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Preface

This book has grown out of various courses in commutative algebra that
I have taught in Heidelberg and Munich. Its primary objective is to serve
as a guide for an introductory graduate course of one or two semesters, or
for self-study. I have striven to craft a text that presents the concepts at the
center of the field in a coherent, tightly knit way, with streamlined proofs
and a focus on the core results. Needless to say, for an imperfect writer like
me, such high-flying goals will always remain elusive. To introduce readers
to the more recent algorithmic branch of the subject, one part of the book
is devoted to computational methods. Virtually all concepts and results of
commutative algebra have natural geometric interpretations. In fact, it is the
geometric viewpoint that brings out the “true meaning” of the theory. This is
why the first part of the book is entitled “The Algebra–Geometry Lexicon,”
and why I have tried to keep a focus on the geometric context throughout.
I hope that this will make the theory more alive for readers, more meaningful,
more visual, and easier to remember.

I welcome any comments, suggestions for improvements, and error reports
from readers. Please send them to kemper@ma.tum.de.

Acknowledgments. First and foremost, I thank the students who attended
the three courses on commutative algebra that I have taught at Heidelberg
and Munich. This book has benefited greatly from their participation. Partic-
ularly fruitful was the last course, given in 2008, in which I awarded one euro
for every mistake in the manuscript that the students reported. This method
was so successful that it cost me a small fortune. I would like to mention Peter
Heinig in particular, who brought to my attention innumerable mistakes and
quite a few didactic subtleties.

I am also grateful to Gert-Martin Greuel, Bernd Ulrich, Robin Hartshorne,
Viet-Trung Ngo, Dale Cutkosky, Martin Kohls, and Steve Gilbert for inter-
esting conversations.

My interest in commutative algebra grew out of my main research interest,
invariant theory. In particular, the books by Sturmfels [50] and Benson [4],
although they do not concentrate on commutative algebra, first awakened my

vii
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fascination for it. So my thanks go to Bernd Sturmfels and David Benson,
too.

Last but not least, I am grateful to David Kramer for his outstanding job
of copyediting the manuscript, to the anonymous referees, and to the people
at Springer for the swift and efficient handling of the publication process.

Munich
November 2010

Gregor Kemper
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Introduction

How To Use This Book

The main intention of this book is to provide material for an introductory
graduate course of one or two semesters. The duration of the course clearly
depends on such parameters as speed and teaching hours per week and on
how much material is covered. In the book, I have indicated three options
for skipping material. For example, one possibility is to omit Chapter 10 and
most of Section 7.2. Another is to skip Chapters 9–11 almost entirely. But
apart from these options, interdependencies in the text are close enough to
make it hard to skip material without tearing holes into proofs that come
later. So the instructor can best limit the amount of material by choosing
where to stop. A relatively short course would stop after Chapter 8, while
other natural stopping points are after Chapters 11 or 13.

The book contains a total of 143 exercises. Some of them deal with exam-
ples that illustrate definitions (such as an example of an Artinian module
that is not Noetherian) or shed some light on the necessity of hypotheses
of theorems (such as an example in which the principal ideal theorem fails
for a non-Noetherian ring). Others give extensions to the theory (such as a
series of exercises that deal with formal power series rings), and yet others
invite readers to do computations on examples. These examples often come
from geometry and also serve to illustrate the theory (such as examples of
desingularization of curves). Some exercises depend on others, as is usually
indicated in the hints for the exercise. However, no theorem, proposition,
lemma, or corollary in the text depends on results from the exercises. I put a
star by some exercises to indicate that I consider them more difficult. Solu-
tions to all exercises are collected in a solutions manual, which is available
for instructors.

Although the ideal way of using the book is to read it from beginning to
end (every author desires such readers!), an extensive subject index should
facilitate a less linear navigation.

G. Kemper, A Course in Commutative Algebra, Graduate Texts
in Mathematics 256, DOI 10.1007/978-3-642-03545-6 1,
c© Springer-Verlag Berlin Heidelberg 2011

1



2 Introduction

Prerequisites

Readers should have taken undergraduate courses in linear algebra and
abstract algebra. Everything that is assumed is contained in Lang’s book [33],
but certainly not everything in that book is assumed. Specifically, readers
should have a grasp of the following subjects:

• definition of a (commutative) ring,
• ideals, prime ideals, and maximal ideals,
• zero divisors,
• quotient rings (also known as factor rings),
• subrings and homomorphisms of rings,
• principal ideal domains,
• factorial rings (also known as unique factorization domains),
• polynomial rings in several indeterminates,
• finite field extensions, and
• algebraically closed fields.

In accordance with the geometric viewpoint of this book, it sometimes uses
language from topology. Specifically, readers should know the definitions of
the following terms:

• topological space,
• closure of a set,
• subspace topology, and
• continuous map.

All these can be found in any textbook on topology, for example Bourbaki [6].

Contents

The first four chapters of the book have a common theme: building the
“Algebra–Geometry Lexicon,” a machine that translates geometric notions
into algebraic ones and vice versa. The opening chapter deals with Hilbert’s
Nullstellensatz, which translates between ideals of a polynomial ring and
affine varieties. The second chapter is about the basic theory of Noetherian
rings and modules. One result is Hilbert’s basis theorem, which says that
every ideal in a polynomial ring over a field is finitely generated. The results
from Chapter 2 are used in Chapter 3 to prove that affine varieties are made
up of finitely many irreducible components. That chapter also introduces the
Zariski topology, another important element of our lexicon, and the notion
of the spectrum of a ring, which allows us to interpret prime ideals as gen-
eralized points in a more abstract variant of geometry. Chapter 4 provides a
summary of the lexicon.

In any mathematical theory connected with geometry, dimension is a cen-
tral, but often subtle, notion. The four chapters making up the second part of
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the book relate to this notion. In commutative algebra, dimension is defined
by the Krull dimension, which is introduced in Chapter 5. The main result
of the chapter is that the dimension of an affine algebra coincides with its
transcendence degree. Chapter 6 is an interlude introducing an important
construction that is used throughout the book: localization. Along the way,
the notions of local rings and height are introduced. Chapter 6 sets up the con-
ceptual framework for proving Krull’s principal ideal theorem in Chapter 7.
That chapter also contains an investigation of fibers of morphisms, which
leads to the nice result that forming a polynomial ring over a Noetherian
ring increases the dimension by 1. Chapter 8 discusses the notions of integral
ring extensions and normal rings. One of the main results is the Noether
normalization theorem, which is then used to prove that all maximal chains
of prime ideals in an affine domain have the same length.

The third part of the book is devoted to computational methods. The-
oretical and algorithmic aspects go hand in hand in this part. The main
computational tool is Buchberger’s algorithm for calculating Gröbner bases,
which is developed in Chapter 9. As a first application, Gröbner bases are
applied to compute elimination ideals, which have important geometric
interpretations. Chapter 10, the second chapter of this part, continues the
investigation of fibers of morphisms started in Chapter 7. This chapter con-
tains a constructive version of Grothendieck’s generic freeness lemma. This
is one of the main ingredients of an algorithm for computing the image of a
morphism of affine varieties, probably a novelty. The chapter also contains
Chevalley’s result that the image of a morphism is a constructible set. The
results of Chapter 10 are not used elsewhere in the book, so there is an option
to skip that chapter and the parts of Chapter 7 that deal with fibers of mor-
phisms. Finally, Chapter 11 deals with the Hilbert function and Hilbert series
of an ideal in a polynomial ring. The main result, whose proof makes use of
Noether normalization, states that the Hilbert function is eventually repre-
sented by a polynomial whose degree is the dimension of the affine algebra
given by the ideal. This result leads to an algorithm for computing the dimen-
sion of an affine algebra, and it also plays an important role in Chapter 12
(which belongs to the fourth part of the book). Nevertheless, it is possible to
skip the third part of the book almost entirely by modifying some parts of
the text, as indicated in an exercise.

The fourth and last part of the book deals with local rings. Geometrically,
local rings relate to local properties of varieties. Chapter 12 introduces the
associated graded ring and presents a new characterization of the dimension
of a local ring. Chapter 13 studies regular local rings, which correspond to
nonsingular points of a variety. An important result is the Jacobian criterion
for calculating the singular locus of an affine variety. A consequence is that an
affine variety is nonsingular almost everywhere. The final chapter deals with
topics related to rings of dimension one. The starting point is the observation
that a Noetherian local ring of dimension one is regular if and only if it is
normal. From this it follows that affine curves can be desingularized. After an
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excursion to multiplicative ideal theory for more general rings, the attention
is focused to Dedekind domains, which are characterized as “rings with a
perfect multiplicative ideal theory.” The chapter closes with an application
that explains how the group law on an elliptic curve can be defined by means
of multiplicative ideal theory.

Further Reading

The contents of a book may also be described by what is missing. Since this
book is relatively short and concentrates on the central issues, it pays a price
in comprehensiveness. Homological concepts and methods should probably
appear at the top of the list of what is missing. In particular, the book does
not treat syzygies, resolutions, and Tor and Ext functors. As a consequence,
depth and the Cohen–Macaulay property cannot be dealt with sensibly (and
would require much more space in any case), so only one exercise touches
on Cohen–Macaulay rings. Flat modules are another topic that relates to
homological methods and is not treated. The subject of completion is also
just touched on. I have decided not to include associated primes and primary
decomposition in the book, although these topics are often regarded as rather
basic and central, because they are not needed elsewhere in the book.

All the topics mentioned above are covered in the books by Matsumura [37]
and Eisenbud [17], which I warmly recommend for further reading. Of these
books, [37] presents the material in a more condensed way, while [17] shares
the approach of this book in its focus on the geometric context and in its
inclusion of Gröbner basis methods. Eisenbud’s book, more than twice as
large as this one, is remarkable because it works as a textbook but also
contains a lot of material that appeals to experts.

Apart from deepening their knowledge in commutative algebra, readers of
this book may continue their studies in different directions. One is algebraic
geometry. Hartshorne’s textbook [26] still seems to be the authoritative source
on the subject, but Harris [25] and Smith et al. [47] (to name just two) provide
more recent alternatives. Another possible direction to go in is computational
commutative algebra. A list of textbooks on this appears at the beginning of
Chapter 9 of this book. I especially recommend the book by Cox et al. [12],
which does a remarkable job of blending aspects of geometry, algebra, and
computation.
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The Algebra–Geometry Lexicon





Chapter 1

Hilbert’s Nullstellensatz

Hilbert’s Nullstellensatz may be seen as the starting point of algebraic geom-
etry. It provides a bijective correspondence between affine varieties, which are
geometric objects, and radical ideals in a polynomial ring, which are algebraic
objects. In this chapter, we give proofs of two versions of the Nullstellensatz.
We exhibit some further correspondences between geometric and algebraic
objects. Most notably, the coordinate ring is an affine algebra assigned to an
affine variety, and points of the variety correspond to maximal ideals in the
coordinate ring.

Before we get started, let us fix some conventions and notation that will
be used throughout the book. By a ring we will always mean a commutative
ring with an identity element 1. In particular, there is a ring R = {0}, the
zero ring, in which 1 = 0. A ring R is called an integral domain if R has
no zero divisors (other than 0 itself) and R �= {0}. A subring of a ring R
must contain the identity element of R, and a homomorphism R→ S of rings
must send the identity element of R to the identity element of S.

If R is a ring, an R-algebra is defined to be a ring A together with a
homomorphism α: R → A. In other words, by an algebra we will mean a
commutative, associative algebra with an identity element. A subalgebra
of an algebra A is a subring that contains the image α(R). If A and B
are R-algebras with homomorphisms α and β, then a map ϕ: A → B is
called a homomorphism of (R-)algebras if ϕ is a ring homomorphism,
and ϕ ◦ α = β. If A is a nonzero algebra over a field K, then the map α is
injective, so we may view K as a subring of A. With this identification, a
homomorphism of nonzero K-algebras is just a ring homomorphism fixing K
elementwise.

One of the most important examples of an R-algebra is the ring of
polynomials in n indeterminates with coefficients in R, which is written
as R[x1, . . . , xn]. If A is any R-algebra and a1, . . . , an ∈ A are elements,
then there is a unique algebra homomorphism ϕ: R[x1, . . . , xn] → A with
ϕ(xi) = ai, given by applying α to the coefficients of a polynomial and sub-
stituting xi by ai. Clearly the image of ϕ is the smallest subalgebra of A

G. Kemper, A Course in Commutative Algebra, Graduate Texts
in Mathematics 256, DOI 10.1007/978-3-642-03545-6 2,
c© Springer-Verlag Berlin Heidelberg 2011
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8 1 Hilbert’s Nullstellensatz

containing all ai, i.e., the subalgebra of A generated by the ai. We write this
image as R[a1, . . . , an], which is consistent with the notation R[x1, . . . , xn]
for a polynomial ring. We say that A is finitely generated if there exist
a1, . . . , an with A = R[a1, . . . , an]. Thus an algebra is finitely generated if and
only if it is isomorphic to the quotient ring R[x1, . . . , xn]/I of a polynomial
ring by an ideal I ⊆ R[x1, . . . , xn]. By an affine (K-)algebra we mean a
finitely generated algebra over a field K. An affine (K-)domain is an affine
K-algebra that is an integral domain.

Recall that the definition of a module over a ring is identical to the def-
inition of a vector space over a field. In particular, an ideal in a ring R is
the same as a submodule of R viewed as a module over itself. Recall that a
module does not always have a basis (= a linearly independent generating
set). If it does have a basis, it is called free. If M is an R-module and S ⊆M
is a subset, we write (S)R = (S) for the submodule of M generated by S, i.e.,
the set of all R-linear combinations of S. (The index R may be omitted if it
is clear which ring we have in mind.) If S = {m1, . . . ,mk} is finite, we write
(S)R = (m1, . . . ,mk)R = (m1, . . . ,mk). In particular, if a1, . . . , ak ∈ R are
ring elements, then (a1, . . . , ak)R = (a1, . . . , ak) denotes the ideal generated
by them.

1.1 Maximal Ideals

Let a ∈ A be an element of a nonzero algebra A over a field K. As in field
theory, a is said to be algebraic (overK) if there exists a nonzero polynomial
f ∈ K[x] with f(a) = 0. We say that A is algebraic (overK) if every element
from A is algebraic. Almost everything that will be said about affine algebras
in this book has its starting point in the following lemma.

Lemma 1.1 (Fields and algebraic algebras). Let A be an algebra over a field
K.

(a) If A is an integral domain and algebraic over K, then A is a field.
(b) If A is a field and is contained in an affine K-domain, then A is algebraic.

Proof. (a) We need to show that every a ∈ A \ {0} is invertible in A. For
this, it suffices to show that K[a] is a field. We may therefore assume that
A = K[a]. With x an indeterminate, let I ⊆ K[x] be the kernel of the map
K[x]→ A, f �→ f(a). Then A ∼= K[x]/I. Since A is an integral domain,
I is a prime ideal, and since a is algebraic over K, I is nonzero. Since
K[x] is a principal ideal domain, it follows that I = (f) with f ∈ K[x]
irreducible, so I is a maximal ideal. It follows that A ∼= K[x]/I is a field.

(b) By way of contradiction, assume that A has an element a1 that is
not algebraic. By hypothesis, A is contained in an affine K-domain
B = K[a1, . . . , an] (we may include a1 in the set of generators). We
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can reorder a2, . . . , an in such a way that {a1, . . . , ar} forms a maxi-
mal K-algebraically independent subset of {a1, . . . , an}. Then the field
of fractions Quot(B) of B is a finite field extension of the subfield L :=
K(a1, . . . , ar). For b ∈ Quot(B), multiplication by b gives an L-linear
endomorphism of Quot(B). Choosing an L-basis of Quot(B), we obtain
a map ϕ: Quot(B) → Lm×m assigning to each b ∈ Quot(B) the repre-
sentation matrix of this endomorphism. Let g ∈ K[a1, . . . , ar] \ {0} be a
common denominator of all the matrix entries of all ϕ(ai), i = 1, . . . , n.
So ϕ(ai) ∈ K[a1, . . . , ar, g

−1]m×m for all i. Since ϕ preserves addition
and multiplication, we obtain

ϕ(B) ⊆ K[a1, . . . , ar, g
−1]m×m.

K[a1, . . . , ar] is isomorphic to a polynomial ring and therefore factorial
(see, for example, Lang [33, Chapter V, Corollary 6.3]). Take a factoriza-
tion of g, and let p1, . . . , pk be those irreducible factors of g that happen
to lie in K[a1]. Let p ∈ K[a1] be an arbitrary irreducible element. Then
p−1 ∈ A ⊆ B since K[a1] ⊆ A and A is a field. Applying ϕ to p−1 yields
a diagonal matrix with all entries equal to p−1, so there exists a nonneg-
ative integer s and an f ∈ K[a1, . . . , ar] with p−1 = g−s · f , so gs = p · f .
By the irreducibility of p, it follows that p is a K-multiple of one of the
pi. Since this holds for all irreducible elements p ∈ K[a1], every element
from K[a1] \ K is divisible by at least one of the pi. But none of the
pi divides

∏k
i=1 pi + 1. This is a contradiction, so all elements of A are

algebraic. 	

The following proposition is an important application of Lemma 1.1. A

particularly interesting special case of the proposition is that A ⊆ B is a
subalgebra and ϕ is the inclusion.

Proposition 1.2 (Preimages of maximal ideals). Let ϕ: A→ B be a homo-
morphism of algebras over a field K, and let m ⊂ B be a maximal ideal. If B
is finitely generated, then the preimage ϕ−1(m) ⊆ A is also a maximal ideal.

Proof. The map A→ B/m, a �→ ϕ(a)+m, has kernel ϕ−1(m) =: n. So A/n is
isomorphic to a subalgebra of B/m. By Lemma 1.1(b), B/m is algebraic over
K. Hence the same is true for the subalgebra A/n, and A/n is also an integral
domain. By Lemma 1.1(a), A/n is a field and therefore n is maximal. 	

Example 1.3. We give a simple example that shows that intersecting a max-
imal ideal with a subring does not always produce a maximal ideal. Let
A = K[x] be a polynomial ring over a field and let B = K(x) be the rational
function field. Then m := {0} ⊂ B is a maximal ideal, but A ∩ m = {0} is
not maximal in A. �

Before drawing a “serious” conclusion from Proposition 1.2 in Proposi-
tion 1.5, we need a lemma.
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Lemma 1.4. Let K be a field and P = (ξ1, . . . , ξn) ∈ Kn a point in Kn.
Then the ideal

mP := (x1 − ξ1, . . . , xn − ξn) ⊆ K[x1, . . . , xn]

in the polynomial ring K[x1, . . . , xn] is maximal.

Proof. It is clear from the definition of mP that every polynomial f ∈
K[x1, . . . , xn] is congruent to f(ξ1, . . . , ξn) modulo mP . It follows that mP is
the kernel of the homomorphism ϕ: K[x1, . . . , xn] → K, f �→ f(ξ1, . . . , ξn),
so K[x1, . . . , xn]/mP

∼= K. This implies the result. 	

Together with Lemma 1.4, the following proposition describes all maximal

ideals in a polynomial ring over an algebraically closed field. Recall that a
field K is called algebraically closed if every nonconstant polynomial in K[x]
has a root in K.

Proposition 1.5 (Maximal ideals in a polynomial ring). Let K be an alge-
braically closed field, and let m ⊂ K[x1, . . . , xn] be a maximal ideal in a
polynomial ring over K. Then there exists a point P = (ξ1, . . . , ξn) ∈ Kn

such that
m = (x1 − ξ1, . . . , xn − ξn) .

Proof. By Proposition 1.2, the intersection K[xi] ∩ m is a maximal ideal in
K[xi] for each i = 1, . . . , n. Since K[xi] is a principal ideal domain, K[xi]∩m
has the form (pi)K[xi] with pi an irreducible polynomial. Since K is alge-
braically closed, we obtain (pi)K[xi] = (xi − ξi)K[xi] with ξi ∈ K. So there
exist ξ1, . . . , ξn ∈ K with xi − ξi ∈ m. With the notation of Lemma 1.4, it
follows that mP ⊆ m, so m = mP by Lemma 1.4. 	


We make a definition before giving a refined version of Proposition 1.5.

Definition 1.6. Let K[x1, . . . , xn] be a polynomial ring over a field.

(a) For a set S ⊆ K[x1, . . . , xn] of polynomials, the affine variety given by
S is defined as

V(S) = VKn(S) := {(ξ1, . . . , ξn) ∈ Kn | f(ξ1, . . . , ξn) = 0 for all f ∈ S} .

The index Kn is omitted if no misunderstanding can occur.
(b) A subset X ⊆ Kn is called an affine (K-)variety if X is the affine

variety given by a set S ⊆ K[x1, . . . , xn] of polynomials.

Remark. In the literature, affine varieties are sometimes assumed to be
irreducible. Moreover, the definition of an affine variety is sometimes made
only in the case that K is algebraically closed. �

Theorem 1.7 (Correspondence points–maximal ideals). Let K be an alge-
braically closed field and S ⊆ K[x1, . . . , xn] a set of polynomials. Let MS be
the set of all maximal ideals m ⊂ K[x1, . . . , xn] with S ⊆ m. Then the map
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Φ: V(S)→MS , (ξ1, . . . , ξn) �→ (x1 − ξ1, . . . , xn − ξn)

is a bijection.

Proof. Let P := (ξ1, . . . , ξn) ∈ V(S). Then Φ(P ) is a maximal ideal by
Lemma 1.4. All f ∈ S satisfy f(P ) = 0, so f ∈ Φ(P ). It follows that
Φ(P ) ∈ MS . On the other hand, let m ∈ MS . By Proposition 1.5,
m = (x1 − ξ1, . . . , xn − ξn) with (ξ1, . . . , ξn) ∈ Kn, and S ⊆ m implies
(ξ1, . . . , ξn) ∈ V(S). This shows that Φ is surjective.

To show injectivity, let P = (ξ1, . . . , ξn) and Q = (η1, . . . , ηn) be points
in V(S) with Φ(P ) = Φ(Q) =: m. For each i, we have xi − ξi ∈ m and
also xi − ηi ∈ m, so ξi − ηi ∈ m. This implies ξi = ηi, since otherwise
m = K[x1, . . . , xn]. 	

Corollary 1.8 (Hilbert’s Nullstellensatz, first version). Let K be an alge-
braically closed field and let I � K[x1, . . . , xn] be a proper ideal in a
polynomial ring. Then

V(I) �= ∅.
Proof. Consider the set of all proper ideals J � K[x1, . . . , xn] containing I.
Using Zorn’s lemma, we conclude that this set contains a maximal element
m. (Instead of Zorn’s lemma, we could also use the fact that K[x1, . . . , xn] is
Noetherian (see Corollary 2.13). But even then, the axiom of choice, which is
equivalent to Zorn’s lemma, would have to be used to do the proof without
cheating. See Halmos [24] to learn more about Zorn’s lemma and the axiom
of choice.) So m is a maximal ideal with I ⊆ m. Now V(I) �= ∅ follows by
Theorem 1.7. 	

Remark. (a) To see that the hypothesis that K is algebraically closed can-

not be omitted from Corollary 1.8, consider the example K = R and
I = (x2 + 1) � R[x].

(b) Hilbert’s Nullstellensatz is really a theorem about systems of polynomial
equations. Indeed, let f1, . . . , fm ∈ K[x1, . . . , xn] be polynomials. If there
exist polynomials g1, . . . , gm ∈ K[x1, . . . , xn] such that

m∑

i=1

gifi = 1, (1.1)

then obviously the system of equations

fi(ξ1, . . . , ξn) = 0 for i = 1, . . . ,m (1.2)

has no solutions. But the existence of g1, . . . , gm satisfying (1.1) is
equivalent to the condition (f1, . . . , fm) = K[x1, . . . , xn]. So Hilbert’s
Nullstellensatz says that if the obvious obstacle (1.1) to solvability does
not exist, and if K is algebraically closed, then indeed the system (1.2)
is solvable. In other words, for algebraically closed fields, the obvious
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obstacle to the solvability of systems of polynomial equations is the
only one! In Chapter 9 we will see how it can be checked algorithmically
whether the obstacle (1.1) exists (see (9.4) on page 123). �

1.2 Jacobson Rings

The main goal of this section is to prove the second version of Hilbert’s
Nullstellensatz (Theorem 1.17). We start by defining the spectrum and the
maximal spectrum of a ring.

Definition 1.9. Let R be a ring.

(a) The spectrum of R is the set of all prime ideals in R:

Spec(R) := {P ⊂ R | P is a prime ideal} .

(b) The maximal spectrum of R is the set of all maximal ideals in R:

Specmax(R) := {P ⊂ R | P is a maximal ideal} .

(c) We also define the Rabinowitsch spectrum of R as the set

Specrab(R) := {R ∩m | m ∈ Specmax(R[x])} ,

where R[x] is the polynomial ring over R. This is an ad hoc definition,
which is not found in the standard literature and will be used only within
this section.

Remark. The idea of using an additional indeterminate for proving the sec-
ond version of Hilbert’s Nullstellensatz goes back to J. L. Rabinowitsch [45],
and is often referred to as Rabinowitsch’s trick. This made my student Martin
Kohls suggest that the set from Definition 1.9(c) be called the Rabinowitsch
spectrum. �

We have the inclusions

Specmax(R) ⊆ Specrab(R) ⊆ Spec(R).

Indeed, the second inclusion follows since for any prime ideal P ⊂ S in a
ring extension S of R, the intersection R ∩ P is a prime ideal in R. The
first inclusion is proved in Exercise 1.3. Only the second inclusion will be
used in this book. Exercise 1.4 gives an example in which both inclusions
are strict. The importance of the Rabinowitsch spectrum is highlighted by
Proposition 1.11.

Recall that for an ideal I ⊆ R in a ring R, the radical ideal of I is defined
as √

I :=
{
f ∈ R | there exists a positive integer k with fk ∈ I} .
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I is called a radical ideal if
√
I = I. For example, a nonzero ideal (a) ⊆ Z

is radical if and only if a is square-free. Recall that every prime ideal is a
radical ideal.

Lemma 1.10. Let R be a ring, I ⊆ R an ideal, andM⊆ Spec(R) a subset.
Then √

I ⊆
⋂

P∈M,
I⊆P

P.

If there exist no P ∈ M with I ⊆ P , the intersection is to be interpreted as
R.

Proof. Let a ∈ √I, so ak ∈ I for some k. Let P ∈ M with I ⊆ P . Then
ak ∈ P . Since P is a prime ideal, it follows that a ∈ P . 	

Proposition 1.11 (The raison d’être of the Rabinowitsch spectrum). Let I
⊆ R be an ideal in a ring. Then

√
I =

⋂

P∈Specrab(R),
I⊆P

P.

If there exist no P ∈ Specrab(R) with I ⊆ P , the intersection is to be
interpreted as R.

Proof. The inclusion “⊆” follows from Lemma 1.10 and the fact that
Specrab(R) ⊆ Spec(R).

To prove the reverse inclusion, let a be in the intersection of all P ∈
Specrab(R) with I ⊆ P . Consider the ideal

J := (I ∪ {ax− 1})R[x] ⊆ R[x]

generated by I and by ax − 1. Assume that J � R[x]. By Zorn’s lemma,
there exists m ∈ Specmax(R[x]) with J ⊆ m. We have I ⊆ R ∩ J ⊆ R ∩ m ∈
Specrab(R), so by hypothesis, a ∈ m. But also ax− 1 ∈ m, so m = R[x]. This
is a contradiction, showing that J = R[x]. In particular, we have

1 =
n∑

j=1

gjbj + g(ax− 1) (1.3)

with g, g1, . . . , gn ∈ R[x] and b1, . . . , bn ∈ I. Let R[x, x−1] be the ring of
Laurent polynomials and consider the map ϕ: R[x]→ R[x, x−1], f �→ f(x−1).
Applying ϕ to both sides of (1.3) and multiplying by some xk yields

xk =
n∑

j=1

hjbj + h(a− x) with hj = xkϕ(gj) and h = xk−1ϕ(g).
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For k ≥ max{deg(g1), . . . ,deg(gn), deg(g)+1}, all hj and h lie in R[x], so we
may substitute x = a in the above equation and obtain

ak =
n∑

j=1

hj(a)bj ∈ I,

so a ∈ √I. This completes the proof. 	

We get the following important consequence.

Corollary 1.12 (Intersecting prime ideals). Let R be a ring and I ⊆ R an
ideal. Then √

I =
⋂

P∈Spec(R),
I⊆P

P.

If there exist no P ∈ Spec(R) with I ⊆ P , the intersection is to be interpreted
as R.

Proof. This follows from Lemma 1.10 and Proposition 1.11. 	

Theorem 1.13 (Intersecting maximal ideals). Let A be an affine algebra
and I ⊆ A an ideal. Then

√
I =

⋂

m∈Specmax(A),
I⊆m

m.

If there exist no m ∈ Specmax(A) with I ⊆ m, the intersection is to be
interpreted as A.

Proof. The inclusion “⊆” again follows from Lemma 1.10.
Let P ∈ Specrab(A). Then P = A ∩ m with m ∈ Specmax(A[x]). But A[x]

is finitely generated as an algebra over a field, so by Proposition 1.2 it follows
that P ∈ Specmax(A). We conclude that

Specrab(A) ⊆ Specmax(A).

(In fact, equality holds, but we do not need this.) Now the inclusion “⊇”
follows from Proposition 1.11. 	


We pause here to make a definition, which is inspired by Theorem 1.13.

Definition 1.14. A ring R is called a Jacobson ring if for every proper
ideal I � R the equality

√
I =

⋂

m∈Specmax(R),
I⊆m

m

holds.
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So Theorem 1.13 says that every affine algebra is a Jacobson ring. A further
example is the ring Z of integers (see Exercise 1.6). So one wonders whether
the polynomial ring Z[x] is Jacobson, too. This is indeed the case. It is an
instance of the general fact that every finitely generated algebra A over a
Jacobson ring R is again a Jacobson ring. A proof is given in Eisenbud [17,
Theorem 4.19]. There we also find the following: If α is the homomorphism
making A into an R-algebra, then for every m ∈ Specmax(A) the preimage
α−1(m) is also maximal. This is in analogy to Proposition 1.2.

A typical example of a non-Jacobson ring is the formal power series ring
K[[x]] over a field K (see Exercise 1.2). A similar example is the ring of all
rational numbers with odd denominator.

We can now prove the second version of Hilbert’s Nullstellensatz. To
formulate it, a bit of notation is useful.

Definition 1.15. Let K be a field and X ⊆ Kn a set of points. The
(vanishing) ideal of X is defined as

I(X) = IK[x1,...,xn](X)
:= {f ∈ K[x1, . . . , xn] | f(ξ1, . . . , ξn) = 0 for all (ξ1, . . . , ξn) ∈ X} .

The index K[x1, . . . , xn] is omitted if no misunderstanding can occur.

Remark 1.16. It is clear from the definition that the ideal of a set of points
is always a radical ideal. �

Theorem 1.17 (Hilbert’s Nullstellensatz, second version). Let K be an
algebraically closed field and let I ⊆ K[x1, . . . , xn] be an ideal in a polynomial
ring. Then

I (V(I)) =
√
I.

Proof. We start by showing the inclusion “⊇”, which does not require K to
be algebraically closed. Let f ∈ √I, so fk ∈ I for some k. Take (ξ1, . . . , ξn) ∈
V(I). Then f(ξ1, . . . , ξn)k = 0, so f(ξ1, . . . , ξn) = 0. This shows that f ∈
I (V(I)).

For the reverse inclusion, assume f ∈ I (V(I)). In view of Theorem 1.13,
we need to show that f lies in every m ∈MI , where

MI = {m ∈ Specmax (K[x1, . . . , xn])| I ⊆ m} .

So let m ∈ MI . By Theorem 1.7, m = (x1 − ξ1, . . . , xn − ξn)K[x1,...,xn] with
(ξ1, . . . , ξn) ∈ V(I). This implies f(ξ1, . . . , ξn) = 0, so f ∈ m. This completes
the proof. 	


The following corollary is the heart of what we call the algebra–geometry
lexicon. We need an (easy) lemma.

Lemma 1.18. Let K be a field and X ⊆ Kn an affine variety. Then

V (I(X)) = X.
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Proof. By assumption, X = V(S) with S ⊆ K[x1, . . . , xn]. So S ⊆ I(X), and
applying V yields

V (I(X)) ⊆ V(S) = X ⊆ V (I(X)) .

The lemma follows. 	

Corollary 1.19 (Ideal–variety correspondence). Let K be an algebraically
closed field and n a positive integer. Then there is a bijection between the
sets

A := {I ⊆ K[x1, . . . , xn] | I is a radical ideal}
and

B := {X ⊆ Kn | X is an affine variety} ,
given by

A → B, I �→ V(I)

and the inverse map
B → A, X �→ I(X).

Both maps reverse inclusions, i.e., if I, J ∈ A, then

I ⊆ J ⇐⇒ V(J) ⊆ V(I),

and the corresponding statement holds for the inverse map.

Proof. If I ∈ A is a radical ideal, it follows from the Nullstellensatz
(Theorem 1.17) that I (V(I)) = I. On the other hand, take X ∈ B. Then
I(X) ∈ A by Remark 1.16, and V (I(X)) = X by Lemma 1.18. This shows
that the given maps are inverses to each other. The last statement follows
since I ⊆ J implies V(J) ⊆ V(I) for I, J ∈ A, and X ⊆ Y implies I(Y ) ⊆
I(X) for X,Y ∈ B. Now apply I and V to get the converse implications. 	


1.3 Coordinate Rings

The next part of the algebra–geometry lexicon is provided by assigning to an
affine variety X an affine algebra, the coordinate ring K[X ], which encodes
the properties of X .

Definition 1.20. Let K be a field and X ⊆ Kn an affine variety. Let I :=
I(X) ⊆ K[x1, . . . , xn] be the ideal of X. Then the coordinate ring of X is
the quotient ring

K[X ] := K[x1, . . . , xn]/I.

The coordinate ring is sometimes also called the ring of regular functions
on X.
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Remark 1.21. (a) Every element of the coordinate ring K[X ] of an affine
variety is a class f + I with f ∈ K[x1, . . . , xn]. Such a class yields a
well-defined function X → K, given by (ξ1, . . . , ξn) �→ f(ξ1, . . . , ξn), and
different classes yield different functions. So K[X ] can be identified with
an algebra of functions X → K. The functions from K[X ] are called
regular functions. They are precisely those functions X → K that are
given by polynomials.

(b) If X = V(J) with J ⊆ K[x1, . . . , xn] an ideal, then it is not necessarily
true that K[X ] = K[x1, . . . , xn]/J . However, if K is algebraically closed,
then K[X ] = K[x1, . . . , xn]/

√
J by the Nullstellensatz (Theorem 1.17). �

The following lemma compares ideals in a quotient ring R/I to ideals in
R. It is rather boring and elementary, but very important.

Lemma 1.22 (Ideals in quotient rings). Let R be a ring and let I ⊆ R be
an ideal. Consider the sets

A := {J ⊆ R | J is an ideal and I ⊆ J}

and
B := {J ⊆ R/I | J is an ideal} .

The map
Φ: A → B, J �→ {a+ I | a ∈ J} = J/I

is an inclusion-preserving bijection with inverse map

Ψ : B → A, J �→ {a ∈ R | a+ I ∈ J } .

If J ∈ A, then
R/J ∼= (R/I)

/
Φ(J), (1.4)

and there are equivalences

J is a prime ideal ⇐⇒ Φ(J) is a prime ideal

and
J is a maximal ideal ⇐⇒ Φ(J) is a maximal ideal.

Moreover, if J = (a1, . . . , an)R with ai ∈ R, then Φ(J) = (a1 + I, . . . , an +
I)R/I .

Proof. It is easy to check that Φ and Ψ are inclusion-preserving maps and
that Ψ ◦Φ = idA and Φ◦Ψ = idB. The isomorphism (1.4) follows since Φ(J) is
the kernel of the epimorphism R/I → R/J, a+I �→ a+J . Both equivalences
follow from (1.4). The last statement is also clear. 	


If X ⊆ Kn is an affine variety, then a subvariety is a subset Y ⊆ X that
is itself an affine variety in Kn. We can now prove a correspondence between
subvarieties of a variety and radical ideals in the coordinate ring.
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Theorem 1.23 (Correspondence subvarieties–radical ideals). Let X be an
affine variety over an algebraically closed field K. Then there is an inclusion-
reversing bijection between the set of subvarieties Y ⊆ X and the set of radical
ideals J ⊆ K[X ]. The bijection is given by mapping a subvariety Y ⊆ X to
I(Y )/I(X) ⊆ K[X ], and mapping an ideal J ⊆ K[X ] to

VX(J) := {x ∈ X | f(x) = 0 for all f ∈ J} .

If J ⊆ K[X ] is the ideal corresponding to a subvariety Y , then

K[Y ] ∼= K[X ]/J,

with an isomorphism given by K[X ]/J → K[Y ], f + J �→ f |
Y
.

Restricting our bijection to subvarieties consisting of one point yields a
bijection

X → Specmax (K[X ]) , x �→ I({x})/I(X).

Proof. All claims are shown by putting Corollary 1.19 and Lemma 1.22
together. 	


Another correspondence between points and algebraic objects that relates
to the coordinate ring is given in Exercise 1.11. The next theorem tells us
which types of rings occur as coordinate rings of affine algebras. To state it,
we need a definition.

Definition 1.24. Let R be a ring.

(a) An element a ∈ R is called nilpotent if there exists a positive integer k
with ak = 0.

(b) The set of all nilpotent elements is called the nilradical of R, written as
nil(R). (So the nilradical is equal to the radical ideal

√{0} of the zero
ideal, which by Corollary 1.12 is the intersection of all prime ideals.)

(c) R is called reduced if nil(R) = {0}. (In particular, every integral domain
is reduced.)

Theorem 1.25 (Coordinate rings and reduced algebras). Let K be a field.

(a) For every affine K-variety X, the coordinate ring K[X ] is a reduced affine
K-algebra.

(b) Suppose that K is algebraically closed, and let A be a reduced affine K-
algebra. Then there exists an affine K-variety X with K[X ] ∼= A.

Proof. (a) With I = I(X), we have K[X ] = K[x1, . . . , xn]/I, so K[X ] is an
affine algebra, and it is reduced since I is a radical ideal.

(b) Choose generators a1, . . . , an of A. Then the epimorphism

ϕ: K[x1, . . . , xn]→ A, f �→ f(a1, . . . , an)
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yields A ∼= K[x1, . . . , xn]/I with I = ker(ϕ). Since A is reduced, I is
a radical ideal. Set X := V(I). By the Nullstellensatz (Theorem 1.17),
I = I(X), so A ∼= K[X ]. 	


Remark. The affine variety X in Theorem 1.25(b) is not uniquely deter-
mined. In fact, in the proof we have given, X depends on the choice of the
generators of A. However, given the correct concept of an isomorphism of
varieties (see Definition 3.4), it can be shown that all affine varieties with
coordinate ring A are isomorphic. In fact, we get a bijective correspondence
between isomorphism classes of affine K-varieties and isomorphism classes of
reduced affine K-algebras. �

Exercises for Chapter 1

1.1 (Some counterexamples). Give examples which show that none of the
hypotheses in Lemma 1.1(a) and (b) and in Proposition 1.2 can be omitted.

1.2 (Formal power series ring). Consider the formal power series ring

K[[x]] :=
{ ∞∑

i=0

aix
i | ai ∈ K

}

over a field K.

(a) Show that K[[x]] is an integral domain.
(b) Show that all power series f =

∑∞
i=0 aix

i with a0 �= 0 are invertible in
K[[x]]. Assuming for a moment that K is only a ring, show that f is
invertible if and only if a0 is invertible in K.

(c) Show that K[[x]] has exactly one maximal ideal m, i.e., K[[x]] is a local
ring (see Definition 6.7).

(d) Show that K[[x]] is not a Jacobson ring.
(e) Show that the ring

L :=
{ ∞∑

i=k

aix
i | k ∈ Z, ai ∈ K

}

of formal Laurent series is a field. The field L of formal Laurent series is
often written as K((x)).

(f) Is K[[x]] finitely generated as a K-algebra?

1.3 (Maximal spectrum and Rabinowitsch spectrum). Let R be a
ring. Show that

Specmax(R) ⊆ Specrab(R).

(Solution on page 217)
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*1.4 (Three types of spectra). Let R = K[[y]] be the formal power series
ring over a field K, and let S = R[z] be a polynomial ring over R. Show that

Specmax(S) � Specrab(S) � Spec(S).

Hint: Consider the ideals (y)S and (z)S .

1.5 (Jacobson rings). Show that for verifying that a ring R is a Jacobson
ring it is enough to check that every prime ideal P ∈ Spec(R) is an
intersection of maximal ideals.

1.6 (Z is a Jacobson Ring). Show that the ring Z of integers is a Jacobson
ring.

1.7 (Explicit computations with a variety). Consider the ideal

I =
(
x4

1 + x4
2 + 2x2

1x
2
2 − x2

1 − x2
2

) ⊆ R[x1, x2].

(a) Determine X := V(I) ⊆ R2 and draw a picture.
(b) Is I a prime ideal? Is I a radical ideal?
(c) Does Hilbert’s Nullstellensatz (Theorem 1.17) hold for I?

1.8 (Colon ideals). If I and J ⊆ R are ideals in a ring, the colon ideal is
defined as

I : J := {a ∈ R | a · b ∈ I for all b ∈ J} .
In this exercise we give a geometric interpretation of the colon ideal.

(a) Set M := {P ∈ Spec(R) | I ⊆ P and J �⊆ P} and show that

√
I : J =

⋂

P∈M
P.

(b) Let K be a field and X,Y ⊆ Kn such that Y is an affine variety. Show
that

I(X) : I(Y ) = I (X \ Y ) .

1.9 (A generalization of Hilbert’s Nullstellensatz). Let K be a field
and K its algebraic closure. Let I ⊆ K[x1, . . . , xn] be an ideal in a polynomial
ring. Show that

IK[x1,...,xn] (VK
n(I)) =

√
I.

1.10 (Order-reversing maps). This exercise puts Corollary 1.19 and its
proof in a more general framework. Let A′ and B′ be two partially ordered
sets. Let ϕ: A′ → B′ and ψ: B′ → A′ be maps satisfying the following
properties:
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(1) If a1, a2 ∈ A′ with a1 ≤ a2, then ϕ(a1) ≥ ϕ(a2);
(2) if b1, b2 ∈ B′ with b1 ≤ b2, then ψ(b1) ≥ ψ(b2);
(3) if a ∈ A′, then ψ(ϕ(a)) ≥ a;
(4) if b ∈ B′, then ϕ(ψ(b)) ≥ b.
Set A := ψ(B′) and B := ϕ(B′), and show that the restriction

ϕ|A: A → B

is a bijection with inverse map ψ|B.
Remark: In the light of this exercise, all that is needed for the proof of Corol-
lary 1.9 is that all radical ideals in K[x1, . . . , xn] occur as vanishing ideals
of sets of points in Kn (which is a consequence of Theorem 1.17). Another
typical situation in which this exercise applies is the correspondence between
subgroups and intermediate fields in Galois theory.

1.11 (Points of a variety and homomorphisms). Let K be a (not nec-
essarily algebraically closed) field and X a K-variety. Construct a bijection
between X and the set

HomK (K[X ],K) := {ϕ: K[X ]→ K | ϕ is an algebra homomorphism} .

Remark: In the language of affine schemes, an algebra homomorphism K[X ]
→ K induces a morphism Spec(K)→ Spec(K[X ]). Such a morphism is called
a K-rational point of the affine scheme associated to X .





Chapter 2

Noetherian and Artinian Rings

In this chapter we develop the theory of Noetherian and Artinian rings. In the
first section, we will see that the Artin property, although in complete formal
analogy to the Noether property, implies the Noether property and is, in fact,
much more special (see Theorem 2.8). Both properties will also be considered
for modules. In the second section, we concentrate on the Noether property.
The most important results are Hilbert’s basis theorem (Corollary 2.13) and
its consequences. Using the Noether property often yields elegant but noncon-
structive proofs. The most famous example is Hilbert’s proof [27] that rings of
invariants of GLn and SLn are finitely generated, which for its nonconstruc-
tive nature drew sharp criticism from Gordan, the “king of invariant theory”
at the time, who exclaimed, “Das ist Theologie und nicht Mathematik!”1

2.1 The Noether and Artin Properties for Rings
and Modules

Definition 2.1. Let R be a ring and M an R-module.

(a) M is called Noetherian if the submodules of M satisfy the ascend-
ing chain condition, i.e., for submodules M1,M2,M3, . . . ⊆ M with
Mi ⊆ Mi+1 for all positive integers i, there exists an integer n such
that Mi = Mn for all i ≥ n. In other words, every strictly ascending
chain of submodules is finite.

(b) R is called Noetherian if R is Noetherian as a module over itself. In
other words, R is Noetherian if the ideals of R satisfy the ascending chain
condition.

(c) M is called Artinian if the submodules of M satisfy the descending chain
condition, i.e., for submodules M1,M2,M3, . . . ⊆M with Mi+1 ⊆Mi for

1 “This is theology and not mathematics.”

G. Kemper, A Course in Commutative Algebra, Graduate Texts
in Mathematics 256, DOI 10.1007/978-3-642-03545-6 3,
c© Springer-Verlag Berlin Heidelberg 2011
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all positive integers i, there exists an integer n such that Mi = Mn for
all i ≥ n.

(d) R is called Artinian if R is Artinian as a module over itself, i.e., if the
ideals of R satisfy the descending chain condition.

Example 2.2. (1) The ring Z of integers is Noetherian, since ascending chains
of ideals correspond to chains of integers a1, a2, . . . with ai+1 a divisor of
ai. So the well-ordering of the natural numbers yields the result.

(2) By the same argument, a polynomial ring K[x] over a field is Noetherian.
More trivially, every field is Noetherian.

(3) Let X be an infinite set and K a field (in fact, any nonzero ring will
do). The set R := KX of all functions from X to K forms a ring with
pointwise operations. For every subset Y ⊆ X , the set

IY := {f ∈ R | f vanishes on Y }

is an ideal of R. Since there are infinite strictly descending chains of
subsets of X , there are also infinite strictly ascending chains of ideals in
R. So R is not Noetherian.

