that ψ′ is well defined and ψ′ ≤ ψ′′ ≤ ψ. Furthermore, it follows
from the definition of ψ′ and the definition of lim sup that ψ′ is sublinear.

We conclude the proof by showing that (π, ψ′) is valid for Mf . Let
(x̄, ȳ) ∈ Mf . Suppose by contradiction that

∑
r∈Rq

π(r)x̄r +
∑
r∈Rq

ψ′(r)ȳr = 1− δ

where δ > 0. Define r̄ :=
∑

r∈Rq rȳr. By definition of ψ′, it follows that, for
some ᾱ > 0 sufficiently small,

π(εr̄)

ε
< ψ′(r̄) + δ for all 0 < ε ≤ ᾱ. (6.28)

270 CHAPTER 6. INTERSECTION CUTS AND CORNER

Choose D ∈ Z such that 1/D ≤ ᾱ, and define, for all r ∈ R
q,

x̃r =

{
x̄r r �= r̄

D
x̄r +D r = r̄

D

Note that all entries of x̃ are nonnegative integers and that
∑

r∈Rq rx̃r =∑
r∈Rq rx̄r +

∑
r∈Rq rȳr, thus x̃ is in Gf . Now

∑
r∈Rq π(r)x̃r =

∑
r∈Rq π(r)x̄r+

π(r̄/D)
1/D

<
∑

r∈Rq π(r)x̄r+ψ′(r̄)+δ (by (6.28) because 1/D ≤ ᾱ)
≤ ∑

r∈Rq π(r)x̄r+
∑

r∈Rq ψ
′(r)ȳr+δ=1, (by sublinearity of ψ′)

contradicting the fact that π is valid for Gf .

If (π, ψ) is a minimal valid function, then, by Theorem 6.34, π is a
minimal valid function for Gf . However, the next example illustrates that
in general it is not the case that ψ is a minimal valid function for Rf .

Example 6.35. Consider the three functions π, π1, π2 of Fig. 6.8, where
t > 0 and t + 1/2 < f < 1. As discussed in Example 6.24, these functions
are extreme for Gf . For ease of notation, let π0 := π. For i = 0, 1, 2, let s+i
be the positive slope of πi at 0 and s−i be the negative slope at 1 (or at 0,
since the function is periodic). By Theorem 6.34, for each πi, the function
ψi for which (πi, ψi) is minimal for Mf is the function defined by

ψi(r) :=

{
s+i r if r ≥ 0
s−i r if r < 0

r ∈ R.

The positive slopes are identical (s+i = (1 − f)−1 for i = 0, 1, 2), while
the most negative slope is s−0 = f−1, thus ψ0 is pointwise smaller than the
other two functions. In particular ψi is not minimal for Rf for i = 1, 2.
Note that ψ0 is minimal for Rf , since it is the gauge of the set B− f , where
B := [0, 1] is a maximal Z-free set. �

6.3.4 Trivial and Unique Liftings

While Theorem 6.34 implies that minimal valid functions (π, ψ) are entirely
determined by the function π, and that they are in one-to-one correspon-
dence with the minimal valid functions for Gf , verifying that a function π
is valid for Gf , let alone minimal, is a difficult task in general.

On the other hand, the function ψ has a nice geometric characterization.
Indeed, for any minimal valid function (π, ψ) for Mf , Lemma 6.33 and
Theorem 6.16 imply that the set B := {x ∈ R

q : ψ(x − f) ≤ 1} is a

6.3. INFINITE RELAXATIONS 271

Z
q-free convex set and ψ is the gauge of B − f . Conversely, Lemma 6.28

show that Z
q-free convex sets define valid functions for Rf . Therefore, it

may be desirable to start from a valid sublinear function ψ for Rf , and con-
struct a function π such that (π, ψ) is valid for Mf . We say that any such
function π is a lifting for ψ, and that π is a minimal lifting for ψ if there is
no lifting π′ for ψ such that π′ ≤ π, π′ �= π.

Note that, if we start from a minimal valid function ψ for Rf , then, for
every minimal lifting π of ψ, the function (π, ψ) is a minimal valid function
for Mf . Also, it follows from the definition that, given a valid function ψ for
Rf and a minimal lifting π for ψ, there exists some function ψ′ ≤ ψ such that
(π, ψ′) is a minimal valid function for Mf . In particular, by Theorem 6.34,
every minimal lifting π for ψ is a minimal valid function for Gf . It follows
from Lemma 6.33 that π ≤ ψ for every minimal lifting π of ψ. Moreover,
since by Theorem 6.22 π is periodic over the unit hypercube, it must be the
case that π(r) ≤ ψ(r + w) for all r ∈ R

q and every w ∈ Z
q.

Remark 6.36. Let ψ be a valid function for Rf . Define the function π̄ by

π̄(r) := inf
w∈Zq

ψ(r + w) r ∈ R
q. (6.29)

Then π ≤ π̄ for every minimal lifting π of ψ. In particular, π̄ is a lifting
for ψ.

The function π̄ defined in (6.29) is called the trivial lifting of ψ [31, 179].

Example 6.37. Let us consider the case q = 1. Assume that 0 < f < 1,
and Let B = [0, 1]. Let ψ be the gauge of B − f . As one can easily check,

ψ(r) = max

{
r

1− f
,− r

f

}
.

One can verify that the trivial lifting π̄ for ψ is the following

π̄(r) =

{
r−�r�
1−f if r −
r� ≤ 1− f
�r�−r

f if r −
r� > 1− f

Observe that ψ and π̄ are the functions, given in (6.16), that define the
Gomory mixed-integer inequalities.

It follows from the discussion in Example 6.23 that π̄, in this case, is a
minimal valid function for Gf , therefore π̄ is in this case a minimal lifting.
In particular, it follows from Remark 6.36 that, in this example, π̄ is the
unique minimal lifting of ψ. �

272 CHAPTER 6. INTERSECTION CUTS AND CORNER

In general, the trivial lifting is not minimal. However, we can argue that,
if we start from a minimal valid function ψ, there always exists an infinite
region of Rq within which all minimal liftings of ψ coincide with the trivial
lifting π̄.

Lemma 6.38. Let (π, ψ) be a minimal valid function for Mf . Given
r∗ ∈ R

q, if

ψ(r∗) + ψ(z − f − r∗) = ψ(z − f) = 1 for some z ∈ Z
q, (6.30)

then π(r∗) = ψ(r∗) = infw∈Zq ψ(r∗ + w).

Proof. Given z ∈ Z
q, define

xr :=

{
1 for r = r∗

0 for r �= r∗
yr :=

{
1 for r = z − f − r∗

0 for r �= z − f − r∗

It is straightforward to check that (x, y) ∈ Mf . Therefore we have

1 ≤ π(r∗) + ψ(z − f − r∗) ≤ ψ(r∗) + ψ(z − f − r∗) = ψ(z − f) = 1 (6.31)

where the first inequality follows from the fact that (x, y) ∈ Mf and that
(π, ψ) is a valid function for Mf , the second inequality follows because
π(r∗) ≤ ψ(r∗) by Lemma 6.33. Now (6.31) implies π(r∗) = ψ(r∗). Finally,
by Remark 6.36, π(r∗) ≤ infw∈Zq ψ(r∗ + w) ≤ ψ(r∗), thus we have equality
throughout.

Given a minimal valid function ψ for Rf , if we let R(ψ) := {r ∈ R
q :

ψ(r∗) + ψ(z̄ − f − r) = ψ(z̄ − f) = 1 for some z̄ ∈ Z
q}, it follows from the

above lemma that all minimal valid liftings coincide with the trivial lifting
over the region R(ψ) + Z

q = {r + w : r ∈ Rf , w ∈ Z
q}. In particular,

whenever R(ψ) + Z
q = R

q, the trivial lifting is the unique minimal lifting
for ψ.

In [40] a converse of the above statement is proven. Namely, if R(ψ) +
Z
q ⊂ R

q, then there exist more than one minimal lifting, so in particular
the trivial lifting is not minimal.

Example 6.39. (Dey and Wolsey [118]) Let q = 2. Consider the maximal
lattice-free triangle B = conv(

(0
0

)
,
(2
0

)
,
(0
2

)
), and let f be a point in the

interior of B (see Fig. 6.11). Let ψ be the gauge of B−f . By Theorem 6.30,
ψ is a minimal valid function for Rf .

For each of the three points z1 =
(
1
0

)
, z2 =

(
0
1

)
, z3 =

(
1
1

)
on the boundary

of B, we have that ψ(zi − f) = 1. For i = 1, 2, 3, define R(zi) := {r ∈ R
2 :

6.4. FURTHER READINGS 273

ψ(r) + ψ(zi − f − r) = ψ(zi − f) = 1}, and let R := R(z1) ∪R(z2) ∪R(z3).
Observe that R ⊆ R(ψ). We will show that R+Z

q = R
q, so in this case the

trivial lifting π̄ is the unique minimal lifting of ψ.
Since B is a maximal lattice-free convex set, the function ψ is given

by (6.26). Therefore the regions R(z1), R(z2), R(z3) are three quadrilaterals,
namely they are obtained by translating the grey quadrilaterals depicted in
Fig. 6.11 by −f .

Figure 6.11: Lattice free triangle giving an inequality with a unique minimal
lifting. The shaded region depicts f +R

For r ∈ R
2, r −
r� is in the unit box [0, 1] × [0, 1]. Thus it suffices to

show that every point in [0, 1]× [0, 1] can be translated by an integral vector
into f +R. Note that [0, 1]× [0, 1] \ (f +R) is the union of the two triangles
conv(

(
0
0

)
,
(
1
0

)
, f2) and conv(

(
0
0

)
,
(
0
1

)
, f2). The first one can be translated into

f +R by adding the vector
(0
1

)
and the second can be translated into f +R

by adding the vector
(1
0

)
. The above argument shows that integral transla-

tions of R cover R
2. Since the area of R is equal to 1, integral translations

of R actually define a tiling of R2. This discussion implies that the trivial
lifting can be computed efficiently. Indeed, for any r ∈ R

2, it gives a con-
struction for an integral vector w̄ such that r+ w̄ ∈ R and, by Lemma 6.38,
infw∈Z2 ψ(r +w) = ψ(r + w̄). �

6.4 Further Readings

The material of this section follows mostly [80]. We refer the reader to the
surveys of Del Pia and Weismantel [112] and Richard and Dey [315] for
alternative accounts.

274 CHAPTER 6. INTERSECTION CUTS AND CORNER

For pure integer programming problems, Gomory [178] gives an algorithm
to optimize linear functions over the corner polyhedron. Gomory’s algorithm
consists of computing a shortest path in a suitably constructed network. If
the constraint matrix A is integral and we let D := det(AB), where AB is
the matrix formed by the columns of A indexed by the basis B, the running
time of the algorithm is O(|N |D2).

The notion of intersection cut was developed by Balas in the early 1970s
[22, 23].

Gomory and Johnson [180] also define a notion of facet for the infinite
group problem (6.22). Intuitively, a facet is a valid inequality whose contact
with Gf is maximal. For any valid function π, let P (π) denote the set of
points in Gf that satisfy

∑
r∈Qq π(r)xr = 1. Function π defines a facet of

Gf if there is no other valid function π∗ such that P (π) ⊆ P (π∗).
In earlier work, Gomory and Johnson [179] emphasized extreme functions

rather than facets. It is not hard to show that, if a valid function defines
a facet, then it is extreme (see Exercise 6.21). Gomory and Johnson [180]
prove the following theorem, where E(π) denotes the set introduced before
Lemma 6.25.

Theorem 6.40 (Facet Theorem). Let π be a minimal valid function. If the
set of equalities E(π) has no other solution than π itself, then π defines a
facet of Gf .

Basu, Hildebrand, and Köppe [44] give a multi-dimensional version of the
interval lemma and prove properties on extreme functions in this setting.
Basu, Hildebrand, Köppe, and Molinaro [43] extend the 2-slope theorem
(Theorem 6.27) to multi-dimensional functions Rq → R.

The continuous infinite relaxation (6.24) was introduced by Andersen,
Louveaux, Weismantel and Wolsey [12] for the case of two equations (i.e.,
q = 2). Theorem 6.30 is due to Borozan and Cornuéjols [63].

Results on the corner set (6.3) have been extended to the case where the
vector determined by the basic components is required to belong to a set
S := Z∩P , where P is a rational polyhedron. This allows one to retain the
nonnegativity constraints on the basic variables, for example. Johnson [216]
discusses the case where P is a polytope. Similarly, Basu et al. [42] consider
the extension of (6.24) where f+

∑
r ryr ∈ S in the case that P is a rational

polyhedron, showing a one-to-one correspondence between minimal valid
functions and maximal S-free convex sets, and that every maximal S-free
convex set is a polyhedron. Dey and Wolsey [119] prove a similar result,
while Conforti, Cornuéjols, Daniilidis, Lemaréchal, and Malick [76] use tools
of convex analysis to present a formal theory of cut-generating functions and

6.5. EXERCISES 275

S-free convex sets. Dey and Morán [116] prove that, if S = C ∩ Z
d where

C ⊆ R
d is a convex set, then every maximal S-free convex set is a polyhedron

with at most 2d facets. This has applications in the theory of cutting planes
for nonlinear integer programming. Averkov [18] gives conditions on S that
assure that maximal S-free sets are polyhedra.

Dey and Wolsey [118] study liftings of minimal valid functions for the
infinite continuous relaxation in the two dimensional case, while [77] and [40]
consider the multi-dimensional case. Averkov and Basu [19] show that the
existence of a unique lifting is a property of the underlying maximal lattice-
free convex set B but is independent of the position of f in the interior
of B.

Dash, Dey, and Günlük [106] study the relation between lattice-free con-
vex sets and asymmetric disjunctions.

6.5 Exercises

Exercise 6.1. Show that the Gomory mixed integer inequality generated
from a tableau row (6.2) is valid for corner(B).

Exercise 6.2. Give a minimal system of linear inequalities describing the
corner polyhedron for the integer program of Example 6.3 when the choice
of basic variables is x1, x2, x3, x5, x7.

Exercise 6.3. Reformulate (6.6) in the modular form (6.7). Show that the
solution set of this modular problem is contained in the union of the simplices
Sk := {(x6, x7, x8) ∈ R

3
+ : x6 + x7 + x8 = 2k} where k is a positive integer.

Show that the modular problem admits solutions (x6, x7, x8) of the form
(2k, 0, 0), (0, 2k, 0) and (0, 0, 2k) for every positive integer k. Describe the
corner polyhedron corner(B) in the space of the variables x6, x7, x8. Deduce
a description of the corner polyhedron corner(B) in the space of the variables
x1, x2, x3.

Exercise 6.4. Consider the problem

min
∑

j∈N cjxj∑
j∈N aijxj ≡ bi mod 1 for i ∈ B

xj ∈ Z+ for j ∈ N.

where cj ≥ 0, aij and bi are rational data, for i ∈ B and j ∈ N .

(a) Show that there can only be a finite number of different sums∑
j∈N aijxj in the above integer program when the sums are computed

modulo 1.

276 CHAPTER 6. INTERSECTION CUTS AND CORNER

(b) Use (a) to formulate the above integer program as a shortest path
problem from a source node v0 to a sink node vb in an appropriate
directed graph. Describe clearly the nodes and arcs in your graph.

Exercise 6.5. Consider a pure integer linear program

max cx
Ax = b
xj ∈ Z+ for j = 1, . . . , n

where we assume that A has full row rank m. Let B be a dual feasible basis,
that is c̄N := cBA

−1
B AN − cN ≥ 0 when c = (cB , cN) and A = (AB , AN) are

partitioned into their basic and nonbasic parts. This exercise proposes a suf-
ficient condition under which any optimal solution of the Gomory relaxation

min
∑

j∈N c̄jxj
xi = b̄i −

∑
j∈N āijxj for i ∈ B

xi ∈ Z for i ∈ B
xj ∈ Z+ for j ∈ N

is a nonnegative vector and therefore solves the original integer program.
Let D denote the absolute value of the determinant of AB . Let mi :=
maxj∈N āij. Prove that, if b̄i ≥ (D − 1)mi for all i ∈ B, then every optimal
solution of the Gomory relaxation has the property that xi ≥ 0 for i ∈ B.

Exercise 6.6. Consider a closed convex set C ⊆ R
n whose interior contains

x̄ but no point of Zp×R
n−p. Let Q be the closed convex hull of P (B)\int(C),

where int(C) denotes the interior of C. Show that Q is the set of points in
P (B) satisfying the intersection cut defined by C.

Exercise 6.7. Let K ⊆ R
n be a closed convex set with the origin in its

interior. Prove that the gauge function satisfies γK(r) ≤ 1 if and only if
r ∈ K.

Exercise 6.8. Prove that the following functions g : R → R are subadditive.

(a) g(x) := �x

(b) g(x) := x mod t, where t is a given positive integer.

Exercise 6.9.

(a) Show that, if g : Rn → R is a subadditive function, g(0) ≥ 0.

(b) Show that, if f, g : Rn → R are two subadditive functions, max(f, g)
is also a subadditive function.

6.5. EXERCISES 277

Exercise 6.10. Let g : R
m → R be a nondecreasing subadditive function

such that g(0) = 0. (Function g is nondecreasing if for any a, a′ ∈ R
m such

that a ≤ a′, we have g(a) ≤ g(a′).)
Let S := P ∩ Z

n where P := {x ∈ R
n
+ : Ax ≥ b}. We denote by aj the

jth column of the m × n matrix A. Prove that
∑n

j=1 g(a
j)xj ≥ g(b) is a

valid inequality for conv(S).

Exercise 6.11. Let T be a maximal lattice-free convex set in R
2 which is

a triangle. Show that T satisfies one of the following.

(a) All vertices of T are integral points and T contains exactly one integral
point in the relative interior of each facet.

(b) At least one vertex of T is not an integral point and the opposite facet
contains at least two integral points in its relative interior.

(c) T contains exactly three integral points, one in the relative interior of
each facet.

Exercise 6.12. Let Q be a maximal lattice-free convex set in R
2 which is

a quadrilateral.

(a) Show that Q contains exactly four integral points on its boundary.

(b) Show that these four integral points are the vertices of a parallelogram
of area one.

Exercise 6.13. Let T be a maximal lattice-free triangle in R
2 with the

property that all vertices of T are integral points and T contains exactly
one integral point in the relative interior of each facet. Prove that there
exists a transformation φ : R

2 → R
2 of the form φ(x) = c + Mx where

c ∈ Z
2 and M ∈ Z

2×2 is a unimodular matrix such that φ(T) is the triangle
with vertices (0, 0), (2, 0) and (0, 2).

Exercise 6.14. A convex set in R
2 is Z2

+-free if it contains no point of Z2
+

in its interior. Characterize the maximal Z2
+-free convex sets that are not

Z
2-free convex sets.

Exercise 6.15. Let A ∈ Q
m×n and b ∈ Q

m, such that the system Ax ≤ b
has no integral solution but any system obtained from it by removing one
of the m inequalities has an integral solution. Show that m ≤ 2n.

Exercise 6.16. In R
p, let fi =

1
2 for i = 1, . . . , p. Define the octahedron

Ωf centered at f with vertices f ± p
2e

i, where ei denotes the ith unit vector.
Ωf has 2p facets, each of which contains a 0,1 point in its center.

278 CHAPTER 6. INTERSECTION CUTS AND CORNER

(a) Show that the intersection cut
∑

π(r)yr ≥ 1 obtained from the
octahedron Ωf is obtained from the function π(r) := 2

p(|r1|+. . .+|rp|).

(b) Show that the above intersection cut from the octahedron is implied
by p split inequalities.

Exercise 6.17. Consider a continuous nonnegative periodic function π :
R → R+ that is piecewise-linear in the interval [0, 1] and satisfies π(0) = 0.

(a) Show that, in order to check whether the symmetry condition π(r) +
π(−f − r) = 1 holds for all r ∈ R, it suffices to check it at the break-
points of the function in the interval [0, 1].

(b) Assume that, in addition to the above properties, π satisfies the sym-
metry condition. Show that, in order to check whether subadditivity
π(a) + π(b) ≥ π(a + b) holds for all a, b ∈ R, it is enough to check
the inequality π(a) + π(b) ≥ π(a+ b) at all the breakpoints a, b in the
interval [0, 1] where the function is locally convex.

Exercise 6.18. Assume t > 0 and 1/2+ t ≤ f < 1. Show that the function
π2 in Example 6.23 is extreme.

Exercise 6.19. Consider the model

f +
∑
r∈Rq

ryr ∈ Z
q
+

yr ≥ 0 for all r ∈ R
q

y has a finite support

A convex set in R
q is Z

q
+-free if it contains no point of Zq

+ in its interior.
A function ψ : R

q → R is valid for the above model if the inequality∑
r∈Rq ψ(r)yr ≥ 1 is satisfied by every feasible vector y.

(a) Show that if ψ : R
q → R is sublinear and the set Bψ := {x ∈ R

q :
ψ(x− f) ≤ 1} is Zq

+-free, then ψ is valid.

(b) Let q = 2 and f =
(1/4
1/2

)
. Show that the function ψ : R

2 → R defined

by ψ(r) = max{4r1+4r2, 4r1−4r2} (r ∈ R
2) is valid, by showing that

ψ is sublinear and Bψ Z
q
+-free.

Exercise 6.20. Let q = 2. Consider the triangle K with vertices (− 1
2 , 0),

(32 , 0), (
1
2 , 2) and the point f = (12 ,

1
2).

6.5. EXERCISES 279

(a) Show that K is a maximal lattice-free convex set;

(b) Compute the function ψK given by (6.26);

(c) Let πK be any minimal lifting of ψK . Determine the region R := {r ∈
R
2 : πK(r) = ψK(r)};

(d) Show that ψK has a unique minimal lifting πK (Hint: Show that R+Z
2

covers the plane).

Exercise 6.21. Show that if a valid function defines a facet ofGf (according
to the definition in Sect. 6.4), then it is extreme.

Exercise 6.22. Let ψ : R
q → R be a minimal valid function for (6.24).

Given d ∈ R
q, consider the model

f +
∑
r∈Rq

ryr + dz ∈ Z
q

yr ≥ 0 for all r ∈ R
q

y has a finite support
z ∈ Z+.

(6.32)

Let π�(d) be the minimum scalar λ such that the inequality
∑

r∈Rq ψ(r)yr +
λz ≥ 1 is valid for (6.32). Prove that when (π�, ψ) is valid for (6.20), then
π� is the unique minimal lifting of ψ.

280 CHAPTER 6. INTERSECTION CUTS AND CORNER

Michele Conforti riding his bicycle

Chapter 7

Valid Inequalities
for Structured Integer
Programs

In Chaps. 5 and 6 we have introduced several classes of valid inequalities that
can be used to strengthen integer programming formulations in a cutting
plane scheme. All these valid inequalities are “general purpose,” in the
sense that their derivation does not take into consideration the structure of
the specific problem at hand. Many integer programs have an underlying
combinatorial structure, which can be exploited to derive “strong” valid
inequalities, where the term “strong” typically refers to the fact that the
inequality is facet-defining for the convex hull of feasible solutions.

In this chapter we will present several examples. We will introduce
the cover and flow cover inequalities, which are valid whenever the con-
straints exhibit certain combinatorial structures that often arise in integer
programming. We will introduce lifting, which is a procedure for generat-
ing facet-defining inequalities starting from lower-dimensional faces, and a
particularly attractive variant known as sequence-independent lifting. When
applied to the above inequalities, we obtain lifted cover inequalities and lifted
flow cover inequalities, which are standard features of current branch-and-
cut solvers. We also discuss the traveling salesman problem, for which the
polyhedral approach has produced spectacular results. Finally we present
the equivalence between separation and optimization.

© Springer International Publishing Switzerland 2014
M. Conforti et al., Integer Programming, Graduate Texts
in Mathematics 271, DOI 10.1007/978-3-319-11008-0 7

281

282 CHAPTER 7. VALID INEQUALITIES FOR STRUCTURED. . .

7.1 Cover Inequalities for the 0,1 Knapsack
Problem

Consider the 0,1 knapsack set

K :=

⎧⎨
⎩x ∈ {0, 1}n :

n∑
j=1

ajxj ≤ b

⎫⎬
⎭

where b > 0 and aj > 0 for j ∈ N := {1, . . . , n}.
Recall from Example 3.19 that the dimension of conv(K) is n−|J | where

J = {j ∈ N : aj > b}. In the remainder, we assume that aj ≤ b for all
j ∈ N , so that conv(K) has dimension n.

In Sect. 2.2 we introduced the concept of minimal covers. Recall that
a cover is a subset C ⊆ N such that

∑
j∈C aj > b and it is minimal

if
∑

j∈C\{k} aj ≤ b for all k ∈ C. For any cover C, the cover inequality
associated with C is ∑

j∈C
xj ≤ |C| − 1,

and it is valid for conv(K).

Proposition 7.1. Let C be a cover for K. The cover inequality associated
with C is facet-defining for PC := conv(K) ∩ {x ∈ R

n : xj = 0, j ∈ N \ C}
if and only if C is a minimal cover.

Proof. Note that dim(PC) = |C|. Assume C is a minimal cover. For all
j ∈ C, let xj be the point defined by xji = 1 for all i ∈ C \ {j} and xji = 0
for all i ∈ (N \ C) ∪ {j}. These are |C| affinely independent points in PC

that satisfy the cover inequality associated with C at equality. This shows
that the cover inequality associated with C is a facet of PC .

Conversely, suppose that C is not a minimal cover, and let C ′ ⊂ C
be a cover contained in C. The cover inequality associated with C is the
sum of the cover inequality associated with C ′ and the inequalities xj ≤ 1,
j ∈ C \ C ′. Since these inequalities are valid for PC , the cover inequality
associated with C is not facet-defining for PC .

Proposition 7.1 shows that minimal cover inequalities define facets of
conv(K)∩{x ∈ R

n : xj = 0, j ∈ N \C}. In the next section we will discuss
the following problem: given a minimal cover C, how can one compute
coefficients αj , j ∈ N \C, so that the inequality

∑
j∈C xj +

∑
j∈N\C αjxj ≤

|C| − 1 is facet-defining for conv(K)?

7.2. LIFTING 283

Separation

To use cover inequalities in a cutting plane scheme, one is faced with the
separation problem, that is, given a vector x̄ ∈ [0, 1]n, find a cover inequality
for K that is violated by x̄, or show that none exists. Note that a cover
inequality relative to C is violated by x̄ if and only if

∑
j∈C(1 − x̄j) < 1.

Thus, deciding whether a violated cover inequality exists reduces to solving
the problem

ζ = min{
∑
j∈C

(1− x̄j) : C is a cover for K}. (7.1)

If ζ ≥ 1, then x̄ satisfies all the cover inequalities for K. If ζ < 1, then an
optimal cover for (7.1) yields a violated cover inequality. Note that (7.1)
always has an optimal solution that is a minimal cover.

Assuming that a1, . . . , an and b are integer, problem (7.1) can be formu-
lated as the following integer program

ζ = min
∑n

j=1(1− x̄j)zj∑n
j=1 ajzj ≥ b+ 1

z ∈ {0, 1}n.
(7.2)

It is worth noting that the separation problem (7.1) is NP-hard in general
[239]. In practice one is interested in fast heuristics to detect violated cover
inequalities. A simple example is the following: find a basic optimal solution
z∗ of the linear programming relaxation of (7.2) (see Exercise 3.3); if the
optimal objective value of the linear programming relaxation is ≥ 1, then
also ζ ≥ 1 and there is no violated cover inequality. Otherwise (observing
that z∗ has at most one fractional coordinate) output the cover C := {j ∈
N : z∗j > 0}. Note that this heuristic does not guarantee that the inequality
associated with C cuts off the fractional point x̄, even if there exists a cover
inequality cutting off x̄.

7.2 Lifting

Consider a mixed integer set S := {x ∈ Z
n
+ × R

p
+ : Ax ≤ b}. Given a

subset C of N := {1, . . . , n + p}, and a valid inequality
∑

j∈C αjxj ≤ β for

conv(S) ∩ {x ∈ R
n+p : xj = 0, j ∈ N \ C}, an inequality

∑n+p
j=1 αjxj ≤ β is

called a lifting of
∑

j∈C αjxj ≤ β if it is valid for conv(S). In the remainder
of this section we will focus on the case where S ⊆ {0, 1}n.

284 CHAPTER 7. VALID INEQUALITIES FOR STRUCTURED. . .

Proposition 7.2. Consider a set S ⊆ {0, 1}n such that S ∩ {x : xn=1} �= ∅,
and let

∑n−1
i=1 αixi ≤ β be a valid inequality for S ∩ {x : xn = 0}. Then

αn := β −max

{
n−1∑
i=1

αixi : x ∈ S, xn = 1

}
(7.3)

is the largest coefficient such that
∑n−1

i=1 αixi + αnxn ≤ β is valid for S.
Furthermore, if

∑n−1
i=1 αixi ≤ β defines a d-dimensional face of conv(S)∩

{xn = 0}, then
∑n

i=1 αixi ≤ β defines a face of conv(S) of dimension at least
d+ 1.

Proof. The inequality
∑n

i=1 αixi ≤ β is valid for S ∩ {x : xn = 0} by
assumption, and it is valid for S ∩ {x : xn = 1} by definition of αn. Thus∑n

i=1 αixi ≤ β is valid for S, and αn is the largest coefficient with such
property.

Consider d+1 affinely independent points of conv(S)∩{xn = 0} satisfy-
ing

∑n−1
i=1 αixi ≤ β at equality. These points also satisfy

∑n
i=1 αixi ≤ β at

equality. Any point x̄ ∈ S with x̄n = 1 achieving the maximum in (7.3) gives
one more point satisfying

∑n
i=1 αixi ≤ β at equality, and it is affinely inde-

pendent of the previous ones since it satisfies xn = 1. Thus
∑n

i=1 αixi ≤ β
defines a face of conv(S) of dimension at least d+ 1.

Sequential Lifting. Consider a set S := {x ∈ {0, 1}n : Ax ≤ b} of
dimension n, where A is a nonnegative matrix. Proposition 7.2 suggests
the following way of lifting a facet-defining inequality

∑
j∈C αjxj ≤ β of

conv(S)∩{x : xj = 0, j ∈ N\C} into a facet-defining inequality
∑n

j=1 αjxj ≤
β of conv(S).

Choose an ordering j1, . . . , j� of the indices in N \C. Let C0 = C
and Ch = Ch−1 ∪ {jh} for h = 1, . . . , 	.

For h = 1 up to h = 	, compute

αjh := β−max

⎧⎨
⎩

∑
j∈Ch−1

αjxj : x ∈ S, xj = 0, j ∈ N \ Ch, xjh = 1

⎫⎬
⎭ .

(7.4)

By Proposition 7.2 the inequality
∑n

j=1 αjxj ≤ β obtained this way is
facet-defining for conv(S).

The recursive procedure outlined above is called sequential lifting. Note
that the assumption that A ≥ 0 implies that, for every x̄ ∈ S, {x ∈ {0, 1}n :

7.2. LIFTING 285

x ≤ x̄} ⊆ S. This and the fact that dim(S) = n guarantee that (7.4) is
feasible. We remark that different orderings of N \C may produce different
lifted inequalities. Furthermore, not all possible liftings can be derived from
the above procedure, as the next example illustrates.

Example 7.3. Consider the 0,1 knapsack set

8x1 + 7x2 + 6x3 + 4x4 + 6x5 + 6x6 + 6x7 ≤ 22

xj ∈ {0, 1} for j = 1, . . . , 7.

The index set C := {1, 2, 3, 4} is a minimal cover. The corresponding
minimal cover inequality is x1 + x2 + x3 + x4 ≤ 3.

We perform sequential lifting according to the order 5, 6, 7. According
to Proposition 7.2, the largest lifting coefficient for x5 is

α5 = 3−max{x1 + x2 + x3 + x4 : 8x1 +7x2 +6x3 +4x4 ≤ 22− 6, x1, x2, x3, x4 ∈ {0, 1}}.

It is easily verified that α5 = 1. The lifting coefficient of x6 is

α6 = 3−max{x1+x2+x3+x4+x5 : 8x1+7x2+6x3+4x4+6x5 ≤ 16, x1, . . . , x5 ∈ {0, 1}}.

It follows that α6 = 0. Similarly α7 = 0. This sequence yields the inequality
x1+x2+x3+x4+x5 ≤ 3. By symmetry, the sequences 6, 5, 7 and 7, 5, 6 yield
the inequalities x1 + x2 + x3 + x4 + x6 ≤ 3 and x1 + x2 + x3 + x4 + x7 ≤ 3,
respectively. By Propositions 7.1 and 7.2, all these inequalities are facet-
defining.

Not all possible facet-defining lifted inequalities can be obtained sequen-
tially. As an example, consider the following lifted inequality:

x1 + x2 + x3 + x4 + 0.5x5 + 0.5x6 + 0.5x7 ≤ 3.

We leave it to the reader to show that the inequality is valid and facet-
defining for the knapsack set. However, it cannot be obtained by sequential
lifting since its lifting coefficients are fractional. �

7.2.1 Lifting Minimal Cover Inequalities

The following theorem was proved by Balas [25].

286 CHAPTER 7. VALID INEQUALITIES FOR STRUCTURED. . .

Theorem 7.4. Let K := {x ∈ {0, 1}n :
∑n

j=1 ajxj ≤ b}, where b ≥ aj > 0
for all j ∈ N . Let C be a minimal cover for K, and let

∑
j∈C

xj +
∑

j∈N\C
αjxj ≤ |C| − 1 (7.5)

be a lifting of the cover inequality associated with C. Up to permuting the
indices, assume that C = {1, . . . , t} and a1 ≥ a2 ≥ . . . ≥ at. Let μ0 := 0
and μh :=

∑h
�=1 a� for h = 1, . . . , t. Let λ := μt − b (note that λ > 0).

If (7.5) defines a facet of conv(K), then the following hold for every
j ∈ N \ C.

(i) If, for some h, μh ≤ aj ≤ μh+1 − λ, then αj = h.

(ii) If, for some h, μh+1 − λ < aj < μh+1, then h ≤ αj ≤ h+ 1.

Furthermore, for every j ∈ N \C, if μh+1−λ < aj < μh+1, then there exists
a facet-defining inequality of the form (7.5) such that αj = h+ 1.

Proof. Assume that (7.5) is facet-defining for conv(K) and let j ∈ N \ C.
Since 0 < aj ≤ b < μt, there exists an index h, 0 ≤ h ≤ t − 1, such that
μh ≤ aj < μh+1.

By Proposition 7.2, αj ≤ |C| − 1− θ, where

θ := max

{
t∑

i=1

xi :

t∑
i=1

aixi ≤ b− aj, x ∈ {0, 1}t
}
.

Observe that, since a1 ≥ a2 ≥ . . . ≥ at, θ = |C| − k + 1, where k is the
smallest index such that

∑t
�=k a� ≤ b− aj . Therefore αj ≤ k − 2.

Since
∑t

�=k a� = μt − μk−1 = b + λ − μk−1, it follows that k is the
smallest index such that aj ≤ μk−1 − λ. Therefore k is the index such that
μk−2 − λ < aj ≤ μk−1 − λ.

It follows that

αj ≤ k − 2 =

{
h when μh ≤ aj ≤ μh+1 − λ
h+ 1 when μh+1 − λ < aj < μh+1.

(7.6)

Next we show that αj ≥ h. We apply Proposition 7.2 to the inequality

∑
i∈C

xi +
∑

i∈N\(C∪{j})
αixi ≤ |C| − 1. (7.7)

Since (7.5) is facet-defining, it follows that

αj = |C|− 1−max

⎧
⎨

⎩
∑

i∈C

xi +
∑

i∈N\(C∪{j})
αixi :

∑

i∈N\{j}
aixi ≤ b− aj , x ∈ {0, 1}N\{j}

⎫
⎬

⎭ .

(7.8)

7.2. LIFTING 287

Observe that, since a1 ≥ a2 ≥ . . . ≥ at, (7.8) admits an optimal solution
x∗ ∈ {0, 1}N\{j} such that x∗1 ≤ x∗2 ≤ . . . ≤ x∗t . Since

∑t
�=h+1 a� = μt−μh ≥

b + λ − aj > b − aj , we have that x∗� = 0 for some 	 ∈ {h + 1, . . . , t}. It
follows that x∗1 = . . . = x∗h = 0. Let x̄ be the vector in {0, 1}n defined by
x̄j = 0, x̄i = 1 for i = 1, . . . , h, and x̄i = x∗i otherwise. We have that x̄ ∈ K
because

∑
i∈N aix̄i =

∑
i∈N\{j} aix

∗
i + μh ≤ b − aj + μh ≤ b. Since (7.5) is

valid for K, it follows that
∑

i∈C x̄i +
∑

i∈N\C αix̄i ≤ |C| − 1. Therefore

αj = |C|− 1−
⎛

⎝
∑

i∈C

x∗
i +

∑

i∈N\(C∪{j})
αix

∗
i

⎞

⎠ ≥
∑

i∈C

(x̄i −x∗
i)+

∑

i∈N\(C∪{j})
αi(x̄i −x∗

i) = h.

This proves (i) and (ii). We prove the last statement of the theorem.
Assume aj > μh+1 − λ. If we do sequential lifting in which we lift xj first,
it follows from the proof of (7.6) that the coefficient of xj in the resulting
inequality is h + 1. By Proposition 7.2 this inequality is facet-defining for
conv(K).

Remark 7.5. Let K and C be as in Theorem 7.4. For every j ∈ N \C, let
h(j) be the index such that μh(j) ≤ aj < μh(j)+1. The inequality

∑
j∈C xj +∑

j∈N\C h(j)xj ≤ |C| − 1 is a lifting of the minimal cover inequality associ-
ated with C. Furthermore, if aj ≤ μh(j)+1 − λ for all j ∈ N \ C, then the
above is the unique facet-defining lifting.

Example 7.6. We illustrate the above theorem on the knapsack set

K := {x ∈ {0, 1}5 : 5x1 + 4x2 + 3x3 + 2x4 + x5 ≤ 5}.

The set C := {3, 4, 5} is a minimal cover. We would like to lift the inequality
x3 + x4 + x5 ≤ 2 into a facet of conv(K). We have μ0 = 0, μ1 = 3,
μ2 = 5, μ3 = 6 and λ = 1. Therefore α1 = 2 since μ2 ≤ a1 ≤ μ3 − λ.
Similarly α2 = 1 since μ1 ≤ a2 ≤ μ2 − λ. By Theorem 7.4, the inequality
2x1 + x2 + x3 + x4 + x5 ≤ 2 defines a facet of conv(K). Furthermore, by
Remark 7.5, this is the unique facet-defining lifting. �

7.2.2 Lifting Functions, Superadditivity, and Sequence
Independent Lifting

Let S := {x ∈ {0, 1}n : Ax ≤ b}, where we assume that A ≥ 0 and
dim(S) = n. Therefore b ≥ 0. Let C ⊂ N := {1, . . . , n}, and let

∑
j∈C αjxj ≤

β be a valid inequality for S ∩ {x : xj = 0 for j ∈ N \ C}.

288 CHAPTER 7. VALID INEQUALITIES FOR STRUCTURED. . .

Consider any lifting of the above inequality,

n∑
j=1

αjxj ≤ β. (7.9)

Let aj denote the jth column of A. By Proposition 7.2, for all j ∈ N \C,
inequality (7.9) must satisfy αj ≤ f(aj) (because A ≥ 0 and {x ∈ S : xj =
0} �= ∅), where f : [0, b] → R is the function defined by

f(z) := β − max
∑
i∈C

αixi

∑
i∈C

aixi ≤ b− z (7.10)

xi ∈ {0, 1} for i ∈ C.

The function f : [0, b] → R is the lifting function of the inequality∑
j∈C αjxj ≤ β.

A function g : U → R is superadditive if g(u + v) ≥ g(u) + g(v) for all
u, v ∈ U such that u+ v ∈ U .

Theorem 7.7. Let g : [0, b] → R be a superadditive function such that
g ≤ f . Then

∑
j∈C αjxj +

∑
j∈N\C g(aj)xj ≤ β is a valid inequality for S.

In particular, if f is superadditive, then the inequality
∑

j∈C αjxj +∑
j∈N\C f(aj)xj ≤ β is the unique maximal lifting of

∑
j∈C αjxj ≤ β.

Proof. For the first part of the statement, let αj := g(aj) for j ∈ N \C. Let
t := n−|C|. Given an ordering j1, . . . , jt of the indices in N \C, let C0 := C
and Ci := Ci−1∪{ji}, i = 1, . . . , t, and define the function fi : [0, b] → R by

fi(z) := β − max
∑

j∈Ci−1

αjxj

∑
j∈Ci−1

ajxj ≤ b− z (7.11)

xj ∈ {0, 1} for j ∈ Ci−1.

Note that f1 = f and, by definition, f1 ≥ f2 ≥ . . . ≥ ft. By Proposition 7.2,
the inequality

∑n
j=1 αjxj ≤ β is valid for S if αji ≤ fi(a

ji) for i = 1, . . . , t.

We will show that g ≤ fi for i = 1 . . . , t, implying that αji = g(aji) ≤ fi(a
ji).

7.2. LIFTING 289

The proof is by induction on i. By assumption g ≤ f1. Consider
2 ≤ i ≤ t, and assume by induction that g ≤ fi−1. Given z ∈ [0, b], we
need to prove that g(z) ≤ fi(z). Let x∗ be an optimal solution of (7.11),
and define u∗ := aji−1x∗ji−1

. It follows that

fi(z) = β −
∑

j∈Ci−2

αjx
∗
j − αji−1x

∗
ji−1

= β − max

⎧
⎨

⎩
∑

j∈Ci−2

αjxj :

∑

j∈Ci−2

ajxj ≤ b− z − u∗

xj ∈ {0, 1} for j ∈ Ci−2

⎫
⎬

⎭− αji−1x
∗
ji−1

= fi−1(z + u∗)− g(aji−1)x∗
ji−1

≥ g(z + u∗)− g(aji−1)x∗
ji−1

(because g ≤ fi−1)

≥ g(z + u∗)− g(aji−1x∗
ji−1

) (because g is superadditive and x∗
ji−1

∈ Z+)

= g(z + u∗)− g(u∗)
≥ g(z) (because g is superadditive).

For the last part of the statement, assume that f = f1 is superadditive.
By the first part of the statement,

∑
j∈C αjxj +

∑
j∈N\C f(aj)xj ≤ β is

valid for S. It follows from the first part of the proof that f1 ≤ fi for
i = 1, . . . , t. Since f1 ≥ f2 ≥ . . . ≥ ft, we have f1 = f2 = . . . = ft. This
shows that αj ≤ f(aj), j ∈ N \ C, for every lifting

∑n
j=1 αjxj ≤ β of∑

j∈C αjxj ≤ β.

Note that the inequality
∑

j∈C αjxj +
∑

j∈N\C g(aj)xj ≤ β defined in
the first part of the statement of Theorem 7.7 is valid even when S ∩ {x :
xj = 1} = ∅ for some j ∈ N \ C (If (7.10) is infeasible, we set f(z) = +∞).

7.2.3 Sequence Independent Lifting for Minimal
Cover Inequalities

Consider the 0,1 knapsack set K := {x ∈ {0, 1}n :
∑n

j=1 ajxj ≤ b} where
0 < aj ≤ b for all j = 1, . . . , n. Let C be a minimal cover. We present a
sequence independent lifting of the cover inequality

∑
j∈C xj ≤ |C| − 1.

The lifting function f defined in (7.10) becomes

f(z) = |C| − 1 −max
∑
j∈C

xj

∑
j∈C

ajxj ≤ b− z

xj ∈ {0, 1} for j ∈ C.

We assume without loss of generality that C = {1, . . . , t} with a1 ≥ . . . ≥ at.
Let μ0 := 0 and, for h = 1, . . . , t, let μh :=

∑h
�=1 a�. Let λ := μt − b > 0.

290 CHAPTER 7. VALID INEQUALITIES FOR STRUCTURED. . .

The first part of the proof of Theorem 7.4 shows that

f(z) =

{
0 if 0 ≤ z ≤ μ1 − λ
h if μh − λ < z ≤ μh+1 − λ, for h = 1, . . . , t− 1.

The function f is not superadditive in general. Consider the function g
defined by

g(z) :=

⎧
⎨

⎩

0 if z = 0
h if μh − λ+ ρh < z ≤ μh+1 − λ, for h = 0, . . . , t− 1

h− μh−λ+ρh−z
ρ1

if μh − λ < z ≤ μh − λ+ ρh, for h = 1, . . . , t− 1

(7.12)

where ρh = max{0, ah+1 − (a1 − λ)} for h = 0, . . . , r − 1. Note that g ≤ f .
It can be shown that the function g is superadditive (see [192]). Hence by
Theorem 7.7 the inequality∑

j∈C
xj +

∑
j∈N\C

g(aj)xj ≤ |C| − 1.

is a lifting of the minimal cover inequality.

Example 7.8. Consider the 0,1 knapsack set from Example 7.3

8x1 + 7x2 + 6x3 + 4x4 + 6x5 + 6x6 + 6x7 ≤ 22

xj ∈ {0, 1} for j = 1, . . . , 7.

We consider the minimal cover C := {1, 2, 3, 4} of Example 7.3 and the
corresponding minimal cover inequality is x1 + x2 + x3 + x4 ≤ 3. We lift it
with the superadditive function g defined in (7.12). Figure 7.1 plots the
function. The lifted minimal cover inequality is x1 + x2 + x3 + x4 +0.5x5 +
0.5x6 + 0.5x7 ≤ 3. �

g(z)

1

2

3

5 z0 7 12 13 18 22

Figure 7.1: A sequence independent lifting function

7.3. FLOW COVER INEQUALITIES 291

7.3 Flow Cover Inequalities

The single-node flow set is the mixed integer linear set defined as follows

T :=

⎧⎪⎨
⎪⎩
(x, y) ∈ {0, 1}n × R

n
+ :

n∑
j=1

yj ≤ b

yj ≤ ajxj for j = 1, . . . , n

⎫⎪⎬
⎪⎭

(7.13)

where 0 < aj ≤ b for all j = 1, . . . , n. This structure appears in many
integer programming formulations that model fixed charges (Sect. 2.10). The
elements of the set T can be interpreted in terms of a network consisting
of n arcs with capacities a1, . . . , an entering the same node, and one arc of
capacity b going out. The variable xj indicates whether arc j is open, while
yj is the flow through arc j, j = 1, . . . , n. Note that dim(T) = 2n.

b
...

a1

a2

an

Let N := {1, . . . , n}. A set C ⊆ N is a flow cover of T if
∑

j∈C aj > b.
Let λ :=

∑
j∈C aj − b. The inequality

∑
j∈C

yj +
∑
j∈C

(aj − λ)+(1− xj) ≤ b (7.14)

is the flow cover inequality defined by C.

Theorem 7.9 (Padberg et al. [303]). Let C be a flow cover for the single-
node flow set T , and let λ :=

∑
j∈C aj − b. The flow cover inequality defined

by C is valid for T . Furthermore, it defines a facet of conv(T) if λ < max
j∈C

aj .

Proof. The flow cover inequality defined by C is valid for T since

∑
j∈C

yj ≤ min{b,
∑
j∈C

ajxj} = b− (b−
∑
j∈C

ajxj)
+ = b− (

∑
j∈C

aj(1− xj)− λ)+

≤ b−
∑
j∈C

(aj − λ)+(1− xj),

where the last inequality holds because x is a 0,1 vector.

292 CHAPTER 7. VALID INEQUALITIES FOR STRUCTURED. . .

Let F be the face of conv(T) defined by (7.14). Note that F is a proper
face, since the point defined by xj = 1, yj = 0 for j = 1, . . . , n is in T \ F .

Assume that λ < maxj∈C aj . We will show that F is a facet. It suffices
to provide a set X ⊆ F of points such that dim(X) = 2n− 1.

Without loss of generality, assume that C = {1, . . . , k}, and a1 ≥ . . . ≥
at ≥ λ, at+1, . . . , ak < λ where 1 ≤ t ≤ k.

Define the point x̃ ∈ {0, 1}n by x̃j = 1 for j ∈ C, x̃j = 0 for j ∈ N \ C.
For i ∈ C, let xi := x̃−ei, where ei denotes the ith unit vector. For i ∈ N\C,
let xi := x̃− e1 + ei.

For i = 1, . . . , t, define the points yi, ỹi ∈ R
n by

yij :=

{
aj j ∈ C \ {i}
0 j ∈ (N \ C) ∪ {i} , ỹij :=

{
yij j ∈ N \ {i}
ai − λ j = i.

For i = t+ 1, . . . , k, define the point yi ∈ R
n by

yij :=

⎧⎨
⎩

a1 + ai − λ j = 1
aj j ∈ C \ {1, i}
0 j ∈ (N \ C) ∪ {i}.

Finally, for i ∈ N \ C, let yi ∈ R
n be defined by

yij :=

{
y1j j ∈ N \ {i}
min{ai, a1 − λ} j = i.

Let X be the following set of 2n points in {0, 1}n × R
n: (xi, yi) for i ∈ N ;

(xi, y1) for i ∈ N \ C; (x̃, ỹi) for i = 1, . . . , t; (x̃, yi) for i = t+ 1, . . . , k.
One can verify that X ⊆ T ∩ F . We will conclude by showing that

dim(X) = 2n− 1. It suffices to show that the system

αx+ βy = γ for all (x, y) ∈ X, (7.15)

in the variables (α, β, γ) ∈ R
n × R

n × R, has a unique nonzero solution up
to scalar multiplication. Consider such a nonzero solution (α, β, γ).

Let i ∈ N \ C. Then αi = (αxi + βy1) − (αx1 + βy1) = γ − γ = 0.
Similarly, min{ai, a1 − λ}βi = (αxi + βyi) − (αxi + βy1) = 0, implying
βi = 0. This shows αi = βi = 0 for all i ∈ N \ C.

For i = 2, . . . , t, λ(β1 − βi) = (αx̃ + βỹi) − (αx̃ + βỹ1) = 0. For i =
t + 1, . . . , k, ai(β1 − βi) = (αx̃ + βyi) − (αx̃ + βỹ1) = 0. This shows that
βi = β1 for all i ∈ C.

7.3. FLOW COVER INEQUALITIES 293

For i = t+ 1, . . . , k, αi = (αx̃+ βyi)− (αxi + βyi) = 0. For i = 1, . . . , t,
αi+βi(ai−λ) = (αx̃+βỹi)− (αxi+βyi) = 0, thus αi = −β1(ai−λ). Since
(α, β) is not the zero vector, it follows that β1 �= 0, and up to rescaling we
may assume that β1 = 1.

Finally, substituting (x̃1, ỹ1) into (7.15) gives γ = b−
∑

j∈C(aj − λ)+.
Therefore the points in F defined above generate the affine space

∑
j∈C

yj +
∑
j∈C

(aj − λ)+(1− xj) = b.