(4) The rings Z and K[x] considered above are not Artinian.
(5) Every field and every finite ring or module is Artinian.
(6) The ring KX , as defined in (3), is Artinian if and only if X is a finite set.
(7) Let R := K[x] be a polynomial ring over a field. Then S := R/(x2) is

Artinian, and S is also Artinian as an R-module. �

The ring from Example 2.2(3) is a rather pathological example of a non-
Noetherian ring. In particular, it is not an integral domain. The following
provides a less pathological counterexample.
Example 2.3. Let S := K[x, y] be the polynomial ring in two indeterminates
over a field K. Consider the subalgebra

R := K + S · x = K[x, xy, xy2, xy3, . . .].

It is shown in Exercise 2.1 that R is not Noetherian. �

The following proposition shows that the Noether property and the Artin
property behave well with submodules and quotient modules.

Proposition 2.4 (Submodules and quotient modules). Let M be a module
over a ring R, and let N ⊆M be a submodule. Then the following statements
are equivalent:

(a) M is Noetherian.
(b) Both N and the quotient module M/N are Noetherian.

In particular, every quotient ring of a Noetherian ring is Noetherian.
All statements of this proposition hold with “Noetherian” replaced by

“Artinian.”
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Proof. First assume that M is Noetherian. It follows directly from Defini-
tion 2.1 that N is Noetherian, too. To show that M/N is Noetherian, let
U1, U2, . . . ⊆M/N be an ascending chain of submodules. With ϕ: M →M/N
the canonical epimorphism, set Mi := ϕ−1(Ui). This yields an ascending
chain of submodules of M . By hypothesis, there exists an n with Mi = Mn

for i ≥ n. Since ϕ(Mi) = Ui, it follows that Ui = Un for i ≥ n. So we have
shown that (a) implies (b).

Now assume that (b) is satisfied. To show (a), let M1,M2, . . . ⊆ M be
an ascending chain of submodules. We obtain an ascending chain ϕ(M1),
ϕ(M2), . . . ⊆ M/N of submodules of M/N . Moreover, the intersections N ∩
Mi ⊆ N yield an ascending chain of submodules of N . By hypothesis, there
exists an n such that for i ≥ n we have ϕ(Mi) = ϕ(Mn) andN∩Mi = N∩Mn.
We claim that also Mi = Mn for all i ≥ n. Indeed, let m ∈ Mi. Then there
exists an m′ ∈Mn with ϕ(m) = ϕ(m′), so

m−m′ ∈ N ∩Mi = N ∩Mn ⊆Mn.

We conclude that m = m′+(m−m′) ∈Mn. So the equivalence of (a) and (b)
is proved.

To prove the statement on quotient rings, observe that the ideals of
a quotient ring R/I are precisely the submodules of R/I viewed as an
R-module.

To get the proof for the case of Artinian modules, replace every occur-
rence of the word “ascending” in the above argument by “descending,” and
exchange “Mi” and “Mn” in the proof of Mi = Mn. ��

We need the following definition to push the theory further.

Definition 2.5 (Ideal product). Let R be a ring, I ⊆ R and ideal, and M
an R-module.

(a) The product of I and M is defined to be the abelian group generated by
all products a ·m of elements from I and elements from M . So

IM =
{ n∑

i=1

aimi

∣
∣
∣n ∈ N, ai ∈ I, and mi ∈M

}
.

Clearly IM ⊆M is a submodule.
(b) An interesting special case is that in which M = J is another ideal of R.

Then the product IJ is called the ideal product. Clearly the formation
of the ideal product is commutative and associative, and the rules

IJ ⊆ I ∩ J and
√
IJ =

√
I ∩ J

hold (check this!).
(c) For n ∈ N0, In denotes the product of n copies of I, with I0 := R.

The following lemma gives a connection between ideal powers and radical
ideals.
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Lemma 2.6 (Ideal powers and radical ideals). Let R be a ring and I, J ⊆ R
ideals. If I is finitely generated, then

I ⊆
√
J ⇐⇒ there exists k ∈ N0 such that Ik ⊆ J.

Proof. We have I = (a1, . . . , an). Suppose that I ⊆ √J . Then there exists
m > 0 with am

i ∈ J for i = 1, . . . , n. Set k := n · (m−1)+1. We need to show
that the product of k arbitrary elements from I lies in J . So let x1, . . . , xk ∈ I
and write

xi =
n∑

j=1

ri,jaj with ri,j ∈ R.

When we multiply out the product x1 · · ·xk, we find that every summand has
some am

j as a subproduct. Therefore x1 · · ·xk ∈ J . This shows that Ik ⊆ J .
The converse statement is clear (and does not require finite generation

of I). ��
Theorem 2.8, which we start proving now, gives a comparison between the

Noether property and the Artin property for rings. Readers who are mainly
interested in the Noether property can continue with reading Section 2.2.
Theorem 2.8 will not be used before Chapter 7.

Lemma 2.7. Let R be a ring and m1, . . . ,mn ∈ Specmax(R) maximal ideals
(which are not assumed to be distinct) such that the ideal product m1 · · ·mn

is zero. Then R is Artinian if and only if it is Noetherian. Moreover,

Spec(R) = {m1, . . . ,mn} .

Proof. Setting
Ii := m1 · · ·mi,

we get a chain

{0} = In ⊆ In−1 ⊆ · · · ⊆ I2 ⊆ I1 ⊆ I0 := R

of ideals. Applying Proposition 2.4 repeatedly, we see that R is Noether-
ian (Artinian) if and only if every quotient module Ii−1/Ii is Noetherian
(Artinian). But mi · (Ii−1/Ii) = {0}, so Ii−1/Ii is a vector space over the field
Ki := R/mi, and a subset of Ii−1/Ii is an R-submodule if and only if it is
a Ki-subspace. So both the Noether and the Artin property for Ii−1/Ii are
equivalent to dimKi (Ii−1/Ii) <∞. This yields the claimed equivalence.

To prove the second claim, take P ∈ Spec(R). By hypothesis, m1 · · ·mn ⊆
P . From the primality of P and the definition of the ideal product, we con-
clude that there exists i with mi ⊆ P , so P = mi. ��
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Theorem 2.8 (Artinian and Noetherian rings). Let R be a ring. Then the
following statements are equivalent:

(a) R is Artinian.
(b) R is Noetherian and every prime ideal of R is maximal.

Using the concept of dimension as defined in Definition 5.1, the condi-
tion (b) in Theorem 2.8 can be rephrased as, “R is Noetherian and has
dimension 0 or −1” (where −1 occurs if and only if R is the zero ring). We
prove only the implication “(a) ⇒ (b)” here and postpone the proof of the
converse to the end of Chapter 3 (see page 42).

Proof of “ (a) ⇒ (b)”. Suppose that R is Artinian. The first claim is that R
has only finitely many maximal ideals. Assume the contrary. Then there exist
infinitely many pairwise distinct maximal ideals m1,m2,m3, . . . ∈ Specmax(R).
Setting Ii :=

⋂i
j=1 mj yields a descending chain of ideals, so by hypothesis

there exists n such that In+1 = In. This implies
⋂n

j=1 mj ⊆ mn+1, so there
exists j ≤ n with mj = mn+1, a contradiction. We conclude that there exist
finitely many maximal ideals m1, . . . ,mk. Setting

I := m1 · · ·mk,

we obtain a descending chain of ideals Ii, i ∈ N0, so there exists n ∈ N0 with

Ii = In =: J for i ≥ n. (2.1)

By way of contradiction, assume J �= {0}. Then the set

M := {J ′ ⊆ R | J ′ is an ideal and J ′J �= {0}}

is nonempty. There exists a minimal element Ĵ in M, since otherwise M
would contain an infinite, strictly descending chain of ideals. Pick an x ∈ Ĵ
with xJ �= {0}. Then Ĵ = (x) by the minimality. Moreover, (2.1) implies that
J2 = J , so

(x)J · J = (x)J2 = (x)J �= {0},
so (x)J = (x) again by the minimality of Ĵ . Therefore there exists y ∈ J
with xy = x. By the definition of J , y lies in every maximal ideal of R, and
so y − 1 lies in no maximal ideal. This means that y − 1 is invertible, and
(y − 1)x = 0 implies x = 0. This contradicts xJ �= {0}. We conclude that
J = {0}. So we can apply Lemma 2.7 and get that R is Noetherian and that
every prime ideal is maximal. ��

Theorem 2.8 raises the question whether it is also true that every Artinian
module over a ring is Noetherian. This is answered in the negative by
Exercise 2.2.
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2.2 Noetherian Rings and Modules

The following theorem gives an alternative definition of Noetherian modules.
There is no analogue for Artinian modules.

Theorem 2.9 (Alternative definition of Noetherian modules). Let R be a
ring and M an R-module. The following statements are equivalent:

(a) M is Noetherian.
(b) For every subset S ⊆M there exist finitely many elements m1, . . . ,mk ∈

S such that
(S)R = (m1, . . . ,mk)R.

(c) Every submodule of M is finitely generated.

In particular, R is Noetherian if and only if every ideal of R is finitely gen-
erated, and then every generating set of an ideal contains a finite generating
subset.

Proof. Assume that M is Noetherian, but there exists S ⊆M that does not
satisfy (b). We define finite subsets Si ⊆ S (i = 1, 2, . . .) recursively, starting
with S1 = ∅. Suppose Si has been defined. Since S does not satisfy (b), there
exists mi+1 ∈ S \ (Si)R. Set

Si+1 := Si ∪ {mi+1}.

(In fact, the axiom of choice is needed to make this definition precise.) By
construction we have (Si)R � (Si+1)R for all i, contradicting (a). So (a)
implies (b), and it is clear that (b) implies (c).

So suppose that (c) holds, and let M1,M2, . . . ⊆M be an ascending chain
of submodules. Let N := ∪i∈NMi be the union. It is easy to check that N
is a submodule, so by (c) we have N = (m1, . . . ,mk)R with mj ∈ N . Each
mj lies in some Mij . Let n := max{i1, . . . , ik}. Then all mj lie in Mn, so for
i ≥ n we have

Mi ⊆ N = (m1, . . . ,mk)R ⊆Mn ⊆Mi,

which implies equality. Therefore (a) holds. ��
Theorem 2.9 implies that every Noetherian module over a ring is finitely

generated. This raises the question whether the converse is true, too. But
this is clearly false in general: If R is a non-Noetherian ring, then R is not
Noetherian as a module over itself, but it is finitely generated (with 1 the
only generator). The following theorem shows that if the converse does not
go wrong in this very simple way, then in fact it holds.

Theorem 2.10 (Noetherian modules and finite generation). Let R be a
Noetherian ring and M an R-module. Then the following statements are
equivalent:
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(a) M is Noetherian.
(b) M is finitely generated.

In particular, every submodule of a finitely generated R-module is also finitely
generated.

Proof. We need to show only that (b) implies (a), since the converse impli-
cation is a consequence of Theorem 2.9. So let M = (m1, . . . ,mk)R. We use
induction on k. There is nothing to show for k = 0, so assume k > 0. Consider
the submodule

N := (m1, . . . ,mk−1)R ⊆M.

By induction, N is Noetherian. The homomorphism

ϕ: R→M/N, a �→ amk +N,

is surjective, so M/N ∼= R/ ker(ϕ). By hypothesis and by Proposition 2.4,
R/ ker(ϕ) is Noetherian, so M/N is Noetherian, too. Applying Proposi-
tion 2.4 again shows that M is Noetherian. ��

The following theorem is arguably the most important result on Noether-
ian rings.

Theorem 2.11 (Polynomial rings over Noetherian rings). Let R be a Noe-
therian ring. Then the polynomial ring R[x] is Noetherian, too.

Proof. Let I ⊆ R[x] be an ideal. By Theorem 2.9, we need to show that I is
finitely generated. For a nonnegative integer i, set

Ji :=
{
ai ∈ R | there exist a0, . . . , ai−1 ∈ R such that

i∑

j=0

ajx
j ∈ I

}
.

Clearly Ji ⊆ R is an ideal. Let ai ∈ Ji with f =
∑i

j=0 ajx
j ∈ I. Then

I � xf =
∑i

j=0 ajx
j+1, so ai ∈ Ji+1. It follows that the Ji form an ascending

chain of ideals of R. By hypothesis, there exists an n such that for i ≥ n we
have Ji = Jn. Again by hypothesis, every Ji is finitely generated, so

Ji = (ai,1, . . . , ai,mi)R for i ≤ n (2.2)

and
Ji = Jn = (an,1, . . . , an,mn)R for i > n. (2.3)

By the definition of Ji, there exist polynomials fi,j ∈ I of degree at most i
whose ith coefficient is ai,j . Set

I ′ :=
(
fi,j | i = 0, . . . , n, j = 1, . . . ,mi

)

R[x]
⊆ I.

We claim that I = I ′. To prove the claim, consider a polynomial f =∑d
i=0 bix

i ∈ I with deg(f) = d. We use induction on d. We first consider
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the case d ≤ n. Since bd ∈ Jd, we can use (2.2) and write bd =
∑md

j=1 rjad,j

with rj ∈ R. Then

f̃ := f −
md∑

j=1

rjfd,j

lies in I and has degree less than d, so by induction f̃ ∈ I ′. This implies f ∈ I ′.
Now assume d > n. Then we can use (2.3) and write bd =

∑mn

j=1 rjan,j with
rj ∈ R. So

f̃ := f −
mn∑

j=1

rjx
d−nfn,j

lies in I and has degree less than d, so by induction f̃ ∈ I ′. Again we conclude
that f ∈ I ′. So indeed I = I ′ is a finitely generated ideal. ��

The corresponding statement for formal power series rings is contained
in Exercise 2.4. By applying Theorem 2.11 repeatedly and using the second
statement of Proposition 2.4, we obtain the following corollary.

Corollary 2.12 (Finitely generated algebras). Every finitely generated alge-
bra over a Noetherian ring is Noetherian. In particular, every affine algebra
is Noetherian.

A special case is the celebrated basis theorem of Hilbert.

Corollary 2.13 (Hilbert’s basis theorem). Let K be a field. Then the poly-
nomial ring K[x1, . . . , xn] is Noetherian. In particular, every ideal in
K[x1, . . . , xn] is finitely generated.

The name basis theorem comes from the fact that generating sets of ide-
als are sometimes called bases. One consequence is that every affine variety
X ⊆ Kn is the solution set of a finite system of polynomial equations:
X = V(f1, . . . , fm).

Exercises for Chapter 2

2.1 (A non-Noetherian ring providing many counterexamples).
Consider the polynomial ring S = K[x, y] and the subalgebra R := K +S ·x
given in Example 2.3. Show that R is not Noetherian. Conclude that R is
not finitely generated as an algebra. Explain why this provides an example
for the following caveats:

• Subrings of Noetherian rings need not be Noetherian
• Subalgebras of finitely generated algebras need not be finitely generated

In Exercise 7.4 we will also see that Krull’s principal ideal theorem (Theo-
rem 7.4) fails for R. In Exercise 2.6 we explore whether Example 2.3 is, in
some sense, the smallest of its kind.
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2.2 (An Artinian module that is not Noetherian). Let p ∈ N be a
prime number and consider the Z-modules

Zp :=
{
a/pn ∈ Q | a, n ∈ Z

}
⊂ Q and M := Zp/Z.

Show that M is Artinian but not Noetherian.

2.3 (Modules over an Artinian ring). Show that a finitely generated
module M over an Artinian ring R is Artinian.

2.4 (The Noether property for formal power series rings). Let R be
a Noetherian ring and

R[[x]] :=
{ ∞∑

i=0

aix
i | ai ∈ R

}

the formal power series ring over R. Show that R[[x]] is Noetherian.

2.5 (Separating subsets). Let K be a field and A ⊆ K[x1, . . . , xn] a sub-
algebra of a polynomial algebra (which, as we have seen in Example 2.3,
need not be finitely generated). Every polynomial from A defines a function
Kn → K. A subset S ⊆ A is called (A-)separating if the following condition
holds for all points P1, P2 ∈ Kn:

If there exists f ∈ A with f(P1) �= f(P2), then there exists f ∈ S with f(P1) �=
f(P2).

(Loosely speaking, this means that S has the same capabilities of separating
points as A.)

(a) Show that if S ⊆ A generates A as an algebra, then S is separating. (In
other words, “separating” is a weaker condition than “generating.” It is
seen in (b) and (c) that it is in fact substantially weaker.)

*(b) Show that A has a finite separating subset.
(c) Exhibit a finite R-separating subset of the algebra R ⊂ K[x, y] from

Example 2.3.

(Solution on page 217)

*2.6 (Subalgebras of K[x]). Let K be a field and K[x] a polynomial ring
in one indeterminate. Is every subalgebra of K[x] finitely generated? Give a
proof or a counterexample.

2.7 (Graded rings). A ring R is called graded if it has a direct sum
decomposition

R = R0 ⊕R1 ⊕R2 ⊕ · · · =
⊕

d∈N0

Rd
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(as an abelian group) such that for all a ∈ Ri and b ∈ Rj one has ab ∈
Ri+j . Then an element from Rd is called homogeneous of degree d. A
standard example is R = K[x1, . . . , xn] with Rd the space of all homogeneous
polynomials of degree d (including the zero polynomial). Let R be graded and
set

I =
⊕

d∈N>0

Rd,

which obviously is an ideal. Sometimes I is called the irrelevant ideal. Prove
the equivalence of the following statements.

(a) R is Noetherian.
(b) R0 is Noetherian and I is finitely generated.
(c) R0 is Noetherian and R is finitely generated as an R0-algebra.

Remark: By Corollary 2.12, a finitely generated algebra over a Noetherian
rings is Noetherian. However, Noetherian algebras are not always finitely
generated. So graded rings constitute a special case in which this converse
holds.

2.8 (The Noether property and subrings). In Exercise 2.1 we have seen
that in general the Noether property does not go down to subrings. In this
exercise we look at a situation in which it does.

(a) Let S be a Noetherian ring and R ⊆ S a subring such that there exists a
homomorphism ϕ: S → R of R-modules with ϕ|

R
= idR. Show that R is

Noetherian, too.
(b) Show that for a ring R, the following three statements are equivalent: (i)

R is Noetherian; (ii) R[x] is Noetherian; (iii) R[[x]] is Noetherian.

2.9 (Right or wrong?). Decide whether each of following statements is
true or false. Give reasons for your answers.

(a) Every finitely generated module over an Artinian ring is Artinian.
(b) Every Artinian module is finitely generated.
(c) Every ring has a module that is both Noetherian and Artinian.
(d) The set of all ideals of a ring, together with the ideal sum and ideal

product, forms a commutative semiring (i.e., we have an additive and a
multiplicative commutative monoid, and a distributive law).

2.10 (The ring of analytic functions). Let R be the ring of all analytic
functions R → R, i.e., all functions that are given by power series that
converge on all of R. Show that R is not Noetherian.

Can your argument be used for showing that other classes of functions
R→ R form non-Noetherian rings, too?



Chapter 3

The Zariski Topology

In this chapter we will put a topology on Kn and on affine varieties. This
topology is quite weak, but surprisingly useful. We will define an analogous
topology on Spec(R). In both cases, there are correspondences between closed
sets and radical ideals. As a consequence of some general topological con-
siderations, affine varieties can be decomposed into irreducible components.
Another consequence is that a Noetherian ring contains only finitely many
minimal prime ideals.

Readers who are unfamiliar with the language of topology can find all
that is needed for this book in any textbook on topology (for example
Bourbaki [6]), usually on the first few pages.

3.1 Affine Varieties

In this section we define the Zariski topology on Kn and on its subsets. We
first need a proposition.

Proposition 3.1 (Unions and intersections of affine varieties). Let
K[x1, . . . , xn] be a polynomial ring over a field K.

(a) Let I, J ⊆ K[x1, . . . , xn] be ideals. Then

V(I) ∪ V(J) = V(I ∩ J).

(b) Let M be a nonempty set of subsets of K[x1, . . . , xn]. Then

⋂

S∈M
V(S) = V

( ⋃

S∈M
S

)
.

Proof. We first prove (a). It is clear that V(I) ∪ V(J) ⊆ V(I ∩ J). To prove
the reverse inclusion, let P ∈ V(I ∩ J). Assume P /∈ V(I), so there exists

G. Kemper, A Course in Commutative Algebra, Graduate Texts
in Mathematics 256, DOI 10.1007/978-3-642-03545-6 4,
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f ∈ I with f(P ) �= 0. We need to show that P ∈ V(J), so let g ∈ J . Then
fg ∈ I ∩ J , so f(P )g(P ) = 0. But this implies g(P ) = 0.

Part (b) is clear. ��
Proposition 3.1 tells us that finite unions and arbitrary intersections of

affine varieties in Kn are again affine varieties. Since Kn and ∅ are also affine
varieties, this suggests that we can define a topology using the affine varieties
as closed sets. This is exactly what we will do.

Definition 3.2. Let K be a field and n a positive integer. Then the Zariski
topology is defined on Kn by saying that a subset X ⊆ Kn is (Zariski)
closed if and only if X is an affine variety. On a subset Y ⊆ Kn, we define
the Zariski topology to be the subset topology induced by the Zariski topology
on Kn, i.e., the closed subsets in Y are the intersections of closed subsets in
Kn with Y .

We make a few remarks.

Remark 3.3. (a) By definition, the closed subsets ofKn have the form V(S)
with S ⊆ K[x1, . . . , xn] a subset. By Lemma 1.18, we may substitute S
by I(X), i.e., we may assume S to be an ideal, and in fact even a radical
ideal.

(b) For a subset X ⊆ Kn, the topological closure (also called the Zariski
closure) is

X = V (I(X)) .

(c) If Y ⊆ Kn is an affine variety, then by definition the Zariski topology on
Y has the subvarieties of Y as closed sets.

(d) On Rn and Cn, the Zariski topology is coarser than the usual Euclidean
topology.

(e) Every finite subset of Kn is Zariski closed. In other words, Kn is a T1

space. This also applies to every subset Y ⊆ Kn.
(f) On the “affine line” K1, the closed subsets are precisely the finite subsets,

and all of K1. So the Zariski topology is the coarsest topology for which
singletons (i.e., sets with one element) are closed. This illustrates how
much coarser the Zariski topology is compared to the usual topology on
R or C.

(g) All polynomials f ∈ K[x1, . . . , xn], viewed as functions Kn → K, are
continuous with respect to the Zariski topology. In fact, the Zariski topol-
ogy is the coarsest topology such that all polynomials are continuous
(assuming that {0} ⊂ K1 is closed).
On the other hand, there exist continuous functions Kn → K that are
not polynomials, e.g., the function C→ C, x �→ x (complex conjugation).

(h) The Zariski-open subsets of Kn are unions of solution sets of polynomial
inequalities.

(i) Recall that a Hausdorff space (also called a T2 space) is a topological
space in which for any two distinct points P1 �= P2 there exist disjoint
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open sets U1 and U2 with Pi ∈ Ui. If K is an infinite field, then Kn

with the Zariski topology is never Hausdorff. In fact, it is not hard to see
that two nonempty open subsets U1, U2 ⊆ Kn always intersect. This is
extended in Exercise 3.7, where it is shown that no infinite subset of Kn

is Hausdorff. �

Further examples of continuous maps are morphisms of varieties, which
we deal with now.

Definition 3.4. Let K be a field and let X ⊆ Km and Y ⊆ Kn be affine
varieties. A map f : X → Y is called a morphism (of varieties) if there
exist polynomials f1, . . . , fn ∈ K[x1, . . . , xm] such that f is given by

f(P ) = (f1(P ), . . . , fn(P )) for P ∈ X.

We write Mor(X,Y ) for the set of all morphisms X → Y . Since composi-
tions of morphisms are obviously again morphisms, this definition makes the
collection of affine K-varieties into a category.

A morphism f : X → Y is called an isomorphism if there exists a mor-
phism g: Y → X with f ◦ g = idY and g ◦ f = idX . In particular, every
isomorphism is a homeomorphism (i.e., a topological isomorphism).

In particular, the regular functions on X are precisely the morphisms
X → K1 (see Remark 1.21 (a)).

Let f : X → Y be a morphism given by polynomials f1, . . . , fn. Then we
have a homomorphism of K-algebras ϕ: K[Y ] → K[X ] given as follows: If
K[X ] = K[x1, . . . , xm]/I(X) and K[Y ] = K[y1, . . . , yn]/I(Y ), then

ϕ (yi + I(Y )) := fi + I(X).

It is routine to check that this is well defined. The homomorphism ϕ is
said to be induced from f . Assigning coordinate rings to affine varieties
and assigning induced homomorphisms to morphisms provides a contravari-
ant functor from the category of affine K-varieties to the category of affine
K-algebras.

We have a reverse process. Indeed, if ϕ: K[Y ] → K[X ] is an algebra
homomorphism, then we have polynomials f1, . . . , fn ∈ K[x1, . . . , xm] with
ϕ (yi + I(Y )) = fi + I(X), and it is easy to check that these fi define a
morphism f : X → Y , which does not depend on the choice of the fi. Again,
it is routine to check that the assignment of a homomorphism K[Y ]→ K[X ]
to a morphism X → Y and vice versa provides a pair of inverse bijections
Mor(X,Y )↔ HomK(K[Y ],K[X ]).

Finally, we remark that a bijective morphism X → Y is not necessarily
an isomorphism. For example, if X ⊆ K2 is the union of the hyperbola{
(ξ1, ξ2) ∈ K2 | ξ1ξ2 = 1

}
and the singleton {(0, 1)}, and f : X → K1 is the

first projection, then f is a bijective morphism, but not an isomorphism. This
is shown in Fig. 3.1.
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�

� �
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Fig. 3.1. A bijective morphism that is not an isomorphism

3.2 Spectra

In Theorem 1.23 we have seen a one-to-one correspondence between maximal
ideals of K[X ] and points of X . This suggests that prime ideals can be seen
as some sort of “generalized points.” Following this idea, we will define a
topology on Spec(R) for any ring R.

Definition 3.5. Let R be a ring. For a subset S ⊆ R we write

VSpec(R)(S) := {P ∈ Spec(R) | S ⊆ P} .

For a subset X ⊆ Spec(R) we write

IR(X) :=
⋂

P∈X

P ⊆ R if X �= ∅, and IR(∅) := R.

The Zariski topology on Spec(R) is defined by saying that all sets of the
form VSpec(R)(S) with S ⊆ R are closed. By (a) and (b) of the following
Proposition 3.6, and since ∅ = VSpec(R)({1}) and Spec(R) = VSpec(R)(∅), this
indeed defines a topology.

A subset of Spec(R) is equipped with the subspace topology induced from
the Zariski topology on Spec(R).

The following proposition contains all the important general facts about
the maps VSpec(R) and IR defined above. In particular, part (e) is an analogy
to the ideal–variety correspondence in Corollary 1.19.

Proposition 3.6 (Properties of VSpec(R) and IR). Let R be a ring.

(a) Let S, T ⊆ R be subsets. Then

VSpec(R)(S) ∪ VSpec(R)(T ) = VSpec(R)

(
(S)R ∩ (T )R

)
.
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(b) Let M be a nonempty set of subsets of R. Then

⋂

S∈M
VSpec(R)(S) = VSpec(R)

( ⋃

S∈M
S

)
.

(c) Let X ⊆ Spec(R) be a subset. Then IR(X) is a radical ideal of R.
(d) Let I ⊆ R be an ideal. Then

IR
(VSpec(R)(I)

)
=
√
I.

(e) We have a pair of inverse bijections between the set of radical ideals of R
and the set of closed subsets of Spec(R), given by VSpec(R) and IR. Both
bijections are inclusion-reversing.

Proof. (a) If P ∈ VSpec(R)(S), then S ⊆ P , so also (S)R ⊆ P and (S)R ∩
(T )R ⊆ P . The same follows if P ∈ VSpec(R)(T ), so in both cases P ∈
VSpec(R)

(
(S)R ∩ (T )R

)
. Conversely, let P ∈ VSpec(R)

(
(S)R ∩ (T )R

)
and

assume S �⊆ P . So there exists f ∈ S \ P . Let g ∈ T . Then fg ∈
(S)R ∩ (T )R, so fg ∈ P . Since P is a prime ideal, g ∈ P follows, so
P ∈ VSpec(R)(T ).

(b) is clear.
(c) This follows since prime ideals are always radical ideals, and intersections

of radical ideals are again radical ideals.
(d) is a restatement of Corollary 1.12.
(e) In the light of (c) and (d), we need to show only that VSpec(R) (IR(X)) =

X for X ⊆ Spec(R) a closed subset. We have X = VSpec(R)(S) with
S ⊆ R, so S ⊆ IR(X). Since the map VSpec(R) is inclusion-reversing, we
obtain

VSpec(R) (IR(X)) ⊆ VSpec(R)(S) = X ⊆ VSpec(R) (IR(X)) .

This completes the proof. ��
In Theorem 1.23 we have exhibited a bijection between points from an

affine variety and maximal ideals of its coordinate ring. In Exercise 3.3 it is
shown that this map is actually a homeomorphism. This emphasizes our point
that prime ideals can be seen as generalized points. It may also be interesting
to note that a ring R is a Jacobson ring if and only if for every closed subset
Y ⊆ Spec(R) we have that Specmax(R) ∩ Y is dense in Y . (Recall that a
subset in a topological space is called dense if its closure is the whole space.)
In fact, this is nothing but a translation of the Jacobson property.

To every ring R we have assigned a topological space Spec(R). We will
make this assignment into a contravariant functor as follows. Let R and S
be rings and let ϕ: R→ S be a homomorphism. For every P ∈ Spec(S), the
preimage ϕ−1(P ) is obviously a prime ideal of R, so we obtain a map

ϕ∗: Spec(S)→ Spec(R), P �→ ϕ−1(P ).
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We will often say that ϕ∗ is induced from ϕ. For I ⊆ R a subset, we have
(ϕ∗)−1

(VSpec(R)(I)
)

= VSpec(S) (ϕ(I)), so ϕ∗ is continuous. Maps between
spectra of rings that are induced from ring homomorphisms are called
morphisms.

Going from ϕ to ϕ∗ is compatible with, and a generalization of, the process
of obtaining a morphism X → Y of affine varieties from a homomorphism
K[Y ]→ K[X ] described on page 35. However, there is no return path from ϕ∗

to ϕ. In fact, different ring homomorphisms can yield the same induced map
even if the rings are reduced. Consider, for example, complex conjugation
C → C on the one hand, and the identical map C → C on the other. This
behavior is a little unsatisfactory, and it is due to the fact that we were
too naive when we assigned ϕ∗ to ϕ. In algebraic geometry, a morphism
between two spectra (more generally, between two ringed spaces) consists
of a continuous map between the spectra as topological spaces, together with
a morphism of sheaves (see Hartshorne [26, page 72]). This richer concept of
a morphism does allow going back and forth between ring homomorphisms
and morphisms of spectra.

3.3 Noetherian and Irreducible Spaces

Motivated by the correspondence between ideals and Zariski-closed subsets,
we can transport the definition of the Noether property to topological spaces
in general.

Definition 3.7. Let X be a topological space.

(a) X is called Noetherian if the closed subsets of X satisfy the descending
chain condition, i.e., for closed subsets Y1, Y2, Y3, . . . ⊆ X with Yi+1 ⊆ Yi

for all positive integers i, there exists an integer n such that Yi = Yn

for all i ≥ n. An equivalent condition is that the open subsets satisfy the
ascending chain condition.

(b) X is called irreducible if X is not the union of two proper, closed sub-
sets, and X �= ∅. An equivalent condition is that any two nonempty open
subsets of X have a nonempty intersection, and X �= ∅.

Example 3.8. (1) R and C with the usual Euclidean topology are neither
Noetherian nor irreducible.

(2) Every finite space is Noetherian.
(3) Every singleton is irreducible.
(4) If K is an infinite field, then X = K1 with the Zariski topology is

irreducible, since the closed subsets are X and its finite subsets. More
generally, we will see that Kn is irreducible. (This is a consequence of
Theorem 3.10). �

The topological spaces that we normally deal with in analysis are almost
never Noetherian or irreducible. For example, a Hausdorff space can be
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irreducible only if it is a singleton (this is obvious), and it can be Noetherian
only if it is finite (see Exercise 3.7). However, the following two theorems
show that the situation is much better when we consider spaces with the
Zariski topology.

Theorem 3.9 (Noether property of the Zariski topology).

(a) Let K be a field and X ⊆ Kn a set of points, equipped with the Zariski
topology. Then X is Noetherian.

(b) Let R be a Noetherian ring and X ⊆ Spec(R) a set of prime ideals,
equipped with the Zariski topology. Then X is Noetherian.

Proof. First observe that if X is any Noetherian topological space and Y ⊆ X
is a subset equipped with the subset topology, then Y is also Noetherian. So
we may assume X = Kn in part (a), and X = Spec(R) in part (b). To
prove (a), let Y1, Y2, Y3, . . . ⊆ Kn be a descending chain of closed subsets.
Then Ii := IK[x1,...,xn](Yi) yields an ascending chain of ideals, so by Hilbert’s
basis theorem (Corollary 2.13), there exists n with Ii = In for i ≥ n. By
Lemma 1.18, Yi = VKn(Ii), so Yi = Yn for i ≥ n.

Part (b) follows directly from Proposition 3.6(e). ��
In particular, Spec(R) is a Noetherian space if R is a Noetherian ring.

Exercise 3.5 deals with the question whether the converse also holds.

Theorem 3.10 (Irreducible subsets of Kn and Spec(R)).

(a) Let K be a field and X ⊆ Kn a set of points, equipped with the Zariski
topology. Then X is irreducible if and only if IK[x1,...,xn](X) is a prime
ideal.

(b) Let R be a ring and X ⊆ Spec(R) a set of prime ideals, equipped with the
Zariski topology. Then X is irreducible if and only if IR(X) is a prime
ideal.

Proof. (a) First assume that X is irreducible. Then I := IK[x1,...,xn](X) �
K[x1, . . . , xn], since X �= ∅. To show that I is a prime ideal, let f1, f2 ∈
K[x1, . . . , xn] with f1f2 ∈ I. Then

X = (X ∩ VKn(f1)) ∪ (X ∩ VKn(f2)) ,

so by the irreducibility of X there exists i ∈ {1, 2} with X ⊆ VKn(fi).
This implies fi ∈ I. So indeed I is a prime ideal.
Conversely, assume that I is a prime ideal. Then X �= ∅, since
IK[x1,...,xn](∅) = K[x1, . . . , xn]. To show that X is irreducible, let X =
X1∪X2 withXi closed in X , so Xi = X∩VKn(Ii) with Ii ⊆ K[x1, . . . , xn]
ideals. Then

X ⊆ VKn(I1) ∪ VKn(I2) = VKn(I1 ∩ I2),

where we used Proposition 3.1(a) for the equality. This implies
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I1 ∩ I2 ⊆ IK[x1,...,xn] (VKn(I1 ∩ I2)) ⊆ IK[x1,...,xn](X) = I.

Since I is a prime ideal, there exists i with Ii ⊆ I, so

X ⊆ VKn(I) ⊆ VKn(Ii).

This implies Xi = X . Therefore X is irreducible.
(b) The proof of this part is obtained from the proof of part (a) by chang-

ing K[x1, . . . , xn] to R, Kn to Spec(R), and “Proposition 3.1(a)” to
“Proposition 3.6(a).” ��

The following theorem allows us to view irreducible spaces as the “atoms”
of a Noetherian space.

Theorem 3.11 (Decomposition into irreducibles). Let X be a Noetherian
topological space.

(a) There exist a nonnegative integer n and closed, irreducible subsets
Z1, . . . , Zn ⊆ X such that

X = Z1 ∪ · · · ∪ Zn and Zi �⊆ Zj for i �= j. (3.1)

(b) If Z1, . . . , Zn ⊆ X are closed, irreducible subsets satisfying (3.1), then
every irreducible subset Z ⊆ X is contained in some Zi. (Observe that
we do not assume Z to be closed.)

(c) If Z1, . . . , Zn ⊆ X are closed, irreducible subsets satisfying (3.1), then
they are precisely the maximal irreducible subsets of X. In particular, the
Zi are uniquely determined up to order.

Proof. First observe that every nonempty set of closed subsets of X has a
minimal element, since otherwise it would contain an infinite strictly descend-
ing chain. Assume that there exists a nonempty closed subset Y ⊆ X that is
not a finite union of closed, irreducible subsets. Then we may assume Y to
be minimal with this property. By assumption, Y itself is not irreducible, so
Y = Y1 ∪ Y2 with Y1, Y2 � Y closed subsets. By the minimality of Y , the Yi

are finite unions of closed irreducible subsets, so the same is true for Y . This
is a contradiction. Hence in particular,

X = Y1 ∪ · · · ∪ Ym

with Yi ⊆ X closed and irreducible (where m = 0 if X = ∅). We may assume
the Yi to be pairwise distinct. By deleting those Yi for which there exists a
j �= i with Yi ⊆ Yj , we obtain a decomposition as in (3.1).

Now assume that (3.1) is satisfied, and let Z ⊆ X be an irreducible subset.
Then

Z = (Z ∩ Z1) ∪ · · · ∪ (Z ∩ Zn),

so Z = Z ∩ Zi for some i, which implies Z ⊆ Zi. This proves (b). Moreover,
if Z is maximal among the irreducible subsets of X , then Z = Zi. So all
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maximal irreducible subsets of X occur among the Zi. To complete the proof
of (c), we need to show that every Zi is maximal among the irreducible
subsets. Indeed, if Zi ⊆ Z with Z ⊆ X irreducible, then by (b) there exists j
with Z ⊆ Zj, so Zi ⊆ Z ⊆ Zj , which by (3.1) implies i = j and Z = Zi. ��
Remark. As we see from the proof, it is only for part (a) of the theorem
that we need to assume that X is Noetherian. So if X is not Noetherian but
a decomposition as in (a) does exist, then (b) and (c) hold. �

Theorem 3.11 has statements on existence and uniqueness, which justifies
the following definition.

Definition 3.12. Let X be a Noetherian topological space. Then the Zi from
Theorem 3.11 are called the irreducible components of X.

Example 3.13. Let K be an algebraically closed field and g ∈ K[x1, . . . , xn]
a nonzero polynomial. Let p1, . . . , pr be the distinct prime factors of g. Then

VKn(g) =
r⋃

i=1

VKn(pi).

The (pi) ⊆ K[x1, . . . , xn] are prime ideals, so by the Nullstellensatz (The-
orem 1.17), IK[x1,...,xn] (VKn(pi)) = (pi). By Theorem 3.10(a), the VKn(pi)
are the irreducible components of the hypersurface VKn(g). �

We make the obvious convention of calling a prime ideal P ∈ Spec(R)
minimal if for all Q ∈ Spec(R) the inclusion Q ⊆ P implies Q = P . So
an integral domain has precisely one minimal prime ideal, namely {0}. By
Proposition 3.6(e) and by Theorem 3.10(b), the minimal prime ideals corre-
spond to the maximal closed, irreducible subsets of X := Spec(R), i.e., to
the irreducible components of X (if X is Noetherian).

Corollary 3.14 (Minimal prime ideals). Let R be a Noetherian ring.

(a) There exist only finitely many minimal prime ideals P1, . . . , Pn of R.
(b) Every prime ideal of R contains at least one of the Pi.
(c) The nilradical is the intersection of the Pi:

nil(R) =
n⋂

i=1

Pi.

(d) Let I ⊆ R be an ideal. Then the set VSpec(R)(I) has finitely many minimal
elements Q1, . . . , Qr, and

√
I =

r⋂

i=1

Qi.

Proof. By Proposition 3.6(e) and by Theorem 3.10(b), the (maximal) closed,
irreducible subsets of X := Spec(R) correspond to (minimal) prime ideals



42 3 The Zariski Topology

of R. So for (a) and (b), we need to show that X has only finitely many max-
imal closed, irreducible subsets, and that every closed, irreducible subset is
contained in a maximal one. By Theorem 3.9(b), X is Noetherian, so by The-
orem 3.11(c), X has finitely many maximal irreducible subsets Z1, . . . , Zn,
which are all closed. By Theorem 3.11(b), every closed, irreducible subset is
contained in a Zi.

Part (c) follows from (b) and Corollary 1.12, and part (d) follows from
applying (a) and (c) to R/I and using the correspondence given by
Lemma 1.22. ��

Let us remark here that part (b) of Corollary 3.14 generalizes to non-
Noetherian rings: It is always true that a prime ideal contains a minimal
prime ideal (see Exercise 3.6).

Part (d) of Corollary 3.14 is sometimes expressed by saying that there are
only finitely many prime ideals that are minimal over I.

All parts of Corollary 3.14 will be applied in many places throughout this
book. As a first application, we complete the proof of Theorem 2.8 from
page 27. The implication “(a)⇒ (b)” of that theorem was already proved in
Chapter 2.

Proof of the implication “ (b) ⇒ (a)” in Theorem 2.8. We assume that R is
Noetherian and Spec(R) = Specmax(R), and we need to show that R is
Artinian. By Corollary 3.14(c), there exist finitely many prime ideals whose
intersection is the nilradical. So

nil(R) =
n⋂

i=1

mi with mi ∈ Specmax(R).

This implies I := m1 · · ·mn ⊆ nil(R) =
√{0}, so by Lemma 2.6 there exists k

with Ik = {0}. Therefore we can apply Lemma 2.7 and conclude that R is
Artinian. ��

Exercises for Chapter 3

3.1 (Properties of maps). Let X = {(ξ1, ξ2) ∈ C2 | ξ1ξ2 = 1}. Which
of the following maps ϕi: X → X are morphisms, isomorphisms, or Zariski
continuous?

(a) ϕ1(ξ1, ξ2) = (ξ−1
1 , ξ−1

2 ).
(b) ϕ2(ξ1, ξ2) = (ξ21 , ξ

2
2).

(c) ϕ3(ξ1, ξ2) = (ξ1, ξ2) (complex conjugation).

3.2 (Separating sets by polynomials). Let K be an algebraically closed
field and let X,Y ⊆ Kn be two subsets. Show that the following statements
are equivalent:
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(a) There exists a polynomial f ∈ K[x1, . . . , xn] such that f(x) = 0 for all
x ∈ X , and f(y) = 1 for all y ∈ Y .

(b) The Zariski closures of X and Y do not meet: X ∩ Y = ∅.
3.3 (A homeomorphism). Let K be an algebraically closed field and X
an affine variety. Show that the bijection Φ: X → Specmax (K[X ]) from The-
orem 1.23 is a homeomorphism. (Here Specmax (K[X ]) is equipped with the
subset topology induced from the Zariski topology on Spec (K[X ]).)

3.4 (Another homeomorphism). Let R be a ring and I ⊆ R an ideal.
Lemma 1.22 gives a bijection VSpec(R)(I)→ Spec(R/I). Show that this bijec-
tion is actually a homeomorphism. (Here VSpec(R)(I) is equipped with the
subset topology induced from the Zariski topology on Spec(R).)

*3.5 (A converse of Theorem 3.9?). Let R be a ring. If Spec(R) is a
Noetherian space, does this imply that R is a Noetherian ring? Give a proof
or a counterexample.

The following exercise is due to Martin Kohls.

3.6 (Minimal prime ideals). Let R be a (not necessarily Noetherian) ring
and Q ∈ Spec(R) a prime ideal. Show that there exists a minimal prime ideal
P ∈ Spec(R) with P ⊆ Q. In particular, if R �= {0}, there exist minimal
prime ideals in R.
Hint: Use Zorn’s lemma with an unusual ordering. (Solution on page 218)

3.7 (Hausdorff spaces). Let X be a Noetherian topological space. Show
that the following two statements are equivalent:

(a) X is a Hausdorff space.
(b) X is finite and has the discrete topology.

In particular, no infinite subset Y ⊆ Kn with the Zariski topology is
Hausdorff.

3.8 (Quasi-compact spaces). Recall that a topological space X is called
quasi-compact if for every set M of open subsets with X =

⋃
U∈M U , there

exist U1, . . . , Un ∈M with X =
⋃n

i=1 Ui.

(a) Show that a topological space X is Noetherian if and only if every subset
of X is quasi-compact.

(b) Let R be a ring and X = Spec(R). Then X is quasi-compact (even if it
is not Noetherian).

3.9 (Products of irreducible varieties). Let X ⊆ Km and Y ⊆ Kn be
two irreducible affine varieties over a field. Show that the product variety
X × Y ⊆ Km+n is also irreducible.
Hint: This may be done as follows: For X × Y = Z1 ∪ Z2 with Zi closed,
consider the sets Xi := {x ∈ X | {x} × Y ⊆ Zi}. Show that X = X1 ∪ X2

and that the Xi are closed.
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3.10 (Diagonalizable matrices form a dense subset). Let K be an
algebraically closed field, and let D ⊂ Kn×n be the set of all diagonaliz-
able n × n matrices. Show that the Zariski closure D of D is Kn×n. (Here
Kn×n is identified with affine n2-space Kn2

.) Is D open in Kn×n?



Chapter 4

A Summary of the Lexicon

In this chapter we give a brief summary of the algebra–geometry lexicon. All
the statements we make here have been proved in Chapter 1 or 3, but for the
sake of brevity we will not give any references. This lexicon really comes in
two parts. The first links algebraic objects (such as affine algebras) to truly
geometric objects (such as affine varieties). The second part is more general
and links algebraic objects (such as rings) to objects that are geometric in a
more abstract sense (such as spectra of rings).

4.1 True Geometry: Affine Varieties

In this section, K is assumed to be an algebraically closed field. We have the
following correspondences between algebraic and geometric objects:

(1) Hilbert’s Nullstellensatz gives rise to a bijective correspondence

affine varieties in Kn ←→ radical ideals in K[x1, . . . , xn]. (4.1)

In fact, assigning to any set X ⊆ Kn of points the vanishing ideal I(X)
yields a map from the power set of Kn to the set of radical ideals in
K[x1, . . . , xn], and assigning to a set S ⊆ K[x1, . . . , xn] of polynomials
the affine variety V(S) yields a map from the power set of K[x1, . . . , xn]
to the set of affine varieties in Kn. Restricting both maps gives the cor-
respondence (4.1). The correspondence is inclusion-reversing. An affine
variety is irreducible if and only if its vanishing ideal is a prime ideal. So
there is a sub-correspondence

irreducible affine varieties in Kn ←→ prime ideals in K[x1, . . . , xn].