This proves that (7.14) defines a facet of conv(T).

Note that when the inclusion C ⊂ N is strict, the condition
λ < maxj∈C aj is also necessary for the flow cover inequality (7.14) to define
a facet of conv(T) (Exercise 7.14).

Example 7.10. (Minimal Knapsack Covers Are a Special Case of Flow Cover
Inequalities) Consider the knapsack setK : ={x ∈ {0, 1}n :

∑n
j=1 ajxj ≤ b}.

Note that conv(K) is isomorphic to the face of the single-node flow set
conv(T) defined in (7.13), namely the face conv(T) ∩ {(x, y) : yj = ajxj,
j = 1, . . . , n}.

Let C be a minimal cover for K. Then C is a flow cover for T . Substi-
tuting ajxj for yj, for all j = 1, . . . , n, in the expression (7.14) of the flow
cover inequality relative to C, we obtain the following valid inequality for K

∑
j∈C

ajxj +
∑
j∈C

(aj − λ)+(1− xj) ≤ b.

Note that, since C is a minimal cover, aj > λ for j = 1, . . . , n, thus (aj −
λ)+ = aj − λ. Rearranging the terms in the expression above, we obtain

λ
∑
j∈C

xj ≤ b−
∑
j∈C

aj + |C|λ = (|C| − 1)λ.

The above is the knapsack cover inequality relative to C multiplied by λ. �

Example 7.11. (Application to Facility Location) Consider the facility
location problem described in Sect. 2.10.1. The problem can be written
in the form

294 CHAPTER 7. VALID INEQUALITIES FOR STRUCTURED. . .

min

m∑
i=1

n∑
j=1

cijyij +

n∑
j=1

fjxj

n∑
j=1

yij = di i = 1, . . . ,m

m∑
i=1

yij ≤ ujxj j = 1, . . . , n

y ≥ 0

x ∈ {0, 1}n.

Note that the above formulation differs slightly from the one in Sect. 2.10.1,
in that here yij represents the amount of goods transported from facility i
to client j, whereas in Sect. 2.10.1 yij represented the fraction of demand
of customer i satisfied by facility j. Nonetheless the two formulations are
obviously equivalent. Let us introduce the variables zj , j = 1, . . . , n, where

zj =

m∑
i=1

yij.

If we define b :=
∑m

i=1 di, then the points (x, z) ∈ {0, 1}×R
n corresponding

to feasible solutions must satisfy the constraints

n∑
j=1

zj ≤ b

zj ≤ ujxj j = 1, . . . , n

zj ≥ 0 j = 1, . . . , n

xj ∈ {0, 1} j = 1, . . . , n.

This defines a single-node flow set. Any known family of valid inequalities
for the single-node flow set, such as the flow cover inequalities, can therefore
be adopted to strengthen the formulation of the facility location problem.
�

Theorem 7.9 shows that, whenever λ < maxj∈C aj, the inequality∑
j∈C yj +

∑
j∈C(aj − λ)+(1− xj) ≤ b can be lifted into a facet of conv(T)

by simply setting to 0 the coefficients of the variables xj , yj, for j ∈ N \ C.
The next section provides other ways of lifting the coefficients of xj , yj, for
j ∈ N \ C.

7.3. FLOW COVER INEQUALITIES 295

Lifted Flow Cover Inequalities

Let C be a flow cover for the single-node flow set T defined in (7.13), where
0 < aj ≤ b for all j = 1, . . . , n. Let λ :=

∑
j∈C aj − b. Throughout this

section, we assume that λ < maxj∈C aj.
By Theorem 7.9, the flow cover inequality defined by C is facet-defining

for conv(T). We intend to characterize the pairs of coefficients (αj , βj),
j ∈ N \ C, such that the inequality

∑
j∈C

yj +
∑
j∈C

(aj − λ)+(1− xj) +
∑

j∈N\C
(αjyj + βjxj) ≤ b (7.16)

is facet-defining for conv(T).
Let C := {j1, . . . , jt} and assume aj1 ≥ aj2 ≥ . . . ≥ ajt. Let μ0 := 0 and

μh :=
∑h

�=1 aj� , h = 1, . . . , t. Assume also that N \C = {1, . . . , n−t} and let
T i := T ∩{(x, y) ∈ R

2n : xj = yj = 0, j = i+1, . . . , n− t}, i = 0, . . . , n− t.
Suppose we want to sequentially lift the pairs of variables (xi, yi) starting

from i = 1 up to i = n − t. That is, once we have determined pairs of
coefficients (α1, β1), . . . , (αi−1, βi−1) so that

∑
j∈C

yj +
∑
j∈C

(aj − λ)+(1− xj) +

i−1∑
j=1

(αjyj + βjxj) ≤ b (7.17)

is facet-defining for conv(T i−1), we want to find coefficients (αi, βi) such
that

∑
j∈C

yj +
∑
j∈C

(aj − λ)+(1− xj) +

i∑
j=1

(αjyj + βjxj) ≤ b (7.18)

is facet-defining for conv(T i).
Let fi : [0, b] → R be the function defined by

fi(z) := b−max
∑
j∈C

yj +
∑
j∈C

(aj − λ)+(1 − xj) +

i−1∑
j=1

(αjyj + βjxj)

∑
j∈C

yj +
i−1∑
j=1

yj ≤ b− z

0 ≤ yj ≤ ajxj, xj ∈ {0, 1} j ∈ C ∪ {1, . . . , i− 1}.

(7.19)

Note that, since (7.17) is valid for conv(T i−1), fi(z) ≥ 0 for z ∈ [0, b].
It follows from the definition that f1 ≥ f2 ≥ . . . , fn−t. The function f := f1
is called the lifting function for C.

296 CHAPTER 7. VALID INEQUALITIES FOR STRUCTURED. . .

Lemma 7.12. Assume that (7.17) is valid for conv(T i−1). Then (7.18) is
valid for conv(T i) if and only if (αi, βi) satisfies

αiyi + βi ≤ fi(yi) for all yi ∈ [0, ai].

Furthermore, if (7.17) defines a facet of conv(T i−1), then (7.18) is a facet of
conv(T i) if and only if it is valid for conv(T i) and there exist y′i, y

′′
i ∈ [0, ai],

y′i �= y′′i , such that αiy
′
i + βi = fi(y

′
i) and αiy

′′
i + βi = fi(y

′′
i).

Proof. By definition of the function fi, (7.18) is valid for conv(T i) if and
only if (αi, βi) satisfies αiyi + βixi ≤ fi(yi) for all (xi, yi) ∈ {0, 1} × R+

such that yi ≤ aixi. Since fi ≥ 0, such condition is verified if and only if
αiyi + βi ≤ fi(yi) for all yi ∈ [0, ai].

For the second part of the lemma, assume that (7.17) defines a facet
of conv(T i−1). So, in particular, there exists a set X ⊆ T i−1 of points
satisfying (7.17) to equality such that dim(X) = dim(T i−1) − 1. Suppose
there exist y′i, y

′′
i ∈ [0, ai], y

′
i �= y′′i , such that αiy

′
i+βi = fi(y

′
i) and αiy

′′
i +βi =

fi(y
′′
i). Then there exist points (x̄′, ȳ′) and (x̄′′, ȳ′′) in T i that are optimal

solutions to (7.19) for z = y′i and z = y′′i , respectively, and where (x̄′i, ȳ
′
i) =

(1, y′i) and (x̄′′i , ȳ
′′
i) = (1, y′′i). Then the points in X ∪{(x̄′, ȳ′), (x̄′′, ȳ′′)} ⊆ T i

satisfy (7.18) at equality and dim(X ∪ {(x̄′, ȳ′), (x̄′′, ȳ′′)}) = dim(X) + 2 =
dim(T i)− 1.

Conversely, assume that (7.18) defines a facet of conv(T i). Then there
exist two linearly independent points (x′, y′), (x′′, y′′) in Ti satisfying (7.18)
at equality such that (x′i, y

′
i) �= (0, 0) and (x′′i , y

′′
i) �= (0, 0). If follows that

x′i = x′′i = 1, y′i �= y′′i , αiy
′
i + βi = fi(y

′
i) and αiy

′′
i + βi = fi(y

′′
i).

Lemma 7.13. Let r := max{i ∈ C : aji > λ}. For z ∈ [0, b], the lifting
function for C evaluated at z is

f(z) =

⎧⎨
⎩

hλ, if μh ≤ z < μh+1 − λ, h = 0, . . . , r − 1
z − μh + hλ, if μh − λ ≤ z < μh, h = 1, . . . , r − 1,
z − μr + rλ, if μr − λ ≤ z ≤ b.

Proof. Recall that

f(z) := b−max{
∑

j∈C

(yj+(aj−λ)+(1−xj)) :
∑

j∈C

yj ≤ b−z, yj ≤ ajxj , xj ∈ {0, 1}, j ∈ C}.

Consider a point (x, y) achieving the maximum in the above equation. For
i = r + 1, . . . , t, we can assume that xji = 1, since (aji − λ)+ = 0.

Assume that
∑t

i=r+1 aji ≥ b−z, which is the case if and only if μr−λ ≤ z.
Then the maximum is achieved by setting xji = 0 for i = 1, . . . , r and setting

7.3. FLOW COVER INEQUALITIES 297

the value of yji , i = r + 1, . . . , t, so that
∑t

i=r+1 yji = b − z. The value of
the objective function is then b− (b− z +

∑r
i=1(aji − λ)) = z − μr + rλ.

Assume next that z < μr − λ. Then μh − λ ≤ z < μh+1 − λ for some h,
0 ≤ h ≤ r − 1. Observe that we can assume that xj1 ≤ xj2 ≤ . . . ≤ xjr .
Indeed, given i < 	 ≤ r, if xji = 1 and xj� = 0, then the solution (x′, y′)
obtained from (x, y) by setting x′ji = 0, x′j� = 1, y′ji = 0, y′j� = (yj� − aji +
aj�)

+ has value greater than or equal to that of (x, y), and it is feasible
because aji ≥ aj� .

Note that it is optimal to set xj� = 1, yj� = aj� for 	 = h + 2, . . . , t
because

∑t
�=h+2 aj� = b+ λ−μh+1 < b− z; and it is optimal to set xj� = 0,

yj� = 0 for 	 = 1, . . . , h because
∑t

�=h+1 aj� = b+λ−μh ≥ b− z. It remains
to determine optimal values for xjh+1

and yjh+1
.

If z ≥ μh, then b− z−
∑t

�=h+2 aj� ≤ ajh+1
− λ, so an optimal solution is

xji =

{
0 i = 1, . . . , h+ 1,
1 i = h+ 2, . . . , t,

yji =

{
0 i = 1, . . . , h+ 1
aji i = h+ 2, . . . , t.

Thus f(z) = b−
∑t

i=h+2 aji −
∑h+1

i=1 (aji − λ) = hλ.

If z < μh, then b− z−
∑t

�=h+2 aj� > ajh+1
− λ, so an optimal solution is

xji =

{
0 i = 1, . . . , h,

1 i = h+ 1, . . . , t,
yji =

⎧⎨
⎩

0 i = 1, . . . , h

b− z −∑t
�=h+2 aj� i = h+ 1

aji i = h+ 2, . . . , t.

Thus f(z) = b − (b − z −
∑t

�=h+2 aj�) −
∑t

i=h+2 aji −
∑h

i=1(aji − λ) =
z − μh + hλ.

Lemma 7.14. The function f is superadditive in the interval [0, b].

The proof of the above lemma can be found in [192]. Lemma 7.14 implies
that the lifting of flow cover inequalities is always sequence independent, as
explained in the next lemma, which closely resembles Theorem 7.7.

Lemma 7.15. Let C be a flow cover of T . For i = 1, . . . , n− t, the function
fi defined in (7.19) coincides with the lifting function f .

Proof. Let i ≥ 2 and assume by induction that f = f1 = · · · = fi−1. Let
z ∈ [0, b] and let (x∗, y∗) be an optimal solution for (7.19). It follows from
the definition of fi(z) that

0 ≤ fi(0) ≤ fi−1(y
∗
i−1)− (αi−1y

∗
i−1 + βi−1x

∗
i−1),

298 CHAPTER 7. VALID INEQUALITIES FOR STRUCTURED. . .

thus αi−1y
∗
i−1+βi−1x

∗
i−1 ≤ f(y∗i−1). By the choice of (x∗, y∗), it follows that

fi(z) = fi−1(z+y∗i−1)−(αi−1y
∗
i−1+βi−1x

∗
i−1) ≥ f(z+y∗i−1)−f(y∗i−1) ≥ f(z),

where the last inequality follows by the superadditivity of the function f .
Since the definition of fi implies f ≥ fi, it follows that fi = f .

Lemma 7.15 shows that each pair (αi, βi), i ∈ N \ C, can be lifted
independently of the others.

Theorem 7.16 (Gu et al. [191]). Let C be a flow cover for T such that
λ < maxi∈C aj. Let r := max{i ∈ C : aji > λ}. The inequality (7.16) is
facet-defining for T if and only if, for each i ∈ N \ C, one of the following
holds

(i) αi = 0, βi = 0;

(ii) αi = λ
ajh

, βi = λ(h − 1 − μh−λ
ajh

) for some h ∈ {2, . . . , r} such that

μh − λ ≤ ai;

(iii) αi = 1, βi = 	λ− μ� where ai > μ� − λ and either 	 = r or 	 < r and
ai ≤ μ�;

(iv) αi =
λ

ai+λ−μ�
, βi = 	λ− λai

ai+λ−μ�
where 	 is such that μ� < ai ≤ μ�+1−λ

and 	 < r.

Proof. By Lemmas 7.12 and 7.15, the inequality (7.16) is facet-defining for
conv(T) if and only if, for every i ∈ N \C, the line of equation v = αiu+βi
lies below the graph of the function f in the interval [0, ai] (i.e., {(u, v) ∈
[0, ai] × R : v = f(u)}), and it intersects such graph in at least two points
in [0, ai]. Since aj1 ≥ aj2 ≥ . . . ≥ ajt, then all possible such lines are a)
the line passing through (0, 0) and (μ1 − λ, 0), b) the line passing through
(μh−1 − λ, f(μh−1 − λ)) and (μh − λ, f(μh − λ)), if μh − λ ≤ ai and h ≤ r,
c) the line passing through (μ� − λ, f(μ� − λ)) and (ai, f(ai)) where 	 is the
largest index such that 0 ≤ 	 ≤ r and ai > μ� − λ. The line of equation
v = αiu + βi satisfies a) or b) if (αi, βi) satisfy (i) or (ii), respectively. If
v = αiu + βi satisfies c), then (αi, βi) satisfy (iii) if 	 = r or 	 < r and
μ� − λ < ai ≤ μ� and (iv) if 	 < r and μ� < ai ≤ μ�+1 − λ.

Example 7.17. Consider the single-node flow set

T :=

⎧⎨
⎩

(x, y) ∈ {0, 1}6 ×R
6
+ : y1 + y2 + y3 + y4 + y5 + y6 ≤ 20

y1 ≤ 17x1, y2 ≤ 9x2, y3 ≤ 8x3
y4 ≤ 6x4, y5 ≤ 5x5, y6 ≤ 4x6

⎫⎬
⎭

7.4. FACES OF THE SYMMETRIC TRAVELING SALESMAN. . . 299

8 14 195 11 16 20

v = 1
2u − 5

2

v = 3
5u − 18

5

v = u − 10

17 u

v

Figure 7.2: Lifting function f and possible lifting coefficients for (y1, x1)

Consider the flow cover C := {3, 4, 5, 6}. Note that μ1 = 8, μ2 = 14,
μ3 = 19, μ4 = 23, λ = 3 and r = 4. For a1 = 17, Case (ii) of the theorem
holds for h = 2 and h = 3, and Case (iii) holds for 	 = 3. For a2 = 9, Case
(iv) holds for 	 = 1. Therefore it follows from Theorem 7.16 that the lifted
flow cover inequality

α1y1 + β1x1 + α2y2 + β2x2 + y3 + y4 + y5 + y6 − 5x3 − 3x4 − 2x5 − x6 ≤ 9

is facet-defining for conv(T) if and only if (α1, β1) ∈ {(0, 0), (12 ,−
5
2), (

3
5 ,−

18
5),

(1,−10)} and (α2, β2) ∈ {(0, 0), (34 ,−
15
4)} (see Fig. 7.2).

�

7.4 Faces of the Symmetric Traveling

Salesman Polytope

In this section we consider the symmetric traveling salesman problem, intro-
duced in Sect. 2.7. Among the formulations we presented, the most success-
ful in practice has been the Dantzig–Fulkerson–Johnson formulation (2.15),
which we restate here. Let G = (V,E) be the complete graph on n nodes,
where V := {1, . . . , n}.

300 CHAPTER 7. VALID INEQUALITIES FOR STRUCTURED. . .

min
∑
e∈E

cexe

∑
e∈δ(i)

xe = 2 for i ∈ V

∑
e∈δ(S)

xe ≥ 2 for S ⊂ V s.t. 2 ≤ |S| ≤ n− 2

xe ∈ {0, 1} for e ∈ E.

(7.20)

The convex hull of feasible solutions to (7.20) is the traveling salesman
polytope, which will be denoted by Ptsp. The constraints

∑
e∈δ(i) xe = 2 are

the degree constraints, while the constraints
∑

e∈δ(S) xe ≥ 2 are the subtour
elimination constraints.

Theorem 7.18. The affine hull of the traveling salesman polytope on n ≥ 3

nodes is {x ∈ R
(n2) :

∑
e∈δ(i) xe = 2}. Furthermore, dim(Ptsp) =

(n
2

)
− n.

Proof. Note that every point in Ptsp must satisfy the n degree constraints∑
e∈δ(i) xe = 2 for i ∈ V . We first note that such constraints are linearly

independent. Indeed, let Ax = 2 be the system formed by the n degree
constraints. Let A′ be the n × n submatrix of A obtained by the columns
corresponding to edges 1j, j = 2, . . . , n and edge 23. It is routine to show
that det(A′) = ±2. Therefore dim(Ptsp) ≤

(
n
2

)
− n. To show equality,

consider the Hamiltonian-path polytope P of the complete graph on nodes
{1, . . . , n − 1}. We showed in Example 3.21 that dim(P) =

(n−1
2

)
− 1 =(n

2

)
− n, thus there exists a family Q of

(n
2

)
− n + 1 Hamiltonian paths on

n − 1 nodes whose incidence vectors are affinely independent. Let T be
the family of

(n
2

)
− n + 1 Hamiltonian tours on nodes {1, . . . , n} obtained

by completing each Hamiltonian path Q ∈ Q to a Hamiltonian tour by
adding the two edges between node n and the two endnodes of Q. Since the
incidence vectors of elements in Q are affinely independent, the incidence
vectors of the elements of T are

(n
2

)
− n + 1 affinely independent points

in Ptsp.

Theorem 7.19. For S ⊂ V with 2 ≤ |S| ≤ n − 2, the subtour elimination
constraint

∑
e∈δ(S) xe ≥ 2 defines a facet of the traveling salesman polytope

on n ≥ 4 nodes.

Proof. Given S ⊂ V , 2 ≤ |S| ≤ n − 2, let F be the face defined by∑
e∈δ(S) xe ≥ 2. Then there exists some valid inequality αx ≤ β for Ptsp

which defines a facet F̄ such that F ⊆ F̄ . We want to show that F = F̄ .
We first show that, up to linear combinations with the degree constraints,

we may assume that αe = 0 for all e ∈ δ(S). Indeed, assume w.l.o.g. 1 ∈ S.

7.4. FACES OF THE SYMMETRIC TRAVELING SALESMAN. . . 301

By subtracting from αx ≤ β the constraint
∑

i∈S̄ α1i
∑

e∈δ(i) xe = 2
∑

i∈S̄ α1i,

we may assume that α1i = 0 for all i ∈ S̄. Let k ∈ S \ {1}, and let
i, j ∈ S̄, i �= j. Let H be a tour containing edges 1i and kj, and no other
edge in δ(S). Note that H ′ := H ∪ {1j, ki} \ {1i, kj} is also a Hamil-
tonian tour. If x̄ and x̄′ are the incidence vectors of H and H ′, then
x̄, x̄′ ∈ F ⊆ F̄ , thus αx̄ = αx̄′ = β. It follows that α1i + αkj = α1j + αki,
thus αkj = αki for all i, j ∈ S̄. This shows that, for all k ∈ S, there exists
λk such that αki = λk for all i ∈ S̄. Subtracting from αx ≤ β the con-
straint

∑
k∈S λk

∑
e∈δ(k) xe = 2

∑
k∈S λk we may assume that αe = 0 for all

e ∈ δ(S).

Next, we show that there exist constants λ and λ̄ such that αe = λ for
all e ∈ E[S] and αe = λ̄ for all e ∈ E[S̄]. Indeed, given distinct edges
e, e′ ∈ E[S], there exist Hamiltonian tours H and H ′ such that |H ∩ δ(S)| =
|H ′ ∩ δ(S)| = 2, and (H �H ′) \ δ(S) = {e, e′}.

ee

ee

HH

SS S̄ S̄

Let x̄ and x̄′ be the incidence vectors of H and H ′ respectively. Since
x̄, x̄′ ∈ F ⊆ F̄ , it follows that αx̄ = αx̄′ = β. Thus αe = αe′ , because αe = 0
for all e ∈ δ(S) and (H �H ′) \ δ(S) = {e, e′}.

Since every tour H such that |H ∩δ(S)| = 2 satisfies |H ∩E[S]| = |S|−1
and |H∩E[S̄]| = |S̄|−1, and since F ⊆ F̄ , it follows that the equation αx = β
is equivalent to λ

∑
e∈E[S] xe + λ̄

∑
e∈E[S̄] xe = λ(|S| − 1) + λ̄(|S̄| − 1). Since

the inequalities
∑

e∈E[S] xe ≤ |S| − 1 and
∑

e∈E[S̄] xe ≤ |S̄| − 1 both define

the face F , it follows that F = F̄ .

Because there are exponentially many subtour elimination constraints,
solving the linear programming relaxation of (7.20) is itself a challenge.

min
∑

e∈E cexe∑
e∈δ(i) xe = 2 for i ∈ V∑
e∈δ(S) xe ≥ 2 for S ⊂ V s.t. 2 ≤ |S| ≤ n− 2

0 ≤ xe ≤ 1 for e ∈ E.

(7.21)

302 CHAPTER 7. VALID INEQUALITIES FOR STRUCTURED. . .

The feasible set of (7.21) is called the subtour elimination polytope. It is
impossible to input all the subtour elimination constraints in a solver for
medium or large instances (say n ≥ 30); they must be generated as needed.
One starts by solving the following linear programming relaxation.

min
∑

e∈E cexe∑
e∈δ(i) xe = 2 for i ∈ V

0 ≤ xe ≤ 1 for e ∈ E.

(7.22)

One then adds inequalities that are valid for the subtour elimination
polytope but violated by the current linear programming solution x̄. The
linear program is strengthened iteratively until an optimal solution of (7.21)
is found (we will explain how to do this shortly). But solving (7.21) is
usually not enough. The formulation is strengthened further by generating
additional inequalities that are valid for the traveling salesman polytope
but violated by the current linear programming solution x̄. This idea was
pioneered by Dantzig et al. [103], who solved a 49-city instance in 1954.
It was improved in the 1980s by Grötschel [184] and Padberg and Rinaldi
[301] who solved instances with hundreds of cities, and refined by Applegate
et al. [13] in the 2000s, who managed to solve instances with thousands and
even tens of thousands of cities. The formulation strengthening approach
mentioned above is typically combined with some amount of enumeration
performed within the context of a branch-and-cut algorithm. However the
generation of cutting planes is absolutely crucial. This involves solving the
separation problem: given a points x̄ ∈ R

E, find a valid inequality for
the traveling salesman polytope that is violated by x̄, or show that no such
inequality exists.

7.4.1 Separation of Subtour Elimination Constraints

Assume that we have a solution x̄ of the linear program (7.22) or of some
strengthened linear program. The separation problem for subtour elimina-
tion inequalities is the following: Prove that x̄ is in the subtour elimination
polytope, or find one or more subtour elimination constraints that are vio-
lated by x̄. Note that

∑
e∈δ(S) x̄e is the weight of the cut δ(S) in the graph

G = (V,E) with edge weights x̄e, e ∈ E. There are efficient polynomial-time
algorithms for finding a minimum weight cut in a graph (see Sect. 4.11). If
the algorithm finds that the minimum weight of a cut is 2 or more, then all
subtour elimination constraints are satisfied, i.e., x̄ is in the subtour elim-
ination polytope. On the other hand, if the algorithm finds a cut δ(S∗) of
weight strictly less than 2, the corresponding subtour elimination constraint

7.4. FACES OF THE SYMMETRIC TRAVELING SALESMAN. . . 303

∑
e∈δ(S∗) xe ≥ 2 is violated by x̄. One then adds

∑
e∈δ(S∗) xe ≥ 2 to the

linear programming formulation, finds an improved solution x̄, and repeats
the process.

In order to make the separation of subtour elimination inequalities more
efficient, fast procedures are typically applied first before resorting to the
more expensive minimum weight cut algorithm. For example, let Ē := {e ∈
E : x̄e > 0}. If the graph (V, Ē) has at least two connected components,
any node set S∗ that induces a connected component provides a violated
subtour elimination constraint

∑
e∈δ(S∗) xe ≥ 2. Identifying the connected

components of a graph can be done extremely fast [335].

7.4.2 Comb Inequalities

A solution x̄ in the subtour elimination polytope is not necessarily in the
traveling salesman polytope as shown by the following example with n = 6
nodes. The cost between each pair of nodes is defined as follows. For the
edges represented in Fig. 7.3 the costs are shown on the graph (left figure),
and the cost of any edge ij not represented in the figure is the cost of a
shortest path between i and j in the graph. It is easy to verify that every
tour has cost at least 4, but the fractional solution x̄ shown on the right figure
has cost 3 (the value x̄e on any edge not represented in Fig. 7.3 is 0). One
can check directly that x̄ satisfies all the subtour elimination constraints.
We will describe a valid inequality for the traveling salesman polytope that
separates x̄.

v1v1

v2v2

v3v3

v4v4

v5v5

v6v6

1

1

1

1

1

1

0

0

0

1
2

1
2

1
2

1
2

1
2

1
2

1

1

1

Figure 7.3: Traveling salesman problem on 6 nodes, and a fractional vertex
of the subtour elimination polytope

For k ≥ 3 odd, let S0, S1, . . . , Sk ⊆ V be such that S1, . . . , Sk are pairwise
disjoint, and for each i = 1, . . . , k, Si∩S0 �= ∅ and Si\S0 �= ∅. The inequality

k∑
i=0

∑
e∈E[Si]

xe ≤
k∑

i=0

|Si| −
3k + 1

2
(7.23)

is called a comb inequality.

304 CHAPTER 7. VALID INEQUALITIES FOR STRUCTURED. . .

Proposition 7.20. The comb inequality (7.23) is valid for the traveling
salesman polytope.

Proof. We show that (7.23) is a Chvátal inequality for the subtour elimi-
nation polytope. Consider the following inequalities, valid for the subtour
elimination polytope.

∑
e∈δ(v) xe = 2 v ∈ S0;

−xe ≤ 0 e ∈ δ(S0) \ ∪k
i=1E[Si];∑

e∈E[Si]
xe ≤ |Si| − 1 i = 1, . . . , k;∑

e∈E[Si\S0]
xe ≤ |Si \ S0| − 1 i = 1, . . . , k;∑

e∈E[Si∩S0]
xe ≤ |Si ∩ S0| − 1 i = 1, . . . , k.

Summing the above inequalities multiplied by 1
2 , one obtains the inequality

k∑
i=0

∑
e∈E[Si]

xe ≤
k∑

i=0

|Si| −
3k

2
.

Observe that, since k is odd,
−3k
2 � = −3k+1

2 , therefore rounding down the
right-hand side of the previous inequality one obtains (7.23).

Grötschel and Padberg [189] showed that the comb inequalities define
facets of the traveling salesman polytope for n ≥ 6.

v1

v2

v3

v4

v5

v6

S0

S1

S2

S3

Figure 7.4: A comb

In the example of Fig. 7.3, let S0 = {v1, v2, v3}, and S1 = {v1, v4},
S2 = {v2, v5}, S3 = {v3, v6} (see Fig. 7.4). The corresponding comb in-
equality is x12 + x13 + x23 + x14 + x25 + x36 ≤ 4. However x̄12 + x̄13 + x̄23 +
x̄14 + x̄25 + x̄36 = 4.5, showing that the above comb inequality cuts off x̄.
Unlike for the subtour elimination inequalities, no polynomial algorithm is
known for separating comb inequalities in general. In the special case where
|Si| = 2 for i = 1, . . . , k, comb inequalities are known as blossom inequal-
ities, and there is a polynomial separation algorithm for this class (Pad-
berg and Rao [300]). In addition to the separation of blossom inequalities,

7.4. FACES OF THE SYMMETRIC TRAVELING SALESMAN. . . 305

state-of-the-art software for the traveling salesman problem have sophis-
ticated heuristics to separate more general comb inequalities. Note that,
even if all comb inequalities could be separated, we would still not be done
in general since the traveling salesman polytope has many other types of
facets. In fact, Billera and Sarangarajan [53] showed that any 0,1 polytope
is affinely equivalent to a face of an asymmetric traveling salesman polytope
of sufficiently large dimension. We are discussing the symmetric traveling
salesman polytope in this section, but the Billera–Sarangarajan result is a
good indication of how complicated the traveling salesman polytope is. The
following idea tries to bypass understanding its structure.

7.4.3 Local Cuts

In their solver for the symmetric traveling salesman problem, Applegate
et al. [13] separate subtour elimination constraints and comb inequalities.
But then, instead of going on separating other classes of inequalities with
known structure, they introduce an interesting approach, the separation of
local cuts. To get a sense of the contribution of each of these three steps,
they considered an Euclidean traveling salesman problem in the plane with
100,000 cities (the cities were generated randomly in a square, the costs
were the Euclidean distance between cities up to a small rounding to avoid
irrationals), and they constructed a good feasible solution using a heuristic.
The lower bound obtained using subtour elimination constraints was already
less than 1% from the heuristic solution. After adding comb inequalities,
the gap was reduced to less than 0.2%, and after adding local cuts, the gap
was reduced to below 0.1%. We now discuss the generation of local cuts.

Let S ⊂ {0, 1}E denote the set of incidence vectors of tours, and let
x̄ ∈ R

E be a fractional solution that we would like to separate from S.
The idea is to map the space R

E to a space of much lower dimension by a
linear mapping Φ and then, using general-purpose methods, to look for linear
inequalities ay ≤ b that are satisfied by all points y ∈ Φ(S) and violated
by ȳ := Φ(x̄). Every such inequality yields a cut aΦ(x) ≤ b separating x̄
from S. For the traveling salesman problem, Applegate, Bixby, Chvátal,
and Cook chose Φ as follows. Partition V into pairwise disjoint nonempty
sets V1, . . . , Vk, let H = (U,F) be the graph obtained from G by shrinking
each set Vi into a single node ui, and let y = Φ(x) ∈ {0, 1}|F | be defined by
yij =

∑
v∈Vi

∑
w∈Vj

xvw for all ij ∈ F . This mapping transforms a tour x
into a vector y with the following properties.

306 CHAPTER 7. VALID INEQUALITIES FOR STRUCTURED. . .

• ye ∈ Z+ for all e ∈ F ,

•
∑

e∈δ(i) ye is even for all i ∈ U ,

• the subgraph of H induced by the edge set {e ∈ F : ye > 0} is
connected.

The convex hull of such vectors is known as the graphical traveling salesman
polyhedron. Let us denote it by GTSP k for a graph on k nodes. The goal is
to find an inequality that separates ȳ from the graphical traveling salesman
polyhedron GTSP k, or prove that ȳ ∈ GTSP k. Because k is chosen to be
relatively small, this separation can be done by brute force. To simplify
the exposition, let us intersect GTSP k with

∑
e∈F ye ≤ n (every y := Φ(x)

satisfies this inequality since
∑

e∈E xe = n for x ∈ S). Let GTSP k,n denote
this polytope. We want to solve the following separation problem: Find
an inequality that separates ȳ from the polytope GTSP k,n, or prove that
ȳ ∈ GTSP k,n. More generally, we want to solve the following separation
problem.

Let Y be a finite set of points in R
t. Given a point ȳ ∈ R

t, either find
an inequality that separates ȳ from the polytope conv(Y), or prove that
ȳ ∈ conv(Y).

This can be done by delayed column generation.
At a general iteration i, we have a set Si of points in Y.
At the first iteration, we initialize S1 := {y1} where y1 is an arbitrary

point in Y.
At iteration i, we check whether ȳ ∈ conv(Si) (this amounts to checking

the existence of a vector u ≥ 0 satisfying
∑i

h=1 uh = 1 and ȳ =
∑i

h=1 y
huh,

which can be done by linear programming). If this is the case we have proved
that ȳ ∈ conv(Y). Otherwise we find a linear inequality ay ≤ b separating ȳ
from conv(Si) (see Proposition 7.21 below). We then solve max{ay : y ∈ Y}
(this is where brute force may be needed). If the solution yi+1 found satisfies
ayi+1 ≤ b, then the inequality ay ≤ b separates ȳ from conv(Y). Otherwise
we set Si+1 := Si ∪ {yi+1} and we perform the next iteration.

Proposition 7.21. If ȳ �∈ conv(Si), an inequality ay ≤ b separating ȳ from
conv(Si) can be found by solving a linear program.

Proof. If ȳ �∈ conv(Si), the linear program

min 0∑i
h=1 y

huh = ȳ∑i
h=1 uh = 1

u ≥ 0

7.5. EQUIVALENCE BETWEEN OPTIMIZATION. . . 307

has no solution. Therefore its dual

max aȳ − b
ayh − b ≤ 0 h = 1, . . . , i

has an unbounded solution (a, b).

Applegate, Bixby, Chvátal and Cook call local cuts the inequalities gener-
ated by this procedure. In their implementation, they refined the procedure
so that it only generates facets of the graphical traveling salesman polyhe-
dron. Different choices of the shrunk node sets V1, . . . , Vk are used to try
to generate several inequalities cutting off the current fractional solution x̄.
The interested reader is referred to [13] for details.

7.5 Equivalence Between Optimization
and Separation

By Meyer’s theorem (Theorem 4.30), solving an integer program is equiv-
alent to solving a linear program with a potentially very large number of
constraints. In fact, several integer programming formulations, such as the
subtour elimination formulation of the traveling salesman polytope or the
single-node flow set formulation given by all flow cover inequalities, already
have a number of constraints that is exponential in the data size of the
problem, so solving the corresponding linear programming relaxations is
not straightforward. We would like to solve these linear programs without
generating explicitly all the constraints. A fundamental result of Grötschel
et al. [186] establishes the equivalence of optimization and separation: solv-
ing a linear programming problem is as hard as finding a constraint cutting
off a given point, or deciding that none exists.

Optimization Problem. Given a polyhedron P ⊂ R
n and an objective

c ∈ R
n, find x∗ ∈ P such that cx∗ = max{cx : x ∈ P}, or show P = ∅, or

find a direction z in P for which cz is unbounded.

Separation Problem. Given a polyhedron P ⊂ R
n and a point x̄ ∈ R

n,
either show that x̄ ∈ P or give a valid inequality αx ≤ α0 for P such that
αx̄ > α0.

We are particularly interested in solving the above separation problem
when the inequalities defining P are not given explicitly. This is typically
the case in integer programming, where P is given as the convex hull of a
mixed integer set {(x, y) ∈ Z

p
+ × R

q
+ : Ax+Gy ≤ b} with data A, G, b.

308 CHAPTER 7. VALID INEQUALITIES FOR STRUCTURED. . .

An important theorem of Grötschel et al. [186] states that the optimiza-
tion problem can be solved in polynomial time if and only if the separation
problem can be solved in polynomial time. Similar results were obtained
by Padberg and Rao [299] and Karp and Papadimitriou [233]. Of course,
P needs to be described in a reasonable fashion for the polynomiality state-
ment to make sense. We will return to this issue later. First, we introduce
the main tool needed for proving the equivalence, namely the ellipsoid algo-
rithm. We only give a brief outline here. The reader is referred to [188] for
a detailed treatment.

Ellipsoid Algorithm

Input. A matrix A ∈ Q
m×n and a vector b ∈ Q

m.
Output. A point of P := {x ∈ R

n : Ax ≤ b} or a proof that P is
not full dimensional.

Initialize with a large enough integer t∗ and an ellipsoid E0 that is
guaranteed to contain P . Set t = 0.

Iteration t. If the center xt of Et is in P , stop. Otherwise find
a constraint aix ≤ bi from Ax ≤ b such that aixt > bi. Find the
smallest ellipsoid Et+1 containing Et ∩{aix ≤ bi}. Increment t by 1.
If t < t∗, perform the next iteration. If t = t∗, stop: P is not
full-dimensional.

xt
Et

Et+1

aix ≤ bi

xt+1

P

Figure 7.5: Illustration of the ellipsoid algorithm

Figure 7.5 illustrates an iteration of the ellipsoid algorithm. Khachiyan
[235] showed that the ellipsoid algorithm can be made to run in polynomial
time.

Theorem 7.22. The ellipsoid algorithm terminates with a correct output if
E0 and t∗ are chosen large enough. Furthermore this choice can be made so
that the number of iterations is polynomial.

7.5. EQUIVALENCE BETWEEN OPTIMIZATION. . . 309

The following observations about volumes are key to proving that only a
polynomial number of iterations are required. We state them without proof.

• The smallest ellipsoid Et+1 containing Et∩{aix ≤ bi} can be computed
in closed form.

• Vol(Et+1) ≤ ρVol(Et), where ρ < 1 is a constant that depends only
on n.

• There exists ε > 0, whose encoding size is polynomial in n and in the
size of the coefficients of (A, b), such that either P has no interior, or
Vol(P) ≥ ε.

• Vol(E0) ≤ Δ, where the encoding size of Δ is polynomial in n and in
the size of the coefficients of (A, b).

Since Vol(Et) ≤ ρtVol(E0), the ellipsoid algorithm requires at most
t∗ = log Δ

ε iterations before one can conclude that P has an empty interior.
Thus the number of iterations is polynomial. To turn the ellipsoid algorithm
into a polynomial algorithm, one needs to keep a polynomial description of
the ellipsoids used in the algorithm. This can be achieved by working with
slightly larger ellipsoids, instead of the family Et defined above. We skip
the details.

The ellipsoid algorithm returns a point in P whenever P is full dimen-
sional. Dealing with non-full dimensional polyhedra is tricky. Grötschel
et al. [187] describe a polynomial-time algorithm that, upon termination of
the ellipsoid algorithm with the outcome that P is not full-dimensional, det-
ermines an equation αx = β satisfied by all x ∈ P . Once such equation is
known, one can reduce the dimension of the problem by one, and iterate. A
detailed description can be found in [188].

Another issue is the optimization of a linear function cx over P , instead
of just finding a feasible point, as described in the above algorithm. This can
be done in polynomial time by using binary search on the objective value,
or a “sliding objective.” Again, we refer to [188] for a description of these
techniques.

Finally, we note a beautiful aspect of the ellipsoid algorithm: It does
not require an explicit description of P as {x ∈ R

n : Ax ≤ b}, but instead
it can rely on a separation algorithm that, given the point xt, either shows
that this point is in P , or produces a valid inequality aix ≤ bi for P such
that aixt > bi.

310 CHAPTER 7. VALID INEQUALITIES FOR STRUCTURED. . .

As a consequence, if we have a separation algorithm at our disposal, the
ellipsoid algorithm with a sliding objective solves the optimization problem.

Example 7.23. Consider the traveling salesman problem in an undirected
graph G = (V,E). As observed in Sect. 7.4.1, the separation problem for
the subtour elimination polytope can be solved in polynomial time (as it
amounts to finding a minimum cut in G). Therefore, by applying the ellip-
soid algorithm, one can optimize over the subtour elimination polytope in
polynomial time. �

The complexity of the separation algorithm depends on how P is given
to us. We will need P to be “well-described” in the following sense.

Definition 7.24. A polyhedron P ⊂ R
n belongs to a well-described family

if the length L of the input needed to describe P satisfies n ≤ L, and there
exists a rational matrix (A, b) such that P = {x ∈ R

n : Ax ≤ b} and
the encoding size of each of the entries in the matrix (A, b) is polynomially
bounded by L.

Examples of well-described polyhedra are

• P := {x ∈ R
n : Ax ≤ b}, where A, b have rational entries and are

given as input.

• P := conv{x ∈ Z
n : Ax ≤ b}, where A, b have rational entries and

are given as input.

• P is the subtour elimination polytope of a graph G, where G is given
as input.

On the other hand, the subtour elimination polytope of a complete graph on
n nodes in not well-described if the given input is just the positive integer n in
binary encoding, because in this case the length of the input is �log2(n+1),
which is smaller than n for n ≥ 3.

Remark 7.25. It follows from Theorems 3.38 and 3.39 that P belongs to a
well-described family of polyhedra if and only if there exist rational vectors
x1, . . . , xk, r1, . . . , rt each of which has an encoding size that is polynomially
bounded by the length L of the input used to describe P , and such that
P = conv{x1, . . . , xk}+ cone{r1, . . . , rt}.

Theorem 7.26. For well-described polyhedra, the separation problem is
solvable in polynomial time if and only if the optimization problem is.

7.6. FURTHER READINGS 311

Proof. We give the proof for the case when P is full-dimensional and bounded.
The proof is more complicated when P is not full-dimensional, and we refer
the reader to [188] in that case.

“Polynomial Separation ⇒ Polynomial Optimization.” This follows from
the ellipsoid algorithm.

“Polynomial Optimization ⇒ Polynomial Separation.”

Claim 1: If Optimization can be solved in polynomial time on P , then an
interior point of P can be found in polynomial time.

Indeed, find a first point x0 by maximizing any objective function over P .
Assume affinely independent points x0, . . . , xi have been found. Choose c
orthogonal to the affine hull of x0, . . . , xi. Solve max cx and max−cx over
P , respectively. Al least one of these programs gives an optimal solution
xi+1 that is affinely independent of x0, . . . , xi. Repeat until i = n. Now
x̄ = 1

n+1

∑n
i=0 x

i is an interior point of P . This proves Claim 1.

Translate P so that the origin is in the interior of P . By Claim 1, this
can be done in polynomial time; indeed, if x̄ is an interior point of P , P − x̄
contains the origin in the interior.

Claim 2: If Optimization can be solved in polynomial time on P , then
Separation can be solved in polynomial time on its polar P ∗.

Given π∗ ∈ R
n, let x∗ be an optimal solution to max{π∗x : x ∈ P}. If

π∗x∗ ≤ 1, then π∗ ∈ P ∗. If π∗x∗ > 1, then πx∗ ≤ 1 is a valid inequality for
P ∗ which cuts off π∗. Its description is polynomial in the input size of the
separation problem on P ∗ (the input is the description of P (by Remark 7.25
P ∗ is well-described by the same input) and π∗). This proves the claim.

By Claim 2 and by the first part of the proof (Polynomial Separation
⇒ Polynomial Optimization), it follows that Optimization can be solved
in polynomial time on P ∗. Applying Claim 2 to P ∗, we get that Separation
can be solved in polynomial time on P ∗∗. Since P contain the origin in its
interior, it follows from Corollary 3.50 that P ∗∗ = P .

7.6 Further Readings

The solution of an instance of the traveling salesman problem on 49 cities,
detailed by Dantzig et al. [103] in 1954, laid out the foundations of the
cutting plane method, and has served as a template for tackling hard com-
binatorial problems using integer programming (see for example Grötschel

312 CHAPTER 7. VALID INEQUALITIES FOR STRUCTURED. . .

[183, 184], Crowder and Padberg [98], Grötschel et al. [185]). We refer the
reader to Cook [85] for an account of the history of combinatorial integer
programming, to the monograph by Applegate et al. [13] for a history of
traveling salesman computations, and to Cook’s book [86] for an expository
introduction to the traveling salesman problem. On the theory side, the
key insight of Dantzig, Fulkerson and Johnson that one can solve integer
programs by introducing inequalities as needed, culminated in the proof of
equivalence of separation and optimization by Grötschel et al. [186].

Several early works on valid inequalities for structured problems focused
on packing problems, see for example Padberg [297], Nemhauser and Trotter
[283, 284], and Wolsey [350]. Padberg [297] introduced the notion of seq-
uential lifting in the context of odd-holes inequalities and generalized it
in [298], where he described the sequential lifting procedure discussed in
Sect. 7.2. The effectiveness of polyhedral methods in solving general 0, 1
problems was illustrated in the 1983 paper of Crowder et al. [99], where
they reported successfully solving 10 pure 0,1 linear programs with up to
2750 variables, employing a variety of tools including lifted cover inequalities.
Van Roy and Wolsey [340] reported computational experience in solving a
variety of mixed 0,1 programming problems using strong valid inequalities.
The paper formalized the automatic reformulation approach, that has since
become a staple in integer programming: identify a suitable “structured
relaxation” R of the feasible region (such as, for example, a single-node flow
set), find a family of “strong” valid inequalities for R, and devise an efficient
separation algorithm for the inequalities in the family.

The results of Sect. 7.2.2 on superadditive liftings were proved by Wolsey
[351], and generalized to mixed 0,1 linear problems by Gu et al. [192]. The
sequence independent liftings of cover and flow cover inequalities (Sects. 7.2.3
and 7.3) are given in [192]. Gu et al. [191] report on a successful application
of lifted flow cover inequalities to solving mixed 0,1 linear problems. See
Louveaux and Wolsey [258] for a survey on sequence-independent liftings.

Wolsey [352] showed that the subtour formulation of the symmetric trav-
eling salesman problem has an integrality gap of 3/2 whenever the distances
define a metric. Goemans [169] computed the worst-case improvement re-
sulting from the addition of many of the known classes of inequalities for
the graphical traveling salesman polyhedron, showing for example that the
comb inequalities cannot improve the subtour bound by a factor greater
than 10/9.

7.6. FURTHER READINGS 313

Equivalence of Separation and Optimization for Convex Sets

The ellipsoid method was first introduced by Yudin and Nemirovski [356] and
Shor [332] for convex nonlinear programming, and was used by Khachiyan
[235] in a seminal paper in 1979 to give the first polynomial-time algorithm
for linear programming. Several researchers realized, soon after Khachiyan’s
breakthrough, that the method could be modified to run in polynomial
time even if the polyhedron is implicitly described by a separation oracle.
The strongest version of this result is given by Grötschel et al. [186] (see
also [188]), and it can be extended to general convex sets, but similar results
have also been discovered by Karp and Papadimitriou [233] and Padberg and
Rao [299].

As mentioned above, the equivalence of linear optimization and sep-
aration holds also for general convex sets. However, given a convex set
K ⊂ R

n and c ∈ Q
n, it may very well be that the optimal solutions of

max{cx : x ∈ K} have irrational components. Analogously, given y �∈ K,
there is no guarantee that a rational hyperplane separating y from K ex-
ists, in general. Therefore optimization and separation over K can only be
solved in an approximate sense. Formally, given a convex set K ⊆ R

n and
a number ε > 0, let S(K, ε) := {x ∈ R

n : ‖x− y‖ ≤ ε for some y ∈ K} and
S(K,−ε) := {x ∈ K : S({x}, ε) ⊆ K}.

The weak optimization problem is the following: given a vector c ∈ Q
n,

and a rational number ε > 0, either determine that S(K,−ε) is empty, or
find y ∈ S(K, ε) ∩Q

n such that cx ≤ cy + ε for all x ∈ S(K,−ε).

The weak separation problem is the following: given a point y ∈ Q
n, and

a rational number δ > 0, either determine that y ∈ S(K, δ), or find c ∈ Q
n,

‖c‖∞ = 1, such that cx ≤ cy + δ for all x ∈ K.

In order to state the equivalence of the two problems, one needs to
specify how K is described. Furthermore, the equivalence holds under some
restrictive assumptions. Namely, we say that a convex setK is circumscribed
if the following information is given as part of the input: a positive integer
n such that K ⊂ R

n, and a rational positive number R such that K is
contained in the ball of radius R centered at 0. A circumscribed convex set
K is denoted by (K;n,R).

We say that a circumscribed convex set (K;n,R) is given by a weak
separation oracle if we have access to an oracle that provides a solution c to
the weak separation problem for every choice of y and δ, where the encoding
size of c is polynomially bounded by n and the encoding sizes of R, y, and δ.

We say that a circumscribed convex set (K;n,R) is given by a weak
optimization oracle if we have access to an oracle providing a solution y

314 CHAPTER 7. VALID INEQUALITIES FOR STRUCTURED. . .

to the weak optimization problem for every choice of c and ε, where the
encoding size of y is polynomially bounded by n and the encoding sizes of
R, c and ε.

If (K;n,R) is expressed by a weak separation or a weak optimization
oracle, an algorithm involving K is said to be oracle-polynomial time if the
total number of operations, including calls to the oracle, is bounded by a
polynomial in n and the encoding sizes of R and of other input data (such
as objective function c and tolerance ε).

Theorem 7.27 (Grötschel et al. [186]). There exists an oracle-polynomial
time algorithm that solves the weak optimization problem for every circum-
scribed convex set (K;n,R) given by a weak separation oracle and every
choice of c ∈ Q

n and ε > 0.
There exists an oracle-polynomial time algorithm that solves the weak sepa-
ration problem for every circumscribed convex set (K;n,R) given by a weak
optimization oracle and every choice of y ∈ Q

n and δ > 0.

The equivalence hinges on an approximate version of the ellipsoid method.
Below we give a high-level description of the method.

Input. A rational number ε > 0 and a circumscribed closed convex
set (K;n,R) given by a separation oracle.
Output. Either a rational point y ∈ S(K, ε), or an ellipsoid E such
that K ⊆ E and vol(E) < ε.

Initialize with a large enough integer t∗ and a small enough δ < ε.
Set t = 0, and let E0 be the ball of radius R centered at 0.

Iteration t. Let xt be the center of the current ellipsoid Et con-
taining K. Make a call to the separation oracle with y = xt. If the
oracle concludes that xt is in S(K, δ), then xt ∈ S(K, ε), stop. If
the oracle returns c ∈ Q

n such that cx ≤ cxt + δ for all x ∈ K, then
find an ellipsoid Et+1 that is an appropriate approximation of the
smallest ellipsoid containing Et ∩ {cx ≤ cxt + δ}. Increment t by 1.
If t < t∗, perform the next iteration. If t = t∗, stop: vol(Et) < ε.

The algorithm described above is oracle-polynomial time because it can
be shown that t∗ and δ can be chosen so that their encoding size is polyno-
mial in n and in the encoding sizes of R and ε. Furthermore, the ellipsoid
Et+1 can be computed by a closed form formula.