(2) Every affine K-variety X has a coordinate ring K[X ], whose elements
give rise to regular functions X → K. This leads us to identify K[X ]
with the ring of regular functions on X . Assigning to an affine K-variety

G. Kemper, A Course in Commutative Algebra, Graduate Texts
in Mathematics 256, DOI 10.1007/978-3-642-03545-6 5,
c© Springer-Verlag Berlin Heidelberg 2011
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X its coordinate ring yields a map

affine K-varieties −→ reduced affine K-algebras.

Conversely, every reduced affine K-algebra is isomorphic to the coordi-
nate ring of an affine K-variety, which is unique up to isomorphism. For
X an affine K-variety, we have the equivalence

X is irreducible ⇐⇒ K[X ] is an affine domain.

(3) Let X be an affine K-variety with coordinate ring K[X ]. Then there is
an inclusion-reversing, bijective correspondence

Zariski-closed subsets of X ←→ radical ideals in K[X ]. (4.2)

A closed subset of X is irreducible if and only if the corresponding ideal
in K[X ] is a prime ideal. So chains of closed, irreducible subsets of X
correspond to chains of prime ideals in K[X ], but with all inclusions
reversed. The above correspondence has sub-correspondences

irreducible components of X ←→ minimal prime ideals in K[X ],

and
X ←→ Specmax (K[X ]) . (4.3)

(4) Given two affine K-varieties X and Y , there is a bijective correspondence

morphisms X → Y of varieties ←→
homomorphisms K[Y ]→ K[X ] of K-algebras.

This correspondence translates isomorphisms into isomorphisms, but
behaves less well with respect to injectivity (see Exercise 4.1). The com-
position of two morphisms of varieties corresponds to the composition of
the homomorphisms of the coordinate rings, but in reversed order.

We should mention that some parts of the lexicon stay intact if we drop
the hypothesis that K is algebraically closed.

4.2 Abstract Geometry: Spectra

There is no variety associated to a general ring R. However, we always have
the spectrum Spec(R), which is an abstract substitute for an affine variety.
By (4.3), affine varieties over algebraically closed fields are embedded into the
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spectrum of the coordinate ring, so, taking a somewhat generous view, we
can regard the spectrum as a generalization of an affine variety. In particu-
lar, statements about spectra of rings almost always imply statements about
affine varieties as special cases. As in the previous section, we will summarize
some algebra–geometry correspondences. We will also see that they are gen-
eralizations of the correspondences from Section 4.1. In the sequel, R stands
for a ring.

(1) There is an inclusion-reversing bijective correspondence

Zariski-closed subsets of Spec(R) ←→ radical ideals in R. (4.4)

In fact, assigning to any subset X ⊆ Spec(R) the intersection of all prime
ideals in X yields a map from the power set of Spec(R) to the set of radical
ideals in R, and assigning to a set S ⊆ R of ring elements the set of all
prime ideals that contain S yields a map from the power set of R to the
set of Zariski-closed subsets of Spec(R). Restricting both maps gives the
correspondence (4.4).
A closed subset of Spec(R) is irreducible if and only if the corresponding
ideal in R is a prime ideal. So chains of closed, irreducible subsets of
Spec(R) correspond to chains of prime ideals in R, but with all inclusions
reversed.
In the special case that R = K[X ] is the coordinate ring of an affine
variety over an algebraically closed field, we can compose (4.4) with the
correspondence (4.2), and get a correspondence

Zariski-closed subsets of Spec (K[X ]) ←→
Zariski-closed subsets of X,

given by intersecting a closed subset of Spec (K[X ]) with Specmax (K[X ])
and then applying (4.3) to the points. Via the above correspondence, (4.4)
can be viewed as a generalization of (4.2).

(2) A ring homomorphism ϕ: R→ S induces a morphism

ϕ∗: Spec(S)→ Spec(R), Q �→ ϕ−1(Q)

of spectra. In the special case that R ⊆ S and ϕ is the inclusion, we have
ϕ∗(Q) = R ∩Q. Notice that the correspondence between ring homomor-
phisms and morphisms of spectra is not bijective. If ψ: S → T is a further
ring homomorphism, then (ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗.
In general, ϕ∗ does not restrict to a map Specmax(S) → Specmax(R);
but if ϕ is a homomorphism of affine K-algebras, it does. If in addition
R = K[Y ] and S = K[X ] are coordinate rings of affine varieties over an
algebraically closed field, then (4.3) translates this restriction of ϕ∗ into
a map X → Y , which is exactly the morphism from (4) in Section 4.1
corresponding to ϕ.
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Exercises for Chapter 4

4.1 (Dominant and injective morphisms). Let X and Y be affine vari-
eties over a field K, and let f : X → Y be a morphism with induced
homomorphism ϕ: K[Y ] → K[X ]. We say that f is dominant if the image
f(X) is dense in Y , i.e., f(X) = Y .

(a) Show that f is dominant if and only if ϕ is injective.
(b) Show that if ϕ is surjective, then f is injective.
(c) Give examples in which f is dominant but not surjective, and in which

the converse of part (b) does not hold.

4.2 (When is ϕ∗ dominant?). Let ϕ: R→ S be a homomorphism of rings.
Show that the following two statements are equivalent:

(a) The map ϕ∗: Spec(S)→ Spec(R) is dominant.
(b) The kernel ker(ϕ) is contained in the nilradical nil(R) of R.

4.3 (The coproduct of spectra and affine varieties). Let R1, . . . , Rn

be rings. Recall that the direct sum R := R1 ⊕ · · · ⊕ Rn is defined as the
Cartesian product of the Ri with componentwise addition and multiplica-
tion. The projections πi: R→ Ri induce morphisms fi: Spec(Ri)→ Spec(R).
Prove the following:

(a) If S is a ring with morphisms gi: Spec(Ri)→ Spec(S), then there exists
a unique morphism g: Spec(R)→ Spec(S) with g ◦ fi = gi for all i. This
is expressed by saying that Spec(R) together with the fi is a coproduct
in the category of spectra of rings.

(b) Spec(R) is the disjoint union of the images of the fi. For each i, the image
of fi is closed in Spec(R).

(c) If X1, . . . , Xn are affine varieties over an algebraically closed field K,
then there exists a coproduct X in the category of affine K-varieties.
The analogue of part (b) also holds in this case, and for every i the image
of Xi in X is isomorphic to Xi. The universal property of the coproduct
is shown in the following diagram:

Xi
fi � X

gi

�

�
�

�
��

g

Y
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Chapter 5

Krull Dimension and Transcendence
Degree

In this chapter, we introduce the Krull dimension, which is the “correct”
concept of dimension in algebraic geometry and commutative algebra. Then
we prove that the dimension of an affine algebra is equal to its transcendence
degree. This makes the dimension more accessible both to computation and
to interpretation.

We start by introducing the following ad hoc notation. Let M be a set
whose elements are sets. By a chain in M we mean a subset C ⊆M that is
totally ordered by inclusion “⊆”. The length of C is defined to be length(C) :=
|C| − 1 ∈ N0 ∪ {−1,∞}. A finite chain of length n is usually written as

X0 � X1 � · · · � Xn.

We write

length(M) := sup {length(C) | C is a chain in M} ∈ N0 ∪ {−1,∞}

(the length −1 occurs if M = ∅).
Observe that the dimension of a vector space V is the maximal length of

a chain of subspaces, i.e.,

dim(V ) = length
(
{U ⊆ V | U subspace}

)
.

With this in mind, the following definition does not appear too far-fetched.

Definition 5.1 (Krull dimension).

(a) Let X be a topological space. Set M to be the set of all closed, irre-
ducible subsets of X. Then the dimension of X (also called the Krull
dimension) is defined as

dim(X) := length(M).

(b) Let R be a ring. Then the dimension of R (also called the Krull
dimension) is defined as

G. Kemper, A Course in Commutative Algebra, Graduate Texts
in Mathematics 256, DOI 10.1007/978-3-642-03545-6 6,
c© Springer-Verlag Berlin Heidelberg 2011
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52 5 Krull Dimension and Transcendence Degree

dim(R) := dim (Spec(R)) .

So dim(R) = length (Spec(R)), since the closed, irreducible subsets of
Spec(R) correspond to prime ideals of R by Proposition 3.6(e) and The-
orem 3.10(b). In other words, the dimension of R is the maximal length
of a chain of prime ideals of R.

(c) Let K be a field. The dimension of a subset X ⊆ Kn is the dimension of
X with the Zariski topology. So if K is algebraically closed and X is an
affine variety, then

dim(X) = dim (K[X ]) ,

since the closed, irreducible subsets of X correspond to prime ideals in
the coordinate ring K[X ] by Theorem 1.23 and Theorem 3.10(a).

Example 5.2. (1) If X = {P} is a singleton or (more generally) a nonempty,
finite, discrete topological space, then dim(X) = 0. Moreover, dim(∅) =
−1.

(2) If K is an infinite field and X = K1, then the closed, irreducible subsets
are the singletons and all of X , so dim(K1) = 1.

(3) Let X ⊆ R3 be the union of a plane P and a line L that is not con-
tained in the plane. We can see two types of nonrefinable chains of closed,
irreducible subsets:

(a) A point of L not lying in P , followed by all of L
(b) A point of P , followed by a line in P that contains the point, followed

by all of P

From this, we see that dim(X) ≥ 2. Intuition tells us that the dimension
should be equal to 2, but we cannot verify this yet.

(4) Every field has Krull dimension 0.
(5) The ring Z of integers has Krull dimension 1, with all maximal chains of

prime ideals of the form {0} � (p) with p a prime number.
More generally, every principal ideal domain that is not a field has Krull
dimension 1.

(6) In particular, a polynomial ring K[x] over a field has dim (K[x]) = 1.
(7) Let K be a field and R = K[x1, x2, . . .] a polynomial ring in count-

ably many indeterminates xi, i ∈ N. Then Pi = (x1, . . . , xi) provides an
infinite chain of prime ideals, so dim(R) =∞. �

Remark. The ring in Example 5.2(7) is not Noetherian. It is tempting to
hope that Noetherian rings are always finite-dimensional. However, Exer-
cise 7.7 dashes this hope. The converse is also not true: Combining Exam-
ple 2.3 and Exercise 5.3 yields a non-Noetherian integral domain of Krull
dimension 2. �

Remark. IfX is a Noetherian topological space with irreducible components
Z1, . . . , Zn, then

dim(X) = max {dim(Z1), . . . ,dim(Zn),−1} .
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This follows from Theorem 3.11(b). We will call X equidimensional if
all Zi have the same dimension. Likewise, a Noetherian ring R is called
equidimensional if Spec(R) is equidimensional. �

As we see from Example 5.2, it is very difficult to apply Definition 5.1
directly for determining the dimension of a variety. At this point we are
not even able to determine the dimension of Kn (or of the polynomial ring
K[x1, . . . , xn]), although we easily get n as a lower bound. Another disad-
vantage is that at this point it is far from clear that the Krull dimension of
an affine variety coincides with what we intuitively understand by dimension.
The main result of this chapter is an “alternative definition” of the dimension
of an affine algebra, which is much more accessible and more intuitive (see
Remark 5.4). Another, less well-known, alternative definition, which holds
for general rings, is given in Exercise 6.8.

Recall that a subset {a1, . . . , an} ⊆ A of size n of an algebra A over
a field K is called algebraically independent if for all nonzero polynomials
f ∈ K[x1, . . . , xn] we have f(a1, . . . , an) �= 0.

Definition 5.3. Let A be an algebra over a field K. Then the transcen-
dence degree of A is defined as

trdeg(A) := sup {|T | | T ⊆ A is finite and algebraically independent} .

So trdeg(A) ∈ N0 ∪ {−1,∞}, where −1 occurs if A = {0} is the zero ring.
(We set sup ∅ := −1.)

Our next goal is to show that the dimension and the transcendence degree
of an affine algebra coincide. The following remark is intended to convince
the reader that this is a worthy goal.

Remark 5.4. (a) Let A = K[X ] be the coordinate ring of an affine vari-
ety over an infinite field. Finding an algebraically independent subset
of size n of A is equivalent to finding an injective homomorphism
K[x1, . . . , xn]→A. By Exercise 4.1(a), this is the same as giving a domi-
nant morphism X → Kn. So trdeg(A) is the largest number n such that
there exists a dominant morphism X → Kn. This already links the tran-
scendence degree to an intuitive concept of dimension. In fact, we will be
able to do even better: In Chapter 8, we will see that such a morphism
can be chosen to be surjective, and such that every point in Kn has only
finitely many preimages (see after Remark 8.20 on page 105).

(b) If A = K[x1, . . . , xn]/I is an affine algebra given by generators of an ideal
I ⊆ K[x1, . . . , xn], then trdeg(A) can be computed algorithmically by
Gröbner basis methods. We will see this in Chapter 9 (see on page 128).
So equating dimension and transcendence degree brings the dimension
into the realm of computability. �

Theorem 5.5 (Dimension of algebras, upper bound). Let A be a (not nec-
essarily finitely generated) algebra over a field K. Then
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dim(A) ≤ trdeg(A).

Proof. This is the special case S = A of the following lemma. ��
Lemma 5.6. Let A be an algebra over a field K, and let S ⊆ A be a subset
that generates A as an algebra. Then

dim(A) ≤ sup {|T | | T ⊆ S is finite and algebraically independent} .

Proof. Let n be the supremum on the right-hand side of the claimed inequal-
ity. There is nothing to show if n =∞, and the lemma is correct if n = −1.
So assume n ∈ N0. We need to show that dim(A/P ) ≤ n for all P ∈ Spec(A).
If we substitute A by A/P and S by {a+P | a ∈ S}, then n cannot increase.
Therefore we may assume that A is an integral domain.

First consider the case n = 0. Then all elements from S are algebraic,
so the field of fractions Quot(A) is generated as a field extension of K by
algebraic elements. It follows that Quot(A) is algebraic, so A is algebraic,
too. By Lemma 1.1(a), this implies that A is a field, so dim(A) = 0.

Now assume n > 0, and let

P0 � P1 � · · · � Pm

be a chain in Spec(A) of length m > 0. Factoring by P1 yields a chain
in Spec(A/P1) of length m − 1 (see Lemma 1.22). If we can show that all
algebraically independent subsets T ⊆ {a + P1 | a ∈ S} ⊆ A/P1 have size
|T | < n, then we can use induction on n and conclude that dim(A/P1) < n,
so m− 1 < n, which yields the lemma.

By way of contradiction, assume that there exist a1, . . . , an ∈ S such that
{a1 + P1, . . . , an + P1} ⊆ A/P1 is algebraically independent of size n. Then
also {a1, . . . , an} ⊆ S is algebraically independent. By the definition of n, all
a ∈ S are algebraic over L := Quot (K[a1, . . . , an]), so Quot(A) is algebraic
over L, too. There exists a nonzero element a ∈ P1. We have a nonzero
polynomial G =

∑k
i=0 gix

i ∈ L[x] with G(a) = 0. Since a �= 0, we may
assume g0 �= 0. Furthermore, we may assume gi ∈ K[a1, . . . , an]. Then

g0 = −
k∑

i=1

gia
i ∈ P1,

so viewing g0 as a polynomial in n indeterminates over K, we obtain g0(a1 +
P1, . . . , an+P1) = 0, contradicting the algebraic independence of the ai+P1 ∈
A/P1. This completes the proof. ��

We can now determine the dimension of polynomial rings over fields and
of affine n-space Kn.

Corollary 5.7 (Dimension of a polynomial ring). If K is a field, then
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dim (K[x1, . . . , xn]) = n.

Moreover,

dim (Kn) =

{
n if K is infinite,

0 if K is finite.

Proof. With S := {x1, . . . , xn}, Lemma 5.6 yields dim (K[x1, . . . , xn]) ≤ n.
Since we have the chain

{0} � (x1) � (x1, x2) � · · · � (x1, . . . , xn) (5.1)

of length n in Spec (K[x1, . . . , xn]), equality holds.
Moreover, a chain of length m of closed, irreducible subsets Xi ⊆ Kn

gives rise to a chain of length m of ideals I(Xi) ⊂ K[x1, . . . , xn], which are
prime by Theorem 3.10(a), so m ≤ n by the above. On the other hand, if K is
infinite, the affine varieties corresponding to the ideals in (5.1) are irreducible
and provide a chain of length n, so dim (Kn) = n. If K is a finite field, then
dim (Kn) = 0 by Example 5.2(1). ��
Example 5.8. The bound from Theorem 5.5 is not always sharp. Indeed, con-
sider the rational function field A = K(x1, . . . , xn) := Quot (K[x1, . . . , xn]).
We have

dim(A) = 0 < n = trdeg(A).

�

In Chapter 7 we will prove that if R �= {0} is a Noetherian ring, then

dim (R[x]) = dim(R) + 1

(Corollary 7.13), generalizing Corollary 5.7. In Exercise 7.10, the analogous
result will be proved for the formal power series ring R[[x]]. For the formal
power series ring in n indeterminates over a field K, this implies

dim (K[[x1, . . . , xn]]) = n.

Theorem 5.9 (Dimension and transcendence degree). Let A be an affine
algebra. Then

dim(A) = trdeg(A).

We will prove the theorem together with the following proposition, which
often facilitates the computation of the transcendence degree since the set S
can be taken to be finite.

Proposition 5.10 (Calculating the transcendence degree). Let A be an af-
fine algebra, and let S ⊆ A be a generating set. Then

trdeg(A) = sup {|T | | T ⊆ S is finite and algebraically independent} .
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Proof of Theorem 5.9 and Proposition 5.10. By Lemma 5.6 we have

dim(A) ≤ sup {|T | | T ⊆ S is finite and algebraically independent} ,

and this supremum is clearly less than or equal to trdeg(A). So we need
to show only that trdeg(A) ≤ dim(A). Using induction on n, we will show
that if trdeg(A) ≥ n, then dim(A) ≥ n. We may assume n > 0. So let
a1, . . . , an ∈ A be algebraically independent. By Corollary 2.12, A is Noe-
therian, so by Corollary 3.14(a), there exist only finitely many minimal prime
ideals M1, . . . ,Mr of A. Assume that for all i ∈ {1, . . . , r} we have that
a1 +Mi, . . . , an +Mi ∈ A/Mi are algebraically dependent. Then there exist
polynomials fi ∈ K[x1, . . . , xn] \ {0} such that fi(a1, . . . , an) ∈Mi, so

a :=
r∏

i=1

fi(a1, . . . , an) ∈
r⋂

i=1

Mi = nil(A),

where the last equality follows from Corollary 3.14(c). So there exists a k with
ak = 0, so with f :=

∏r
i=1 f

k
i �= 0 we have f(a1, . . . , an) = 0, contradicting

the algebraic independence of the ai. Hence for some Mi the elements a1 +
Mi, . . . , an + Mi ∈ A/Mi are algebraically independent. It suffices to show
that dim(A/Mi) ≥ n, so by replacing A by A/Mi, we may assume that A is
an affine domain.

Consider the field L := Quot(K[a1]), which is a subfield of Quot(A), and
the subalgebra A′ := L · A ⊆ Quot(A). Clearly A′ is an affine L-domain,
and a2, . . . , an ∈ A′ are algebraically independent over L. By induction,
dim(A′) ≥ n− 1, so there exists a chain

P ′
0 � P ′

1 � · · · � P ′
n−1

in Spec(A′). Set Pi := A∩P ′
i ∈ Spec(A). Then Pi−1 ⊆ Pi for i = 1, . . . , n−1.

These inclusions are strict since clearly L · Pi = P ′
i for all i. Moreover,

L ∩ Pn−1 = {0}, since otherwise P ′
n−1 would contain an invertible element

from L, leading to P ′
n−1 = A′. It follows that a1 + Pn−1 ∈ A/Pn−1 is not

algebraic over K. By Lemma 1.1(b), A/Pn−1 is not a field, so Pn−1 is not
a maximal ideal. Let Pn ⊂ A be a maximal ideal containing Pn−1. Then we
have a chain

P0 � P1 � · · · � Pn−1 � Pn

in Spec(A), and dim(A) ≥ n follows. ��
In Exercise 5.3, the scope of Theorem 5.9 will be extended to all subal-

gebras of affine algebras. In Chapter 8, we will learn more about chains of
prime ideals in affine domains (see Theorem 8.22).

We will now use Theorem 5.9 in order to characterize 0-dimensional affine
algebras. To avoid ambiguities, we write dimK(V ) for the dimension (= size
of a basis) of a vector space V over a field K.
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Theorem 5.11 (0-dimensional affine algebras). Let A �= {0} be an affine
K-algebra. Then the following statements are equivalent:

(a) dim(A) = 0.
(b) A is algebraic over K.
(c) dimK(A) <∞.
(d) A is Artinian.
(e) |Specmax(A)| <∞.

Proof. If dim(A) = 0, then A is algebraic by Theorem 5.9. Assume that A is
algebraic. We can write A = K[a1, . . . , an], so there exist nonzero polynomials
gi ∈ K[x] with gi(ai) = 0. It is easy to see that the set

{ n∏

i=1

aei

i | 0 ≤ ei < deg(gi) for all i
}

generates A as a K-vector space. Now assume that A is finite-dimensional
as a K-vector space. Then the linear subspaces satisfy the descending chain
condition. Therefore so do the ideals, so A is Artinian.

Assume that A is Artinian. By Corollary 3.14(a) and (b), every maxi-
mal ideal of A contains one of the minimal prime ideals P1, . . . , Pn. But by
Theorem 2.8, the Pi themselves are maximal. This implies (e).

Finally, assume that there exist only finitely many maximal ideals, and let
P ∈ Spec(A). By Theorem 1.13, P is the intersection of all maximal ideals
of A containing P , so P is a finite intersection of maximal ideals. Since P is
a prime ideal, it follows that P itself is maximal. Therefore dim(A) = 0. ��

Exercise 5.4 gives an interpretation of dimK(A) in the case that A = K[X ]
is the coordinate ring of a finite set X . The following proposition describes
0-dimensional subsets of Kn. For K algebraically closed, this is just a
reformulation of Theorem 5.11(e).

Proposition 5.12 (0-dimensional sets). Let K be a field and X ⊆ Kn

nonempty. Then dim(X) = 0 if and only if X is finite.

Proof. Assume dim(X) = 0. Since X is a subset of a Noetherian space, X is
Noetherian, too. By Theorem 3.11(a),X is a finite union of closed, irreducible
subsets Zi. Choose xi ∈ Zi. Then {xi} ⊆ Zi is a chain of closed, irreducible
subsets, so Zi = {xi}. It follows that X is finite.

Conversely, if X is finite, then the irreducible subsets are precisely the
subsets of size 1, so dim(X) = 0. ��

The following theorem deals with a situation that is, in a sense, opposite to
the one from Theorem 5.11: equidimensional algebras whose dimension is only
1 less than the number of generators. These correspond to equidimensional
affine varieties in Kn of dimension n − 1. Such varieties are usually called
hypersurfaces.
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Theorem 5.13 (Hypersurfaces). Let I ⊆ K[x1, . . . , xn] be an ideal in a
polynomial ring over a field, and A := K[x1, . . . , xn]/I. Then the following
statements are equivalent:

(a) A is equidimensional of dimension n− 1.
(b) I �= K[x1, . . . , xn], and every prime ideal in K[x1, . . . , xn] that is min-

imal over I is minimal among all nonzero prime ideals. (According to
Definition 6.10, this means that I has height 1.)

(c)
√
I = (g) with g ∈ K[x1, . . . , xn] a nonconstant polynomial.

Proof. In the proof we will make frequent use of the bijection between
Spec(A) and VSpec(K[x1,...,xn])(I) given by Lemma 1.22. Let M ⊆
Spec(K[x1, . . . , xn]) be the set of all prime ideals that are minimal over I.
ThenM is finite by Corollary 3.14(d), and the minimal prime ideals of A are
the P/I, P ∈ M.

First assume that A is equidimensional of dimension n−1, so for all P ∈M
we have

dim (K[x1, . . . , xn]/P ) = dim (A/(P/I)) = n− 1. (5.2)

It follows from Corollary 5.7 that P �= {0}. If P were not minimal among all
nonzero primes, we could build a chain of prime ideals in Spec(K[x1, . . . , xn])
by going two steps down from P , and, using (5.2), going n−1 steps up from P .
This chain would have length n + 1, contradicting Corollary 5.7. Since (a)
also implies that I �= K[x1, . . . , xn], (b) follows.

Now assume (b), and again take P ∈M. By Lemma 5.14, which we prove
below, there exists an irreducible polynomial gP such that P = (gP ). With
Corollary 3.14(d), it follows that

√
I =

⋂

P∈M
P =

⋂

P∈M
(gP ) = (g),

where we set g :=
∏

P∈M gP . Since I �= K[x1, . . . , xn], g is nonconstant,
so (c) holds.

Finally, assume (c), and let g = g1 · · · gr be a decomposition into irre-
ducible polynomials. For i �= j, gi does not divide gj since (g) is a rad-
ical ideal. We obtain prime ideals Pi := (gi) ∈ Spec(K[x1, . . . , xn]), and⋂r

i=1 Pi =
√
I. It follows that M = {P1, . . . , Pr}. Since dim (A/(Pi/I)) =

dim (K[x1, . . . , xn]/Pi) we need to show that dim (K[x1, . . . , xn]/(gi)) = n−1
for all i. But it is clear that by excluding an indeterminate xj that occurs
in gi from the set {x1, . . . , xn}, we obtain a maximal subset of {x1, . . . , xn}
that is algebraically independent modulo gi. So the claim follows by Propo-
sition 5.10 and Theorem 5.9. ��

The following lemma was used in the proof. Recall that a factorial ring is
the same as a unique factorization domain.

Lemma 5.14 (Height-one prime ideals in a factorial ring). Let R be a fac-
torial ring and let P ∈ Spec(R) be prime ideal that is minimal among all
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nonzero prime ideals. (According to Definition 6.10, this means that P has
height 1.) Then P = (a) with a ∈ R a prime element.

Proof. Let a ∈ P \ {0}. Since P is a prime ideal, at least one factor of a
factorization of a into prime elements also lies in P , so we may assume a to
be a prime element. Then (a) is a prime ideal and {0} � (a) ⊆ P , so (a) = P
by the minimality hypothesis. ��

Part (c) of Theorem 5.13 talks about principal ideals. This should be com-
pared to Theorem 8.25, which talks about ideals generated by n polynomials.
Readers may also take a look at Theorem 7.4, where the implication (c) ⇒
(b) of Theorem 5.13 is generalized fromK[x1, . . . , xn] to arbitrary Noetherian
rings.

As a further application of Theorem 5.9 and Proposition 5.10, we deter-
mine the dimension of a product of affine varieties.

Theorem 5.15 (Dimension of a product variety). Let X ⊆ Kn and Y⊆Km

be nonempty affine varieties over an algebraically closed field K. Then the
product variety X × Y ⊆ Kn+m satisfies

dim(X × Y ) = dim(X) + dim(Y ).

Proof. The proof is very easy and straightforward, even if it takes some space
to write it down.

Write d = dim(X) = dim (K[X ]) and e = dim(Y ) = dim (K[Y ]). By
Theorem 5.9 and Proposition 5.10, d is the largest nonnegative integerm such
that there exist pairwise distinct indeterminates xi1 , . . . , xim ∈ {x1, . . . , xn}
such that

{f ∈ K[xi1 , . . . , xim ] | f ∈ I(X)} = {0}. (5.3)

So we have xi1 , . . . , xid
∈ {x1, . . . , xn} and yj1 , . . . , yje ∈ {y1, . . . , ym}

(with y1, . . . , ym a new set of indeterminates) satisfying (5.3) for X and
Y , respectively. To show that the union of these satisfy (5.3) for X × Y ,
let f ∈ K[xi1 , . . . , xid

, yj1 , . . . , yje ] be a polynomial that vanishes on X × Y .
Write f =

∑r
k=1 gktk with gk ∈ K[xi1 , . . . , xid

] and tk pairwise distinct
products of powers of the yjν . Let (ξ1, . . . , ξn) ∈ X . Then the polynomial∑r

k=1 gk(ξ1, . . . , ξn)tk ∈ K[yj1 , . . . , yje ] lies in I(Y ), so it is zero. Since the
tk are linearly independent over K, this implies gk(ξ1, . . . , ξn) = 0 for all k.
Since this holds for all points in X , we conclude gk = 0, so f = 0. This shows
that dim(X × Y ) ≥ d+ e.

To see that dim(X × Y ) is not greater than d + e, let T ⊆ {x1, . . . , xn,
y1, . . . , ym} be a subset with |T | > d + e. Then |T ∩ {x1, . . . , xn}| > d or
|T ∩ {y1, . . . , ym}| > e. By symmetry, we may assume the first case, so there
exist pairwise distinct xi1 , . . . , xim ∈ T with m > e. Therefore we have f ∈
K[xi1 , . . . , xim ] \ {0} which vanishes on X . So f , viewed as a polynomial in
the indeterminates from T , vanishes on X×Y . This completes the proof. ��
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Exercises for Chapter 5

5.1 (The dimension of a subset). Let X be a topological space and let
Y ⊆ X be a subset equipped with the subset topology.

(a) Show that Y is irreducible if and only if the closure Y is irreducible.
(b) Show that dim(Y ) ≤ dim(X).

5.2 (Dimension of the power series ring). Let K be a field and R =
K[[x]] the formal power series ring over K. Show that dim(R) = 1.

*5.3 (Subalgebras of affine algebras). Let A be a (not necessarily finite-
ly generated) subalgebra of an affine algebra. Show that Theorem 5.9 and
Proposition 5.10 hold for A. (Solution on page 218)

5.4 (Coordinate rings of finite sets of points). Let K be a field and
X ⊆ Kn a finite set of points. Show that

dimK (K[X ]) = |X |.

5.5 (The ring of Laurent polynomials). Let K be a field, K(x) the rati-
onal function field, and R = K[x, x−1] ⊂ K(x) the ring of Laurent polyno-
mials. Determine the Krull dimension of R.

5.6 (Right or wrong?). Decide whether each of the following statements
is true or false. Give reasons for your answers.

(a) If R ⊆ S is a subring, then dim(R) ≤ dim(S).
(b) If A is an affine algebra and B ⊆ A a subalgebra, then dim(B) ≤ dim(A).
(c) If R is a ring and I ⊆ R an ideal, then dim(R/I) ≤ dim(R).
(d) If A is an affine K-algebra, then the transcendence degree of A is the size

of a maximal algebraically independent subset of A.
(e) If A is an affine K-domain, then the transcendence degree of A is the size

of a maximal algebraically independent subset of A.
(f) Let A be a zero-dimensional algebra over a field K. Then dimK(A) <∞.

5.7 (Matrices of small rank). Let K be an infinite field and Kn×m the
set of all n × m matrices with entries in K, which we identify with affine
n ·m-space Kn·m. For an integer k with 0 ≤ k ≤ min{n,m}, let

Xk :=
{
A ∈ Kn×m | rank(A) ≤ k) ⊆ Kn×m.

(a) Show that Xk is closed and irreducible.
Hint: Pick a matrixM ∈ Kn×m of rank k and consider the map f :Kn×n×
Km×m → Kn×m, (A,B) �→ AMB.
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(b) Show that
dim(Xk) = k · (n+m− k).

Hint: Determine the transcendence degree of K[Xk] using (a), Exer-
cise 5.6(e), and Remark 5.4(a).

5.8 (Images of morphisms). Let X and Y be affine varieties over an alge-
braically closed field K, f : X → Y a morphism, and im(f) the Zariski closure
of its image. Show that

dim
(
im(f)

)
≤ dim(X). (5.4)

Does (5.4) extend to the case that f is a morphism of spectra?
Remark: By Exercise 5.1, the inequality (5.4) implies dim (im(f)) ≤ dim(X).

5.9 (The polynomial ring over a principal ideal domain). LetR be a
principal ideal domain that is not a field. Show that the polynomial ring R[x]
has dimension 2.
Hint: For a chain of prime ideals Pi in R[x], consider the ideals in Quot(R)[x]
generated by the Pi. Show that R ∩ P2 �= {0}.
Remark: This result is a special case of Corollary 7.13 on page 84, which
requires much more work.





Chapter 6

Localization

In commutative algebra, localization is a construction that is almost as
important as the formation of quotient structures. In this chapter we define
localization and give the basic properties. In particular, we will see what
localization does to the spectrum of a ring. Localization naturally leads to
the topics of local rings and the height of an ideal, which will be dealt with
here.

The construction of Q from Z or, more generally, of Quot(R) from an inte-
gral domain R is a model for the following definition of localization. However,
localization is more general in two ways: It allows one to make only a selection
of ring elements invertible, which may include zero divisors, and we extend
the definition to modules.

Definition 6.1. Let R be a ring, M an R-module (where M = R is an
important special case), and U ⊆ R a submonoid of the multiplicative monoid
of R (i.e., 1 ∈ U , and with a, b ∈ U the product a · b also lies in U ; we do not
assume that 0 /∈ U). Such a set U is called a multiplicative subset of R.
Define a relation ∼ on the Cartesian product U ×M by

(u1,m1) ∼ (u2,m2) :⇐⇒ there exists u ∈ U such that uu2m1 = uu1m2.

(It is routine to check that this is indeed an equivalence relation.) We will
write the equivalence class of (u,m) ∈ U ×M as a fraction:

[(u,m)]∼ =:
m

u
.

(This notation makes it clear that the intention of the equivalence relation
is to allow the reduction of fractions, as well as the reverse process.) The
localization of M with respect to U , written as U−1M , is the set of
equivalence classes:

U−1M := ( U ×M)/ ∼ =
{m

u
| m ∈M, u ∈ U

}
.

There is a canonical map given by

G. Kemper, A Course in Commutative Algebra, Graduate Texts
in Mathematics 256, DOI 10.1007/978-3-642-03545-6 7,
c© Springer-Verlag Berlin Heidelberg 2011
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ε: M → U−1M, m �→ m

1
.

U−1M is made into an R-module by

m1

u1
+
m2

u2
:=

u2m1 + u1m2

u1u2
for mi ∈M and ui ∈ U

and
a · m

u
:=

am

u
for a ∈ R, m ∈M, and u ∈ U.

(Again, it is routine to check that these operations are well defined and the
axioms of a module are satisfied.)

In the special case that U = R \ P with P ∈ Spec(R), we write

U−1M =: MP

and call this the localization of M at P .

The generality and flexibility of localization are best demonstrated by
examples.
Example 6.2. (1) Let R be an integral domain and U = R \ {0}. Then

U−1R = Quot(R), the field of fractions. Quot(R) is the localization of R
at the prime ideal {0}.

(2) More generally, let R be any ring and

U := {a ∈ R | a is not a zero divisor},

which is a multiplicative subset. U−1R is called the total ring of frac-
tions of R. The canonical map R→ U−1R is injective, and U is maximal
with this property. In fact, if S ⊆ R is any multiplicative subset, then
the canonical map R→ S−1R is injective if and only if S ⊆ U .

(3) Consider R = Z and P = (2) ∈ Spec(Z). Then RP is (isomorphic to) the
ring of all rational numbers with odd denominator. We have mentioned
this ring on page 15 as an example of a non-Jacobson ring.

(4) Let R = Z/(6) and P = (2) ∈ Spec(R). In RP , we have 2
1

= 0
1
, since

3 /∈ P and
3 · 1 · 2 = 3 · 1 · 0.

With this, it is easy to see that RP ∼= Z/(2). So a localization can be
“smaller” than the original ring.
Also notice that the total ring of fractions of Z/(6) is isomorphic to Z/(6).

(5) Let K be a field and X ⊆ Kn an affine variety with coordinate ring
K[X ]. For x ∈ X , consider the maximal ideal mx ∈ Specmax(K[X ]) of all
regular functions vanishing at x. Then

K[X ]x := K[X ]mx
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consists of all fractions of regular functions on X whose denominator
does not vanish at x. This example gives a first hint that localization has
something to do with locality. A second hint is contained in Exercise 6.6.
K[X ]x is also called the localization of K[X ] at x.

(6) Let R be a ring and a ∈ R. Then U = {1, a, a2, . . .} = {ak | k ∈ N0} ⊆ R
is a multiplicative subset. It is customary to write

Ma := U−1M,

although this may sometimes lead to confusion. For example, with this
notation Z2 is (isomorphic to) the ring of all rational numbers with a
power of 2 as denominator.

(7) If 0 ∈ U , then U−1M = {0} for every R-module M , including M = R.
This follows from Definition 6.1.

(8) Let (G,+) be a finite abelian group, which becomes a Z-module by defin-
ing a · σ :=

∑a
i=1 σ and (−a) · σ := −(a · σ) for σ ∈ G and a ∈ Z

nonnegative. Let U = Z \ {0}. Then U−1G is the zero module, since each
σ ∈ G has positive order ord(σ) ∈ U , and ord(σ) · σ = 0. �

The following proposition is a collection of basic properties of localization.
The proofs of all parts are straightforward but sometimes a little tedious. We
leave them as an exercise for the reader, who should be prepared to spend a
small pile of paper on them.

Proposition 6.3 (Properties of localization). Let R be a ring, U ⊆ R a
multiplicative subset, and M an R-module.

(a) U−1R becomes a ring with the addition defined as in U−1M , and multi-
plication defined as multiplying numerators and denominators.

(b) The canonical map ε: R→ U−1R is a homomorphism of rings. So U−1R
becomes an R-algebra.

(c) U−1M becomes a U−1R-module, with multiplication of an element of
U−1R and an element of U−1M defined as multiplying numerators and
denominators.

(d) All ε(u) with u ∈ U are invertible in U−1R.
(e) Let ϕ: R→ S be a ring homomorphism such that all ϕ(u) with u ∈ U are

invertible in S. Then there exists a unique homomorphism U−1R→ S of
R-algebras. This universal property tells us that S−1R is the “smallest”
and “freest” R-algebra in which the elements from U become invertible.

(f) If R is an integral domain and 0 /∈ U , then U−1R is embedded in Quot(R)
in the obvious way. Therefore we may (and often will) identify U−1R with
a subalgebra of Quot(R).

(g) If V ⊆ R is a multiplicative subset containing U , then

V −1(U−1M) ∼= ε(V )−1(U−1M) ∼= V −1M

(isomorphisms of R-modules). So “step-by-step” localization is the same
as “all-at-once” localization. For M = R, the second isomorphism is also
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a ring isomorphism

ε(V )−1(U−1R) ∼= V −1R.

(h) Let N ⊆ M be a submodule. Then U−1N is isomorphic to a submodule
of U−1M . In fact, with εM : M → U−1M the canonical map, the map

U−1N →
(
εM(N)

)

U−1R
= U−1R · εM(N),

n

u
�→ 1

u
· εM(n),

is an isomorphism of U−1R-modules. Therefore we may (and will) iden-
tify U−1N with (εM (N))U−1R ⊆ U−1M . In particular, for an ideal I ⊆ R
we identify U−1I with the ideal (ε(I))U−1R ⊆ U−1R.

(i) Let N ⊆ U−1M be a U−1R-submodule. With εM : M → U−1M the
canonical map, the preimage N := ε−1

M (N) ⊆M is a submodule, and

U−1N = N.

In particular, if I ⊆ U−1R is an ideal, then

U−1ε−1(I) = I.

The above properties of localization will often be used without explicit
reference to Proposition 6.3. As an immediate consequence of part (i), we get
the following:

Corollary 6.4 (Localization preserves the Noether property). Let R be a
ring, U ⊆ R a multiplicative subset, and M an R-module. If M is Noether-
ian, then so is U−1M (as a U−1R-module). In particular, if R is Noetherian,
then so is U−1R.

The following result gives a description of the spectrum of a localized ring
U−1R. It is a counterpart of Lemma 1.22, which deals with quotient rings.

Theorem 6.5 (The spectrum of a localized ring). Let R be a ring and U⊆R
a multiplicative subset. Let ε: R→ U−1R be the canonical map and

A := {Q ∈ Spec(R) | U ∩Q = ∅} .

Then the map
Spec

(
U−1R

)→ A, Q �→ ε−1(Q)

is an inclusion-preserving bijection with inverse map

A → Spec
(
U−1R

)
, Q �→ U−1Q.

In particular, for a prime ideal P ∈ Spec(R), the prime ideals of RP
correspond to prime ideals Q ∈ Spec(R) with Q ⊆ P .
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Proof. Since preimages of prime ideals under ring homomorphisms are always
prime ideals, ε−1(Q) ∈ Spec(R) for Q ∈ Spec

(
U−1R

)
. Moreover, U ∩

ε−1(Q) = ∅, since otherwise Q would contain an invertible element from
U−1R. So ε−1(Q) ∈ A. By Proposition 6.3(i) we also have

U−1ε−1(Q) = Q.

Now let Q ∈ A. We claim that

ε−1
(
U−1Q

)
= Q. (6.1)

It is clear that Q ⊆ ε−1
(
U−1Q

)
. For the reverse inclusion, take a ∈

ε−1
(
U−1Q

)
. Then there exist q ∈ Q and u ∈ U with

a

1
=
q

u
,

so u′ua = u′q with u′ ∈ U . With the definition of A, this implies a ∈ Q,
proving (6.1).

We still need to show that U−1Q is a prime ideal. We see that U−1Q is
an ideal by Proposition 6.3(h), and it follows from (6.1) that U−1Q �= U−1R.
Take a1, a2 ∈ R and u1, u2 ∈ U with

a1

u1
· a2

u2
∈ U−1Q.

Then ε(a1a2) ∈ U−1Q, so a1a2 ∈ Q by (6.1). This implies that at least one
of the ai lies in Q, so ai

ui
∈ U−1Q, and U−1Q is a prime ideal indeed.

It is immediately clear that our maps preserve inclusions. This completes
the proof. �

In Exercise 6.5 it is shown that the bijections from Theorem 6.5 are
actually homeomorphisms. Theorem 6.5 has two immediate consequences,
Corollaries 6.6 and 6.8.

Corollary 6.6 (Dimension of a localized ring). Let R be a ring and U ⊆ R
a multiplicative set. Then

dim
(
U−1R

) ≤ dim (R) .

Definition 6.7. A ring R is called a local ring if it has precisely one
maximal ideal.

Corollary 6.8 (Localizing at a prime ideal gives a local ring). Let R be a
ring and P ⊂ R a prime ideal. Then the localization RP is a local ring
with PP as unique maximal ideal.

Example 6.9. The rings in Example 6.2(1), (3), and (5) are examples of local
rings. We give a few more.
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(1) Every field is a local ring.
(2) Let K[x] be a polynomial ring over a field. Then K[x]/(x2) is a local ring

with (x)/(x2) as unique maximal ideal.
(3) The formal power series ring K[[x]] over a field is a local ring with (x) as

unique maximal ideal (see Exercise 1.2).
(4) The zero ring R = {0} is not a local ring. �

Definition 6.10. Let R be a ring.

(a) Let P ⊂ R be a prime ideal. Then the height of P is defined as

ht(P ) := dim (RP ) ∈ N0 ∪ {∞}.

So by Theorem 6.5, ht(P ) is the maximal length n of a chain

P0 � P1 � · · · � Pn = P

of prime ideals Pi ∈ Spec(R) ending with P .
(b) Let I ⊆ R be an ideal. If I �= R, the height of I is defined as

ht(I) := min
{
ht(P ) | P ∈ VSpec(R)(I)

}
.

If I = R, we set
ht(I) := dim(R) + 1.

Since the height, as defined in (a), gets smaller when we pass to a sub–prime
ideal, the definitions in (a) and (b) are consistent.

Remark 6.11. (a) If P ⊂ R is a prime ideal, then Lemma 1.22 tells us that
dim(R/P ) is the maximal length of a chain of prime ideals in Spec(R)
starting with P . Therefore

ht(P ) + dim(R/P ) ≤ dim(R). (6.2)

This is often an equality, for example in the case that R = K[X ] with
X an equidimensional affine variety (see Corollary 8.23). For this reason,
some authors use the term codimension for the height. Example 6.12(3)
shows that the inequality (6.2) can also be strict.

(b) It is not hard to give a geometric interpretation of height. If X is an
affine variety over an algebraically closed field, then the prime ideals in
the coordinate ring K[X ] correspond to the closed, irreducible subsets
of X (see Theorem 1.23 and Theorem 3.10(a)). So if P ∈ Spec(K[X ])
corresponds to Y ⊆ X , i.e., Y = VX(P ), then ht(P ) is the maximal
length k of a chain

Y = Y0 � Y1 � · · · � Yk

of closed, irreducible subsets of X starting with Y . On the other hand,
dim (K[X ]/P ) is the maximal length of a chain ending with Y . So ht(P ) +
dim(K[X ]/P ) is the maximal length of a chain passing through Y . �
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Example 6.12. (1) Every minimal prime ideal has height 0. If R is a
Noetherian ring, then ht({0}) = 0. By Exercise 3.6, this is also true
for R not Noetherian.

(2) Let K be a field, (ξ1, . . . , ξn) ∈ Kn, and P = IK[x1,...,xn] ({(ξ1, . . . , ξn)}).
Then ht(P ) = n, since we have a chain of prime ideals

{0} � (x1 − ξ1) � (x1 − ξ1, x2 − ξ2) � · · · � (x1 − ξ1, . . . , xn − ξn) = P,

and on the other hand ht(P ) ≤ dim(K[x1, . . . , xn]) = n by (6.2).
(3) Let X = Z1∪Z2 be an affine variety over an algebraically closed field with

irreducible components Z1 and Z2 such that dim(Z1) < dim(Z2). Let x be
a point of Z1 not lying in Z2. Then a chain of closed, irreducible subsets
of X that starts with {x} lies completely in Z1, so for P := IK[X](x) we
have

ht(P ) ≤ dim(Z1).

(In fact, equality holds as a consequence of Corollary 8.24.) Since
dim (K[X ]/P ) = 0, we have

ht(P ) + dim (K[X ]/P ) < dim(K[X ]),

so the inequality (6.2) is strict here. �

We conclude this chapter with a definition.

Definition 6.13. Let R be a ring and M an R-module.

(a) For an element m ∈M , the annihilator of m is

Ann(m) := {a ∈ R | a ·m = 0} .
This is an ideal in R.