7.7. EXERCISES 315

7.7 Exercises

Exercise 7.1. Consider the 0,1 knapsack set K := {x ∈ {0, 1}n :∑n
j=1 ajxj ≤ b} where 0 < aj ≤ b for all j = 1, . . . , n.

(i) Show that xj ≥ 0 defines a facet of conv(K).

(ii) Give conditions for the inequality xj ≤ 1 to define a facet of conv(K).

Exercise 7.2. Consider the graph C5 with five vertices vi for i = 1, . . . , 5
and five edges v1v2, . . . , v4v5, v5v1. Let STAB(C5) denote the stable set
polytope of C5, namely the convex hull of its stable sets.

(i) Show that xj ≥ 0 is a facet of STAB(C5).

(ii) Show that xj + xk ≤ 1 is a facet of STAB(C5) whenever vjvk is an
edge of C5.

(iii) Show that
∑5

j=1 xj ≤ 2 is a facet of STAB(C5).

(iv) Let W5 be the graph obtained from C5 by adding a new vertex w
adjacent to every vj , j = 1, . . . , 5. Show how each facet in (i), (ii) and
(iii) is lifted to a facet of STAB(W5).

Exercise 7.3. A wheel Wn is the graph with n+1 vertices v0, v1, . . . , vn, and
2n edges v1v2, v2v3, . . . , vn−1vn, vnv1 and v0vi for all i = 1, . . . n. A Hamil-
tonian cycle is one that goes though each vertex exactly once. We represent
each Hamiltonian cycle by a 0,1 vector in the edge space of the graph,
namely R

2n. Define Hamilton(Wn) to be the convex hull of the 0,1 vectors
representing Hamiltonian cycles of Wn.

(i) What is the dimension of Hamilton(Wn)? How many vertices does
Hamilton(Wn) have? How many facets?

(ii) Show that the inequalities xe ≤ 1 define facets of Hamilton(Wn) for
e = v1v2, . . . , vn−1vn, vnv1.

(iii) Give a minimal description of Hamilton(Wn).

Exercise 7.4. Let G = (V,E) be a graph.

1. Show that the blossom inequalities (4.17) for the matching polytope
are Chvátal inequalities for the system

∑
e∈δ(v) xe ≤ 1, v ∈ V , x ≥ 0.

316 CHAPTER 7. VALID INEQUALITIES FOR STRUCTURED. . .

2. Show that, if G is not bipartite, then there is at least one blossom
inequality that is facet-defining for the matching polytope of G.

In particular, the matching polytope has Chvátal rank zero or one, and the
rank is one if and only if G is not bipartite.

Exercise 7.5. Consider S ⊆ {0, 1}n. Suppose S ∩ {xn = 0} �= ∅ and
S∩{xn = 1} �= ∅. Let

∑n−1
i=1 αixi ≤ β be a valid inequality for S∩{xn = 1}.

State and prove a result similar to Proposition 7.2 that lifts this inequality
into a valid inequality for conv(S).

Exercise 7.6. Consider S ⊆ {0, 1}n. Suppose that conv(S) ∩ {x : xk = 0
for all k = p + 1, . . . , n} has dimension p, and that

∑p
j=1 αjxj ≤ β defines

one of its faces of dimension p−2 or smaller. Construct an example showing
that a lifting may still produce a facet of conv(S).

Exercise 7.7. Consider the sequential lifting procedure. Prove that the
largest possible value of the lifting coefficient αj is obtained when xj is
lifted first in the sequence. Prove that the smallest value is obtained when
xj is lifted last.

Exercise 7.8. Consider the 0,1 knapsack set K := Z
n∩P where P := {x ∈

R
n :

∑n
j=1 ajxj ≤ b, 0 ≤ x ≤ 1}. Let C be a minimal cover, and let h ∈ C

such that ah = maxj∈C aj. Show that the inequality

∑
j∈C

xj +
∑

j∈N\C

aj
ah

�xj ≤ |C| − 1

is a Chvátal inequality for P .

Exercise 7.9. Let K be a knapsack set where b ≥ a1, . . . ,≥ an > 0, Let
C = {j1, . . . , jt} be a minimal cover of K. The extension of C is the set
E(C) := C ∪ {k ∈ N \ C : ak ≥ aj for all j ∈ C}. Let 	 be the smallest
index in {1, . . . , n} \ E(C) (if the latter is nonempty).

(i) Prove that, if
∑

j∈C∪{1}\{j1,j2} aj ≤ b and
∑

j∈C∪{�}\{j1} aj ≤ b, then
the extended cover inequality

∑
j∈E(C) xj ≤ |C| − 1 defines a facet of

conv(K).

(ii) Prove that extended cover inequalities are Chvátal inequalities.

Exercise 7.10. Consider the knapsack set {x ∈ {0, 1}4 : 8x1 + 5x2 +
3x3 + 12x4 ≤ 14}. Given the minimal cover C = {1, 2, 3}, compute the
best possible lifting coefficient of variable x4 using Theorem 7.4. Is the
corresponding lifted cover inequality a Chvátal inequality?

7.7. EXERCISES 317

Exercise 7.11. Let set S and the inequality
∑

j∈C αjxj ≤ β be defined as
in Sect. 7.2.2. Suppose that the lifting function defined in (7.10) is superad-
ditive. Prove that

∑
j∈C αjxj +

∑
j∈N\C f(aj)xj ≤ β is valid for S and, for

every valid inequality
∑

j∈N αjxj ≤ β, αj ≤ f(aj) for all j ∈ N \ C.

Exercise 7.12. Show that the function g defined in (7.12) is superadditive.

Exercise 7.13. Show that the lifted minimal cover inequality of Example
7.8 induces a facet.

Exercise 7.14. Prove that, when the inclusion C ⊂ N is strict, the condition
λ < max

j∈C
aj is necessary for the flow cover inequality (7.14) to define a facet

of conv(T).

Exercise 7.15. Consider the following mixed integer linear set.

T := {x ∈ {0, 1}n, y ∈ R
n
+ :

∑k
j=1 yj −

∑n
j=k+1 yj ≤ b

yj ≤ ajxj for all j = 1, . . . , n}

where b > 0 and aj > 0 for all j = 1, . . . , n. Consider C ⊆ {1, . . . , k} such
that

∑
j∈C aj > b. Let λ :=

∑
j∈C aj − b. Consider L ⊆ {k + 1, . . . , n} and

let L̄ := {k + 1, . . . , n} \ L. Prove that if maxj∈C aj > λ and aj > λ for all
j ∈ L, then

∑
j∈C

yj −
∑

j∈L̄

yj +
∑
j∈C

(aj − λ)+(1− xj)−
∑
j∈L

λxj ≤ b

defines a facet of conv(T).

Exercise 7.16. Prove that the function f defined in Lemma 7.13 is super-
additive in the interval [0, b].

Exercise 7.17. Prove that flow cover inequalities (7.14) are Gomory mixed
integer inequalities.

Exercise 7.18. Show that the comb inequality (7.23) can be written in the
following equivalent form

∑k
i=0

∑
e∈δ(Si)

xe ≥ 3k + 1.

Exercise 7.19. Let G = (V,E) be an undirected graph. Recall from
Sect. 2.4.2 that stab(G) is the set of the incidence vectors of all the stable
sets of G. The stable set polytope of G is STAB(G) = conv(stab(G)). Let

318 CHAPTER 7. VALID INEQUALITIES FOR STRUCTURED. . .

Q(G) : ={x ∈ R
V : xi+xj ≤ 1, ij ∈ E} and K(G) : ={x ∈ R

V :
∑

i∈K ≤
1, K clique of G}. Recall that stab(G) = Q(G) ∩ Z

V = K(G) ∩ Z
V .

(i) Prove that, given a clique K of G, the clique inequality
∑

v∈K xv ≤ 1
is facet-defining for STAB(G) if and only if K is a maximal clique.

(ii) Given an odd cycle C of G, the odd cycle inequality is
∑

v∈V (C) xv ≤
(|C| − 1)/2. The cycle C is chordless if and only if E \ C has no edge
with both endnodes in V (C).

– Show that the odd cycle inequality is a Chvátal inequality
for Q(G).

– Show that the odd cycle inequality is facet-defining for STAB(G)∩
{x : xi = 0, i ∈ V \ V (C)} if and only if C is chordless.

(iii) A graph H = (V (H), E(H)) is an antihole if the nodes of H can
be labeled v1, . . . , vh so that vi is adjacent to vj , j �= i, if and only
if both i − j (mod h) ≥ 2 and j − i (mod h) ≥ 2. The inequality∑

i∈V (H) xi ≤ 2 is the antihole inequality relative to H. Let H be an
antihole contained in G such that |V (H)| is odd.

– Show that the antihole inequality relative to H is a Chvátal ine-
quality for K(G).

– Show that, if E \E(H) has no edge with both endnodes in V (H),
then the antihole inequality relative to H is facet-defining for
STAB(G) ∩ {x : xi = 0, i ∈ V \ V (H)}.

(iv) Given positive integers n, k, n ≥ 2k+1, a graphW k
n = (V (W k

n), E(W k
n))

is a web if the nodes of W k
n can be labeled v1, . . . , vn so that vi is adja-

cent to vj , j �= i, if and only if i−j (mod h) ≤ k or j− i (mod h) ≤ k.
Show that, if W k

n is a web contained in G and n is not divisible by
k+1, then the web inequality

∑
i∈V (W k

n) xi ≤
n/(k+1)� is a Chvátal
inequality for K(G).

Exercise 7.20. Given an undirected graph G = (V,E), the stability number
α(G) of G is the size of the largest stable set in G. An edge e ∈ E is α-
critical if α(G \ e) = α(G) + 1. Let Ẽ ⊆ E be the set of α-critical edges
in G. Show that, if the graph G̃ = (V, Ẽ) is connected, then the inequality∑

i∈V xi ≤ α(G) is facet-defining for STAB(G).

7.7. EXERCISES 319

Exercise 7.21. Show that the mixing inequalities (4.29) and (4.30) are
facet-defining for Pmix (defined in Sect. 4.8.1).

Exercise 7.22. Show that the separation problem for the mixing inequali-
ties (4.29) can be reduced to a shortest path problem in a graph with O(n)
nodes.
Show that the separation problem for the mixing inequalities (4.30) can be
reduced to finding a negative cost cycle in a graph with O(n) nodes.

Chapter 8

Reformulations
and Relaxations

To take advantage of the special structure occurring in a formulation of an
integer program, it may be desirable to use a decomposition approach. For
example, when the constraints can be partitioned into a set of nice con-
straints and the remaining set of complicating constraints, a Lagrangian
approach may be appropriate. The Lagrangian dual provides a bound that
can be stronger than that obtained by solving the usual linear program-
ming relaxation; such a bound may be attractive in a branch-and-bound
algorithm. An alternative to the Lagrangian approach is a Dantzig–Wolfe
reformulation; when used within the context of an enumeration algorithm,
this approach is known as branch-and-price. When it is the variables that
can be partitioned into nice and complicating variables, a Benders reformu-
lation may be appropriate.

8.1 Lagrangian Relaxation

Consider a mixed integer linear program

zI := max cx
Ax ≤ b
xj ∈ Z for j = 1, . . . , p
xj ≥ 0 for j = 1, . . . , n,

(8.1)

© Springer International Publishing Switzerland 2014
M. Conforti et al., Integer Programming, Graduate Texts
in Mathematics 271, DOI 10.1007/978-3-319-11008-0 8

321

322 CHAPTER 8. REFORMULATIONS AND RELAXATIONS

where p ≤ n and all data are assumed to be rational. Following the conven-
tion introduced in Remark 3.10, define zI := +∞ when (8.1) is unbounded
and zI := −∞ when (8.1) is infeasible.

Partition the constraints Ax ≤ b into two subsystems A1x ≤ b1,
A2x ≤ b2 and let mi denote the number of rows of Ai for i = 1, 2. Let

Q := {x ∈ R
n
+ : A2x ≤ b2, xj ∈ Z for j = 1, . . . , p}.

For any λ ∈ R
m1
+ , consider the problem LR(λ), called Lagrangian relaxation:

zLR(λ) := max
x∈Q

cx+ λ(b1 −A1x) (8.2)

Problem LR(λ) is a relaxation of (8.1) in the following sense.

Proposition 8.1. zLR(λ) ≥ zI for every λ ∈ R
m1
+ .

Proof. The result holds when zI = −∞, so we may assume that a feasible
solution of (8.1) exists. Let x̄ be any feasible solution of (8.1). Since x̄ ∈ Q,
x̄ is feasible to LR(λ) and since A1x̄ ≤ b1 and λ ≥ 0, we have zLR(λ) ≥
cx̄+ λ(b1 −A1x̄) ≥ cx̄. This implies zLR(λ) ≥ zI .

The choice of the partition of Ax ≤ b into A1x ≤ b1, A2x ≤ b2 depends
on the application and is based on the structure of the problem. Typically,
the constraints A2x ≤ b2 should be “nice” in the sense that one should
be able to optimize a linear function over the set Q, and thus evaluate
zLR(λ), efficiently, while A1x ≤ b1 are typically viewed as “complicating”
constraints.

The smallest upper bound that we can obtain from Proposition 8.1 is

zLD := min
λ≥0

zLR(λ). (8.3)

This problem is called the Lagrangian dual of the integer program (8.1).

Theorem 8.2. Assume {x : A1x ≤ b1, x ∈ conv(Q)} �= ∅. Then zLD =
max{cx : A1x ≤ b1, x ∈ conv(Q)}.

Proof. Since A2x ≤ b2 is a rational system, by Meyer’s theorem (Theorem
4.30), conv(Q) is a rational polyhedron. Let Cx ≤ d be a system of linear
inequalities such that conv(Q) = {x ∈ R

n : Cx ≤ d}. Since Q �= ∅, by
linear programming duality zLR(λ) = max{cx + λ(b1 − A1x) : Cx ≤ d} =
min{λb1 + μd : μC = c − λA1, μ ≥ 0} for all λ ≥ 0. It follows that

8.1. LAGRANGIAN RELAXATION 323

zLD = minλ≥0 zLR(λ) = min{λb1 + μd : λA1 + μC = c, λ ≥ 0, μ ≥ 0}.
The latter is precisely the dual of the linear program max{cx : A1x ≤
b1, Cx ≤ d}. Their optimal values coincide because the primal is feasible
by assumption.

Note that when the assumption stated in the theorem does not hold, it is
possible that zLD = +∞ and max{cx : A1x ≤ b1, x ∈ conv(Q)} = −∞, as
the reader can verify using the integer program max{x1+x2 : x1−x2 ≤ −1,
−x1 + x2 ≤ −1, x1, x2 ∈ Z+}. We leave the details as Exercise 8.4.

In the remainder of this chapter, we assume that {x : A1x ≤ b1, x ∈
conv(Q)} �= ∅. This implies that Q �= ∅.

Let {vk}k∈K denote the extreme points of conv(Q) and let {rh}h∈H
denote its extreme rays. The Lagrangian bound zLR(λ) is finite if and only
if (c−λA1)r ≤ 0 for every r ∈ rec(conv(Q)), that is, if and only if λ belongs
to the polyhedron P := {λ ∈ R

m1
+ : λA1r

h ≥ crh for all h ∈ H}. In this
case,

zLR(λ) = λb1 +max
k∈K

(c− λA1)v
k (8.4)

Corollary 8.3. The function zLR defined in (8.2) is a piecewise linear con-
vex function of λ over its domain.

Proof. By (8.4) the function zLR is the maximum of a finite number of affine
functions, therefore it is convex and piecewise linear.

Let zLP denote the optimal value of the linear programming relaxation
of (8.1). Theorem 8.2 implies the following.

Corollary 8.4. zI ≤ zLD ≤ zLP

Proof. conv(S) ⊆ conv(Q) ∩ {x ∈ R
n
+ : A1x ≤ b1} ⊆ {x ∈ R

n
+ : Ax ≤ b}.

Maximizing the linear function cx over these three sets gives the desired
inequalities.

Thus the Lagrangian dual bound is always at least as tight as the linear
programming bound obtained from the usual linear programming relaxation.
However, Theorem 8.2 implies the following.

Corollary 8.5. zLD=zLP for all c ∈ R
n if conv(Q)={x ∈ R

n
+ : A2x ≤ b2}.

In particular, for pure integer programs, when A2 is totally unimodular
and b2 is an integral vector, we have zLD = zLP , i.e., the Lagrangian dual
bound is no better that the usual linear programming relaxation bound.

324 CHAPTER 8. REFORMULATIONS AND RELAXATIONS

Remark 8.6. The above theory easily extends to the case where some of
the constraints of the integer program (8.1) are equality constraints. For
example, if the constraints of the integer program partition into A1x = b1 and
A2x ≤ b2, then the theory goes through by replacing λ ∈ R

m1
+ by λ ∈ R

m1 ,
i.e., the multiplier λi is unrestricted in sign when it is associated with an
equality constraint.

8.1.1 Examples

Uncapacitated Facility Location

We first illustrate the Lagrangian relaxation approach on the uncapacitated
facility location problem:

max
∑m

i=1

∑n
j=1 cijyij −

∑n
j=1 fjxj∑n

j=1 yij = 1 for all i

yij ≤ xj for all i, j
x ∈ {0, 1}n, y ≥ 0.

(8.5)

In order to solve (8.5) by branch and bound, using linear programming
bounds, one has to solve large linear programs at each node of the enumera-
tion tree. On the other hand, it is easy to obtain bounds from the following
Lagrangian relaxation [93].

zLR(λ) = max
∑m

i=1

∑n
j=1(cij−λi)yij−

∑n
j=1 fjxj+

∑m
i=1 λi

yij ≤ xj for all i, j
x ∈ {0, 1}n, y ≥ 0.

(8.6)

The Lagrangian dual is minλ∈Rm zLR(λ). Note that λ is unrestricted in
sign in this case (recall Remark 8.6). The following propositions show that
zLR(λ) can be computed with a simple formula. The proof of the next
proposition is easy and we leave it as an exercise.

Proposition 8.7. An optimal solution of the Lagrangian relaxation (8.6) is

yij(λ) =

{
1 if cij − λi > 0 and

∑
�(c�j − λ�)

+ − fj > 0,
0 otherwise.

xj(λ) =

{
1 if

∑
�(c�j − λ�)

+ − fj > 0,
0 otherwise.

8.1. LAGRANGIAN RELAXATION 325

Proposition 8.8. For any given λ ∈ R
m, the following hold.

(i) zLR(λ) =
∑

j(
∑

i(cij − λi)
+ − fj)

+ +
∑

i λi.

(ii) zLD = zLP .

Proof. (i) follows from Proposition 8.7. (ii) follows from Corollary 8.5 and
the fact that the constraints of (8.6) are totally unimodular.

Traveling Salesman Problem

Consider the symmetric traveling salesman problem on an undirected graph
G = (V,E) with costs ce, e ∈ E. Held and Karp [197, 198] proposed
to construct a Lagrangian relaxation from the Dantzig–Fulkerson–Johnson
formulation by relaxing all the degree constraints except for the one rela-
tive to a given node, say node 1, and including the redundant constraint∑

e∈E xe = |V |. The resulting relaxation is

zLR(λ) = min
∑

e∈E cexe +
∑

i∈V \{1} λi(2−
∑

e∈δ(i) xe)∑
e∈δ(1) xe = 2∑
e∈E[S] xe ≤ |S| − 1 for ∅ ⊂ S ⊂ V \ {1}∑

e∈E xe = |V |
xe ∈ {0, 1} for e ∈ E.

(8.7)

A 1-tree in G is a subset T of edges such that T ∩E[V \{1}] is a spanning
tree in G \ {1} and T has exactly 2 edges incident with node 1. One can
readily verify that the feasible solutions of (8.7) are precisely the incidence
vectors of 1-trees. Therefore, given λ ∈ R

V \{1}, computing an optimal
solution for (8.7) consists in computing a 1-tree of minimum cost. Note that
a minimum-cost 1-tree can be computed efficiently as follows:

Compute a minimum-cost spanning tree T ′ in G \ {1}, and let e′, e′′ be two
edges incident with node 1 of minimum cost; output T = T ′ ∪ {e′, e′′}.

Recall that a minimum-cost spanning tree can be computed using
Kruskal’s algorithm (Sect. 4.5).

The 1-tree polytope of G is the convex hull of incidence vectors of 1-trees.

Proposition 8.9. The 1-tree polytope of G is described by the linear relax-
ation of the constraints in (8.7).

Proof. Observe that, by subtracting the degree constraint
∑

e∈δ(1) xe = 2
from

∑
e∈E xe = |V |, one obtains the equivalent constraint

∑
e∈E\δ(1) xe =

326 CHAPTER 8. REFORMULATIONS AND RELAXATIONS

|V | − 2, which is expressed only in terms of the variables relative to edges
of G \ {1}. It follows that the polyhedron P described by the constraints
of (8.7) is the direct product P = P1 × P2 of the polyhedra

P1 :=

⎧
⎨

⎩x ∈ R
δ(1) :

∑

e∈δ(1)

xe = 2, 0 ≤ xe ≤ 1 for all e ∈ δ(1)

⎫
⎬

⎭ ,

P2 :=

⎧
⎨

⎩x ∈ R
E\δ(1)
+ :

∑

e∈E[S]

xe ≤ |S|−1 for ∅ 	= S ⊂ V \ {1},
∑

e∈E\δ(1)
xe = |V |−2

⎫
⎬

⎭ .

It is easy to see that the polyhedron P1 is the convex hull of incidence
vectors of subsets of δ(1) of cardinality 2 whereas, by Theorem 4.25, P2 is
the spanning tree polytope of G \ {1}.

By Corollary 8.5 and Proposition 8.9, the lower bound given by the
Lagrangian dual zLD = maxλ≥0 zLR(λ) is the same as that given by the
Dantzig–Fulkerson–Johnson relaxation.

We illustrate the above relaxation on the example given in Sect. 7.4.2,
and represented in Fig. 7.3. We recall that the figure on the left represents
the costs on the edges of G, while the figure on the right represents the
components of an optimal solution of the subtour relaxation, which has value
3. We apply the Lagrangian relaxation described above, where we relax all
degree constraints except the one relative to node v1. Let us consider the
problem z(λ) when λi = 1, i = 2, . . . , 6. The objective function of the
Lagrangian relaxation is 10 − x14 − x23 − 2x25 − 2x36 − x45 − x46 − x56.
The coefficients of the variables are represented in the figure below, together
with an optimal 1-tree (depicted by boldface edges).

v1

v2

v3

v4

v5

v6

−1

−1

−1
−1

−1

0

0

−2

−2

Note that the cost of the 1-tree is 10− 7 = 3, which coincides with that
of the optimal subtour solution. We conclude that the above choice of λ is
optimal.

8.1.2 Subgradient Algorithm

To use the Lagrangian dual bound in a branch-and-bound algorithm, we
need to compute zLD or at least approximate it from above. Let {vk}k∈K

8.1. LAGRANGIAN RELAXATION 327

denote the extreme points of conv(Q) and let {rh}h∈H denote its extreme
rays. Let P := {λ ∈ R

m1
+ : (c− λA1)r

h ≤ 0 for all h ∈ H}. By (8.4),

zLD = min
λ∈P

max
k∈K

cvk + λ(b1 −A1v
k). (8.8)

Therefore we need to solve a problem of the form

min
λ∈P

g(λ) (8.9)

where P is a polyhedron and g is a convex nondifferentiable function
(Corollary 8.3).

For any convex function g : Rn → R, the vector s ∈ R
n is a subgradient

of g at point λ∗ ∈ R
n if

(λ− λ∗)s ≤ g(λ)− g(λ∗) for all λ ∈ R
n.

Every convex function g has a subgradient at every point of its domain
(the proof is left as an exercise, see Exercise 8.9). Note that, if g is differ-
entiable at λ∗, then the subgradient of g at λ∗ is uniquely defined and it is
the gradient of g at λ∗. In general, the set of subgradients of g at a point
λ∗ is a convex set. Note that, if the zero vector is a subgradient of g at
λ∗, then g(λ∗) ≤ g(λ) for all λ ∈ R

n, and therefore λ∗ is a minimizer of g.
Conversely, if λ∗ is a minimizer of g, then g(λ) − g(λ∗) ≥ 0 for all λ ∈ R

n,
and therefore the zero vector is a subgradient at λ∗, but λ∗ may have other
nonzero subgradients.

Subgradients are easily available in our case, as shown by the following
proposition.

Proposition 8.10. If x∗ is an optimal solution of LR(λ∗) as defined in (8.2),
then s∗ := b1 −A1x

∗ is a subgradient of the function zLR at point λ∗.

Proof. For all λ ≥ 0,

zLR(λ) ≥ cx∗ + λ(b1 −A1x
∗) = cx∗ + λ∗(b1 −A1x

∗) + (λ− λ∗)(b1 −A1x
∗)

= zLR(λ
∗) + (λ− λ∗)s∗.

For example, for the Lagrangian relaxation of the uncapacitated facil-
ity location problem given in (8.6), a subgradient of the function zLR at
λ is given by si = 1 −

∑
j yij(λ), i = 1, . . . ,m, where y(λ) is defined in

Proposition 8.7. For the Lagrangian relaxation of the traveling salesman
problem defined in (8.7), a subgradient of the function zLR at λ is given by
si = 2−|δ(i)∩T | for all i ∈ V \{1}, where T is a minimum-cost 1-tree with
respect to λ.

328 CHAPTER 8. REFORMULATIONS AND RELAXATIONS

A simple idea to minimize g(λ) is to take steps in a direction opposite
to a current subgradient direction. Since we want λ ∈ P , we project onto P
at each iteration. We denote by projP (λ) the projection of λ onto P , that
is, the point λ′ ∈ P at minimum Euclidean distance from λ. In practice,
P is often a simple set such as the nonnegative orthant, in which case the
projection step is straightforward. We will show that, for an appropriate
choice of the step size, such a scheme converges to an optimum.

Subgradient algorithm for minλ∈P g(λ):

Step 1 (initialization) Choose a starting point λ1 ∈ P , set g1best := g(λ1),
and set the iteration counter t := 1.

Step 2 (finding a subgradient) Choose a subgradient st of g at point λt. If
st = 0, stop: λt is optimal. Otherwise, go to Step 3.

Step 3 (step size) Let λt+1 = projP (λ
t − αts

t) for some αt > 0. Set
gt+1
best = min{gtbest, g(λt+1)}. Increment t by 1. If t is greater than some
prespecified iteration limit, stop. Otherwise return to Step 2.

The choice of the step size αt remains to be specified. We will consider
several options, some guaranteeing convergence to the optimal value, others
guaranteeing fast convergence, albeit not necessarily to an optimum.

We first consider a divergent series
∑∞

t=1 αt = +∞ where αt > 0 con-
verges to 0 as t increases. For example αt =

1
t is such a series. Poljak [310]

proved that the subgradient algorithm converges to the optimal value with
such a choice of αt.

Theorem 8.11 (Poljak [310]). Assume that problem (8.9) has finite value
g∗, and that the length of all subgradients of g is bounded by a constant
S ∈ R+. If the sequence (αt)

∞
t=1 converges to 0 and

∑+∞
t=1 αt = +∞, then the

sequence (gtbest)
∞
t=1 generated by the subgradient algorithm converges to g∗.

Proof. The key to the proof is to study the Euclidean distance of the current
point λ to an optimal solution λ∗ of (8.9).

‖λt+1 − λ∗‖2 = ‖projP (λt − αts
t)− λ∗‖2

≤ ‖λt − αts
t − λ∗‖2 (8.10)

= ‖λt − λ∗‖2 − 2αts
t(λt − λ∗) + α2

t ‖st‖2

≤ ‖λt − λ∗‖2 − 2αt(g(λ
t)− g(λ∗)) + α2

t ‖st‖2 (8.11)

8.1. LAGRANGIAN RELAXATION 329

where (8.10) follows from the fact that λ∗ ∈ P and that the projection onto
a convex set does not increase the distance to points in the set, while (8.11)
follows from the definition of subgradient.

Note that gkbest = mint=1,...,k g(λ
t) and g∗ = g(λ∗). Combining the above

inequalities for t = 1, . . . , k, we get

‖λk+1 − λ∗‖22 ≤ ‖λ1 − λ∗‖22 − 2(

k∑
t=1

αt)(g
k
best − g∗) + (

k∑
t=1

α2
t)S

2.

This implies

gkbest − g∗ ≤ ‖λ1 − λ∗‖22 + S2(
∑k

t=1 α
2
t)

2
∑k

t=1 αt

Since
∑+∞

t=1 αt = +∞, one can show that limk→+∞
∑k

t=1 α
2
t∑k

t=1 αt
= 0, thus

limk→+∞ gkbest = g∗.

However Poljak [310] also proved that convergence is slow. To reach
an objective value within a given ε > 0 of the optimum value g∗, O(1

ε2)
iterations are needed.

Nesterov [287] shows how to go from O(1
ε2
) iterations to O(1ε) by exp-

loiting the special form of the function g, which is the maximum of a finite
number of affine functions. Although this direction is promising, we do not
discuss it any further in this textbook.

In the context of branch-and-bound algorithms, it may be preferable to
get bounds even more quickly than by Nesterov’s approach. This motivates
the next two schemes for choosing αt.

(i) A geometric series αt := α0ρ
t where 0 < ρ < 1. Poljak [310] proved

that the subgradient algorithm converges fast in this case, but not
necessarily to an optimum solution. The Lagrangian relaxation bound
obtained this way is a valid bound for use in a branch-and-bound
algorithm (Proposition 8.1). The following variation of (i) works well
in practice:

(ii) αt := (g(λt)−g∗)ρt
||st||2 where g∗ is a target value, usually a lower bound

(obtained, for example, from a feasible solution to the integer program),
and ρ0 = 2,

ρt :=

{ ρt−1

2
if the objective value g(λt) did not improve for K consecutive

iterations,
ρt−1 otherwise.

Choosing K around 7 seems to work well in practice but the best

330 CHAPTER 8. REFORMULATIONS AND RELAXATIONS

choice may depend on the application. There is clearly an empirical
component in choosing a “good” step size αt, the goal being to obtain
good upper bounds fast.

8.2 Dantzig–Wolfe Reformulation

In this section we present an alternative approach to the Lagrangian relax-
ation. As in Sect. 8.1, we consider the integer program (8.1), a partition of
the constraints Ax ≤ b into two subsystems A1x ≤ b1, A2x ≤ b2, and

Q := {x ∈ R
n
+ : A2x ≤ b2, xj ∈ Z for j = 1, . . . , p}.

Theorem 8.2 shows that the Lagrangian dual bound zLD is equal to

max{cx : A1x ≤ b1, x ∈ conv(Q)}. (8.12)

The same bound can be achieved as follows. Let {vk}k∈K be a finite set of
points in conv(Q) containing all the extreme points of conv(Q) and {rh}h∈H
a finite set of rays of conv(Q) containing all its extreme rays. Since every
point in conv(Q) is a convex combination of the extreme points plus a conic
combination of the extreme rays, problem (8.12) can be reformulated as

max
∑
k∈K

(cvk)λk +
∑
h∈H

(crh)μh

∑
k∈K

(A1v
k)λk +

∑
h∈H

(A1r
h)μh ≤ b1

∑
k∈K

λk = 1 (8.13)

λ ∈ R
K
+ , μ ∈ R

H
+ .

Formulation (8.13) is the Dantzig–Wolfe relaxation of (8.1). A reformula-
tion of the integer program (8.1) is obtained from (8.13) by enforcing the
integrality conditions

∑
k∈K

vkj λk +
∑
h∈H

rhj μh ∈ Z, for j = 1, . . . , p. (8.14)

The formulation given by (8.13), (8.14) is the Dantzig–Wolfe reformula-
tion of the integer program (8.1). Note that, in general, the Dantzig–Wolfe
relaxation and reformulation have a large number of variables, namely at
least as many as the number of vertices and extreme rays of conv(Q). We
address this issue in Sect. 8.2.2.

8.2. DANTZIG–WOLFE REFORMULATION 331

Example 8.12. Consider the Lagrangian relaxation of the traveling sale-
sman problem proposed in (8.7). As discussed in Sect. 8.1.1, the bound
provided by (8.7) is equal to

min
∑

e∈E cexe∑
e∈δ(i) xe = 2 i ∈ V \ {1}
x ∈ conv(Q)

where Q is the set of incidence vectors of 1-trees. Let T be the family
of 1-trees of G and for any 1-tree T ∈ T let c(T) :=

∑
e∈T ce denote its

cost. Held and Karp [197] give the following Dantzig–Wolfe relaxation of
the traveling salesman problem.

min
∑

T∈T c(T)λT∑
T∈T |δ(i) ∩ T |λT = 2 i ∈ V \ {1}∑

T∈T λT = 1
λT ≥ 0 T ∈ T .

(8.15)

�

Remark 8.13. If Q is a pure integer set and conv(Q) is bounded, and we
choose {vk}k∈K to be the set of all points in Q, then enforcing the integrality
conditions (8.14) is equivalent to enforcing λk ∈ {0, 1} for all k ∈ K.

In Example 8.12 it suffices to replace λT ≥ 0 by λT ∈ {0, 1} for T ∈ T
in (8.15) to obtain a Dantzig–Wolfe reformulation of the traveling salesman
problem.

Relation with the Lagrangian Dual

The Lagrangian dual can be viewed as the linear programming dual of the
Dantzig–Wolfe relaxation. Indeed, the dual of (8.13) is

min πb1 + z

z + π(A1v
k) ≥ cvk k ∈ K

π(A1r
h) ≥ crh h ∈ H

π ≥ 0

The dual constraints indexed by K can be written equivalently as z ≥ (c−
πA)vk, therefore the dual problem is equivalent to

min
π∈P

max
k∈K

πb1 + (c− πA)vk,

where P := {π : π ≥ 0, π(A1r
h) ≥ crh for h ∈ H}. This is exactly the

formula (8.8) of the Lagrangian dual.

332 CHAPTER 8. REFORMULATIONS AND RELAXATIONS

8.2.1 Problems with Block Diagonal Structure

Some problems present the following structure, in which several blocks of
constraints on disjoint sets of variables are linked by some complicating
constraints.

max c1x1 +c2x2 + · · · +cpxp

B1x
1 ≤ b1

B2x
2 ≤ b2

. . .

Bpx
p ≤ bp

D1x
1 +D2x

2 + · · · +Dpx
p ≤ d

xj ∈ {0, 1}nj , j = 1, . . . , p.

(8.16)

Here we consider pure binary problems for ease of notation, but the discus-
sion can be extended to general mixed integer linear problems. Let nj be
the number of variables in block j, for j = 1, . . . , p, and let Qj := {z ∈
{0, 1}nj : Bjz ≤ bj}. The Dantzig–Wolfe relaxation of problem (8.16) can
be stated as follows

max
∑p

j=1

∑
v∈Qj

(cjv)λj
v∑p

j=1

∑
v∈Qj

(Djv)λ
j
v ≤ d∑

v∈Qj
λj
v = 1 j = 1, . . . , p

λj
v ≥ 0 j = 1, . . . , p, v ∈ Qj.

(8.17)

Since we are considering a pure binary problem, the Dantzig–Wolfe reformu-
lation of (8.16) is obtained by enforcing λj

v ∈ {0, 1} for j = 1, . . . , p, v ∈ Qj

(Remark 8.13).

Example 8.14. Consider the generalized assignment problem

max
∑

i

∑
j cijxij∑

j xij ≤ 1 i = 1, . . . ,m∑
i tijxij ≤ Tj j = 1, . . . , n

x ∈ {0, 1}m×n.

The problem exhibits a block diagonal structure with n blocks, one for each
j = 1, . . . , n, where the jth block depends on the m variables x1j, . . . , xmj .
Let Qj := {z ∈ {0, 1}m :

∑m
i=1 tijzi ≤ Tj}, j = 1, . . . , n. Note that Qj is a

0,1 knapsack set. The corresponding Dantzig–Wolfe relaxation is given by

8.2. DANTZIG–WOLFE REFORMULATION 333

max
∑

j

∑
v∈Qj

(
∑

i cijvi)λ
j
v∑

j

∑
v∈Qj

viλ
j
v ≤ 1 i = 1, . . . ,m∑

v∈Qj
λj
v = 1 j = 1, . . . , n

λj
v ≥ 0 j = 1, . . . , n, v ∈ Qj.

Since in general the inclusion conv(Qj) ⊂ {z ∈ R
m :

∑m
i=1 tijzi ≤ Tj , 0 ≤

z ≤ 1} is strict, the Dantzig–Wolfe relaxation is stronger than the original
linear programming relaxation. �

An important special case is when all blocks are identical, that is,
c1 = c2 = . . . = cp := c, B1 = B2 = . . . = Bp, b1 = b2 = . . . =
bp, D1 = D2 = . . . ,Dp =: D. This is the case, for example, in the
operating room problem (2.17) when all the operating rooms are identi-
cal. In this case, we have Q1 = Q2 = . . . = Qp =: Q. If we define, for every

v ∈ Q, λv :=
∑p

j=1 λ
j
v, the objective function

∑p
j=1

∑
v∈Q(cv)λ

j
v simplifies

to
∑

v∈Q(cv)λv , while the constraints
∑p

j=1

∑
v∈Q(Dv)λj

v ≤ d simplify to∑
v∈Q(Dv)λv ≤ d. Therefore, in this case, the relaxation (8.17) can be

simplified as follows

max
∑

v∈Q(cv)λv∑
v∈Q(Dv)λv ≤ d∑

v∈Q λv = p

λv ≥ 0 v ∈ Q.

(8.18)

The Dantzig–Wolfe reformulation of (8.16) is obtained by enforcing λv ∈ Z,
v ∈ Q. One advantage of this reformulation is that, when all blocks are
identical, the symmetry in (8.16) disappears in the reformulation.

Example 8.15. Consider the cutting stock problem discussed in Sect. 2.3,
where we need to cut at least bi rolls of width wi out of rolls of width W ,
i = 1, . . . ,m, while minimizing the number of rolls of width W used. Con-
sider the formulation (2.1), where p is an upper bound on the number of rolls
of width W used, binary variable yj indicates if roll j is used, j = 1, . . . , p,
and variable zij represents the number of rolls of width wi cut out of roll j.

min
∑p

j=1 yj∑m
i=1wizij ≤ Wyj j = 1, . . . , p∑p

j=1 zij ≥ bi i = 1, . . . ,m

yj ∈ {0, 1} j = 1, . . . , p
zij ∈ Z+ i = 1, . . . ,m, j = 1, . . . , p.

(8.19)

334 CHAPTER 8. REFORMULATIONS AND RELAXATIONS

Observe that we have a block diagonal structure with p identical blocks,
relative to the m + 1 variables yj, z1j , . . . , zmj , j = 1, . . . , p. Let Q :=
{(η, ζ) ∈ {0, 1} × Z

m :
∑m

i=1wiζi ≤ Wη}. As in Sect. 2.3, consider all
possible cutting patterns S := {s ∈ Z

m
+ :

∑m
i=1wisi ≤ W}. Observe that

the points of Q are the zero vector and the points (1, s), s ∈ S. Thus, the
Dantzig–Wolfe reformulation (8.19) can be written as

min
∑

s∈S xs∑
s∈S sixs ≥ bi for i = 1, . . . ,m

x ≥ 0 integral.

Note that the constraint
∑

s∈S xs ≤ p is redundant, since p was chosen to
be an upper-bound on the number of rolls needed. This is precisely the
Gilmore–Gomory formulation (2.2) presented in Sect. 2.3. �

8.2.2 Column Generation

Column generation is a general technique to solve linear programming prob-
lems with a very large number of variables, which is typically the case for
the Dantzig–Wolfe relaxation of an integer program. At each iteration, the
method keeps a manageable subset of the variables, solves the linear pro-
gramming problem restricted to these variables, and either concludes that
the optimal solution of the restricted problem corresponds to an optimal
solution of the whole problem, or finds one or more “candidate variables”
to improve the current solution.

We describe the method in the context of the Dantzig–Wolfe relax-
ation (8.13). The extension to relaxations (8.17) and (8.18) for problems
with a block diagonal structure is straightforward. Suppose we have deter-
mined subsets K ′ ⊆ K, H ′ ⊆ H such that the problem

max
∑

k∈K ′(cvk)λk +
∑

h∈H′(crh)μh∑
k∈K ′(A1v

k)λk +
∑

h∈H′(A1r
h)μh ≤ b1∑

k∈K ′ λk = 1

λ ∈ R
K ′
+ , μ ∈ R

H′
+

(8.20)

is feasible. Problem (8.20) is referred to as the master problem. If (8.20)
is unbounded, then the Dantzig–Wolfe relaxation (8.13) is also unbounded.
Otherwise, let (λ̄, μ̄) be an optimal solution of (8.20), and let (π̄, σ̄) ∈ R

m×R

be an optimal solution to its dual, which is

8.2. DANTZIG–WOLFE REFORMULATION 335

min πb1 +σ
π(A1v

k) +σ ≥ cvk k ∈ K ′

π(A1r
h) ≥ crh h ∈ H ′

π ≥ 0.

(8.21)

• Observe that the reduced cost of variable λk, k ∈ K, is equal to
c̄k = cvk − π̄(A1v

k)− σ̄, while the reduced cost of variable μh, h ∈ H,
is c̄h = crh − π̄(A1r

h).

• If c̄k ≤ 0 for all k ∈ K and c̄h ≤ 0 for all h ∈ H, then (λ̄, μ̄) is
an optimal solution to the Dantzig–Wolfe relaxation (8.13), where the
values of the variables λk, k ∈ K \K ′, and μh, h ∈ H \H ′, are set to 0.
Otherwise, we include one or more variables with positive reduced cost
in the restricted problem (8.20).

• A variable with positive reduced cost, if any exists, can be computed
as follows. Solve the integer program, known as the pricing problem,

ζ := −σ̄ +max
x∈Q

(c− π̄A1)x (8.22)

– Problem (8.22) is unbounded if and only if there exists an extreme
ray rh of conv(Q) such that (c − π̄A1)r

h > 0, that is, if variable
μh has a positive reduced cost. Note that, by Meyer’s theorem
(Theorem 4.30), the recession cone of conv(Q) is {y ∈ R

n
+ :

A2y ≤ 0}, thus such an extreme ray can be computed by linear
programming.

– If (8.22) is bounded and ζ > 0, then there exists a vertex vk of
conv(Q) such that cvk − π̄(A1v

k) − σ̄ > 0, that is, variable λk

has a positive reduced cost. Here we assume that the constraints
A2x ≤ b2 were chosen so that (8.22) can be solved efficiently.

– Finally, if (8.22) is bounded and ζ ≤ 0, then there is no variable
of positive reduced cost.

Note that the pricing problem (8.22) has the same form as the Lagrangian
subproblem (8.2).

Example 8.16. In Example 8.15, at each iteration the master problem is
defined by a subset S ′ ⊆ S of the patterns.

min
∑

a∈S′ xa∑
a∈S′ aixa ≥ bi for i = 1, . . . ,m

x ≥ 0.

336 CHAPTER 8. REFORMULATIONS AND RELAXATIONS

Given an optimal solution π̄ ∈ R
m to the dual of the master problem, namely,

max
∑m

i=1 biπi∑m
i=1 aiπi ≤ 1 for a ∈ S ′

π ≥ 0,

the pricing problem is

ζ = max
∑m

i=1 π̄izi∑m
i=1 wizi ≤ W
zi ∈ Z+ i = 1, . . . ,m,

which is a knapsack problem. If ζ ≤ 1 then any optimal solution to the
master problem is also optimal for the linear programming relaxation of the
cutting stock problem. Otherwise, the optimal solution z∗ to the pricing
problem is a pattern that corresponds to a variable of negative reduced
cost. �

Example 8.17. We consider the Dantzig–Wolfe relaxation of the gen-
eralized assignment problem discussed in Example 8.14. When solving by
column generation, at each iteration the master problem is defined by subsets
Sj ⊆ Qj , j = 1, . . . , n.

max
∑

j

∑
v∈Sj

(
∑

i cijvi)λ
j
v∑

j

∑
v∈Sj

viλ
j
v ≤ 1 i = 1, . . . ,m∑

v∈Sj
λj
v = 1 j = 1, . . . , n

λj
v ≥ 0 j = 1, . . . , n, v ∈ Sj.

Consider an optimal solution (π̄, σ̄) ∈ R
m × R

n to the dual of the master
problem, namely,

min
∑m

i=1 πi +
∑n

j=1 σj
πv +σj ≥

∑
i cijvi j = 1, . . . , n, v ∈ Sj

π ≥ 0.

In this case we have n pricing problems, namely, for j = 1, . . . , n

ζj = −σ̄j +max
∑m

i=1(cij − π̄i)zi∑m
i=1 tijzi ≤ Tj

z ∈ {0, 1}m
(8.23)

which are 0,1 knapsack problems. If ζj ≤ 0 for j = 1, . . . , n then any
optimal solution to the master problem is also optimal for the Dantzig–
Wolfe relaxation. Otherwise, if ζj > 0 for some j and z∗ is an optimal

solution, then the variable λj
z∗ has positive reduced cost. �

8.2. DANTZIG–WOLFE REFORMULATION 337

8.2.3 Branch-and-Price

To solve the Dantzig–Wolfe reformulation, one can apply the branch-and-
bound procedure, solving the Dantzig–Wolfe relaxation by column generation
to compute a bound at each node. This approach is known as branch-
and-price. We describe it in the context of the Dantzig–Wolfe reformu-
lation (8.13), (8.14) of the integer program (8.1). It can be specialized
to problems with a block-diagonal structure using reformulations based
on (8.17) or (8.18).

• Given an optimal solution (λ∗, μ∗) to the Dantzig–Wolfe relaxation
(8.13) at a given node of the branch-and-bound tree, let x∗ be the
corresponding solution to the linear programming relaxation of (8.1),
that is, x∗ =

∑
k∈K vkλ∗

k +
∑

h∈H rhμ∗
h.

• If x∗ satisfies the integrality constraints x∗j ∈ Z, j = 1, . . . , p, then
prune the current node.

• Otherwise, select a fractional entry x∗j , for some j ∈ {1, . . . , p}, and
branch on x∗j by creating two new nodes relative to the disjunction

∑
k∈K

vkj λk +
∑
h∈H

rhj μh ≤
x∗j� or
∑
k∈K

vkj λk +
∑
h∈H

rhj μh ≥ �x∗j.

(8.24)

Each node is obtained by including one of the two inequalities (8.24)
in the Dantzig–Wolfe relaxation (8.13).

Several variations on the above scheme have been considered. For the
pure integer case when conv(Q) is a bounded set, if we choose {vk}k∈K to be
the whole set Q, then by Remark 8.13 enforcing the integrality conditions
on the original variables xj, j = 1, . . . , n, is equivalent to enforcing the
conditions λk ∈ {0, 1}, k ∈ K. One might be tempted to branch directly
on a variable λk, rather than on the original variables. This is usually not
advisable. The reason is that enforcing the condition λk = 0 is typically
difficult. To illustrate this, consider the generalized assignment problem,
and the solution of its Dantzig–Wolfe reformulation by column generation
discussed in Example 8.14. Suppose we intend to fix variable λj

v to 0. When
solving the pricing problem (8.23) it could be the case that the optimal
solution will be point v, meaning that the variable λj

v should be included in
the master problem. In this case, then, one should look for the second best
solution of (8.23), which increases the computational burden of the pricing
problem.

338 CHAPTER 8. REFORMULATIONS AND RELAXATIONS

Another option that one can consider when generating the subproblems
is, instead of including the constraint

∑
k∈K vkj λk +

∑
h∈H rhj μh ≤
x∗j� or∑

k∈K vkj λk +
∑

h∈H rhj μh ≥ �x∗j in the reformulation, to enforce the con-
straint xj ≤
x∗j� or xj ≥ �x∗j directly on the set Q,

Q0 := Q ∩ {x : xj ≤
x∗j�}, Q1 := Q ∩ {x : xj ≥ �x∗j}.

The two subproblems will then be, for t = 0, 1,

max
∑
v∈V t

(cv)λv +
∑
r∈Rt

(cr)μr

∑
v∈V t

(A1v)λv +
∑
r∈Rt

(A1r)μr ≤ b1

∑
v∈V t

λv = 1 (8.25)

λ ∈ R
V t

+ , μ ∈ R
Rt

+ ,

where V t is a finite set including the vertices of conv(Qt) and Rt is a finite
set including its extreme rays. Note that the linear programming bound
given by (8.25), for t = 0, 1, is tighter than the relaxation obtained by
enforcing the constraint

∑
k∈K vkj λk+

∑
h∈H rhj μh ≤
x∗j� and

∑
k∈K vkj λk+∑

h∈H rhj μh ≥ �x∗j, respectively, on (8.13). However, while it is assumed
that linear optimization over Q is easy, enforcing further constraints on Q
might make the pricing problem for (8.25) harder or even intractable, thus
solving (8.25) by column generation might be impractical.

8.3 Benders Decomposition

Benders decomposition is a classical approach in integer programming. Its
main idea is to solve the original problem by iteratively solving two simpler
problems: the master problem is a relaxation of the original problem, while
the Benders subproblem provides inequalities that strengthen the master
problem. Consider the integer program

max cx+ hy
Ax+Gy ≤ b

x ∈ Z
n
+

y ∈ R
p
+,

8.3. BENDERS DECOMPOSITION 339

or more generally a problem of the form

zI := max cx+ hy
Ax+Gy ≤ b

x ∈ X
y ∈ R

p
+,

(8.26)

where X ⊂ R
n.

Let {uk}k∈K denote the set of extreme points of the polyhedron
Q := {u ∈ R

m
+ : uG ≥ h} and {rj}j∈J the set of extreme rays of the

cone C := {u ∈ R
m
+ : uG ≥ 0}. The cone C is the recession cone of Q when

Q �= ∅.

Theorem 8.18 (Benders). Problem (8.26) can be reformulated as

zI = max η + cx
η ≤ uk(b−Ax) for all k ∈ K
rj(b−Ax) ≥ 0 for all j ∈ J
x ∈ X, η ∈ R.

(8.27)

Proof. Let P := {(x, y) ∈ R
n ×R

p : Ax+Gy ≤ b, y ≥ 0}. Then (8.26) can
be rewritten as

zI = max {cx+ zLP (x) : x ∈ projx(P) ∩X} (8.28)

where

zLP (x) = max hy
Gy ≤ b−Ax
y ∈ R

p
+.

(8.29)

By Theorem 3.46, we have that

projx(P) = {x ∈ R
n : rj(b−Ax) ≥ 0 for all j ∈ J}.