(b) The annihilator of M is

Ann(M) :=
⋂

m∈M
Ann(m) ⊆ R.

Clearly one can restrict this intersection to the elements m of a generating
set of M .

(c) The (Krull) dimension of M is

dim(M) := dim (R/Ann(M)) ,

where the dimension on the right-hand side denotes the Krull dimension
of the ring. Readers should notice that for R a field and M a nonzero vec-
tor space, dim(M) is always 0, so this has nothing to do with dimension
as a vector space.

(d) The support of M is

Supp(M) := {P ∈ Spec(R) |MP �= {0}} ⊆ Spec(R).
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So a P ∈ Spec(R) lies in the support if and only if there exists m ∈ M
with Ann(m) ⊆ P .

Example 6.14. Let I ⊆ R be an ideal in a ring, and consider the quotient
ring M := R/I as an R-module. Then it is easy to see that Ann(M) = I and
Supp(M) = VSpec(R)(I). A generalization can be found in Exercise 6.10. �

Exercises for Chapter 6

6.1 (Properties of localization). Check all assertions made in Defini-
tion 6.1 and Proposition 6.3.

6.2 (Some examples of localization). In each of the following examples,
we give a ring R, a multiplicative subset U ⊆ R, and an R-module M . Give a
description of the localization U−1M . The letter K always stands for a field
and x for an indeterminate.

(a) M = R = K[x], U = {xk | k ∈ N0}.
(b) M = R = Z, U = {1} ∪ {12n | n ∈ Z, n > 0}.
(c) R = Z, U = Z \ {0}, M = Z[x].
(d) R = K[x], M = K[x]/(x2), U = {xk | k ∈ N0}.
(e) R = K[x], M = K[x]/(x2), U = K[x] \ (x).

6.3 (Localization is an exact functor). Let R be a ring and U ⊆ R a
multiplicative set. Let ϕ: M → N be a homomorphism of R-modules. Show
that the map

U−1ϕ: U−1M → U−1N,
m

u
�→ ϕ(m)

u
,

is a homomorphism of U−1R-modules. (Since passing from ϕ to U−1ϕ is
compatible with composition of homomorphisms, this makes localization with
respect to U into a functor from the category of R-modules to the category
of U−1R-modules.)

By an exact sequence of R-modules, we mean a sequence

· · · ϕ−2−→M−1
ϕ−1−→M0

ϕ0−→M1
ϕ1−→M2

ϕ2−→M3
ϕ3−→ · · · (6.3)

with Mi modules over R and ϕi: Mi → Mi+1 module homomorphisms such
that im(ϕi) = ker(ϕi+1) for all i ∈ Z. More formally, a sequence is a direct
sum M =

⊕
i∈Z

Mi of R-modules together with a homomorphism ϕ: M →M
such that ϕ(Mi) ⊆Mi+1 for all i, and exactness means that im(ϕ) = ker(ϕ).
Assume that the sequence (6.3) is exact and show that the localized sequence

· · · −→ U−1M0
U−1ϕ0−→ U−1M1

U−1ϕ1−→ U−1M2 −→ · · · (6.4)
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is also exact. We express this by saying that localization is an exact functor.
Remark: Most exact sequences appearing in the real life of a mathematician
are finite, meaning that only finitely manyMi are nonzero. The most frequent
example is a “short exact sequence,” in which all Mi except M1, M2, and M3

are zero. In that case, exactness implies M3
∼= M2/M1.

A consequence of this exercise is that injective (surjective) homomorphisms
localize to injective (surjective) maps.

6.4 (Local–global principle). A local–global principle is a theorem that
states that some property holds “globally” if and only if it holds everywhere
“locally.” Here are two examples.

(a) Let M be a module over a ring R with submodules L,N ⊆M . Prove the
equivalence

L ⊆ N ⇐⇒ Lm ⊆ Nm for all m ∈ Specmax(R).

(b) Let ϕ: M → N be a homomorphism of modules over a ring R. For
m ∈ Specmax(R) there is a homomorphism ϕm: Mm → Nm as defined in
Exercise 6.3. Show that ϕ is injective or surjective if and only if the same
property holds for every ϕm with m ∈ Specmax(R).

6.5 (Homeomorphisms). Show that the bijections from Theorem 6.5 are
homeomorphisms. (HereA is equipped with the subset topology induced from
the Zariski topology on Spec(R).)

6.6 (Localization hides components). Let X = Y1∪Y2 be an affine vari-
ety over a fieldK, decomposed as a union of two closed subsets. Let x ∈ Y1\Y2

be a point. Show that the restriction homomorphism ϕ: K[X ] → K[Y1]
induces an isomorphism (of K-algebras)

ϕx: K[X ]x → K[Y1]x,
f

u
�→ ϕ(f)

ϕ(u)
,

of the coordinate rings localized at x.
Remark: This result may be expressed thus: “Localization at x sees only those
components in which x lies” – a further hint that localization has something
to do with locality.

6.7 (A characterization of local rings). Let R be a ring. Prove the fol-
lowing.

(a) R is local if and only if the set of noninvertible elements of R is an ideal.
Then this is the unique maximal ideal.

(b) Let m � R be a proper ideal. Then R is local with m as maximal ideal if
and only if all elements from R \m are invertible.
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6.8 (An alternative definition of Krull dimension). In this exercise we
develop a prime-ideal-free definition of the Krull dimension of a ring. It is
based on an article by Coquand and Lombardi [11], which was brought to
my attention by Peter Heinig.

Let R be a ring. For a ∈ R, define the multiplicative set

Ua := {am(1 + xa) | m ∈ N0, x ∈ R} .

(a) For a ∈ R and P ∈ Spec(R) a prime ideal, prove the following equivalence:

Ua ∩ P = ∅ ⇐⇒ a /∈ P and P + (a)R �= R.

(b) For n ∈ N0 a nonnegative integer, prove the following equivalence:

dim(R) ≤ n ⇐⇒ dim
(
U−1
a R

) ≤ n− 1 for all a ∈ R.

(c) For n ∈ N0 a nonnegative integer, show that dim(R) ≤ n holds if and
only if for every a0, . . . , an ∈ R there exist m0, . . . ,mn ∈ N0 such that

n∏

i=0

ami
i ∈

(
aj ·

j∏

i=0

ami
i

∣
∣
∣ j = 0, . . . , n

)

R
. (6.5)

Remark: Part (c) provides the desired alternative definition of the Krull
dimension. The condition (6.5) looks a bit messy at first glance, but it is
easy to understand and to remember in terms of the lexicographic monomial
ordering, which we will introduce in Example 9.2(1) on page 119. In fact,
(c) says that dim(R) ≤ n if and only if for every a0, . . . , an ∈ R there exists
a monomial in the ai that can be written as an R-linear combination of lex-
icographically larger monomials in the ai. As a nice application, it is easy
to derive Theorem 5.5 and the first part of Corollary 5.7 from (c) using the
lexicographic ordering (see Exercise 9.5). (Solution on page 219)

6.9 (Localizing an affine domain). Let A be an affine domain and a ∈
A \ {0}. Show that the localization Aa has the same dimension as A. Does
this remain true for A an affine algebra or A an integral domain? Does it
remain true if one localizes with respect to an arbitrary multiplicative subset
U ⊆ A \ {0}?

6.10 (Support of modules). Let R be a ring and M an R-module.

(a) Assume that M is finitely generated and show that

Supp(M) = VSpec(R) (Ann(M)) .

In particular, Supp(M) is Zariski closed in Spec(R).
*(b) Give an example in which Supp(M) is not Zariski closed.
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6.11 (Associated primes). Let R be a Noetherian ring and M an R-
module. A prime ideal P ∈ Spec(R) is called an associated prime of M if
there exists m ∈M with P = Ann(m). (But notice that not all annihilators
of elements of M are prime ideals!) We write the set of all associated primes
as Ass(M).

(a) Let I be an ideal that is maximal among all Ann(m) with m ∈M \ {0}.
Show that I ∈ Ass(M). So in particular Ass(M) �= ∅ if M �= {0}.

(b) Let U ⊆ R be a multiplicative subset and consider the R-module U−1M .
Show that

Ass(U−1M) = {P ∈ Ass(M) | U ∩ P = ∅} .

(c) Consider the special case M = R/I with I a radical ideal. Show that
Ass(M) is the set of all prime ideals that are minimal over I.

(d) Let R = K[x1, x2] be a polynomial ring over a field and M = R/I with
I := (x2

1, x1x2). Determine Ass(M). Does the conclusion of part (c) hold?

Remark: Part (c) suggests that associated primes may be seen as a generaliza-
tion of irreducible components. The theory of associated primes and primary
decomposition is treated in most textbooks on commutative algebra, but not
in this one.





Chapter 7

The Principal Ideal Theorem

This chapter has very few definitions, but many results. In the first section we
prove Krull’s principal ideal theorem, which says, roughly speaking, that an
ideal generated by n elements has height at most n. This theorem is one of the
workhorses of commutative algebra. As corollaries, we obtain the existence
of systems of parameters of Noetherian local rings, and the fact that every
Noetherian local ring has finite dimension. Along the way, two important
lemmas are proved: Nakayama’s lemma and the prime avoidance lemma.

The second section of this chapter deals with the dimension of fibers of a
morphism of spectra of rings. The principal ideal theorem leads to a lower
bound for the fiber dimension. From this, we obtain a formula for the dimen-
sion of a polynomial ring over an arbitrary Noetherian ring. More work is
required to show that under suitable hypotheses, the lower bound is exact
“almost everywhere.” This project will be completed in Chapter 10. Large
parts of the second section may be skipped by readers who are not interested
in fiber dimension. Details are given at the beginning of the section.

7.1 Nakayama’s Lemma and the Principal
Ideal Theorem

For a square matrix A ∈ Rn×n with entries in a ring R, the determinant
det(A) is defined by the Leibniz formula.

Lemma 7.1 (Adjugate matrix over rings). Let A = (ai,j)1≤i,j≤n ∈ Rn×n be
a square matrix with entries in a ring R. For i, k ∈ {1, . . . , n}, let ci,k ∈ R
be the determinant of the matrix obtained from A by deleting the ith row and
the kth column. Then for j, k ∈ {1, . . . , n}:

n∑

i=1

(−1)i+kci,kai,j = δj,k · det(A) with δj,k :=

{
1 if j = k,

0 if j �= k.

G. Kemper, A Course in Commutative Algebra, Graduate Texts
in Mathematics 256, DOI 10.1007/978-3-642-03545-6 8,
c© Springer-Verlag Berlin Heidelberg 2011
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Proof. If determinant theory is developed over a ring, this is the standard
result on the adjugate matrix. For readers who are familiar with determinants
only over a field, we present a proof by reduction to the field case.

For i, j ∈ {1, . . . , n}, let xi,j be an indeterminate over Q, and consider
the matrix Â := (xi,j) ∈ Q(x1,1, x1,2, . . . , xn,n)n×n with coefficients in the
rational function field in n2 indeterminates. Let ĉi,k ∈ Q(x1,1, x1,2, . . . , xn,n)
be the minors of Â, formed as the ci,k from A. The rule of the adjugate matrix
states that

n∑

i=1

(−1)i+k ĉi,kxi,j = δj,k · det(Â). (7.1)

Both sides of (7.1) lie in the polynomial ring Z[x1,1, x1,2, . . . , xn,n]. There
exists a (unique) ring homomorphism

ϕ: Z[x1,1, x1,2, . . . , xn,n]→ R with ϕ(xi,j) = ai,j .

Applying ϕ to both sides of (7.1) yields the lemma. ��
The following lemma will be used in the proof of Nakayama’s lemma,

but also in the development of the theory of integral ring extensions (see
Lemma 8.3).

Lemma 7.2. Let R be a ring, M = (m1, . . . ,mn)R a finitely generated
R-module, and ai,j ∈ R ring elements (i, j ∈ {1, . . . , n}) with

n∑

j=1

ai,jmj = 0 for i ∈ {1, . . . , n}.

Then
det(ai,j)1≤i,j≤n ∈ Ann(M).

Proof. Let A := (ai,j) ∈ Rn×n, and let ci,k ∈ R be as in Lemma 7.1. For
every k ∈ {1, . . . , n}, it follows from Lemma 7.1 that

det(A) ·mk =
n∑

j=1

δj,k det(A)mj =
n∑

j=1

n∑

i=1

(−1)i+kci,kai,jmj = 0,

so indeed det(A) ∈ Ann(M). ��
Nakayama’s lemma, which we prove now, is one of the key tools in com-

mutative algebra. It is one of those results that seldom arouse spontaneous
enthusiasm, but then develop a habit of appearing at crucial steps in many
proofs. (Readers may look up the index entry for “Nakayama’s lemma” at the
end of this book to locate some examples.) If R is a ring, then the intersection

J :=
⋂

m∈Specmax(R)

m
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is called the Jacobson radical of R. (For R = {0}, we define the Jacobson
radical to be J = R.) For example, if R is a local ring, then J is the unique
maximal ideal. Because of its importance, we give Nakayama’s lemma the
status of a theorem.

Theorem 7.3 (Nakayama’s lemma). Let R be a ring with Jacobson radical
J , and let M be a finitely generated R-module. If

J ·M = M,

then M = {0}.
Proof. Write M = (m1, . . . ,mn)R. By hypothesis, mi =

∑n
j=1 ai,jmj with

ai,j ∈ J . By Lemma 7.2,

d := det(δi,j − ai,j)1≤i,j≤n ∈ Ann(M).

But d ≡ 1 mod J , so d lies in no maximal ideal of R. This implies that d is
invertible, so M = {0}. ��

We can now prove the first version of Krull’s principal ideal theorem. This
is a generalization of the implication (c) ⇒ (b) of Theorem 5.13 (which is
about polynomial rings) to arbitrary Noetherian rings. Recall that a prime
ideal P ∈ Spec(R) is said to be minimal over an ideal I ⊆ R if P is a
minimal element of VSpec(R)(I), i.e., I ⊆ P , but no proper sub–prime ideal
of P contains I.

Theorem 7.4 (Principal ideal theorem, first version). Let R be a Noether-
ian ring and P ∈ Spec(R) a prime ideal that is minimal over a principal ideal
(a) ⊆ R. Then

ht(P ) ≤ 1.

In particular, a proper principal ideal of R has height at most 1.

Proof. Let RP be the localization at P . Using Theorem 6.5, we see that PP

is a prime ideal that is minimal over
(

a
1

)
RP

, and ht(PP ) = ht(P ). So by
replacing R with RP , we may assume that R is local with maximal ideal P .
Then the quotient ring R/(a) has the unique prime ideal P/(a), so R/(a) is
Artinian by Theorem 2.8. We will transport the Artin property from R/(a)
to the localization Ra using the canonical maps ε and ϕ shown in Fig. 7.1.

R

�
�

���

�
�

���

ε ϕ

Ra R/(a)

Fig. 7.1. The canonical maps ε and ϕ
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Let I, J ⊆ Ra be ideals with I ⊇ J and ϕ
(
ε−1(I)

)
= ϕ

(
ε−1(J)

)
. If

we can prove that this implies I = J , it follows that a descending chain of
ideals In in Ra stops at the same point or earlier than the chain of ideals
ϕ

(
ε−1(In)

) ⊆ R/(a). To prove the claim, let x ∈ ε−1(I). Then there exist
y ∈ ε−1(J) and z ∈ R with x = y + az. This implies az ∈ ε−1(I). Since
ε(a) is invertible in Ra, we obtain z ∈ ε−1(I), so x ∈ ε−1(J) + (a) · ε−1(I).
Therefore the R-module M := ε−1(I)/ε−1(J) satisfies

M ⊆ (a)M ⊆ PM ⊆M.

Nakayama’s lemma (Theorem 7.3) yields M = {0}, so ε−1(I) = ε−1(J). By
Proposition 6.3(i), this implies I = J . So indeed Ra is Artinian. Applying
Theorem 2.8 again, we obtain dim(Ra) ∈ {0,−1}, with 0 occurring if Ra �={0}.

Let Q ∈ Spec(R) be a prime ideal with Q � P . The minimality of P
implies a /∈ Q, so by Proposition 6.3(g), RQ is a localization of Ra (which
implies Ra �= {0}). By Corollary 6.6, this implies dim(RQ) ≤ dim(Ra) = 0,
so ht(Q) = 0. It follows that ht(P ) ≤ 1. ��

The principal ideal theorem can fail badly for non-Noetherian rings.
Examples are given in Exercise 7.4.

Theorem 7.4 will be used in the proof of a second version of the principal
ideal theorem, which generalizes from principal ideals to ideals generated by n
elements.

Theorem 7.5 (Principal ideal theorem, generalized version). Let R be a
Noetherian ring and P ∈ Spec(R) a prime ideal that is minimal over an
ideal (a1, . . . , an) ⊆ R generated by n elements. Then

ht(P ) ≤ n.

Proof. We use induction on n. The result is correct for n = 0, so assume
n > 0. As in the proof of Theorem 7.4, we may assume that R is a local
ring with maximal ideal P . Let Q � P be a prime ideal such that no other
prime ideals lie between Q and P . We need to show that ht(Q) ≤ n− 1. By
assumption, Q does not lie over (a1, . . . , an), so by relabeling we may assume
that a1 /∈ Q. So P is a prime ideal that is minimal over Q+ (a1), and since
P is the unique maximal ideal of R, it is the only prime ideal over Q+ (a1).
By Corollary 1.12, we obtain P =

√
Q+ (a1), so for i ∈ {2, . . . , n} we have

aki
i = bi + xia1 with ki > 0, bi ∈ Q, and xi ∈ R.

This implies (a1, a
k2
2 , . . . , a

kn
n ) = (a1, b2, . . . , bn). Therefore P is minimal over

(a1, b2, . . . , bn), so by Lemma 1.22, P/(b2, . . . , bn) ∈ Spec (R/(b2, . . . , bn)) is
minimal over (a1, b2, . . . , bn)/(b2, . . . , bn). But this last ideal is a principal
ideal in R/(b2, . . . , bn), so
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ht (P/(b2, . . . , bn)) ≤ 1

by Theorem 7.4. This implies ht (Q/(b2, . . . , bn)) = 0, so Q is a prime ideal
that is minimal over (b2, . . . , bn). By induction, this implies ht(Q) ≤ n − 1,
which completes the proof. ��

In the case that R is an affine domain, Theorem 7.5 translates into a
statement on dimension, which is given in Theorem 8.25. Readers may be
interested in taking a look at that theorem now, along with its geometric
interpretation that is discussed after Theorem 8.25.

Theorem 7.5 has some important consequences. Here is a first corollary.

Corollary 7.6 (Finiteness of height). Let R be a Noetherian ring and P ∈
Spec(R). If P is generated by n elements, then

ht(P ) ≤ n.

In particular, every Noetherian local ring has finite Krull dimension, bounded
above by the number of generators of the maximal ideal.

Exercise 7.7 shows that it is not always true that a Noetherian ring has
finite Krull dimension.

Just like Nakayama’s lemma, the following result is rather technical and
inconspicuous, but often used.

Lemma 7.7 (Prime avoidance). Let R be a ring and I, P1, . . . , Pn ⊆ R ide-
als, with n a positive integer. Assume that Pi is a prime ideal for i > 2.
Then

I ⊆
n⋃

i=1

Pi

implies that there exists an i with I ⊆ Pi.

Proof. The proof is by induction on n. There is nothing to show for n = 1, so
assume n > 1. By way of contradiction, assume that for each i ∈ {1, . . . , n}
there exists

xi ∈ I \
⋃

j �=i

Pj .

So by assumption, xi ∈ Pi. It follows that x1 + x2 lies in I but neither in P1

nor in P2, so n > 2. But then x1 ·x2 · · ·xn−1 + xn lies in I but in none of the
Pi, a contradiction. Therefore there exists i with

I ⊆
⋃

j �=i

Pj ,

and the result follows by induction. ��
The prime avoidance lemma is about interchanging quantifiers: If for each

x ∈ I there exists i ∈ {1, . . . , n} such that x ∈ Pi, then there exists i such
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that for all x ∈ I one has x ∈ Pi. The name “prime avoidance” comes from
reading the lemma backwards: If I is contained in none of the Pi, then there
exists an element x of I that lies in none of the Pi, i.e., x avoids all Pi.

Using prime avoidance, we will now see that Theorem 7.5 has its own
converse as a consequence.

Theorem 7.8 (A converse of the principal ideal theorem). Let R be a Noe-
therian ring and P ∈ Spec(R) a prime ideal of height n. Then there exist
a1, . . . , an ∈ R such that P is minimal over (a1, . . . , an).

Proof. We will show that there exist a1, . . . , an ∈ P with

ht ((a1, . . . , ak)) = k for all k ≤ n.

Assume that a1, . . . , ak−1 have been found. LetM⊆ Spec(R) be the set of all
prime ideals that are minimal over (a1, . . . , ak−1). By Definition 6.10(b), every
Q ∈M has height at least k−1, so by Theorem 7.5 we must have ht(Q) = k−1
(and this is also true in the case k = 1). This implies P �⊆ Q. Since M is
finite by Corollary 3.14(d), Lemma 7.7 yields the existence of ak ∈ P with
ak /∈ Q for all Q ∈ M. Every prime ideal Q′ lying over (a1, . . . , ak) also lies
over (a1, . . . , ak−1), so Q′ contains a Q ∈ M. Since ak /∈ Q, the containment
is proper, so ht(Q′) > ht(Q) = k − 1. This implies ht ((a1, . . . , ak)) ≥ k, and
Theorem 7.5 yields equality.

For k = n, we obtain that P lies minimally over (a1, . . . , an), since other-
wise ht(P ) > n. ��

Corollary 7.9 (Systems of parameters). Let R be a Noetherian local ring
with maximal ideal m. Then dim(R) is the least number n such that there
exist a1, . . . , an ∈ m with

m =
√

(a1, . . . , an). (7.2)

A sequence a1, . . . , an ∈ m satisfying (7.2) with n = dim(R) will be called a
system of parameters of R.

Proof. Using Corollary 1.12, we see that (7.2) is equivalent to the condition
that m is minimal over (a1, . . . , an). The existence of a1, . . . , an with n =
ht(m) = dim(R) is guaranteed by Theorem 7.8. By Theorem 7.5, n cannot
be chosen smaller than dim(R). ��

In Exercise 8.11, a connection between systems of parameters and Noether
normalization is given. This gives rise to a (rather rough) geometric interpre-
tation of a system of parameters as a “good local coordinate system.”
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7.2 The Dimension of Fibers

In this section we study images of morphisms and the dimensions of fibers, a
project that will be completed in Chapter 10. The results of Chapter 10 will
not be used anywhere else in this book, and of this section, only Propo-
sition 7.11 and the term going down will be used outside of Chapter 10.
Therefore it is possible to restrict the reading of this section to Proposi-
tion 7.11 and the discussion of going down on page 85, and to skip Chapter 10
altogether.

In algebraic geometry, a fiber is the preimage f−1({x}) of a point x
under a morphism f . In this section we study the dimension of fibers.
In the case that f is a surjective linear map between vector spaces V
and W , we know from linear algebra that all fibers have the dimension
dim

(
f−1(x)

)
= dim(V ) − dim(W ), so it is reasonable to expect a similar

formula in more general cases. It may be instructive to take a look at Exam-
ple 7.14 now to get an impression of what can happen in the affine variety
case. As we will see, it requires a good deal of work to transport the above for-
mula to situations beyond linear maps. We start by considering the algebraic
counterpart of fibers. The following lemma, which deals with the local case,
is a consequence of Corollary 7.9. After giving the proof, we will discuss why
we refer to the lemma under the keyword fiber dimension, and in particular
we will see that the quotient ring S/I in the lemma belongs to the fiber (see
the discussion after Proposition 7.11).

Lemma 7.10 (Fiber dimension, lower bound, local case). Let R and S be
Noetherian local rings with maximal ideals m and n, respectively. Let ϕ: R→
S be a homomorphism with ϕ(m) ⊆ n, and let I := (ϕ(m))S be the ideal in S
generated by the image of m. Then

dim (S/I) ≥ dim(S)− dim(R).

Proof. Let a1, . . . , am ∈ m be a system of parameters of R, so m = dim(R)
by Corollary 7.9. By Lemma 2.6, there exists a nonnegative integer k with
mk ⊆ (a1, . . . , am)R. It is easy to check that this implies

Ik ⊆ (ϕ(a1), . . . , ϕ(am))S . (7.3)

Since S/I is local and Noetherian by Lemma 1.22 and Proposition 2.4, there
exists a system of parameters b1 + I, . . . , bn + I ∈ n/I (with bi ∈ n) of S/I,
so n = dim (S/I) by Corollary 7.9. We claim that

n =
√

(ϕ(a1), . . . , ϕ(am), b1, . . . , bn)S . (7.4)

It is clear that the right-hand side of (7.4) is contained in the left-hand
side. Conversely, let x ∈ n. There exists a positive integer l with (x + I)l ∈
(b1 + I, . . . , bn + I)S/I , so xl ∈ (b1, . . . , bn)S + I. With (7.3), this yields
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xkl ∈ (b1, . . . , bn)S + Ik ⊆ (ϕ(a1), . . . , ϕ(am), b1, . . . , bn)S .

So (7.4) is proved. By Corollary 7.9, this implies dim(S) ≤ m+ n. ��
Given a homomorphism ϕ: R→ S of rings, we have an induced map

f : Spec(S)→ Spec(R), Q → ϕ−1(Q) (7.5)

(see on page 37; if R and S are coordinate rings of affine varieties, f corre-
sponds to a morphism of varieties). For P ∈ Spec(R), the set f−1({P}) is
called the fiber of f over P . We now wish to give an algebraic counterpart
of the fiber. The answer is as follows. Consider the ideal I = (ϕ(P ))S in S
generated by the image of P , and the multiplicative subset

U := {ϕ(a) + I | a ∈ R \ P} ⊆ S/I.

Then form the ring
S[P ] := U−1 (S/I) .

With the canonical homomorphisms π: S → S/I and ε: S/I → S[P ], we get
the following result.

Proposition 7.11. In the above situation, the map

Φ: Spec
(
S[P ]

)→ f−1({P}), Q → π−1
(
ε−1(Q)

)
,

is an inclusion-preserving bijection.

Proof. By Lemma 1.22 and Theorem 6.5, Φ is an inclusion-preserving injec-
tion Spec

(
S[P ]

)→ Spec(S), and its image is

im(Φ) = {Q ∈ Spec(S) | I ⊆ Q and U ∩ (Q/I) = ∅} .

It is easy to verify that the above conditions on Q are equivalent to P =
ϕ−1(Q), i.e., Q ∈ f−1({P}). ��

In fact, the bijection Φ from Proposition 7.11 can be shown to be a home-
omorphism (this follows from Exercises 3.4 and 6.5). So S[P ] is the desired
algebraic counterpart of the fiber, and the fiber dimension is equal to the
Krull dimension of S[P ]. Motivated by Proposition 7.11, we call S[P ] the fiber
ring of ϕ over P . Notice that S[P ]

∼= S/I if P is a maximal ideal, since in
that case all ϕ(a)+I with a ∈ R\P are already invertible in S/I. The reader
should be warned that the symbol S[P ] for the fiber ring is not standard
notation. In Exercise 7.9 we will study a more abstract way of defining the
fiber ring, and introduce an alternative notation that is more standard.

Theorem 7.12 (Fiber dimension, lower bound). Let ϕ: R → S be a homo-
morphism of Noetherian rings. Moreover, let Q ∈ Spec(S) and P := ϕ−1(Q).
Then
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dim
(
S[P ]

) ≥ ht(Q)− ht(P ). (7.6)

In fact, if Q ∈ Spec
(
S[P ]

)
is the image of Q in S[P ] (i.e., Q = U−1 (Q/I)

with the above notation), then

ht (Q) ≥ ht(Q)− ht(P ). (7.7)

Proof. The second inequality (7.7) implies the first, so we only need to
prove (7.7). We do this by reduction to the local case. We have a (well-defined)
homomorphism

ψ: RP → SQ,
a

b
→ ϕ(a)

ϕ(b)
,

mapping PP into QQ. Setting J := (ψ(PP ))SQ
and applying Lemma 7.10, we

obtain
dim (SQ/J) ≥ dim(SQ)− dim(RP ) = ht(Q)− ht(P ). (7.8)

We claim that dim (SQ/J) = ht(Q). To prove this, we study the spectrum of
SQ/J . With the canonical homomorphisms ε: S → SQ and π: SQ → SQ/J ,
we get a map

Spec (SQ/J)→ Spec(S), q → ε−1
(
π−1(q)

)
.

By Lemma 1.22 and Theorem 6.5, this map is inclusion-preserving and
injective, and its image is

M := {Q′ ∈ Spec(S) | ϕ(P ) ⊆ Q′ and Q′ ⊆ Q}
=

{
Q′ ∈ Spec(S) | ϕ−1(Q′) = P and Q′ ⊆ Q}

.

So dim (SQ/J) is the maximal length of a chain inM. On the other hand, by
Proposition 7.11, M is in an inclusion-preserving, bijective correspondence
with {

Q′ ∈ Spec
(
S[P ]

) | Q′ ⊆ Q
}
.

So ht(Q) is also the maximal length of a chain in M, and we conclude that
ht(Q) = dim (SQ/J). ��

The most important special case of Theorem 7.12 is the “truly geometric”
case in which ϕ comes from a morphism of affine varieties. Readers may
already take a look at the inequality (10.8) in Corollary 10.6 on page 142,
which gives a translation of Theorem 7.12 into geometric terms.

We will continue to investigate whether (or when) the inequalities in Theo-
rem 7.12 are actually equalities (see Theorem 10.5 for the final result). Before
we start doing that, we draw an important conclusion, which requires only
the lower bound from Theorem 7.12.
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Corollary 7.13 (Dimension of polynomial rings). Let R �= {0} be a Noe-
therian ring and R[x] the polynomial ring in one indeterminate. Then

dim (R[x]) = dim(R) + 1.

Proof. Let ϕ: R → R[x] =: S be the natural embedding. For an ideal I ⊆ R
we have S/ (ϕ(I))S

∼= (R/I) [x] and ϕ−1 ((ϕ(I))S) = I. Let P0 � P1 � · · · �
Pn be a chain of prime ideals in Spec(R). By the above, Qi := (ϕ(Pi))S yields
a strictly ascending chain of prime ideals in S. Since S/Qn

∼= (R/Pn) [x] is
not a field, Qn is not maximal. Therefore dim(S) ≥ n+ 1, and we conclude
that

dim(S) ≥ dim(R) + 1.

For showing the reverse inequality, let Q ∈ Spec(S) be a prime ideal and set
P := ϕ−1(Q) ∈ Spec(R). We are done if we can show that ht(Q) ≤ ht(P )+1.
By Theorem 2.11, S is Noetherian, so we may apply Theorem 7.12. The
inequality (7.6) yields ht(Q) ≤ ht(P ) +dim(S[P ]), so it remains to show that
dim(S[P ]) ≤ 1. We have S/ (ϕ(P ))S

∼= (R/P ) [x], and under this isomorphism
the set U = {ϕ(a) + (ϕ(P ))S | a ∈ R \ P} maps to (R/P ) \ {0}, so the fiber
ring is

S[P ]
∼= ((R/P ) \ {0})−1 (R/P ) [x] = Quot(R/P )[x].

So by Example 5.2(6) we get dim(S[P ]) = 1. ��
By repeated application of Corollary 7.13 we obtain a new proof of the

first part of Corollary 5.7. In Exercise 7.10, the analogous result is shown for
power series rings.

When are the inequalities of Theorem 7.12 actually equalities? We first
look at two examples.
Example 7.14. We assume that K is an algebraically closed field.

(1) Let X = VK2(x1 · x2) be the “coordinate cross,” Y = K1 and

f : X → Y, (ξ1, ξ2) → ξ1

the first projection. This is the morphism of varieties induced by

ϕ: K[x]→ K[x1, x2]/(x1 · x2), x → x1 + (x1 · x2).

Every maximal ideal in K[x] corresponds to a point ξ ∈ K1, and has
height 1 by the geometric interpretation of height (Remark 6.11(b)).
Likewise, every maximal ideal in K[x1, x2]/(x1 · x2) has height 1. For
ξ ∈ K1 \ {0}, the fiber f−1(ξ) consists of one point, so both inequalities
from Theorem 7.12 are equalities. But for ξ = 0, the fiber is the entire
x2-axis, so here the inequalities are strict.

(2) The variety X in the previous example is reducible. Now consider the
irreducible variety
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X = VK3(x2
1 + x2

2 − x2
3) = VK3

(
x2

1 + (x2 + x3)(x2 − x3)
)
,

which in R3 visualizes as a circular cone, and the morphism

f : X → Y := K2, (ξ1, ξ2, ξ3) → (ξ1, ξ2 + ξ3).

We assume that K is not of characteristic 2. As above, we see that all
maximal ideals in the coordinate rings K[X ] and K[Y ] have height 2. If
(α, β) ∈ K2 with β �= 0, then

f−1(α, β) =
{(

α,
β2 − α2

2β
,
β2 + α2

2β

)}

,

so the fiber dimension is 0 and equality holds in Theorem 7.12. But if
β = 0 and α �= 0, the fiber is empty (so Theorem 7.12 does not apply),
and if α = β = 0, then

f−1(0, 0) = {(0, η,−η) | η ∈ K} ,

which is one-dimensional. So here the inequalities are strict. �

In both of the above examples, the inequalities from Theorem 7.12 are
equalities on an open, dense subset of Y . But we could easily destroy equality
by substituting Y with a larger affine variety of higher dimension. This shows
that for Y an irreducible affine variety, equality can hold only if the morphism
is dominant. So Exercise 4.2 tells us that a reasonable hypothesis for which
we can expect equality almost everywhere is that ϕ: R → S is injective.
This explains why Theorem 10.5, our final result on fiber dimension, has this
hypothesis.

To push the theory further, we need a few lemmas. Before stating the first,
we introduce the following terminology. We will say that going down holds
for a homomorphism ϕ: R → S of rings if for every P ∈ Spec(R) and every
Q′ ∈ Spec(S) with ϕ(P ) ⊆ Q′, there exists Q ∈ Spec(S) with Q ⊆ Q′ and
ϕ−1(Q) = P . This is illustrated in Fig. 7.2.

P

ϕ−1(Q′)
Q

�����

Q′

����

R

S

Fig. 7.2. Going down
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The term “going down” refers to the descent from Q′ to Q. Exercise 8.9
contains an example in which going down fails. It is easy to see that if U ⊆ R is
a multiplicative subset and going down holds for the homomorphism U−1R→
ϕ(U)−1S induced by ϕ, then it also holds for the original homomorphism
ϕ: R→ S with the additional hypothesis that ϕ(U) ∩Q′ = ∅.
Lemma 7.15 (Going down and fiber dimension). In the situation of Theo-
rem 7.12, let U := ϕ(R \ P ). If going down holds for the homomorphism
RP → U−1S induced by ϕ, then equality holds in (7.7).

Proof. By Proposition 7.11, ht(Q) is the maximal length of a chain

Q0 � Q1 � · · · � Qm = Q (7.9)

of prime ideals Qi ∈ Spec(S) with ϕ−1(Qi) = P . We have a chain P0 �
· · · � Pn = P in Spec(R) of length n = ht(P ). Since U ∩ Q0 = ∅ and
ϕ(Pn−1) ⊆ ϕ(P ) ⊆ Q0, we can use the remark preceding Lemma 7.15 to work
downwards along the chain of Pi and find Q−1, . . . , Q−n ∈ Spec(S) extending
the chain (7.9) downwards. This yields ht(Q) ≥ n + m = ht(P ) + ht(Q),
so (7.7) is an equality. ��

A ring homomorphism R → S makes S into an R-module. Recall that
modules over a ring do not always have a basis (= a linearly independent
generating set). If a module does have a basis, it is called free.

Lemma 7.16 (Freeness implies going down). Let ϕ: R→ S be a ring homo-
morphism with S Noetherian.

(a) If S is free as an R-module, then going down holds for ϕ.
(b) If additionally there exists a basis B of S over R with 1 ∈ B, then the

induced map ϕ∗: Spec(S)→ Spec(R) is surjective.

Proof. For the proof of (a), let P ∈ Spec(R) and Q′ ∈ Spec(S) with
ϕ(P )⊆Q′. Set I := (ϕ(P ))S , and let Q ∈ Spec(S) be minimal among the
prime ideals that lie between I and Q′. In particular, Q is a minimal prime
ideal over I. Let Q1, . . . , Qn be the other minimal prime ideals over I. (There
are finitely many of them by Corollary 3.14(d).) We have

⋂n
i=1Qi �⊆ Q, so

we may choose y ∈ ⋂n
i=1Qi \Q. We claim that ϕ−1(Q) ⊆ P , which together

with I ⊆ Q yields ϕ−1(Q) = P , proving (a). So take a ∈ ϕ−1(Q). Then

ϕ(a)y ∈ Q ∩
n⋂

i=1

Qi =
√
I,

where Corollary 3.14(d) was used. So there exists a positive integer k with
ϕ(a)kyk ∈ I. We have yk /∈ I, since the contrary would imply y ∈ Q. So the
smallest j with ϕ(a)jyk ∈ I is positive. Set z := ϕ(a)j−1yk. Then z /∈ I but
ϕ(a)z ∈ I, so
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ϕ(a)z =
m∑

i=1

xiϕ(ai) (7.10)

with xi ∈ S and ai ∈ P . If B is a basis of S as an R-module, we can write
z =

∑
b∈B ϕ(zb) · b and xi =

∑
b∈B ϕ(xi,b) · b with zb, xi,b ∈ R (where only

finitely many coefficients in the sums are nonzero). From (7.10) and the linear
independence of B we get

a · zb =
m∑

i=1

xi,bai ∈ P

for all b ∈ B. But there exists b ∈ B with zb /∈ P (otherwise, z ∈ I), so a ∈ P .
This completes the proof of (a).

The hypothesis of (b) implies that there exists a homomorphism ψ: S → R
of R-modules with ψ ◦ ϕ = idR. Let P ∈ Spec(R). In view of (a), we have
only to show that there exists Q′ ∈ Spec(S) with ϕ(P ) ⊆ Q′. Assume the
contrary. Then (ϕ(P ))S = S, so we have 1 =

∑m
i=1 siϕ(ai) with si ∈ S

and ai ∈ P . Applying ψ yields 1 =
∑m

i=1 ψ(si)ai ∈ P , a contradiction. This
proves (b). ��

In Chapter 8, we will obtain another set of conditions under which going
down holds (see Theorem 8.17).

This is how far we can push the theory with the present methods. We
will continue the investigation of fiber dimensions in Chapter 10. There we
will prove the generic freeness lemma (Corollary 10.2), which under rather
weak assumptions says that the hypotheses of Lemma 7.16(a) and (b) are
satisfied after localization at all prime ideals lying in an open, dense subset
of Spec(R). Putting things together, this yields exact formulas for the fiber
dimension, which hold almost everywhere (see Theorem 10.5).

Exercises for Chapter 7

7.1 (The Cayley–Hamilton theorem). Deduce the Cayley–Hamilton
theorem (“substituting a square matrix A ∈ Rn×n over a ring into its own
characteristic polynomial f yields f(A) = 0”) from Lemma 7.2.

7.2 (Hypotheses of Nakayama’s lemma). Give an example that shows
that the hypothesis on finite generation of M cannot be dropped from
Nakayama’s lemma (Theorem 7.3).

7.3 (Nakayama’s lemma and systems of generators). Let R be a ring
with Jacobson radical J ⊆ R, and let M be a finitely generated R-module.
Write π: M →M/JM for the canonical map. Observe that M/JM = π(M)



88 7 The Principal Ideal Theorem

is an R/J-module, and for an R-submodule N of M , π(N) ⊆ π(M) is an
R/J-submodule.

(a) Let N ⊆M be a submodule. Prove the equivalence

N = M ⇐⇒ π(N) = π(M).

(b) Let x1, . . . , xn ∈M . Prove the equivalence

M = (x1, . . . , xn)R ⇐⇒ π(M) = (π(x1), . . . , π(xn))R/J .

(c) Assume that R is local with maximal ideal m, and write K := R/m. Show
that all minimal systems of generators of M have the same number n of
elements, namely n = dimK (M/mM).

(d) Give an example of a ring R and a finitely generated module M such
that not all minimal systems of generators have the same size.

*7.4 (Hypotheses of the principal ideal theorem). In this exercise we
learn that Krull’s principal ideal theorem (Theorem 7.4) may fail for non-
Noetherian rings. The example is adapted from Gilmer [20, page 321, Exer-
cise 21]. Let K[x, y] be a polynomial ring over a field, and consider the
subalgebra R := K[x, xy, xy2, xy3, . . .] ⊂ K[x, y], which we have already seen
as an example of a non-Noetherian domain (Example 2.3).

(a) Show that there exists precisely one prime ideal P ∈ Spec(R) lying over
the principal ideal (x)R.

(b) Show that ht(P ) = 2.
(c) By generalizing this, construct a ring Rn for each n ∈ N ∪ {∞} that has

a proper principal ideal of height n.

(Solution on page 220)

*7.5 (Can the spectrum be just one chain?). This exercise originated
from the question whether there exists a Noetherian ring with just three
prime ideals P0 � P1 � P2. When I posed this question to Viet-Trung Ngo,
he immediately answered it in the negative. His answer led to the following
statement, which should be proved in this exercise: If P ⊆ Q are two prime
ideals in a Noetherian ring R that have at most finitely many prime ideals in
between, then in fact there exists no prime ideal that properly lies between
P and Q.

7.6 (Semilocal rings). A ring R is called semilocal if it has (at most)
finitely many maximal ideals. For example, semilocal rings occur as coordi-
nate rings of affine varieties consisting of finitely many points. Here is how
semilocal rings can be constructed by localization. Let P1, . . . , Pn ∈ Spec(R)
be finitely many prime ideals in a ring such that Pi �⊆ Pj for i �= j. Show that
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U := R \
n⋃

i=1

Pi ⊆ R

is a multiplicative subset. Furthermore, show that the localization U−1R is
semilocal with maximal ideals U−1Pi.

*7.7 (An infinite-dimensional Noetherian ring). In this exercise we
study an example of a Noetherian ring that has infinite Krull dimension. The
example is due to Nagata [41, Appendix, Example E1], and the hints given
for the proof are adapted from Eisenbud [17, Exercise 9.6]. Let K be a field
and R = K[x1, x2, . . .] a polynomial ring in countably many indeterminates
xi, i ∈ N. Consider the prime ideals

Pi :=
(
xi2+1, xi2+2, . . . , x(i+1)2

) ⊂ R (i ∈ N0)

and set U := R \ ∪i∈N0Pi. Show that S := U−1R is Noetherian but has
infinite Krull dimension.
Hint: The hard part is to show that S is Noetherian. For this, consider a
nonzero ideal I ⊆ R, take f ∈ I \ {0}, and choose n ∈ N0 such that all
indeterminates xj occurring in f satisfy j ≤ (n+ 1)2. Show that there exist
f1, . . . , fm ∈ I such that (I)RPi

= (f1, . . . , fm)RPi
for i ≤ n. Now take g ∈ I

and set
J := {h ∈ R | h · g ∈ (f1, . . . , fm, f)R} .

Use Lemma 7.7 to show that there exists h ∈ J \ ∪n
i=0Pi. Assume that

J ⊆ ∪i∈N0Pi and derive a contradiction. From this, conclude that g ∈
(f1, . . . , fm, f)S , and that S is Noetherian. (Solution on page 221)

7.8 (Systems of parameters). Parts (a)–(c) of this exercise give exam-
ples of affine varieties X ⊆ Kn over an algebraically closed field. Consider
the localization Rx of the coordinate ring R = K[X ] at the point x =
(0, . . . , 0)∈X and find a system of parameters of Rx. Does there exist a
system of parameters that generates the maximal ideal?

(a) X = {(ξ1, ξ2) ∈ K2 | ξ1ξ2 = 0} (see Example 7.14(1)).
(b) X = {(ξ1, ξ2, ξ3) ∈ KL3 | ξ21 + ξ22 − ξ23 = 0} (see Example 7.14(2)).
(c) X = {(ξ1, ξ2) ∈ K2 | ξ22 − ξ1(ξ21 + 1) = 0} (an elliptic curve, shown as X3

in Fig. 12.1 on page 179).

Hint: You may use Exercise 7.3(c) for answering the second question.
Remark: A local ring whose maximal ideal is generated by a system of
parameters is called regular (see Definition 13.2).

7.9 (The fiber ring as a tensor product). This exercise gives a more
abstract description of the fiber ring. Let ϕ: R → S be a homomorphism
of rings and P ∈ Spec(R). Let K := Quot(R/P ) and ψ: R → K, a → a+P

1+P ,
the canonical map.



90 7 The Principal Ideal Theorem

(a) Show that the fiber ring S[P ] is the pushout of ϕ and ψ. Here is the
definition of the pushout.
For two R-algebras A and B (given by homomorphisms α and β), the
pushout of α and β is defined to be a ring C together with homomor-
phisms γ: A→ C and δ: B → C making the square in the below diagram
commutative (i.e., γ◦α = δ◦β) such that the following universal property
holds: For a ring T with homomorphisms Γ : A→ T and Δ: B → T with
Γ ◦α = Δ ◦β, there exists a unique homomorphism Θ: C → T such that
the diagram

R α � A

β

�

γ

�
B δ � C

	
	
	
	
	
	
	
		


Γ
����������

Δ

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

Θ

T

commutes (i.e., Θ ◦ γ = Γ and Θ ◦ δ = Δ). As usual with univer-
sal properties, this implies that the pushout (if it exists) is unique up
to isomorphism. More precisely, between two pushouts there exists a
unique map that is simultaneously an isomorphism of A-algebras and
of B-algebras.

(b) Conclude that Spec
(
S[P ]

)
is the pullback of the maps f : Spec(S) →

Spec(R) and g: Spec(K)→ Spec(R) induced by ϕ and ψ. (The pullback
is defined as the pushout but with all arrows reversed, and the maps
considered are morphisms of spectra of rings.)