For x̄ ∈ projx(P), (8.29) is a feasible linear program whose dual is
min{u(b−Ax̄) : u ∈ Q}. Therefore zLP (x̄) is either finite or +∞. If zLP (x̄)
is finite, by linear programming duality, Q is nonempty. Because Q is a
pointed polyhedron, it follows that K �= ∅ and zLP (x̄) = mink∈K uk(b−Ax̄).
If (8.29) is unbounded, zLP (x̄) = +∞ and the dual is infeasible. That is,
K = ∅. Therefore in both cases,

zLP (x̄) = max{η : η ≤ uk(b−Ax̄), for all k ∈ K}.

Since (8.28) is a reformulation of (8.26), the theorem follows.

340 CHAPTER 8. REFORMULATIONS AND RELAXATIONS

Formulation (8.27) is called the Benders reformulation of problem (8.26).
It typically has an enormous number of constraints. Instead of using the
full-fledged Benders reformulation (8.27), it may be beneficial to use a small
subset of these constraints as cuts in a cutting plane algorithm. We discuss
some of the issues that arise in implementing such an algorithm, known
under the name of Benders decomposition.

The algorithm alternates between solving a relaxation of the Benders ref-
ormulation (8.27), obtained by considering only a subset of the constraints,
and solving the linear program (8.29) to generate additional inequalities
from (8.27). The first of these two problems is called the master problem,
and the linear program (8.29) is known as the Benders subproblem. The
dual of the Benders subproblem is min{u(b−Ax̄) : u ∈ Q}. If Q is empty,
then for any x̄ the Benders subproblem is either infeasible or unbounded,
and thus the original problem (8.26) is either infeasible or unbounded. We
will assume in the remainder that Q is nonempty.

At iteration i, the master problem is of the form

max η + cx
η ≤ uk(b−Ax) for all k ∈ Ki

rj(b−Ax) ≥ 0 for all j ∈ Ji
x ∈ X, η ∈ R,

(8.30)

where Ki ⊆ K and Ji ⊆ J . The choice of the initial sets K1, J1 can be
important and will be discussed later. Solve the master problem (8.30), and
let (x∗, η∗) be an optimal solution. (To guarantee that the master problem
is bounded, we can impose a constraint η + cx ≤ M , where M is an upper
bound on the optimal value of the original integer program (8.26).) Solve
the Benders subproblem zLP (x

∗), or equivalently its dual min{u(b−Ax∗) :
u ∈ Q}. If the Benders subproblem is infeasible, then its dual is unbounded
since Q �= ∅, thus there exists an extreme ray rj of C, j ∈ J , such that
rj(b − Ax∗) < 0. In this case, a new feasibility cut rj(b − Ax) ≥ 0 has
been found. Note that j ∈ J \ Ji because the inequality cuts off the current
optimum x∗. If the Benders subproblem has an optimum solution, then there
are two cases. If zLP (x

∗) < η∗, then consider a basic dual optimal solution
uk, where k ∈ K. In this case, a new optimality cut η ≤ uk(b−Ax) has been
found, where k ∈ K \Ki. Finally, if zLP (x

∗) = η∗, then (x∗, y∗) is optimal
to (8.26), where y∗ is an optimal solution of the Benders subproblem.

At a given iteration i, there are typically many ways of generating vio-
lated Benders cuts and, in fact, it is important in practice to choose Benders
cuts judiciously. See Sect. 8.4 for a few pointers.

8.4. FURTHER READINGS 341

We now discuss briefly the choice of the initial sets K1, J1 in the case
of mixed integer linear programming, i.e., X = {x ∈ Z

n
+ : Dx ≤ d}. In

principle, one could start with K1 = J1 = ∅. However, this may lead
to a high number of iterations, each of which involves solving an integer
program. In order to decrease the number of integer programs to solve, in a
first phase one can solve their linear programming relaxation instead, until
enough inequalities are generated to define an optimal solution (x0, η0) of
the linear relaxation of the Benders reformulation (8.27). This first phase
is identical to the Benders decomposition algorithm described above, but
now each iteration involves solving the linear programming relaxation of the
current master problem. We use the feasibility cuts and optimality cuts
obtained in this first phase to define the initial sets K1, J1.

Benders decomposition has been used successfully in several application
areas, such as in the energy sector to plan transmission of electricity from
power plants to consumers (see for example [54]). The underlying model is
a network design problem such as the one introduced in Sect. 2.10.2. In this
model, the design variables x are used to construct the master problem. Fix-
ing x̄ corresponds to fixing the underlying network. For fixed x̄, the Benders
subproblem (8.29) is a multicommodity flow problem in the corresponding
network.

In many applications the constraint matrix G in (8.26) has a block
diagonal structure, namely

zI = max cx+
∑m

i=1 h
iyi

Aix+Giy
i ≤ bi i = 1, . . . ,m
x ∈ X
yi ∈ R

pi
+ i = 1, . . . ,m.

In this case the Benders subproblem decomposes into m separate smaller
linear programs, and the Benders reformulation may have considerably less
constraints (see Exercise 8.19). Examples include stochastic programming
where the variables x represent first-stage decisions, and the variables yi rep-
resent the second-stage decisions under scenario i. See Birge and Louveaux
for a good introduction to stochastic programming [55].

8.4 Further Readings

Lagrangian Relaxation

Geoffrion [162] wrote one of the early papers on Lagrangian relaxation in
integer programming. Fisher [138] surveys some of the early results in
this area. Guignard and Kim [194] introduced a Lagrangian decomposition
approach.

342 CHAPTER 8. REFORMULATIONS AND RELAXATIONS

Heuristics for computing a Lagrangian bound were proposed by Erlenkot-
ter [133] and Wong [354].

As pointed out in Sect. 8.2, the Lagrangian dual is the dual of the
Dantzig–Wolfe relaxation. However, the subgradient method applied to
the Lagrangian does not provide a primal solution (i.e., a feasible solution
to the Dantzig–Wolfe relaxation). An interesting idea to modify the sub-
gradient algorithm in order to also provide primal solutions is the volume
algorithm proposed by Barahona and Anbil [36].

Briant, Lemaréchal, Meurdesoif, Michel, Perrot, and Vanderbeck [64]
compare bundle methods and classical column generation.

Cutting Stock

Consider the cutting stock problem discussed in Sect. 2.3 and Example 8.15.
Since the Gilmore–Gomory formulation has a variable for each cutting pat-
tern, the size of the formulation is not polynomial in the encoding size of
the problem. A relevant question is whether there exists an optimal solution
that uses a number of patterns that is polynomial in the encoding length.
Eisenbrand and Shmonin [131] show that this is the case.

Theorem 8.19. There exists an optimal solution for the cutting stock prob-
lem that uses at most

∑m
i=1 log(bi + 1) patterns.

Proof. Let S := {s ∈ Z
m
+ :

∑m
i=1 wisi ≤ W}. Note that there always

exists an optimal solution x∗ ∈ R
S to the cutting stock problem such that∑

s∈S sx∗s = b. Among all such optimal solutions, let x∗ be the one using
the minimum number of patterns, that is, the set T := {s ∈ S : x∗s > 0}
has the smallest possible cardinality.

Assume first that, for every distinct T1, T2 ⊂ T ,
∑

s∈T1
s �=

∑
s∈T2

s.

Since vectors s ∈ T are nonnegative, we have that, for any T̃ ⊆ T ,
b =

∑
s∈T sx∗s ≥

∑
s∈T s ≥

∑
s∈T̃ s. This shows that the number of distinct

vectors that can be expressed as the sum of vectors in subsets of T is bounded
by

∏m
i=1(bi+1). Since the sum of the patterns in every subset of T is distinct,

it follows that 2|T | ≤
∏m

i=1(bi + 1), and therefore |T | ≤
∑m

i=1 log(bi + 1).
We may therefore assume that there exist T1, T2 ⊂ T such that T1 �= T2

and
∑

s∈T1
s =

∑
s∈T2

s. We may further assume that T1 and T2 are disjoint,
otherwise we can consider T1 \ T2 and T2 \ T1 instead. W.l.o.g., |T1| ≥ |T2|.
Let ξ = mins∈T1 x

∗
s. Consider x̄ defined by x̄s = x∗s for s ∈ T \(T1∪T2), x

∗
s−ξ

for s ∈ T1, x
∗
s + ξ for s ∈ T2. Since b =

∑
s∈T sx∗s and

∑
s∈T1

s =
∑

s∈T2
s,

we have that b =
∑

s∈T sx̄s. By the choice of ξ, all coefficients in the above
combination are nonnegative and integral. Since |T1| ≥ |T2|, we have that

8.4. FURTHER READINGS 343

∑
s∈T x∗s ≥

∑
s∈T x̄s. Therefore x̄ is an optimal solution to the cutting stock

problem. Furthermore by the choice of ξ, we have that x∗s − ξ = 0 for some
s ∈ T1 and this contradicts the assumption on the minimality of |T |.

Eisenbrand and Shmonin [131] also prove that here exists an optimal
solution for the cutting stock problem that uses at most 2m patterns.

An important question that has been open until recently is wether for
fixed dimension m, the cutting stock problem can be solved in polynomial
time. Goemans and Rothvoß [171] prove that this is indeed the case.

Theorem 8.20. There exists an algorithm that computes an optimal solu-
tion to the cutting stock problem whose running time is log a · 2O(m), where
a is the largest entry in the cutting stock formulation.

Dantzig–Wolfe Reformulation and Column Generation

The seminal paper on Dantzig–Wolfe reformulation is [104]. On column gen-
eration, the paper of Gilmore and Gomory [168] on the cutting-stock prob-
lem was very influential. Many other application areas have benefited from
the column generation approach. We just mention Desrosiers, Soumis, and
Desrochers, [114] who used it to solve routing problems with time windows.

Benders Reformulation

Benders [47] proposed his decomposition scheme in 1962. Successful early
contributions were made by Geoffrion and Graves [163] and Geoffrion [161].

An important question in practice is how to choose Benders cuts judi-
ciously. This issue was investigated by Magnanti and Wong [265], Fischetti,
Salvagnin, and Zanette [143], among others.

Given a point (x∗, η∗), there is a Benders cut that cuts it off if and only
if the linear program (8.29) has a solution y strictly less than η∗, in other
words the linear system

hy ≥ η∗

Gy ≤ b−Ax∗

y ≥ 0

is infeasible. Equivalently the following dual linear program is unbounded.

min v(b−Ax∗)− v0η
∗

vG ≥ v0h
v, v0 ≥ 0.

344 CHAPTER 8. REFORMULATIONS AND RELAXATIONS

Using a normalization constraint to bound it, we obtain

min v(b−Ax∗)− v0η
∗

vG ≥ v0h∑m
i=1 v1 + v0 = 1

v, v0 ≥ 0.

(8.31)

This is a cut-generating linear program for Benders cuts. An optimal solution
vk, vk0 of (8.31) satisfies vk(b−Ax∗)− vk0η

∗ < 0. Therefore

vk(b−Ax)− vk0η ≥ 0

is a Benders cut that cuts off (x∗, η∗). When vk0 > 0 we get an optimality
cut η ≤ uk(b−Ax), and when vk0 = 0 we get a feasibility cut rj(b−Ax) ≥ 0.

Fischetti, Salvagnin, and Zanette [143] conducted numerical experiments
on instances of the MIPLIB library and concluded that it pays to optimize
the generation of Benders cuts using (8.31) rather than taking the first
Benders cut that can be produced.

Costa [97] surveys Benders decomposition applied to fixed-charge net-
work design problems.

8.5 Exercises

Exercise 8.1. Modify the branch-and-bound algorithm of Sect. 1.2.1 to use
Lagrangian bounds instead of linear programming bounds. Discuss the adv-
antages and drawbacks of such an approach.

Exercise 8.2. Write a Lagrangian relaxation for

zI := max cx
A1x = b1 complicating constraints
A2x ≤ b2 nice constraints
xj ∈ Z for j = 1, . . . , p
xj ≥ 0 for j = 1, . . . , n.

and prove a proposition similar to Proposition 8.1.

8.5. EXERCISES 345

Exercise 8.3. Consider a binary problem with block diagonal structure as
in (8.16), and let Qj , j = 1, . . . , p be defined as in Sect. 8.2.1. Consider
the constraints Bjx

j ≤ bj (j = 1, . . . , p) as the “nice” constraints, and the
remaining as the “complicating” constraints. Prove that the Lagrangian
dual value is

zLD = min
λ≥0

⎧⎨
⎩λd+

p∑
j=1

max
v∈Qj

(cj − πDj)v

⎫⎬
⎭ .

Exercise 8.4. Consider the integer program max{x1 + x2 : x1 − x2 ≤
−1, −x1 + x2 ≤ −1, x1, x2 ∈ Z+}. Compute zLR(λ) for any λ ≥ 0 using
Q := {(x1, x2) ∈ Z

2
+ : −x1 + x2 ≤ −1}. Compute the Lagrangian dual

bound zLD. Compare to max{cx : A1x ≤ b1, x ∈ conv(Q)}.

Exercise 8.5.

(i) Assuming that the x part of a feasible solution to (8.6) is given, show
that a feasible solution y that maximizes the objective is

yij =

{
xj if cij − λi > 0,
0 otherwise.

(ii) Using (i), prove Proposition 8.7.

Exercise 8.6. Consider two different Lagrangian duals for the generalized
assignment problem

zI := max
∑m

i=1

∑n
j=1 cijxij∑n

j=1 xij ≤ 1 for i = 1, . . . ,m∑m
i=1 aixij ≤ bj for j = 1, . . . , n

xij ∈ {0, 1} for i = 1, . . . ,m, j = 1, . . . , n.

Discuss the relative merits of these two duals based on (i) the strength of
the bound, (ii) ease of solution of the subproblems.

Exercise 8.7. In the setting of Sect. 8.1, consider the following alternative
relaxation to the integer program (8.1). For every λ ∈ R

m1
+ let zSD(λ) :=

max{cx : λA1x ≤ λb1, x ∈ Q}. Define zSD := infλ≥0 zSD(λ). Prove that
zI ≤ zSD ≤ zLD.

346 CHAPTER 8. REFORMULATIONS AND RELAXATIONS

Exercise 8.8. In the setting of Sect. 8.1, the integer program (8.1) can be
written equivalently as

zI = max cx
x− y = 0
A1x ≤ b1

A2y ≤ b2

xj , yj ∈ Z for j = 1, . . . , p
x, y ≥ 0

Let z̄ be the optimal solution of the Lagrangian dual obtained by dualizing
the constraints x− y = 0. Prove that

z̄ = max{cx : x ∈ conv(Q1) ∩ conv(Q2)},

whereQi := {x ∈ Z
p
+×Rn−p

+ : Aix ≤ bi}, i = 1, 2, assuming that conv(Q1)∩
conv(Q2) is nonempty.

Exercise 8.9. Show that, for every convex function g : Rn → R and every
λ∗ ∈ R

n, there exists a subgradient of g at λ∗.

Exercise 8.10. Construct an example of a convex function g : R
n → R

such that some subgradients at a point λ∗ ∈ R
n are directions of ascent,

whereas other subgradients are directions of descent. (A direction of ascent
(resp. descent) at λ∗ is a vector s ∈ R

n for which there exists ε > 0 such
that g(λ∗ + ts) > g(λ∗) (resp. g(λ∗ + ts) < g(λ∗)) for all 0 < t < ε.)

Exercise 8.11. Show that, if (αt) is a nonnegative sequence such that∑+∞
t=1 αt is finite, then the subgradient algorithm converges to some point.
Construct an example of a convex function, a sequence (αt) as above,

and a starting point for which the subgradient algorithm converges to a
point that is not optimal.

Exercise 8.12. Suppose we apply the subgradient method to solve the
Lagrangian dual minλ∈Rm zLR(λ), where zLR(λ) is the Lagrangian relax-
ation (8.6) for the uncapacitated facility location problem.

1. Specialize each of the steps 1–3 of the subgradient algorithm to this
case.

2. In each iteration t, let (x(λt), y(λt)) be the optimal solution for (8.6)
given in Proposition 8.7. Describe the best solution of (8.5) when each
xj is fixed to xj(λ

t), j = 1, . . . , n.

8.5. EXERCISES 347

3. Point (2) gives a lower bound for (8.5). Can you use it to introduce
an additional stopping criterion in the subgradient algorithm.

Exercise 8.13. In the context of the uncapacitated facility location prob-
lem, consider the function z defined as follows for any x ∈ [0, 1]n such that∑n

j=1 xj ≥ 1.

z(x) := max
∑m

i=1

∑n
j=1 cijyij −

∑n
j=1 fjxj∑n

j=1 yij = 1 for all i

yij ≤ xj for all i, j
y ≥ 0.

1. Prove that the function z is concave in the domain over which it is
defined.

2. Determine a subgradient of z for any point in the set S := {x ∈ [0, 1]n :∑n
j=1 xj ≥ 1}.

3. Specialize the subgradient algorithm to solve maxx∈S z.

4. Show that maxx∈S z is equal to zLP obtained by solving the linear
programming relaxation of (8.5).

Exercise 8.14. Give a Dantzig–Wolfe reformulation of the uncapacitated
facility location problem (8.5) based on the set Q := {(x, y) ∈ {0, 1}n ×
R
m×n : yij ≤ xj for all i, j}. [Hint: For each nonempty set S ⊆ {1, . . . ,m}

and j ∈ {1, . . . , n}, let λj
S = 1 if a facility located at site j satisfies the

demand of all clients in the set S, and 0 otherwise.]

Exercise 8.15. Consider the formulation for the network design problem
given in Sect. 2.10.2.

1. Use the block diagonal structure, where each block corresponds to an
arc a ∈ A, to derive a Dantzig–Wolfe reformulation, as described in
Sect. 8.2.1.

2. Use the block diagonal structure, where each block corresponds to a
commodity k = 1, . . . ,K, to derive a different Dantzig–Wolfe refor-
mulation. (The reformulation will have a variable for every possible
sk, tk-path, k = 1, . . . ,K.)

3. For each of these Dantzig–Wolfe reformulations, describe the pricing
problem to solve the corresponding relaxation using column generation.

348 CHAPTER 8. REFORMULATIONS AND RELAXATIONS

Exercise 8.16. In (8.26), replace the inequality constraints Ax + Gy ≤ b
by equality constraints Ax + Gy = b. Explain how Theorem 8.18 and its
proof must be modified.

Exercise 8.17. Let X ⊂ R
n. Given f : X → R and F : X → R

m, prove
that the optimization problem

zI := max f(x) + hy
F (x) +Gy ≤ b

x ∈ X
y ∈ R

p
+

can be reformulated in a form similar to (8.26) with cx and Ax replaced by
f(x) and F (x) respectively.

Exercise 8.18. Consider a problem of the form

zI := max cx
Ax +Gy ≤ b

x ∈ X
y ∈ R

p
+.

where X ⊂ R
n. Show that its Benders reformulation is of the form

zI = max cx
rj(b−Ax) ≥ 0 for all j ∈ J
x ∈ X.

where {rj}j∈J is the set of extreme rays of the cone C : ={u ∈ R
m
+ : uG ≥ 0}.

Exercise 8.19. Consider a problem of the form

zI := max cx+
∑m

i=1 h
iyi

Aix+Giy
i ≤ bi i = 1, . . . ,m
x ∈ X
yi ∈ R

pi
+ i = 1, . . . ,m

(8.32)

where X ⊂ R
n.

For i = 1, . . . ,m, let {uik}k∈Ki
denote the set of extreme points of the

polyhedron Qi := {ui ≥ 0 : uiGi ≥ hi}, and let {rij}j∈Ji be the set of
extreme rays of the cone Ci := {ui ≥ 0 : uiGi ≥ 0}.

8.5. EXERCISES 349

(i) Prove that problem (8.32) can be reformulated as

zI = max
∑

i ηi + cx
ηi ≤ uik(bi −Aix) for all k ∈ Ki, i = 1, . . . ,m
rij(bi −Aix) ≥ 0 for all j ∈ Ji, i = 1, . . . ,m
x ∈ X, η ∈ R

m.

(ii) Prove that in the standard Benders reformulation (8.27) of (8.32),
|K| = |K1| × |K2| × · · · × |Km| and |J | = |J1|+ |J2|+ · · · + |Jm|.

Exercise 8.20. The goal of this exercise is to find a Benders reformulation
of the uncapacitated facility location problem.

min
∑∑

cijyij +
∑

fjxj∑
j yij = 1 i = 1, . . . ,m

yij ≤ xj i = 1, . . . ,m, j = 1, . . . , n
y ≥ 0, x ∈ {0, 1}n.

(i) Show that, for every x ∈ {0, 1}n, the Benders subproblem can be
written as zLP (x) =

∑m
i=1 z

i
LP (x), where

ziLP (x) := min
∑

j cijyij∑
j yij = 1

yij ≤ xj j = 1, . . . , n
y ≥ 0.

(ii) Characterize the extreme points and extreme rays of the polyhedron
Qi := {(ui, wi) ∈ R×R

n
+ : ui −wij ≤ cij}, i = 1, . . . ,m.

(iii) Deduce from (i) and (ii) that the uncapacitated facility location
problem can be reformulated as

min
∑

i ηi +
∑

j fjxj
ηi ≥ cik −

∑
j(cik − cij)

+xj i = 1, . . . ,m, k = 1, . . . , n∑
j xj ≥ 1

x ∈ {0, 1}n.

350 CHAPTER 8. REFORMULATIONS AND RELAXATIONS

The authors on a hike

Chapter 9

Enumeration

The goal of this chapter is threefold. First we present a polynomial algorithm
for integer programming in fixed dimension. This algorithm is based on
elegant ideas such as basis reduction and the flatness theorem. Second we
revisit branch-and-cut, the most successful approach in practice for a wide
range of applications. In particular we address a number of implementation
issues related to the enumerative aspects of branch-and-cut. Finally we
present an approach for dealing with integer programs that have a high
degree of symmetry.

9.1 Integer Programming in Fixed Dimension

The integer feasibility problem “Does there exist x ∈ Z
n such that Ax ≤ b?”

is NP-complete in general. However, Lenstra [256] showed that this problem
can be solved in polynomial time when n is a fixed constant. The key
idea is that one can find in polynomial time either an integer point in
P := {x : Ax ≤ b}, or a direction d in which the polyhedron is flat,
meaning that there is at most a fixed number k(n) of parallel hyperplanes
dx = δ1, . . . , dx = δk(n) that contain all the integral points in P (if any).
Applying this idea recursively to each of the (n− 1)-dimensional polyhedra
P ∩ {x : dx = δj}, the algorithm enumerates a fixed number of polyhe-
dra overall, since n is fixed. It is not obvious that a flat direction always
exists for a polyhedron that does not contain integral points and that it
can be found in polynomial time. The proof is based on two ingredients,

© Springer International Publishing Switzerland 2014
M. Conforti et al., Integer Programming, Graduate Texts
in Mathematics 271, DOI 10.1007/978-3-319-11008-0 9

351

352 CHAPTER 9. ENUMERATION

Lovász’s basis reduction algorithm and a result stating that for every full-
dimensional polytope P on can compute in polynomial time an ellipsoid E
such that E ⊂ P ⊂ (n + 1)E.

9.1.1 Basis Reduction

A subset Λ of Rn is a lattice if there exists a basis a1, . . . , an of Rn such that
Λ = {

∑n
i=1 λia

i : λ ∈ Z
n}. The set of vectors a1, . . . , an is called a basis

of Λ, and Λ is said to be generated by the basis a1, . . . , an. For example, the
lattice generated by the n unit vectors of Rn is Zn.

For ease of notation, throughout the section we identify a basis a1, . . . , an

with the square matrix A = (a1, . . . , an). Given a square nonsingular matrix
A, when we say “the lattice generated by A,” we refer to the lattice generated
by the columns of A.

Theorem 9.1. Two nonsingular square matrices A and B generate the same
lattice if and only if there exists a unimodular matrix U such that B = AU .

Proof. Assume B = AU for some unimodular matrix U . Since U is integral,
by definition every column of B is in the lattice generated by A. On the
other hand, A = BU−1 and, by Lemma 1.16, U−1 is unimodular. So every
column of A is in the lattice generated by B. It follows that A and B
generate the same lattice.

Conversely, assume that A and B generate the same lattice. Then
B = AX for some integral matrix X and A = BY for some integral
matrix Y . Setting U = X, it follows that U−1 = Y . Since U and U−1

are integral matrices, U is unimodular by Lemma 1.16.

Given a lattice Λ ⊆ R
n, Theorem 9.1 implies that all the bases of Λ have

the same determinant. This determinant is therefore called the determinant
of the lattice Λ, and is denoted by det(Λ).

Figure 9.1: Three different bases in the plane; the three corresponding areas
are equal

9.1. INTEGER PROGRAMMING IN FIXED DIMENSION 353

Any basisB = (b1, . . . , bn) of the lattice Λ satisfies Hadamard’s inequality:

det(Λ) ≤ ‖b1‖ . . . ‖bn‖, (9.1)

where ‖.‖ denotes the Euclidean norm. Indeed, a classical result in lin-
ear algebra states that |det(B)| is the volume of the parallelepiped in R

n

generated by the n vectors b1, . . . , bn (see [39] for example). Figure 9.1 il-
lustrates this for three different bases of a lattice in the plane. Note that
det(Λ) = ‖b1‖ . . . ‖bn‖ if and only if the vectors bi are pairwise orthogonal.
Not every lattice has an orthogonal basis. However Hermite [200] showed
that there always exists a basis that is fairly orthogonal in the sense that

‖b1‖ . . . ‖bn‖ ≤ c(n)det(Λ) (9.2)

where the orthogonality defect c(n) is a constant that only depends on the
dimension n but not on the lattice Λ. Hermite’s result implies that (9.2)
holds if we choose c(n) ≥ (43)

n(n−1)/4.

Lovász showed that, for rational bases B, if one chooses c(n) = 2n(n−1)/4,
one can actually compute such an approximation to an orthogonal basis in
polynomial time. The algorithm, attributed to Lovász by Lenstra in [256],
was presented in a paper of Lenstra, Lenstra and Lovász [255], and is
sometimes called the LLL algorithm. In this book we will call it Lovász’
basis reduction algorithm or simply the basis reduction algorithm. The main
objective of this section is to present this algorithm.

Consider a lattice Λ generated by n linearly independent vectors in R
n.

Lovász introduced the notion of a reduced basis, using a Gram–Schmidt
orthogonal basis as a reference. The Gram–Schmidt procedure is as follows.
Starting from a basis B = (b1, . . . , bn) of vectors in R

n, define g1 := b1

and, recursively, for j = 2, . . . , n, define gj as the projection of bj onto the
orthogonal complement of the vector space spanned by b1, . . . , bj−1. In other
words,

g1 := b1

gj := bj −
∑j−1

k=1 μjkg
k for 2 ≤ j ≤ n

(9.3)

where

μjk :=
(bj)T gk

‖gk‖2 for 1 ≤ k < j ≤ n.

By construction, the Gram–Schmidt basis G := (g1, . . . , gn) is an ort-
hogonal basis of R

n with the property that, for j = 1, . . . , n, the vector
spaces spanned by b1, . . . , bj and by g1, . . . , gj coincide. The coefficient μjk

354 CHAPTER 9. ENUMERATION

is the kth coordinate of vector bj relative to the orthogonal basis G. Note
that B = GR where R = (rij)i,j=1,...,n is the upper-triangular matrix whose
diagonal elements are all 1 and where rij = μji for 1 ≤ i < j ≤ n. In
particular, since all diagonal entries of R are equal to 1, it follows that
det(R) = 1 and det(B) = det(G). Note that, since the vectors g1, . . . , gn

are orthogonal, GTG is the diagonal matrix with entries ‖g1‖2, . . . , ‖gn‖2.
Since det(GTG) = det(G)2, we have ‖g1‖ · · · ‖gn‖ = |det(G)| = |det(B)| =
det(Λ). By construction, ‖bj‖ ≥ ‖gj‖ for j = 1, . . . , n, thus Hadamard’s
inequality (9.1) holds.

g2

b2

b1 = g1

Λ

Figure 9.2: A basis (b1, b2) in R
2 and its Gram–Schmidt orthogonal basis

(g1, g2)

A basis b1, . . . , bn of the lattice Λ is said to be reduced if it satisfies the
following two conditions

(i) |μjk| ≤ 1
2 for 1 ≤ k < j ≤ n,

(ii) ‖gj + μj,j−1g
j−1‖2 ≥ 3

4‖gj−1‖2 for 2 ≤ j ≤ n.
(9.4)

where g1, . . . , gn is the associated Gram–Schmidt orthogonal basis. Note
that the basis (b1, b2) of Fig. 9.2 is not reduced because condition (i) is
violated.

The next theorem shows that, if a basis of Λ is reduced, then it is “nearly
orthogonal,” in the sense that it satisfies (9.2) for c(n) = 2n(n−1)/4. We will
then explain Lovász’ basis reduction algorithm, which given any basis B of
Λ, produces a reduced basis in polynomial time.

Theorem 9.2. Let B = (b1, . . . , bn) be a square nonsingular matrix. If B
is reduced, then ‖b1‖ · · · ‖bn‖ ≤ 2n(n−1)/4 det(B).

9.1. INTEGER PROGRAMMING IN FIXED DIMENSION 355

Proof. Let g1, . . . , gn be the Gram–Schmidt orthogonalization of b1, . . . , bn.
Since g1, . . . , gn are pairwise orthogonal, it follows that ‖gj+μj,j−1g

j−1‖2 =
‖gj‖2 + |μj,j−1|2‖gj−1‖2 for j = 2, . . . , n. Since B is reduced, from (9.4) and
the above equation we have that

‖gj‖2 ≥ (
3

4
− |μj,j−1|2)‖gj−1‖2 ≥ 1

2
‖gj−1‖2

for j = 2, . . . , n. By induction, it follows that, for 1 ≤ k < j ≤ n,

‖gj‖2 ≥ 2k−j‖gk‖2. (9.5)

Furthermore, since bj = gj +
∑j−1

k=1 μjkg
k, j = 1, . . . , n,

‖bj‖2 = ‖gj +
∑j−1

k=1 μjkg
k‖2

= ‖gj‖2 +
∑j−1

k=1 |μjk|2‖gk‖2 (because g1, . . . , gn are orthogonal)

≤ ‖gj‖2 + 1
4

∑j−1
k=1 ‖gk‖2 (because |μjk| ≤ 1

2)

≤ ‖gj‖2(1 + 1
4

∑j−1
k=1 2

j−k) (by (9.5))
≤ 2j−1‖gj‖2

This implies
∏n

j=1 ‖bj‖ ≤
∏n

j=1 2
(j−1)/2‖gj‖ = 2n(n−1)/4

∏n
j=1 ‖gj‖ =

2n(n−1)/4 det(B).

For a ∈ R, let
a denote the closest integer to a. Each iteration of the
basis reduction algorithm consists of two steps, a “normalization step” and
a “swapping step.”

Lovász’ Basis Reduction Algorithm

Input: A rational basis B of a lattice Λ.
Output: A reduced basis B of Λ.

Step 1. (Normalization)
For j := 2 to n and for k := j − 1 down to 1, replace bj by
bj −
μjkbk.
Step 2. (Swapping)
If Condition (9.4)(ii) holds, output the basis b1, . . . , bn and stop.
Else, find an index j, 2 ≤ j ≤ n, that violates Condition (9.4)(ii)
and interchange vectors bj−1 and bj in the basis.

Note that the operations involved in the algorithm are unimodular ope-
rations (see Sect. 1.5.2), thus they do not change the lattice generated by B.
This follows from Lemma 1.16 and Theorem 9.1. Let us now analyze the
effect of the normalization step.

356 CHAPTER 9. ENUMERATION

Lemma 9.3. The Gram–Schmidt basis remains unchanged in Step 1 of the
basis reduction algorithm.

Proof. Let B̃ be the basis obtained from B after Step 1. Since b̃j equals
bj plus a linear combination of b1, . . . , bj−1, it follows that b1, . . . , bj and
b̃1, . . . , b̃j generate the same vector space Lj, j = 1, . . . , n, and that the
projections of bj and b̃j into the orthogonal complement of Lj−1 are identical.
This implies that the Gram–Schmidt basis associated with B and B̃ is the
same.

Theorem 9.4. When the basis reduction algorithm terminates, the basis
b1, . . . , bn is reduced.

Proof. The algorithm stops in Step 2 when Condition (9.4)(ii) is satisfied.
To show that the basis is reduced, it suffices to show that, at each iteration,
at the end of Step 1 the current basis always satisfies Condition (9.4)(i).

By Lemma 9.3, the Gram–Schmidt basis g1, . . . , gn remains unchanged
in Step 1. Thus, if B̃ denotes the basis obtained from B after Step 1, we can
express b̃j at the end of Step 1 as b̃j = gj +

∑j−1
k=1 μ̃jkg

k, j = 1, . . . , n. We
claim that |μ̃jk| ≤ 1

2 , 1 ≤ k < j ≤ n. Indeed, in a given iteration j∗, k∗ in
Step 1, among the several coefficients μjk that are modified, note that μj∗k∗

is modified to μj∗k∗ −
μj∗k∗ ≤ 1
2 . Furthermore, this new coefficient μj∗k∗

remains unchanged in all subsequent iterations, since they involve k < k∗ or
j > j∗.

It is not obvious that this algorithm terminates, let alone that it termi-
nates in polynomial time. Before giving the proof, we illustrate the algorithm
on an example (Fig. 9.3).

g2

b2

b1 = g1

Λ

b̃2

Figure 9.3: A basis (b1, b2) in R
2 and a reduced basis (b̃2, b1)

9.1. INTEGER PROGRAMMING IN FIXED DIMENSION 357

Example 9.5. Consider the lattice Λ in R
2 generated by the two vectors

b1 =

(
2
3

)
and b2 =

(
3
2

)
. The Gram–Schmidt basis is g1 = b1 and g2 =

b2 − μ21g
1. We compute μ21 = (b2)T g1

‖g1‖2 = 12
13 . Since Condition (9.4)(i) is

not satisfied we replace b2 by b̃2 := b2 − b1 (Step 1 of Lovász’ algorithm).
b̃2 is shorter than b2, as suggested by the name “reduced basis.” For the
new basis (b1, b̃2) we have μ21 =

−1
13 , therefore Condition (9.4)(i) is satisfied.

However Condition (9.4)(ii) is violated: Since ‖b̃2‖2 = 2 and ‖b1‖2 = 13,
we have ‖g2 + μ21g

1‖2 = ‖b̃2‖2 < 3
4‖b1‖2. Hence we interchange b1 and

b̃2 putting the shortest vector in front (Step 2 of Lovász’s algorithm). The
reader can check that now both Conditions (9.4)(i) and (ii) are satisfied.

Therefore the basis

(
1

−1

)
and

(
2
3

)
is a reduced basis for the lattice Λ. �

Theorem 9.6. Lovász’ basis reduction algorithm terminates, and it runs in
polynomial time in the input size of the original basis.

Proof. We will prove that the algorithm terminates in a polynomial number
of iterations. To prove that it runs in polynomial time, one should also
show that the encoding size of the numbers remains polynomially bounded
at every iteration; however we will not do it here (see [325] for a proof).

We may assume that B is an integral matrix. Indeed, given an integer
number δ such that δB is integral, the basis reduction algorithm applied
to δB executes the same iterations as for B, only the matrix produced at
each iteration is multiplied by δ. Note that, if we apply the algorithm to an
integral matrix, the basis remains integral at every iteration.

To prove finiteness of the algorithm, we use the following potential
function associated with a basis B = (b1, . . . , bn), expressed in terms of
the Gram–Schmidt basis associated with B:

Φ(B) := ‖g1‖2n‖g2‖2n−2 · · · ‖gn‖2.

We observed that the Gram–Schmidt basis remains unchanged in Step
1 of the basis reduction algorithm (Lemma 9.3). Therefore the potential
function Φ only changes in Step 2 when vectors bj and bj−1 are interchanged.

Let B be the basis at a given iteration, and let us denote by
B̃ = (b̃1, . . . , b̃n) the basis obtained from B by interchanging bj and bj−1. We
will prove that Φ(B̃)/Φ(B) ≤ 3/4 and that the potential is always integer.
These two facts imply that the algorithm terminates after O(log Φ(B)) steps.
In particular, the number of iterations is polynomial in the encoding size of

358 CHAPTER 9. ENUMERATION

the input matrix B. Indeed, if M is the largest absolute value of an entry
of B, then Φ(B) ≤ det(B)2n ≤ (nnMn)2n = (nM)2n

2
, hence the number of

iterations is O(n2 log(nM)).

Let g̃1, . . . , g̃n be the Gram–Schmidt orthogonalization of B̃. Since
bh = b̃h for all h �= j − 1, j, 1 ≤ h ≤ n, it follows that gh = g̃h for all
h �= j − 1, j. Furthermore, since bj = gj +

∑j−1
k=1 μjkg

k, it follows that
gj + μj,j−1g

j−1 is the projection of bj onto the orthogonal complement of
the space generated by b1, . . . , bj−2, thus g̃j−1 = gj + μj,j−1g

j−1. We also
have that ‖g1‖ · · · ‖gn‖ = |det(G)| = |det(G̃)| = ‖g̃1‖ · · · ‖g̃n‖, therefore
‖gj−1‖‖gj‖ = ‖g̃j−1‖‖g̃j‖. It then follows that

Φ(B̃)

Φ(B)
=

‖g̃j−1‖2(n−j+2)‖g̃j‖2(n−j+1)

‖gj−1‖2(n−j+2)‖gj‖2(n−j+1)

=
(‖g̃j−1‖‖g̃j‖)2(n−j+1)

(‖gj−1‖‖gj‖)2(n−j+1)
· ‖g̃

j−1‖2
‖gj−1‖2

=
‖gj + μj,j−1g

j−1‖2
‖gj−1‖2 <

3

4
,

where the last inequality follows from the fact that bj−1 and bj are inter-
changed at Step 2 if they violate Condition (9.4)(ii).

We finally show that Φ(B) is an integer for every integral matrix B. Let
us denote by Bi the matrix with columns b1, . . . , bi, and Gi the matrix
with columns g1, . . . , gi, i = 1, . . . , n. By (9.3), Bi = GiRi, where Ri

is an i × i upper-triangular matrix with all diagonal elements equal to
1. It follows that det(BT

i Bi) = det(GT
i Gi) = ‖g1‖2 · · · ‖gi‖2, where the

last equality follows from the fact that g1, . . . , gn are pairwise orthogonal.
This shows that ‖g1‖2 · · · ‖gi‖2 is integer for i = 1, . . . , n. Thus Φ(B) =
‖g1‖2n‖g2‖2n−2 · · · ‖gn‖2 =

∏n
i=1(‖g1‖2 · · · ‖gi‖2) is integer as well.

9.1.2 The Flatness Theorem and Rounding Polytopes

Let K ⊆ R
n be a convex body, that is, a closed bounded convex set. Given

a vector d ∈ R
n, we define the width of K along d to be

wd(K) = max
x∈K

dTx−min
x∈K

dTx.

The lattice width of K is defined as the minimum width along any integral
vector d, that is

w(K) = min
d∈Zn

wd(K).

9.1. INTEGER PROGRAMMING IN FIXED DIMENSION 359

The fundamental result used in Lenstra’s algorithm for integer programming
in fixed dimension is Khinchine’s flatness theorem [237]. The theorem states
that any full-dimensional convex body, either contains an integral point, or is
“fairly flat,” in the sense that its lattice width is bounded by some constant
that depends only on the dimension. Figure 9.4 shows that such a constant
is greater than 2 in the plane (Hurkens [208] showed that 1 + 2√

3
≈ 2.155 is

tight).

Figure 9.4: A lattice-free triangle with lattice width greater than 2

Theorem 9.7 (Flatness Theorem). Let K ⊆ R
n be a full-dimensional

convex body. If K does not contain any integral point, then w(K) ≤ k(n),
where k(n) is a constant depending only on n.

For rational polytopes, the proof will lead to a polynomial time algorithm
that, for any full-dimensional polytope P expressed as a system of rational
linear inequalities, outputs either an integral point in P or a flat direction
for P , that is a vector d ∈ Z

n such that wd(P) ≤ n(n+ 1)2n(n−1)/4.

The first step is proving the flatness theorem for ellipsoids. An ellipsoid
in R

n is an affine transformation of the unit ball. That is, an ellipsoid
centered at a is a set of the form E(C, a) = {x ∈ R

n : ‖C(x − a)‖ ≤ 1},
where a ∈ R

n and C is an n× n nonsingular matrix.

Theorem 9.8 (Flatness Theorem for Ellipsoids). Let E ⊆ R
n be an ellipsoid.

If E does not contain any integral point, then w(E) ≤ n2n(n−1)/4.

Proof. Let a ∈ R
n and C ∈ R

n×n be a nonsingular matrix such that
E = E(C, a). For any d ∈ R

n, we first compute wd(E). Let us view d
as a row vector. We have max{dx : ‖C(x− a)‖ ≤ 1} = da+max{dC−1y :
‖y‖ ≤ 1} = da + ‖dC−1‖, where we have applied the change of variables
y = C(x − a), and the maximum is achieved by y = (dC−1)T /‖dC−1‖.
Therefore, for every d ∈ R

n,

wd(E) = max
x∈E

dx−min
x∈E

dx = 2‖dC−1‖. (9.6)

360 CHAPTER 9. ENUMERATION

Let Λ be the lattice generated by C, and let B be a basis of Λ satisfying
‖b1‖ · · · ‖bn‖ ≤ 2n(n−1)/4|det(B)|. (While the existence of such a basis B
is implied by the basis reduction algorithm when C is rational, the general
case follows from a result of Hermite [200] mentioned in Sect. 9.1.1. See
inequality (9.2).) Since |det(B)| is invariant under permuting the columns
of B, we may assume that bn is the element of maximum norm in B, that
is ‖bn‖ = maxj=1,...,n ‖bj‖.

Since C and B are bases of the same lattice, by Theorem 9.1 there
exists a unimodular matrix U such that C = BU . Let λ = Ua, and define
x̄ = U−1
λ where
λ = (
λ1, . . . ,
λn). Note that x̄ is integral. Define
the vector d ∈ Z

n to be the last row of U . We will show that, if x̄ /∈ E, then
wd(E) ≤ n2n(n−1)/4. This will conclude the proof of the theorem.

Assume that, x̄ /∈ E. Then ‖C(a − x̄)‖ > 1, that is, ‖B(λ −
λ)‖ > 1.
Hence

1 < ‖
n∑

j=1

(λj −
λj)bj‖ ≤
n∑

j=1

|λj −
λj| ‖bj‖ ≤ n

2
‖bn‖. (9.7)

Consider the Gram–Schmidt orthogonal basis g1, . . . , gn obtained from
b1, . . . , bn. We have |det(B)| = ‖g1‖ · · · ‖gn‖. Since ‖b1‖ · · · ‖bn‖ ≤ 2n(n−1)/4‖
g1‖ · · · ‖gn‖ and ‖bj‖ ≥ ‖gj‖ for j = 1, . . . , n, it follows that ‖bn‖ ≤
2n(n−1)/4‖gn‖. The latter and (9.7) imply

‖gn‖ > 2/(n2n(n−1)/4). (9.8)

We now evaluate wd(E). Let us denote by v the last row of B−1. Then
wd(E) = 2‖dC−1‖ = 2‖v‖, since C−1 = U−1B−1 and d is the last row of U .
Since gn is orthogonal to g1, . . . , gn−1, it follows from (9.3) that (gn)T bj = 0
for j = 1, . . . , n − 1 and (gn)T bn = ‖gn‖2. In particular, v = (gn)T /‖gn‖2.
Thus, by (9.8), wd(E) = 2‖gn‖/‖gn‖2 ≤ n2n(n−1)/4.

Note that, when C and a are rational, the elements x̄ and d defined in
the proof of Theorem 9.8 can be computed in polynomial time, since this
amounts to computing a reduced basis of Λ and solving systems of linear
equations. The proof shows that x̄ ∈ E(C, a) or wd(E(C, a)) ≤ n2n(n−1)/4.
This proves the following.

Remark 9.9. There is a polynomial-time algorithm that, given a ∈ Q
n and

a nonsingular matrix C ∈ Q
n×n, either finds an integral point in the ellipsoid

E(C, a), or finds a vector d ∈ Z
n such that wd(E(C, a)) ≤ n2n(n−1)/4.

9.1. INTEGER PROGRAMMING IN FIXED DIMENSION 361

dP

Figure 9.5: The dashed lines represent the hyperplanes dTx = k that inter-
sect the polytope P (where d = (1, 2) and k is an integer). Every integral
point in P must lie in one of the four dashed lines

Proof of the Flatness Theorem (Theorem 9.7). The proof relies on the
flatness theorem for ellipsoids and the following theorem of Löner (reported
by Danzer, Grünbaum, and Klee [105]) and John [214].

For every full-dimensional convex body K, there exists an ellipsoid
E(C, a) such that E(nC, a) ⊆ K ⊆ E(C, a).

Note that E(nC, a) is obtained by scaling E(C, a) by 1/n around its
center. Given such an ellipsoid E(C, a), we know from Theorem 9.8 that
either E(nC, a) contains an integral point, and so doesK because E(nC, a) ⊆
K, or there exists d ∈ Z

n such that wd(E(nC, a)) ≤ n2n(n−1)/4. It then
follows that wd(K) ≤ wd(E(C, a)) = nwd(E(nC, a)) ≤ n22n(n−1)/4. The
statement of Theorem 9.7 then follows if we choose k(n) = n22n(n−1)/4.

The scaling factor of 1/n in Löner and John’s theorem is the best possible.
A result of Goffin [174] implies that there exists a polynomial time algorithm
which, given a full-dimensional polytope P = {x ∈ R

n : Ax ≤ b} expressed
by a rational system of linear inequalities, computes an ellipsoid E(C, a)
such that E((n+1)C, a) ⊆ P ⊆ E(C, a). This improves an earlier algorithm
of Lenstra [256] guaranteeing a scaling factor of 1

2n
−3/2. Following the proof

of the flatness theorem, the above discussion and Remark 9.9 imply the
following.

Theorem 9.10. There exists a polynomial time algorithm that, given
A ∈ Q

m×n and b ∈ Q
m such that P = {x ∈ R

n : Ax ≤ b} is a full-
dimensional polytope, outputs either an integral point in P , or a vector
d ∈ Z

n such that wd(P) ≤ n(n+ 1)2n(n−1)/4.

362 CHAPTER 9. ENUMERATION

9.1.3 Lenstra’s Algorithm

Theorem 9.10 leads immediately to the basic idea of Lenstra’s algorithm:
given a rational system Ax ≤ b in n variables, either find an integral point
in P := {x ∈ R

n : Ax ≤ b}, or find a flat direction for P , namely a
direction d ∈ Z

n such that wd(P) ≤ n(n + 1)2n(n−1)/4. Since d is integral,
every point in P ∩ Z

n must lie in one of the (n − 1)-dimensional polytopes
P ∩ {x : dTx = k}, for k = �minx∈P dTx, . . . ,
maxx∈P dTx�. Since there
are at most n(n + 1)2n(n−1)/4 + 1 such polytopes and n is a constant, we
need to apply the algorithm recursively to a constant number of polytopes
of lower dimension (see Fig. 9.5).

However, Theorem 9.10 applies to full-dimensional, bounded polyhedra.
We need to address the following two technical issues: what to do if P is
not bounded, and what to do if P is not full-dimensional (which will be the
case at every iteration, since polytopes of the form P ∩ {x : dTx = k} are
not full-dimensional).

We first address the issue of non-boundedness of P . By Corollary 4.37,
if we denote by L the maximum among the encoding sizes of the coefficients
of (A, b), there exists an integer valued function f of n and L such that the
encoding size of f(n,L) is polynomially bounded by n and L and such that P
has an integral point if and only if P ′ := {x ∈ P : −f(n,L) ≤ x ≤ f(n,L)}
has an integral point. Thus we only need to check if P ′ contains an integral
point. We have therefore reduced to the case that the input system Ax ≤ b
defines a polytope.

If P is not full-dimensional, then by Theorem 3.17 the system Ax ≤ b
must include some implicit equality. An implicit equality can be determined
in polynomial time by solving the m linear programs βi := min{aix : Ax ≤
b}, i = 1, . . . ,m, where a1, . . . , am are the rows of A, and checking if βi = bi.
Thus, in polynomial time, we can determine a rational equation αx = β
such that P ⊆ {x : αx = β}. Possibly by multiplying the equation by
the greatest denominators of the entries of α, we may assume that α is an
integral vector with relatively prime entries. If β is not integer, then P does
not contain any integral point and we are done. If β is integer, the next
lemma shows how we can reduce to a problem with n− 1 variables.

Lemma 9.11. Let A ∈ Q
m×n, b ∈ Q

m, α ∈ Z
n, β ∈ Z be such that the

entries of α are relatively prime. There exists a matrix D ∈ Z
n×(n−1) and a

vector b′ ∈ Q
m such that the system Ax ≤ b, αx = β has an integral solution

if and only if the system ADy ≤ b′ has an integral solution.

9.1. INTEGER PROGRAMMING IN FIXED DIMENSION 363

Proof. Since all entries of α are relatively prime, by Corollary 1.9, αx = β
has an integral solution x̄, and there exists a unimodular matrix U such that
αU = e1, where e1 denotes the first unit vector in R

n. If we define D as
the n× (n− 1) matrix formed by the last n− 1 columns of U , we have that
{x ∈ Z

n : αx = β} = {x̄+Dy : y ∈ Z
n−1}. Therefore, if we let b′ = b−Ax̄,

we have

{x ∈ Z
n : Ax ≤ b, αx = β} = {x̄+Dy : ADy ≤ b′, y ∈ Z

n−1}. (9.9)

In particular Ax ≤ b, αx = β has an integral solution if and only if ADy ≤ b′

has an integral solution.

Note that the matrix D and vector b′ in the statement of Lemma 9.11 can
be computed in polynomial time by Remark 1.13. It thus follows from the
above discussion that one can reduce to the case where P is full-dimensional.
We are now ready to formally present Lenstra’s algorithm.

Lenstra’s Algorithm

Input: A matrix A ∈ Q
m×n and a vector b ∈ Q

m such that
P := {x ∈ R

n : Ax ≤ b} is a full-dimensional polytope.

Output: “Yes” if P contains an integral point, “No” otherwise.

Apply the algorithm of Theorem 9.10.

If the outcome is an integral point in P , then output “Yes.”

If the outcome is a vector d ∈ Z
n such that wd(P) ≤ n(n+

1)2(n(n−1)/4) , do the following;

If �minx∈P dTx >
maxx∈P dTx�, output “No.”
Else, for k = �minx∈P dTx, . . . ,
maxx∈P dTx�,

Compute a matrix D ∈ Z
n×(n−1) and a vector

b′ ∈ Q
m such that the system Ax ≤ b, dTx = k

has an integral solution if and only if the system
ADy ≤ b′ has an integral solution.

Apply Lenstra’s algorithm recursively to the
system ADy ≤ b′.