(c) Describe the map g: Spec(K) → Spec(R) explicitly, and show that the
pullback of f and g is the fiber f−1({P}). So Spec

(
S[P ]

) ∼= f−1({P}) by
the uniqueness of pullbacks, which re-proves Proposition 7.11.

Remark: The pushout of two homomorphisms α: R → A and β: R → B is
isomorphic to the tensor product A⊗R B, which is equipped with a natural
structure as a ring (see Lang [33, Chapter XVI, Proposition 6.1]). So by (a)
we have S[P ]

∼= K ⊗R S. In fact, a notation for the fiber ring over P more
commonly found in the literature is κ(P )⊗RS, where κ(P ) := Quot(R/P ) =
K stands for the residue class field at P .

7.10 (Dimension of the formal power series ring). Let R �= {0} be a
Noetherian ring and R[[x]] the formal power series ring over R. Show that

dim (R[[x]]) = dim(R) + 1.
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The proof may be broken up into the following steps.

(a) If I ⊆ R is an ideal, then the kernel of the epimorphism S := R[[x]] →
(R/I) [[x]], obtained from applying the canonical map R → R/I coeffi-
cientwise, is (I)S. Conclude that dim(S) ≥ dim(R) = 1.

(b) Show that 1− xf is invertible in S for every f ∈ S. Let m ∈ Specmax(S)
be a maximal ideal. Conclude that x ∈ m. Show that n := R ∩ m is a
maximal ideal in R.

(c) Show that
ht(m) ≤ ht(n) + 1.

This finishes the proof.

Remark: By repeatedly using this result, we obtain

dim (K[[x1, . . . , xn]]) = n

for the formal power series ring in n indeterminates over a field.

7.11 (Free modules and the locus of freeness). Parts (a)–(c) of this
exercise give examples of ring extensions R ⊆ S. Decide whether S is free as
an R-module. Determine the “locus of freeness,” i.e., the set Xfree ⊆ Spec(R)
of all P ∈ Spec(R) such that (R \ P )−1S is free as an RP -module. Draw
conclusions on the fibers of the induced morphism Spec(S)→ Spec(R). Here
K[x1, x2, . . .] is always a polynomial ring over a field.

(a) R = Z and S = Z[1/2].
(b) S = K[x1, x2]/(x2

2 − x2
1(x1 + 1)) and R = K[x1], where xi ∈ S denotes

the residue class of xi. See Example 8.9(4) for the variety belonging to S.
(c) S = K[x1, x2, x3]/(x2

1 + x2
2 − x2

3) and R − K[x1, x2 − x3] (see Exam-
ple 7.14(2)). We assume char(K) �= 2.





Chapter 8

Integral Extensions

The concept of an integral ring extension is a generalization of the concept
of an algebraic field extension. In the first section of this chapter, we develop
the algebraic theory of integral extensions, and introduce the concept of a
normal ring. Section 8.2 studies the morphism Spec(S) → Spec(R) induced
from an integral extension R ⊆ S. In Section 8.3, we turn our attention to
affine algebras again. We prove the Noether normalization theorem, and use
it to prove, among other results, that all maximal ideals of an affine domain
have equal height.

8.1 Integral Closure

In the previous section we have considered ring homomorphisms ϕ: R → S.
We will now assume that ϕ is injective, so we view R as a subring of S or
(equivalently) S as a ring extension of R.

Definition 8.1. Let S be a ring and R ⊆ S a subring.

(a) Let s ∈ S. A monic polynomial

g = xn + a1x
n−1 + · · ·+ an−1x+ an ∈ R[x]

with g(s) = 0 is called an integral equation for s over R.
(b) An element s ∈ S is called integral over R if there exists an integral

equation for s over R. (The difference between this definition and that of
“algebraic” is that here we insist that the polynomial equation for s be
monic.)

(c) S is called integral over R if all elements from S are integral over R.
In this case we call S an integral extension of R.

Example 8.2. (1)
√

2 ∈ R is integral over Z. The ring Z[
√

2] is an integral
extension of Z.

G. Kemper, A Course in Commutative Algebra, Graduate Texts
in Mathematics 256, DOI 10.1007/978-3-642-03545-6 9,
c© Springer-Verlag Berlin Heidelberg 2011
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(2) 1/
√

2 ∈ R is not integral over Z (although it is algebraic). To see this,
assume

1√
2
n + a1

1√
2
n−1 + · · ·+ an−1

1√
2

+ an = 0

with ai ∈ Z. Observe that 1 and
√

2 are linearly independent over Q.
Multiplying the above equation by

√
2
n

and picking out the summands
that lie in Q yields

1 + 2a2 + 4a4 + · · · = 0,

a contradiction.
(3) s = 1+

√
5

2
∈ R is integral over Z, since s2 − s− 1 = 0. Therefore s is also

integral over R := Z
[√

5
] ⊂ R (the subalgebra generated by

√
5). What

is remarkable about this is that there exists an algebraic equation for s
over R of degree 1 (so s ∈ Quot(R)), but the smallest integral equation
has degree 2. �

We wish to prove that products and sums of integral elements are again
integral. The proof is quite similar to the standard proof of the analogous
result in field theory, and requires the following lemma.

Lemma 8.3 (Integral elements and finite modules). Let S be a ring, R ⊆ S
a subring, and s ∈ S. Then the following statements are equivalent:

(a) The element s is integral over R.
(b) The subalgebra R[s] ⊆ S generated by s is finitely generated as an R-

module.
(c) There exists an R[s]-module M with Ann(M) = {0} such that M is

finitely generated as an R-module.

Proof. Assume that s is integral over R, so we have an integral equation
xn + a1x

n−1 + · · ·+ an−1x+ an ∈ R[x] for s. We claim that R[s] is generated
by the si, i ∈ {0, . . . , n− 1}, i.e.,

R[s] =
(
1, s, . . . , sn−1

)
R

=
n−1∑

i=0

Rsi =: N.

Indeed, for k ≥ n, we have sk = − (
a1s

k−1 + · · ·+ ans
k−n)

, so it follows by
induction that all sk lie in N . So (a) implies (b). Moreover, it is clear that (b)
implies (c): Take M = R[s], then 1 ∈M , so Ann(M) = {0}.

Now assume (c). We have M = (m1, . . . ,mr)R, so for each i ∈ {1, . . . , r}
there exist ai,j ∈ R with s ·mi =

∑r
j=1 ai,jmj . By Lemma 7.2 this implies

det (δi,js− ai,j)1≤i,j≤r ∈ Ann(M),

so by hypothesis the determinant is zero. Therefore det (δi,jx− ai,j)1≤i,j≤r ∈
R[x] is an integral equation for s. �	
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The following theorem is in perfect analogy to the result that a finitely
generated field extension is finite if and only if it is algebraic. It also implies
that sums and products of integral elements are again integral.

Theorem 8.4 (Generated by integral elements implies integral). Let S be a
ring and R ⊆ S a subring such that S = R[a1, . . . , an] is finitely generated as
an R-algebra. Then the following statements are equivalent:

(a) All ai are integral over R.
(b) S is integral over R.
(c) S is finitely generated as an R-module.

Proof. Clearly (b) implies (a). We use induction on n to show that (a)
implies (c). We may assume n > 0. By induction, S′ := R[a1, . . . , an−1]
is finitely generated as an R-module, so S′ = (m1, . . . ,mr)R =

∑r
i=1 Rmi

with mi ∈ S′. We also have that an is integral over S′, so Lemma 8.3 yields
S′[an] =

∑l
j=1 S

′nj with nj ∈ S. Putting things together, we obtain

S = S′[an] =
l∑

j=1

r∑

i=1

Rminj,

so (c) holds.
Finally, (c) implies (b) by Lemma 8.3 (take M = S in Lemma 8.3(c)). �	

Corollary 8.5 (Integral elements form a subalgebra). Let S be a ring and
R ⊆ S a subring. Then the set

S′ := {s ∈ S | s is integral over R} ⊆ S

is an R-subalgebra.

Proof. Clearly all elements from R lie in S′. So all we need to show is that if
a, b ∈ S′, then also a+ b ∈ S′ and a · b ∈ S′. But this follows since R[a, b] is
integral over R by Theorem 8.4. �	

We obtain a further consequence of Lemma 8.3 and Theorem 8.4.

Corollary 8.6 (Towers of integral extensions). Let T be a ring and R ⊆
S ⊆ T subrings. If T is integral over S and S is integral over R, then T
is integral over R.

Proof. For every t ∈ T we have an integral equation

tn + s1t
n−1 + · · ·+ sn−1t+ sn = 0

with si ∈ S. So t is integral over S′ := R[s1, . . . , sn] ⊆ S. By Lemma 8.3,
S′[t] is finitely generated as an S′-module, and by Theorem 8.4, S′ is finitely
generated as an R-module. It follows that S′[t] is finitely generated as an
R-module, so applying Lemma 8.3 again shows that t is integral over R. �	
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Corollary 8.5 prompts the following definition.

Definition 8.7.

(a) Let S be a ring and R ⊆ S a subring. Then the set S′ of all elements
from S that are integral over R is called the integral closure of R in S.
If S′ = R, we say that R is integrally closed in S.

(b) An integral domain R is called normal if it is integrally closed in its field
of fractions Quot(R). One can extend this definition to rings that need
not be integral domains by calling a ring normal if it is integrally closed
in its total ring of fractions. In this book, normality is understood in the
above narrower sense.

(c) If R is an integral domain, the normalization of R, often written as R̃,
is the integral closure of R in its field of fractions Quot(R). Observe that
R̃ is normal by Corollary 8.6.

(d) An irreducible affine variety X over a field K is called normal if the
coordinate ring K[X ] is normal.

Before giving some examples, we prove an elementary result.

Proposition 8.8. Every factorial ring is normal.

Proof. Let R be a factorial ring, and let a/b ∈ Quot(R) be integral over R
with a, b ∈ R coprime. So we have

an

bn
+ a1

an−1

bn−1
+ · · ·+ an−1

a

b
+ an = 0

with ai ∈ R. Multiplying this by bn shows that b divides an, so every prime
factor of b divides a. By the coprimality, b has no prime factors, so it is
invertible in R. Therefore a/b ∈ R. �	
Example 8.9. (1) By Proposition 8.8, Z is normal, and so is every polynomial

ring K[x1, . . . , xn] over a field.
(2) By Example 8.2(3), R := Z

[√
5
]

is not normal. In fact, the normalization
is

R̃ = Z
[(

1 +
√

5
)
/2

]
=: S.

To see this, let a + b
√

5 ∈ Q
[√

5
]

= Quot(S) (with a, b ∈ Q) be inte-
gral over S. Since S is integral over Z by Theorem 8.4, a+b

√
5 is integral

over Z by Corollary 8.6, and so is a − b√5 (satisfying the same integral
equation over Z). So the sum 2a and the product a2 − 5b2 of these two
elements are also integral over Z. Since Z is integrally closed, it follows
that 2a ∈ Z and a2 − 5b2 ∈ Z. Now it is easy to see that this implies
a+ b

√
5 ∈ S.

It may be interesting to note that the ring S is actually factorial.
(3) A rather different case is R = Z

[√−5
] ⊆ C. For an element a+ b

√−5 ∈
Q

[√−5
]
, we obtain the conditions 2a ∈ Z and a2+5b2 ∈ Z for integrality
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over Z. It is easy to see that this implies a, b ∈ Z, so R is normal. However,
R is not factorial, as the nonunique factorization

6 = 2 · 3 = (1 +
√−5)(1 −√−5) (8.1)

shows. In fact, one needs to show that the factors in (8.1) really are
irreducible, and that the factorizations are essentially distinct, i.e., not
the same up to the order of the factors and up to invertible elements. For
z = a+ b

√−5 ∈ R, write N(z) := a2 + 5b2 = z · z (z times its complex
conjugate) for the so-called norm of z. Assume that 2 = z1z2 with zi ∈ R.
Since the norm is multiplicative, it follows that 4 = N(z1) · N(z2). But
2 does not occur as a norm of an element of R, so z1 or z2 has norm 1.
But this means z1 = ±1 or z2 = ±1, so z1 or z2 is invertible. Since
every invertible element of R has norm 1, 2 itself is not invertible, so 2
is irreducible in R. Since 3 is not a norm, either, it follows by the same
argument that 3 and 1 ± √−5 are irreducible, too. Finally, none of the
quotients (1 ± √−5)/2 and (1 ± √−5)/3 lie in R, so the factorizations
in (8.1) are essentially different.
This example shows that the converse of Proposition 8.8 does not hold.

(4) Let K be an algebraically closed field. An example from geometry is the
singular cubic curve

X = VK2

(
y2 − x2(x+ 1)

)

over a field K, which is shown in Fig. 8.1, and which has a (visible)
singular point at the origin. The coordinate ring of X is

Fig. 8.1. A singular cubic curve

A := K[X ] = K[x, y]
/(
y2 − x2(x + 1)

)
=: K[x, y].

We have
(y/x)2 − x− 1 = 0,
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so y/x ∈ Quot(A) is integral over A. The above equation also tells us
that x and y = (y/x) ·x lie in K [y/x], so A ⊆ K [y/x] ⊆ Ã. Since K [y/x]
is normal by Example 8.9(1), we obtain

Ã = K [y/x] .

It is interesting to consider the morphism of varieties induced by the
embedding A ↪→ Ã. This is given by

K1 → X, ζ 
→ (ζ2 − 1, ζ3 − ζ).

Observe that K1 has no singular points, and that every nonsingular point
of X has precisely one preimage in K1, whereas the unique singular point
of X has two preimages. So the normalization amounts to a desingular-
ization here. As we will see later, these observations are no coincidence.
In fact, we will prove in Section 14.1 that normality and nonsingularity
coincide in dimension 1. This is one (but not the only) reason why normal
rings are interesting. �

As the following proposition shows, normality is a local property, meaning
that it holds globally if and only if it holds locally everywhere.

Proposition 8.10 (Normal rings and localization). For an integral domain
R, the following statements are equivalent:

(a) R is normal.
(b) For every multiplicative subset U ⊂ R with 0 /∈ U , the localization U−1R

is normal.
(c) For every maximal ideal m ∈ Specmax(R), the localization Rm is normal.

Proof. Let K = Quot(R) be the field of fractions. Assume that R is normal,
and let U ⊂ R be a multiplicative subset with 0 /∈ U . We have U−1R ⊆ K
and Quot(U−1R) = K. To show that U−1R is normal, let a ∈ K be integral
over U−1R. Then there exist u ∈ U and a1, . . . , an ∈ R such that

an +
a1

u
an−1 + · · ·+ an−1

u
a+

an
u

= 0.

Multiplying this by un yields an integral equation for ua over R. So by
assumption, ua ∈ R, so a ∈ U−1R. We have shown that the statement (a)
implies (b). Clearly (b) implies (c).

Now assume that (c) holds, and let a ∈ K be integral over R. Consider
the ideal I := {b ∈ R | ba ∈ R} ⊆ R. For every m ∈ Specmax(R), a is integral
over Rm, so a ∈ Rm by assumption. It follows that there exists b ∈ I \m. This
means that I is not contained in any maximal ideal. But if I � R, Zorn’s
lemma would yield the existence of a maximal ideal containing I. So 1 ∈ I,
and a ∈ R follows. So we have shown that (c) implies (a). �	
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Proposition 8.10 implies that an irreducible affine variety X is normal if
and only if for every point x ∈ X the local ring K[X ]x is normal. Normality
also behaves well with respect to passing from R to the polynomial ring R[x],
as Exercise 8.7 shows.

We finish the section with a lemma that will be used in Chapter 12. If R
is an integral domain, then an element s ∈ Quot(R) is said to be almost
integral (over R) if there exists a nonzero c ∈ R such that csn ∈ R for all
nonnegative integers n.

Lemma 8.11 (Almost integral elements). In the above setting, if s is inte-
gral, then it is almost integral. If R is Noetherian, the converse holds.

Proof. By Lemma 8.3, s is integral if and only if R[s] ⊆ Quot(R) is finitely
generated as an R-module. In this case there exists c ∈ R \ {0} such that
cf ∈ R for all f ∈ R[s]. In particular, csn ∈ R for all n.

Conversely, if s is almost integral, then R[s] is contained in c−1R ⊆
Quot(R), which is finitely generated (by c−1) as an R-module. If R is Noe-
therian, it follows with Theorem 2.10 that the same holds for R[s]. �	

8.2 Lying Over, Going Up, and Going Down

If R ⊆ S is an extension of rings, we have a map f : Spec(S)→ Spec(R), Q 
→
R∩Q, induced from the inclusion. We know from Exercise 4.2 that this map
is dominant. The following theorem shows that if S is integral over R, then f
is, in fact, surjective, and its fibers are finite if S is finitely generated as an
R-algebra.

Theorem 8.12 (Lying over and going up). Let R ⊆ S be an integral exten-
sion of rings, P ∈ Spec(R) a prime ideal, and I ⊆ S an ideal with R∩I ⊆ P .
(Notice that the zero ideal always satisfies the condition on I.) Set

M := {Q ∈ Spec(S) | R ∩Q = P and I ⊆ Q} .

Then the following hold:

(a) M is nonempty.
(b) There exist no Q,Q′ ∈M with Q � Q′.
(c) If S is finitely generated as an R-algebra, then M is finite.

The keywords “lying over” and “going up,” with which we advertised The-
orem 8.12, refer to the following: A prime ideal Q ∈ Spec(S) with R∩Q = P
is said to lie over P . If additionally I is contained in Q, we say that we are
going up from I. The situation is illustrated in Fig. 8.2.

Proof of Theorem 8.12. With S′ := S/I, R′ := R/(R ∩ I), and P ′ :=
P/(R∩ I), we have an integral extension R′ ⊆ S′, and Lemma 1.22 yields an
inclusion-preserving bijection
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R ∩ I

P

I

����

Q

����

R

S

Fig. 8.2. Lying over and going up

M→ {Q′ ∈ Spec(S′) | R′ ∩Q′ = P ′} .

Substituting all objects by their primed versions, we may therefore assume
that I = {0}. By Proposition 7.11, we have to show that the fiber ring S[P ] is
not the zero ring (implying (a)), has Krull dimension 0 (implying (b)), and
has a finite spectrum if S is finitely generated (implying (c)).

By way of contradiction, assume that S[P ] = {0}. By the definition of S[P ],
this is equivalent to the existence of u ∈ R \ P with u ∈ (P )S. Forming the
localization SP := (R \ P )−1S, we obtain 1 ∈ (PP )SP

, so

1 =
n∑

i=1

siai with si ∈ SP , ai ∈ PP .

Form S̃ := RP [s1, . . . , sn] ⊆ SP . Then the above equation implies (PP )S̃ = S̃,
which we may write as PP S̃ = S̃. Since S̃ is an integral extension of RP , it is
finitely generated as an RP -module by Theorem 8.4. Applying Nakayama’s
lemma (Theorem 7.3) yields S̃ = {0}. Since RP is embedded into S̃, this
contradicts the fact that local rings are never zero. So we conclude that S[P ]

is nonzero.
The homomorphism

K := Quot (R/P )→ S[P ],
a+ P

b+ P

→ a+ (P )S

b+ (P )S
,

makes S[P ] into a K-algebra. The hypothesis that S is integral over R trans-
lates into the fact that S[P ] is algebraic over K. So if Q ∈ Spec

(
S[P ]

)
, then

the quotient ring S[P ]/Q is algebraic over K as well, and Lemma 1.1(a) yields
that S[P ]/Q is a field. This shows that dim

(
S[P ]

)
= 0.

Finally, if S is finitely generated as an R-algebra, then S[P ] is an affine
K-algebra, so Theorem 5.11 yields that Specmax

(
S[P ]

)
is finite. Since S[P ]

has dimension 0, Spec
(
S[P ]

)
= Specmax

(
S[P ]

)
, so we are done. �	
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Let R ⊆ S be an integral extension of rings. If P0 � P1 � · · · � Pn is a
chain of prime ideals Pi ∈ Spec(R), we can use Theorem 8.12 to construct
a chain Q0 ⊆ · · · ⊆ Qn of prime ideals in Spec(S) with R ∩ Qi = Pi. In
particular, all inclusions of the Qi are proper. So dim(S) ≥ n, which implies

dim(R) ≤ dim(S). (8.2)

On the other hand, if Q ∈ Spec(S) is a prime ideal and Q0 � Q1 � · · · �
Qn ⊆ Q is a chain of prime ideals in Spec(S), then Pi := R ∩ Qi yields a
chain in Spec(S), and it follows from Theorem 8.12(b) that the inclusions of
the Pi are proper. So with P := R ∩Q we obtain

ht(Q) ≤ ht(P ). (8.3)

This implies
dim(S) ≤ dim(R). (8.4)

By putting (8.2) and (8.4) together, we obtain the following corollary.

Corollary 8.13. Let R ⊆ S be an integral extension of rings. Then

dim(R) = dim(S).

We now pose the question whether the reverse inequality of (8.3) also
holds, i.e., whether (8.3) is in fact an equality. For proving this, we need to
start with a chain of prime ideals in Spec(R) that are all contained in P ,
and construct an equally long chain of prime ideals in Spec(S) that are all
contained in Q. The way to do this is to work our way downwards from Q.
But what we need for being able to do this is the going down property, which
was discussed in Section 7.2 (see on page 85). We have proved the following:

Corollary 8.14. Let R ⊆ S be an integral extension of rings such that going
down holds for the inclusion R ↪→ S. If Q ∈ Spec(S) and P := R ∩Q, then

ht(P ) = ht(Q).

Unfortunately, going down does not always hold for integral ring exten-
sions, as Exercise 8.9 shows. We have proved that a sufficient condition for
going down is freeness (see Lemma 7.16). However, freeness is rarely found
for integral extensions. We will exhibit another sufficient condition for going
down (see Theorem 8.17). For proving this, we need two lemmas. The effort
is worth it, since the reverse inequality of (8.3) is of crucial importance for
proving some important results about affine algebras, such as Theorem 8.22
and its corollaries. The first lemma is a result from field theory. The proof uses
some standard results from field theory, which we will quote from Lang [33].

Lemma 8.15 (Elements fixed by field automorphisms). Let N be a field of
characteristic p ≥ 0 and let K ⊆ N be a subfield such that N is finite and



102 8 Integral Extensions

normal over K (see Lang [33, Chapter VII, Theorem 3.3] for the definition of
a normal field extension). Let G := AutK(N) be the group of automorphisms
of N fixing K elementwise. Then for every α ∈ NG in the fixed field of G,
there exists n ∈ N0 such that αp

n ∈ K. If N is separable over K, then n = 0,
so α ∈ K.

Proof. In the separable case, the lemma follows directly from Galois theory.
The proof we give works for the separable case, too.

Let g = irr(α,K) ∈ K[x] be the minimal polynomial of α over K. Let
N be the algebraic closure of N , and let β ∈ N be a zero of g. Since
K[α] ∼= K[x]/(g) ∼= K[β] with an isomorphism sending α to β, we have a
homomorphism σ: K[α] → N of K-algebras with σ(α) = β. By Lang [33,
Chapter VII, Theorem 2.8], this extends to a homomorphism σ: N → N . The
normality of N implies σ ∈ G (see Lang [33, Chapter VII, Theorem 3.3]).
Since σ(α) = β, the hypothesis of the lemma implies β = α. So α is the only
zero of g, and we obtain g = (x − α)m with m ∈ N. Write m = k · pn with
p � k. If N is separable over K, then g has to be separable, so m = 1 and
n = 0. We have

g = (x− α)m = (xp
n − αpn

)k = xkp
n − k · αpn · x(k−1)pn

+ (lower terms),

so g ∈ K[x] implies ap
n ∈ K. �	

Lemma 8.16. Let N be a field and K ⊆ N a subfield such that N is finite
and normal over K. Let R ⊆ K be a subring that is integrally closed in K,
and let S ⊆ N be the integral closure of R in N . Then for two prime ideals
Q, Q̃ ∈ Spec(S) with R ∩ Q = R ∩ Q̃, there exists σ ∈ G := AutK(N) with
Q̃ = σ(Q).

Proof. Let a ∈ Q̃. Then the product
∏
σ∈G σ(a) lies in NG, so by Lemma 8.15

there exists n ∈ N0 with

b :=
∏

σ∈G
σ(a)p

n ∈ K, (8.5)

where p = char(K) and n = 0 if p = 0. Since a is integral over R and all
σ ∈ G fix R elementwise, all σ(a) are integral over R as well. So b is integral
over R, too, and (8.5) implies b ∈ R. Moreover, b is an S-multiple of a, so
b ∈ R ∩ Q̃ = R ∩Q ⊆ Q. Since Q is a prime ideal, it follows from (8.5) that
there exists σ ∈ G with σ(a) ∈ Q. Since this holds for all a ∈ Q̃, we conclude
that

Q̃ ⊆
⋃

σ∈G
σ(Q).

By the prime avoidance lemma (Lemma 7.7), this implies that there exists
σ ∈ G with Q̃ ⊆ σ(Q). Since σ fixes R elementwise, we have R ∩ σ(Q) =
R ∩ Q = R ∩ Q̃, so by Theorem 8.12(b), the inclusion Q̃ ⊆ σ(Q) cannot be
strict. �	
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Theorem 8.17 (Going down for integral extensions of normal rings). Let S
be a ring and R ⊆ S a subring such that

(1) S is an integral domain,
(2) R is normal,
(3) S is integral over R, and
(4) S is finitely generated as an R-algebra.

Then going down holds for the inclusion R ↪→ S. In particular, the conclusion
of Corollary 8.14 holds.

Proof. The proof is not difficult but a bit involved. Fig. 8.3 shows what is
going on. Given prime ideals P ∈ Spec(R) and Q′ ∈ Spec(S) with P ⊆Q′, we
need to produce Q ∈ Spec(S) with R∩Q = P and Q ⊆ Q′. The field of frac-
tions L := Quot(S) is a finite field extension of K := Quot(R). By Lang [33,
Chapter VII, Theorem 3.3], there exists a finite normal field extension N
of K such that L ⊆ N . Let T ⊆ N be the integral closure of R in N , so
S ⊆ T . By Theorem 8.12, there exist Z̃, Z ′ ∈ Spec(T ) such that R ∩ Z̃ = P

and S ∩ Z ′ = Q′. We cannot assume that Z̃ is contained in Z ′. However,
applying Theorem 8.12 again, we see that there exists Z̃′ ∈ Spec(T ) such
that R ∩ Z̃ ′ = R ∩Q′ and Z̃ ⊆ Z̃ ′. We have

R ∩ Z ′ = R ∩ S ∩ Z ′ = R ∩Q′ = R ∩ Z̃ ′.

So by Lemma 8.16 there exists σ ∈ AutK(N) with Z ′ = σ(Z̃ ′). Set Z := σ(Z̃)
and Q := S ∩ Z ∈ Spec(S). Then

R ∩Q = R ∩ Z = R ∩ σ(Z̃) = R ∩ Z̃ = P

and
Q = S ∩ σ(Z̃) ⊆ S ∩ σ(Z̃ ′) = S ∩ Z ′ = Q′.

This finishes the proof. �	

P

R ∩ Q′

R

����� Q

���� Q′

S

����� Z

����� Z′

� σ
Z̃

� σ
Z̃′

�
�
�

�
�

�
T

Fig. 8.3. Going down: given P and Q′, construct Q
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We finish this section by drawing some conclusions about geometric
properties of normalization.

Proposition 8.18 (Geometric properties of normalization). Let R be an
integral domain with normalization R̃, and consider the morphism
f : Spec(R̃)→ Spec(R) induced from the inclusion R ⊆ R̃. Then

(a) dim(R̃) = dim(R).
(b) The morphism f is surjective.
(c) Let P ∈ Spec(R) be such that RP is normal. Then the fiber f−1 ({P})

consists of one point.

Proof. Parts (a) and (b) follow from Corollary 8.13 and Theorem 8.12(a).
To prove (c), take P ∈ Spec(R) with RP normal. Both RP and R̃ are con-

tained in Quot(R). With U := R\P we have U−1R̃ ⊆ Quot(R) = Quot(RP ),
and U−1R̃ is integral over RP , so U−1R̃ = RP by the normality of RP . Let
Q ∈ Spec(R̃) be in the fiber of P , so R ∩Q = P . By Theorem 6.5 it follows
that U−1Q ∈ Spec(U−1R̃) = Spec(RP ), and R̃ ∩ U−1Q = Q, so R ∩ U−1Q =
P . But Theorem 6.5 also says that PP is the only prime ideal in RP whose
intersection with R is P , so U−1Q = PP . It follows that Q = R̃∩PP , showing
uniqueness. �	

8.3 Noether Normalization

We now turn our attention to the special case of affine algebras. Let A be an
affine K-algebra with dim(A) = n. By Theorem 5.9, there exist algebraically
independent elements a1, . . . , an ∈ A such that A is algebraic over the sub-
algebra K[a1, . . . , an]. As we will see in the following theorem, more can be
said.

Theorem 8.19 (Noether normalization). Let A �= {0} be an affine
K-algebra. Then there exist algebraically independent elements c1, . . . , cn ∈ A
(with n ∈ N0) such that A is integral over the subalgebra C := K[c1, . . . , cn].
In particular, A is finitely generated as a C-module, and C is isomorphic to
a polynomial ring (with C = K if n = 0).

If c1, . . . , cn ∈ A are algebraically independent and A is integral over
K[c1, . . . , cn], then n = dim(A).

Proof. Write A as a quotient ring of a polynomial ring: A = K[x1, . . . , xm]/I.
We use induction on m for proving the first statement. There is nothing to
show for m = 0. If I = {0}, we can set ci = xi+ I, and again there is nothing
to show. If I �= {0}, choose f ∈ I \ {0}. We can write f as

f =
∑

(i1,...,im)∈S
αi1,...,im · xi11 · · ·ximm
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with ∅ �= S ⊂ Nm0 a finite subset and αi1,...,im ∈ K \ {0}. Choose d > deg(f)
(in fact, it suffices to choose d bigger than all xi-degrees of f). Then the
function s: S → N0, (i1, . . . , im) 
→∑m

j=1 ij ·dj−1 is injective. For i = 2, . . . ,m

set yi := xi − xdi−1

1 . Then

f = f
(
x1, y2 + xd1 , . . . , ym + xd

m−1

1

)

=
∑

(i1,...,im)∈S
αi1,...,im

(
x
s(i1,...,im)
1 + gi1,...,im(x1, y2, . . . , ym)

)

with gi1,...,im polynomials satisfying degx1
(gi1,...,im) < s(i1, . . . , im). We have

exactly one (i1, . . . , im) ∈ S such that k := s(i1, . . . , im) becomes maximal.
Since A �= {0}, f is not constant, so k > 0. We obtain

f = αi1,...,im · xk1 + h(x1, y2, . . . , ym)

with degx1
(h) < k, so

xk1 + α−1
i1,...,im

h(x1, y2, . . . , ym) ∈ I.

Set B := K[y2 + I, . . . , ym + I] ⊆ A. Then A = B[x1 + I], and the above
equation and Theorem 8.4 show that A is integral over B. By induction, there
exist algebraically independent c1, . . . , cn ∈ B such that B is integral over
K[c1, . . . , cn], and the same follows for A by Corollary 8.6.

The statement n = dim(A) follows from Corollaries 5.7 and 8.13. �	
The above proof can be turned into an algorithm for computing c1, . . . , cn.

This algorithm uses Gröbner bases and is dealt with in Exercise 9.12.

Remark 8.20. In Exercise 8.10, the following stronger (but slightly less gen-
eral) version of Noether normalization is shown: If the field K is infinite and
A = K[a1, . . . , am], then the elements c1, . . . , cn satisfying Theorem 8.19 can
be chosen as linear combinations

ci = ai +
m∑

j=n+1

γi,j · aj (γi,j ∈ K)

of the “original” generators ai. �

It is not hard to give geometric interpretations of Noether normalization.
In fact, Theorem 8.19 tells us that for an affine variety X of dimension n over
a field K, there exists a morphism

f : X → Kn

induced by the inclusion C ⊆ K[X ], and by Theorem 8.12, f is surjective and
has finite fibers. So Noether normalization tells us that every affine variety
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may be interpreted as a “finite covering” of some Kn. A slightly different
interpretation is that Noether normalization provides a new coordinate sys-
tem such that the first n coordinates can be set to arbitrary values, which will
be attained by finitely many points from the variety. So the first n coordi-
nates act as “independent parameters.” With both interpretations, it makes
intuitive sense that X should have dimension n, which is a further indication
that our definition of dimension is a good one. In Exercise 8.11, a further
interpretation of Noether normalization as a “global system of parameters”
is given.
Example 8.21. Consider the affine variety X = VK2(x1x2 − 1), which is a
hyperbola as shown in Fig. 8.4. We write xi for the image of xi in the coor-
dinate ring K[X ] = K[x1, x2]/(x1x2 − 1) = K[x1, x2]. Notice that K[X ] is
not integral over K[x1] or over K[x2]. Motivated by Remark 8.20, we try
c = x1 − x2 and find

0 = x1x2 − 1 = x2
1 − x1c− 1,

so K[X ] is integral over C := K[c]. The morphism induced by the embedding
C ↪→ K[X ] is f : X → K1, (ξ1, ξ2) 
→ ξ1 − ξ2. It is surjective, and all η ∈ K
with η2 �= −4 have two preimages, as indicated by the arrows in Fig. 8.4. �
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Fig. 8.4. A hyperbola and Noether normalization

We now turn our attention to chains of prime ideals in an affine algebra.
Generally, in a setM whose elements are sets, a maximal chain is a subset
C ⊆ M that is totally ordered by inclusion “⊆” such that C ⊆ D ⊆ M with
D totally ordered implies C = D. In particular, a chain

P0 � P1 � · · · � Pn

of prime ideals Pi ∈ Spec(R) in some ring is maximal if no further prime ideal
can be added into the chain by insertion or by appending at either end. In
general rings, it is not true that all maximal chains of prime ideals have equal
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length. Examples for this are affine algebras that are not equidimensional,
or, more subtly, the ring studied in Exercise 8.12. However, the following
theorem says that this is the case for affine domains.

Theorem 8.22 (Chains of prime ideals in an affine algebra). Let A be an
affine algebra and let

P0 � P1 � · · · � Pn (8.6)

be a maximal chain of prime ideals Pi ∈ Spec(A). Then

n = dim (A/P0) .

In particular, if A is equidimensional (which is always the case if A is an
affine domain), then every maximal chain of prime ideals of A has length
equal to dim(A).

Proof. We use induction on n. Substituting A by A/P0, we may assume that
A is an affine domain and P0 = {0}. If n = 0, then P0 is a maximal ideal, so
A is a field and we are done. So we may assume n > 0. Applying Lemma 1.22
yields a maximal chain P1/P1 � P2/P1 � · · · � Pn/P1 of prime ideals in
A/P1. Using induction, we obtain n − 1 = dim (A/P1). So we need to show
that dim (A/P1) = dim(A)− 1.

Using Noether normalization (Theorem 8.19), we obtain C ⊆ A with A
integral over C and C isomorphic to a polynomial ring. By the maximal-
ity of (8.6), we have ht(P1) = 1. By Proposition 8.8, C is normal, so all
hypotheses of Theorem 8.17 are satisfied. We obtain ht(C ∩ P1) = 1. By
the implication (b) ⇒ (a) of Theorem 5.13, this implies dim (C/(C ∩ P1)) =
dim(C) − 1. Since A/P1 is integral over C/(C ∩ P1), Corollary 8.13 yields

dim (A/P1) = dim (C/(C ∩ P1)) = dim(C)− 1 = dim(A)− 1.

This finishes the proof. �	
A ring R is called catenary if for two prime ideals P ⊆ Q in Spec(R), all

maximal chains of prime ideals between P and Q have the same length. So
Theorem 8.22 implies that all affine algebras are catenary. It is not easy to
find examples of noncatenary rings (see Nagata [41, Appendix, Example E2],
Matsumura [37, Example 14E], or Hutchins [28, Example 27]). We get two
immediate consequences of Theorem 8.22. The first one says that in affine
domains, the height of an ideal and the dimension of the quotient ring behave
complementarily.

Corollary 8.23 (Dimension and height). Let A be an affine domain or,
more generally, an equidimensional affine algebra. If I ⊆ A is an ideal, then

ht(I) = dim(A)− dim (A/I) .
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Proof. If I is a prime ideal, there exists a maximal chain C ⊆ Spec(A) with
I ∈ C, so the result follows from Theorem 8.22, Lemma 1.22, and Defini-
tion 6.10(a). For I = A, it follows from Definition 6.10(b). For all other I,
Definition 6.10(b) and the fact that

dim(A/I) = max
{
dim(A/P ) | P ∈ VSpec(A)(I)

}

allow reduction to the case that I is a prime ideal. �	
The following corollary is about the height of maximal ideals in affine

algebras. In the case of a maximal ideal m ∈ Specmax(K[X ]) belonging to a
point x ∈ X of an affine variety, it says that the height of m is equal to the
largest dimension of an irreducible component of X containing x.

Corollary 8.24 (Height of maximal ideals). Let A be an affine algebra with
minimal prime ideals P1, . . . , Pn. (There are finitely many Pi by Corollar-
ies 2.12 and 3.14(a).) If m ∈ Specmax(A) is a maximal ideal, then

ht(m) = max {dim(A/Pi) | Pi ⊆ m} .

In particular, if A is an affine domain or, more generally, equidimensional,
then all maximal ideals have ht(m) = dim(A).

Proof. This is an immediate consequence of Theorem 8.22. �	
To get a better appreciation of the last three results, it is important to

see an example of a Noetherian domain (= a Noetherian integral domain) for
which they fail. Such an example is given in Exercise 8.12.

The following result restates the principal ideal theorem (Theorem 7.5)
for the special case of affine domains. Corollary 8.23 allows us to convert
the statement from Theorem 7.5 on height into a statement on dimension.
The theorem exemplifies the common paradigm that “imposing n further
equations makes the dimension of the solution set go down by at most n.”

Theorem 8.25 (Principal ideal theorem for affine domains). Let A be an
affine domain or, more generally, an equidimensional affine algebra, and let
I = (a1, . . . , an) ⊆ A be an ideal generated by n elements. Then every prime
ideal P ∈ Spec(A) that is minimal over I satisfies

dim(A/P ) ≥ dim(A)− n.

In particular, if I �= A, then

dim(A/I) ≥ dim(A)− n,

and if equality holds, then A/I is equidimensional.

Proof. By Theorem 7.5, every P ∈ Spec(A) that is minimal over I satisfies
ht(P ) ≤ n, so
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dim(A/P ) ≥ dim(A) − n
by Corollary 8.23. The other claims follows directly from this. �	

If f1, . . . , fn ∈ K[x1, . . . , xm] are polynomials over an algebraically closed
field, then by Theorem 8.25, the affine variety in X = VKm(f1, . . . , fn) is
empty or has dimension at least m − n. If the dimension is equal to m − n,
then X is called a complete intersection (“intersection” referring to the
intersection of the hypersurfaces given by the fi). So the second assertion of
Theorem 8.25 tells us that complete intersections are equidimensional. By a
slight abuse of terminology, an affine K-algebra A is also called a complete
intersection if A ∼= K[x1, . . . , xm]/(f1, . . . , fn) with dim(A) = m− n ≥ 0.

Geometrically, the first part of Theorem 8.25 gives a dimension bound for
the intersection of affine varieties X,Y ⊆ Km, where X is equidimensional
and Y is given by n equations. A generalization is contained in Exercise 8.14.

We will close this chapter by proving that the normalization of an affine
domain is again an affine domain, and applying this result to affine varieties.
Although this material is interesting, it will be used in this book only in
Chapter 14 to prove two results: the existence of a desingularization of an
affine curve, and the fact that the integral closure of Z in a number field is
Noetherian (which follows from Lemma 8.27). So readers may choose to skip
the rest of this chapter.

Theorem 8.26. Let A be an affine domain. Then the normalization Ã of A
is an affine domain, too.

Proof. By Noether normalization (Theorem 8.19), we have a subalgebra
R⊆A which is isomorphic to a polynomial algebra, such that A is integral
over R. In particular, N := Quot(A) is a finite field extension of Quot(R),
and Ã is the integral closure of R in N . So the result follows from the follow-
ing lemma. �	
Lemma 8.27 (Integral closure in a finite field extension). Let R be a Noe-
therian domain and N a finite field extension of L := Quot(R). Assume
that

(a) R is normal and N is separable over L, or
(b) R is isomorphic to a polynomial ring over a field.

Then the integral closure S of R in N is finitely generated as an R-module
(and therefore also as an R-algebra).

Proof. Choose generators of N as an extension of L, and let N ′ be the split-
ting field of the product of the minimal polynomials of the generators. Then
N ′ is a finite normal field extension of L with N ⊆ N ′, and if N is separable
over L, so is N ′. Since S is a submodule of the integral closure S′ of R in
N ′, it suffices to show that S′ is a finitely generated R-module (use Theo-
rem 2.10). So we may assume that N is normal over L. Let G := AutL(N)
and consider the trace map
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Tr : N → NG, x 
→
∑

σ∈G
σ(x).

It follows from the linear independence of homomorphisms into a field (see
Lang [33, Chapter VIII, Theorem 4.1]) that Tr is nonzero. It is clearly
L-linear. Let b1, . . . , bm ∈ N be an L-basis of N . By Lemma 8.15, there
exists a power q of the characteristic of L (with q = 1 if N is separable over
L) such that Tr(bi)q ∈ L for all i.

We first treat the (harder) case that R ∼= K[x1, . . . , xn] with K a field. In
fact, we may assume R = K[x1, . . . , xn]. Let K ′ be a finite field extension
of K containing qth roots of all coefficients appearing in Tr(bi)q as rational
functions in the xj . Then Tr(bi) ∈ K ′(x1/q

1 , . . . , x
1/q
n ) =: L′. (For this contain-

ment to make sense without any homomorphism linking L′ and N , it is useful
to embed both fields in an algebraic closure of L.) So R′ := K ′[x1/q

1 , . . . , x
1/q
n ]

satisfies the following properties: (i) R′ is finitely generated as an R-module,
(ii) R′ is normal (by Example 8.9(1)), and (iii) Tr(bi) ⊆ Quot(R′) for all i.

In the case that R is normal and N is separable over L, these three
properties are satisfied for R′ := R.

Since L ⊆ Quot(R′), property (iii) implies Tr(N) ⊆ Quot(R′). For s ∈ S,
Tr(s) is integral over R, and therefore Tr(s) ∈ R′ by (ii). Every x ∈ N is
algebraic over L, so there exists 0 �= a ∈ R with ax ∈ S. Indeed, choosing
a common denominator a ∈ R of the coefficients of an integral equation of
degree n for x over L = Quot(R) and multiplying the equation by an yields
an integral equation for ax over R. Therefore we may assume that the basis
elements bi lie in S. So S is contained in the R-module

M := {x ∈ N | Tr(xbi) ∈ R′ for all i = 1, . . . ,m} ⊆ N.

There is an R-linear map

ϕ: M → (R′)m, x 
→ (Tr(xb1), . . . ,Tr(xbm)) .

To show that ϕ is injective, let x ∈ M with ϕ(x) = 0. By the L-linearity of
the trace map, this implies Tr(xy) = 0 for all y ∈ N , so x = 0 since Tr �= 0.
So S is isomorphic to a submodule of (R′)m. But (R′)m is finitely generated
over R by the property (i) of R′, and the result follows by Theorem 2.10. �	

It is tempting to hope that for every Noetherian domain R, the normaliza-
tion R̃ is finitely generated as an R-module. However, Nagata [41, Appendix,
Example E5] has an example in which R̃ is not even Noetherian.

Corollary 8.28 (Normalization of an affine variety). Let X be an irredu-
cible affine variety over an algebraically closed field K. Then there exists
a normal affine variety X̃ with a surjective morphism f : X̃ → X such that:
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(a) dim(X̃) = dim(X).
(b) All fibers of f are finite, and if x ∈ X is a point where the local ring

K[X ]x is normal, then the fiber of x consists of one point.

Proof. By Theorem 8.26, the normalization Ã of the coordinate ring A :=
K[X ] is an affine domain, so by Theorem 1.25(b) there exists an affine variety
X̃ with K[X̃] ∼= Ã. The inclusion A ⊆ Ã induces a morphism f : X̃ →
X . Clearly X̃ is normal, and from Proposition 8.18 we obtain part (a), the
surjectivity of f , and the statement on the fibers of points with Ax normal.
The finiteness of the fibers follows from Theorem 8.12(c). �	

The behavior of the morphism f from Corollary 8.28 can be observed very
well in Example 8.9(4). Exercise 8.8 deals with a universal property of X̃ , as
constructed in the above proof. Together with (a) and (b) of Corollary 8.28,
this characterizes X̃ up to isomorphism. The variety X̃, or sometimes also
X̃ together with the morphism f , is called the normalization of X . In
Section 14.1 we will see that if X is a curve, normalization is the same as
desingularization.

Exercises for Chapter 8

8.1 (Rings of invariants of finite groups). In this exercise we prove that
rings of invariants of finite groups are finitely generated under very general
assumptions. The proof is due to Emmy Noether [43]. Let S be a ring with
a subring R ⊆ S, and let G ⊆ AutR(S) be a finite group of automorphisms
of S as an R-algebra (i.e., the elements of G fix R pointwise). Write

SG := {a ∈ S | σ(a) = a for all σ ∈ G} ⊆ S

for the ring of invariants. Observe that SG is a sub-R-algebra of S.

(a) Show that S is integral over SG. In particular, dim
(
SG

)
= dim(S).

(b) Assume that S is finitely generated as an R-algebra. Show that SG has
a finitely generated subalgebra A ⊆ SG such that S is integral over A.

(c) Assume in addition that R is Noetherian. Show that SG is finitely
generated as an R-algebra. In particular, SG is Noetherian.

8.2 (Rings of invariants are normal). Let R be a normal ring, and let
G ⊆ Aut(R) be a group of automorphisms of R. Show that RG, the ring of
invariants, is normal, too.

*8.3 (The intersection of localizations). Let R be a normal Noetherian
domain. Show that
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R =
⋂

P∈Spec(R),
ht(P )=1

RP .

(Notice that all RP are contained in Quot(R), so the intersection makes
sense.)
Hint: For a/b ∈ Quot(R) \R, consider an ideal P that is maximal among all
colon ideals (b) : (a′) with a′ ∈ (a) \ (b).