Lenstra [256] observed that the above algorithm can be modified to solve
mixed integer linear programming problems with a fixed number of integer
variables (and arbitrarily many continuous variables) in polynomial time.

364 CHAPTER 9. ENUMERATION

9.2 Implementing Branch-and-Cut

Lenstra’s algorithm is of great theoretical interest for solving integer
programs. However, in practice, the most successful solvers are currently
based on the branch-and-cut approach introduced in Chap. 1. This is because
many applications have a combinatorial flavor (a large number of 0,1 vari-
ables) rather than a number theoretic origin (a small number of intercon-
nected variables that must take integer values, possibly in a wide range).
The complexity of Lenstra’s algorithm explodes as the number of variables
exceeds a few dozens. On the other hand, integer programs with thousands
of 0,1 variables are solved routinely in several application areas using soft-
ware based on the branch-and-cut method.

In this section we return to branch-and-cut. Many implementation issues
were left open in Chap. 1: branching strategy, node selection strategy, heuris-
tics for getting feasible solutions, and many others. To better understand
the range of questions that arise, consider a mixed integer linear program
(MILP) and suppose that we just solved its linear programming relaxation;
let z̄ be the optimum value and x̄ the optimal solution of this linear pro-
gramming relaxation. What should one do if x̄j is fractional for at least
one of the variables that are required to be integer in the MILP that we
are trying to solve? Should one generate cutting planes in the hope of im-
proving the linear programming relaxation, or should one branch? When
branching, should one use a strategy in the spirit of Lenstra’s algorithm,
creating smaller subproblems in parallel hyperplanes along a thin direction,
or should one simply branch on one of the integer variables xj for which x̄j
is fractional, setting xj ≤
x̄j� on one branch, and xj ≥ �x̄j on the other.
In this case, which variable should we choose for branching? We should
favor choices that help pruning the enumeration tree faster: infeasibility or
integrality of the subproblems that we create, and pruning by bounds. The
goal of pruning by bounds is best achieved by strategies that generate good
upper and lower bounds on the optimal value of the MILP. To obtain these
bounds, heuristics and cutting plane generation need to be integrated in
the solver. These components are all interconnected. By now, the reader
should have realized that building an efficient branch-and-cut solver is a
sophisticated affair. Let us discuss some of the key issues.

Consider the MILP

zI = max cx
Ax ≤ b
x ≥ 0
xj integer for j = 1, . . . , p.

(9.10)

9.2. IMPLEMENTING BRANCH-AND-CUT 365

The data are a vector c ∈ Q
n, an m × n rational matrix A, a vector

b ∈ Q
m, and an integer p such that 1 ≤ p ≤ n. The set I := {1, . . . , p}

indexes the integer variables whereas the set C := {p+1, . . . , n} indexes the
continuous variables.

The branch-and-cut algorithm keeps a list of linear programming
problems obtained by relaxing the integrality requirements on the variables
and imposing linear constraints such as bounds on the variables: xj ≤ uj
or xj ≥ lj, and/or cutting planes. Each such linear program corresponds to
a node of the branch-and-cut tree. For a node Ni, let zi denote the value
of the corresponding linear program LPi. Let L denote the list of nodes
that must still be solved (i.e., that have not been pruned nor branched on).
Initially, L just contains node N0 corresponding to (MILP). Let z denote a
lower bound on the optimum value zI (initially, the bound z can be derived
from a heuristic solution of (MILP), or it can be set to −∞).

Branch-and-Cut Algorithm

0. Initialize

L = {N0}, z = −∞, x∗ = ∅. One may also apply preprocessing
(to improve the formulation LP0) and heuristics (to improve z and to
obtain a feasible solution x∗).

1. Terminate?

If L = ∅, the solution x∗ is optimal (If x∗ = ∅, (MILP) is infeasible or
unbounded).

2. Select node

Choose a node Ni in L and delete it from L.

3. Bound

Solve LPi. If it is unbounded, (MILP) is unbounded, stop. If it is
infeasible, go to Step 1. Else, let xi be an optimal solution of LPi and
zi its objective value.

4. Prune

If zi ≤ z, go to Step 1.

If xi is feasible to (MILP), let z = zi, x
∗ = xi. Delete from L any node

Nj for which a bound zj is known and satisfies zj ≤ z. Go to Step 1.

If xi is not feasible to (MILP), go to Step 5.

366 CHAPTER 9. ENUMERATION

5. Add Cuts?

Decide whether to strengthen the formulation LPi or to branch.

In the first case, strengthen LPi by adding cutting planes and go back
to Step 3.

In the second case, go to Step 6.

6. Branch

From LPi, construct k ≥ 2 linear programs LPi1 , . . . , LPik with smaller
feasible regions whose union does not contain (xi, yi), but contains all
the solutions of LPi with x ∈ Z

n. Add the corresponding new nodes
Ni1 , . . . , Nik to L and go to Step 1.

Various choices have been left open in this algorithm. In particular, five
issues need special attention when solving integer programs by
branch-and-cut.

• Preprocessing (to decrease the size of the instance whenever possible),

• Heuristics (to find a good lower bound z on zI),

• Cutting plane generation (to reduce the upper bound z̄ obtained when
solving the linear programming relaxation),

• Branching,

• Node selection.

We discuss branching strategies first, followed by node selection strate-
gies, heuristics, preprocessing, and cutting plane generation.

Branching
Although Step 6 of the branch-and-cut algorithm provides the flexibility

of branching into any number k ≥ 2 of subproblems, the most popular choice
is to generate k = 2 disjoint subproblems (Exercise 9.14 helps to understand
why this is a good strategy). A natural way of generating two disjoint
subproblems is by using a split disjunction

∑p
j=1 πjxj ≤ π0 or

∑p
j=1 πjxj ≥

π0+1 where (π, π0) ∈ Z
p+1 is chosen such that xi satisfies π0 <

∑p
j=1 πjx

i
j <

π0+1. The simplest such disjunction is obtained by choosing π to be a unit
vector. This branching strategy is called variable branching and it is by far
the most widely used in integer programming solvers.

9.2. IMPLEMENTING BRANCH-AND-CUT 367

Specifically, let xij be one of the fractional values for j = 1, . . . , p, in the

optimal solution xi of LPi (we know that there is such a j, since otherwise Ni

would have been pruned in Step 4 on account of xi being feasible to (MILP)).
From problem LPi, we can construct two linear programs LP−

ij and LP+
ij that

satisfy the requirements of Step 6 by adding the constraints xj ≤
xij� and

xj ≥ �xij respectively to LPi. An advantage of variable branching is that
the number of constraints in the linear programs does not increase, since
linear programming solvers treat bounds on variables implicitly.

An important question is: On which variable xj should the algorithm
branch, among the j = 1, . . . , p such that xij is fractional? To answer this

question, it would be very helpful to know the decrease D−
ij in objective value

between LPi and LP−
ij, and D+

ij between LPi and LP+
ij. A good branching

variable xj at node Ni is one for which both D−
ij and D+

ij are relatively
large (thus tightening the upper bound zi, which is useful for pruning). For
example, a reasonable strategy is to choose j such that the productD−

ij×D+
ij

is the largest.

The strategy which consists of computing D−
ij and D+

ij explicitly for
each j is called strong branching. It involves solving linear programs that
are small variations of LPi by performing dual simplex pivots, for each
j = 1, . . . , p such that xij is fractional. Experiments indicate that strong
branching reduces the size of the enumeration tree by one or more orders
of magnitude in most cases, relative to a simple branching rule such as
branching on the most fractional variable. Thus there is a clear benefit to
spending time on strong branching. But the computing time of doing it at
each nodeNi, for every fractional variable xij, may be too high. This suggests
the following idea, based on the notion of pseudocosts that are initialized at
the root node and then updated throughout the branch-and-bound tree.

Let f i
j = xij −
xij� be the fractional part of xij, for j = 1, . . . p. For an

index j such that f i
j > 0, define the down pseudocost and up pseudocost as

P−
j =

D−
ij

f i
j

and P+
j =

D+
ij

1− f i
j

respectively. Benichou et al. [48] observed that the pseudocosts tend to
remain fairly constant throughout the branch-and-bound tree. Therefore
the pseudocosts need not be computed at each node of the tree. They can
be estimated instead. How are they initialized and how are they updated
in the tree? A good way of initializing the pseudocosts is through strong
branching at the root node or other nodes of the tree when new variables

368 CHAPTER 9. ENUMERATION

become fractional for the first time (or the first r times, where r ≥ 2, to get
more reliable initial estimates). To update the estimate P̂−

j of the pseudocost

P−
j , the algorithm averages the observations

D−
ij

f i
j

over all the nodes Ni of the

tree in which xj was branched on or in which D−
ij was computed through

strong branching. Similarly for the estimate P̂+
j of the up pseudocost. The

decision of which variable to branch on at the current node Ni of the tree
is then made based on these estimated pseudocosts P̂−

j and P̂+
j as follows.

For each j = 1, . . . , p such that f i
j > 0, compute estimates of D−

ij and D+
ij

by the formula D̂−
ij = P̂−

j f i
j and D̂+

ij = P̂+
j (1 − f i

j). Branch on the variable

xj with the largest value of the product D̂−
ij × D̂+

ij .
Variable branching is not the only branching strategy that is imple-

mented in state-of-the-art solvers. Many integer programs contain con-
straints of the form

k∑
t=1

xjt = 1

with xjt = 0 or 1, for t = 1, . . . k. If one or more of these variables is
fractional in the current solution xi, variable branching would pick one such
variable, say xj∗ , and set xj∗ = 0 on one branch and xj∗ = 1 on the other.
This leads to unbalanced trees since only one variable is fixed on the first
branch but all variables xjt , t = 1, . . . k, are fixed on the other. A strategy
that better balances the tree is to partition the set {j1, . . . , jk} into J ′ ∪ J ′′

so that both
∑

jt∈J ′ xijt > 0 and
∑

jt∈J ′′ xijt > 0 and the cardinalities of J ′

and J ′′ are roughly the same. One then fixes xji = 0 for all ji ∈ J ′ on one
branch and xji = 0 for all ji ∈ J ′′ on the other. This branching scheme is
known to reduce the size of the enumeration tree significantly in practice. It
is often called GUB branching (GUB stands for Generalized Upper Bound).
SOS branching is a variation on this idea (SOS stands for Special Ordered
Sets).

Node Selection
How does one choose among the different problems Ni available in Step 2

of the algorithm? Two goals need to be considered: finding a better feasible
solution (thus increasing the lower bound z) and proving optimality of the
current best feasible solution (by decreasing the upper bound as quickly as
possible).

For the first goal, we estimate the value of the best feasible solution in
each node Ni. For example, we could use the following estimate:

9.2. IMPLEMENTING BRANCH-AND-CUT 369

Ei = zi −
p∑

j=1

min(P̂−
j f i

j , P̂
+
j (1− f i

j))

based on the pseudocost estimates defined earlier. This corresponds to
rounding the noninteger solution xi to a nearby integer solution and using
the pseudocosts to estimate the degradation in objective value. We then
select a node Ni with the largest Ei. This is the so-called best estimate
criterion node selection strategy. A good feasible solution may be found by
“diving” from node Ni, computing estimates Ej for its possible sons Nj , sel-
ecting a son with the largest estimate, and then repeating from the selected
node Nj . Diving heuristics will be revisited in the next section.

For the second goal, the best strategy depends on whether the first goal
has been achieved already. If we currently have a very good lower bound z,
it is reasonable to adopt a depth-first search strategy. This is because the
linear programs encountered in a depth-first search are small variations of
one another. As a result they can be solved faster in sequence, using the
dual simplex method initialized with the optimal solution of the father node
(they are solved about ten times faster, based on empirical evidence). On
the other hand, if no good lower bound is available, depth-first search tends
to be wasteful: it might explore many nodes Ni with a value zi smaller than
the optimum zI . Assuming that we have a good lower bound z, and that we
adopt a depth-first search strategy whenever possible, what should we do
when we reach a node of the tree that can be pruned? An alternate to the
“best estimate criterion” is the “best bound” node selection strategy, which
consists in picking a node Ni with the largest bound zi. No matter how good
a solution of (MILP) is found in other nodes of the branch-and-bound tree,
the node with the largest bound zi cannot be pruned by bounds (assuming
no ties) and therefore it will have to be explored eventually. So we might as
well explore it first.

The most successful node selection strategy may differ depending on the
application. For this reason, most integer programming solvers have several
node selection strategies available as options to the user. The default strat-
egy is usually a combination of the “best estimate criterion” (or a variation)
and depth-first search. Specifically, the algorithm may dive using depth-first
search until it reaches an infeasible node Ni or it finds a feasible solution
of (MILP). At this point, the next node might be chosen using the “best
estimate criterion” strategy, and so on, alternating between dives in a depth-
first search fashion to get feasible solutions at the bottom of the tree and
the “best estimate criterion” to select the next most promising node.

370 CHAPTER 9. ENUMERATION

Heuristics
Several types of heuristics are routinely applied in integer programming

solvers. Heuristics help to improve the bound z, which is used in Step 4 for
pruning the enumeration tree. Heuristic solutions are even more important
when the branch-and-cut algorithm has to be terminated before completion,
returning a solution of value z without a proof of its optimality. We present
two successful ideas, diving and local branching. Each can be applied at
any node Ni of the branch-and-cut tree and can be implemented in many
different variations. In some applications, even finding a feasible solution
might be an issue, in which case heuristics such as the feasibility pump are
essential.

Diving heuristics can be viewed as depth-first searches in the context of
the node selection strategy presented above. One chooses an integer vari-
able xj that is fractional in the current linear programming solution x̄ and
adds the constraint xj ≤
x̄j� or xj ≥ �x̄j; one then solves the new linear
program; the process is repeated until a solution of (MILP) is found or in-
feasibility is reached. Solvers usually contain several different heuristic rules
for choosing the variable xj and the constraint to add in this procedure.
One option is to choose a variable with smallest fractionality min(f̄j , 1− f̄j)
among the integer variables xj that have nonzero fractionality at x̄, where
f̄j = x̄j −
x̄j�, and to add the constraint xj ≤
x̄j� if f̄j < 1

2 , and xj ≥ �x̄j
otherwise. Other more sophisticated rules use strong branching or pseudo-
cost information to choose the variable xj to branch on, and move down
the branch that corresponds to the largest estimate of the objective value of
the integer program at the children nodes, using the function Ei introduced
earlier. Diving heuristics can be repeated from a variety of starting points
Ni to improve the chance of getting good solutions.

Once a feasible solution x∗ is available, local branching [140] can be
applied to try to improve upon it. For simplicity of exposition, assume that
all the integer variables are 0,1 valued. The idea is to define a neighborhood
of x∗ as follows:

p∑
j=1

|xj − x∗j | ≤ k

where k is an integer chosen by the user (for example k = 20 seems to work
well), to then add this constraint to (MILP) and to apply your favorite inte-
ger programming solver. Instead of getting lost in a huge enumeration tree,
the search is restricted to the neighborhood of x∗ by this constraint. Note
that the constraint should be linearized before adding it to the formulation,
which is easy to do:

9.2. IMPLEMENTING BRANCH-AND-CUT 371

∑
j∈I : x∗

j=0

xj +
∑

j∈I : x∗
j=1

(1− xj) ≤ k.

If a better solution than x∗ is found, the neighborhood is redefined relatively
to this new solution, and the procedure is repeated until no better solution is
found. This heuristic can be modified into appealing variations, by changing
the definition of the neighborhood. One such example is called RINS (which
stands for relaxation induced neighborhood search) [101]. RINS needs a
feasible solution x∗ and a solution x̄ of some linear program in the branch-
and-cut tree. It fixes the variables that have the same value in x∗ and x̄.
The resulting smaller integer program is then processed by the integer pro-
gramming solver (for a limited time or a limited number of nodes) in the
hope of finding a better feasible solution than x∗. This recursive use of the
integer programming solver is a clever feature of local branching heuristics.

For some instances of (MILP), just finding a feasible solution might be
an issue. Heuristics such as the feasibility pump are specifically designed
for this purpose [139]. The main idea is to construct two sequences of
points that hopefully converge to a feasible solution of (MILP). Let P denote
the polyhedron defined by the linear constraints of (MILP). One sequence
consists of points in P , possibly integer infeasible, the other one of integer
feasible points, but possibly not in P . These two sequences are produced
by alternately rounding a point x̄i ∈ P to an integer feasible point xi,
and finding a point x̄i+1 in the polyhedron P that is closest to xi (using
the 	1-norm) by solving a linear program. All current integer programming
solvers incorporate some variant of this basic idea (see [6] for an improved
feasibility pump).

Preprocessing
Integer programming solvers try to tighten and simplify the formulation

before launching into a full-fledged branch-and-cut. These preprocessing
steps can also be performed when subproblems are created in the course of
the enumeration process. They involve simple cleaning operations: identi-
fying infeasibilities or redundancies in the constraints, improving bounds on
the variables, improving constraint coefficients, fixing variables, and identi-
fying logical implications. We give a sample of such steps. Let

∑
j∈B

ajxj +
∑
j∈C

gjyj ≤ b (9.11)

be a constraint of the integer programming formulation where B denotes
the set of 0,1 variables and C denotes the set of remaining variables (both

372 CHAPTER 9. ENUMERATION

the continuous variables and the general integer variables). Let B+ := {j ∈
B : aj > 0}, B− := {j ∈ B : aj < 0}, C+ := {j ∈ C : gj > 0} and
C− := {j ∈ C : gj < 0}. Assume that the variables in C are bounded:

	j ≤ yj ≤ uj for j ∈ C.

The smallest and largest values that the LHS of (9.11) can take are,
respectively,

Lmin :=
∑
j∈B−

aj +
∑
j∈C−

gjuj +
∑
j∈C+

gj lj

Lmax :=
∑
j∈B+

aj +
∑
j∈C−

gj lj +
∑
j∈C+

gjuj.

We can now perform the following checks:

• If Lmin > b, infeasibility has been identified,

• If Lmax ≤ b, redundancy has been identified,

• If uk > b−Lmin+gk�k
gk

for some k ∈ C+, then the bound uk can be
improved to the RHS value,

• If lk < b−Lmin+gkuk
gk

for some k ∈ C−, then the bound 	k can be
improved to the RHS value,

• If Lmin + ak > b for some k ∈ B+, then xk = 0 (variable fixing),

• If Lmin − ak > b for some k ∈ B−, then xk = 1 (variable fixing),

• If ak > Lmax − b, for some k ∈ B+, then the constraint coefficient ak
and the RHS b can both be reduced by ak − (Lmax − b),

• If ak < b − Lmax, for some k ∈ B−, then the constraint coefficient ak
can be increased to the RHS value b− Lmax.

Performing these checks on all the constraints in the formulation only takes
linear time. Whenever some improvement is discovered, an additional pass
through the constraints is performed. Other standard preprocessing steps
are typically applied, such as reduced cost fixing (Exercise 9.18), implication
based fixing, and identification of clique inequalities (Exercise 9.19). We
refer the reader to the presentation of Savelsbergh [321] for additional details.
Preprocessing is surprisingly effective in practice as can be seen from the
table given in Sect. 5.3.

9.3. DEALING WITH SYMMETRIES 373

Cut Pool
When a node Ni is explored, cuts may be generated to strengthen the

formulation, thus improving the bound zi. Some cuts may be local (i.e.,
valid only at node Ni and its descendants) or global (valid at all the nodes
of the branch-and-bound tree). A good strategy is to store cuts in a cut
pool instead of adding them permanently to the formulation. The reason
is that solving the linear programs tends to be slowed significantly when a
large number of cuts are present. Thus, if a cut has become inactive in the
linear program at a node Ni, it is moved to the cut pool. At later stages,
the algorithm searches the cut pool for those inequalities that are violated
by the current fractional point x̄, and moves these cuts back into the linear
program.

Software

Currently, Gurobi, Cplex, and Xpress are excellent commercial branch-
and-cut codes. Scip and cbc are open source.

9.3 Dealing with Symmetries

Some problems in integer programming have a highly symmetric structure.
This means that there are ways of permuting the variables and constraints
that leave the formulation invariant. This implies that the feasible region of
the linear programming relaxation is also symmetric. This can be a major
issue in branch-and-cut algorithms, since they may end up solving many
subproblems that are essentially identical. For example, in the operating
room scheduling problem (2.17) in Sect. 2.8 with n identical operating rooms,
permuting the indices in {1, . . . , n} does not change the structure of the
constraints. So, for each solution y of the linear programming relaxation,
there are n! equivalent solutions, one for each permutation π, obtained by
setting y′ij = yiπ(j).

Various approaches have been tried to break the symmetry in branch-
and-cut, such as perturbing the coefficients in the formulation or adding
symmetry breaking constraints. The most successful approach to date is to
ensure that only one isomorphic copy of each node is kept in the enumer-
ation tree. A way of efficiently constructing such a tree was presented by
Margot [267] in the context of integer programming. We will present some
of these ideas in this section. To simplify the treatment, we will only present
it in the context of pure 0, 1 programs.

Before doing this we need to introduce some basic terminology about
permutations. A permutation on n-elements is a bijection π : {1, . . . , n} →
{1, . . . , n}. We denote by Σn the set of all permutations on n elements.

374 CHAPTER 9. ENUMERATION

We will represent π by the n-vector (π(1), . . . , π(n)). Given S ⊆ {1, . . . , n},
we denote by π(S) = {π(i) : i ∈ S} the image of S under π. Given
v ∈ R

n, we denote by π(v) the vector (vπ(1), . . . , vπ(n)). Given a matrix
A ∈ R

m×n and permutations π ∈ Σn, σ ∈ Σm, we denote by A(π, σ) the
matrix obtained by permuting the columns of A according to π and the rows
according to σ.

Consider a pure 0, 1 linear program (BIP)

max cx
Ax ≤ b
x ∈ {0, 1}n.

(9.12)

The set of permutations

Γ = {π ∈ Σn : ∃σ ∈ Σm such that π(c) = c, σ(b) = b, A(π, σ) = A}
(9.13)

is called the symmetry group of (BIP). It is not difficult to show that Γ is
indeed a group, that is, (i) the identity is in Γ, (ii) if π ∈ Γ, then π−1 ∈ Γ,
(iii) if π1, π2 ∈ Γ, then π1 ◦ π2 ∈ Γ. Note that, for every feasible solution x̄
of the linear programming relaxation of (9.12), and for every π ∈ Γ, π(x̄)
is also feasible and it has the same objective value. The vectors x̄ and
π(x̄) are said to be isomorphic solutions. Observe that the definition of Γ
depends on the choice of formulation, and not only on the of geometry of the
linear programming relaxation. For example, multiplying a constraint by a
positive number, adding or removing redundant constraints may change the
symmetry group.

Isomorphism Pruning

Consider a branch-and-bound algorithm for solving (BIP), in which we per-
form branching on the variables. At any node Na of the enumeration tree,
let F 0

a and F 1
a be the set of indices of the variables that have been fixed

to 0 and to 1 respectively. Two nodes Na and Nb of the enumeration tree
are isomorphic if there exists some permutation π ∈ Γ in the symmetry
group of (BIP) such that π(F 1

b) = F 1
a and π(F 0

b) = F 0
a . We are interested

in strategies that avoid enumerating isomorphic subproblems. One obvious
possibility is to check, every time a new node is generated, if there is an
isomorphic node already in the tree, but this is computationally impractical
because checking isomorphism is too expensive to be performed multiple
times at every node.

9.3. DEALING WITH SYMMETRIES 375

We now present isomorphism pruning, which can be performed locally
at each node without explicitly checking isomorphism to other nodes of the
tree. Despite its simplicity, isomorphism pruning guarantees that we never
solve two isomorphic subproblems.

Let Na be a node of the enumeration tree, and let p1, . . . , p� be the
sequence of indices of the variables that have been branched on, on the path
from the root to node Na.

Isomorphism Pruning Rule. If there exists π ∈ Γ and t ∈ {1, . . . , 	}
such that

pi ∈ F 1
a ⇒ π(pi) ∈ F 1

a , i = 1, . . . , t− 1;
pt ∈ F 0

a , π(pt) ∈ F 1
a ;

(9.14)

then prune node Na.

Example 9.12. Consider a 0,1 linear program (BIP) with three variables
and assume that π = (3, 1, 2) belongs to the symmetry group of (BIP). This
implies that, whenever (x̄1, x̄2, x̄3) is feasible to (BIP), (x̄3, x̄1, x̄2) is also
feasible to (BIP) and has the same objective value. Consider the enumer-
ation tree of Fig. 9.6. We can apply the isomorphic pruning rule with the
above permutation π and t = 2: indeed 1 ∈ F 1

a and π(1) = 3 ∈ F 1
a ; and

2 ∈ F 0
a and π(2) = 1 ∈ F 1

a . The isomorphic pruning rule tells us to prune
node Na. Note that it makes sense in this case because node Nb must still
be solved and it contains the solution (1, 1, 0) which is isomorphic to the
solution (1, 0, 1) that we are pruning in node Na. �

root

x3 = 1

Nb

Na

x2 = 1

x1 = 1

x2 = 0

Figure 9.6: Example of isomorphic pruning

376 CHAPTER 9. ENUMERATION

Next we explain why the isomorphism pruning rule ensures that we
never consider isomorphic subproblems, and that we always keep at least
one optimal solution of (BIP). We assume that, when branching on a vari-
able xk at a given node in the enumeration tree, we create two children, the
left child obtained by fixing xk = 1, and the right child obtained by fixing
xk = 0. Given two nodes Na and Nb in the enumeration tree, we say that
Nb is to the left of Na if Nb is a descendant of the left child of the common
ancestor Nd of Na and Nb, and Na is a descendant of the right child of Nd.
We say that a vector x̄ is a solution in node Na if it is feasible for (BIP) and
x̄i = 1 for all i ∈ F 1

a , x̄i = 0 for all i ∈ F 0
a (in particular x̄ must be a 0, 1

vector).

Proposition 9.13. If node Na has an isomorphic node to its left in the
enumeration tree, then node Na is pruned by isomorphism.

Conversely, if node Na is pruned by isomorphism, then for every solution
x̄ in node Na there is a node Nb to the left of node Na containing a solution
isomorphic to x̄.

Proof. Suppose Na has an isomorphic node Nb to its left. Then there exists
a permutation π ∈ Γ such that π(F 1

b) = F 1
a and π(F 0

b) = F 0
a . Let Nd be

the common ancestor of Na and Nb and pt be the index of the branching
variable at node Nd. Thus, for i = 1, . . . , t − 1, if pi ∈ F 1

a , then pi ∈ F 1
b ,

because the paths from the root to Na and Nb coincide up to node Nd.
By definition of π, this implies that π(pi) ∈ F 1

a for i = 1, . . . , t − 1. Since
Nb is a descendant of the left child of Nd, and Na is a descendant of the
right child of Nd, it follows that pt ∈ F 0

a and pt ∈ F 1
b . Again by definition

of π, this implies that π(pt) ∈ F 1
a . This shows that π and t satisfy the

conditions (9.14). Therefore Na is pruned by isomorphism.
For the second part of the statement, assume that Na is pruned by

isomorphism. Let π and t satisfy conditions (9.14). Given a solution x̄ in
Na, let x̃ = π(x̄). Consider the minimum index k such that x̄pk �= x̃pk .
It follows from the conditions (9.14) that k ≤ t and x̄pk = 0, x̃pk = 1. Thus,
if Nd is the kth node on the path from the root to Na (that is, Nd is the
node where we branched on xpk), it follows that x̃ is feasible for the left
child Nb of Nd. Hence x̄ is isomorphic to a feasible solution of Nb, which is
a node to the left of Na.

The above proposition shows that a branch-and-bound algorithm that
implements isomorphism pruning will produce an optimal solution of (BIP).

Various procedures are often incorporated in branch-and-bound to fix
variables at the nodes, such as reduced cost fixing or implication based

9.3. DEALING WITH SYMMETRIES 377

fixing. Let x∗ be the current best feasible solution found. A variable xj can
be fixed to 0 (resp. to 1) at a node Na of the enumeration tree when it is
determined that no better solution x̄ than x∗ can exist in Na with x̄j = 1
(resp. x̄j = 0). We call any such procedure variable fixing by bounds. We
can describe such a fixing in the enumeration tree by branching at node
Na on variable xj, and pruning one of the two children by bound. Namely,
we prune the left child if no better solution than x∗ can exist in Na with
xj = 1, and similarly for the right child. With this convention, all variables
fixed in the enumeration tree are branching variables. Therefore these fixing
procedures are still valid even when isomorphism pruning is performed.

We also remark that the proof of Proposition 9.13 depends on the set
of solutions of (BIP) in a give node Na, and not on the specific linear pro-
gramming relaxation at that node. In particular, one can add cutting planes
to the formulation at node Na as long as they are valid for the set of 0,1
solutions in Na.

The above discussion implies that one can incorporate isomorphism prun-
ing in a general branch-and-cut framework for (BIP).

In order to implement the isomorphism pruning rule, one needs to com-
pute the symmetry group Γ defined in (9.13). Furthermore, at each node
of the enumeration tree one needs to compute a permutation π satisfy-
ing (9.14), if any exists. The computation of Γ needs to be performed only
once. Note that applying isomorphism pruning using a subgroup of Γ instead
of Γ itself will still produce a correct algorithm, although in this case there
may be isomorphic nodes in the enumeration tree. It is often the case that
the user has knowledge of the group Γ, or at least a large subgroup of Γ,
as for example in the operating room scheduling problem. The group Γ
can be also generated automatically using tools from computational group
theory. While the status of computing a set of generators for Γ in polynomial
time is an open problem, there is software that runs efficiently in practice,
such as nauty by McKay [275]. Furthermore, permutation groups can be
represented in a compact form, called the Schreier–Sims representation (see
for example [328]). Algorithms that are based on this representation, to
detect a permutation π satisfying (9.14) if any exists, are typically efficient
in practice [267].

In principle, one would like to work with a larger group of permutations
than Γ, namely the group Γ′ of all permutations π such that, for any x̄ ∈ R

n,
x̄ is an optimal solution for (BIP) if and only if π(x̄) is optimal for (BIP).
Using Γ′ for isomorphism pruning would still produce a correct algorithm
(as this would guarantee that at least one optimal solution is kept in the

378 CHAPTER 9. ENUMERATION

enumeration tree), while resulting in smaller trees. However, computing Γ′

is not possible without “a priori” knowledge of the symmetries of the optimal
solutions, and in practice one is able to detect symmetries only if they are
“displayed” by the formulation.

Orbital Fixing

We consider a branch-and-cut algorithm that performs the following oper-
ations on the enumeration tree: addition of valid cutting planes at nodes
of the tree, branching on variables, pruning by bound, by infeasibility, by
integrality or by isomorphism, and variable fixing by bound as introduced
earlier. Recall that the latter operation can be represented in the enumera-
tion tree by branching on variables and pruning by bound.

In addition to these operations, we describe how symmetry in the for-
mulation can be exploited to fix additional variables.

Given a group G of permutations in Σn and an element i ∈ {1, . . . , n},
the orbit of i under G is the set {π(i) : π ∈ G}. Given i, j ∈ {1, . . . , n}, i
is in the orbit of j if and only if j is in the orbit of i (indeed, j = π(i) for
π ∈ G if and only if i = π−1(j) for π−1 ∈ G). Therefore the orbits of the
elements 1, . . . , n under G form a partition. Given a set S ⊂ {1, . . . , n}, the
stabilizer of S in G is the set stabil(S,G) := {π ∈ G : π(S) = S}. One can
show that stabil(S,G) is also a group.

Let Na be a node of the enumeration tree and let Oa be the family of
orbits of the elements 1, . . . , n under stabil(F 1

a ,Γ).

Orbital Fixing Rule. Let Z be the union of all orbits O ∈ Oa such that
O ∩ F 0

a �= ∅ and O \ F 0
a �= ∅. If Z �= ∅, create a child Na′ of Na and set

F 0
a′ := F 0

a ∪ Z.

We say that the variables in Z \ F 0
a have been fixed to zero by orbital

fixing at node Na.

Example 9.14. We illustrate orbital fixing on the following 0,1 linear
program, where n ≥ 3.

max
∑n

j=1 xj
xi + xj ≤ 1 for all i, j
x ∈ {0, 1}n.

(9.15)

A branch-and-bound algorithm first solves the linear programming rel-
axation. The optimum of this linear program puts all variables at 1

2 for an

9.3. DEALING WITH SYMMETRIES 379

objective value of n
2 . Branching is done on variable x1, say. The branch

where x1 is fixed to 1 can be pruned by integrality (in this subproblem, the
linear program sets xj = 0 for all j �= 1 and it has objective value 1). Let
us now concentrate on the branch where x1 is fixed to 0. See Fig. 9.7.

prune by
integrality

x1 = 0x1 = 1

N0

N1

Figure 9.7: Branch-and-bound tree when orbital fixing is applied

Let N1 denote the corresponding node in the branch-and-bound tree. No
variable has been fixed to 1 on the path from N0 to N1, therefore F 1

1 = ∅.
In our example, the symmetry group of the formulation (9.15) is Σn, the
set of all permutations on 1, . . . , n. The stabilizer stabil(F 1

1 ,Σn) is Σn itself.
The family O1 of orbits of the elements 1, . . . , n under stabil(F 1

1 ,Σn) consists
of the single orbit O = {1, . . . , n}. Since F 0

1 = {1}, it follows that O∩F 0
1 �= ∅

and O \ F 0
1 �= ∅. Therefore the set Z defined in the orbital fixing rule is

Z = O = {1, . . . , n}. As a consequence we can fix x2 = x3 = . . . = xn = 0
by orbital fixing in node N1. Since all variables are now fixed in N1, this
node can be pruned and the branch-and-bound algorithm terminates. �

Proposition 9.15. Consider a node Na of the enumeration tree. If x̄ is
a solution in node Na such that there exists an orbit O ∈ Oa satisfying
O ∩ F 0

a �= ∅ and an index i ∈ O such that x̄i = 1, then there exists a node
Nb to the left of node Na containing a solution isomorphic to x̄.

Proof. Let P be the path of the enumeration tree from the root N0 to
node Na. We will prove the statement by induction on the length of P . The
statement is true when Na = N0. Now consider a general node Na. Let x̄
satisfy the hypothesis. Let S be the union of all orbits O ∈ Oa such that
O ∩F 0

a �= ∅ and x̄i = 1 for some i ∈ O. Among all indices in S ∩F 0
a , choose

h to be the index of a variable xh that was first fixed to zero going from N0

to Na in P . Let O be the orbit in Oa that contains h. By definition of S,

380 CHAPTER 9. ENUMERATION

there exists i ∈ O such that x̄i = 1. Since i, h belong to O, it follows that
there exists π ∈ stabil(F 1

a ,Γ) such that π(h) = i. Let x̃ = π(x̄). Note that
x̃h = 1.

Let Nd be the last node on P where variable xh was not yet fixed to zero.
We next show that x̃ is a solution in Nd. Since π ∈ stabil(F 1

a ,Γ), it follows
that x̃j = 1 for every j ∈ F 1

a , and thus x̃j = 1 for every j ∈ F 1
d because

F 1
d ⊆ F 1

a . Thus, if x̃ is not a solution in node Nd, there exists j ∈ F 0
d such

that x̃j = 1. This implies that x̄π(j) = 1. But then j is an index in S ∩ F 0
a

such that the variable xj was fixed before xh, contradicting the choice of h.

Now, variable xh has been fixed along the path P either by branching or
by orbital fixing. Suppose xh was fixed by branching. By the choice of node
Nd, xh must be the branching variable at node Nd, and Na is a descendant of
the right child of Nd. It follows that x̃ is a solution in the left child Nb of Nd,
because x̃h = 1 and x̃ is a solution in Nd. Thus x̃ is a solution isomorphic
to x̄ in a node to the left of Na.

Henceforth, we may assume that xh was fixed to 0 by orbital fixing at
node Nd. Let O′ be the orbit of h under stabil(F 1

d ,Γ). Since h is fixed by
orbital fixing at Nd, it follows that O′ ∩ F 0

d �= ∅. Since x̃h = 1 and the
length of the path from the root N0 to Nd is less than the length of P , it
follows by induction that there exists a node Nb to the left of Nd containing
a solution isomorphic to x̃. Since x̃ is isomorphic to x̄, Nb contains a solution
isomorphic to x̄ and the statement follows.

It is important to note that Proposition 9.13 remains true even when
isomorphism pruning is used in conjunction with orbital fixing. Therefore
the two rules can both be added to a general branch-and-cut algorithm for
(BIP).

9.4 Further Readings

Integer Programming in Fixed Dimension

Surveys on lattice basis reduction and integer programming in fixed dimen-
sion are given by Aardal, Weismantel and Wolsey [4] and by Eisenbrand
(in [217, pp. 505–560]).

The first papers to apply basis reduction for solving integer programs
were those of Hirschberg and Wong [202], who gave a polynomial algorithm
for the knapsack problem in two variables, and Kannan [225], who gave a
polynomial algorithm for the two-variable integer programming problem.

9.4. FURTHER READINGS 381

A question related to basis reduction is to find the shortest nonzero
vector in a lattice. Ajtai [9] shows that the shortest vector problem in L2
is NP-hard for randomized reductions, and Micciancio [277] shows that the
shortest vector in a lattice is hard to approximate to within some constant.

Kannan [226, 227] provides a variant of Lenstra’s algorithm, based on
a basis reduction algorithm different from the Lovász’ algorithm, which
improves the number of hyperplanes to be considered in the recursion to
O(n5/2). Lovász and Scarf [263] describe an algorithm for integer program-
ming in fixed dimension that avoids computing a rounding ellipsoid in order
to find a flat direction. Cook, Rutherford, Scarf and Shallcross [91] report
a successful application of Lovász and Scarf’s algorithm to a class of small
but difficult mixed integer linear programming problems with up to 100
integer variables, arising from a network design application, that could not
otherwise be solved by regular branch-and-bound techniques.

Banaszczyk, Litvak, Pajor, and Szarek [35] show that the flatness
theorem holds for k(n) = Cn3/2, where C is a universal constant. The
best choice for k(n) is not known. Note that k(n) ≥ n since the sim-
plex conv{0, ne1, . . . , nen} has width n and its interior does not contain any
integer point (ei denotes the ith unit vector).

John [214] shows that every full-dimensional convex body K ⊆ R
n

contains a unique ellipsoid of maximum volume E∗, and that K ⊆ nE∗.
If P = {x : Ax ≤ b} is a full-dimensional polytope and E∗ is the maximum-
volume inscribed ellipsoid in P , one can compute E ⊆ P such that (1 +
ε)vol(E) ≥ vol(E∗) in time polynomial in the encoding size of (A, b) and in
log(ε−1) using the shallow cut ellipsoid method. Nesterov and Nemirovsky
[291] show how to solve such a problem in polynomial time using interior
point methods.

It is NP-hard to compute the volume of a polytope, and of a convex body
more generally. However, Dyer, Frieze, and Kannan [122] give a random
polynomial-time algorithm for approximating these volumes.

A more general problem than the integer feasibility problem is the ques-
tion of counting integral points in a polyhedron. Barvinok [38] gave a
polynomial-time algorithm for counting integral points in polyhedra when
the dimension is fixed.

A topic that we do not cover in this book is that of strongly polynomial
algorithms. We just mention two papers: Frank and Tardos [149], and
Tardos [334].

382 CHAPTER 9. ENUMERATION

Computational Aspects of Branch-and-Bound

Much work has been devoted to branching. Related to the topic of basis
reduction, we cite Aardal, Bixby, Hurkens, Lenstra, and Smeltink [1], Aardal
and Lenstra [2], Aardal, Hurkens, and Lenstra [3].

Strong branching was proposed by Applegate, Bixby, Chvátal, and Cook
[13] in the context of the traveling salesman problem.

Computational studies on branching rules for mixed integer linear pro-
gramming were performed by Linderoth and Savelsbergh [257], Achterberg,
Koch, and Martin [7, 8], Achterberg [5], Patel and Chinneck [306], and
Kilinc–Karzan, Nemhauser, and Savelsbergh [238].

One aspect that deserves more attention is the design of experiments to
evaluate empirical aspects of algorithms. Hooker [205] makes this case in
his paper “Needed: An empirical science of algorithms.” We also mention
“Experimental analysis of algorithms” by McGeogh [274].

Dealing with Symmetry

While the concept of isomorphism pruning in the context of integer program-
ming was first introduced by Margot [267], similar search algorithms have
been independently developed in the computer science and constraint pro-
gramming communities by, among others, Brown, Finkelstein and Purdom
[65] and Fahle, Shamberger, and Sellmann [134].

In the context of packing and covering problems, Ostrowski, Linderoth,
Rossi, and Smriglio [293] introduced the idea of orbital branching. Consider
a node a of the enumeration tree and let Γa be the symmetry group of
the formulation at node a. Suppose we want to branch on the variable xk.
Orbital branching creates two subproblems, the left problem where xk is set
equal to 1, and the right problem where all variables with index in the orbit
of k under the group Γa are set to 0. This branching strategy excludes many
isomorphic solutions, while guaranteeing that an optimal solution is always
present in the enumeration tree. However, there is no guarantee that the
enumeration tree will not contain isomorphic subproblems.

A common approach to deal with symmetries in the problem is adding
symmetry-breaking inequalities. An interesting example is given by Kaibel
and Pfetsch in [222], where they characterize the inequalities defining the
partitioning orbitope, that is the convex hull of all 0, 1 m× n matrices with
at most one nonzero entry in each row and whose columns are sorted lexico-
graphically. These inequalities can be used to break symmetries in certain
integer programming formulations, such as the graph coloring formulation
in which a variable xij indicates if node i is given color j.

9.5. EXERCISES 383

9.5 Exercises

Exercise 9.1. Let k1, . . . , kn be relatively prime integers, and let p be a
positive integer. Let Λ ⊆ Z

n be the set of points x = (x1, . . . , xn) satisfying∑n
i=1 kixi ≡ 0 (mod p). Prove that Λ is a lattice and that det(Λ) = p.

Exercise 9.2. Let b1, . . . , bn be an orthogonal basis of Rn. Prove that the
shortest vector in the lattice generated by b1, . . . , bn is one of the vectors bi,
for i = 1, . . . , n.

Exercise 9.3. Let A,B be two n×n nonsingular integral matrices. Assume
that the lattices ΛA and ΛB generated by these matrices satisfy ΛA ⊆ ΛB .

(i) Prove that |detB| divides |detA|.

(ii) Prove that there exist bases u1, . . . , un of ΛA and v1, . . . , vn of ΛB such
that ui = kiv

i for some positive integers ki, i = 1, . . . , n.

Exercise 9.4. Prove that any lattice Λ ⊂ R
2 has a basis b1, b2 such that

the angle between b1 and b2 is between 60◦ and 90◦.

Exercise 9.5. Let Λ ⊂ R
n be a lattice and b1, . . . , bn a reduced basis of Λ.

Prove that
‖b1‖ ≤ 2

n−1
2 min

u∈Λ\{0}
‖u‖.

Exercise 9.6. Let Λ ⊂ R
n be a lattice and b1, . . . , bn a reduced basis of Λ.

For u ∈ Λ, consider λ ∈ Z
n such that u =

∑n
i=1 λib

i. Prove that, if u is a
shortest nonzero vector in Λ, then |λi| ≤ 3n for i = 1, . . . , n.

Exercise 9.7. Let K ⊆ R
n be a convex body and let wd(K) denote its

width along direction d ∈ R
n. Prove that infd∈Zn wd(K) = mind∈Zn wd(K),

i.e., there exists d∗ ∈ Z
n such that wd∗(K) = infd∈Zn wd(K).

Exercise 9.8. For a matrix B ∈ R
n×n, let M be the absolute value of the

largest entry in B. Prove that |det(B)| ≤ nn/2Mn.

Exercise 9.9. Let K ∈ R
n be a full-dimensional convex body that does

not contain any integral point. Let us call an open split set any set of the
form {x ∈ R

n : π0 < πx < π0 + 1} where π ∈ Z
n, π0 ∈ Z. Prove that K

is contained in the union of C(n) open split sets, where C(n) is a constant
depending only on n.

Exercise 9.10. Modify Lenstra’s algorithm so that it computes an integral
solution to Ax ≤ b if one exists (hint: use (9.9)).

384 CHAPTER 9. ENUMERATION

Exercise 9.11. Let Λ ⊂ Q
n be the lattice generated by a basis b1, . . . ,

bn ∈ Q
n. Prove that, for fixed n, the shortest vector in Λ can be found in

polynomial time.

Exercise 9.12. Apply Lenstra’s algorithm to find a solution to
243243x1 + 244223x2 + 243334x3 = 8539262753
x1, x2, x3 ≥ 0 integer.

Exercise 9.13. Consider a mixed integer linear program with one inte-
ger variable. Assume that its linear programming relaxation has a unique
optimal solution. Prove that any branch-and-bound algorithm using variable
branching and the LP relaxation to compute lower bounds has an enumer-
ation tree of size at most three.

Exercise 9.14. Consider the mixed integer linear program (9.10) where all
integer variables are bounded, 0 ≤ xj ≤ uj with uj integer for j = 1, . . . , p.
Specialize the branching rule in the branch-and-cut algorithm as follows.
Choose a variable xj, j = 1, . . . , p such that xij is fractional. From the linear
program LPi, construct uj + 1 subproblems LPt

i obtained by adding the
constraint xj = t for t = 0, . . . , uj . Let z

t
i be the objective value of LPt

i. Let
tl =
xij� and tu = �xij.

(i) Prove that ztli = maxt=0,...,tl z
t
i and ztui = maxt=tu,...,uj z

t
i .

(ii) Suppose that the above branching rule is used in conjunction with a
node selection rule that chooses subproblem LPtl

i or LPtu
i before the

others. Is there an advantage in using this branching rule rather than
the more common xj ≤ tl or xj ≥ tu?

Exercise 9.15. Consider the symmetric traveling salesman problem on the
undirected graph G = (V,E) with costs ce, e ∈ E. Devise a branch-and-
bound algorithm for solving this problem where bounds are obtained by
computing Lagrangian bounds based on the 1-tree relaxation (8.7).

Explain each step of your branch-and-bound algorithm, such as branch-
ing, and how subproblems are created and solved at the nodes of the
enumeration tree.

Exercise 9.16. Let [l, u] ⊂ R be an interval. An approach for maximizing
a nonlinear function f : [l, u] → R is to approximate it by a piecewise linear
function g with breakpoints l = s1 < s2 < . . . < sn = u. The formulation is

x =
∑n

k=1 λksk
g(x) =

∑n
k=1 λkf(sk)∑n
k=1 λk = 1

λk ≥ 0, for k = 1, . . . , n

9.5. EXERCISES 385

together with the condition that no more than two of the λk are positive
and these are of the form λk, λk+1.

(i) Prove that a valid separation is given by the constraints

p−1∑
k=1

λk = 0 or
n∑

k=p+1

λk = 0

for some p = 2, . . . , n− 1.

(ii) Based on this separation, develop a branch-and-bound algorithm to
find an approximate solution to a separable nonlinear program of the
form

max
∑n

j=1 fj(xj)

Ax ≤ b
l ≤ x ≤ u

where fj : [lj , uj] → R are nonlinear functions for j = 1, . . . , n.

Exercise 9.17. Denote by (LP) the linear programming relaxation of (9.10).
Let x̄ denote an optimal solution of (LP). For a split disjunction

∑p
j=1 πjxj ≤

π0 or
∑p

j=1 πjxj ≥ π0 + 1 where (π, π0) ∈ Z
p+1 is chosen such that x̄ sat-

isfies π0 <
∑p

j=1 πjx̄j < π0 + 1, let (LP−) and (LP+) be the linear pro-
grams obtained from (LP) by adding the constraints

∑p
j=1 πjxj ≤ π0 and∑p

j=1 πjxj ≥ π0 + 1 respectively. Let z− and z+ be the optimum objective

values of (LP−) and (LP+) respectively. Compare z−, z+ with the value
ẑ obtained by adding to (LP) a split cut from the above disjunction: Con-
struct an example showing that the differences ẑ − z− and ẑ − z+ can be
arbitrarily large. Compare z−, z+ with the value z∗ obtained by adding to
(LP) all the split inequalities from the above disjunction.

Exercise 9.18. Consider a pure integer linear program, with bounded vari-
ables 0 ≤ xj ≤ uj for j = 1, . . . , n, where the objective function z is to
be maximized. Assume that we know a lower bound z and that the linear
programming relaxation has been solved to optimality with the objective
function represented as z = z +

∑
j∈N0

cjxj +
∑

j∈Nu
cj(xj − uj) where N0

indexes the nonbasic variables at 0, Nu indexes the nonbasic variables at
their upper bound, cj ≤ 0 for j ∈ N0, and cj ≥ 0 for j ∈ Nu. Prove that in
any optimal solution of the integer program

xj ≤
z − z

−cj
� for j ∈ N0 such that cj �= 0, and

386 CHAPTER 9. ENUMERATION

xj ≥ uj − �z − z

cj
 for j ∈ Nu such that cj �= 0.

Exercise 9.19. Let B index the set of binary variables in a mixed 0,1
linear program. For j ∈ B, let x̄j := 1−xj and let B̄ index the set of binary
variables x̄j, j ∈ B. Construct the graph G = (B ∪ B̄, E) where two nodes
are joined by an edge if and only if the two corresponding variables cannot
be 1 at the same time in a feasible solution.

1. Show that, for any clique C of G, the inequality
∑
C∩B

xj −
∑

C∩B̄

xj ≤ 1− |C ∩ B̄|

is a valid inequality for the mixed 0,1 linear program.

2. What can you deduce when G has a clique C of cardinality greater
than two such that C ∩B and C ∩ B̄ contain nodes corresponding to
variables xk and x̄k respectively, for some index k.

3. Construct the graph (B ∪ B̄, E) for the 0,1 program

4x1 + x2 − 3x4 ≤ 2
3x1 + 2x2 + 5x3 + 3x4 ≤ 7

x2 + x3 − x4 ≤ 0
x1, x2, x3, x4 ∈ {0, 1}.

Deduce all the possible maximal clique inequalities and variable fixings.

Exercise 9.20. Consider the following integer linear program
min z

2x1 + . . .+ 2xn +z = n
x1, . . . , xn = 0 or 1

z ≥ 0
where n is an odd integer.

(i) Prove that any branch-and-bound algorithm using variable branching
and the linear programming relaxation to compute lower bounds, but
no isomorphism pruning, has an enumeration tree of size at least 2n/2.

(ii) What is the size of the enumeration tree when isomorphism pruning
is used?

Exercise 9.21. Given a group G of permutations in Σn and a set S ⊂
{1, . . . , n}, show that the stabilizer stabil(S,G) is a group.

9.5. EXERCISES 387

Exercise 9.22. Consider the following 0,1 linear program, where n ≥ 3.

max
∑n

j=1 xj
xi + xj + xk ≤ 2 for all i, j, k
x ∈ {0, 1}n.