8.4 (Quadratic extensions of polynomial rings). Let f ∈ K[x1, . . . , xn]
be a polynomial with coefficients in a field of characteristic not equal
to 2. Assume that f is not a square of a polynomial. Show that the ring
R := K[x1, . . . , xn, y]/(y2 − f) (with y a further indeterminate) is normal if
and only if f is square-free.

8.5 (A normality criterion). Let R be a ring with an element a ∈ R such
that

(1) a is not a zero divisor.
(2) the ideal (a) is a radical ideal.
(3) the localization Ra is a normal domain.

Show that R is a normal domain.
Use this to show that for every field K and every positive integer q, the

ring
K[x1, x2, y1, y2, z]/(zq − (x1y1)q−1z − xq1y2 − yq1x2)

(with x1, x2, y1, y2, and z indeterminates) is a normal domain.

8.6 (Normalization). Assume that K contains a primitive third root of
unity. Compute the normalization R̃ of R = K[x3

1, x
2
1x2, x

3
2].

Hint: You may use Exercise 8.2. Alternatively, you may do the exercise
without using the hypothesis on K.

*8.7 (Normalization of polynomial rings). Let R be a Noetherian
domain. Show that

R̃[x] = R̃[x]

(i.e., the normalization of the polynomial ring over R is equal to the polyno-
mial ring over the normalization). Conclude that R[x] is normal if and only
if R is normal.
Hint: The hard part is to show that a polynomial f =

∑n
i=0 aixi ∈ Quot(R)[x]

that is integral over R[x] lies in R̃[x]. This can be done as follows: Show that
there exists 0 �= u ∈ R such that ufk ∈ R[x] for all k ≥ 0. Conclude that
R[an] is finitely generated as an R-module. Then use induction on n.
Remark: The result is also true if R is not Noetherian. In fact, one can reduce
to the Noetherian case by substituting R with a finitely generated subring in
the above proof idea.
(Solution on page 222)
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8.8 (The universal property of normalization). Show that the variety
X̃ constructed in the proof of Corollary 8.28 satisfies the following univer-
sal property. If Y is a normal affine K-variety with a dominant morphism
g: Y → X (this means that the image g(Y ) is dense in X), then there exists
a unique morphism h: Y → X̃ with f ◦ h = g.

8.9 (Where going down fails). In this exercise we study an example of
an integral extension of rings in which going down fails. Let K be a field of
characteristic �= 2, S = K[x, y] the polynomial ring in two indeterminates,
and

R := K[a, b, y] ⊂ S with a = x2 − 1 and b = xa.

(a) Show that S is the normalization of R.
(b) Show that

P :=
(
a− (y2 − 1), b− y(y2 − 1)

)
R
⊂ R

is a prime ideal, and P is contained in the prime ideal

Q′ := (x− 1, y + 1)S ∈ Spec(S).

(c) Show that the unique ideal Q ∈ Spec(S) with R ∩Q = P is

Q := (x− y)S
and conclude that going down fails for the inclusion R ↪→ S.

(d) Compare this example to Example 8.9(4). Try to give a geometric
interpretation to the failure of going down for R ↪→ S.
Hint: The generators of R satisfy the equation b2 − a2 · (a+ 1) = 0.

8.10 (Noether normalization with linear combinations). Prove the
statement in Remark 8.20.
Hint: Mimic the proof of Theorem 8.19, but set yi := xi − βixm with βi ∈ K
(i = 1, . . . ,m− 1).

*8.11 (Noether normalization and systems of parameters). Let X �=
∅ be an equidimensional affine variety over a field K and let c1, . . . , cn ∈
A := K[X ] be as in Theorem 8.19. Let x ∈ X be a point with corresponding
maximal ideal m := {f ∈ A | f(x) = 0}. Show that

ai :=
ci − ci(x)

1
∈ Am (i = 1, . . . , n)

provides a system of parameters of the local ring K[X ]x = Am at x. An
interpretation of this result is that Noether normalization provides a global
system of parameters or, from a reverse angle, that systems of parameters
are a local version of Noether normalization.
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Hint: With I := (c1 − c1(x), . . . , cn − cn(x))A, first prove that A/I is
Artinian. Then use Nakayama’s lemma to show that mk

m ⊆ Im for some k.
(Solution on page 223)

8.12 (A Noetherian domain where Theorem 8.22 fails). Let R =
K[[x]] be a formal power series ring over a field, and S = R[y] a polyno-
mial ring. Exhibit two maximal ideals in Specmax(S) of different height. So S
is a Noetherian domain for which Theorem 8.22 and Corollaries 8.23 and 8.24
fail.

8.13 (Hypotheses of Theorem 8.25). Use the following example to show
that the hypothesis on equidimensionality cannot be dropped from Theo-
rem 8.25:

A = K[x1, x2, x3, x4]/(x1 − x4, x
2
1 − x2x4, x

2
1 − x3x4)

and a = x1 − 1, the class of x1 − 1 in A. Explain why this also shows that
if K[x1, . . . , xm]/(f1, . . . , fn) is a complete intersection, this need not imply
that K[x1, . . . , xm]/(f1, . . . , fn−1) is a complete intersection, too.

8.14 (A dimension theorem). LetX and Y be two equidimensional affine
varieties both of which lie in Kn. Show that every irreducible component Z
of X ∩ Y satisfies

dim(Z) ≥ dim(X) + dim(Y )− n.

Hint: With Δ := {(x, x) | x ∈ Kn} ⊂ K2n the diagonal, show that X ∩ Y ∼=
(X × Y ) ∩Δ and conclude the result from that.

8.15 (Right or wrong?). Decide whether each of the following statements
is true or false. Give reasons for your answers.

(a) Let K be a finite field and let X be a set. Then the ring S = {f : X →
K | f is a function} (with pointwise operations) is an integral extension
of K (which is embedded into S as the ring of constant functions).

(b) If R ⊆ S is an integral ring extension, then for every P ∈ Spec(R) the
set {Q ∈ Spec(S) | R ∩Q = P} is finite.

(c) If A is an affine domain that can be generated by dim(A) + 1 elements,
then A is a complete intersection.

(d) If A is an affine algebra that can be generated by dim(A) + 1 elements,
then A is a complete intersection.

(e) If an affine domain is a complete intersection, it is normal.
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Chapter 9

Gröbner Bases

A large part of commutative algebra is formulated in nonconstructive ways. A
typical example is Hilbert’s basis theorem (Corollary 2.13), which guarantees
the existence of finite ideal bases without giving a method to construct them.
But commutative algebra also has a large computational part, which has
developed into a field of research of its own, called computational commutative
algebra. This field has its own conferences, its own research community, and
it has produced a considerable number of books within a short period of
time. The goal of this part of the book is to give readers a glimpse into
this rich field. To learn more, readers should consult any of the following
books, which I list roughly chronologically: Becker and Weispfenning [3], Cox
et al. [12 and 13], Adams and Loustaunau [1], Vasconcelos [51], Kreuzer and
Robbiano [31 and 32], Greuel and Pfister [22], and Decker and Lossen [15].
Eisenbud’s book [17] also has a chapter on Gröbner bases.

However, readers who are not interested in computational matters can skip
Chapters 9–11, which make up the third part of the book, almost entirely. In
fact, only a small part of Chapter 11 needs to be incorporated in a modified
way. How this can be done is the topic of Exercise 12.1.

In this chapter we introduce the notion of a Gröbner basis and present
Buchberger’s algorithm, which computes Gröbner bases. In commutative
algebra, Gröbner bases and Buchberger’s algorithm play a role similar to
that of Gaussian elimination in linear algebra. In fact, virtually all compu-
tations in commutative algebra come down to the computation of one or
several Gröbner bases, so Buchberger’s algorithm is the common engine that
they all have under the hood. For example, even for determining whether
an ideal I ⊆ K[x1, . . . , xn] in a polynomial ring over a field is proper, one
normally uses a Gröbner basis. Several applications of Gröbner bases will be
discussed in this and the following chapters. In this chapter, we will see how
Gröbner bases can be used for testing membership in ideals, for computing
the dimension of an affine algebra, for computing kernels of homomorphisms
of affine algebras, for solving systems of polynomial equations, for computing
intersections of ideals, and for making Noether normalization constructive.
More applications will be discussed in Chapters 10 and 11.

G. Kemper, A Course in Commutative Algebra, Graduate Texts
in Mathematics 256, DOI 10.1007/978-3-642-03545-6 10,
c© Springer-Verlag Berlin Heidelberg 2011
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Of course this book presents only a small selection of the huge range of
applications that Gröbner bases have. The most notable omissions are:

• The computation of radical ideals. This is surprisingly difficult, and
methods can be found in Becker and Weispfenning [3, Chapter 9], Matsu-
moto [36], and Kemper [30].

• The computation of irreducible components of an affine variety (and,
more generally, primary decomposition). This, too, is rather cumbersome,
in part because it involves factorization of polynomials. See Becker and
Weispfenning [3, Chapter 9].

• The computation of normalization and integral closure. There exist very
nice algorithms for this, which can be found in de Jong [29], Vasconcelos [51,
Chapter 6] and Derksen and Kemper [16, Section 1.3].

• The computation of syzygies, i.e., kernels of homomorphisms of free
modules. This is the starting point of homological computations in commu-
tative algebra. Algorithms for syzygy computation can be found in many
sources, for example Eisenbud [17, Chapter 15.5].

9.1 Buchberger’s Algorithm

In this chapter, K will always be a field and K[x1, . . . , xn] will be the
polynomial ring in n indeterminates. A polynomial of the form

t = xe11 · · ·xen
n (ei ∈ N0)

will be called a monomial. A polynomial of the form c · t, with c ∈ K \ {0}
and t a monomial, will be called a term. For f ∈ K[x1, . . . , xn] a polynomial,
T (f) denotes the set of all terms in f , so f =

∑
ct∈T (f) ct. Moreover, Mon(f)

denotes the set of all monomials in f . In particular, f = 0 if and only if
Mon(f) = ∅. The reader should be advised that in part of the literature (e.g.,
Becker and Weispfenning [3]), the meanings of the words “monomial” and
“term” are reversed; but recently the trend has gone towards using the same
convention as we do in this book.

When dealing with univariate polynomials, we can compare monomials,
which leads to such notions as degree, leading coefficient, and division with
remainder. With multivariate polynomials, we have no canonical way of com-
paring monomials. As ever so often, mathematicians deal with this problem
by making a definition.

Definition 9.1. Let M be the set of all monomials in K[x1, . . . , xn].

(a) A monomial ordering on K[x1, . . . , xn] is an ordering “≤” on M with
the following properties:
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(1) “≤” is a total ordering, i.e., for if s, t ∈M , then s ≤ t or t ≤ s;
(2) if t ∈M , then 1 ≤ t;
(3) if s, t1, t2 ∈M with t1 ≤ t2, then st1 ≤ st2.
Observe that this implies that if t1 ∈ M divides t2 ∈ M , it follows that
t1 ≤ t2; so a monomial ordering refines the partial ordering given by
divisibility. (Exercise 9.1 explores whether the converse is true.)

(b) Assume that “≤” is a monomial ordering. If f ∈ K[x1, . . . , xn]is a
nonzero polynomial, we write LM(f) for the greatest element of Mon(f).
Moreover, we write LC(f) ∈ K for the coefficient of LM(f) in f , and
LT(f) := LC(f) · LM(f).
LM(f) is called the leading monomial, LT(f) the leading term, and
LC(f) the leading coefficient of f . For f = 0, we set LM(f) = LT(f) =
LC(f) := 0, and we extend “≤” to M ∪ {0} by the convention 0 < 1.

It follows directly from the definition that if f, g ∈ K[x1, . . . , xn] are two
polynomials, then

LT(f · g) = LT(f) · LT(g) (9.1)

and
LM(f + g) ≤ max {LM(f),LM(g)} . (9.2)

There are many different monomial orderings onK[x1, . . . , xn] (provided that
n > 1). As we will see soon, different monomial orderings often serve different
purposes.
Example 9.2. We give some examples of monomial orderings. Let t =
xe11 · · ·xen

n and t′ = x
e′1
1 · · ·xe

′
n
n be monomials.

(1) The lexicographic ordering is given by saying t ≤ t′ if t = t′ or
ei < e′i for the smallest index i with ei �= e′i. As we will see on page 131,
the lexicographic ordering is useful for solving systems of polynomial
equations. It is surely the most famous monomial ordering.

(2) A more complicated monomial ordering is the graded reverse lexi-
cographic ordering (often nicknamed grevlex). It is given by saying
that t ≤ t′ if t = t′ or deg(t) :=

∑n
i=1 ei < deg(t′) :=

∑n
i=1 e

′
i, or

deg(t) = deg(t′) and ei > e′i for the largest index i with ei �= e′i. For
example, x1x3 < x2

2; with the lexicographic ordering, we would have the
reverse inequality. As we will see in Chapter 11, the graded reverse lex-
icographic ordering is useful for computing Hilbert series. According to
a vast amount of practical experience, it is also the ordering with which
computations tend to be fastest, a phenomenon that is still not completely
understood.

(3) Assume we are given two monomial orderings “≤1” and “≤2” on
K[x1, . . . , xk] and on K[xk+1, . . . , xn], respectively. Then the block
ordering (sometimes also called product ordering) is defined as an order-
ing on K[x1, . . . , xn] by saying that t ≤ t′ if xe11 · · ·xek

k <1 x
e′1
1 · · ·xe

′
k

k , or
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xe11 · · ·xek

k = x
e′1
1 · · ·xe

′
k

k and x
ek+1
k+1 · · ·xen

n ≤2 x
e′k+1
k+1 · · ·xe

′
n
n . To be more

precise, we speak of the block ordering with “≤1” dominating, and it is
clear how to define the block ordering with “≤2” dominating. We will see
in Section 9.2 that block orderings are useful for computing elimination
ideals. �

For the rest of Section 9.1, we will fix a monomial ordering “≤” on
K[x1, . . . , xn].

Recall that a set M with an ordering is called well-ordered if every
nonempty subset N ⊆M has a least element y ∈ N , meaning that y ≤ x for
all x ∈ N . The most prominent example of a well-ordered set is the set N of
natural numbers.

Lemma 9.3 (Monomial orderings are well-orderings). The set M of all mo-
nomials in K[x1, . . . , xn] is well-ordered by the monomial ordering “≤”. In
particular, M satisfies the descending chain condition.

Proof. Let N ⊆M be a nonempty subset. By Hilbert’s basis theorem (Corol-
lary 2.13), there exist t1, . . . , tm ∈ N generating the ideal (N)K[x1,...,xn]. Since
“≤” is a total ordering, there exists i with ti ≤ tj for 1 ≤ j ≤ m. Let t ∈ N .
Then t = f1t1+ · · ·+fmtm with fi ∈ K[x1, . . . , xn], so t occurs as a monomial
in at least one of the fjtj . It follows that t is a multiple of tj , so t ≥ tj ≥ ti.
Therefore ti is the desired least element of N . 	


Definition 9.4.

(a) Let S ⊆ K[x1, . . . , xn] be a set of polynomials. The ideal

L(S) := (LM(f) | f ∈ S)K[x1,...,xn]

is called the leading ideal of S.
(b) Let I ⊆ K[x1, . . . , xn] be an ideal. A finite subset G ⊆ I is called a

Gröbner basis (with respect to the chosen monomial ordering “≤”) of
I if

L(I) = L(G).

This condition can be expressed more explicitly by saying that for each
nonzero f ∈ I there exists g ∈ G such that LM(g) divides LM(f).

We will see in Corollary 9.10 that every Gröbner basis of I generates I as an
ideal. (This also follows by an easy argument using Lemma 9.3; we postpone
the proof to save space.) Observe that it follows from the Noether property
of K[x1, . . . , xn] that every ideal has a Gröbner basis. It is Buchberger’s
algorithm that makes this existence statement constructive.
Example 9.5. K[x1, . . . , xn] (as an ideal in itself) has the Gröbner basis G =
{1}. However, the generating set S := {x1, x1 + 1} is not a Gröbner basis,
since L(S) = (x1). �
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The above example seems to suggest that Gröbner bases tend to be nice
and small. Unfortunately, this is not the case: They tend to be large and
ugly! In general, it depends on the choice of the monomial ordering whether
a given generating subset G ⊆ I is a Gröbner basis or not.

Definition 9.6. Let S = {g1, . . . , gr} ⊂ K[x1, . . . , xn] be a finite set of
polynomials, and f ∈ K[x1, . . . , xn].

(a) We say that f is in normal form with respect to S if no t ∈ Mon(f) is
divisible by the leading monomial LM(gi) of any gi ∈ S.

(b) A polynomial f∗ ∈ K[x1, . . . , xn] is said to be a normal form of f with
respect to S if the following conditions hold:

(1) f∗ is in normal form with respect to S.
(2) There exist h1, . . . , hr ∈ K[x1, . . . , xn] with

f − f∗ =
r∑

i=1

higi and LM(higi) ≤ LM(f) for all i (9.3)

(in particular, f and f∗ are congruent modulo the ideal generated by
S);

Example 9.7. Let S = {x1, x1 + 1}, as in Example 9.5. Then 1 is congruent
to 0 modulo (S), but 0 is not a normal form of 1. Moreover, f = x1 has
two normal forms: 0 and −1. So in general, normal forms are not uniquely
determined. �

Observe that the set S from the above example is not a Gröbner basis.
We will see that normal forms with respect to a Gröbner basis are unique
(Theorem 9.9). But first we present an algorithm for computing a normal
form, thereby also proving its existence. To actually run the algorithm on a
computer, we need to assume that there exists a subfield K ′ ⊆ K containing
the coefficients of all polynomials from the input of the algorithm, so that we
can perform the field operations of K ′ on a computer. This remark applies
to all algorithms from this chapter.

Algorithm 9.8 (Normal form).

Input: A finite set S = {g1, . . . , gr} ⊆ K[x1, . . . , xn], and a polynomial
f ∈ K[x1, . . . , xn].

Output: A normal form f∗ of f with respect to S and, if desired,
polynomials h1, . . . , hr ∈ K[x1, . . . , xn] satisfying (9.3).

(1) Set f∗ := f and hi := 0 for all i ∈ {1, . . . , r}.
(2) Repeat steps 3–6.
(3) Set

M := {(t, i) | t ∈ Mon(f∗), i ∈ {1, . . . , r} such that LM(gi) divides t} .

(4) IfM = ∅, terminate and return f∗ and, if desired, the hi.
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(5) Choose (t, i) ∈ M with t maximal, and let c ∈ K be the coefficient of t
in f∗.

(6) Set

f∗ := f∗ − ct

LT(gi)
gi and hi := hi +

ct

LT(gi)
.

In Step 6, the term ct is deleted from f∗, and only monomials that are
smaller than t may be added to f∗. It follows that the monomials t from each
pass through the loop form a strictly descending sequence, so Lemma 9.3
guarantees that Algorithm 9.8 terminates after finitely many steps. It is clear
that (9.3) is satisfied during the entire run, and that f ∗ is in normal form
when the algorithm terminates.

Theorem 9.9 (The normal form map). Let G be a Gröbner basis of an ideal
I ⊆ K[x1, . . . , xn].

(a) Every f ∈ K[x1, . . . , xn] has precisely one normal form with respect to
G. So there is a map NFG : K[x1, . . . , xn] → K[x1, . . . , xn] assigning to
each polynomial its normal form with respect to G.

(b) The map NFG is K-linear, and ker (NFG) = I.
(c) If G̃ is another Gröbner basis of I (but with respect to the same monomial

ordering), then NFG̃ = NFG. So the normal form map NFG depends only
on I and the chosen monomial ordering.

Proof. We prove (a) and (c) together. To this end, let f∗ and f̃ be normal
forms of f with respect to G and G̃, respectively. It follows from (9.3) that
f∗ − f̃ ∈ I, so

LM
(
f∗ − f̃

)
∈ L(I) = L(G) = L(G̃).

Assume f∗ �= f̃ . Then there exist g ∈ G and g̃ ∈ G̃ such that LM(g) and
LM(g̃) divide LM(f∗ − f̃). But LM(f∗ − f̃) lies in Mon(f∗) or in Mon(f̃),
contradicting the first part of Definition 9.6(b). So f∗ = f̃ , and (a) and (c)
follow.

The following argument for linearity of the normal form map was shown
to me by Martin Kohls. Let f, g ∈ K[x1, . . . , xn] and c ∈ K. Then h :=
NFG(f+cg)−NFG(f)−cNFG(g) is congruent to f+cg−f−cg = 0 modulo
(G), so h ∈ I. If h �= 0, LM(h) would be divisible by LM(g) for some g ∈ G,
contradicting the fact that h is in normal form with respect to G. So h = 0,
and the linearity follows.

Finally, for f ∈ ker (NFG) we have f = f − NFG(f) ∈ I. Conversely, if
f ∈ I, then also f∗ := NFG(f) ∈ I. If f∗ �= 0, there would exist g ∈ G such
that LM(g) divides LM(f∗), contradicting the first part of Definition 9.6(b).

	

Theorem 9.9 tells us that if we have a Gröbner basis G of an ideal I ⊆

K[x1, . . . , xn], then we also have a membership test: f ∈ I if and only if
NFG(f) = 0. In the special case f = 1, we obtain the equivalence
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1 ∈ I ⇐⇒ G contains a nonzero constant polynomial. (9.4)

So we have a test for the properness of an ideal. By Hilbert’s Nullstellen-
satz (Corollary 1.8), this yields a method to test an affine variety over an
algebraically closed field for emptiness.

Apart from providing a membership test, the normal form map NFG
induces an embedding A := K[x1, . . . , xn]/I ↪→ K[x1, . . . , xn], so the Gröbner
basis provides a way to make explicit computations in the affine algebra A.
This is one of the most important applications of Gröbner bases.

Corollary 9.10 (Gröbner bases are ideal bases). Let G be a Gröbner basis
of an ideal I ⊆ K[x1, . . . , xn]. Then I = (G)K[x1,...,xn].

Proof. By definition, G ⊆ I, so (G) ⊆ I. Conversely, for f ∈ I we have
NFG(f) = 0 by Theorem 9.9(b), so f ∈ (G) by (9.3). 	

Remark 9.11 (Gröbner bases over rings). Part of what we have done so far
in this section carries over to the case that K is an arbitrary ring, not a field.
First of all, Definition 9.1 really has nothing to do with the properties of K.
So Lemma 9.3 carries over to polynomial rings over arbitrary rings as well.
We can and will also use Definitions 9.4 and 9.6 in the more general situation.
However, Algorithm 9.8 needs to be modified by replacing Step 6 with

(6’) Set

f ∗ := LC(gi) · f∗ − ct

LM(gi)
· gi and hi := LC(gi) · hi +

ct

LM(gi)
.

With this modification, Algorithm 9.8 computes a normal form not of f ,
but of some u · f with u ∈ K a product formed from leading coefficients
of polynomials from S. Moreover, Theorem 9.9 and Corollary 9.10 do not
carry over to the case that K is a ring. So the term Gröbner basis is a bit
misleading in this case. Gröbner bases over rings will be used in this book
only in Proposition 9.18 and Lemma 10.1. In what follows, we go back to
assuming that K is a field. �

We will shortly present Buchberger’s algorithm for computing Gröbner
bases. This is based on Buchberger’s criterion, which we prove first. To
formulate it, we need the following construction: For f, g ∈ K[x1, . . . , xn]
two nonzero polynomials, let t be the gcd of LM(f) and LM(g) (so t is a
monomial). Then

spol(f, g) :=
LT(g)
t
· f − LT(f)

t
· g

is called the s-polynomial of f and g. Observe that the s-polynomial is
formed in such a way that the leading terms of the two summands cancel.
For example, if f = x2

1 + x2
2 and g = x1x2, then (assuming x1 > x2)

spol(f, g) = x2 · f − x1 · g = x3
2.



124 9 Gröbner Bases

The following theorem gives a test for Gröbner bases that can be performed
in finitely many steps. This is the centerpiece of Buchberger’s algorithm
(Algorithm 9.13).

Theorem 9.12 (Buchberger’s criterion). Let G ⊆ K[x1, . . . , xn] be a finite
set of nonzero polynomials. Then the following statements are equivalent:

(a) G is a Gröbner basis of the ideal I ⊆ K[x1, . . . , xn] generated by G.
(b) For all g, h ∈ G, 0 is a normal form of spol(g, h) with respect to G.

Proof. Clearly all s-polynomials of elements from G lie in I, so if G is a
Gröbner basis, the s-polynomials have normal form 0 by Theorem 9.9(b).
So (a) implies (b).

To prove the converse, assume that (b) holds but G is not a Gröbner basis.
Then there exists f ∈ I with LM(f) /∈ L(G). Writing G = {g1, . . . , gr}, we
have hi ∈ K[x1, . . . , xn] with

f =
r∑

i=1

higi. (9.5)

By Lemma 9.3 we may choose the hi in such a way that

t := max {LM(higi) | i = 1, . . . , r}

becomes minimal. Because of (9.5) there exists i with LM(f) ∈ Mon(higi),
and since LM(f) /∈ L(G), this implies LM(higi) > LM(f). So t > LM(f).
Therefore the coefficient of t in the right-hand side of (9.5) is zero, so with

ci :=

{
LC(hi) if LM(higi) = t,

0 otherwise,

we have
r∑

i=1

ci LC(gi) = 0. (9.6)

By reordering the gi, we may assume c1 �= 0.
Let i ∈ {2, . . . , r} with ci �= 0. Then LM(gi) divides t. If ti is the least

common multiple of LM(gi) and LM(g1), then also ti divides t. The definition
of the s-polynomial gives

spol(gi, g1) =
LC(g1)ti
LM(gi)

· gi − LC(gi)ti
LM(g1)

· g1,

and we have LM (spol(gi, g1)) < ti. By the hypothesis (b), there exist hi,j ∈
K[x1, . . . , xn] with



9.1 Buchberger’s Algorithm 125

spol(gi, g1) =
r∑

j=1

hi,jgj and LM(hi,jgj) ≤ LM (spol(gi, g1)) < ti

for all j. Set si := t/ti · spol(gi, g1). Since

LM(hi) LM(gi) = t = LM(h1) LM(g1),

we get
si = LC(g1) LM(hi)gi − LC(gi) LM(h1)g1, (9.7)

and on the other hand,

si =
r∑

j=1

t

ti
hi,jgj with LM

(
t

ti
hi,jgj

)

< t for all j. (9.8)

Now we set g :=
∑r

i=1 ci LM(hi)gi and write LC(g1) · g as

LC(g1) · g =
r∑

i=2

ci

(
LC(g1) LM(hi)gi − LC(gi) LM(h1)g1

)

+

(
r∑

i=2

ci LC(gi) + c1 LC(g1)

)

LM(h1)g1.

With (9.7), (9.6), and (9.8), this yields

g =
r∑

i=2

ci
LC(g1)

· si =
r∑

j=1

h̃jgj with LM
(
h̃jgj

)
< t for all j.

By (9.5), we have

f = (f − g) + g =
r∑

j=1

(
hj − cj LM(hj) + h̃j

)
gj,

and it follows from the definition of t and cj that LM ((hj − cj LM(hj)) gj) < t
for all j, so

LM
((
hj − cj LM(hj) + h̃j

)
gj

)
< t,

contradicting the minimality of t. This contradiction shows that G is a
Gröbner basis. 	


Having proved Buchberger’s criterion, we are ready to present an algorithm
for computing Gröbner bases.
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Algorithm 9.13 (Buchberger’s algorithm).

Input: A finite set S ⊆ K[x1, . . . , xn] of polynomials.
Output: A Gröbner basisG (with respect to the chosen monomial ordering

“≤”) of the ideal I ⊆ K[x1, . . . , xn] generated by S.

(1) Set G := S \ {0}.
(2) For all g, h ∈ G, perform steps 3–4.
(3) Compute the s-polynomial s := spol(g, h) and a normal form s∗ of s with

respect to G.
(4) If s∗ �= 0, set G := G ∪ {s∗} and go to step 2.
(5) (This step is reached only if no nonzero s∗ occurred in the previous loop.)

Terminate the computation and return G.

Each time that a new polynomial s∗ is added into G in Algorithm 9.13,
the ideal L(G) increases strictly. Therefore the termination of the algorithm
is guaranteed by Hilbert’s basis theorem (Corollary 2.13). Since clearly all s∗

lie in I, the correctness of the algorithm follows from Buchberger’s criterion
(Theorem 9.12).

Algorithm 9.13 has numerous optimizations. Some of them are rather triv-
ial (such as not considering pairs (g, h) ∈ G × G where (g, h) or (h, g) have
been considered before) and would occur to any reasonable programmer, but
many others are much more subtle and artful. A good implementation has
criteria for discarding superfluous pairs (g, h) ∈ G × G (see Exercise 9.3 for
such a criterion), a good strategy for first choosing pairs with a high potential
for pushing up L(G) fast, and good heuristics for choosing polynomials gi for
the reduction step (step 6 in Algorithm 9.8). Apart from this, there is almost
no limit to the creativity of a good programmer for finding variants of the
algorithm and implementation tricks for speeding up the performance.

Algorithm 9.13 has a number of variants. One of them, sometimes called
the extended Buchberger algorithm, keeps track of how the new elements
s∗ of the Gröbner basis arise as K[x1, . . . , xn]-linear combinations of the
original generators. This information is useful for some purposes, e.g., the
computation of syzygies, which we will not treat in this book. A further
variant computes a reduced Gröbner basis G, which by definition has the
additional property that every g ∈ G has leading coefficient 1 and is in
normal form with respect to G \ {g}. Reduced Gröbner bases are uniquely
determined by the ideal I they generate and, of course, by the choice of the
monomial ordering (see Exercise 9.4). A third variant of Buchberger’s algo-
rithm computes Gröbner bases of submodules of a free moduleK[x1, . . . , xn]m

over the polynomial ring. Of course, this requires extending the definitions
of a monomial ordering and a Gröbner basis. Gröbner bases of submod-
ules in K[x1, . . . , xn]m are useful for computations in homological algebra,
particularly free resolutions.

Buchberger’s algorithm is the workhorse of computational commutative
algebra. It is therefore part of every computer algebra system that spe-
cializes in commutative algebra, such as CoCoA [9], MACAULAY (2) [21],
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MAGMA [5], or SINGULAR [23]. The competition between these systems is
strong, and it is rare for a conference on computational commutative algebra
to pass without at least one talk that reports that one system outperforms
all others.

The cost, in terms of running time and memory requirement, of Buch-
berger’s algorithm tends to be extremely high. Its complexity is usually
described as “doubly exponential,” although the true story is a bit more com-
plicated. More details on the complexity can be found in the book by von zur
Gathen and Gerhard [19, Section 21.7]. However, practical experience shows
that the algorithm often does terminate after a reasonable time. Whether a
particular Gröbner basis computation is feasible is usually hard to predict in
advance, so Gröbner basis computations are still an adventurous business.

9.2 First Application: Elimination Ideals

As in the previous section, K[x1, . . . , xn] will denote a polynomial ring over
a field throughout this section. Let I ⊆ K[x1, . . . , xn] be an ideal. In the
previous section we have already seen that having a Gröbner basis of I yields
a membership test for I and a way to make explicit computations in the affine
algebra K[x1, . . . , xn]/I (see before Corollary 9.10). In particular, if we have
another ideal J ⊆ K[x1, . . . , xn] given by a finite set of generators, we can
also test whether J is contained in I. These applications work independently
of the chosen monomial ordering.

In this section we will study some further “immediate” applications. These
are all linked to the computation of elimination ideals, which we define now.

Definition 9.14. Let S = {xi1 , . . . , xik} be a set of indeterminates.

(a) For an ideal I ⊆ K[x1, . . . , xn], the S-elimination ideal of I is defined
to be the intersection

IS := K[xi1 , . . . , xik ] ∩ I

(where I∅ is understood to be the set of constants lying in I).
(b) A monomial ordering “≤” on K[x1, . . . , xn] is called an S-elimination

ordering if

t < xj for all monomials t ∈ K[xi1 , . . . , xik ] and all xj ∈ S,

where S := {x1, . . . , xn} \ S.

Elimination orderings exist, as the following example shows.
Example 9.15. (1) Let “≤” be an arbitrary monomial ordering on

K[x1, . . . , xn] and let S be a set of indeterminates with complement
{x1, . . . , xn}\S = {xj1 , . . . , xjr}. We define a new monomial ordering “�”
by saying t = xe11 · · ·xen

n � t′ = x
e′1
1 · · ·xe

′
n
n if ej1 + · · ·+ejr < e′j1 + · · ·+e′jr
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or if ej1 + · · · + ejr = e′j1 + · · · + e′jr and t ≤ t′. It is easy to check that
“�” is an S-elimination ordering.

(2) The block ordering from Example 9.2(3) is an {xk+1, . . . , xn}-elimination
ordering.

(3) In particular, the lexicographic ordering is an {xk+1, . . . , xn}-elimination
ordering for every k.

(4) On the other hand, the grevlex ordering is an S-elimination ordering only
for S = ∅ and S = {1, . . . , n}, and in fact every monomial ordering is an
elimination ordering for these two extremes. �

The following theorem tells us how elimination ideals can be computed
with Gröbner bases. Notice that restricting a monomial ordering “≤” on
K[x1, . . . , xn] to the set of all monomials in K[xi1 , . . . , xik ] gives a mono-
mial ordering on K[xi1 , . . . , xik ], which we call the restricted monomial
ordering.

Theorem 9.16 (Computing elimination ideals). Let I ⊆ K[x1, . . . , xn] be
an ideal and S = {xi1 , . . . , xik} a set of indeterminates. Let G be a Gröbner
basis of I with respect to an S-elimination ordering “≤”. Then

GS := K[xi1 , . . . , xik ] ∩G

is a Gröbner basis of the S-elimination ideal IS with respect to the restricted
monomial ordering.

Proof. Clearly GS ⊆ IS . To prove that L(IS) = L(GS), let f ∈ IS be
nonzero. Since LM(f) ∈ L(I), there exists g ∈ G such that LM(g) divides
LM(f). This implies that LM(g) lies in K[xi1 , . . . , xik ]. But then every mono-
mial t ∈ Mon(g) lies in K[xi1 , . . . , xik ], too, since otherwise t would be
greater than LM(g) by the hypothesis on “≤”. So g ∈ GS , and the proof is
finished. 	


So all we need to do for getting the elimination ideal is to compute a
Gröbner basis G with respect to an elimination ordering, and pick out those
polynomials from G that involve only the indeterminates from S.

Elimination ideals can be used to compute the dimension of an affine vari-
ety given as A = K[x1, . . . , xn]/I, with I an ideal. Indeed, Theorem 5.9
and Proposition 5.10 tell us that dim(A) is the maximal size of a set
S = {xi1 , . . . , xik} of indeterminates such that {xi1 + I, . . . , xik + I} ⊆ A is
algebraically independent. But this condition is equivalent to IS = {0}, so it
can be checked by means of Gröbner bases. This gives the desired method for
computing dim(A). Unfortunately, even after some optimizations this method
requires the computation of a considerable number of Gröbner bases of I with
respect to different monomial orderings. A test for dimension zero, which is
much cheaper than this method, is discussed in Exercise 9.7. A better way to
calculate the dimension of an affine algebra is discussed in Section 11.2 (see
Corollary 11.14 on page 159).
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A further application of elimination ideals is the computation of kernels of
homomorphisms between affine K-algebras. Let A = K[y1, . . . , ym]/I and
B = K[x1, . . . , xn]/J be two affine K-algebras (with I and J ideals in
polynomial rings), and let ϕ: B → A be a homomorphism of K-algebras.
Composing ϕ with the canonical map K[x1, . . . , xn] → B yields a homo-
morphism ψ: K[x1, . . . , xn] → A, and ker(ϕ) = ker(ψ)/J . So it is enough
to compute ker(ψ). In other words, for computing the kernel of a homomor-
phism between affine K-algebras, we may assume that the first algebra is a
polynomial ring. The following proposition tells us that in this situation the
kernel can be calculated as an elimination ideal.

Proposition 9.17 (Kernel of a homomorphism of affine algebras). Let

ϕ: K[x1, . . . , xn]→ A := K[y1, . . . , ym]/I

be a homomorphism of K-algebras, given by ϕ(xi) = gi + I with gi ∈
K[y1, . . . , ym]. Consider the ideal

J :=
(
I ∪ {g1 − x1, . . . , gn − xn}

)

K[x1,...,xn,y1,...,ym]
.

Then
ker(ϕ) = K[x1, . . . , xn] ∩ J.

Proof. It follows from the definition of J that for every f ∈ K[x1, . . . , xn] we
have

f(g1, . . . , gn)− f ∈ J. (9.9)

Assume f ∈ ker(ϕ). Then f(g1, . . . , gn) ∈ I, which with (9.9) yields f ∈ J ,
so f ∈ K[x1, . . . , xn] ∩ J .

Conversely, if f ∈ K[x1, . . . , xn] ∩ J , then (9.9) yields f(g1, . . . , gn) ∈ J ,
so

f(g1, . . . , gn) =
r∑

i=1

hifi +
n∑

j=1

pj(gj − xj)

with hi, pj ∈ K[x1, . . . , xn, y1, . . . , ym] and fi ∈ I. Setting xi = gi on both
sides of the above equation yields f(g1, . . . , gn) ∈ I, so f ∈ ker(ϕ). 	


If we put together Proposition 9.17 and Theorem 9.16, we obtain the fol-
lowing algorithm: With the notation from Proposition 9.17, form the ideal
J ⊆ K[x1, . . . , xn, y1, . . . , ym] and choose an {x1, . . . , xn}-elimination order-
ing “≤” on K[x1, . . . , xn, y1, . . . , ym]. Compute a Gröbner basis G of J with
respect to “≤”, and set Gx := K[x1, . . . , xn]∩G. Then Gx is a Gröbner basis
of the kernel of ϕ. It may seem odd that only one part of the Gröbner basis
G is used, and the rest is “thrown away,” and one might wonder whether
the other part of G has any significance in the context of the map ϕ. This is
indeed the case, as we will see in Proposition 9.18.
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Observe that the kernel in Proposition 9.17 is nothing else but the ideal
of relations between the elements gi + I ∈ A. So we have an algorithm
for computing relation ideals of elements of affine algebras. In particular,
we can compute relation ideals between polynomials. A nice application
is a constructive version of Noether normalization, which is explored in
Exercise 9.12.

A homomorphism ϕ: R → S of rings induces a map ϕ∗: Spec(S) →
Spec(R), P �→ ϕ−1(P ). We claim that the Zariski closure of the image can
be expressed as

im(ϕ∗) = VSpec(R) (ker(ϕ)) . (9.10)

This gives a geometric interpretation of the kernel. To prove (9.10), observe
that im(ϕ∗) = VSpec(R)

( ⋂
P∈Spec(S) ϕ

∗(P )
)
, and

⋂

P∈Spec(S)

ϕ∗(P ) = ϕ−1
( ⋂

P∈Spec(S)

P
)

= ϕ−1
(√
{0}

)
=

√
ker(ϕ),

where the second equality follows from Corollary 1.12.
If f : X → Y is a morphism of affine varieties over an algebraically closed

field, given by a homomorphism ϕ: K[Y ]→ K[X ], then (9.10) becomes

f(X) = VY (ker(ϕ)) .

So using Proposition 9.17, we can compute image closures of morphisms of
affine varieties. At first glance it may seem disappointing that the kernel of ϕ
describes only the image closure and not the image itself. But the image
closure is in fact the best we can reasonably expect, since the variety given
by the kernel is always closed, but the image of a morphism is, in general,
not closed. A typical example of this phenomenon is a hyperbola X with a
morphism f given by projecting to the x-axis. This is shown in Fig. 9.1.

In Chapter 10 we will develop an algorithm that computes the image of a
morphism, and we will learn more about the nature of images of morphisms.

�

� �
�f

X

�

Fig. 9.1. A morphism whose image is not closed
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By a very similar (but simpler) argument, we obtain a geometric interpre-
tation of elimination ideals themselves: If X ⊆ Kn is an affine variety over
an algebraically closed field, given by an ideal I ⊆ K[x1, . . . , xn], and if S =
{xi1 , . . . , xik}, then the S-elimination ideal describes the closure of the image
of X under the projection πS : Kn → K |S|, (ξ1, . . . , ξn) �→ (ξi1 , . . . , ξik):

πS(X) = VK|S|(IS). (9.11)

This leads to a further application of elimination ideals: solving systems of
polynomial equations. Suppose that I ⊆ K[x1, . . . , xn] is an ideal in a poly-
nomial ring over an algebraically closed field, and suppose we know that the
variety X := V(I) is finite. (This is equivalent to dim (K[x1, . . . , xn]/I) ≤ 0,
so it can be checked with elimination ideals.) Then in (9.11) the Zariski
closure can be omitted, and in particular all I{xk,...,xn} are nonzero. By The-
orem 9.16, all I{xk,...,xn} can be computed from a single lexicographic Gröbner
basis of I. Since K[xn] is a principal ideal ring, we have I{xn} = (g) with
g ∈ K[xn] nonzero. Equation (9.11) tells us that the zeros of g are precisely
those ξn ∈ K for which there exists at least one point of X having ξn as
last component. For each such ξn, substituting xn = ξn in the generators of
I{xn−1,xn} yields some polynomials in K[xn−1], and every common zero ξn−1

of these polynomials yields a pair (ξn−1, ξn) that can be extended to at least
one point from X . Continuing in this way, we can work our way down until
we reach I{x1,...,xn} = I. Then we have found all points from X . In other
words, we have solved the system of polynomial equations given by I. What
is required for this method to work in practice is that we be able to com-
pute zeros of polynomials in K[x]. But it also works if K is not algebraically
closed, provided that we know that dim (K[x1, . . . , xn]/I) ≤ 0. For K not
algebraically closed, it may happen that a zero ξn of g does not extend to a
point (ξ1, . . . , ξn) of X .

This last application probably points to the origin of the term “elimination
ideal”: It can be used for eliminating unknowns from a system of equations.

The following proposition may be seen as a sequel to Proposition 9.17 and
Theorem 9.16. It answers the question about the significance of the part of
a Gröbner basis that is “thrown away” in computing an elimination ideal.
The proposition is rather technical, but it is crucial for getting a constructive
version of the generic freeness lemma in Chapter 10. The proposition will be
used only in Chapter 10, so readers who plan to skip that chapter can also
skip the rest of this section and go directly to Chapter 11.

Proposition 9.18 (The forgotten part of the Gröbner basis). Let

ϕ: K[x1, . . . , xn]→ A := K[y1, . . . , ym]/I

be a homomorphism of K-algebras, given by ϕ(xi) = gi + I with gi ∈
K[y1, . . . , ym]. With R := im(ϕ) ⊆ A, consider the homomorphism
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ψ: R[y1, . . . , ym]→ A, yi �→ yi + I,

of R-algebras. Also consider the homomorphism

Φ: K[x1, . . . , xn, y1, . . . , ym]→ R[y1, . . . , ym]

given by applying ϕ coefficientwise. Let “≤” be an {x1, . . . , xn}-elimination
ordering on K[x1, . . . , xn, y1, . . . , ym], and let G be a Gröbner basis with
respect to “≤” of the ideal

J :=
(
I ∪ {g1 − x1, . . . , gn − xn}

)

K[x1,...,xn,y1,...,ym]
.

If Gx := K[x1, . . . , xn] ∩G and Gy := G \Gx (the “rest” of G), then:

(a) Gx is a Gröbner basis of ker(ϕ) with respect to the restriction of “≤” to
K[x1, . . . , xn].

(b) ker(ψ) = (Φ(Gy))R[y1,...,ym].
(c) If “≤” is the block ordering of monomial orderings “≤x” on K[x1, . . . , xn]

and “≤y” on K[y1, . . . , ym] with “≤y” dominating, then Φ(Gy) is a
Gröbner basis of ker(ψ) with respect to “≤y”. (See Remark 9.11 for
Gröbner bases over a ring.)

Proof. Part (a) follows from Proposition 9.17 and Theorem 9.16.
To prove (b), take g ∈ Gy. Then g ∈ J , and our definitions imply

ψ (Φ(g)) = 0. So (Φ(Gy))R[y1,...,ym] ⊆ ker(ψ). Conversely, take f ∈ ker(ψ).
We can write f = Φ(F ) with F ∈ K[x1, . . . , xn, y1, . . . , ym]. Then F ∈ J =
(Gx ∪Gy)K[x1,...,xn,y1,...,ym]. So

f ∈ (Φ(Gx) ∪ Φ(Gy))R[y1,...,ym] .

But by (a), every g ∈ Gx lies in ker(ϕ), so Φ(g) = ϕ(g) = 0. This completes
the proof of (b).

For proving part (c) we need the following lemma. 	

Lemma 9.19. In the situation of Proposition 9.18(c), let f∈K[x1, . . . , xn,
y1, . . . , ym] be such that there exists no g ∈ Gx with LM(g) dividing LM(f).
Write LMy(f) and LCy(f) for the leading monomial and leading coefficient
of f considered as a polynomial in the indeterminates yi and with coefficients
in K[x1, . . . , xn]. Then

LC (Φ(f)) = ϕ (LCy(f)) (9.12)

and
LM(f) = LMy (Φ(f)) · LM(LCy(f)) . (9.13)
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Proof. We may assume f �= 0. Since “≤” is a block ordering, we obtain

LM(f) = LMy(f) · LM (LCy(f)) . (9.14)

By way of contradiction, assume that LMy (Φ(f)) �= LMy(f). Then
ϕ (LCy(f)) = 0, and by Proposition 9.18(a) this implies the existence
of g ∈ Gx such that LM(g) divides LM(LCy(f)). So by (9.14), LM(g)
divides LM(f), contradicting our hypothesis. We conclude that LMy (Φ(f)) =
LMy(f). This implies (9.12) directly, and together with (9.14) it implies
(9.13). 	

Proof of Proposition 9.18(c). We need to show that for every nonzero f ∈
ker(ψ) there exists g ∈ Gy such that LMy (Φ(g)) divides LMy(f). As shown
in the proof of part (b), there exists F ∈ J with f = Φ(F ). By part (a), we
may substitute F by a normal form of F with respect to Gx. Since F �= 0,
there exists g ∈ Gy such that LM(g) divides LM(F ). Applying (9.13) to F and
to g shows that LMy (Φ(g)) divides LMy (Φ(F )) = LMy(f). This completes
the proof. 	