(9.16)

Provide the complete enumeration tree for a branch-and-bound algorithm
that uses isomorphism pruning and orbital fixing.

Exercise 9.23. Formulate as a pure 0,1 linear program the question of
whether there exists a v × b binary matrix with exactly r ones per row, k
ones per column, and with a scalar product of λ between any pair of distinct
rows. Solve the problem for (v, b, r, k, λ) = (7, 7, 3, 3, 1).

The authors working on Chap. 9

388 CHAPTER 9. ENUMERATION

One of the authors enjoying a drink under a fig tree

Chapter 10

Semidefinite Bounds

Semidefinite programs are a generalization of linear programs. Under mild
technical assumptions, they can also be solved in polynomial time. In certain
cases, they can provide tighter bounds on integer programming problems
than linear programming relaxations. The first use of semidefinite program-
ming in combinatorial problems dates back to Lovász [260], who introduced
a semidefinite relaxation of the stable set polytope, the so-called theta body.
A similar idea is also the basis of an elegant, and very tight, approximation
algorithm for the max-cut problem, due to Goemans and Williamson [173].
The approach can be generalized to mixed 0, 1 linear programming problems
within a framework introduced by Lovász and Schrijver [264]. The idea is
to obtain a relaxation of the feasible region of the mixed 0, 1 program as the
projection of some higher-dimensional convex set, which is defined by linear
and semidefinite constraints. This approach is closely related to the lift-and-
project inequalities discussed in Chap. 5, and also to relaxations introduced
by Sherali–Adams [330] and by Lasserre [247, 248].

10.1 Semidefinite Relaxations

A matrix A ∈ R
n×n is positive semidefinite if, for every x ∈ R

n, xTAx ≥ 0.
A semidefinite program consists of maximizing a linear function subject to
linear constraints, where the variables are the entries of a square symmet-
ric matrix X, with the further (nonlinear) constraint that X is positive
semidefinite. The condition that X is symmetric and positive semidefinite
will be denoted by X $ 0 .

© Springer International Publishing Switzerland 2014
M. Conforti et al., Integer Programming, Graduate Texts
in Mathematics 271, DOI 10.1007/978-3-319-11008-0 10

389

390 CHAPTER 10. SEMIDEFINITE BOUNDS

Formally, a semidefinite program is an optimization problem, defined
by symmetric n × n matrices C,A1, . . . , Am and a vector b ∈ R

m, of the
following form

max 〈C,X〉
〈Ai,X〉 = bi i = 1, . . . ,m
X $ 0.

(10.1)

Recall that 〈·, ·〉 applied to two n×nmatrices A,B is defined as 〈A,B〉 :=∑
k

∑
j akjbkj. We observe that, in the special case where the matrices

C,A1, . . . , Am are diagonal matrices, (10.1) reduces to a linear program,
because only the diagonal entries of X appear in the optimization and the
condition X $ 0 implies that these variables are nonnegative. Note also that
the feasible region of (10.1) is convex, since any convex combination of sym-
metric positive semidefinite matrices is also symmetric positive semidefinite.

Similar to linear programming, a natural notion of dual exists for semidef-
inite programming problems. The dual problem of (10.1) is defined by

min ub
m∑
i=1

uiAi − C $ 0.
(10.2)

It is not difficult to show that the value of a primal feasible solution X
in (10.1) never exceeds the value of a dual solution u in (10.2). Despite their
similarity with linear programs, semidefinite programs do not always admit
an optimal solution, even when the objective function in (10.1) is bounded.
Furthermore strong duality might not hold, namely the optimal values of the
primal and dual problems might not coincide. The following theorem gives
sufficient conditions for strong duality to hold [290]. A matrix A ∈ R

n×n

is positive definite if xTAx > 0 for all x ∈ R
n \ {0}. The notation A % 0

expresses the property that A is a symmetric positive definite matrix. The
primal problem (10.1) is strictly feasible if it has a feasible solution X such
that X % 0, while the dual problem (10.2) is strictly feasible if there exists
u ∈ R

m such that
∑m

i=1 uiAi − C % 0.

Theorem 10.1. If the primal problem (10.1) (resp. the dual problem (10.2))
is strictly feasible and bounded, then the dual (resp. the primal) problem
admits an optimal solution, and the optimal values of (10.1) and (10.2)
coincide.

See Theorem 1.4.2 (3a) in [49] for a proof. When optimal solutions
exist, they might have irrational components, even if the data in (10.1) are

10.1. TWO APPLICATIONS IN COMBINATORIAL. . . 391

all rational. Thus one cannot hope to compute an optimal solution exactly,
in general. However, semidefinite programs can be solved in polynomial
time to any desired precision. This can be done either with the ellipsoid
method [186], or more efficiently using interior point methods [291]. Interior
point methods typically require that both primal and dual problems are
strictly feasible, while ellipsoid methods require the problem to satisfy other
technical conditions that we do not discuss here.

Symmetric positive semidefinite matrices have several equivalent char-
acterizations, which will be useful in the remainder. Given a symmetric
matrix A ∈ R

n×n, a principal submatrix of A is a matrix B whose rows and
columns are indexed by a set I ⊆ {1, . . . , n}, so that B = (aij)i,j∈I . Clearly,
if A $ 0, then B $ 0 for every principal submatrix B.

Proposition 10.2. Let A ∈ R
n×n be a symmetric matrix. The following

are equivalent.

(i) A is positive semidefinite.

(ii) There exists U ∈ R
d×n, for some d ≤ n, such that A = UTU .

(iii) All principal submatrices of A have nonnegative determinant.

The proof can be found in [207] for example.

10.2 Two Applications in Combinatorial

Optimization

10.2.1 The Max-Cut Problem

Given a graph G = (V,E) with edge weights w ∈ Q
E
+, the max-cut problem

consists of finding a cut C ⊆ E of maximum weight
∑

e∈C we. This is an
NP-hard problem [232]. By contrast, we have seen in Sect. 4.3.3 that the
problem of finding a cut of minimum weight is polynomially solvable.

Goemans and Williamson [173] give a semidefinite relaxation of the
max-cut problem and they show that the upper bound defined by the
optimum value is always less than 14% away from the maximum value of
a cut. We present this result. Let n := |V |. The max-cut problem can be
formulated as the following quadratic integer program.

zI := max
1

2

∑
ij∈E

wij(1− xixj)

x ∈ {+1,−1}n.

392 CHAPTER 10. SEMIDEFINITE BOUNDS

For any column vector x ∈ {+1,−1}n, the n × n matrix Y := xxT is
symmetric, positive semidefinite, has rank 1, and yjj = 1 for all j = 1, . . . , n.
Relaxing the rank 1 condition, we get the following semidefinite relaxation
of the max-cut problem.

zsdp := max
1

2

∑
ij∈E

wij(1− yij)

yjj = 1 for j = 1, . . . , n,
Y $ 0.

Clearly zsdp ≥ zI . One can show that both the above semidefinite pro-
gram and its dual admit a strictly feasible solution, therefore they both
admit an optimal solution. Furthermore, the value zsdp can be computed
in polynomial time to any desired precision by interior point methods. The
next theorem demonstrates that the quality of the upper bound zsdp is very
good.

Theorem 10.3 (Goemans and Williamson [173]).
zI
zsdp

> 0.87856.

Proof. Consider an optimal solution Y to the semidefinite relaxation. Since
Y $ 0, by Proposition 10.2 we can write Y = UTU where U is a d × n
matrix for some d ≤ n. Let uj ∈ R

d denote the jth column of U . Note that
‖ui‖2 = uTi ui = yii = 1 for i = 1, . . . , n. Thus, u1, . . . , un are points on the
surface of the unit sphere in R

d.
Generate a vector r ∈ R

d with ‖r‖2 = 1 uniformly at random, and let
S := {i ∈ V : uTi r > 0}. Consider the cut C := δ(S) in the graph G.

If Hr denotes the hyperplane normal to r and going through the origin,
an edge ij is in the cut C exactly when ui is on one side of Hr and uj on
the other. Therefore the probability that an edge ij is in the cut C is pro-

portional to the angle between the vectors ui and uj , hence it is
arccos(uT

i uj)
π .

It follows that the expected total weight of the cut C is

E(
∑
ij∈C

wij) =
∑
ij∈E

wij
arccos(uTi uj)

π
=

1

2

∑
ij∈E

wij(1− uTi uj)
2 arccos(uTi uj)

π(1− uTi uj)
.

It can be computed that min0<θ<π
2θ

π(1−cos θ) > 0.87856. Since w ≥ 0 and

1− uTi uj ≥ 0 (because |uTi uj| ≤ ‖ui‖2‖uj‖2 = 1), we get

E(
∑
ij∈C

wij) > 0.87856 (
1

2

∑
ij∈E

wij(1− uTi uj)) = 0.87856 zsdp.

Now the theorem follows from the fact that E(
∑

ij∈C wij) ≤ zI .

10.2. TWO APPLICATIONS IN COMBINATORIAL. . . 393

The proof of the theorem provides a randomized 0.87856-approximation
algorithm for max-cut, that is, a polynomial-time algorithm which returns
a solution to the max-cut problem whose expected value is at least 0.87856
times the optimum.

10.2.2 The Stable Set Problem

Consider a graph G = (V,E) and let n := |V |. Recall that a stable set
in G is a set of nodes no two of which are adjacent. Thus a vector x ∈
{0, 1}n is the characteristic vector of a stable set if and only if it satisfies
xi + xj ≤ 1 for all ij ∈ E. Let STAB(G) denote the stable set polytope of
G, namely the convex hull of the characteristic vectors of the stable sets ofG.
A common linear relaxation for STAB(G) is the so-called clique relaxation,
defined by the clique inequalities relative to all cliques of G, that is

QSTAB(G) := {x ≥ 0 :
∑
j∈C

xj ≤ 1 for all cliques C of G}. (10.3)

Clearly STAB(G) ⊆ QSTAB(G). However, optimizing a linear function over
QSTAB(G) is NP-hard in general (this follows by Theorem 7.26 because the
separation problem for QSTAB(G) is a maximum weight clique problem,
which is NP-hard [158]). Lovász [260] introduced the following semidefinite
relaxation of STAB(G). Define the theta body of G, denoted by TH(G), as
the set of all x ∈ R

n for which there exists a matrix Y ∈ R
(n+1)×(n+1)

satisfying the following constraints (see Fig. 10.1)

y00 = 1
y0j = yj0 = yjj = xj j ∈ V

yij = 0 ij ∈ E
Y $ 0.

(10.4)

The theta body has the advantage that one can optimize a rational linear
function cx over TH(G) in polynomial time with an arbitrary precision using
semidefinite programming. Furthermore, as shown next, the set TH(G) is
sandwiched between STAB(G) and QSTAB(G).

Theorem 10.4. For any graph G, STAB(G) ⊆ TH(G) ⊆ QSTAB(G).

Proof. Let x be the characteristic (column) vector of a stable set. Define

Y :=

(
1
x

)
(1 xT). Then Y satisfies all the properties needed in (10.4). In

particular yjj = x2j = xj since xj = 0 or 1, and yij = xixj = 0 when ij ∈ E.
This shows that STAB(G) ⊆ TH(G).

394 CHAPTER 10. SEMIDEFINITE BOUNDS

Figure 10.1: The matrix Y in (10.4)

Consider x ∈ TH(G) and let Y be a matrix satisfying (10.4). Let C be
any clique of G. Consider the principal submatrix YC of Y whose rows and
columns are indexed by C ∪ {0}. Note that all entries of YC are zero except
y00 = 1 and, possibly, y0j = yj0 = yjj = xj for j ∈ C. Since Y $ 0, also
YC $ 0 by Proposition 10.2(iii), therefore vTYCv ≥ 0 for every v ∈ R

|C|+1.
In particular, choosing v such that v0 = 1 and vj = −1 for j ∈ C, we get
1−

∑
j∈C xj ≥ 0. This proves x ∈ QSTAB(G).

The above semidefinite relaxation has an interesting connection to per-
fect graphs. A graph G is perfect if, in G and any of its node-induced
subgraphs, the chromatic number is equal to the size of a largest clique.
It is known, as a consequence of results of Lovász [259], Chvátal [74] and
Fulkerson [155], that STAB(G) = QSTAB(G) if and only if G is a perfect
graph. In this case STAB(G) = TH(G), therefore one can find the stability
number of a perfect graph in polynomial time and, more generally, solve
the maximum weight stable set problem in a perfect graph in polynomial
time. Interestingly, no other direct polynomial-time algorithm to compute
the stability number of a perfect graph is currently known.

10.3 The Lovász–Schrijver Relaxation

The approach described in the two previous examples can be viewed in a
more general framework, that extends to general mixed 0,1 programming
problems. Consider a polyhedron P := {x ∈ R

n+p
+ : Ax ≥ b} and the mixed

0,1 linear set S := {x ∈ {0, 1}n ×R
p
+ : Ax ≥ b}. Without loss of generality,

we assume that the constraints Ax ≥ b include xj ≥ 0 for j = 1, . . . , n + p,
and xj ≤ 1 for j = 1, . . . , n. Lovász and Schrijver [264] study the following
“lift-and-project” procedure.

10.3. THE LOVÁSZ–SCHRIJVER RELAXATION 395

Lovász–Schrijver Procedure
Step 1. Generate the nonlinear system

xj(Ax− b) ≥ 0
(1− xj)(Ax− b) ≥ 0

j = 1, . . . , n. (10.5)

Step 2. Linearize the system (10.5) as follows: Substitute yij for
xixj, for all i = 1, . . . , n + p and j = 1, . . . , n such that j < i, and
substitute xj for x2j for all j = 1, . . . , n.

Denote by Y = (yij) the symmetric (n+1)× (n+ 1) matrix such
that y00 = 1, y0j = yj0 = yjj = xj for j = 1, . . . , n, and yij = yji for
1 ≤ i < j ≤ n.

Denote byM+(P) the convex set in R

n(n+1)
2

+np
+ defined by all (x, y)

that satisfy the linearized inequalities, and such that Y $ 0.
Step 3. Project M+(P) onto the x-space. Call the resulting convex
set N+(P).

Whenever there is no ambiguity, we will refer to M+(P) and N+(P)
simply as M+ and N+.

Observe that S ⊆ N+ because, for any x ∈ S, choosing yij = xixj for
1 ≤ j ≤ n, j < i ≤ n + p, produces a feasible solution for M+. Indeed
the diagonal elements of this matrix Y are equal to xi since x ∈ S implies

x2i = xi = 0 or 1 for i = 1, . . . , n, and Y =

⎛
⎜⎜⎜⎝

1
x1
...

xn

⎞
⎟⎟⎟⎠ (1, x1, . . . , xn), therefore

Y is symmetric, positive semidefinite, and it has rank 1.
We remark that S is the projection onto the x-space of the set of elements

(x, y) ∈ M+ for which the matrix Y in Fig. 10.1 has rank 1. In particular,
N+ is a relaxation of S since the condition that Y has rank 1 is waived.

Since the problem of optimizing a linear function over M+ is a semidef-
inite program, one can optimize over the Lovász–Schrijver relaxation with
arbitrary precision in polynomial time.

Example 10.5. Let P := {x ∈ [0, 1]4 : x1 − 2x2 + 4x3 + 5x4 ≥ 3},
and S := P ∩ Z

4. Constructing a nonlinear system as in Step 1 of the
Lovász–Schrijver procedure and then linearizing, we obtain

396 CHAPTER 10. SEMIDEFINITE BOUNDS

x1(x1 − 2x2 + 4x3 + 5x4 − 3)≥ 0

(1 − x1)(x1 − 2x2 + 4x3 + 5x4 − 3)≥ 0

x2(x1 − 2x2 + 4x3 + 5x4 − 3)≥ 0

(1 − x2)(x1 − 2x2 + 4x3 + 5x4 − 3)≥ 0

x3(x1 − 2x2 + 4x3 + 5x4 − 3)≥ 0

(1 − x3)(x1 − 2x2 + 4x3 + 5x4 − 3)≥ 0

x4(x1 − 2x2 + 4x3 + 5x4 − 3)≥ 0

(1 − x4)(x1 − 2x2 + 4x3 + 5x4 − 3)≥ 0

(1 − xi)(1 − xj)≥ 0

xi(1− xj)≥ 0

(1− xi)xj ≥ 0

(1 − xi)(1 − xi)≥ 0

xixj ≥ 0

−2x1 − 2y12 + 4y13 + 5y14 ≥ 0

3x1 − 2x2 + 4x3 + 5x4 + 2y12 − 4y13 − 5y14 ≥ 3

−5x2 + y12 + 4y23 + 5y24 ≥ 0

x1 + 3x2 + 4x3 + 5x4 − y12 − 4y23 − 5y24 ≥ 3

x3 + y13 − 2y23 + 5y34 ≥ 0

x1 − 2x2 + 3x3 + 5x4 − y13 + 2y23 − 5y34 ≥ 3

2x4 + y14 − 2y24 + 4y34 ≥ 0

x1 − 2x2 + 4x3 + 3x4 − y14 + 2y24 − 4y34 ≥ 3

xi + xj − yij ≤ 1

yij ≤ xi

yij ≤ xj

xi ≤ 1

yij ≥ 0

where 1 ≤ i < j ≤ 4. The convex set M+ is the set of all (x1, x2, x3, y12,
y13, y23) ∈ R

6 satisfying the above linear inequalities and the semidefinite
constraint

Y :=

⎛
⎜⎜⎜⎜⎝

1 x1 x2 x3 x4
x1 x1 y12 y13 y14
x2 y12 x2 y23 y24
x3 y13 y23 x3 y34
x4 y14 y24 y34 x4

⎞
⎟⎟⎟⎟⎠

$ 0.

�

Example 10.6. The relaxation TH(G) of the stable set polytope defined
in Sect. 10.2.2 is related to the Lovász–Schrijver relaxation N+(FRAC(G)):
Let us apply the Lovász–Schrijver procedure to P := FRAC(G) = {x ∈
[0, 1]n : xi + xj ≤ 1 for all ij ∈ E} and S := P ∩ {0, 1}n.

For every i, j ∈ V , linearizing xixj ≥ 0 we obtain yij ≥ 0. For every
ij ∈ E, linearizing xi(1 − xi − xj) ≥ 0 we obtain yij ≤ 0, thus implying
yij = 0 for all ij ∈ E.

Therefore N+(FRAC(G)) ⊆ TH(G). The inclusion is strict in general
(Exercise 10.8).

Similarly, the semidefinite bound used by Goemans and Williamson in
Sect. 10.2.1 can also be viewed in the framework of the Lovász–Schrijver
relaxation, by transforming the ±1 variables into χi := 1

2(1 + xi) to get
χ ∈ {0, 1}n, and set P := [0, 1]n (see Exercise 10.4). �

10.3.1 Semidefinite Versus Linear Relaxations

Consider the variation of the Lovász–Schrijver procedure where the con-
straint “Y $ 0” is removed in Step 2. Thus the linearization in Step 2

10.3. THE LOVÁSZ–SCHRIJVER RELAXATION 397

simply gives a polyhedron M in R

n(n+1)
2

+np
+ . Its projection onto the x-space

is a polyhedron N ⊆ R
n+p. Clearly, N+ ⊆ N . This relaxation was first

considered by Sherali and Adams [330]; it is also studied in Lovász and
Schrijver [264]. We will write N(P) instead of just N when it is important
to specify the set P to which the procedure is applied.

We remark that N ⊆ P , since each inequality aix ≤ bi of Ax − b ≥ 0
can be obtained by summing the linearizations of xj(a

ix − bi) ≥ 0 and
(1− xj)(a

ix− bi) ≥ 0. Thus we have the following inclusions.

Lemma 10.7. conv(S) ⊆ N+ ⊆ N ⊆ P .

How tight is the Lovász–Schrijver relaxation N+ compared to N? From
a theoretical point of view, the Goemans and Williamson [173] result given
in Sect. 10.2.1 shows that, at least for the max-cut problem, the semidefinite
relaxation is strikingly strong. From a practical perspective the size of the
semidefinite program creates a tremendous challenge: the number of vari-
ables has been multiplied by n and the number of constraints as well! Burer
and Vandenbussche [66] solve it using an augmented Lagrangian method and
they report computational results on three classes of combinatorial prob-
lems, namely the maximum stable set problem, the quadratic assignment
problem and the following problem of Erdös and Turan: Calculate the max-
imum size of a subset of numbers in {1, . . . , n} such that no three numbers
are in arithmetic progression. In all three cases, the Lovász–Schrijver bound
given by N+ is substantially tighter than the bound given by N . To illus-
trate this, we give the results obtained in [66] for the size of a maximum
stable set (graphs with more than 100 nodes):

Name Nodes Edges Optimum N+ N
Brock200-1 200 5,066 21 27.9 66.6
c-fat200-1 200 18,366 12 14.9 66.6
Johnson16-2-4 120 1,680 8 10.2 23.3
Keller4 171 5,100 11 15.4 57.0
Rand-200-05 200 982 64 72.7 75.1
Rand-200-50 200 10,071 11 17.1 66.6

10.3.2 Connection with Lift-and-Project

Next, we relate the relaxation N defined in Sect. 10.3.1 to the lift-and-project
relaxations Pj introduced in Sect. 5.4. Consider the following “lift-and-
project” procedure.

398 CHAPTER 10. SEMIDEFINITE BOUNDS

Lift-and-Project Procedure

Step 0. Select j ∈ {1, . . . , n}.
Step 1. Generate the nonlinear system xj(Ax − b) ≥ 0, (1− xj)
(Ax− b) ≥ 0.
Step 2. Linearize the system by substituting yi for xixj, i �= j, and
xj for x2j . Call this polyhedron Qj.
Step 3. Project Qj onto the x-space. Let Pj be the resulting poly-
hedron.

Theorem 10.9 below will show that Pj obtained in this way coincides
with the definition given in Sect. 5.4.

Lemma 10.8. N ⊆ ∩n
j=1Pj ⊆ P

Proof. The linear inequalities defining Qj are a subset of those defining M .
Therefore N ⊆ Pj for j = 1, . . . , n.

The inclusion Pj ⊆ P follows by observing that the inequalities Ax ≥ b
can be obtained by summing up the constraints defining Qj .

The inclusion N ⊆ ∩n
j=1Pj can be strict (see Exercise 10.9). This is

because Step 2 of the Lovász–Schrijver procedure takes advantage of the
fact that yij = yji whereas this is not the case for the different Qjs used in
generating ∩n

j=1Pj .

Theorem 10.9. Pj = conv{(P ∩ {x : xj = 0}) ∪ (P ∩ {x : xj = 1})}

Proof. The linear system produced at Step 2 of the lift-and-project proce-
dure is

Ax1 ≥ λb
x1j = λ

Ax2 ≥ (1− λ)b
x2j = 1− λ

x1 + x2 = x
0 ≤ λ ≤ 1

where we introduced the additional variable yj = xj so that the vector y is
now in R

n+p, and we defined x1 := y, x2 := x− y, λ := xj.

Since Pj is the projection onto the x variables of the polyhedron defined
by the above inequalities, the statement now follows from Lemma 4.45.

10.3. THE LOVÁSZ–SCHRIJVER RELAXATION 399

10.3.3 Iterating the Lovász–Schrijver Procedure

Let N1 := N(P) be the polyhedron obtained by the Sherali–Adams proce-
dure of Sect. 10.3.1 applied to P := {x ∈ R

n+p
+ : Ax ≥ b} and the mixed

0,1 set S := {x ∈ {0, 1}n × R
p
+ : Ax ≥ b}. For any integer t ≥ 2, define

N t := N(N t−1) as the polyhedron obtained by the Sherali–Adams procedure
of Sect. 10.3.1 applied to N t−1.

Theorem 10.10. P ⊇ N1 ⊇ N2 ⊇ . . . ⊇ Nn = conv(S)

Proof. The inclusions follow from Lemma 10.7.
As a consequence of Lemma 10.8, we have N1 ⊆ P1, N2 ⊆ P2(P1),

. . ., Nn ⊆ Pn(. . . P2(P1)). By Theorem 10.9, Pj = conv{(Ax ≥ b, xj =
0) ∪ (Ax ≥ b, xj = 1)}. By Balas’ sequential convexification theorem,
Pn(. . . P2(P1)) = conv(S). It follows that Nn ⊆ conv(S). By Lemma 10.7,
conv(S) ⊆ Nn. Therefore Nn = conv(S).

Because N+ is not a polyhedron, one cannot iterate the Lovász–Schrijver
procedure presented in Sect. 10.3. However the procedure can be extended
to general convex bodies. We give the extension in the pure binary case
for simplicity of notation. Let K ⊆ [0, 1]n be a convex body and let
S := K ∩ {0, 1}n.

We denote by

K̃ := {λ
(
1
x

)
: x ∈ K, λ ≥ 0}

the homogenization cone of K, where the additional coordinate is indexed
by 0. Note that, given x ∈ {0, 1}n, we have that x ∈ K if and only if, for

j = 1, . . . , n, xj

(
1
x

)
∈ K̃ and (1− xj)

(
1
x

)
∈ K̃. In particular, for any x ∈

{0, 1}n, the matrix Y :=

(
1
x

)
(1, xT) is a symmetric positive semidefinite

matrix such that

y00 = 1, y0j = yj0 = yjj for j = 1, . . . , n, (10.6)

and x ∈ K if and only if Y satisfies

Y ej , Y e0 − Y ej ∈ K̃ for j = 1, . . . , n (10.7)

where e0, e1, . . . , en denote the unit vectors in R
n+1.

Let

M+ := {Y ∈ R
(n+1)×(n+1) : Y satisfies (10.6), (10.7), Y $ 0}.

400 CHAPTER 10. SEMIDEFINITE BOUNDS

We define

N+ := {x ∈ R
n :

(
1
x

)
= Y e0 for some Y ∈ M+}. (10.8)

It follows from the above discussion that K ∩ {0, 1}n ⊆ N+.
When K is a polytope, the set N+ defined in (10.8) is identical to the

set N+ obtained by the Lovász–Schrijver procedure presented earlier (see
Exercise 10.19). We can now iterate the Lovász–Schrijver relaxation, by
defining N1

+ := N+(K) and N t
+ := N+(N

t−1
+) for any integer t ≥ 2.

In the next section, we present the Sherali–Adams and Lasserre [247]
hierarchies, which are stronger than N t andN t

+ respectively, yet one can still
optimize a linear function over them in polynomial time for fixed t. However
these relaxations are substantially more computationally demanding than N
and N+.

10.4 The Sherali–Adams and Lasserre
Hierarchies

In this section, we will restrict our attention to pure 0,1 programs. Let
P := {x ∈ R

n
+ : Ax ≥ b} and S := P ∩ {0, 1}n. As in the previous section

we assume that the constraints Ax ≥ b include xj ≥ 0 and xj ≤ 1 for
j = 1, . . . , n.

10.4.1 The Sherali–Adams Hierarchy

Instead of multiplying the constraints Ax ≥ b by xj and 1−xj only, as done
in the previous section, Sherali–Adams [330] propose to multiply them by
all the possible products

∏
i∈I xi

∏
j∈J(1 − xj) where I, J are disjoint sets

of indices such that 1 ≤ |I| + |J | ≤ t. Here t is a fixed integer, 1 ≤ t ≤ n,
which defines the tth level of the hierarchy. Let St be the relaxation of S
provided by the tth level of the Sherali–Adams hierarchy. Note that S1 = N .
Formally, St is obtained by the following lift-and-project procedure. Let us
denote by Pn the family of all 2n subsets of {1, . . . , n}.

10.4. THE SHERALI–ADAMS AND LASSERRE HIERARCHIES 401

Sherali–Adams Procedure

Step 1. Generate the nonlinear system

(Ax−b)
∏

i∈I

xi

∏

j∈J

(1−xj) ≥ 0 for all I, J ⊆ {1, . . . , n} s.t. 1 ≤ |I|+|J | ≤ t, I∩J = ∅.

(10.9)

Step 2. Linearize system (10.9) by first substituting xj for x2j for
all j = 1, . . . , n and then substituting yI for

∏
i∈I xi for all I ∈ Pn,

I �= ∅. Set y∅ = 1 and call Rt the polyhedron in R
Pn defined by

these linear inequalities.
Step 3. Project Rt onto the x-space. Call the resulting polytope St.

Note that the system produced at Step 2 only involves variables yI for all
I ∈ Pn such that |I| ≤ t+1. However, it will be more convenient to consider
Rt as a polyhedron in the whole space R

Pn , where the variables relative to
yI , |I| > t+ 1, are unconstrained. In particular, R1 ⊇ R2 ⊇ . . . ⊇ Rn.

Theorem 10.11. St ⊆ N t.

Proof. We already observed that S1 = N1. We prove the theorem by ind-
uction. Assume St−1 ⊆ N t−1 for some t ≥ 2. We have N(St−1) ⊆ N t.
Therefore, to prove the theorem, it suffices to show that St ⊆ N(St−1).

Let C̃y ≥ d̃ denote the linear system of inequalities defining Rt−1 and
Ãx ≥ b̃ the system defining its projection St−1.

Consider a valid inequality αx ≥ β for N(St−1). It is implied by a
nonnegative combination of the inequalities defining M(St−1), each of which
is a linearization of inequalities from xj(Ãx− b̃) ≥ 0, (1− xj)(Ãx− b̃) ≥ 0,
for j = 1, . . . , n. The inequalities in Ãx− b̃ ≥ 0 are themselves nonnegative
combinations of inequalities in C̃y − d̃ ≥ 0.

It follows that αx ≥ β is implied by a nonnegative combination of the lin-
earization of inequalities of the form xj(C̃y− d̃) ≥ 0 and (1−xj)(C̃y−d̃) ≥ 0.

But such inequalities are valid for Rt. This implies St ⊆ N(St−1).

We leave the proof of the following proposition as an exercise.

Proposition 10.12. Let y ∈ Rt. Then

(i) 0 ≤ yI ≤ yJ ≤ 1 for all I, J ⊆ {1, . . . , n} such that J ⊆ I and
|I| ≤ t+ 1.

(ii) Given I ⊆ {1, . . . , n} such that |I| ≤ t + 1, if {x ∈ P : xi = 1,
i ∈ I} = ∅, then yI = 0.

402 CHAPTER 10. SEMIDEFINITE BOUNDS

10.4.2 The Lasserre Hierarchy

The Lasserre hierarchy strengthens the Sherali–Adams hierarchy by adding
semidefinite constraints. The variables yI for I ⊆ {1, . . . , n} can be orga-
nized in a so-called moment matrix M(y). This is a square matrix whose
rows (and columns) are indexed by all 2n subsets of {1, . . . , n}. The entry
in row I ⊆ {1, . . . , n} and column J ⊆ {1, . . . , n} is yI∪J . Figure 10.2 shows
an example for n = 3. For simplicity, we write yi...j instead of y{i,...,j}.

Figure 10.2: Moment matrix of the vector y, and submatrix M2(y)

For a fixed integer t such that 1 ≤ t ≤ n, we define the matrix Mt(y)
to be the square submatrix of M(y) that contains the rows and columns
indexed by sets of cardinality at most t. The submatrix of M(y) highlighted
in Fig. 10.2 represents M2(y) for n = 3.

The Lasserre relaxation Lt ⊆ R
n of P is defined as the projection of

a higher dimensional convex set Kt ⊆ R
Pn , which is obtained from the

Sherali–Adams relaxation Rt by further imposing that Mt+1(y) $ 0, that is,

Kt := {y ∈ R
Pn : y ∈ Rt, Mt+1(y) $ 0},

Lt := {x ∈ R
n : there exists y ∈ Kt s.t. xj = yj j = 1, . . . , n}.

For example, when n = 3, x ∈ L1 and y ∈ K1 must satisfy M2(y) $ 0,
where M2(y) has the following form

M2(y) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 x1 x2 x3 y12 y13 y23
x1 x1 y12 y13 y12 y13 y123
x2 y12 x2 y23 y12 y123 y23
x3 y13 y23 x3 y123 y13 y23
y12 y12 y12 y123 y12 y123 y123
y13 y13 y123 y13 y123 y13 y123
y23 y123 y23 y23 y123 y123 y23

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

10.4. THE SHERALI–ADAMS AND LASSERRE HIERARCHIES 403

When the column vector y is defined by yI =
∏

i∈I xi, I ∈ Pn, for some
0, 1 vector x, then we have that M(y) = yyT , and M(y) is symmetric and
positive semidefinite. It follows that, in this case, all principal submatrices
Mt(y), t = 1, . . . , n, are positive semidefinite. In particular, this shows that
S ⊆ Lt and therefore conv(S) ⊆ Lt for t = 1, . . . , n − 1.

Note that M1(y) is the matrix Y in the Lovász–Schrijver procedure.
Furthermore, if M2(y) $ 0, then also M1(y) $ 0 since M1(y) is a principal
submatrix of M2(y). Therefore, L1 ⊆ N+.

Our definition of the Lasserre hierarchy Lt is nonstandard. The usual
definition imposes positive semidefiniteness conditions on m additional
moment matrices obtained from each row akx−bk of the system Ax−b ≥ 0.
Thus the relaxation Lt that we defined above is weaker than the usual
Lasserre relaxation. Nevertheless our presentation preserves key properties
of Lasserre’s hierarchy while being a little simpler. In his papers [247, 248],
Lasserre also gives an algebraic perspective to his hierarchy of relaxations,
based on representing nonnegative polynomials as sums of squares. We do
not elaborate on this point of view here.

In the remainder of this section, we will present two results from Laurent
[249] (Theorems 10.14 and 10.15 below). The first relates the Lasserre hie-
rarchy Lt to the Lovász–Schrijver hierarchy N t

+, while the second is an
application to the stable set problem. We first state some basic properties
of the Lasserre relaxation.

Proposition 10.13. Let y ∈ Kt. Then

(i) Given I, J ⊆ {1, . . . , n} such that |I|, |J | ≤ t + 1, if yI = 0, then
yI∪J = 0.

(ii) Given I, J ⊆ {1, . . . , n} such that |I|, |J | ≤ t + 1, if yI = 1, then
yI∪J = yJ .

(iii) Given I ⊆ {1, . . . , n} such that |I| ≤ 2t + 2, if xi = 1 for all i ∈ I,
then yI = 1.

Proof. (i) If yI = 0, then the 2 × 2 principal submatrix of Mt+1(y) ind-
exed by I, J has determinant −y2I∪J , which must be nonnegative since
Mt+1(y) $ 0. Thus yI∪J = 0.

(ii) Let I, J ⊆ {1, . . . , n} such that |I|, |J | ≤ t+1 and yI = 1. The princi-
pal 3 × 3 submatrix of Mt+1(y) indexed by {∅, I, J} has determinant
−(yJ − yI∪J)2, which must be nonnegative since Mt+1(y) is positive
semidefinite. It follows that yJ = yI∪J .

404 CHAPTER 10. SEMIDEFINITE BOUNDS

We prove (iii) by induction on |I|, the statement being trivial if |I| ≤ 1.
If |I| ≥ 2, then I can be partitioned into nonempty sets I1, I2 such that
|I1|, |I2| ≤ t + 1. By induction, yI1 = yI2 = 1. Now the result follows
from (ii).

Theorem 10.14. Lt ⊆ N t
+.

Proof. We already observed that L1 ⊆ N+. To prove Lt ⊆ N t
+ for t ≥ 2, we

will show by induction the stronger claim that Lt ⊆ N+(Lt−1). Let x̂ ∈ Lt.
Then there exists ŷ ∈ Kt such that x̂j = ŷj, j = 1 . . . , n. In order to show
that x̂ ∈ N+(Lt−1), we need to provide a matrix Y ∈ M+(Lt−1) such that
Y e0 =

(
1
x̂

)
(recall the definition of N+ in (10.8)). We will show that the

matrix Y := M1(ŷ) satisfies such properties. Clearly Y e0 =
(1
x̂

)
and Y $ 0

since it is a principal submatrix of Mt+1(ŷ) $ 0. We need to show that Y
satisfies (10.7). That is, we need to show that, given h ∈ {1, . . . , n}, both
Y eh and Y (e0 − eh) belong to L̃t−1, the homogenization cone of Lt−1.

If ŷh = 0, then, by Proposition 10.12(i), Y eh = 0 ∈ L̃t−1 and Y (e0−eh) =(
1
x̂

)
∈ L̃t−1. If ŷh = 1, then, by Proposition 10.13(ii), Y eh = Y e0, and thus

Y eh =
(
1
x̂

)
∈ L̃t−1 and Y (e0 − eh) = 0 ∈ L̃t−1. Thus we assume that

0 < ŷh < 1.

Define the points x̄, x̃ ∈ R
n by x̄j = ŷ−1

h ŷjh and x̃j = (1− ŷh)
−1(ŷj− ŷjh),

j = 1, . . . , n. From the definition, Y eh, Y (e0 − eh) ∈ L̃t−1 if and only if
x̄, x̃ ∈ Lt−1.

To show the latter, we need to give vectors ȳ, ỹ ∈ Kt−1 such that ȳj = x̄j
and ỹj = x̃j for all j = 1 . . . , n. Let us define ȳ := ŷ−1

h M(ŷ)eh and ỹ :=
(1− ŷh)

−1M(ŷ)(e0− eh). Clearly ȳj = x̄j and ỹj = x̃j for j = 1, . . . , n. Note
that, for every S ⊆ {1, . . . , n}, ȳS = ŷ−1

h ŷS∪{h} and ỹS = (1 − ŷh)
−1(ŷS −

ŷS∪{h}). We need to show that ȳ, ỹ ∈ Kt−1. In other words, we need to
show ȳ, ỹ ∈ Rt−1 and Mt(ȳ) $ 0, Mt(ỹ) $ 0. We will show these results in
Claims 1 and 2 below.

Claim 1: ȳ, ỹ ∈ Rt−1.

Consider any valid inequality for Rt−1 generated in Step 2 of the Sherali–
Adams procedure

∑
S∈Pn

cSyS ≥ 0. (10.10)

It is obtained by linearizing an inequality (akx−bk)
∏

i∈I xi
∏

j∈J(1−xj) ≥ 0
defined by some row k of the system Ax − b ≥ 0 and disjoint sets I, J ⊆

10.4. THE SHERALI–ADAMS AND LASSERRE HIERARCHIES 405

{1, . . . , n} such that 1 ≤ |I|+ |J | ≤ t− 1. To prove ȳ, ỹ ∈ Rt−1 we will show
that ȳ and ỹ satisfy (10.10). Let

∑
S∈Pn

c̄SyS ≥ 0,
∑
S∈Pn

c̃SyS ≥ 0 (10.11)

denote the linearized inequalities obtained from (akx− bk)
∏

i∈I∪{h} xi
∏

j∈J
(1− xj) ≥ 0 and (Ax− b)

∏
i∈I xi

∏
j∈J∪{h}(1− xj) ≥ 0, respectively.

By definition, both inequalities in (10.11) are valid for Kt, and thus they
are satisfied by ŷ. Note that, for all S ⊆ {1, . . . , n}, c̄S = 0 if h /∈ S,
while c̄S = cS + cS\{h} if h ∈ S. Since the first inequality in (10.11) is

satisfied by ŷ, and since ȳS = ŷ−1
h ŷS∪{h}, it is routine to verify that ȳ

satisfies (10.10). Analogously, one can show that, since ŷ satisfies the second
inequality in (10.11), ỹ satisfies (10.10).

Claim 2: Mt(ȳ) and Mt(ỹ) are positive semidefinite.

Define the sets P1 := {I ⊆ {1, . . . , n} : h /∈ I, |I| ≤ t − 1}, P2 :=
{I ⊆ {1, . . . , n} : h /∈ I, |I| = t}, P ′

1 := {I ⊆ {1, . . . , n} : h ∈ I, |I| ≤ t},
P ′
2 := {I ⊆ {1, . . . , n} : h ∈ I, |I| = t+ 1}. The principal submatrix W of

Mt+1(ŷ) indexed by P1 ∪ P2 ∪ P ′
1 ∪ P ′

2 is of the form

W =

⎛
⎜⎜⎝

P1 P2 P ′
1 P ′

2

P1 A E C F
P2 ET B F T D
P ′
1 C F C F

P ′
2 F T D F T D

⎞
⎟⎟⎠

Observe that, for every S, T ⊂ {1, . . . , n}, |S|, |T | ≤ t, the S, T entry
of Mt(ȳ) is ȳS∪T = ŷ−1

h ŷS∪(T∪{h}). Analogously, the S, T entry of Mt(ỹ) is

ỹS∪T = (1− ŷ)−1
h (ŷS∪T − ŷS∪(T∪{h})). We conclude that Mt(ȳ) = ŷ−1

h W̄ and

Mt(ỹ) = (1− ŷh)
−1W̃ , where

W̄ =

⎛
⎝

P1 P2 P ′
1

P1 C F C
P2 F T D F T

P ′
1 C F C

⎞
⎠, W̃ =

⎛
⎝

P1 P2 P ′
1

P1 A− C E − F 0
P2 ET − F T B −D 0
P ′
1 0 0 0

⎞
⎠.

Note that, for all column vectors u, v, w of appropriate dimension,

(uT , vT , wT)W̄

⎛
⎝

u
v
w

⎞
⎠ = (uT + wT , vT)

(
C F
F T D

)(
u+ w

v

)
≥ 0 where the

406 CHAPTER 10. SEMIDEFINITE BOUNDS

latter inequality follows from the fact that

(
C F
F T D

)
$ 0, since it is a

principal submatrix of Mt+1(ŷ). It follows that Mt(ȳ) $ 0.

Finally, (uT , vT)

(
A−C E − F

ET − F T B −D

)(
u
v

)
= (uT , vT ,−uT ,−vT)

W

⎛
⎜⎜⎝

u
v

−u
−v

⎞
⎟⎟⎠ ≥ 0, where the last inequality follows from the fact that W $ 0.

It follows that Mt(ỹ) $ 0.

An Application to the Stable Set Problem

Let G = (V,E) be a graph. In this section we describe the Lasserre relax-
ation of the edge formulation of the stable set polytope, FRAC(G) := {x ∈
[0, 1]n : xi + xj ≤ 1 for all ij ∈ E}.

Theorem 10.15. Kt(FRAC(G)) is the set of vectors y ∈ R
Pn satisfying

Mt+1(y) $ 0
yI = 0 I ⊆ V, |I| ≤ 2t+ 2, I not a stable set.

(10.12)

We will need the following lemma.

Lemma 10.16. Let S be a finite set. Then
∑

H,K⊆S
H∪K=S

(−1)|H|+|K| = (−1)|S|.

Proof. By induction on |S|, the statement being trivial for |S| = 0. Let
S �= ∅, and let a ∈ S. Let F := {(H,K) : H ∪K = S \ {a}}. Then

∑

H,K⊆S

H∪K=S

(−1)|H|+|K| =
∑

(H,K)∈F
(−1)|H∪{a}|+|K| + (−1)|H|+|K∪{a}| + (−1)|H∪{a}|+|K∪{a}|

= −
∑

(H,K)∈F
(−1)|H|+|K| = (−1)|S|,

where the last equation follows from induction.

Proof of Theorem 10.15. For the “if” direction, let ȳ ∈ Kt, and let I ⊂
{1, . . . , n} such that I is not stable and |I| ≤ 2t+ 2. Then there exist I1, I2
such that I1 ∪ I2 = I, |I1|, |I2| ≤ t + 1, and such that I1 is not a stable
set. It follows that {x ∈ FR(G) : xi = 1, i ∈ I1} = ∅, thus yI1 = 0 by
Proposition 10.12(ii). By Proposition 10.13(i), yI = 0.

10.4. THE SHERALI–ADAMS AND LASSERRE HIERARCHIES 407

For the “only if” direction, let ȳ satisfying (10.12). To show that ȳ ∈ Kt,
we only need to prove that ȳ satisfies all the linearized constraints defining
Kt in the Lasserre procedure. Consider the inequality

(1− xa − xb)
∏
i∈I

xi
∏
j∈J

(1− xj) ≥ 0,

where ab ∈ E and I, J are disjoint and |I|+ |J | ≤ t. The resulting linearized
inequality is

∑
I⊆S⊆I∪J

(−1)|S\I|(yS − yS∪{a} − yS∪{b}) ≥ 0. (10.13)

Note that, if I ⊆ S ⊆ I ∪ J and S contains a or b, then, by (10.12),
ȳS − ȳS∪{a} − ȳS∪{b} = 0.

Define P0 := {H : I ⊆ H ⊆ I ∪ J \ {a, b}} and, for c = a, b, Pc :=
{H ∪ {c} : H ∈ P0}. The principal submatrix of Mt+1(ȳ) indexed by
P0 ∪ Pa ∪ Pb is of the form

Z =

⎛
⎝

P0 Pa Pb

P0 A B C
Pa B B 0
Pb C 0 C

⎞
⎠.

Define the vector u ∈ R
P0 by uH = (−1)|H\I|, H ∈ P0. Since Z is positive

semidefinite,

0 ≤ (−uT , uT , uT)Z

⎛
⎝
−u
u
u

⎞
⎠ = uT (A−B − C)u

=
∑

H,K∈P0

(−1)|H\I|+|K\I|(ȳH∪K

−ȳH∪K∪{a} − ȳH∪K∪{b})

=
∑
S∈P0

(−1)|S\I|(ȳS − ȳS∪{a} − ȳS∪{b}),

where the last equation follows from Lemma 10.16. Thus ȳ satisfies (10.13).
Finally, we need to consider the linearized constraints corresponding to

xa ≥ 0, a ∈ V . Any such constraint is of the form

∑
I⊆S⊆I∪J

(−1)|S\I|yS∪{a} ≥ 0.

408 CHAPTER 10. SEMIDEFINITE BOUNDS

where I, J are disjoint and |I|+ |J | ≤ t. Let W be the submatrix of Mt+1(ȳ)
indexed by the family P := {H ∪ {a} : I ⊆ H ⊆ I ∪ J}. Let u ∈ R

P be
defined by uH∪{a} = (−1)|H\I|, for I ⊆ H ⊆ I ∪ J . Since W is positive
semidefinite, it follows that

0 ≤ uTWu =
∑

I⊆H,K⊆I∪J
(−1)|H\I|+|K\I|ȳH∪K∪{a} =

∑
I⊆S⊆I∪J

(−1)|S\I|ȳS∪{a},

where the last equation follows from Lemma 10.16.

10.5 Further Readings

Interior point methods, developed for linear programming by Karmarkar
[229], were extended to semidefinite programming problems by Nesterov
and Nemirovski [289] (see also [291]), who developed a general approach
to adapt interior point methods for solving convex optimization problems,
and independently by Alizadeh [10], who also reports several applications of
semidefinite programming to combinatorial problems.

Lovász’s seminal work on the Shannon capacity [260] initiated the use of
semidefinite relaxations to obtain stronger bounds for combinatorial
problems, and it motivated subsequent works in the field. Goemans and
Williamson [173] were the first to adopt these ideas to design polynomial-
time approximation algorithms for combinatorial optimization problems.
Their technique was later applied to other problems by several authors,
such as Frieze and Jerrum’s work on bisection and max k-cut [151], and
Karger, Motwani, Sudan’s work on graph coloring [231] and Nesterov’s π

2
theorem [288]. We refer the reader to Laurent and Rendl [250] for a survey
on the applications of semidefinite programming to integer programming.
Chlamtac and Tulsiani [70] survey the use of positive semidefinite hierar-
chies for the design of approximation algorithms in theoretical computer
science.

Goemans and Tunçel [172] study the relative strength of the N and N+

operators, and show several cases for which the two operators provide the
same relaxation. They also show that, in the worst case, n iterations of
the N+ operator are indeed needed to obtain the convex hull (see Theorem
10.10).

Bienstock and Zuckerberg [52] defined a lift operator that uses subset
algebra. It is one of the strongest known, neither dominated by nor domi-
nating the Lasserre operator.

Gouveia, Parrilo, and Thomas [181] study positive semidefinite hierar-
chies for combinatorial problems based on a sum of squares” perspective.

10.5. FURTHER READINGS 409

Burer and Vandenbussche [66] apply an augmented Lagrangian approach
to optimize over the Lovász–Schrijver relaxation, and report computational
experiments on the strength of the bounds.

In this chapter, we focused on semidefinite relaxations, but there are
other promising nonlinear approaches to integer programming. Ideas coming
from algebra and geometry are presented in the new book of De Loera,
Hemmecke, and Koppe [110]. The Hilbert’s Nullstellensatz is an interesting
example.

Infeasibility Certificates Using Hilbert’s Nullstellensatz Feasibility
of certain combinatorial problems can be expressed through systems of poly-
nomial equations. For example, De Loera, Lee, Malkin, and Margulies [109]
consider the graph k-coloring problem. Given an undirected graph
G = (V,E) on n vertices, a k-coloring of G is a function from V to the
set of colors {1, . . . , k} such that every pair of adjacent vertices are assigned
different colors. Instead of assigning to each vertex a number from 1 to k,
one can assign a kth root of the unity, so that adjacent vertices are as-
signed different roots. We observe that G has a k-coloring if and only if the
following system of polynomials has a solution in C

n.

xki − 1 = 0 i ∈ V (10.14)

xk−1
i + xk−2

i x1j + · · ·+ xix
k−2
j + xk−1

j = 0 ij ∈ E. (10.15)

Indeed, given a k-coloring c of G and a kth root of the unity β �= 1,
then setting x̄i = βc(i) for all i ∈ V gives a solution to the above system.
Conversely, given a solution x̄i to the above system, then such solution
defines a k-coloring. If not, then there exist two adjacent nodes i, j ∈ V that
are assigned the same kth complex root of the unity, say x̄i = x̄j = β, but
then (10.15) is violated as βk−1+βk−2β1+ · · ·+ββk−2+βk−1 = kβk−1 �= 0.

Note that the above proof shows a useful fact. Let q be a positive integer,
relatively prime with k, and denote by Fq the finite field on q elements,
and by F̄q its algebraic closure. The graph G has a k-coloring if and only
if (10.14), (10.15) has a solution in F̄

n
q . Indeed, kβ

k−1 �= 0 in F̄q, because k
and q are relatively prime.

Hilbert’s Nullstellensatz gives a certificate of infeasibility for systems of
polynomial equations, much in the spirit of the Fredholm alternative for sys-
tems of linear equations or Farkas’s lemma for systems of linear inequalities.

Theorem 10.17 (Hilbert’s Nullstellensatz). Let K be a finite field and
K̄ its algebraic closure. Given f1, . . . , fm ∈ K[x1, . . . , xn], the system of

410 CHAPTER 10. SEMIDEFINITE BOUNDS

polynomial equations f1(x) = 0, . . . , fm(x) = 0 has no solution in K̄
n if and

only if there exist g1, . . . , gm ∈ K[x1, . . . , xn] such that g1f1+ · · ·+gmfm = 1.

Note that the “if” direction of the statement is trivial, since given
g1, . . . , gm ∈ K[x1, . . . , xn] such that g1f1 + · · ·+ gmfm = 1, then f1, . . . , fm
cannot have a common root.

Hilbert’s Nullstellensatz can therefore be used to provide certificates of
non colorability, based on the following observation. Suppose we are given
a positive integer d and we want to check if there exists a Nullstellensatz
certificate of infeasibility g1, . . . , gm for f1, . . . , fm such that the degree of
the polynomials gifi is bounded by d for i = 1, . . . ,m. The condition g1f1+
· · ·+ gmfm = 1 can be expressed as a linear system of equations, where the
variables are the coefficients of the monomials defining g1, . . . , gm.

For example, consider the system of polynomial equations x21+x22−1 = 0,
x1+x2−1 = 0, x1−x2 = 0. We want to find if there exists a Nullstellensatz
certificate of degree 2. Thus, we are looking for coefficients α0, . . . , α6 such
that

α0(x
2
1+x2

2 − 1)+(α1x1+α2x2+α3)(x1+x2 − 1)+(α4x1+α5x2+α6)(x1−x2) = 1.

Grouping the monomials in the above expression, we obtain

1 = −(α0 + α3) + (−α1 + α3 + α6)x1 + (−α2 + α3 − α6)x2 +

+(α0 + α1 + α4)x
2
1 + (α0 + α2 − α5)x

2
2 + (α1 + α2 − α4 + α5)x1x2.

Thus we need to solve the system of inequalities

−α0 − α3 = 1
−α1 + α3 + α6 = 0
−α2 + α3 − α6 = 0

α0 + α1 + α4 = 0
α0 + α2 − α5 = 0

α1 + α2 − α4 + α5 = 0.

A solution is given by α0 = −2, α1 = 1, α2 = 1, α3 = 1, α4 = 1, α5 = −1,
α6 = 0. Thus the polynomials g1 = −2, g2 = x1 + x2 + 1, g3 = x1 −
x2, are a Nullstellensatz certificate of infeasibility for the initial system of
polynomials.

This gives rise to the following algorithm to test for feasibility of a
system of polynomial equations fi(x) = 0, i = 1, . . . , n. Start with d =
maxi=1,...,m deg(fi), and decide if a Nullstellensatz certificate of degree d
exists; if such a certificate exists, then the system is infeasible, else increase
d by one and repeat. There are upper-bounds on the maximum degree that

10.6. EXERCISES 411

a Nullstellensatz certificate can have, thus in principle one can carry on
the above procedure until d exceeds such upper-bound, in which case one
concludes that the system is feasible. Unfortunately such upper-bounds are
doubly exponential in the number of polynomial equations in the system
and in their degree. As the “target degree” d increases, the size of the linear
systems to solve increases exponentially, thus in general the method des-
cribed can be effective only for proving infeasibility, and only for problems
for which there exists a Nullstellensatz certificate of low degree.

10.6 Exercises

Exercise 10.1. Show that the value of any feasible solution for the primal
problem (10.1) is less than or equal to the value of any feasible solution to
the dual problem (10.2).

Write the dual of the semidefinite relaxation of the max cut problem,
and show that both the primal and the dual are strictly feasible.

Exercise 10.2. Prove Proposition 10.2.

Exercise 10.3. Prove that if A and B are two symmetric positive semidef-
inite matrices, then 〈A,B〉 ≥ 0.

Exercise 10.4. The max cut problem can be formulated using 0, 1 node
variables as follows

zI := max
∑

ij∈E wij(χi + χj − 2χiχj)

χ ∈ {0, 1}n.

1. Show that the following is a relaxation of the max cut problem

z′sdp := max
∑

ij∈E wij(χi + χj − 2zij)

zjj = z0j = zj0 = χj j = 1, . . . , n
z00 = 1
Z $ 0.

2. Show that z′sdp is equal to the value zsdp of the Goemans–Williamson
relaxation discussed in Sect. 10.2.1.

Exercise 10.5. Let G = (V,E) be a graph with nonnegative edge weights
we, e ∈ E. Show that, if G is bipartite, then zI = zsdp.

Exercise 10.6. Let G = (V,E) be a complete graph on n nodes, with

edge-weights we = 1, e ∈ E. Show that zsdp =
(
n
2

)2
.

412 CHAPTER 10. SEMIDEFINITE BOUNDS

Exercise 10.7. Compute the best lower bound you can on the value of zsdp
for the 5-cycle G = (V,E) with V := {v1, . . . , v5} and E := {v1v2, . . . v4v5,
v5v1} and we = 1 for all e ∈ E.

Exercise 10.8. Let G = (V,E) be the 5-cycle with V := {v1, . . . , v5} and
E := {v1v2, . . . v4v5, v5v1}.

1. Prove that both inclusions STAB(G) ⊆ TH(G) ⊆ QSTAB(G) are
strict.

2. Compute the lift-and project set Pj obtained from P := FRAC(G) for
some j = 1, . . . , 5.

3. Show that the inclusion N+(FRAC(G)) ⊆ TH(G) is strict.

Exercise 10.9. Let P := {x ∈ R
n
+ : Ax ≥ b} and S := P ∩{0, 1}n. Assume

that the constraints Ax ≥ b include xj ≥ 0 and xj ≤ 1 for j = 1, . . . , n.
Give an example showing that the inclusion N ⊆ ∩n

j=1conv{(Ax ≥ b, xj =
0) ∪ (Ax ≥ b, xj = 1)} can be strict.

Exercise 10.10. Consider a polyhedron P := {x ∈ R
2+p
+ : Ax ≥ b} and the

mixed 0,1 linear set with two 0,1 variables S := {x ∈ {0, 1}2×R
p
+ : Ax ≥ b}.

Without loss of generality, we assume that the constraints Ax ≥ b include
xj ≥ 0 for j = 1, . . . , 2 + p, and xj ≤ 1 for j = 1, 2. Prove that N+ = N .

Exercise 10.11. Let P := {x ∈ [0, 1]5 : xi + xj ≤ 1 for all i �= j} and
S := P ∩ {0, 1}5. Compute the sets conv(S), N+, N and ∩n

j=1Pj .

Exercise 10.12. Show that all vertices of N([0, 1]n) are half-integral.

Exercise 10.13. Let F be a face of a polytope P ⊆ [0, 1]n. Show that
N(F) = N(P) ∩ F .

Exercise 10.14. Let G = (V,E) be a graph and let C be an odd cycle in

G. Show that the inequality
∑

j∈V (C) xj ≤
|C|−1

2 is valid for N(FRAC(G)).

Exercise 10.15. Let G = (V,E) be a graph. Show that, for each antihole
H (see Exercise 7.19), the odd antihole inequality

∑
j∈V (H) xj ≤ 2 is valid

for N+(FRAC(G)).

Exercise 10.16. Let P := {x ∈ [0, 1]n :
∑n

j=1 xj ≥ 1
2} and S := P ∩ Z

n.

(i) Show that the point (1
2n−k , . . . ,

1
2n−k) belongs to Nk

+ for k ≤ n.

(ii) Show that Nk
+ �= conv(S) for k < n.

10.6. EXERCISES 413

Exercise 10.17. Let n ≥ 2, P : ={x ∈ R
n :

∑
j∈J xj+

∑
j �∈J(1−xj) ≥ 1

for all J ⊆ {1, . . . , n}} and S := P ∩ {0, 1}n.

(i) Show that (12 , . . . ,
1
2) ∈ Nn−1

+ .

(ii) Show that Nk
+ �= conv(S) for k < n.

Exercise 10.18. Given a polytope P ⊆ [0, 1]n × R
n, show that, for every

integer t ≥ 0 and every I ⊆ {1, . . . , n} such that |I| ≤ t, the tth Lovász–
Schrijver closure N t of P is contained in conv({x ∈ P : xj ∈ {0, 1}, j ∈ I}).

Exercise 10.19. Show that, when K is a polytope, the definition of N+

given in (10.8) is equivalent to the one produced by the Lovász–Schrijver
procedure presented earlier in Sect. 10.3.

Exercise 10.20. Prove Proposition 10.12.

This is the end of the book. We hope you enjoyed the journey!

Bibliography

[1] K. Aardal, R.E. Bixby, C.A.J. Hurkens, A.K. Lenstra, J.W. Smeltink,
Market split and basis reduction: towards a solution of the Cornuéjols–
Dawande instances. INFORMS J. Comput. 12, 192–202 (2000) (Cited
on page 382.)

[2] K. Aardal, A.K. Lenstra, Hard equality constrained integer knapsacks.
Math. Oper. Res. 29, 724–738 (2004); Erratum: Math. Oper. Res. 31,
846 (2006) (Cited on page 382.)

[3] K. Aardal, C. Hurkens, A.K. Lenstra, Solving a system of diophantine
equations with lower and upper bounds on the variables. Math. Oper.
Res. 25, 427–442 (2000) (Cited on page 382.)

[4] K. Aardal, R. Weismantel, L.A. Wolsey, Non-standard approaches to
integer programming. Discrete Appl. Math. 123, 5–74 (2002) (Cited
on page 380.)

[5] T. Achterberg, Constraint Integer Programming. Ph.D. thesis, ZIB,
Berlin, 2007 (Cited on pages 74 and 382.)

[6] T. Achterberg, T. Berthold, Improving the feasibility pump. Discrete
Optim. 4, 77–86 (2007) (Cited on page 371.)

[7] T. Achterberg, T. Koch, A. Martin, Branching rules revisited. Oper.
Res. Lett. 33, 42–54 (2005) (Cited on page 382.)

[8] T. Achterberg, T. Koch, A. Martin, MIPLIB 2003. Oper. Res. Lett.
34, 361–372 (2006) (Cited on page 382.)

© Springer International Publishing Switzerland 2014
M. Conforti et al., Integer Programming, Graduate Texts
in Mathematics 271, DOI 10.1007/978-3-319-11008-0

415

416 BIBLIOGRAPHY

[9] M. Ajtai, The shortest vector problem in L2 is NP-hard for randomized
reductions, in Proceedings of the 30th Annual ACM Symposium on
Theory of Computing (STOC-98), (1998), pp. 10–19 (Cited on page
381.)

[10] F. Alizadeh, Interior point methods in semidefinite programming with
applications to combinatorial optimization. SIAM J. Optim. 5, 13–51
(1995) (Cited on page 408.)

[11] K. Andersen, G. Cornuéjols, Y. Li, Split closure and intersection cuts.
Math. Program. A 102, 457–493 (2005) (Cited on pages 201 and 228.)

[12] K. Andersen, Q. Louveaux, R. Weismantel, L.A. Wolsey, Inequali-
ties from two rows of a simplex tableau, in Proceedings of IPCO XII,
Ithaca, NY. Lecture Notes in Computer Science, vol. 4513 (2007), pp.
1–15 (Cited on page 274.)

[13] D. Applegate, R.E. Bixby, V. Chvátal, W.J. Cook, The Travel-
ing Salesman Problem. A Computational Study (Princeton Univer-
sity Press, Princeton, 2006) (Cited on pages 74, 302, 305, 307, 312,
and 382.)

[14] S. Arora, B. Barak, Complexity Theory: A Modern Approach (Cam-
bridge University Press, Cambridge, 2009) (Cited on page 37.)

[15] A. Atamtürk, Strong formulations of robust mixed 0–1 programming.
Math. Program. 108, 235–250 (2006) (Cited on page 186.)

[16] A. Atamtürk, G.L. Nemhauser, M.W.P. Savelsbergh, Conflict graphs
in solving integer programming problems. Eur. J. Oper. Res. 121,
40–55 (2000) (Cited on page 52.)

[17] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows (Prentice Hall,
New Jersey, 1993) (Cited on pages 140 and 184.)

[18] G. Averkov, On maximal S-free sets and the Helly number for the
family of S-convex sets. SIAM J. Discrete Math. 27(3), 1610–1624
(2013) (Cited on page 275.)

[19] G. Averkov, A. Basu, On the unique lifting property, in IPCO 2014,
Bonn, Germany, Lecture Notes in Computer Science, 8494, pp. 76–87
(2014) (Cited on page 275.)

BIBLIOGRAPHY 417

[20] D. Avis, K. Fukuda, A pivoting algorithm for convex hulls and vertex
enumeration of arrangements and polyhedra. Discrete Comput. Geom.
8, 295–313 (1992) (Cited on pages 121 and 123.)

[21] A. Bachem, R. von Randow, Integer theorems of Farkas lemma type,
in Operations Research Verfahren/ Methods of Operations Research
32 , III Symposium on Operations Research, Mannheim 1978, ed. by
W. Oettli, F. Steffens (Athenäum, Königstein, 1979), pp. 19–28 (Cited
on page 37.)

[22] E. Balas, Intersection cuts—a new type of cutting planes for inte-
ger programming. Oper. Res. 19, 19–39 (1971) (Cited on pages 240
and 274.)

[23] E. Balas, Integer programming and convex analysis: intersection cuts
from outer polars. Math. Program. 2 330–382 (1972) (Cited on page
274.)

[24] E. Balas, Disjunctive programming: properties of the convex hull of
feasible points, GSIA Management Science Research Report MSRR
348, Carnegie Mellon University (1974); Published as invited paper in
Discrete Appl. Math. 89, 1–44 (1998) (Cited on pages 166, 166, 168,
223, and 227.)

[25] E. Balas, Facets of the knapsack polytope. Math. Program. 8, 146–164
(1975) (Cited on page 285.)

[26] E. Balas, Disjunctive programming and a hierarchy of relaxations for
discrete optimization problems. SIAM J. Algebr. Discrete Methods 6,
466–486 (1985) (Cited on pages 166, 166, and 168.)

[27] E. Balas, A modified lift-and-project procedure. Math. Program. 79,
19–31 (1997) (Cited on page 229.)

[28] E. Balas, P. Bonami, Generating lift-and-project cuts from the LP sim-
plex tableau: open source implementation and testing of new variants.
Math. Program. Comput. 1, 165–199 (2009) (Cited on page 230.)

[29] E. Balas, S. Ceria, G. Cornuéjols, A lift-and-project cutting plane al-
gorithm for mixed 0–1 programs. Math. Program. 58, 295–324 (1993)
(Cited on pages 225 and 229.)

[30] E. Balas, S. Ceria, G. Cornuéjols, R.N. Natraj, Gomory cuts revisited.
Oper. Res. Lett. 19, 1–9 (1996) (Cited on page 220.)

418 BIBLIOGRAPHY

[31] E. Balas, R. Jeroslow, Strengthening cuts for mixed integer programs.
Eur. J. Oper. Res. 4, 224–234 (1980) (Cited on pages 229 and 271.)

[32] E. Balas, M. Perregaard, A precise correspondence between lift-and-
project cuts, simple disjunctive cuts and mixed integer Gomory cuts
for 0–1 programming. Math. Program. B 94, 221–245 (2003) (Cited
on page 230.)

[33] E. Balas, W.R. Pulleyblank, The perfectly matchable subgraph poly-
tope of an arbitrary graph. Combinatorica 9, 321–337 (1989) (Cited
on page 186.)

[34] E. Balas, A. Saxena, Optimizing over the split closure. Math. Program.
113, 219–240 (2008) (Cited on pages 222 and 229.)

[35] W. Banaszczyk, A.E. Litvak, A. Pajor, S.J. Szarek, The flatness the-
orem for nonsymmetric convex bodies via the local theory of Banach
spaces. Math. Oper. Res. 24 728–750 (1999) (Cited on page 381.)

[36] F. Barahona, R. Anbil, The volume algorithm: producing primal solu-
tions with a subgradient method. Math. Program. 87, 385–399 (2000)
(Cited on page 342.)

[37] I. Barany, T.J. Van Roy, L.A. Wolsey, Uncapacitated lot-sizing: the
convex hull of solutions. Math. Program. 22, 32–43 (1984) (Cited on
page 186.)

[38] A. Barvinok, A polynomial time algorithm for counting integral points
in polyhedra when the dimension is fixed. Math. Oper. Res. 19, 769–
779 (1994) (Cited on page 381.)

[39] A. Barvinok, A Course in Convexity. Graduate Studies in Mathemat-
ics, vol. 54 (American Mathematical Society, Providence, 2002) (Cited
on pages 249, 250, and 353.)

[40] A. Basu, M. Campelo, M. Conforti, G. Cornuéjols, G. Zambelli,
On lifting integer variables in minimal inequalities. Math. Program.
A 141, 561–576 (2013) (Cited on pages 272 and 275.)

[41] A. Basu, M. Conforti, G. Cornuéjols, G. Zambelli, Maximal lattice-
free convex sets in linear subspaces. Math. Oper. Res. 35, 704–720
(2010) (Cited on pages 242 and 250.)

BIBLIOGRAPHY 419

[42] A. Basu, M. Conforti, G. Cornuéjols, G. Zambelli, Minimal inequalities
for an infinite relaxation of integer programs. SIAM J. Discrete Math.
24, 158–168 (2010) (Cited on page 274.)

[43] A. Basu, R. Hildebrand, M. Köppe, M. Molinaro, A (k+1)-Slope Theo-
rem for the k-Dimensional Infinite Group Relaxation. SIAM J. Optim.
23(2), 1021–1040 (2013) (Cited on page 274.)

[44] A. Basu, R. Hildebrand, M. Köppe, Equivariant perturbation in
Gomory and Johnson infinite group problem III. Foundations for
the k-dimensional case with applications to the case k = 2.
www.optimization-online.org (2014) (Cited on page 274.)

[45] D.E. Bell, A theorem concerning the integer lattice. Stud. Appl. Math.
56, 187–188 (1977) (Cited on page 250.)

[46] R. Bellman, Dynamic Programming (Princeton University Press,
Princeton, 1957) (Cited on page 37.)

[47] J.F. Benders, Partitioning procedures for solving mixed variables
programming problems. Numerische Mathematik 4, 238–252 (1962)
(Cited on page 343.)

[48] M. Bénichou, J.M. Gauthier, P. Girodet, G. Hentges, G. Ribière, O.
Vincent, Experiments in mixed-integer linear programming. Math.
Program. 1, 76–94 (1971) (Cited on page 367.)

[49] A. Ben-Tal, A.S. Nemirovski, Lectures on Modern Convex Op-
timization: Analysis, Algorithms, and Engineering Applications.
MPS/SIAM Series in Optimization (SIAM, Philadelphia, 2001) (Cited
on page 390.)

[50] C. Berge, Two theorems in graph theory. Proc. Natl. Acad. Sci. USA
43, 842–844 (1957) (Cited on page 147.)

[51] D. Bertsimas, R. Weismantel, Optimization over Integers (Dynamic
Ideas, Belmont, 2005) (Cited on pages 36 and 38.)

[52] D. Bienstock, M. Zuckerberg, Subset algebra lift operators for 0–1
integer programming. SIAM J. Optim. 15, 63–95 (2004) (Cited on
page 408.)

[53] L.J. Billera, A. Sarangarajan, All 0,1 polytopes are traveling salesman
polytopes. Combinatorica 16, 175–188 (1996) (Cited on page 305.)

420 BIBLIOGRAPHY

[54] S. Binato, M.V.F. Pereira, S. Granville, A new Benders decomposition
approach to solve power transmission network design problems. IEEE
Trans. Power Syst. 16, 235–240 (2001) (Cited on page 341.)

[55] J. R. Birge, F. Louveaux, Introduction to Stochastic Programming
(Springer, New York, 2011) (Cited on page 341.)

[56] R.E. Bixby, S. Ceria, C.M. McZeal, M.W.P. Savelsbergh, An updated
mixed integer programming library: MIPLIB 3.0. Optima 58, 12–15
(1998) (Cited on page 229.)

[57] R.E. Bixby, M. Fenelon, Z. Gu, E. Rothberg, R. Wunderling, Mixed
integer programming: a progress report, in The Sharpest Cut: The
Impact of Manfred Padberg and His Work, ed. by M. Grötschel.
MPS/SIAM Series in Optimization (SIAM, 2004), pp. 309–326 (Cited
on pages 37, 220, 220, and 229.)

[58] P. Bonami, On optimizing over lift-and-project closures. Math. Pro-
gram. Comput. 4, 151–179 (2012) (Cited on pages 198 and 227.)

[59] P. Bonami, M. Conforti, G. Cornuéjols, M. Molinaro, G. Zambelli,
Cutting planes from two-term disjunctions. Oper. Res. Lett. 41, 442–
444 (2013) (Cited on page 229.)

[60] P. Bonami, G. Cornuéjols, S. Dash, M. Fischetti, A. Lodi, Projected
Chvátal-Gomory cuts for mixed integer linear programs. Math. Pro-
gram. 113, 241–257 (2008) (Cited on pages 229 and 229.)

[61] P. Bonami, F. Margot, Cut generation through binarization, IPCO
2014, eds. by J. Lee, J. Vygen. LNCS, vol 8494 (2014) pp. 174–185
(Cited on page 225.)

[62] J.A. Bondy, U.S.R. Murty, Graph Theory (Springer, New York, 2008)
(Cited on page 73.)

[63] V. Borozan, G. Cornuéjols, Minimal valid inequalities for integer con-
straints. Math. Oper. Res. 34, 538–546 (2009) (Cited on page 274.)

[64] O. Briant, C. Lemaréchal, Ph. Meurdesoif, S. Michel, N. Perrot,
F. Vanderbeck, Comparison of bundle and classical column generation.
Math. Program. 113, 299–344 (2008) (Cited on page 342.)

[65] C.A. Brown, L. Finkelstein, P.W. Purdom, Backtrack Searching in the
Presence of Symmetry, Nordic J. Comput. 3, 203–219 (1996) (Cited
on page 382.)

BIBLIOGRAPHY 421

[66] S. Burer, D. Vandenbussche, Solving lift-and-project relaxations of
binary integer programs. SIAM J. Optim. 16, 726–750 (2006) (Cited
on pages 397, 397, and 409.)

[67] A. Caprara, M. Fischetti, {0, 12} Chvátal–Gomory cuts. Math. Pro-
gram. 74, 221–235 (1996) (Cited on page 228.)

[68] A. Caprara, A.N. Letchford, On the separation of split cuts and related
inequalities. Math. Program. B 94, 279–294 (2003) (Cited on page
203.)

[69] R.D. Carr, G. Konjevod, G. Little, V. Natarajan, O. Parekh, Com-
pacting cuts: new linear formulation for minimum cut. ACM Trans.
Algorithms 5, 27:1–27:6 (2009) (Cited on page 184.)

[70] E. Chlamtac, M. Tulsiani, Convex relaxations and integrality gaps,
in Handbook on Semidefinite, Conic and Polynomial Optimization,
International Series in Operations Research and Management Science,
Springer, vol. 166 (Springer, 2012), pp. 139–169 (Cited on page 408.)

[71] M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour, K. Vusković, Rec-
ognizing Berge graphs. Combinatorica 25, 143–186 (2005) (Cited on
page 184.)

[72] M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas, The strong
perfect graph theorem. Ann. Math. 164, 51–229 (2006) (Cited on page
184.)

[73] V. Chvátal, Edmonds polytopes and a hierarchy of combinatorial op-
timization. Discrete Math. 4, 305–337 (1973) (Cited on pages 208,
208, 210, and 228.)

[74] V. Chvátal, On certain polytopes associated with graphs. J. Combin.
Theory B 18, 138–154 (1975) (Cited on page 394.)

[75] V. Chvátal, W. Cook, M. Hartmann, On cutting-plane proofs in
combinatorial optimization. Linear Algebra Appl. 114/115, 455–499
(1989) (Cited on pages 224 and 228.)

[76] M. Conforti, G. Cornuéjols, A. Daniilidis, C. Lemaréchal, J. Malick,
Cut-generating functions and S-free sets, Math. Oper. Res. http://
dx.doi.org/10.1287/moor.2014.0670 (Cited on page 274.)

422 BIBLIOGRAPHY

[77] M. Conforti, G. Cornuéjols, G. Zambelli, A geometric perspective on
lifting. Oper. Res. 59, 569–577 (2011) (Cited on page 275.)

[78] M. Conforti, G. Cornuéjols, G. Zambelli, Equivalence between inter-
section cuts and the corner polyhedron. Oper. Res. Lett. 38, 153–155
(2010) (Cited on page 247.)

[79] M. Conforti, G. Cornuéjols, G. Zambelli, Extended formulations in
combinatorial optimization. 4OR 8, 1–48 (2010) (Cited on pages 184
and 186.)

[80] M. Conforti, G. Cornuéjols, G. Zambelli, Corner polyhedron and inter-
section cuts. Surv. Oper. Res. Manag. Sci. 16, 105–120 (2011) (Cited
on page 273.)

[81] M. Conforti, M. Di Summa, F. Eisenbrand, L.A. Wolsey, Network
formulations of mixed-integer programs. Math. Oper. Res. 34, 194–209
(2009) (Cited on page 184.)

[82] M. Conforti, L.A. Wolsey, Compact formulations as unions of polyhe-
dra. Math. Program. 114, 277–289 (2008) (Cited on page 186.)

[83] M. Conforti, L.A. Wolsey, G. Zambelli, Split, MIR and Gomory in-
equalities (2012 submitted) (Cited on page 227.)

[84] S.A. Cook, The complexity of theorem-proving procedures, in Pro-
ceedings 3rd STOC (Association for Computing Machinery, New York,
1971), pp. 151–158 (Cited on pages 20 and 37.)

[85] W.J. Cook, Fifty-plus years of combinatorial integer programming, in
50 Years of Integer Programming 1958–2008 , ed. by M. Jünger et al.
(Springer, Berlin, 2010), pp. 387–430 (Cited on page 312.)

[86] W.J. Cook, In Pursuit of the Traveling Salesman: Mathematics at the
Limits of Computation (Princeton University Press, Princeton, 2012)
(Cited on pages 74 and 312.)

[87] W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, A. Schrijver, Com-
binatorial Optimization (Wiley, New York, 1998) (Cited on page 183.)

[88] W.J. Cook, S. Dash, R. Fukasawa, M. Goycoolea, Numerically accu-
rate Gomory mixed-integer cuts. INFORMS J. Comput. 21, 641–649
(2009) (Cited on page 221.)

BIBLIOGRAPHY 423

[89] W.J. Cook, J. Fonlupt, A. Schrijver, An integer analogue of
Carathéodory’s theorem. J. Combin. Theory B 40, 63–70 (1986)
(Cited on page 185.)

[90] W.J. Cook, R. Kannan, A. Schrijver, Chvátal closures for mixed in-
teger programming problems. Math. Program. 47, 155–174 (1990)
(Cited on pages 196, 202, 203, 203, and 228.)

[91] W.J. Cook, T. Rutherford, H.E. Scarf, D. Shallcross, An implementa-
tion of the generalized basis reduction algorithm for integer program-
ming. ORSA J. Comput. 5, 206–212 (1993) (Cited on page 381.)

[92] G. Cornuéjols, Combinatorial Optimization: Packing and Covering.
SIAM Monograph, CBMS-NSF Regional Conference Series in Applied
Mathematics, vol. 74 (SIAM, 2001) (Cited on page 184.)

[93] G. Cornuéjols, M.L. Fisher, G.L. Nemhauser, Location of bank ac-
counts to optimize float: an analytic study of exact and approximate
algorithms. Manag. Sci. 23, 789–810 (1977) (Cited on page 324.)

[94] G. Cornuéjols, Y. Li, On the rank of mixed 0,1 polyhedra. Math.
Program. A 91, 391–397 (2002) (Cited on page 224.)

[95] G. Cornuéjols, Y. Li, A connection between cutting plane theory
and the geometry of numbers. Math. Program. A 93, 123–127 (2002)
(Cited on page 203.)

[96] G. Cornuéjols, R. Tütüncü, Optimization Methods in Finance (Cam-
bridge University Press, Cambridge, 2007) (Cited on page 73.)

[97] A.M. Costa, A survey on Benders decomposition applied to fixed-
charge network design problems. Comput. Oper. Res. 32, 1429–1450
(2005) (Cited on page 344.)

[98] H. Crowder, M.W. Padberg, Solving large-scale symmetric travel-
ling salesman problems to optimality. Manag. Sci. 26, 495–509 (1980)
(Cited on page 312.)

[99] H. Crowder, E. Johnson, M.W. Padberg, Solving large scale zero-one
linear programming problems. Oper. Res. 31, 803–834 (1983) (Cited
on page 312.)

[100] R.J. Dakin, A tree-search algorithm for mixed integer programming
problems. Comput. J. 8, 250–255 (1965) (Cited on page 37.)

424 BIBLIOGRAPHY

[101] E. Danna, E. Rothberg, C. Le Pape, Exploring relaxation induced
neighborhoods to improve MIP solutions. Math. Program. A 102,
71–90 (2005) (Cited on page 371.)

[102] G.B. Dantzig, Maximization of a linear function of variables subject to
linear inequalities, in Activity Analysis of Production and Allocation,
ed. by T.C. Koopmans (Wiley, New York, 1951), pp. 339–347 (Cited
on pages v and 18.)

[103] G. Dantzig. R. Fulkerson, S. Johnson, Solution of a large-scale
traveling-salesman problem. Oper. Res. 2, 393–410 (1954) (Cited on
pages vi, 37, 62, 136, 302, and 311.)

[104] G.B. Dantzig, P. Wolfe, Decomposition principle for linear programs.
Oper. Res. 8, 101–111 (1960) (Cited on page 343.)

[105] L. Danzer, B. Grünbaum, V. Klee, Helly’s theorem and its relatives,
in Convexity, ed. by V. Klee (American Mathematical Society, Provi-
dence, 1963), pp. 101–180 (Cited on page 361.)

[106] S. Dash, S.S. Dey, O. Günlük, Two dimensional lattice-free cuts and
asymmetric disjunctions for mixed-integer polyhedra. Math. Program.
135, 221–254 (2012) (Cited on page 275.)

[107] S. Dash, O. Günlük, A. Lodi, in On the MIR Closure of Polyhedra,
IPCO 2007, ed. by M. Fischetti, D.P. Williamson. LNCS, vol. 4513
(Springer, 2007), pp. 337–351 (Cited on pages 202, 222, and 228.)

[108] R. Dechter, Constraint Processing (Morgan Kaufmann, San Francisco,
2003) (Cited on page 61.)

[109] J.A. De Loera, J. Lee, P.N. Malkin, S. Margulies, Computing infea-
sibility certificates for combinatorial problems through Hilbert’s Null-
stellensatz. J. Symb. Comput. 46, 1260–1283 (2011) (Cited on page
409.)

[110] J.A. De Loera, R. Hemmecke, M. Köppe, Algebraic and Geometric
Ideas in the Theory of Discrete Optimization. MOS-SIAM Series on
Optimization, vol. 14 (SIAM, 2012) (Cited on pages 36, 38, and 409.)

[111] R. deWolf, Nondeterministic quantum query and communication com-
plexities. SIAM J. Comput. 32, 681–699 (2003) (Cited on page 187.)

BIBLIOGRAPHY 425

[112] A. Del Pia, R. Weismantel, Relaxations of mixed integer sets from
lattice-free polyhedra. 4OR 10, 221–244 (2012) (Cited on page 273.)

[113] A. Del Pia, R. Weismantel, On convergence in mixed integer program-
ming. Math. Program. 135, 397–412 (2012) (Cited on page 228.)

[114] J. Desrosiers, F. Soumis, M. Desrochers, Routing with time windows
by column generation. Networks 14, 545–565 (1984) (Cited on page
343.)

[115] S.S. Dey, Q. Louveaux, Split rank of triangle and quadrilateral in-
equalities. Math. Oper. Res. 36, 432–461 (2011) (Cited on page 247.)

[116] S. S. Dey, D.A. Morán, On maximal S-free convex sets. SIAM J. Dis-
crete Math. 25(1), 379–393 (2011) (Cited on page 275.)

[117] S.S. Dey, J.-P.P. Richard, Y. Li, L.A. Miller, On the extreme inequali-
ties of infinite group problems. Math. Program. A 121, 145–170 (2010)
(Cited on page 260.)

[118] S.S. Dey, L.A. Wolsey, Lifting Integer Variables in Minimal In-
equalities Corresponding to Lattice-Free Triangles, IPCO 2008, Berti-
noro, Italy. Lecture Notes in Computer Science, Springer, vol. 5035
(Springer, 2008), pp. 463–475 (Cited on pages 272 and 275.)

[119] S.S. Dey, L.A. Wolsey, Constrained infinite group relaxations of MIPs.
SIAM J. Optim. 20, 2890–2912 (2010) (Cited on page 274.)

[120] E.A. Dinic, Algorithm for solution of a problem of maximum flow in
networks with power estimation. Soviet Math. Dokl. 11, 1277–1280
(1970) (Cited on page 144.)

[121] J.-P. Doignon, Convexity in cristallographical lattices. J. Geom. 3,
71–85 (1973) (Cited on page 250.)

[122] M. Dyer, A. Frieze, R. Kannan, A random polynomial-time algorithm
for approximating the volume of convex bodies. J. ACM 38, 1–17
(1991) (Cited on page 381.)

[123] J. Edmonds, Paths, trees, and flowers. Can. J. Math. 17, 449–467
(1965) (Cited on pages vi, 37, 37, and 147.)

[124] J. Edmonds, Maximum matching and a polyhedron with 0,1-vertices.
J. Res. Natl. Bur. Stand. B 69, 125–130 (1965) (Cited on pages 151
and 184.)

426 BIBLIOGRAPHY

[125] J. Edmonds, Systems of distinct representatives and linear algebra.
J. Res. Natl. Bur. Stand. B 71, 241–245 (1967) (Cited on pages vi
and 37.)

[126] J. Edmonds, Submodular functions, matroids, and certain polyhedra,
in Combinatorial Structures and Their Applications, ed. by R. Guy,
H. Hanani, N. Sauer, J. Schönheim. (Gordon and Breach, New York,
1970), pp. 69–87 (Cited on page 185.)

[127] J. Edmonds, D.R. Fulkerson, Bottleneck extrema. J. Combin. Theory
8, 299–306 (1970) (Cited on page 54.)

[128] J. Edmonds, R. Giles, A min-max relation for submodular functions
on graphs. Ann. Discrete Math. 1, 185–204 (1977) (Cited on page
184.)

[129] J. Edmonds, R.M. Karp, Theoretical improvements in algorithmic ef-
ficiency for network flow problems. J. ACM 19, 248–264 (1972) (Cited
on page 144.)

[130] F. Eisenbrand, On the membership problem for the elementary closure
of a polyhedron. Combinatorica 19, 297–300 (1999) (Cited on page
208.)

[131] F. Eisenbrand, G. Shmonin, Carathéodory bounds on integer cones.
Oper. Res. Lett. 34, 564–568 (2006) (Cited on pages 342 and 343.)

[132] F. Eisenbrand, A.S. Schulz, Bounds on the Chvátal rank of polytopes
in the 0/1 cube. Combinatorica 23, 245–261 (2003) (Cited on pages
211 and 228.)

[133] D. Erlenkotter, A dual-based procedure for uncapacitated facility lo-
cation. Oper. Res. 26, 992–1009 (1978) (Cited on page 342.)

[134] T. Fahle, S. Shamberger, M. Sellmann, Symmetry Breaking, CP 2001.
LNCS, vol. 2239 (Springer, 2001), pp. 93–107 (Cited on page 382.)

[135] Gy. Farkas, On the applications of the mechanical principle of Fourier,
Mathematikai és Természettudományi Értesotö 12, 457–472 (1894)
(Cited on page v.)

[136] S. Fiorini, S. Massar, S. Pokutta, H.R. Tiwary, R. de Wolf, Linear vs.
semidefinite extended formulations: exponential separation and strong
lower bounds, in STOC 2012 (2012) (Cited on pages 177, 179, 181,
182, and 187.)

BIBLIOGRAPHY 427

[137] S. Fiorini, V. Kaibel, K. Pashkovich, D.O. Theis Combinatorial
bounds on the nonnegative rank and extended formulations. Discrete
Math. 313, 67–83 (2013) (Cited on page 187.)

[138] M.L. Fischer, The Lagrangian relaxation method for solving integer
programming problems. Manag. Sci. 27, 1–18 (1981) (Cited on page
341.)

[139] M. Fischetti, F. Glover, A. Lodi, The feasibility pump. Math. Pro-
gram. 104, 91–104 (2005) (Cited on page 371.)

[140] M. Fischetti, A. Lodi, Local branching. Math. Program. B 98, 23–47
(2003) (Cited on page 370.)

[141] M. Fischetti, A. Lodi, Optimizing over the first Chvátal closure. Math.
Program. 110, 3–20 (2007) (Cited on page 229.)

[142] M. Fischetti, A. Lodi, A. Tramontani, On the separation of disjunctive
cuts. Math. Program. A 128, 205–230 (2011) (Cited on page 229.)

[143] M. Fischetti, D. Salvagnin, C. Zanette, A note on the selection of
Benders’ cuts. Math. Program. B 124, 175–182 (2010) (Cited on
pages 343 and 344.)

[144] R. Fortet, Applications de l’algèbre de Boole en recherche
opérationnelle. Revue Française de Recherche Opérationnelle 4, 17–26
(1960) (Cited on page 72.)

[145] J.B.J. Fourier, Solution d’une question particulière du calcul des
inégalités. Nouveau Bulletin des Sciences par la Société Philomatique
de Paris (1826), pp. 317–319 (Cited on pages v and 85.)

[146] L.R. Ford Jr., D.R. Fulkerson, Maximal flow through a network. Can.
J. Math. 8, 399–404 (1956) (Cited on page 55.)

[147] L.R. Ford Jr., D.R. Fulkerson, Flows in Networks (Princeton Univer-
sity Press, Princeton, 1962) (Cited on page 184.)

[148] A. Frank, Connections in combinatorial optimization, in Oxford Lec-
ture Series in Mathematics and Its Applications, vol. 38 (Oxford Uni-
versity Press, Oxford, 2011) (Cited on pages 185 and 185.)

[149] A. Frank, E. Tardos, An application of simultaneous Diophantine ap-
proximation in combinatorial optimization. Combinatorica 7, 49–65
(1987) (Cited on page 381.)

428 BIBLIOGRAPHY

[150] R. M. Freund, J.B. Orlin, On the complexity of four polyhedral set
containment problems. Math. Program. 33, 139–145 (1985) (Cited on
page 123.)

[151] A.M. Frieze, M. Jerrum, Improved approximation algorithms for MAX
k-CUT and MAX BISECTION. Algorithmica 18, 67–81 (1997) (Cited
on page 408.)

[152] K. Fukuda, Frequently Asked Questions in Polyhedral Computation.
Research Report, Department of Mathematics, and Institute of Theo-
retical Computer Science ETH Zurich, available online (2013) (Cited
on page 123.)

[153] K. Fukuda, Lecture: Polyhedral Computation. Research Report, De-
partment of Mathematics, and Institute of Theoretical Computer Sci-
ence ETH Zurich, available online (2004) (Cited on page 120.)

[154] D.R. Fulkerson, Blocking and anti-blocking pairs of polyhedra. Math.
Program. 1, 168–194 (1971) (Cited on page 184.)

[155] D.R. Fulkerson, Anti-blocking polyhedra. J. Combin. Theory B 12,
50–71 (1972) (Cited on page 394.)

[156] D.R Fulkerson, Blocking polyhedra, in Graph Theory and Its Appli-
cations, edited by B. Harris (Academic, New York, 1970), pp. 93–112
(Cited on page 55.)

[157] D.R. Fulkerson, G.L. Nemhauser, L.E. Trotter, Two computationally
difficult set covering problems that arise in computing the 1-width of
incidence matrices of Steiner triples. Math. Program. Study 2, 72–81
(1974) (Cited on page 58.)

[158] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness (W.H. Freeman and Co., New York,
1979) (Cited on pages 138 and 393.)

[159] R.S. Garfinkel, G. Nemhauser, Integer Programming (Wiley, New
York, 1972) (Cited on pages 36 and 213.)

[160] C.F. Gauss, Theoria Motus Corporum Coelestium in Sectionibus Coni-
cis Solem Ambientium (F. Perthes & J.H. Besser, Hamburg, 1809)
(Cited on page v.)

BIBLIOGRAPHY 429

[161] A.M. Geoffrion, Generalized Benders decomposition. J. Optim. Theory
Appl. 10, 237–260 (1972) (Cited on page 343.)

[162] A.M. Geoffrion, Lagrangean relaxation for integer programming.
Math. Program. Study 2, 82–114 (1974) (Cited on page 341.)

[163] A.M. Geoffrion, G.W. Graves, Multicommodity distribution design by
Benders’ decomposition. Manag. Sci. 20, 822–844 (1974) (Cited on
page 343.)

[164] A.M.H. Gerards, A short proof of Tutte’s characterization of totally
unimodular matrices. Linear Algebra Appl. 114/115, 207–212 (1989)
(Cited on page 183.)

[165] A. Ghouila-Houri, Caractérisation des matrices totalement unimodu-
laires. Comptes Rendus Hebdomadaires des Scéances de l’Académie
des Sciences (Paris) 254, 1192–1194 (1962) (Cited on page 133.)

[166] F.R. Giles, W.R. Pulleyblank, Total dual integrality and integer poly-
hedra. Linear Algebra Appl. 25, 191–196 (1979) (Cited on pages 184
and 185.)

[167] P.C. Gilmore, Families of sets with faithful graph representation. IBM
Research Note N.C., vol. 184 (Thomas J. Watson Research Center,
Yorktown Heights, 1962) (Cited on page 53.)

[168] P.C. Gilmore, R.E. Gomory, A linear programming approach to the
cutting-stock problem. Oper. Res. 9, 849–859 (1961) (Cited on pages
50 and 343.)

[169] M.X. Goemans, Worst-case comparison of valid inequalities for the
TSP. Math. Program. 69, 335–349 (1995) (Cited on page 312.)

[170] M.X. Goemans, Smallest compact formulation for the permutahedron.
Math. Program. Ser. A (2014) doi 10.1007/s101007-014-0757-1 (Cited
on page 186.)

[171] M.X. Goemans, T. Rothvoß, Polynomiality for bin packing with a
constant number of item types. arXiv:1307.5108 [cs.DS] (2013) (Cited
on page 343.)

[172] M.X. Goemans, L. Tunçel, When does the positive semidefiniteness
constraint help in lifting procedures. Math. Oper. Res. 26, 796–815
(2001) (Cited on page 408.)

430 BIBLIOGRAPHY

[173] M.X. Goemans, D.P. Williamson, Improved approximation algorithms
for maximum cut and satisfiability problems using semidefinite pro-
gramming. J. ACM 42, 1115–1145 (1995) (Cited on pages vi, 57, 389,
391, 392, 397, and 408.)

[174] J.L. Goffin, Variable metric relaxation methods, part II: the ellipsoid
method. Math. Program. 30, 147–162 (1984) (Cited on page 361.)

[175] R.E. Gomory, Outline of an algorithm for integer solutions to linear
programs. Bull. Am. Math. Soc. 64, 275–278 (1958) (Cited on pages
v, 14, 37, 212, and 213.)

[176] R.E. Gomory, An algorithm for the mixed integer problem. Tech. Re-
port RM-2597 (The Rand Corporation, 1960) (Cited on pages 205,
205, 216, 219, and 227.)

[177] R.E. Gomory, An algorithm for integer solutions to linear programs, in
Recent Advances in Mathematical Programming, ed. by R.L. Graves,
P. Wolfe (McGraw-Hill, New York, 1963), pp. 269–302 (Cited on pages
212, 213, 214, 219, and 229.)

[178] R.E. Gomory, Some polyhedra related to combinatorial problems. Lin-
ear Algebra Appl. 2, 451–558 (1969) (Cited on pages 236 and 274.)

[179] R.E. Gomory, E.L. Johnson, Some continuous functions related to
corner polyhedra I. Math. Program. 3, 23–85 (1972) (Cited on pages
254, 254, 256, 271, and 274.)

[180] R.E. Gomory, E.L. Johnson, T-space and cutting planes. Math. Pro-
gram. 96, 341–375 (2003) (Cited on pages 260, 261, 274, and 274.)

[181] J. Gouveia, P. Parrilo, R. Thomas, Theta bodies for polynomial ideals.
SIAM J. Optim. 20, 2097–2118 (2010) (Cited on page 408.)

[182] J. Gouveia, P. Parrilo, R. Thomas, Lifts of convex sets and cone fac-
torizations. Math. Oper. Res. 38, 248–264 (2013) (Cited on page 187.)

[183] M. Grötschel, Polyedrische Charackterisierungen kombinatorischer
Optimierungsprobleme (Anton Hain, Meisenheim/Glan, 1977) (Cited
on page 312.)

[184] M. Grötschel, On the symmetric travelling salesman problem: solution
of a 120-city problem. Math. Program. Study 12, 61–77 (1980) (Cited
on pages 302 and 312.)

BIBLIOGRAPHY 431

[185] M. Grötschel, M. Jünger, G. Reinelt, A cutting plane algorithm for
the linear ordering problem. Oper. Res. 32, 1195–1220 (1984) (Cited
on page 312.)

[186] M. Grötschel, L. Lovász, A. Schrijver, The ellipsoid method and
its consequences in combinatorial optimization. Combinatorica 1,
169–197 (1981) (Cited on pages 307, 308, 312, 313, 314, and 391.)

[187] M. Grötschel, L. Lovász, A. Schrijver, Geometric methods in combi-
natorial optimization, in Progress in Combinatorial Optimization, ed.
by W.R. Pulleyblank (Academic, Toronto, 1984), pp. 167–183 (Cited
on page 309.)

[188] M. Grötschel, L. Lovász, A. Schrijver, Geometric Algorithms and Com-
binatorial Optimization (Springer, New York, 1988) (Cited on pages
36, 121, 308, 309, 309, 311, and 313.)

[189] M. Grötschel, M.W. Padberg, On the symmetric travelling salesman
problem I: inequalities. Math. Program. 16, (1979) 265–280 (Cited on
page 304.)

[190] B. Grünbaum, Convex Polytopes (Wiley-Interscience, London, 1967)
(Cited on page 120.)

[191] Z. Gu, G.L. Nemhauser, M.W.P. Savelsbergh, Lifted flow covers for
mixed 0–1 integer programs. Math. Program. 85, 439–467 (1999)
(Cited on pages 298 and 312.)

[192] Z. Gu, G.L. Nemhauser, M.W.P. Savelsbergh, Sequence independent
lifting in mixed integer programming. J. Combin. Optim. 1, 109–129
(2000) (Cited on pages 290, 297, 312, and 312.)

[193] C. Guéret, C. Prins, M. Servaux, Applications of Optimization with
Xpress (Dash Optimization Ltd., London, 2002) (Cited on page 73.)

[194] M. Guignard, S. Kim, Lagrangean decomposition for integer program-
ming: theory and applications. RAIRO 21, 307–323 (1987) (Cited on
page 341.)

[195] O. Günlük, Y. Pochet, Mixing mixed-integer inequalities. Math. Pro-
gram. 90, 429–458 (2001) (Cited on page 163.)

[196] W. Harvey, Computing two-dimensional integer hulls. SIAM J. Com-
put. 28, 2285–2299 (1999) (Cited on page 24.)

432 BIBLIOGRAPHY

[197] M. Held, R.M. Karp, The traveling-salesman problem and minimum
spanning trees. Oper. Res. 18, 1138–1162 (1970) (Cited on pages 325
and 331.)

[198] M. Held, R.M. Karp, The traveling-salesman problem and minimum
spanning trees: part II. Math. Program. 1, 6–25 (1971) (Cited on
page 325.)

[199] I. Heller, C.B. Tompkins, An extension of a theorem of
Dantzig’s, in Linear Inequalities and Related Systems, ed. by H.W.
Kuhn, A.W. Tucker (Princeton University Press, Princeton, 1956),
pp. 247–254 (Cited on page 134.)

[200] Ch. Hermite, Extraits de lettres de M. Ch. Hermite à M. Jacobi sur
différents objets de la théorie des nombres. Journal für dei reine und
angewandte Mathematik 40, pp. 261–277 (1850) (Cited on pages 353
and 360.)

[201] J.-B. Hiriart-Urruty, C. Lemaréchal. Fundamentals of Convex Analysis
(Springer, New York, 2001) (Cited on page 248.)

[202] D.S. Hirschberg, C.K. Wong, A polynomial algorithm for the knapsack
problem in two variables. J. ACM 23, 147–154 (1976) (Cited on pages
24 and 380.)

[203] A.J. Hoffman, A generalization of max-flow min-cut. Math. Program.
6, 352–259 (1974) (Cited on page 184.)

[204] A.J. Hoffman, J.B. Kruskal, Integral boundary points of poly-
hedra, in Linear Inequalities and Related Systems, ed. by H.W.
Kuhn, A.W. Tucker (Princeton University Press, Princeton, 1956),
pp. 223–246 (Cited on page 108.)

[205] J.N. Hooker, Needed: an empirical science of algorithms. Oper. Res.
42, 201–212 (1994) (Cited on page 382.)

[206] J. Hooker, Integrated Methods for Optimization. International Series in
Operations Research and Management Science (Springer, New York,
2010) (Cited on page 74.)

[207] R.A. Horn, C.R. Johnson, Matrix Analysis (Cambridge University
Press, Cambridge, 2013) (Cited on page 391.)

BIBLIOGRAPHY 433

[208] C.A.J. Hurkens, Blowing up convex sets in the plane. Linear Algebra
Appl. 134, 121–128 (1990) (Cited on page 359.)

[209] S. Iwata, L. Fleischer, S. Fujishige, A combinatorial, strongly
polynomial-time algorithm for minimizing submodular functions. J.
ACM 48, 761–777 (2001) (Cited on page 185.)

[210] R.G. Jeroslow, There cannot be any algorithm for integer program-
ming with quadratic constraints. Oper. Res. 21, 221–224 (1973) (Cited
on page 20.)

[211] R.G. Jeroslow, Representability in mixed integer programming, I:
characterization results. Discrete Appl. Math. 17, 223–243 (1987)
(Cited on page 185.)

[212] R.G Jeroslow, On defining sets of vertices of the hypercube by linear
inequalities. Discrete Math. 11, 119–124 (1975) (Cited on page 170.)

[213] R.G Jeroslow, J.K. Lowe, Modelling with integer variables. Math. Pro-
gram. Stud. 22, 167–184 (1984) (Cited on page 171.)

[214] F. John, Extremum problems with inequalities as subsidiary condi-
tions, in Studies and Essays Presented to R. Courant on his 60th
Birthday, January 8, 1948 (Interscience Publishers, New York, 1948),
pp. 187–204 (Cited on pages 361 and 381.)

[215] E.L. Johnson, On the group problem for mixed integer programming.
Math. Program. Study 2, 137–179 (1974) (Cited on page 268.)

[216] E.L. Johnson, Characterization of facets for multiple right-hand choice
linear programs. Math. Program. Study 14, 112–142 (1981) (Cited on
page 274.)