The last part of Proposition 9.18 works under the stronger hypothesis that
the elimination ordering is a block ordering. This raises the question whether
in fact every elimination ordering is a block ordering (formed from orderings
on the set of indeterminates that are eliminated and on its complement).
After trying in vain to prove this for several days, I posed the question to my
students Kathi Binder and Tobias Kamke, who immediately answered it in
the negative. Exercise 9.8 deals with this.

In Exercise 9.9 it is shown how the Gröbner basis G from Proposition 9.18
can be used to obtain a membership test for the subalgebra R.

Exercises for Chapter 9

In the following exercises, K[x1, . . . , xn] stands for a polynomial ring over
a field. If not stated otherwise, K[x1, . . . , xn] is equipped with a monomial
ordering.

9.1 (Refining the ordering by divisibility). We have seen that mono-
mial orderings refine the partial ordering given by divisibility. Conversely,
let “≤” be a total ordering on the set M of monomials such that if t1 ∈ M
divides t2 ∈M , it follows that t1 ≤ t2. Does this imply that “≤” is a monomial
ordering?

*9.2 (The convex cone of a monomial ordering, weight vectors). In
this exercise we will study a fundamental geometric object, called the con-
vex cone, that belongs to a monomial ordering. If e = (e1, . . . , en) and
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f = (f1, . . . , fn) ∈ Nn0 are two tuples of nonnegative integers, we write
e ≤ f if

∏n
i=1 x

ei
i ≤

∏n
i=1 x

fi

i (using a given monomial ordering “≤” on
K[x1, . . . , xn]). Define the set

C := {e− f | e, f ∈ Nn0 with f < e} .

C is called the convex cone associated to the monomial ordering “≤”. Prove
the following.

(a) If c1, . . . , cm ∈ C, and if α1, . . . , αm ∈ R>0 are positive real numbers such
that c :=

∑m
i=1 αici ∈ Zn, then c ∈ C.

Hint: Show that C is closed under addition, and that if k · c ∈ C for
k ∈ N>0 and c ∈ Zn, then c ∈ C. Conclude the result for αi ∈ Q>0, then
for αi ∈ R>0.

(b) If c1, . . . , cm ∈ C, there exist positive integers w1, . . . , wn ∈ N>0 such
that

∑n
j=1 wjci,j > 0 for all i = 1, . . . ,m.

Hint: Conclude from part (a) that 0 ∈ Rn does not lie in the convex hull
H :=

{∑m
i=1αici | αi ∈ R≥0 with

∑m
i=1αi = 1

}
of the ci. Then consider

a vector w′ ∈ H that is closest to 0.

Before formulating the next statement, we need to introduce a new monomial
ordering “≤w” that depends on a “weight vector” w = (w1, . . . , wn) ∈ Nn>0.
This is defined by saying that e ≤w f if

∑n
j=1 wjej <

∑n
j=1 wjfj , or

∑n
j=1 wjej =

∑n
j=1 wjfj and e ≤ f .

(c) Let I ⊆ K[x1, . . . , xn] be an ideal, and let G be a Gröbner basis of I with
respect to “≤”. Then there exists a weight vector w ∈ Nn>0 such that G
is also a Gröbner basis with respect to ≤w, and the leading ideals with
respect to the two monomial orderings coincide: L≤(I) = L≤w(I).
Hint: You can use (b) to make sure that the leading monomials of some
polynomials (of your choice) do not change in going from “≤” to “≤w”.

Remark: It is part (a) that earns C the name “convex cone.” To get a better
appreciation of part (c), notice that if “≤” is the lexicographic ordering,
there is no weight vector w with ≤=≤w. So w has to depend on G. The
ordering “≤w” has the special property that every monomial has only finitely
many monomials below it. Part (c) will be used in Exercise 11.7 to generalize
Corollary 11.14. (Solution on page 223)

9.3 (S-polynomials). Let g and h ∈ K[x1, . . . , xn] be nonzero polyno-
mials such that LM(g) and LM(h) are coprime. Show that 0 is a normal
form of spol(g, h) with respect to G := {g, h}. So pairs of polynomials with
coprime leading monomials need not be considered in Buchberger’s algorithm
(Algorithm 9.13).
Hint: Show that

spol(g, h) = (LT(h)− h) · g − (LT(g)− g) · h, (9.15)

and conclude the result from that.
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9.4 (Reduced Gröbner bases). Let I ⊆ K[x1, . . . , xn] be an ideal.

(a) Find an algorithm that converts a Gröbner basis of I into a reduced
Gröbner basis of I.

(b) Let G and G′ be two reduced Gröbner bases of I. Show that G = G′.

9.5 (Another proof of dim(A) ≤ trdeg(A)). Use Exercise 6.8(c) to give
another proof of Theorem 5.5 and the first part of Corollary 5.7.

9.6 (Radical membership test). It is rather complicated to compute the
radical ideal

√
I of an ideal I ⊆ K[x1, . . . , xn]. However, it is much easier to

decide the membership of a given polynomial f ∈ K[x1, . . . , xn] in the radical
ideal. In fact, take an additional indeterminate y and form the ideal

J := (I ∪ {y · f − 1})K[x1,...,xn,y]
⊆ K[x1, . . . , xn, y].

Prove the equivalence
f ∈
√
I ⇐⇒ 1 ∈ J.

This yields the desired test for radical membership, since the condition 1 ∈ J
can be tested by computing a Gröbner basis of J .

9.7 (Testing affine algebras for dimensionzero). Let I � K[x1, . . . , xn]
be a proper ideal, and let G be a Gröbner basis of I. Show that the following
statements are equivalent:

(a) dim (K[x1, . . . , xn]/I) = 0.
(b) For every i ∈ {1, . . . , n}, there exists a positive integer di and gi ∈ G

with LM(gi) = xdi
i .

This yields a test for determining whether the affine algebra A :=
K[x1, . . . , xn]/I has dimension 0 by computing just one Gröbner basis with
respect to an arbitrary monomial ordering.
Remark: A generalization of this test is contained in Algorithm 11.15, which
computes the dimension of an affine algebra.

9.8 (Elimination orderings vs. block orderings). Give an example of
an {x1, . . . , xk}-elimination ordering on K[x1, . . . , xn] that is not a block
ordering formed from monomial orderings on K[x1, . . . , xk] and on
K[xk+1, . . . , xn].

9.9 (Subalgebra membership test). Let A = K[y1, . . . , ym]/I be an af-
fine K-algebra and R = K[g1 + I, . . . , gn + I] ⊆ A a subalgebra given
by polynomials gi ∈ K[y1, . . . , ym]. With x1, . . . , xn additional indeter-
minates, form the ideal J := (I ∪ {g1 − x1, . . . , gn − xn})K[x1,...,xn,y1,...,ym]

(as in Proposition 9.18). Let G be a Gröbner basis of J with respect to
an {x1, . . . , xn}-elimination ordering “≤” on K[x1, . . . , xn, y1, . . . , ym]. Show
that for f ∈ K[y1, . . . , ym] the equivalence
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f + I ∈ R ⇐⇒ f̃ := NFG(f) ∈ K[x1, . . . , xn]

holds. Furthermore, show that if the above conditions are satisfied, then f +
I = f̃(g1 + I, . . . , gn + I). So we have an algorithm for testing membership
in R.

9.10 (Computing intersections of ideals). Let I1, I2 ⊆ K[x1, . . . , xn] be
two ideals. With y an additional indeterminate, form the ideal

J := (y · I1 ∪ (1− y) · I2)K[x1,...,xn,y]
⊆ K[x1, . . . , xn, y].

Show that
I1 ∩ I2 = K[x1, . . . , xn] ∩ J.

Since the right-hand side is an elimination ideal, this yields an algorithm for
computing intersections of polynomial ideals. Can you think of an extension
of this algorithm that computes intersections of m ideals by computing just
one elimination ideal and using just one additional indeterminate? (You may
assume that K contains at least m elements.)

9.11 (Colon ideals). Find an algorithm for computing the colon ideal I : J
of two ideals I, J ⊆ K[x1, . . . , xn]. Assume that the ideals are given by finitely
many generators.

9.12 (A constructive version of Noether normalization). Find an
algorithm that finds the elements c1, . . . , cn from Theorem 8.19. Can the
version of Noether normalization discussed in Remark 8.20 be made con-
structive in similar ways?
Hint: Take another look at the proof of Theorem 8.19, and turn this proof
into an algorithm.

9.13 (Elementary symmetric polynomials). In this exercise it is shown
that the ring of invariants of the symmetric group is generated by the so-called
elementary symmetric polynomials. These are defined as

sk :=
∑

1≤i1<i2<···<ik≤n
xi1 · · ·xik ∈ K[x1, . . . , xn] (k = 1, . . . , n).

The symmetric group Sn acts on K[x1, . . . , xn] by algebra automorphisms
given by π(xi) = xπ(i) for π ∈ Sn. Show that

K[x1, . . . , xn]Sn = K[s1, . . . , sn].

Does this also hold if K is a ring, not a field?
Hint: Determine the leading monomials of the si with respect to the lexico-
graphic ordering, and use this information in the proof.



Chapter 10

Fibers and Images of Morphisms
Revisited

In this chapter we will continue the investigation that was started in Sec-
tion 7.2. First we use Gröbner basis theory to prove the generic freeness
lemma. This leads to an algorithm for computing the image of a morphism
of affine varieties. Then we will draw more theoretical consequences on the
images of morphisms and the dimension of fibers. Finally, we will apply our
results to the topic of invariant theory. As mentioned before, the results of
this chapter will not be used anywhere else in the book, so there is an option
to skip it.

10.1 The Generic Freeness Lemma

Roughly speaking, the generic freeness lemma asserts that (under suitable
hypotheses) a ring extension becomes a free module after localizing almost
everywhere. The following lemma is a constructive version of the generic
freeness lemma. When reading it, one should bear Proposition 9.18 in mind,
since this proposition tells us how the Gröbner basis G appearing in the
lemma can be constructed in the case that R and S are affine algebras.

Lemma 10.1 (Generic freeness, constructive version). Let R⊆S be a finite-
ly generated ring extension, so that there is an epimorphism

ψ: R[x1, . . . , xn]→ S

(with xi indeterminates). Let G ⊆ R[x1, . . . , xn] be a Gröbner basis of ker(ψ)
with respect to some monomial ordering (see Remark 9.11 for Gröbner bases
over rings). If U ⊆ R is a multiplicative subset containing the product∏
g∈G LC(g), then U−1S is free as a U−1R-module, and there exists a basis

containing 1 ∈ U−1S.

Remark. In Lemma 10.1, if R is not an integral domain, it is possible
that the product

∏
g∈G LC(g) becomes zero. If that happens, the lemma

is meaningless. �
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Proof of Lemma 10.1. Let B ⊂ R[x1, . . . , xn] be the set of all monomials
that are not divisible by any leading monomial LM(g) with g ∈ G. Since ψ is
injective on R, we have 1 ∈ B. Moreover, ψ(B) ⊆ S is linearly independent
over R, since if

∑m
i=1 aiψ(ti) = 0 with t1, . . . , tm ∈ B pairwise distinct and

ai ∈ R, then h :=
∑m

i=1 aiti ∈ ker(ψ), so h = 0 since no monomial of h is
divisible by an LM(g) for g ∈ G.

Let M := (ψ(B))R ⊆ S be the (free) R-module generated by ψ(B). We
claim that for every s ∈ S there exists a u ∈ U such that us ∈ M . To
prove this, take f ∈ R[x1, . . . , xn] with s = ψ(f). By the modification of
the normal form algorithm (Algorithm 9.8) discussed in Remark 9.11, there
exists f∗ ∈ R[x1, . . . , xn] that is a normal form with respect to G of some u·f ,
where u is a product formed from leading coefficients of elements of G. By
multiplying u by further leading coefficients of elements of G, we can achieve
that u is a power of

∏
g∈G LC(g), so u ∈ U . The definition of a normal form

implies that f∗ lies in (B)R and u · f − f∗ ∈ (G)R[x1,...,xn] ⊆ ker(ψ). So

u · s = u · ψ(f) = ψ(u · f) = ψ(f∗) ∈M,

which proves the claim.
Now it is straightforward to check that B̃ :=

{
ψ(t)

1 | t ∈ B
}
⊆ U−1S is a

basis of U−1S as a U−1R-module. This completes the proof. ��
By combining Lemma 10.1 with Proposition 9.18 and Lemma 7.16, we

get an algorithm for computing the image of a morphism between the spec-
tra of affine algebras (which, in the case of an algebraically closed ground
field, comes down to computing the image of a morphism of affine varieties).
Before we state the algorithm, we derive the “existence version” of the generic
freeness lemma.

Corollary 10.2 (Generic freeness lemma). Let R be an integral domain and
let S be a ring extension of R that is finitely generated as an R-algebra. Then
there exists a nonzero element a ∈ R such that for every multiplicative subset
U ⊆ R with a ∈ U , the localization U−1S is free as a U−1R-module, and
there exists a basis containing 1 ∈ U−1S.

Proof. We have an epimorphism ψ: R[x1, . . . , xn] → S. Let I := ker(ψ),
K := Quot(R), and J := (I)K[x1,...,xn] = K · I. Choose a monomial ordering
on K[x1, . . . , xn], and let G ⊆ J \{0} be a Gröbner basis of J . Multiplying the
polynomials in G by suitable nonzero elements of R, we can achieve that G is
contained in I, so G is a Gröbner basis of I. With a :=

∏
g∈G LC(g) ∈ R\{0},

the result follows from Lemma 10.1. ��
Loosely speaking, Corollary 10.2 says that freeness holds “almost every-

where” (assuming the hypotheses of the corollary). More precisely, it holds
after localization at all P ∈ Spec(R) with a /∈ P . These P form an open, dense
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subset of Spec(R). (Proof of density: We have a /∈ {0} ∈ Spec(R), and the clo-
sure of {0} is Spec(R).) The generic freeness lemma is due to Grothendieck,
and it has been traditionally referred to as the generic flatness lemma. In fact,
in its original version, the assertion is flatness of the map U−1R → U−1S,
a property that is weaker than freeness and is not treated in this book. In
Exercise 10.1 we explore the necessity of the hypotheses of Corollary 10.2.
Exercise 10.2 contains a version of the generic freeness lemma for modules
over S. Exercise 10.3 contains a surprising application of the generic freeness
lemma: A special case of this application says that a subalgebra of an affine
K-domain has a localization that is again an affine K-domain.

As announced above, we now get to the algorithm for computing the image
of a morphism ϕ∗: Spec(A)→ Spec(B) of spectra of affine algebras. Defining
B as a quotient ring of a polynomial ring is the same as giving an embedding
Spec(B) ↪→ Spec (K[x1, . . . , xn]). Therefore we may assume that B is a poly-
nomial ring. In the following,K[x1, . . . , xn] and K[y1, . . . , ym] are polynomial
rings over a field.

Algorithm 10.3 (Image of a morphism of spectra).

Input: An ideal I ⊆ K[y1, . . . , ym] defining an affine algebra A := K[y1, . . . ,
ym]/I, and polynomials g1, . . . , gn ∈ K[y1, . . . , ym] defining a K-algebra
homomorphism ϕ: K[x1, . . . , xn]→ A, xi �→ gi + I.

Output: Ideals J1, . . . , Jl ⊆ K[x1, . . . , xn] and polynomials f1, . . . , fl ∈
K[x1, . . . , xn] such that the image of the induced morphism ϕ∗: Spec(A)→
Spec (K[x1, . . . , xn]) =: Y is

im(ϕ∗) =
l⋃

i=1

(
VY (Ji) \ VY (fi)

)
(10.1)

and the image closure is

im(ϕ∗) = VY (J1). (10.2)

(1) Choose monomial orderings “≤x” on K[x1, . . . , xn] and “≤y” on
K[y1, . . . , ym], and let “≤” be the block ordering on K[x1, . . . , xn,
y1, . . . , ym] with “≤y” dominating.

(2) Form the ideal

J :=
(
I ∪ {g1 − x1, . . . , gn − xn}

)

K[x1,...,xn,y1,...,ym]

and compute a Gröbner basis G of J with respect to “≤”.
(3) Set

Gx := K[x1, . . . , xn] ∩G, Gy := {NFGx(g) | g ∈ G} \ {0},
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and
M := {LCy(g) | g ∈ Gy} \K ⊆ K[x1, . . . , xn].

Here LCy(g) denotes the leading coefficient with respect to “≤y” of g
considered as a polynomial in the yi-variables.

(4) Initialize the lists J1, . . . , Jl and f1, . . . , fl by setting l = 1,

J1 := (Gx)K[x1,...,xn] , and f1 :=
∏

f∈M∪{1}
f.

(5) For all f ∈M , perform step (6).
(6) Apply the algorithm recursively with (I ∪ {f(g1, . . . , gn)})K[y1,...,ym] as

first argument and g1, . . . , gn as second argument. Append the resulting
lists of ideals and polynomials to the current lists J1, . . . , Jl and f1, . . . , fl.

Theorem 10.4. Algorithm 10.3 terminates after finitely many steps and
calculates the image of ϕ∗ and its closure correctly.

Proof. We use the notation from the algorithm. By way of contradiction,
assume that there exists an ideal I ⊆ K[y1, . . . , ym] such that the algorithm
applied to I does not terminate after finitely many steps. By Hilbert’s basis
theorem (Corollary 2.13), we may assume I to be maximal with this property.
Since all steps except (6) clearly terminate after finitely many steps, there
exists f = LCy(g) ∈M (with g ∈ Gy) such that step (6) does not terminate
for f . By the maximality of I, this implies f(g1, . . . , gn) ∈ I, so f ∈ J
by the definition of J . Since f ∈ K[x1, . . . , xn] \ {0}, Theorem 9.16 yields
a g′ ∈ Gx whose leading monomial divides LM(f). Since “≤” is a block
ordering, LM(g) = LMy(g) · LM(f), so LM(g′) divides LM(g), too. This
contradicts the fact that all g ∈ Gy are in normal form with respect to Gx,
establishing the termination of the algorithm.

We proceed with proving the correctness. The correctness of (10.2) follows
from (9.10), Proposition 9.17, and Theorem 9.16. To prove (10.1), consider
the decomposition

im(ϕ∗) =
(

im(ϕ∗) \ VY (f1)
)
∪

⋃

f∈M

(
im(ϕ∗) ∩ VY (f)

)
, (10.3)

which follows from the definition of f1 in step (4). We claim that

im(ϕ∗) \ VY (f1) = VY (J1) \ VY (f1). (10.4)

Indeed im(ϕ∗) \ VY (f1) ⊆ im(ϕ∗) \ VY (f1) = VY (J1) \ VY (f1), where we
used (10.2). Conversely, take P ∈ VY (J1) \ VY (f1). In the following we use
the notation from Proposition 9.18. By (9.12), we obtain
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∏

g∈Gy

LC (Φ(g)) =
∏

g∈Gy

ϕ (LCy(g)) = ϕ(cf1) ∈ ϕ (K[x1, . . . , xn] \ P ) =: U,

where c ∈ K \{0}. Moreover, the definition of Gy in step (3) implies Φ(Gy) =
Φ(G\Gx)\ {0}, so Proposition 9.18(c) tells us that Φ(Gy) is a Gröbner basis
of the kernel of ψ. So by Lemma 10.1, U−1A is free as a U−1R-module,
and there exists a basis containing 1. By Lemma 7.16, this implies that the
map Spec(U−1A) → Spec(U−1R) is surjective. By Theorem 6.5, this means
that for every p ∈ Spec(R) with U ∩ p = ∅, there exists Q ∈ Spec(A) with
R∩Q = p. Particularly, p := ϕ(P ) ∈ Spec(R) satisfies the condition U∩p = ∅,
since otherwise there would exist h ∈ P and u ∈ K[x1, . . . , xn] \ P with
ϕ(h) = ϕ(u), leading to the contradiction u = (u− h) + h ∈ ker(ϕ) +P = P ,
since ker(ϕ) = J1 ⊆ P . So we have Q ∈ Spec(A) with R ∩ Q = p = ϕ(P ),
which is equivalent to P = ϕ−1(Q). So P ∈ im(ϕ∗) \ VY (f1), and (10.4) is
proved.

By induction on the recursion depth, we can assume that for every
f ∈ M the recursive call of the algorithm computes the image of ϕ∗

f , where
ϕf : K[x1, . . . , xn]→ A/(ϕ(f))A is given by xi �→ ϕ(xi)+(ϕ(f))A. So in view
of (10.3) and (10.4), it suffices to show that

im(ϕ∗) ∩ VY (f) = im(ϕ∗
f ). (10.5)

Indeed, im(ϕ∗
f ) consists of all P ∈ Spec (K[x1, . . . , xn]) such that P = ϕ−1

f (q)
with q ∈ Spec (A/(ϕ(f))A). This condition is equivalent to P = ϕ−1(Q) with
Q ∈ Spec(A), ϕ(f) ∈ Q. This in turn is equivalent to P = ϕ−1(Q) and
f ∈ P , i.e., P ∈ im(ϕ∗) ∩ VY (f). This establishes (10.5), and the proof is
complete. ��

Exercise 10.4 contains an explicit example to which the algorithm is
applied.

Algorithm 10.3 also computes the image of a morphism f : X → Y of
affine varieties over an algebraically closed field K. In fact, Y (just like
X) is embedded in some Kn, so for computing the image one may assume
Y = Kn. The morphism f induces a homomorphism ϕ: K[x1, . . . , xn] →
K[X ] =: A. Applying Algorithm 10.3 to ϕ yields J1, . . . , Jl ⊆ K[x1, . . . , xn]
and f1, . . . , fl ∈ K[x1, . . . , xn] such that

im(ϕ∗) =
l⋃

i=1

(VSpec(K[x1,...,xn])(Ji) \ VSpec(K[x1,...,xn])(fi)
)
.

Using the algebra–geometry lexicon, it is easy to see that this implies

im(f) =
l⋃

i=1

(VKn(Ji) \ VKn(fi)) .
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10.2 Fiber Dimension and Constructible Sets

Corollary 10.2 is exactly what we need to draw consequences on the fibers
of morphisms. By putting it together with Lemmas 7.15 and 7.16, we obtain
the following result.

Theorem 10.5. Let ϕ: R→ S be a ring homomorphism such that

(1) R is a Noetherian integral domain,
(2) S is finitely generated as an R-algebra, and
(3) ϕ is injective.

Then there exists a nonzero a ∈ R such that for all P ∈ Spec(R) with a /∈ P ,
the fiber MP :=

{
Q ∈ Spec(S) | ϕ−1(Q) = P

}
is nonempty. If Q ∈ MP ,

then
ht (Q) = ht(Q)− ht(P ), (10.6)

where Q ∈ Spec
(
S[P ]

)
is the image of Q in the fiber ring S[P ] (i.e., Q =

U−1 (Q/I) with the notation used before Proposition 7.11). In particular, the
fiber dimension is

dim
(
S[P ]

)
= max {ht(Q) | Q ∈MP } − ht(P ). (10.7)

Proof. Corollary 10.2 yields a ∈ R\{0} such that for P ∈ Spec(R) with a /∈ P
the localization U−1S (with U := R\P ) is a free RP -module with 1 contained
in a basis. Moreover, S and U−1S are Noetherian by Corollary 2.12 and
Corollary 6.4, so Lemma 7.16 applies. By Lemma 7.16(b), there exists Q′ ∈
Spec(U−1S) with RP ∩Q′ = PP . It is routine to check that the preimage Q ∈
Spec(S) of Q′ satisfies ϕ−1(Q) = P . Now Lemma 7.16(a) and Lemma 7.15
yield (10.6), and (10.7) follows directly. ��

We now specialize Theorems 7.12 and 10.5 to the case of coordinate rings
of affine varieties.

Corollary 10.6. Let f : X → Y be a morphism of equidimensional affine
varieties over an algebraically closed field. For a point y ∈ Y , every irreducible
component Z ⊆ f−1({y}) of the fiber has dimension

dim(Z) ≥ dim(X)− dim(Y ). (10.8)

If f is dominant and Y is irreducible, there exists an open, dense subset
U ⊆ Y such that for every y ∈ U , the fiber f−1({y}) is nonempty and
equidimensional of dimension dim(X)− dim(Y ).

Proof. Let P ∈ Specmax (K[Y ]) be the maximal ideal corresponding to a
point y ∈ Y . The fiber over y is an affine variety, so by Corollary 8.24,
the inequality (10.8) follows if we can show that every maximal ideal in the
coordinate ring of the fiber has height at least d := dim(X) − dim(Y ). By
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�

Fig. 10.1. An image of a morphism

Proposition 7.11, this is the same as showing that every maximal ideal Q
in the fiber ring over P has height at least d. Such a Q corresponds to a
maximal ideal Q ∈ Specmax (K[X ]), so ht(Q) = dim(X) by Corollary 8.24.
Since ht(P ) = dim(Y ) (again by Corollary 8.24), the inequality (7.7) in
Theorem 7.12 guarantees ht (Q) ≥ d, so (10.8) is proved.

If f is dominant and Y is irreducible, the induced homomorphism ϕ:
K[Y ]→ K[X ] is injective and K[Y ] is an integral domain, so Theorem 10.5
is applicable. This yields a ∈ K[Y ] \ {0}, so U := {y ∈ Y | a(y) �= 0} is open
and nonempty, and therefore dense because of the irreducibility of Y . If y lies
in U , then a /∈ P , so Theorem 10.5 tells us that f−1({y}) is nonempty and
has dimension d. By (10.8), it must be equidimensional. ��

Corollary 10.6 has a consequence that is sometimes referred to as the
“upper semicontinuity of fiber dimension.” For more, see Exercise 10.5.

An important consequence of Theorem 10.5 is Chevalley’s theorem on
images of morphisms. A typical example for the nature of an image of a
morphism is Example 7.14(2): The image consists of all (α, β) ∈ K2 with
β �= 0 or α = β = 0, as shown in Fig. 10.1.

So the image is neither closed nor open. However, according to the
following definition, it is a constructible subset of K2.

Definition 10.7. Let X be a topological space. A subset L ⊆ X is called
locally closed if L is the intersection of an open and a closed subset. A
subset C ⊆ X is called constructible if C is the union of finitely many
locally closed subsets.

In Kn with the Zariski topology, a constructible set can be described by
giving finitely many polynomial equations and using the logical operators
“and” and “not.” It can be shown that the constructible sets are precisely
the sets that have such a description.

Corollary 10.8 (Chevalley’s theorem on images of morphisms).
Let ϕ: R → S be a homomorphism of Noetherian rings making S into
a finitely generated R-algebra. Then the image im(ϕ∗) of the induced map
ϕ∗: Spec(S)→ Spec(R) is a constructible subset of Spec(R).
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Proof. The proof technique we use here is sometimes called Noetherian induc-
tion. This works as follows. We assume that the assertion is false. Since S is
Noetherian, there exists an ideal I ⊆ S that is maximal with the property
that

Y (I) := ϕ∗ (VSpec(S)(I)
) ⊆ Spec(R)

is not constructible. Replacing S by S/I, we may assume that Y (J) is
constructible for every nonzero ideal J ⊆ S.

Let Q1, . . . , Qn be the minimal prime ideals of S. Since im(ϕ∗) =⋃n
i=1 Y (Qi), there exists i such that Y (Qi) is not constructible. It follows

that Qi = {0}, so S is an integral domain. With P := ker(ϕ), the map ϕ∗ fac-
tors through Spec(R/P ). Since the natural map Spec(R/P )→ Spec(R) takes
constructible subsets of Spec(R/P ) to constructible subsets of Spec(R), the
map Spec(S)→ Spec(R/P ) has a nonconstructible image. So we may assume
that ϕ is injective and therefore R is an integral domain. Now Theorem 10.5
yields a nonzero a ∈ R with Spec(R) \ VSpec(R)(a) ⊆ im(ϕ∗), so

ϕ∗ (
Spec(S) \ VSpec(S)(ϕ(a))

)
= Spec(R) \ VSpec(R)(a)

is open in Spec(R). But Y (ϕ(a)) is constructible, and it follows that im(ϕ∗)
is constructible, too. ��

Specializing Corollary 10.8 to the case of coordinate rings of affine vari-
eties, we obtain that the image of a morphism f : X → Y of affine varieties
over an algebraically closed field is constructible. The example of the natural
embedding ϕ: Z → Q shows that the finite generation hypothesis cannot be
dropped from Corollary 10.8: The image of ϕ∗ consists only of the zero ideal,
and it is easily checked that this is not a constructible subset of Spec(Z). An
extended version of Chevalley’s theorem says that images of constructible sets
under morphisms are always constructible (see Exercise 10.9). Corollary 10.8
and Exercise 10.7 imply that the image of a morphism has a subset that is
open and dense in the image closure. This “thickness” result is much stronger
and more useful than it appears at first glance.

10.3 Application: Invariant Theory

In this section we consider the theory of algebraic group actions and invariant
theory as an example to which our result on fiber dimension (Corollary 10.6)
is applied several times. This yields some fundamental information on the
dimensions of orbits, fixed groups, and the invariant ring.

In the following, let K be an algebraically closed field. A linear algebraic
group over K is an affine K-variety G, together with morphisms G ×G →
G, (g1, g2) �→ g1 · g2, and G→ G, g �→ g−1, making G into a group. Typical
examples are the classical groups. A G-variety is an affine K-variety X
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together with a morphism G ×X → X, (g, x) �→ g(x) defining an action of
G on X . Typical examples are the natural module Kn of a classical group,
symmetric powers of the natural module, and direct sums of such modules.
For the sake of simplicity, we assume that G and X are both irreducible
varieties. (The “opposite” case, in which G is a finite group, was considered
in Exercise 8.1.) Readers who are interested in learning more about invariant
theory will find a vast amount of literature. Good sources with which to begin
are Springer [48], Sturmfels [50], and Popov and Vinberg [44]. Here we set
ourselves the goal to find out as much as possible about the dimensions of
G-orbits, point stabilizers, and of the ring of invariants. We proceed in several
steps.

First, fix a point x ∈ X and consider the morphism

fx: G→ X, g �→ g(x),

whose image is the orbit G(x). Since G is irreducible, the Zariski closure G(x)
of the orbit is also irreducible. For x′ = g0(x) ∈ G(x), the fiber is

f−1
x ({x′}) = {g ∈ G | g(x) = g0(x)} = g0 ·Gx,

where Gx stands for the point stabilizer. Since multiplication by g0 is a
topological automorphism of G, we have dim

(
f−1
x ({x′})) = dim(Gx) for all

x′ ∈ G(x). By Corollary 10.6, there exist points x′ ∈ fx(G) for which (10.8)
is an equality, so we obtain

dim(Gx) = dim(G)− dim
(
G(x)

)
. (10.9)

This is a fundamental connection between the orbit dimension and the sta-
bilizer dimension. Notice that the orbit G(x) often fails to be closed. An
example of this phenomenon is the natural action of the multiplicative group
(K \ {0}, ·) on K, which has the nonclosed orbit K \ {0}.

From what we have seen up to now, the function X → N0, x �→ dim(Gx)
could behave in a totally erratic way. To study this function, we consider the
morphism

h: G×X → X ×X, (g, x) �→ (x, g(x)) .

The image Γ := h(G × X) is sometimes called the graph of the action.
G×X is irreducible by Exercise 3.9, so the same holds for the image closure
Γ . For (x, g(x)) ∈ Γ , the fiber is

h−1 ({(x, g(x))}) = (g ·Gx)× {x} ∼= Gx.

Applying Corollary 10.6 and Theorem 5.15 yields

dim(Gx) ≥ dim(G) + dim(X)− dim
(
Γ

)
=: d0
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for all x ∈ X , and there exists an open, dense subset U ′ ⊆ Γ such that for
(x, x′) ∈ U ′ we have equality. If π: X ×X → X is the first projection, then

U ′ ⊆ π−1
(
π(U ′)

)
,

so
X = π(Γ ) ⊆ π (

U ′) ⊆ π (U ′) ⊆ X.
By Exercises 10.7 and 10.9, there exists a subset U ⊆ π(U ′) that is open and
dense in π (U ′) = X . By the above, all x ∈ U satisfy

dim(Gx) = d0 = min {dim (Gx′) | x′ ∈ X} . (10.10)

So the minimal value d0 for dim(Gx) is attained on an open, dense subset; in
other words, points with a stabilizer of greater dimension are exceptional. It
also follows that if we have found a dense subset of X where dim(Gx) takes
a constant value, then this value is d0.

We now consider the ring of invariants, which is the main object of study
in invariant theory. We have a G-action on the coordinate ring K[X ] given
by g(f) = f ◦ g−1 for g ∈ G and f ∈ K[X ]. The ring of invariants is

K[X ]G := {f ∈ K[X ] | g(f) = f for all g ∈ G} .

So a regular function is an invariant if and only if it is constant on every
G-orbit. Let f1, . . . , fn ∈ K[X ]G be invariants. They generate a subalgebra
A := K[f1, . . . , fn] ⊆ K[X ]. By Theorem 1.25, A is the coordinate ring of an
irreducible affine variety Y , and the inclusion A ⊆ K[X ] induces a dominant
morphism F : X → Y . (Explicitly, Y ⊆ Kn is given by the ideal of relations of
the fi, and F is given by x �→ (f1(x), . . . , fn(x)).) For y = F (x) with x ∈ X ,
the invariance and continuity of the fi implies G(x) ⊆ F−1({y}), so

dim
(
F−1({y})) ≥ dim

(
G(x)

)
= dim(G)− dim(Gx),

where we used (10.9). It is easy to see that the dominance of F implies that
F (U) = Y . By Exercises 10.7 and 10.9, F (U) has a subset O that is open and
dense in F (U) = Y . Applying Corollary 10.6 to F , we can shrink O further
such that for all y ∈ O, the dimension of F−1({y}) equals dim(X)− dim(Y ).
So choose y ∈ O and x ∈ U with F (x) = y. Then

dim(X)− dim(Y ) = dim
(
F−1({y})) ≥ dim(G) − d0

(with d0 the minimal, and typical, dimension of a point stabilizer Gx), so

dim(Y ) ≤ dim(X)− dim(G) + d0 := d.
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Fig. 10.2. Orbits of an action of the multiplicative group

Therefore trdeg(A) ≤ d by Theorem 5.9. Since this holds for any choice of
f1, . . . , fn ∈ K[X ]G, it follows that trdeg

(
K[X ]G

) ≤ d. So applying Theo-
rem 5.9 again (or Exercise 5.3 in the case thatK[X ]G is not finitely generated)
yields the nice inequality

dim
(
K[X ]G

) ≤ dim(X)− dim(G) + dim(Gx), (10.11)

with x ∈ X a point where dim(Gx) becomes minimal.
It is an interesting question when (10.11) is an equality. This is the case

in many examples. However, counterexamples are also easy to find. For
instance, if the multiplicative group (K \ {0}, ·) acts on X = K2 by normal
multiplication, the zero vector lies in all orbit closures, as shown in Fig. 10.2.

It follows that all invariants are constant, and we get a strict inequality

dim
(
K[X ]G

)
= 0 < 2− 1 + 0 = dim(X)− dim(G) + dim(Gx).

This example can be interpreted by saying that the invariant f := x1/x2

is missing, since it is not a regular function. But if we exclude K × {0}
from X , f becomes a regular function and (10.11) becomes an equality. By
a famous theorem of Rosenlicht (see Popov and Vinberg [44, Theorem 2.3]
or Springer [49, Satz 2.2]), this behavior is universal: One can always restrict
X in such a way that (10.11) becomes an equality, and even such that every
fiber of F is precisely one G-orbit (provided one chooses enough invariants
for forming F ). In particular, for the field of invariants K(X)G, we always
have the equality

trdeg
(
K(X)G

)
= dim(X)− dim(G) + dim(Gx)

with x ∈ X a point with dim(Gx) minimal. Notice that K(X)G is not always
the field of fractions ofK[X ]G; but if it is, the above equation implies equality
in (10.11). For example, ifX = Kn is affine n-space and there exists no surjec-
tive homomorphism fromG to the multiplicative group GL1(K), then it is not
hard to show that K(X)G = Quot

(
K[X ]G

)
, so (10.11) is an equality. Typi-

cal examples of groups G that have no surjective homomorphism to GL1(K)
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are G = SLn(K) and the additive group G = Ga := (K,+). Exercise 10.10
studies two examples in which (10.11) is an equality.

Exercises for Chapter 10

10.1 (Hypotheses of the generic freeness lemma). Give an example
showing that the hypothesis on finite generation of S as an R-algebra cannot
be dropped from the generic freeness lemma (Corollary 10.2).

*10.2 (Generic freeness for modules). Prove the following version of
the generic freeness lemma: If R is an integral domain, S a finitely gener-
ated R-algebra, and M a Noetherian S-module, then there exists a ∈ R \ {0}
such that for every multiplicative subset U ⊆ R with a ∈ U , the localization
U−1M is free as a U−1R-module.

10.3 (Subalgebras of finitely generated algebras). We know that sub-
algebras of finitely generated algebras need not be finitely generated (see
Exercise 2.1). However, in this exercise it is shown that under very general
hypotheses there exists a localization that is finitely generated.

Let R be a ring, A an R-domain (= an integral domain that is a finitely
generated R-algebra), and B ⊆ A a subalgebra. Show that there exists a ∈
B \ {0} such that Ba is an R-domain.
Hint: You may use the fact that subextensions of finitely generated field
extensions are also finitely generated (see Bourbaki [7, Chapter IV, § 15,
Corollary 3]). (Solution on page 225)

10.4 (Computing the image of a morphism). Let K be an algebraical-
ly closed field of characteristic not 2. Let X := {(ξ1, ξ2, ξ3) ∈ K3 | ξ21 + ξ22 −
ξ23 = 0} and consider the morphism

f : X → K2, (ξ1, ξ2, ξ3) �→ (ξ1, ξ2 + ξ3)

(see Example 7.14(2)). Use Algorithm 10.3 to determine the image of f .

10.5 (Upper semicontinuity of fiber dimension). Let f : X → Y be
a morphism of affine varieties over an algebraically closed field. For a
nonnegative integer d, show that the set

Xd :=
{
x ∈ X | f−1({f(x)}) has an irreducible component Z

with x ∈ Z and dim(Z) ≥ d}

is closed in X .
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Remark: In the jargon of the trade, this result is often referred to as
the “upper semicontinuity of fiber dimension.” Intuitively speaking (and
oversimplifying), this means that the fiber dimension goes up only at excep-
tional points. Unfortunately, the definition of Xd is a bit complicated. In
Exercise 10.6, two tempting, but false simplifications are explored.

10.6 (Two false statements on fiber dimension). Find examples that
show that the following two statements (which are nicer than the result of
Exercise 10.5) are false:

(a) If f : X → Y is a morphism of affine varieties over an algebraically closed
field, then for every nonnegative integer d the set

Yd :=
{
y ∈ Y | dim

(
f−1({y})) ≥ d}

is closed in Y .
(b) If f : X → Y is a morphism of affine varieties over an algebraically closed

field, then for every nonnegative integer d the set

Xd :=
{
x ∈ X | dim

(
f−1({f(x)})) ≥ d}

is closed in X .

Is (b) true if X is assumed to be irreducible?

*10.7 (Constructible subsets). Let X be a Noetherian topological space
and let Y ⊆ X be a constructible subset. Show that there exists a subset
U ⊆ Y that is open and dense in the closure Y .
Hint: You can proceed as follows. Let Y be the union of locally closed sets
Li. Show that each irreducible component Zj of Y is contained in at least
one Li. Exclude all components other than Zj from the open set belonging to
Li. If the resulting open set is U ′

j , show that U ′
j ∩Zj ⊆ Y and U ′

j ∩ Zj = Zj .

Then form U := Y ∩
(⋃

j U
′
j

)
, and show that this is a subset of Y that is

open and dense in Y . (Solution on page 225)

10.8 (Open and dense subsets of image closures). Let f : X → Y be
a map of topological spaces. From which of the following hypotheses does it
follow that the image im(f) has a subset U that is open and dense in the
image closure im(f)?

(a) X and Y are affine varieties (over a field that need not be algebraically
closed), and f is a morphism.

(b) X and Y are affine varieties over an algebraically closed field, and f is
continuous (with respect to the Zariski topology).

(c) X = Y = R with the usual Euclidean topology, and f is continuous.
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10.9 (Images of constructible sets). Let ϕ: R→ S be a homomorphism
of Noetherian rings making S into a finitely generated R-algebra, and let
X ⊆ Spec(S) be a constructible subset. Show that ϕ∗(X) ⊆ Spec(R) is
constructible, too.
Hint: Reduce to the case that X := VSpec(S)(I) \ VSpec(S)(a) with I ⊆ S an
ideal and a ∈ S. (Solution on page 226)

10.10 (Some invariant theory). Consider the following examples of a lin-
ear algebraic group G over an algebraically closed field K, together with a
G-variety X .

(a) G = GLn(K) and X = Kn×n (the space of n × n matrices, which as a
variety is just Kn2

) with G acting by g(A) := g · A · g−1.
(b) G = SLn(K) and X = Kn×m (the space of n × m -matrices) with G

acting by g(A) := g ·A (matrix product).

For each example, determine the minimal dimension of a point stabilizer Gx
and an open, dense subset of X where this dimension is attained. Try to find
enough invariants f1, . . . , fm ∈ K[X ]G to show that (10.11) is an equality.



Chapter 11

Hilbert Series and Dimension

An affine algebra A of positive Krull dimension is always infinite-dimensional
as a vector space (see Theorem 5.11). The goal of introducing the Hilbert
series is nevertheless to measure the size in some way. The trick is to break
up A into finite-dimensional pieces, given by the degrees. The Hilbert series
then is the power series whose coefficients are the dimensions of the pieces. So
instead of measuring the dimension by a number, we measure its growth as
the degrees rise, and encode that information into a power series. In the first
section of this chapter, we prove the surprising fact that the Hilbert series
can always be written as a rational function, and almost all its coefficients
are given by a polynomial, the Hilbert polynomial. We also learn how the
Hilbert series can be computed algorithmically. In fact, as in the last chapter,
algorithms and theory go hand in hand here. In the second section we show
that the degree of the Hilbert polynomial is equal to the Krull dimension
of A. Apart from being an interesting result in itself, this leads to a new
and better algorithm for computing the dimension. The result also plays an
important role in Chapter 12.

Throughout this chapter, K[x1, . . . , xn] will denote a polynomial ring over
a field.

11.1 The Hilbert–Serre Theorem

The following definition sets the theme of this chapter.

Definition 11.1. For a monomial t = xe1
1 · · ·xen

n , the degree of t is defined
as deg(t) := e1 + · · ·+en. For a nonzero polynomial f ∈ K[x1, . . . , xn] we set

deg(f) := max {deg(t) | t ∈Mon(f)} ,

and deg(0) := −1.

G. Kemper, A Course in Commutative Algebra, Graduate Texts
in Mathematics 256, DOI 10.1007/978-3-642-03545-6 12,
c© Springer-Verlag Berlin Heidelberg 2011
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For I ⊆ K[x1, . . . , xn] an ideal, let A := K[x1, . . . , xn]/I, and for d a
nonnegative integer, set

A≤d := {f + I | f ∈ K[x1, . . . , xn], deg(f) ≤ d} .

Observe that A≤d is a finite-dimensional K-vector space. The function hI:
N0 → N0 defined by

hI(d) := dimK(A≤d)

is called the Hilbert function of I. The formal power series

HI(t) :=
∞∑

d=0

hI(d)td ∈ Z[[t]]

is called the Hilbert series of I.

Example 11.2. (1) Let I = (x1, . . . , xn). Then hI(d) = 1 for all d, so

HI(t) =
∞∑

d=0

td =
1

1− t .

(2) Let I = (x1 − x2
2) ⊂ K[x1, x2] and A = K[x1, x2]/I. For d ∈ N0, the

residue classes of 1, x1, . . . , x
d
1 , x2, x1x2, . . . , x

d−1
1 x2 form a basis of A≤d,

so hI(d) = 2d+ 1. We obtain

HI(t) =
1 + t

(1− t)2 .

�

Remark 11.3. (a) In the definition of the Hilbert series, we need not worry
about convergence issues, since HI(t) is defined as an element of the for-
mal power series ring over Z. This also applies to the representations of
the Hilbert series as “rational functions” in Example 11.2: The polyno-
mial 1 − t is an invertible element of Z[[t]], and its inverse is

∑∞
d=0 t

d.
Of course, these representations could also be interpreted as identities of
real or complex functions that are defined for |t| < 1.

(b) It is tempting to define the Hilbert function and Hilbert series of an affine
algebra A as follows. By choosing generators of A, we obtain a presenta-
tion of A as A ∼= K[x1, . . . , xn]/I. Then set hA(d) := hI(d) and HA(t) :=
HI(t). However, these objects will depend on the choice of the generators.
For instance, choosing the (rather unusual) generators x2 and x for the
polynomial ring A = K[x] yields the Hilbert function 2d + 1 by Exam-
ple 11.2(2). But choosing just x yields d+1 by Remark 11.5 below. So the
Hilbert function and Hilbert series are not invariants of an affine algebra.

(c) Our definition of the A≤d provides an ascending filtration of A, in the
sense that A≤d ⊆ A≤d+1 for all d and A =

⋃
d∈N0

A≤d. In the literature,
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Hilbert series are often defined for graded vector spaces, i.e., vector spaces
V that have a direct sum decomposition

V =
⊕

d∈N0

Vd

with Vd finite-dimensional K-vector spaces. A special case of a graded
vector space is a graded algebra, where the grading provides a structure
of a graded ring. In this setting, the graded Hilbert series is defined as

Hgrad
V (t) :=

∞∑

d=0

dimK(Vd)td ∈ Z[[t]].

But this is strongly related to our definition of the Hilbert series. In
fact, a grading can be turned into an ascending filtration by setting
V≤d :=

⊕d
i=0 Vi. Then Hgrad

V (t) and HV (t) :=
∑∞

d=0 dimK(V≤d)td are
obviously connected by

Hgrad
V (t) = (1− t)HV (t).