[217] M. Jünger, T. Liebling, D. Naddef, G. Nemhauser, W. Pulleyblank, G.
Reinelt, G. Rinaldi, L. Wolsey (eds.), 50 Years of Integer Programming
1958–2008 (Springer, Berlin, 2010) (Cited on pages 31, 36, and 380.)

[218] M. Jünger, D. Naddef (eds.), Computational Combinatorial Optimiza-
tion. Optimal or provably near-optimal solutions . Lecture Notes in
Computer Science, vol. 2241 (Springer, Berlin, 2001) (Cited on page
36.)

[219] V. Kaibel, Extended formulations in combinatorial optimization.
Optima 85, 2–7 (2011) (Cited on page 186.)

434 BIBLIOGRAPHY

[220] V. Kaibel, K. Pashkovich, Constructing extended formulations from
reflection relations, in Proceedings of IPCO XV O. Günlük, ed. by
G. Woeginger. Lecture Notes in Computer Science, vol. 6655 (Springer,
Berlin, 2011), pp. 287–300 (Cited on page 186.)

[221] V. Kaibel, K. Pashkovich, D.O. Theis, Symmetry matters for sizes
of extended formulations. SIAM J. Discrete Math. 26(3), 1361–1382
(2012) (Cited on page 186.)

[222] V. Kaibel, M.E. Pfetsch, Packing and partitioning orbitopes. Math.
Program. 114, 1–36 (2008) (Cited on page 382.)

[223] V. Kaibel, S. Weltge, A short proof that the extension complexity of
the correlation polytope grows exponentially. arXiv:1307.3543 (2013)
(Cited on pages 178 and 187.)

[224] V. Kaibel, S. Weltge, Lower bounds on the sizes of integer programs
without additional variables. arXiv:1311.3255 (2013) (Cited on page
64.)

[225] R. Kannan, A polynomial algorithm for the two-variable integer pro-
gramming problem. J. ACM 27, 118–122 (1980) (Cited on page 380.)

[226] R. Kannan, Improved algorithms for integer programming and related
problems, in Proceedings of the 15th Annual ACM Symposium on The-
ory of Computing (STOC-83) (1983), pp. 193–206 (Cited on page
381.)

[227] R. Kannan, Minkowski’s convex body theorem and integer program-
ming. Math. Oper. Res. 12, 415–440 (1987) (Cited on page 381.)

[228] R. Kannan, A. Bachem, Polynomial algorithms for computing the
Smith and Hermite normal forms of an integer matrix. SIAM J. Com-
put. 8, 499–507 (1979) (Cited on pages 31, 31, and 37.)

[229] N. Karmarkar, A new polynomial-time algorithm for linear program-
ming. Combinatorica 4, 373–395 (1984) (Cited on pages vi, 121,
and 408.)

[230] D.R. Karger, Global min-cuts in RNC, and other ramifications of a
simple min-cut algorithm, in Proceedings of SODA (1993), pp. 21–30
(Cited on page 184.)

BIBLIOGRAPHY 435

[231] D.R. Karger, R. Motwani, M. Sudan, Approximate graph coloring by
semidefinite programming. J. ACM 45, 246–265 (1998) (Cited on page
408.)

[232] R.M. Karp, Reducubility among combinatorial problems, in Com-
plexity of Computer Computations (Plenum Press, New York, 1972),
pp. 85–103 (Cited on page 391.)

[233] R.M. Karp, C.H. Papadimitriou, On linear characterizations of combi-
natorial optimization problems. SIAM J. Comput. 11, 620–632 (1982)
(Cited on pages 308 and 313.)

[234] H. Kellerer, U. Pferschy, D. Pisinger, Knapsack Problems (Springer,
Berlin, 2004) (Cited on page 73.)

[235] L.G. Khachiyan, A polynomial algorithm in linear programming.
Soviet Math. Dokl. 20, 191–194 (1979) (Cited on pages vi, 120, 308,
and 313.)

[236] L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, V. Gurvich, Gen-
erating all vertices of a polyhedron is hard. Discrete Comput. Geom.
39, 174–190 (2008) (Cited on page 123.)

[237] A. Khinchine, A quantitative formulation of Kronecker’s theory of ap-
proximation (in russian). Izvestiya Akademii Nauk SSR Seriya Matem-
atika 12, 113–122 (1948) (Cited on pages 24 and 359.)

[238] F. Kilinc-Karzan, G.L. Nemhauser, M.W.P. Savelsbergh, Information-
based branching schemes for binary linear mixed integer problems.
Math. Program. Comput. 1, 249–293 (2009) (Cited on page 382.)

[239] D. Klabjan, G.L. Nemhauser, C. Tovey, The complexity of cover in-
equality separation. Oper. Res. Lett. 23, 35–40 (1998) (Cited on page
283.)

[240] V. Klee, G.J. Minty, How good is the simplex algorithm? in Inequal-
ities, III, ed. by O. Shisha (Academic, New York, 1972), pp. 159–175
(Cited on pages 18 and 120.)

[241] M. Köppe, Q. Louveaux, R. Weismantel, Intermediate integer pro-
gramming representations using value disjunctions. Discrete Optim.
5, 293–313 (2008) (Cited on page 225.)

436 BIBLIOGRAPHY

[242] M. Köppe, R. Weismantel, A mixed-integer Farkas lemma and some
consequences. Oper. Res. Lett. 32, 207–211 (2004) (Cited on page 37.)

[243] B. Korte, J. Vygen, Combinatorial Optimization: Theory and Algo-
rithms (Springer, Berlin/Hidelberg, 2000) (Cited on pages 36 and 183.)

[244] J.B. Kruskal Jr., On the shortest spanning subtree of a graph and the
traveling salesman problem. Proc. Am. Math. Soc. 7, 48–50 (1956)
(Cited on page 155.)

[245] H.W. Kuhn, The Hungarian method for the assignment problem.
Naval Res. Logistics Q. 2, 83–97 (1955) (Cited on pages 5 and 149.)

[246] A.H. Land, A.G. Doig, An automatic method of solving discrete pro-
gramming problems. Econometrica 28, 497–520 (1960) (Cited on page
37.)

[247] J.B. Lasserre, An Explicit Exact SDP Relaxation for Nonlinear 0–1
Programs. Lecture Notes in Computer Science, vol. 2081 (Springer,
2001), pp. 293–303 (Cited on pages 389, 400, and 403.)

[248] J.B. Lasserre, Global optimization with polynomials and the problem
of moments. SIAM J. Optim. 11, 796–817 (2001) (Cited on pages 389
and 403.)

[249] M. Laurent, A comparison of the Sherali-Adams, Lovász-Schrijver
and Lasserre relaxations for 0–1 programming. SIAM J. Optim. 28,
345–375 (2003) (Cited on page 403.)

[250] M. Laurent, F. Rendl, Semidefinite programming and integer program-
ming, in Handbook on Discrete Optimization, ed. by K. Aardal, G.L.
Nemhauser, R. Weimantel (Elsevier, Amsterdam, 2005), pp. 393–514
(Cited on page 408.)

[251] E. L. Lawler, Covering problems: duality relations and a method of
solution. SIAM J. Appl. Math. 14, 1115–1132 (1966) (Cited on page
54.)

[252] E. L. Lawler, Combinatorial Optimization: Networks and Matroids
(Holt, Rinehart and Winston, New York, 1976) (Cited on page 183.)

[253] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys (eds.),
The Traveling Salesman Problem: A Guided Tour of Combinatorial
Optimization (Wiley, New York, 1985) (Cited on page 74.)

BIBLIOGRAPHY 437

[254] A. Lehman, On the width-length inequality. Math. Program. 17,
403–417 (1979) (Cited on page 55.)

[255] A.K. Lenstra, H.W. Lenstra, L. Lovász, Factoring polynomials with
rational coefficients. Math. Ann. 261, 515–534 (1982) (Cited on page
353.)

[256] H.W. Lenstra, Integer programming with a fixed number of variables.
Math. Oper. Res. 8, 538–548 (1983) (Cited on pages vi, 37, 351, 353,
361, and 363.)

[257] J.T. Linderoth, M.W.P. Savelsbergh, A computational study of search
strategies for mixed integer programming. INFORMS J. Comput. 11,
173–187 (1999) (Cited on page 382.)

[258] Q. Louveaux, L.A. Wolsey, Lifting, superadditivity, mixed integer
rounding and single node flow sets revisited. 4OR 1, 173–207 (2003)
(Cited on page 312.)

[259] L. Lovász, Normal hypergraphs and the perfect graph conjecture. Dis-
crete Math. 2, 253–267 (1972) (Cited on pages 184 and 394.)

[260] L. Lovász, On the Shannon capacity of a graph. IEEE Trans. Inf.
Theory 25, 1–7 (1979) (Cited on pages 389, 393, and 408.)

[261] L. Lovász, Geometry of numbers and integer programming, in Mathe-
matical Programming: Recent Developments and Applications, ed. by
M. Iri, K. Tanabe (Kluwer, Dordrecht, 1989), pp. 177–201 (Cited on
pages 249 and 250.)

[262] L. Lovász, M.D. Plummer, Matching Theory (Akadémiai Kiadó, Bu-
dapest, 1986) [Also: North Holland Mathematics Studies, vol. 121
(North Holland, Amsterdam)] (Cited on page 184.)

[263] L. Lovász, H.E. Scarf, The generalized basis reduction algorithm.
Math. Oper. Res. 17, 751–764 (1992) (Cited on page 381.)

[264] L. Lovász, A. Schrijver, Cones of matrices and set-functions and 0–1
optimization. SIAM J. Optim. 1, 166–190 (1991) (Cited on pages vi,
389, 394, and 397.)

[265] T.L. Magnanti, R.T. Wong, Accelerated Benders decomposition: al-
gorithmic enhancement and model selection criteria. Oper. Res. 29,
464–484 (1981) (Cited on page 343.)

438 BIBLIOGRAPHY

[266] H. Marchand, L.A. Wolsey, Aggregation and mmixed integer rounding
to solve MIPs. Oper. Res. 49, 363–371 (2001) (Cited on page 229.)

[267] F. Margot, Pruning by isomorphism in branch-and-cut. Math. Pro-
gram. 94, 71–90 (2002) (Cited on pages 373, 377, and 382.)

[268] S. Martello, P. Toth, Knapsack Problems: Algorithms and Computer
Implementations (Wiley, Chichester, 1990) (Cited on page 73.)

[269] R.K. Martin, Generating alternative mixed integer programming mod-
els using variable definition. Oper. Res. 35, 820–831 (1987) (Cited on
page 186.)

[270] R.K. Martin, Using separation algorithms to generate mixed integer
model reformulations. Oper. Res. Lett. 10(3), 119–128 (1991) (Cited
on pages 174 and 186.)

[271] R.K. Martin, R.L. Rardin, B.A. Campbell, Polyhedral characteriza-
tion of discrete dynamic programming. Oper. Res. 38, 127–138 (1990)
(Cited on page 186.)

[272] J.F. Maurras, Bon algorithmes, vieilles idées, Note E.d.F. HR 32.0320
(1978) (Cited on page 120.)

[273] J.F. Maurras, K. Truemper, M. Agkül, Polynomial algorithms for a
class of linear programs. Math. Program. 21, 121–136 (1981) (Cited
on page 120.)

[274] C.C. McGeogh, Experimental analysis of algorithms. Notices Am.
Math. Assoc. 48, 204–311 (2001) (Cited on page 382.)

[275] B.D. McKay, Practical graph isomorphism. Congressus Numerantium
30, 45–87 (1981) (Cited on page 377.)

[276] R.R. Meyer, On the existence of optimal solutions to integer and mixed
integer programming problems. Math. Program. 7, 223–235 (1974)
(Cited on page 159.)

[277] D. Micciancio, The shortest vector in a lattice is hard to approximate
to within some constant, in Proceedings of the 39th Annual Symposium
on Foundations of Computer Science (FOCS-98) (1998), pp. 92–98
(Cited on page 381.)

BIBLIOGRAPHY 439

[278] C.E. Miller, A.W. Tucker, R.A. Zemlin, Integer programming formula-
tion of traveling salesman problems. J. ACM 7, 326–329 (1960) (Cited
on pages 63 and 136.)

[279] H. Minkowski, Geometrie der Zahlen (Erste Lieferung) (Teubner,
Leipzig, 1896) (Cited on pages v and 96.)

[280] T.S. Motzkin, H. Raiffa, G.L. Thompson, R.M. Thrall, The double
description method, in Contributions to Theory of Games, vol. 2, ed.
by H.W. Kuhn, A.W. Tucker (Princeton University Press, Princeton,
1953) (Cited on page 121.)

[281] J. Munkres, Algorithms for the assignment and transportation prob-
lems. J. SIAM 5, 32–38 (1957) (Cited on page 5.)

[282] H. Nagamochi, T. Ibaraki, Computing edge-connectivity in multiple
and capacitated graphs. SIAM J. Discrete Math. 5, 54–66 (1992)
(Cited on page 184.)

[283] G.L. Nemhauser, L.E. Trotter Jr., Properties of vertex packing and in-
dependence system polyhedra. Math. Program. 6, 48–61 (1974) (Cited
on page 312.)

[284] G.L. Nemhauser, L.E. Trotter Jr., Vertex packings: structural prop-
erties and algorithms. Math. Program. 8, 232–248 (1975) (Cited on
page 312.)

[285] G.L. Nemhauser, L.A. Wolsey, Integer and Combinatorial Optimiza-
tion (Wiley, New York, 1988) (Cited on page 36.)

[286] G.L. Nemhauser, L.A. Wolsey, A recursive procedure to generate all
cuts for 0–1 mixed integer programs. Math. Program. 46, 379–390
(1990) (Cited on pages 206, 206, and 228.)

[287] Y.E. Nesterov, Smooth minimization of non-smooth functions. Math.
Program. A 103, 127–152 (2005) (Cited on page 329.)

[288] Y.E. Nesterov, Semidefinite relaxation and nonconvex quadratic op-
timization. Optim. Methods Softw. 12, 1–20 (1997) (Cited on page
408.)

[289] Y.E. Nesterov, A.S. Nemirovski, Self-concordant functions and poly-
nomial time methods in convex programming. Technical report, Cen-
tral Economical and Mathematical Institute, U.S.S.R (Academy of
Science, Moscow, 1990) (Cited on page 408.)

440 BIBLIOGRAPHY

[290] Y.E. Nesterov, A.S. Nemirovski, Conic formulation of a convex pro-
gramming problem and duality. Optim. Methods Softw. 1, 95–115
(1992) (Cited on page 390.)

[291] Y.E. Nesterov, A.S. Nemirovski, Interior Point Polynomial Algorithms
in Convex Programming (SIAM, Philadelphia, 1994) (Cited on pages
381, 391, and 408.)

[292] J. Ostrowski, J.T. Linderoth, F. Rossi, S. Smriglio, Solving large
Steiner triple covering problems. Oper. Res. Lett. 39, 127–131 (2011)
(Cited on page 58.)

[293] J. Ostrowski, J. Linderoth, F. Rossi, S. Smriglio, Orbital branching.
Math. Program. 126, 147–178 (2011) (Cited on page 382.)

[294] J.H. Owen, S. Mehrotra, A disjunctive cutting plane procedure for
general mixed-integer linear programs. Math. Program. A 89, 437–
448 (2001) (Cited on page 228.)

[295] J.H. Owen, S. Mehrotra, On the value of binary expansions for general
mixed-integer linear programs. Oper. Res. 50, 810–819 (2002) (Cited
on page 225.)

[296] J. Oxley, Matroid Theory (Oxford University Press, New York, 2011)
(Cited on page 183.)

[297] M.W. Padberg, On the facial structure of set packing polyhedra. Math.
Program. 5, 199–215 (1973) (Cited on pages 312 and 312.)

[298] M.W. Padberg, A note on zero-one programming. Oper. Res. 23, 833–
837 (1975) (Cited on page 312.)

[299] M.W. Padberg, M.R. Rao, The Russian method for linear program-
ming III: bounded integer programming. Research Report 81-39,
Graduate School of Business Administration, New York University
(1981) (Cited on pages 308 and 313.)

[300] M.W. Padberg, M.R. Rao, Odd minimum cut-sets and b-matchings.
Math. Oper. Res. 7, 67–80 (1982) (Cited on page 304.)

[301] M.W. Padberg, G. Rinaldi, Optimization of a 532-city symmetric trav-
eling salesman problem by branch and cut. Oper. Res. Lett. 6, 1–7
(1987) (Cited on pages 37 and 302.)

BIBLIOGRAPHY 441

[302] M.W. Padberg, G. Rinaldi, A branch-and-cut algorithm for the res-
olution of large-scale symmetric traveling salesman problems. SIAM
Rev. 33, 60–100 (1991) (Cited on page 37.)

[303] M.W. Padberg, T.J. Van Roy, L.A. Wolsey, Valid linear inequalities
for fixed charge problems. Oper. Res. 33, 842–861 (1985) (Cited on
page 291.)

[304] J. Pap, Recognizing conic TDI systems is hard. Math. Program. 128,
43–48 (2011) (Cited on page 185.)

[305] C.H. Papadimitriou, On the complexity of integer programming. J.
ACM 28, 765–768 (1981) (Cited on page 37.)

[306] J. Patel, J.W. Chinneck, Active-constraint variable ordering for faster
feasibility of mixed integer linear programs. Math. Program. 110, 445–
474 (2007) (Cited on page 382.)

[307] J. Petersen, Die Theorie der regulären graphs. Acta Matematica 15,
193–220 (1891) (Cited on page 147.)

[308] Y. Pochet, L.A. Wolsey, Polyhedra for lot-sizing with Wagner–Whitin
costs. Math. Program. 67, 297–324 (1994) (Cited on page 186.)

[309] Y. Pochet, L.A. Wolsey, Production Planning by Mixed-Integer Pro-
gramming. Springer Series in Operations Research and Financial En-
gineering (Springer, New York, 2006) (Cited on page 73.)

[310] B.T. Poljak, A general method for solving extremum problems. Soviet
Math. Dokl. 8, 593–597 (1967) (Cited on pages 328, 328, 329, and 329.)

[311] C.H. Papadimitriou, M. Yannakakis, On recognizing integer polyhe-
dra. Combinatorica 10, 107–109 (1990) (Cited on page 183.)

[312] M. Queyranne, A.S. Schulz, Polyhedral approaches to machine
scheduling. Preprint (1994) (Cited on page 74.)

[313] A. Razborov, On the distributional complexity of disjointness. Theor.
Comput. Sci. 106(2), 385–390 (1992) (Cited on pages 178 and 187.)

[314] J. Renegar, A polynomial-time algorithm based on Newton’s method
for linear programming. Math. Program. 40, 59–93 (1988) (Cited on
page 18.)

442 BIBLIOGRAPHY

[315] J.-P.P. Richard, S.S. Dey (2010). The group-theoretic approach in
mixed integer programming, in 50 Years of Integer Programming
1958–2008 , ed. by M. Jünger, T. Liebling, D. Naddef, G. Nemhauser,
W. Pulleyblank, G. Reinelt, G. Rinaldi, L. Wolsey (Springer, New
York, 2010), pp. 727–801 (Cited on page 273.)

[316] R.T. Rockafellar, Convex Analysis (Princeton University Press,
Princeton, 1969) (Cited on pages 248, 248, and 249.)

[317] T. Rothvoß, Some 0/1 polytopes need exponential size extended for-
mulations. Math. Program. A 142, 255–268 (2012) (Cited on page
186.)

[318] T. Rothvoß, The matching polytope has exponential extension com-
plexity, in Proceedings of the 46th Annual ACM Symposium on Theory
of Computing (STOC 2014) (2014), pp. 263–272 (Cited on pages 177,
181, and 187.)

[319] T. Rothvoß, L. Sanitá, 0−1 polytopes with quadratic Chvátal rank, in
Proceedings of the 16th IPCO Conference. Lecture Notes in Computer
Science, vol. 7801 (Springer, New York, 2013) (Cited on page 211.)

[320] J.-S. Roy, Reformulation of bounded integer variables into binary
variables to generate cuts. Algorithmic Oper. Res. 2, 810–819 (2007)
(Cited on page 225.)

[321] M.P.W. Savelsbergh, Preprocessing and probing techniques for mixed
integer programming problems. ORSA J. Comput. 6, 445–454 (1994)
(Cited on page 372.)

[322] H.E. Scarf, An observation on the structure of production sets with in-
divisibilities. Proc. Natl. Acad. Sci. USA 74, 3637–3641 (1977) (Cited
on page 250.)

[323] A. Schrijver, On cutting planes. Ann. Discrete Math. 9, 291–296 (1980)
(Cited on page 210.)

[324] A. Schrijver, On total dual integrality. Linear Algebra Appl. 38, 27–32
(1981) (Cited on page 184.)

[325] A. Schrijver, Theory of Linear and Integer Programming (Wiley, New
York, 1986) (Cited on pages 31, 36, 120, 165, 165, 183, 184, 213,
and 357.)

BIBLIOGRAPHY 443

[326] A. Schrijver, A combinatorial algorithm minimizing submodular func-
tions in strongly polynomial time. J. Combin. Theory Ser. B 80, 346–
355 (2000) (Cited on page 185.)

[327] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency
(Springer, Berlin, 2003) (Cited on pages 36, 156, 183, 184, and 184.)

[328] Á. Seress, Permutation Group Algorithms, Cambridge Tracts in Math-
ematics, vol. 152 (Cambridge University Press, Cambridge, 2003)
(Cited on page 377.)

[329] P.D. Seymour, Decomposition of regular matroids. J. Combin. Theory
B 28, 305–359 (1980) (Cited on page 183.)

[330] H. Sherali, W. Adams, A hierarchy of relaxations between the contin-
uous and convex hull representations for zero-one programming prob-
lems. SIAM J. Discrete Math. 3, 311–430 (1990) (Cited on pages 389,
397, and 400.)

[331] H. Sherali, W. Adams, A Reformulation-Linearization Technique
for Solving Discrete and Continuous Nonconvex Problems, Chap. 4
(Kluwer Academic Publishers, Norwell, 1999) (Cited on page 225.)

[332] N. Z. Shor, Cut-off method with space extension in convex program-
ming problems. Cybernetics 13, 94–96 (1977) (Cited on pages 120
and 313.)

[333] M. Stoer, F. Wagner, A simple min-cut algorithm. J. ACM 44, 585–
591 (1997) (Cited on page 184.)

[334] E. Tardos, A strongly polynomial algorithm to solve combinatorial
linear programs. Oper. Res. 34, 250–256 (1986) (Cited on page 381.)

[335] R.E. Tarjan, Depth-first search and linear graph algorithms. SIAM J.
Comput. 1, 146–160 (1972) (Cited on page 303.)

[336] S. Tayur, R.R. Thomas, N.R. Natraj, An algebraic geometry algorithm
for scheduling in presence of setups and correlated demands. Math.
Program. 69, 369–401 (1995) (Cited on page 38.)

[337] P. Toth, D. Vigo, The Vehicle Routing Problem. Monographs on
Discrete Mathematics and Applications (SIAM, Philadelphia, 2001)
(Cited on page 74.)

444 BIBLIOGRAPHY

[338] K. Truemper, Matroid Decomposition (Academic, Boston, 1992)
(Cited on page 183.)

[339] W.T. Tutte, A homotopy theorem for matroids I, II. Trans. Am. Math.
Soc. 88, 905–917 (1958) (Cited on page 183.)

[340] T.J. Van Roy, L.A. Wolsey, Solving mixed integer programming prob-
lems using automatic reformulation. Oper. Res. 35, 45–57 (1987)
(Cited on page 312.)

[341] M. Van Vyve, The continuous mixing polyhedron. Math. Oper. Res.
30, 441–452 (2005) (Cited on page 186.)

[342] F. Vanderbeck, L.A. Wolsey, Reformulation and decomposition of int-
eger programs, in 50 Years of Integer Programming 1958–2008 , ed.
by M. Jünger, T. Liebling, D. Naddef, G. Nemhauser, W. Pulley-
blank, G. Reinelt, G. Rinaldi, L. Wolsey (Springer, New York, 2010),
pp. 431–502 (Cited on page 186.)

[343] R.J. Vanderbei, Linear Programming: Foundations and Extentions,
3rd edn. (Springer, New York, 2008) (Cited on page 121.)

[344] S. Vavasis, On the complexity of nonnegative matrix factorization.
SIAM J. Optim. 20, 1364–1377 (2009) (Cited on page 177.)

[345] V.V. Vazirani, Approximation Algorithms (Springer, Berlin, 2003)
(Cited on page 37.)

[346] J.P. Vielma, A constructive characterization of the split closure of a
mixed integer linear program. Oper. Res. Lett. 35, 29–35 (2007) (Cited
on page 228.)

[347] J.P. Vielma, Mixed integer linear programming formulation tech-
niques. SIAM Rev. (2014, to appear) (Cited on page 185.)

[348] H. Weyl, The elementary theory of convex polyhedra, in Contributions
to the Theory of Games I, ed. by H.W. Kuhn, A.W. Tucker (Princeton
University Press, Princeton, 1950), pp. 3–18 (Cited on page 96.)

[349] D.P. Williamson, D.B. Shmoys, The Design of Approxiamtion Algo-
rithms (Cambridge University Press, Cambridge, 2011) (Cited on page
37.)

BIBLIOGRAPHY 445

[350] L.A. Wolsey, Further facet generating procedures for vertex packing
polytopes. Math. Program. 11, 158–163 (1976) (Cited on page 312.)

[351] L.A. Wolsey, Valid inequalities and superadditivity for 0–1 integer
programs. Math. Oper. Res. 2, 66–77 (1977) (Cited on page 312.)

[352] L.A. Wolsey, Heuristic analysis, linear programming, and branch and
bound. Math. Program. Stud. 13, 121–134 (1980) (Cited on page 312.)

[353] L.A. Wolsey, Integer Programming (Wiley, New York, 1999) (Cited
on pages 36 and 74.)

[354] R.T. Wong, Dual ascent approach for Steiner tree problems on directed
graphs. Math. Program. 28, 271–287 (1984) (Cited on page 342.)

[355] M. Yannakakis, Expressing combinatorial optimization problems by
linear programs. J. Comput. Syst. Sci. 43, 441–466 (1991) (Cited on
pages 174, 177, 182, and 186.)

[356] D. B. Yudin, A. S. Nemirovski, Evaluation of the information complex-
ity of mathematical programming problems. Ekonomika i Matematich-
eskie Metody 12, 128–142 (1976) (in Russian). English Translation:
Matekon 13, 3–45 (1976) (Cited on pages 120 and 313.)

[357] G.M. Ziegler, Lectures on Polytopes (Springer, New York, 1995) (Cited
on page 120.)

Index

(·)+: a+ = max{0, a} (a ∈ R), 199
(·)−: a− = max{0,−a} (a ∈ R), 199
A<, 98
A=, 98
E[·], 151
M -alternating path, 146
N+, 393, 398
O notation, 18
P (B), 236
PCh, 208
PMIR, 206
P corr
n , 180

P cut, 179
Pmix, 161
P split, 197
P lift, 222
Ptsp, 300
Seven
n , 170

V (·), 56
Σn, 372
Z
p-free convex set, 242

Z
p × R

n−p-free convex set, 249
aff(·), 92
α-critical edge, 318
cone(·), 93
conv(·), 93
corner(B), 236
δ(·), 55
δ+(·), δ−(·), 62

dim(·), 92
intcone, 160
〈·〉, 91
〈·, ·〉, 180
�·, 6

·, 353

·�, 6
lin(·), 97
FRAC(·), 394
MIX, 66
QSTAB(·), 391
STAB(·), 106, 181, 391
TH(·), 391
stab(·), 51
det(Λ), 350
projx(·), 116
rec(·), 97
stabil(·, ·), 376
⊂, 3
⊆, 3
%, 388
$, 387
n(·), 59
s, t-cut, 55, 140
s, t-flow, 139
s, t-path, 55, 137
x(.), 158
zLD, 320
zLR(·), 320

© Springer International Publishing Switzerland 2014
M. Conforti et al., Integer Programming, Graduate Texts
in Mathematics 271, DOI 10.1007/978-3-319-11008-0

447

448 INDEX

\alldifferent{} , 61

1-tree, 323

affine

combination, 92

hull, 92

independence, 92

space, 92

aggregated formulation, 69

algorithm, 18

antihole, 318

approximation algorithm, 37

assignment

polytope, 99

problem, 4, 149

asymmetric traveling salesman
problem, 61

atomic proposition, 58

augmenting path

relative to a flow, 143

relative to a matching, 146

auxiliary digraph, 148

Balas’ sequential convexification
theorem, 223

basic

feasible solution, 115

solution, 115

basis, 115

dual feasible basis, 115

Gram-Schmidt, 351

of a lattice, 350

of a linear space, 91

of an affine space, 92

optimal basis, 115

primal feasible basis, 115

reduction algorithm, 351

Bellman-Ford algorithm, 138

Benders

decomposition, 338

reformulation, 338

subproblem, 338

best

bound criterion, 367

estimate criterion, 367

better

formulation, 46

representation, 47

big M formulation, 67

big O notation, 18

binary encoding, 17

block diagonal structure, 330, 339

blocker, 54

blocking pair, 54

blossom inequality

for the matching polytope, 151

for the TSP, 304

Bonami’s lemma, 198

branch-and-bound algorithm, 10

branch-and-cut algorithm, 15, 363

branch-and-price, 335

branching, 9, 364

breakpoint, 259

Camion’s theorem, 183

capacity of a cut, 140

Carathéodory’s theorem, 113

cdd, 121

certificate, 19

characteristic vector, 51

chordless cycle, 317

chromatic number, 77

Chvátal

closure, 208

inequality, 207

rank of a polyhedron, 209

rank of an inequality, 209

INDEX 449

circuit, 135
simple, 135

circulation, 135
cone, 135

circumscribed convex set, 313
clause, 58
clique, 52

inequality, 52
matrix, 53
maximal, 52
relaxation, 391

closure
Chvátal, 208
split, 197

clutter, 54
coloring, 407
column generation, 332
comb inequality, 303
combinatorial auction, 78
combinatorial optimization, 36
compact extended formulation, 117
complementary slackness, 90
complexity class

Co-NP, 19
NP, 19
P, 18

cone, 93
circulation, 135
finitely generated, 94
of a nonempty set, 93
ray of a cone, 93

conflict graph, 52
conic combination, 93
conjunction of literals, 58
conjunctive normal form, 59
constraint

irredundant, 104
redundant, 104

constraint programming, 61
continued fraction, 24

continuous infinite relaxation, 264

convex

analysis, 248

body, 356

combination, 21, 92

cone, 93

hull, 20, 93

set, 20, 93

Cook-Kannan-Schrijver

example, 203

theorem, 203

corner polyhedron, 236

correlation polytope, 180

counting integral points in a
polyhedron, 379

cover, 46, 282

inequality, 282

minimal, 46, 282

covering, 51

crew scheduling, 57

criterion

best bound, 367

best estimate, 367

cut

in a graph, 55

polytope, 110, 179

pool, 371

cut-generating linear program, 228,
342

cutting plane, 12

algorithm, 12

cutting stock problem, 49, 331,
340

cycle, 56

odd, 56

Dantzig-Fulkerson-Johnson
formulation, 62, 64, 136,
299

450 INDEX

Dantzig-Wolfe
reformulation, 328
relaxation, 328

decision problem, 19
decomposition theorem for

polyhedra, 111
defining a face, 102
degree

constraint, 62, 64, 145
of a node, 55

delayed column generation, 306
depth-first search, 367
determinant of a lattice, 350
digraph, 61
dimension

of a linear space, 91
of a set, 92

Diophantine equations, 25
directed s, t-path, 137
disaggregated formulation, 69
disjunction of literals, 58
disjunctive constraint, 70, 169
diving heuristic, 368
dominated inequality, 202,

241
double description method, 121
down pseudocost, 365
dual

feasible basis, 115
of a linear program, 89
semidefinite program, 388

duality
strong, 89
theorem, 89

dynamism of a cut, 221

edge of a polyhedron, 109
ellipsoid, 357

algorithm, 120, 308
encoding size, 17, 112

enumeration tree, 8

equitable bicoloring, 133

Euclidean algorithm, 26

extended cover, 316

extended formulation, 117

extreme ray, 110

extreme valid function, 260

face, 102

proper face, 102

facet, 102

enumeration for a polytope, 123

facet-defining inequality, 102

facility location problem, 67

Farkas’ lemma, 88

feasibility cut, 338

feasibility pump, 369

feasible

flow, 140

solution, 2

finite support, 254

finitely generated cone, 94

fixed

charge, 66

cost, 67

flat direction, 349

flatness theorem, 356

flow

feasible, 140

integral, 140

flow cover, 291

inequality, 291

Fortet’s linearization, 72

Fourier elimination, 85

fractional cut, 14, 212

Fredholm alternative, 35

Frobenius product, 180

full-dimensional polyhedron, 99

INDEX 451

function

valid for Gf , 256

valid for Mf , 254

valid for Rf , 264

gauge, 248

gcd, 26

generalized assignment problem,
65

generalized set covering, 58

generators

of a cone, 94

of a linear space, 91

Ghouila-Houri’s theorem, 133

Goemans-Williamson theorem, 390

Gomory

fractional cut, 14, 212

function, 245

lexicographic method, 213

mixed integer cut, 216

mixed integer inequality, 205,
216

Gomory-Johnson theorem, 256

Gram-Schmidt

basis, 351

procedure, 351

graph k-coloring problem, 407

graphical traveling salesman
polyhedron, 306

Graver test set, 38

greatest common divisor, 26

greedy algorithm, 158

GUB branching, 366

Hadamard’s inequality, 351

Hamiltonian tour

directed, 61

undirected, 64

Hamiltonian-path polytope, 101

head of an arc, 134

Heller-Tompskins characterization,
134

Helly’s theorem, 114

Hermite normal form, 30

heuristic for integer programs, 368

Hilbert basis, 185

Hilbert’s Nullstellensatz, 407

Hoffman-Kruskal theorem, 132

Hungarian method, 5, 149

ideal matrix, 184

implicit equality, 98

incidence matrix, 51

of a digraph, 134

of a graph, 145

incomparable representations, 47

inequality

Chvátal, 207

defining a face, 102

infeasibility certificate, 407

infinite relaxation, 254

instance, 17

integer

decomposition property, 189

Farkas lemma, 36

feasibility problem, 349

program, 2

integral

convex set, 130

flow, 140

polyhedron, 22

vector, 2

integrality gap, 229

intersection cut, 240

intersection graph, 51

interval lemma, 261

irredundant constraint, 104

452 INDEX

isomorphic
nodes, 372
solutions, 372

isomorphism pruning, 373

j-cut, 226

Karmarkar’s algorithm, 18
Khinchine’s flatness theorem, 357
knapsack

polytope, 100
problem, 45
set, 45

Kronecker approximation theorem,
36

Kruskal’s algorithm, 155
kth split closure, 203

Löner-John theorem, 359
Lagrangian

dual, 320
relaxation, 320

laminar, 188
Lasserre

hierarchy, 400
relaxation, 400

lattice, 350
basis, 350
determinant, 350
generated by a matrix, 350
reduced basis, 352
width, 356

lattice-free convex set, 242
left child, 374
length of a path, 137
Lenstra’s algorithm, 361
lexicographically

larger vector, 214
optimal basis, 214

lift-and-project
closure, 222

inequality, 222
lifted flow cover inequality, 295
lifting, 283

a valid function for Rf , 271
function, 288

function for flow cover, 295
sequence independent, 287

sequential, 284
lineality space, 97

linear
combination, 91

independence, 91
relaxation, 3

space, 91
linear programming, 3, 17, 89

bounding, 9
duality, 90
relaxation, 3

linearly isomorphic polytopes, 180
literal, 58

LLL algorithm, 351
local branching, 368

local cut, 307
logical inference, 59

lot sizing, 78
Lovász’ basis reduction algorithm,

351

Lovász-Scarf algorithm, 379
Lovász-Schrijver

procedure, 393
relaxation, 392

lrs, 121

machine scheduling, 74

master problem, 332, 338
matching, 145

polytope, 146, 150, 181
max-cut problem, 56, 389

max-flow min-cut theorem, 141
maximal clique, 52

INDEX 453

maximal lattice-free convex set, 249
maximum cardinality matching, 145
maximum flow problem, 140
membership problem, 208
metaheuristic, 37
Meyer’s theorem, 159
Miller-Tucker-Zemlin formulation,

63, 136
MILP feasibility problem, 164
min-cut problem, 56, 140
minimal

cover, 46, 282
cover inequality, 69, 282
face, 108
lifting of a function, 271
representation of a polyhedron,

105
transversal, 54
valid function for Gf , 256
valid function for Mf , 255
valid function for Rf , 264

minimum weight
s, t-cut problem, 55
perfect matching problem, 149

Minkowski function, 248
Minkowski sum, 95
Minkowski-Weyl theorem, 96

for cones, 94
for polyhedra, 95
for polytopes, 97

MIX, 66
mixed 0, 1 linear

program, 3
set, 2

mixed integer
infinite relaxation, 268
linear program, 2
linear representable set, 171
linear set, 2
rounding closure, 206

rounding inequality, 206

mixing

inequalities, 163

set, 66, 161

moment matrix, 400

natural linear relaxation, 3

natural linear programming
relaxation, 3

negative-length circuit, 138

neighborly polytope, 110

network design, 69

node

covered by a matching, 145

of an enumeration tree, 10, 363

selection, 366

to the left of another node, 374

nonnegative rank, 174

nontrivial inequality, 239

normalization constraint, 228

notation

big O, 18

NP, 19

NP-complete, 20

NP-hard, 20

octahedron, 117

odd cut inequality, 151

odd cycle, 56

inequality, 317

one-tree, 323

operating rooms scheduling
problem, 65, 371

optimal basis, 115

optimality cut, 338

optimization problem, 307

oracle-polynomial time, 314

orbit, 376

orbital fixing, 376

454 INDEX

orthogonality defect, 351
orthogonal complement, 119

packing, 51
partitioning, 51
perfect

formulation, 22, 129
graph, 53, 392

matching, 145
matching polytope, 146, 151

matrix, 184
periodic function, 256

permutahedron, 100, 106
permutation, 371

piecewise-linear function, 266
in [0, 1], 259

pointed polyhedron, 97
polar, 119
polyhedral

approach, 37
polyhedral cone, 94

polyhedron, 94
integral, 130

polynomial algorithm, 18
polynomial-time algorithm, 18

polynomially bounded function, 17
polytope, 95

verification, 123
Porta, 121
positive

definite, 388
semidefinite, 387

positively homogeneous, 248
potential function, 355

premise, 59
preprocessing, 369

pricing problem, 333
primal feasible basis, 115

primal method, 38
principal submatrix, 389

problem, 17
program

mixed integer linear, 2

pure integer linear, 1

projection, 116
cone, 118

proper

cut, 55

propositional logic, 58
pruning, 363

by bound, 7

by infeasibility, 7

by integrality, 7
by isomorphism, 373

pseudocost, 365

pure integer infinite relaxation, 256

pure integer linear
program, 1

set, 2

QSTAB, 391

quadratic assignment problem, 72

Radon’s theorem, 114

rank
Chvátal, 209

split, 204

rational polyhedron, 94

ray
of a cone, 93

of a polyhedron, 97

recession cone, 97

rectangle
cover, 178

covering number, 178

reduced basis, 352

reduced cost, 115, 333
redundant constraint, 104

relative interior, 249

relatively prime, 28

INDEX 455

relaxation, 3
representation of a polyhedron, 104
residual digraph, 142

right child, 374
RINS, 369

round of cuts, 220
rounding polytopes, 356

s,t-cut, 55

s,t-flow, 139
s,t-path, 55

SAT, 59
satisfiability problem, 59

satisfied clause, 58
scheduling, 70

Schreier-Sims representation, 375
semidefinite program, 388

separation problem, 12, 307
sequence independent lifting, 287

sequential convexification theorem,
223

sequential lifting, 284
set

covering, 51, 53
packing, 51

packing family, 51
partitioning, 51

Sherali-Adams
hierarchy, 398

procedure, 399
shortest augmenting path

algorithm, 144

shortest path problem, 137
simple

circuit, 135
simple rounding inequality, 206

simplex method, 18
single-node flow set, 291

size of an instance, 17
skeleton of a polytope, 110

slack matrix, 175

sliding objective, 309

slope, 259

Smith normal form, 37

software, 371

solution

basic, 115

basic feasible, 115

SOS branching, 366

spanning tree, 153

polytope, 153

split, 196

closure, 197

disjunction, 196

inequality, 196

rank, 204

STAB, 106, 181, 391

stab, 51

stability number, 318

stabilizer, 376

stable set, 51

polytope, 106, 181

problem, 391, 404

standard equality form, 115

Steiner triple system, 58

stochastic integer program, 38

stochastic programming, 339

strictly feasible, 388

strong

branching, 365

duality, 89

subadditive, 248

subgradient, 325

algorithm, 326

sublinear, 248

submodular

function, 157

polyhedron, 157

456 INDEX

subtour elimination
constraints, 62, 64, 300
polytope, 302

Sudoku game, 60
superadditive function, 288
support of a vector, 54
supporting hyperplane, 102
symmetric traveling salesman

problem, 61, 299, 323
symmetry

breaking constraint, 371
condition, 256
group, 372
in integer programming, 371

tail of an arc, 134
TDI, 155
TH, 391
theorem of the alternative, 89
theta body, 391
tightness of formulation, 47
total dual integrality, 155
totally unimodular matrix, 131
tour, 61
trace of a square matrix, 180
transversal, 54
traveling salesman

polytope, 182, 300
problem, 61

trivial inequality, 239
trivial lifting, 271
truth assignment, 58
two-slope theorem, 263

uncapacitated facility location, 68,
322

undecidable problem, 20

undominated inequality, 202
unimodular

matrix, 31, 350
operations, 30, 353

union
of polyhedra, 166
of polytopes, 70

unique disjointness matrix, 178
up pseudocost, 365

valid
function, 254, 256, 264
inequality, 12, 101

variable
branching, 9, 364
cost, 67

variable fixing, 370
by bounds, 375

vehicle routing, 74
vertex

cover, 190
enumeration for a polytope,

123
of a polyhedron, 109

weak
optimization oracle, 313
optimization problem, 313
separation oracle, 313
separation problem, 313

web, 318
well-described family of polyhedra,

310
wheel, 315
witdh of a convex body, 356

Yannakakis’ theorem, 176

	Preface
	Contents
	1 Getting Started
	1.1 Integer Programming
	1.2 Methods for Solving Integer Programs
	1.2.1 The Branch-and-Bound Method
	1.2.2 The Cutting Plane Method
	1.2.3 The Branch-and-Cut Method

	1.3 Complexity
	1.3.1 Problems, Instances, Encoding Size
	1.3.2 Polynomial Algorithm
	1.3.3 Complexity Class NP

	1.4 Convex Hulls and Perfect Formulations
	1.4.1 Example: A Two-Dimensional Mixed Integer Set
	1.4.2 Example: A Two-Dimensional Pure Integer Set

	1.5 Connections to Number Theory
	1.5.1 The Greatest Common Divisor
	1.5.2 Integral Solutions to Systems of Linear Equations

	1.6 Further Readings
	1.7 Exercises

	2 Integer Programming Models
	2.1 The Knapsack Problem
	2.2 Comparing Formulations
	2.3 Cutting Stock: Formulations with Many Variables
	2.4 Packing, Covering, Partitioning
	2.4.1 Set Packing and Stable Sets
	2.4.2 Strengthening Set Packing Formulations
	2.4.3 Set Covering and Transversals
	2.4.4 Set Covering on Graphs: Many Constraints
	2.4.5 Set Covering with Many Variables: Crew Scheduling
	2.4.6 Covering Steiner Triples

	2.5 Generalized Set Covering: The Satisfiability Problem
	2.6 The Sudoku Game
	2.7 The Traveling Salesman Problem
	2.8 The Generalized Assignment Problem
	2.9 The Mixing Set
	2.10 Modeling Fixed Charges
	2.10.1 Facility Location
	2.10.2 Network Design

	2.11 Modeling Disjunctions
	2.12 The Quadratic Assignment Problemand Fortet's Linearization
	2.13 Further Readings
	2.14 Exercises

	3 Linear Inequalities and Polyhedra
	3.1 Fourier Elimination
	3.2 Farkas' Lemma
	3.3 Linear Programming
	3.4 Affine, Convex, and Conic Combinations
	3.4.1 Linear Combinations, Linear Spaces
	3.4.2 Affine Combinations, Affine Spaces
	3.4.3 Convex Combinations, Convex Sets
	3.4.4 Conic Combinations, Convex Cones

	3.5 Polyhedra and the Theorem of Minkowski–Weyl
	3.5.1 Minkowski–Weyl Theorem for Polyhedral Cones
	3.5.2 Minkowski–Weyl Theorem for Polyhedra

	3.6 Lineality Space and Recession Cone
	3.7 Implicit Equalities, Affine Hull, and Dimension
	3.8 Faces
	3.9 Minimal Representation and Facets
	3.10 Minimal Faces
	3.11 Edges and Extreme Rays
	3.12 Decomposition Theorem for Polyhedra
	3.13 Encoding Size of Vertices, Extreme Rays, and Facets
	3.14 Carathéodory's Theorem
	3.15 Projections
	3.16 Polarity
	3.17 Further Readings
	3.18 Exercises

	4 Perfect Formulations
	4.1 Properties of Integral Polyhedra
	4.2 Total Unimodularity
	4.3 Networks
	4.3.1 Circulations
	4.3.2 Shortest Paths
	4.3.3 Maximum Flow and Minimum Cut

	4.4 Matchings in Graphs
	4.4.1 Augmenting Paths
	4.4.2 Cardinality Bipartite Matchings
	4.4.3 Minimum Weight Perfect Matchingsin Bipartite Graphs
	4.4.4 The Matching Polytope

	4.5 Spanning Trees
	4.6 Total Dual Integrality
	4.7 Submodular Polyhedra
	4.8 The Fundamental Theoremof Integer Programming
	4.8.1 An Example: The Mixing Set
	4.8.2 Mixed Integer Linear Programming is in NP
	4.8.3 Polynomial Encoding of the Facets of the Integer Hull

	4.9 Union of Polyhedra
	4.9.1 Example: Modeling Disjunctions
	4.9.2 Example: All the Even Subsets of a Set
	4.9.3 Mixed Integer Linear Representability

	4.10 The Size of a Smallest Perfect Formulation
	4.10.1 Rectangle Covering Bound
	4.10.2 An Exponential Lower-Bound for the Cut Polytope
	4.10.3 An Exponential Lower-Bound for theMatching Polytope

	4.11 Further Readings
	4.12 Exercises

	5 Split and Gomory Inequalities
	5.1 Split Inequalities
	5.1.1 Inequality Description of the Split Closure
	5.1.2 Polyhedrality of the Split Closure
	5.1.3 Split Rank
	5.1.4 Gomory's Mixed Integer Inequalities
	5.1.5 Mixed Integer Rounding Inequalities

	5.2 Chvátal Inequalities
	5.2.1 The Chvátal Closure of a Pure Integer Linear Set
	5.2.2 Chvátal Rank
	5.2.3 Chvátal Inequalities for Other Formsof the Linear System
	5.2.4 Gomory's Fractional Cuts
	5.2.5 Gomory's Lexicographic Method for PureInteger Programs

	5.3 Gomory's Mixed Integer Cuts
	5.4 Lift-and-Project
	5.4.1 Lift-and-Project Rank for Mixed 0,1Linear Programs
	5.4.2 A Finite Cutting Plane Algorithm for Mixed 0,1Linear Programming

	5.5 Further Readings
	5.6 Exercises

	6 Intersection Cuts and Corner Polyhedra
	6.1 Corner Polyhedron
	6.2 Intersection Cuts
	6.2.1 The Gauge Function
	6.2.2 Maximal Lattice-Free Convex Sets

	6.3 Infinite Relaxations
	6.3.1 Pure Integer Infinite Relaxation
	Extreme Valid Functions and the Two-Slope Theorem

	6.3.2 Continuous Infinite Relaxation
	6.3.3 The Mixed Integer Infinite Relaxation
	6.3.4 Trivial and Unique Liftings

	6.4 Further Readings
	6.5 Exercises

	7 Valid Inequalities for Structured Integer Programs
	7.1 Cover Inequalities for the 0,1 Knapsack Problem
	7.2 Lifting
	7.2.1 Lifting Minimal Cover Inequalities
	7.2.2 Lifting Functions, Superadditivity, and SequenceIndependent Lifting
	7.2.3 Sequence Independent Lifting for MinimalCover Inequalities

	7.3 Flow Cover Inequalities
	7.4 Faces of the Symmetric Traveling Salesman Polytope
	7.4.1 Separation of Subtour Elimination Constraints
	7.4.2 Comb Inequalities
	7.4.3 Local Cuts

	7.5 Equivalence Between Optimizationand Separation
	7.6 Further Readings
	7.7 Exercises

	8 Reformulations and Relaxations
	8.1 Lagrangian Relaxation
	8.1.1 Examples
	Uncapacitated Facility Location
	Traveling Salesman Problem

	8.1.2 Subgradient Algorithm

	8.2 Dantzig–Wolfe Reformulation
	Relation with the Lagrangian Dual
	8.2.1 Problems with Block Diagonal Structure
	8.2.2 Column Generation
	8.2.3 Branch-and-Price

	8.3 Benders Decomposition
	8.4 Further Readings
	Lagrangian Relaxation
	Cutting Stock
	Dantzig–Wolfe Reformulation and Column Generation
	Benders Reformulation

	8.5 Exercises

	9 Enumeration
	9.1 Integer Programming in Fixed Dimension
	9.1.1 Basis Reduction
	9.1.2 The Flatness Theorem and Rounding Polytopes
	9.1.3 Lenstra's Algorithm

	9.2 Implementing Branch-and-Cut
	9.3 Dealing with Symmetries
	Isomorphism Pruning
	Orbital Fixing

	9.4 Further Readings
	Integer Programming in Fixed Dimension
	Computational Aspects of Branch-and-Bound
	Dealing with Symmetry

	9.5 Exercises

	10 Semidefinite Bounds
	10.1 Semidefinite Relaxations
	10.2 Two Applications in Combinatorial Optimization
	10.2.1 The Max-Cut Problem
	10.2.2 The Stable Set Problem

	10.3 The Lovász–Schrijver Relaxation
	10.3.1 Semidefinite Versus Linear Relaxations
	10.3.2 Connection with Lift-and-Project
	10.3.3 Iterating the Lovász–Schrijver Procedure

	10.4 The Sherali–Adams and Lasserre Hierarchies
	10.4.1 The Sherali–Adams Hierarchy
	10.4.2 The Lasserre Hierarchy
	An Application to the Stable Set Problem

	10.5 Further Readings
	10.6 Exercises

	Bibliography
	Index