Exercise 12.3 studies the Hilbert series of a graded module over a graded
ring. �

We now calculate the Hilbert series of a principal ideal. As we will see
later, this has much more importance than just providing a further example.

Proposition 11.4 (The Hilbert series of a principal ideal). If I = (f) ⊆
K[x1, . . . , xn] is a principal ideal, then

HI(t) =
1− tdeg(f)

(1− t)n+1
if f �= 0

and
HI(t) =

1
(1− t)n+1

if f = 0.

Proof. We start with the case f = 0. Since the Hilbert function and Hilbert
series of the zero ideal depend on the number n of indeterminates, we will
write them in this proof as hn(d) and Hn(t), respectively. We use induction
on n, starting with n = 0. We have h0(d) = 1 for all d, so H0(t) = 1

1−t . For
n > 0, we use the direct sum decomposition

K[x1, . . . , xn]≤d =
⊕

i,j∈N0,
i+j=d

K[x1, . . . , xn−1]≤i · xj
n. (11.1)

With the induction hypothesis, this implies

Hn(t) = Hn−1(t) ·
( ∞∑

j=0

tj
)

= Hn−1(t) · 1
1− t =

1
(1− t)n+1

.
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Now assume that f �= 0. For every d ∈ N0 we have

(K[x1, . . . , xn]/(f))≤d
∼= K[x1, . . . , xn]≤d/

(
f ·K[x1, . . . , xn]≤d−deg(f)

)
.

Since multiplication by f is injective on K[x1, . . . , xn], we obtain

HI(t) = (1− tdeg(f)) ·H{0}(t) =
1− tdeg(f)

(1− t)n+1
.

	

Remark 11.5. We can also determine the Hilbert function h{0}(d) of the
zero ideal. Since h{0}(d) equals the number of monomials of degree at most d,
it can be determined combinatorially. Taking a different route, we expand the
Hilbert series as a binomial series. This yields

H{0}(t) = (1 − t)−n−1 =
∞∑

d=0

(−n− 1
d

)

(−t)d,

so

h{0}(d) = (−1)d

(−n− 1
d

)

=
(
d+ n

d

)

=
(
d+ n

n

)

.

In particular, we see that h{0}(d) is given by a polynomial of degree n in d.
This will be generalized in Corollary 11.10. �

Our next goal is to link the topic of Hilbert series to the theory of Gröbner
bases. For this, we need the concept of a total degree ordering. By defini-
tion, this is a monomial ordering on K[x1, . . . , xn] such that two monomials
t, t′ with t ≤ t′ satisfy deg(t) ≤ deg(t′). The most important example of a
total degree ordering is the grevlex ordering. A counterexample is the lexico-
graphic ordering (if n > 1). Recall that if I ⊆ K[x1, . . . , xn] is an ideal, we
write L(I) for the leading ideal, which depends on the choice of the monomial
ordering.

Theorem 11.6 (Hilbert series and leading ideal). Suppose that the polyno-
mial ring K[x1, . . . , xn] is equipped with a total degree ordering, and let
I ⊆ K[x1, . . . , xn] be an ideal. Then

HI(t) = HL(I)(t).

Proof. Set A := K[x1, . . . , xn]/I. By Theorem 9.9, the normal form map
NFG, given by a Gröbner basis G of I, induces an injective linear map
ϕ: A → K[x1, . . . , xn]. For every d ∈ N0 we have a restriction ϕd: A≤d →
K[x1, . . . , xn]. Let Vd ⊆ K[x1, . . . , xn] be the subspace spanned by all mono-
mials t with deg(t) ≤ d and t /∈ L(I). Since all f ∈ Vd are in normal form
with respect to G, we get f = NFG(f) = ϕd(f + I), so Vd ⊆ im(ϕd). On the
other hand, Definition 9.6(b) and the hypothesis on the monomial ordering
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imply im(ϕd) ⊆ Vd. We conclude that

hI(d) = dim(Vd).

Observe that the definition of Vd depends only on L(I). So two ideals with
the same leading ideal have the same Hilbert function and Hilbert series.
Since L (L(I)) = L(I), the result follows. 	


Exercise 11.2 shows that the hypothesis on the monomial ordering cannot
be dropped from Theorem 11.6.

A polynomial f ∈ K[x1, . . . , xn] is called homogeneous if all monomials
of f have the same degree. So every polynomial can be written uniquely as
a sum of homogeneous polynomials of pairwise distinct degrees, its homo-
geneous parts. An ideal I ⊆ K[x1, . . . , xn] is called homogeneous if it
is generated by homogeneous polynomials. For example, the leading ideal
L(I) of any ideal I is homogeneous. For more on homogeneous ideals, see
Exercise 11.3.

Lemma 11.7 (Hilbert series of the sum and intersection of ideals). Let I, J
⊆ K[x1, . . . , xn] be homogeneous ideals. Then

HI+J(t) +HI∩J(t) = HI(t) +HJ(t).

Proof. Let d be a nonnegative integer. For an ideal L ⊆ K[x1, . . . , xn] we
write L≤d := {f ∈ L | deg(f) ≤ d}. It follows from the hypothesis that I + J
is generated by homogeneous polynomials g1, . . . , gm ∈ I ∪ J , so every f ∈
(I + J)≤d can be written as f =

∑m
i=1 higi, with hi ∈ K[x1, . . . , xn]. This

equation still holds if from each hi we delete all homogeneous parts of degree
> d− deg(gi). This shows that the map I≤d → (I + J)≤d/J≤d, f �→ f + J≤d

is surjective. Its kernel is (I ∩ J)≤d, so

dimK(I≤d)− dimK ((I ∩ J)≤d) = dimK ((I + J)≤d)− dimK(J≤d).

Passing to the dimensions of the quotient spaces inK[x1, . . . , xn]≤d and form-
ing power series yields the result. 	


The reduction step given by Theorem 11.6 is crucial in the following
algorithm for computing the Hilbert series of an ideal.

Algorithm 11.8 (Hilbert series of a polynomial ideal).

Input: An ideal I ⊆ K[x1, . . . , xn], given by generators.
Output: The Hilbert series HI(t).

(1) Choose a total degree ordering “≤” on K[x1, . . . , xn] and compute a
Gröbner basis G of I with respect to “≤”. Let m1, . . . ,mr be the leading
monomials of the nonzero elements of G.

(2) If r = 0, return HI(t) := 1
(1−t)n+1 .
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(3) Set

J := (m2, . . . ,mr) and J̃ := (lcm(m1,m2), . . . , lcm(m1,mr)) .

(4) Compute the Hilbert series HJ(t) and HJ̃(t) by a recursive call of the
algorithm. (Notice that J and J̃ are generated by monomials, so there is
nothing to do when performing step (1) on J and J̃ .)

(5) Return

HI(t) :=
1− tdeg(m1)

(1− t)n+1
+HJ(t)−HJ̃ (t).

Notice that Algorithm 11.8 requires just one Gröbner basis computation,
and we can use the grevlex ordering, which tends to make computations
fastest.

Theorem 11.9. Algorithm 11.8 terminates after finitely many steps and
calculates HI(t) correctly.

Proof. With each recursive call of the algorithm, the number r decreases
strictly. This guarantees termination.

Let Ĩ := (m1, . . . ,mr) = L(I). By Theorem 11.6, we need to show that
steps (2) through (5) calculate HĨ(t) correctly. We use induction on r.

For r = 0, the Hilbert series in step (2) is correct by Proposition 11.4.
Assume r > 0. By induction, the Hilbert series of J and J̃ are calculated
correctly. We claim that

J̃ = J ∩ (m1). (11.2)

Clearly every least common multiple of m1 and an mi (i ≥ 2) lies in J and
in (m1), so J̃ ⊆ J ∩ (m1). Conversely, take f ∈ J ∩ (m1). Then f = g1m1

and f =
∑r

i=2 gimi with g1, . . . , gr ∈ K[x1, . . . , xn]. For every monomial
t ∈ Mon(g1) there exists i ≥ 2 such that tm1 ∈ Mon(gimi), somi divides tm1.
This implies that lcm(m1,mi) divides tm1, so tm1 ∈ J̃ . We conclude that
f ∈ J̃ , so (11.2) is established.

Since Ĩ = J + (m1), Lemma 11.7 and Proposition 11.4 yield

HĨ(t) = H(m1)(t) +HJ (t)−HJ̃(t) =
1− tdeg(m1)

(1− t)n+1
+HJ (t)−HJ̃(t),

completing the proof. 	

A consequence of the correctness of Algorithm 11.8 is that the Hilbert

series HI(t) can be written as a rational function with (1− t)m+1 as denom-
inator. Going one step further, we can extract information about the Hilbert
function from this. The results are stated in the following corollary.
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Corollary 11.10 (Hilbert–Serre theorem). Let I ⊆ K[x1, . . . , xn] be an
ideal. Then the Hilbert series has the form

HI(t) =
a0 + a1t+ · · ·+ akt

k

(1− t)n+1
(11.3)

with k ∈ N0 and ai ∈ Z. Moreover, the Hilbert function hI(d) is a polynomial
for large d. More precisely, the polynomial

pI :=
k∑

i=0

ai

(
x+ n− i

n

)

∈ Q[x] (11.4)

satisfies
hI(d) = pI(d) (11.5)

for all sufficiently large integers d.

Proof. Induction on the recursion depth in Algorithm 11.8 immediately
yields (11.3). By Remark 11.5, we can write 1

(1−t)n+1 =
∑∞

d=0

(
d+n

n

)
td, so

HI(t) =
k∑

i=0

∞∑

d=i

ai

(
d+ n− i

n

)

td =
∞∑

d=0

min{d,k}∑

i=0

ai

(
d+ n− i

n

)

td, (11.6)

and we see that the definition of pI according to (11.4) yields (11.5) for d ≥ k.
	


It is not hard to determine the largest integer d for which (11.5) fails. This
is done in Exercise 11.5. Corollary 11.10 prompts the following definition.

Definition 11.11. The polynomial pI ∈ Q[x] from Corollary 11.10 is called
the Hilbert polynomial of I.

The Hilbert polynomial can be calculated using Algorithm 11.8 and then
applying (11.4). Having assigned a polynomial pI to an ideal I, it is natural
to ask whether such numbers as the degree and the leading coefficient of pI

mean anything interesting for I. These questions will be addressed in the
following section.

11.2 Hilbert Polynomials and Dimension

We have seen in Remark 11.3(b) that the Hilbert series and the Hilbert
polynomial are not invariants of an affine algebra. However, the following
lemma tells us that the degree of the Hilbert polynomial is an invariant.
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Lemma 11.12 (The degree of the Hilbert polynomial is an invariant). Let
I ⊆ K[x1, . . . , xn] and J ⊆ K[y1, . . . , ym] be ideals in polynomial rings such
that the K-algebras A := K[x1, . . . , xn]/I and B := K[y1, . . . , ym]/J are
isomorphic. Then

deg(pI) = deg(pJ ).

Proof. We have an isomorphism ϕ: A → B of K-algebras, so there exist
polynomials g1, . . . , gm ∈ K[x1, . . . , xn] such that ϕ(gi + I) = yi + J . Set
k := max{deg(g1), . . . ,deg(gm)}. Then for every d ∈ N0, B≤d is contained in
ϕ(A≤kd), so

hJ (d) ≤ dimK (ϕ(A≤kd)) = hI(kd).

This implies that pJ cannot have a degree greater than pI . By symmetry, the
degrees are equal. 	


So if A is an affine algebra, we may choose generators a1, . . . , an and
consider the kernel I of the map K[x1, . . . , xn] → A, xi �→ ai. Then A ∼=
K[x1, . . . , xn]/I, so by Lemma 11.12, deg(pI) is independent of the choice
of the generators. We will use this by choosing a very convenient generating
set, coming from Noether normalization, to prove that this degree is actually
equal to the Krull dimension of A.

Theorem 11.13 (Degree of the Hilbert polynomial and Krull dimension).
Let A ∼= K[x1, . . . , xn]/I be an affine algebra. Then

deg(pI) = dim(A).

Proof. The result is correct (by our various conventions) if A is the zero
ring, so we may assume that A �= {0}. By Noether normalization (Theo-
rem 8.19) and by Theorem 8.4, there exist algebraically independent elements
c1, . . . , cm ∈ A with m = dim(A), and further elements b1, . . . , br ∈ A such
that A =

∑r
j=1C · bj, where C := K[c1, . . . , cm] ⊆ A. We may assume

that b1 = 1. Let y1, . . . , ym and z1, . . . , zr be indeterminates and let J ⊂
K[y1, . . . , ym, z1, . . . , zr] be the kernel of the mapK[y1, . . . , ym, z1, . . . , zr]→A,
yi �→ ci, zj �→ bj . By Lemma 11.12, deg(pI) = deg(pJ), so we need to show
that deg(pJ) = m. Write

B≤d := {f + J | f ∈ K[y1, . . . , ym, z1, . . . , zr], deg(f) ≤ d}

and
C≤d := {f + J | f ∈ K[y1, . . . , ym], deg(f) ≤ d} .

Since C≤d ⊆ B≤d for every d ∈ N0, we obtain

hJ (d) ≥ dimK(C≤d) =
(
d+m

m

)

,

where we used the algebraic independence of the ci and Remark 11.5. This
implies deg(pJ) ≥ m.
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To prove the reverse inequality, observe that for 0 ≤ i ≤ j ≤ r, the
product bibj can be written as bibj =

∑r
k=1 ai,j,kbk with ai,j,k ∈ C. There

exists a positive integer e such that ai,j,k ∈ C≤e for all i, j, k. So bibj ∈∑r
k=1 C≤e · bk, and by induction we see that the product of s of the bi lies in∑r
k=1 C≤(s−1)e · bk (for s > 0). It follows that

B≤d ⊆ C≤d · b1 +
d∑

s=1

r∑

k=1

C≤d−s · C≤(s−1)e · bk ⊆
r∑

k=1

C≤ed · bk =: Vd

for all d ≥ 0. We obtain that

hJ(d) ≤ dimK(Vd) ≤ r · dimK(C≤ed) = r ·
(
ed+m

m

)

,

where we used Remark 11.5 again. As a polynomial in d, this upper bound
has degree m, so we conclude deg(pJ ) ≤ m. This completes the proof. 	


Theorem 11.13 provides a new interpretation of the concept of the dimen-
sion of an affine variety X . Indeed, if X is given by an ideal I, then hI(d) is
a measure for the quantity of regular functions on X of degree at most d. So
the dimension of X may be seen as the rate at which the quantity of regular
functions grows with the degree.

Since the Hilbert polynomial can be calculated with just one Gröbner
basis computation, we also have an improved algorithm for computing the
dimension of an affine algebra. Recall that the first method for this, which
we discussed in Section 9.2 on page 128, requires several Gröbner basis
computations. The following corollary will enable us to make a further
optimization.

Corollary 11.14 (Computing dimension via the leading ideal). Let I ⊆
K[x1, . . . , xn] be an ideal, and let L(I) be its leading ideal with respect to
a total degree ordering. Then

dim (K[x1, . . . , xn]/I) = dim (K[x1, . . . , xn]/L(I)) .

Proof. This follows from Theorems 11.6 and 11.13. 	

Corollary 11.14 is actually true for arbitrary monomial orderings. This

is shown in Exercise 11.7 by generalizing the results from this chapter to
the case of weighted degrees. Another way of proving Corollary 11.14 for
arbitrary monomial orderings is by working with a so-called flat deformation.
This method is more difficult but conceptually very interesting, so let us say a
few words about it. Geometrically speaking, one constructs an affine variety
Z together with a morphism f : Z → K1 such that the fiber over 1 ∈ K1

is X := V(I), the variety of the given ideal, and the fiber over 0 ∈ K1 is
Y := V (L(I)). The variety Z together with f can be considered as a family
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of varieties, given by the fibers of f , and since X and Y occur as fibers, we can
view the passage from X to Y as a deformation. The important point is that
Z is constructed in such a way that the homomorphism K[t]→ K[Z] induced
by f makes K[Z] into a free K[t]-module. So we could speak of a free family
and a free deformation. Since freeness implies flatness, we may follow the
traditional way of speaking of flatness, enabling us to utter very nice sentences
such as: “The passage from an ideal to its leading ideal constitutes a flat
deformation.” This flatness, or freeness, property means that an ideal and its
leading ideal are strongly related, and may be seen as one of the sources of the
usefulness of Gröbner bases. But why does it imply equality of the dimensions
of X and Y ? This follows from applying the tools that we developed in
Section 7.2, in particular Lemmas 7.15 and 7.16, but more considerations are
needed. Let us give a hint how Z is constructed. One uses a weighted degree as
given by Exercise 9.2(c), and then forms an ideal Ĩ ⊆ K[t, x1, . . . , xn] from a
Gröbner basis of I by homogenization. The freeness then follows by applying
the constructive version of the generic freeness lemma (Lemma 10.1). See
Eisenbud [17, Section 15.8] or Greuel and Pfister [22, Section 7.5] for more
on Gröbner bases and flatness.

The leading ideal J := L(I) is a monomial ideal, i.e., it is generated by
monomials m1, . . . ,mr. It is especially simple to compute the dimension of
A := K[x1, . . . , xn]/J for a monomial ideal J using Theorem 5.9 and Propo-
sition 5.10. In fact, a set M ⊆ {x1, . . . , xn} of indeterminates is algebraically
dependent modulo J if and only if there exists a monomialmj among the gen-
erators of J that involves only indeterminates from M . So M is algebraically
independent modulo J if and only if every mj involves an indeterminate xi

that is not in M . And the complement {x1, . . . , xn}\M is algebraically inde-
pendent modulo J if and only if every mj involves an xi ∈M . This leads to
the following algorithm.

Algorithm 11.15 (Dimension of an affine algebra).

Input: An ideal I ⊆ K[x1, . . . , xn] defining an affine algebra A :=
K[x1, . . . , xn]/I.

Output: The Krull dimension dim(A).

(1) Choose a total degree ordering “≤” on K[x1, . . . , xn] and compute a
Gröbner basis G of I with respect to “≤”. Let m1, . . . ,mr be the leading
monomials of the nonzero elements of G. (In fact, by Exercise 11.7 the
algorithm works for arbitrary monomial orderings.)

(2) If mj = 1 for some j, return dim(A) = −1.
(3) By an exhaustive search, find a set M ⊆ {x1, . . . , xn} of minimal size

such that every mj involves at least one indeterminate from M .
(4) Return dim(A) = n− |M |.

Let us emphasize again that Algorithm 11.15 requires just one Gröbner
basis computation, and this can be performed with respect to the grevlex
ordering, which tends to be the fastest. After the Gröbner basis computation,
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the algorithm is purely combinatorial. Even when implemented in a crude
way, the cost of step (3) (where the combinatorics happens) will in most cases
be dwarfed by the cost of the preceding Gröbner basis computation. Never-
theless, it is interesting to think about optimizing this step. An optimized
version can be found in Becker and Weispfenning [3, Algorithm 9.6].

We close this chapter with a definition.

Definition 11.16. For I ⊆ K[x1, . . . , xn] a proper ideal, let m = deg(pI) be
the degree and LC(pI ) the leading coefficient of the Hilbert polynomial. Then

deg(I) := m! · LC(pI)

is called the degree of I.

This is certainly a valid definition, but does the degree of an ideal have any
meaning, and is it useful? Exercises 11.8–11.10 deal with the degree, and there
we learn that the degree is a positive integer, and how the classical theorem
of Bézout can be proved by using it. Suffice it to make a few additional com-
ments here. The degree of a principal ideal I = (f) with f ∈ K[x1, . . . , xn]
nonconstant is deg(I) = deg(f). The easiest way to see this is to use Proposi-
tion 11.4 and Exercise 11.8. This may be a first indication that the definition
of the degree is a good one. Moreover, if X ⊆ Kn is a finite set of points
and I := I(X) its ideal, then deg(I) = |X |. This follows from Exercise 5.4.
Finally, notice that the degree is not an invariant of an affine algebra (see the
example in Remark 11.3(b)).

Exercises for Chapter 11

11.1 (Comparing ideals by their Hilbert functions). Let I and J be
ideals in K[x1, . . . , xn] such that I ⊆ J and hI = hJ . Show that I = J .

11.2 (Hypotheses of Theorem 11.6). Find an example that shows that
the hypothesis on the monomial ordering cannot be dropped from Theo-
rem 11.6.

11.3 (Homogeneous ideals). In this exercise we assume K to be infinite.

(a) Let I ⊆ K[x1, . . . , xn] be an ideal. For a ∈ K, let ϕa: K[x1, . . . , xn] →
K[x1, . . . , xn] be the algebra endomorphism given by ϕa(xi) = axi. Show
that the following statements are equivalent:

(1) I is homogeneous.
(2) The inclusion

ϕa(I) ⊆ I (11.7)

holds for all a ∈ K.
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(3) The inclusion (11.7) holds for infinitely many a ∈ K.
(4) For every f ∈ I, all homogeneous parts of f also lie in I.

(b) Let I ⊆ K[x1, . . . , xn] be a homogeneous ideal. Show that all prime ideals
P ⊂ K[x1, . . . , xn] that are minimal over I are homogeneous.

Remark: Part (b) and the equivalence of (1) and (4) also hold if K is a finite
field (see Eisenbud [17, Theorem 3.1(a) and Proposition 3.12] for part (b)).

11.4 (Hypotheses of Lemma 11.7). Give an example that shows that the
homogeneity hypothesis in Lemma 11.7 cannot be dropped.

11.5 (For which d is the Hilbert polynomial correct?). Let I � K
[x1, . . . , xn] be a proper ideal. Use the proof of Corollary 11.10 to show that
the largest integer dfail for which (11.5) fails is given by

dfail = deg (HI(t)) ,

where the degree of the rational function is defined as the difference between
the degrees of the numerator and denominator. (Since we are talking about
integer values for d here, we need to extend hI to Z by setting hI(d) := 0 for
d < 0.) Notice that dfail may be negative.
Remark: The number dfail is closely related to the so-called a-invariant of a
graded algebra A. This is defined as the degree of the graded Hilbert series
Hgrad

A (t). So if in the above setting I is homogeneous, then the a-invariant is
dfail + 1.

11.6 (Computing the Hilbert series). Let I ⊆ K[x1, x2, x3] be the ideal
given by

I = (x2
1x

2
2, x

2
1x

2
3, x

2
2x

2
3).

Determine the Hilbert series, Hilbert function, and Hilbert polynomial of I.
For which d do the Hilbert function and the Hilbert polynomial coincide?
Determine dim (K[x1, x2, x3]/I) and deg(I).

11.7 (Weighted degrees and Hilbert series). Let w = (w1, . . . , wn) be
a “weight vector” with wi ∈ N>0 positive integers. Define the weighted
degree of a monomial t = xe1

1 · · ·xen
n as degw(t) :=

∑n
i=1 wiei. Starting with

this definition, go through the definitions and results of this chapter, and
adjust everything to the “weighted situation.” Which modifications are neces-
sary? Develop the theory to include a version of Corollary 11.14 for “weighted
degree orderings.” Then use Exercise 9.2 to conclude that Corollary 11.14
holds for an arbitrary monomial ordering. (Solution on page 227)

11.8 (Extracting dimension and degree from the Hilbert series).
For I � K[x1, . . . , xn] a proper ideal, prove the following statements.
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(a) The dimension of K[x1, . . . , xn]/I is the smallest integer m such that the
Hilbert series can be written as

HI(t) =
g(t)

(1 − t)m+1
(11.8)

with g(t) ∈ Z[t].
(b) If m = dim (K[x1, . . . , xn]/I) and g(t) as in (11.8), the degree of I is

deg(I) = g(1).

In particular, the degree is a positive integer.

Remark: The results of this exercise can be restated as follows: One plus the
dimension m is the pole order at t = 1 of the Hilbert series, and the degree
is (−1)m times the first nonzero coefficient in a Laurent series expansion of
HI(t) about t = 1.

11.9 (The degree of intersections of ideals). In this exercise we deal
with the degree of intersections of homogeneous ideals. If I ⊆ K[x1, . . . , xn]
is an ideal, we will write dim(I) instead of dim (K[x1, . . . , xn]/I) for brevity.

(a) Let I, J ⊆ K[x1, . . . , xn] be homogeneous ideals such that dim(I) =
dim(J) < dim(I + J). Show that

deg(I ∩ J) = deg(I) + deg(J).

(b) Let I, J ⊆ K[x1, . . . , xn] be homogeneous ideals such that dim(I) >
dim(J). Show that

deg(I ∩ J) = deg(I).

(c) Let I ⊆ K[x1, . . . , xn] be a homogeneous ideal, and let P1, . . . , Pr ∈
Spec (K[x1, . . . , xn]) be those minimal prime ideals over I that satisfy
dim(Pi) = dim(I). Show that

deg
(√

I
)

=
r∑

i=1

deg(Pi).

In this part, you may assume K to be infinite, so that Exercise 11.3(b)
can be used, or you may use the remark at the end of Exercise 11.3.

(d) Let I � K[x1, . . . , xn] be a proper ideal. Show that

deg
(√

I
)
≤ deg(I).

*11.10 (The degree and Bézout’s theorem). In this exercise we use the
degree of an ideal for proving the theorem of Bézout, which is a well-known,
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classical result from algebraic geometry. If necessary in order to use the results
from Exercise 11.3 and Exercise 11.9, assume K to be infinite. Prove the
following statements.

(a) If I ⊆ K[x1, . . . , xn] is a homogeneous prime ideal and f ∈ K[x1, . . . , xn]\
I a homogeneous polynomial, then

deg (I + (f)) = deg(I) · deg(f).

(b) Let I = (f1, . . . , fm) with fi ∈ K[x1, . . . , xn] homogeneous, and let
P1, . . . , Pr ∈ Spec (K[x1, . . . , xn]) be the prime ideals that are minimal
over I. If dim (K[x1, . . . , xn]/I) = n−m, then

r∑

i=1

deg(Pi) ≤
m∏

j=1

deg(fj).

(c) Let f1, . . . , fn−1 ∈ K[x1, . . . , xn] be homogeneous polynomials such that
dim (K[x1, . . . , xn]/(f1, . . . , fn−1)) = 1. Then f1, . . . , fn−1 have at most
∏n−1

j=1 deg(fj) common zeros in the projective space Pn−1(K).
(d) Let f1, f2 ∈ K[x1, x2] be two coprime polynomials (which need not be

homogeneous). Then the number of common zeros (in K2) of f1 and f2
is at most deg(f1) · deg(f2).

Remark: Part (c) is Bézout’s theorem. There are a number of refinements.
Most importantly, if we assume K to be algebraically closed and count the
common zeros of the fi by (adequately defined) multiplicities, then we obtain
an equality instead of an upper bound. It should also be noted that in the
situation of part (b), the equality deg(I) =

∏m
j=1 deg(fj) holds. The proof

requires some results from the theory of Cohen–Macaulay rings, which is not
treated in this book.
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Local Rings





Chapter 12

Dimension Theory

Recall that a ring is called local if it has precisely one maximal ideal. One of
the reasons for the interest in local rings is the idea that they describe the
local behavior of a global object (such as an affine variety). A large part of
the research in commutative algebra is devoted to local rings. A typical talk
at a typical commutative algebra conference has the speaker start with, “Let
R be a Noetherian local ring with maximal ideal m . . . ” Therefore it seems
more than appropriate to devote the last part of this book to local rings.

In this chapter we develop a central element in the theory of local rings,
often referred to as dimension theory. To R (as introduced by our typical
speaker) we associate a graded algebra gr(R) over the field R/m. The main
result is that R and gr(R) have the same Krull dimension. This result is
obtained by comparing “sizes” of R and gr(R). For gr(R), the notion of
“size” is given by the Hilbert function, which in Chapter 11 was shown to be
eventually equal to a polynomial function. For R, “size” is measured by the
so-called lengths of the modules R/md. So we need to discuss the concept of
length first. This will be done in the following section.

Readers who have skipped Chapters 9–11 will find instructions in Exer-
cise 12.1 on what is needed to continue without tearing any holes in the
proofs.

12.1 The Length of a Module

The goal of the following definition is to measure the size of a module M
over a ring R. In the theory of vector spaces, size is measured by the number
of vectors in a basis. But in general, modules have no basis (if they do, they
are called free). In view of this, we resort to the idea of considering chains of
submodules.

Definition 12.1. Let M be a module over a ring R. The length of M ,
written as length(M), is the supremum of the lengths n of chains

G. Kemper, A Course in Commutative Algebra, Graduate Texts
in Mathematics 256, DOI 10.1007/978-3-642-03545-6 13,
c© Springer-Verlag Berlin Heidelberg 2011
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M0 � M1 � · · · � Mn

of submodules Mi ⊆M . So length(M) ∈ N0 ∪ {∞}.
Example 12.2. (1) For m a positive integer, the Z-module M = Z/(m) has

length equal to the number of prime factors (with multiplicities) of m.
(2) Z has infinite length as a module over itself.
(3) If R = K is a field and V a vector space, then length(V ) = dimK(V ).
(4) An R-module M is simple (i.e., M �= {0} and there exists no nonzero,

proper submodule) if and only if length(M) = 1. Moreover, M = {0} if
and only if length(M) = 0. �

Recall the definition of a maximal chain on page 106. In particular, a finite
chain M0 � M1 � · · · � Mn of submodules of M is maximal if no further
submodule can be added into the chain by insertion or by appending at either
end. This means that M0 = {0}, Mn = M , and all Mi/Mi−1 (i = 1, . . . , n)
are simple modules. A finite maximal chain of submodules of M is also called
a composition series of M .

Theorem 12.3 (Basic facts about length). Let M be amodule over a ring R.

(a) If M has a finite maximal chain M0 � M1 � · · · � Mn of submodules,
then length(M) = n. So in particular, all maximal chains have the same
length.

(b) M has finite length if and only if it is Artinian and Noetherian. In par-
ticular, R has finite length as a module over itself if and only if it is
Artinian.

(c) Let N ⊆M be a submodule. Then

length(M) = length(N) + length(M/N).

Proof. (a) We use induction on n. If n = 0, then M = {0} and so
length(M) = 0. Therefore we may assume n > 0. Let N � M be a proper
submodule, and set Ni := N ∩Mi. The Ni need not be distinct, but the
set C := {N0, . . . , Nn} is a chain of submodules of N . We have N0 = {0}
and Nn = N . Moreover, for 1 ≤ i ≤ n, the natural map Ni → Mi/Mi−1

induces an isomorphism from Ni/Ni−1 to a submodule of Mi/Mi−1, so
Ni/Ni−1 is either simple or zero. Therefore C is a maximal chain of sub-
modules of N . Clearly length(C) ≤ n. By way of contradiction, assume
that length(C) = n. We will show by induction on i that this implies
Ni = Mi for all i. This is true for i = 0. For i > 0, Ni/Ni−1 is nonzero by
assumption, so the map Ni → Mi/Mi−1 is surjective. Using induction,
we conclude that Mi ⊆ Ni +Mi−1 = Ni +Ni−1 = Ni ⊆Mi, proving our
claim. In particular, we obtain N = Nn = Mn = M , a contradiction. So
length(C) < n. By induction on n, this implies length(N) < n. Since this
holds for all proper submodules N , we conclude that length(M) ≤ n. On
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the other hand, we are given a chain of submodules of M of length n, so
part (a) follows.

(b) If is clear from the definition that a module of finite length has to be
Artinian and Noetherian. Conversely, if M is Noetherian and M �= {0},
there exists a maximal proper submodule M1 � M . If M1 �= {0}, we
can continue and find M2 � M1 with no submodules in between, and so
on. If M is Artinian, this process stops, so we end up with a finite chain
{0} = Mk � Mk−1 � · · · � M1 � M0 := M . This chain is maximal by
construction, so length(M) = k by part (a). The last statement follows
since every Artinian ring is Noetherian by Theorem 2.8.

(c) If length(N) =∞ or length(M/N) =∞, then by part (b) at least one of
these modules fails to be Noetherian or Artinian, so by Proposition 2.4
the same is true for M , and length(M) =∞, too. So we may assume that
N and M/N have finite length. Taking maximal chains of submodules
of N and of M/N , lifting the latter into M , and putting these chains
together yields a maximal chain of submodules of M . So (c) follows by
part (a). 
�

By applying Theorem 12.3(c) several times, we see that if {0} = M0 ⊆
M1 ⊆ · · · ⊆Mk = M is a chain of submodules, then

length(M) =
k∑

i=1

length (Mi/Mi−1) . (12.1)

A special case of Theorem 12.3(c) says that a direct sum M⊕N of R-modules
has length(M ⊕ N) = length(M) + length(N). With Theorem 12.3(b), this
shows that the free module M = Rn over an Artinian ring R has finite length.
Since any finitely generated module is a factor module of some Rn, another
application of Theorem 12.3(c) shows that a finitely generated module over an
Artinian ring has finite length. Exercise 12.2 deals with a further consequence
of Theorem 12.3(c) on exact sequences of modules.

An important example to which Theorem 12.3(b) applies is the follow-
ing. If R is a Noetherian local ring with maximal ideal m and q ⊆ R is an
ideal with

√
q = m, then R/q has dimension 0. Therefore it is Artinian and

Noetherian (as a ring and therefore also as an R-module) by Theorem 2.8,
so length (R/q) < ∞. In particular, this applies to q = md, a power of the
maximal ideal. The following result is about the lengths of the modules R/md.

Lemma 12.4. Let R be a Noetherian local ring with maximal ideal m. Then
there exists a polynomial p ∈ Q[x] of degree n = dim(R) such that

length
(
R/md

) ≤ p(d) for all d ∈ N0.

Proof. The main idea is to use a system of parameters a1, . . . , an ∈ m, whose
existence is guaranteed by Corollary 7.9. Setting q := (a1, . . . , an), we have
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qd ⊆ md for all d ∈ N0, so there is an epimorphism R/qd → R/md. By
Theorem 12.3(c), this implies

length
(
R/md

) ≤ length
(
R/qd

)
. (12.2)

Consider the chain

{0} = qd/qd ⊆ qd−1/qd ⊆ · · · ⊆ q2/qd ⊆ q/qd ⊆ R/qd,

which has factors qi/qi+1. For every i, qi is generated (as an R-module) by
the monomials of degree i in a1, . . . , an. By Remark 11.5, there are ki :=(
i+n
n

)− (
i−1+n

n

)
such monomials. So qi/qi+1 can be generated by ki elements

as an R/q-module, giving an epimorphism (R/q)ki → qi/qi+1. Using (12.2),
(12.1), and Theorem 12.3(c), we conclude that

length
(
R/md

) ≤ length
(
R/qd

)
=

d−1∑

i=0

length
(
qi/qi+1

)

≤
d−1∑

i=0

length
(
(R/q)ki

)

=
d−1∑

i=0

ki · length (R/q) =
(
d− 1 + n

n

)

· length (R/q) .

By Corollary 7.9 we have
√

q = m, so length (R/q) < ∞ by the discussion
preceding the lemma. Therefore the above inequality yields the desired upper
bound. 
�

In Chapter 11, we have found that the Hilbert function of an ideal is essen-
tially a polynomial function. Somewhat similarly, Lemma 12.4 relates the
function d �→ length

(
R/md

)
to a polynomial. Is there a connection? The

answer is yes. In fact, we will interpret the function d �→ length
(
R/md+1

)
as

the Hilbert function of the associated graded ring, to be defined in the next
section.

12.2 The Associated Graded Ring

Throughout this section, R will be a Noetherian local ring with maximal
ideal m. We will write K := R/m for the residue class field.

We first consider the subalgebra

R∗ := R[m · t] ⊆ R[t]
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of the polynomial ring R[t] generated by all at with a ∈ m. Eisenbud [17] calls
R∗ the blowup algebra, while Lang [33] calls it the first associated graded ring.
A close relative of R∗ is the Rees ring (see Matsumura [38, §15, Section 4]).

Recall that a ring S is called graded if it has a direct sum decomposition

S = S0 ⊕ S1 ⊕ S2 ⊕ · · · =
⊕

d∈N0

Sd

(as an abelian group) such that Si ·Sj ⊆ Si+j for all i, j ∈ N0. Then elements
of Sd are called homogeneous of degree d. The ring R[t] is graded by R[t]d :=
R · td, and since R∗ is generated by homogeneous elements, it is graded by

R∗
d := R · td ∩R∗ = md · td ∼= md

(where the second equality is obvious from the definition of R∗). Now we
define the associated graded ring of R as the quotient ring gr(R) :=
R∗/(m)R∗ . Since gr(R) is formed by factoring out an ideal generated by
homogeneous elements (of degree 0), gr(R) is graded, too. Moreover, gr(R)
is annihilated by m, so it is a graded K-algebra. There is an important
description of the graded components:

gr(R)d = R∗
d/(R

∗
d ·m) ∼= md/md+1. (12.3)

In particular, gr(R)0 ∼= K. If we view the graded components of gr(R) as
md/md+1 according to the above isomorphism, multiplication of homogeneous
elements works as follows: For a ∈ mi and b ∈ mj , the product of the residue
classes is

(a+ mi+1) · (b+ mj+1) = ab+ mi+j+1 ∈ mi+j/mi+j+1. (12.4)

Some textbooks define gr(R) as a graded algebra with components md/md+1,
and multiplication is given by (12.4). It should be pointed out that gr(R) and
R∗ can be (and often are) defined in greater generality, where R is any ring
and m is substituted by any ideal I ⊆ R. Exercise 12.5 gives a presentation of
the associated graded ring of the coordinate ring of an affine variety, localized
at a point. This is very interesting, since it provides a geometric interpretation
in terms of the so-called tangent cone. Some explicit examples of associated
graded rings are computed in Exercise 12.6.

Is gr(R) Noetherian? The answer is yes, for a very simple reason: Every
ideal in R is finitely generated, so in particular m = (c1, . . . , ck)R. There-
fore R∗ = R[c1t, . . . , ckt] is Noetherian by Corollary 2.12, and so gr(R) is
Noetherian, too. In fact, it is generated as a K-algebra by the elements
ai := cit+ (m)R∗ . Notice that these generators lie in the graded component
gr(R)1 of degree 1. Graded algebras that are generated by their degree-1
component are called standard graded. To make the connection to Hilbert
functions, let K[x1, . . . , xk] be a polynomial ring and let I ⊆ K[x1, . . . , xk]



172 12 Dimension Theory

be the kernel of the map K[x1, . . . , xk]→ gr(R), xi → ai. It is clear from the
definitions that gr(R)d is generated as a K-vector space by the monomials of
degree d in the ai. Setting A := K[x1, . . . , xk ]/I ∼= gr(R), we get

A≤d
∼=

d⊕

i=0

gr(R)i
∼=

d⊕

i=0

mi/mi+1

for all d, so using (12.1) yields

length
(
R/md+1

)
=

d∑

i=0

length
(
mi/mi+1

)

=
d∑

i=0

dimK

(
mi/mi+1

)
= dimK(A≤d) = hI(d).

(12.5)

With Corollary 11.10 and Theorem 11.13 we have proved the following:

Proposition 12.5 (The Hilbert–Samuel polynomial of R). There exists a
polynomial pR ∈ Q[x] such that

length
(
R/md+1

)
= pR(d)

for all sufficiently large d, and deg(pR) = dim (gr(R)).

The function hR given by hR(d) := length
(
R/md+1

)
is called the Hilbert–

Samuel function of R, and the polynomial pR from Proposition 12.5
is called the Hilbert–Samuel polynomial. With this notation, (12.5)
becomes

hR(d) = hI(d) and pR = pI . (12.6)

With Proposition 12.5, Lemma 12.4 reads as

dim (gr(R)) ≤ dim(R). (12.7)

The next goal is to prove that this is actually an equality. For this we need
two lemmas. The first one is a version of the Artin–Rees lemma, and its proof
makes essential use of the Noether property of R∗.

Lemma 12.6 (Artin–Rees lemma). Let I ⊆ R be an ideal. Then there exists
a nonnegative integer r such that

I ∩mn = mn−r · (I ∩mr)

for all n ≥ r.
Proof. Let Jd :=

∑d
i=0 R

∗(I ∩ mi)ti be the ideal in R∗ generated by the
(I ∩ mi)ti with i ≤ d. Since R∗ is Noetherian, there exists a nonnegative
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integer r such that Jn = Jr for n ≥ r. Let n ≥ r. Observe that (I ∩mn)tn is
contained in the homogeneous part R∗

n of R∗ of degree n. Therefore

(I ∩mn)tn ⊆ R∗
n ∩ Jn = R∗

n ∩
r∑

i=0

R∗(I ∩mi)ti =
r∑

i=0

R∗
n−i(I ∩mi)ti

=
r∑

i=0

mn−i(I ∩mi)tn =
r∑

i=0

mn−rmr−i(I ∩mi)tn

⊆ mn−r(I ∩mr)tn.

So mn−r · (I ∩mr) ⊇ I ∩mn ⊇ mn−r · (I ∩mr), and the lemma is proved. 
�
In most textbooks, the Artin–Rees lemma is presented in a more general

setting. In fact, R may be replaced by any Noetherian ring, m by any ideal J ,
and I by a submodule of a Noetherian R-module M . Then instead of mn one
considers the filtration JnM of M . One can also generalize this filtration to
what is called a J-stable filtration. The proofs of the more general versions
of the Artin–Rees lemma work essentially as the above proof. For details, see
Eisenbud [17, Lemma 5.1]. Now we come to the second lemma.

Lemma 12.7. Let a ∈ m. If a is not a zero divisor, then

dim (gr(R/Ra)) < dim (gr(R)) .

Proof. By Proposition 12.5, we need to show that deg
(
pR/Ra

)
< deg (pR).

So we need to compare the Hilbert–Samuel functions hR/Ra and hR. Since
m/Ra is the maximal ideal of R/Ra, hR/Ra(d) is the length of the module

Md := (R/Ra)
/

(m/Ra)d+1
.

The natural epimorphism R→Md has kernel Ra+md+1, so we obtain an epi-
morphism R/md+1→Md with kernel

(
Ra+md+1

)
/md+1 ∼= Ra/

(
Ra ∩md+1

)
.

Therefore

length(Md) = length
(
R/md+1

)− length
(
Ra/

(
Ra ∩md+1

))
, (12.8)

where Theorem 12.3(c) was used. Applying the Artin–Rees lemma (Lemma
12.6) to I = Ra yields an r such that Ra ∩ md+1 = md+1−r(Ra ∩ mr) ⊆
md+1−ra for d+ 1 ≥ r. So for sufficiently large d we have an epimorphism

Ra/
(
Ra ∩md+1

)
� Ra/md+1−ra ∼= R/md+1−r,

where the isomorphism comes from the fact that multiplication by a induces
isomorphisms mi ∼= mia of R-modules for all i (including i = 0). By Theo-
rem 12.3(c), this gives a lower bound for the length of Ra/

(
Ra ∩md+1

)
, and

substituting this into (12.8) yields
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hR/Ra(d) = length(Md)

≤ length
(
R/md+1

)− length
(
R/md+1−r

)
= hR(d) − hR(d− r)

for sufficiently large d. From this we conclude that deg
(
pR/Ra

)
< deg (pR),

as desired. 
�
We are now ready to prove that R and gr(R) have the same dimension.

This is a central result of what is referred to as dimension theory in many
textbooks (i.e., Atiyah and Macdonald [2], Matsumura [38], Eisenbud [17]),
and that is why this chapter is called dimension theory, too. However, the
results on parameter systems from Section 7.1 are usually considered as part
of dimension theory. In fact, the main assertion of dimension theory is often
stated as the equality of the following three numbers: (1) the dimension of
R, (2) the size of a system of parameters of R, and (3) the degree of the
Hilbert–Samuel polynomial of R.

Theorem 12.8 (The dimensions of R and gr(R)). Let R be a Noetherian
local ring and let gr(R) be its associated graded ring. Then

dim(R) = dim (gr(R)) .

Equivalently, the Hilbert–Samuel polynomial of R has degree equal to dim(R).

Proof. From (12.7) we know that dim (gr(R)) ≤ dim(R). For the reverse
inequality we use induction on dim (gr(R)). We first reduce to the case that
R is an integral domain. We need to prove that dim (R/P ) ≤ dim (gr(R))
for every P ∈ Spec(R). For every d, the natural epimorphism R/md+1 �
(R/P )

/
(m/P )d+1 shows that hR/P (d) ≤ hR(d), so dim (gr(R/P )) ≤

dim (gr(R)) by Proposition 12.5. Therefore it suffices to show that dim (R/P )
≤ dim (gr(R/P )) for every P ∈ Spec(R). In other words, we may assume that
R is an integral domain.

For the induction, we first treat the case that dim (gr(R)) = 0. Since
gr(R) is an affine K-algebra, Theorem 5.11 yields dimK (gr(R)) < ∞. This
means that only finitely many graded components of gr(R) are nonzero, so
md+1 = md for some d. By Nakayama’s lemma (Theorem 7.3), this implies
md = {0}, so m = {0} since R is a domain. Therefore R is a field, and
dim(R) = 0.

Now assume that dim (gr(R)) > 0 and let P0 � P1 � · · · � Pk be
a chain of prime ideals in R of length k > 0. Choose a ∈ P1 \ {0}. By
Lemma 12.7, dim (gr(R/Ra)) < dim (gr(R)), so by induction dim (R/Ra) =
dim (gr(R/Ra)) < dim (gr(R)). But we have a chain P1/Ra � · · · � Pk/Ra
of prime ideals in R/Ra, so dim (R/Ra) ≥ k − 1. Putting the inequalities
together, we conclude that k ≤ dim (gr(R)) and are done. 
�

We will finish this chapter by exploring more connections between R and
its associated graded ring gr(R). We first need to prove the following theorem,
which is a consequence of the Artin–Rees lemma and Nakayama’s lemma.
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Theorem 12.9 (Krull’s intersection theorem). If R is a Noetherian local
ring with maximal ideal m (as always in this section), then

⋂

n∈N

mn = {0}.

Proof. Set I :=
⋂

n∈N
mn, and let r be the integer given by the Artin–Rees

lemma (Lemma 12.6). Then I ∩mr+1 = m · (I ∩ mr). By the definition of I,
this means that I = m ·I. Now Nakayama’s lemma (Theorem 7.3) shows that
I = {0}. 
�

A more general version of Krull’s intersection theorem can be found in
Eisenbud [17, Corollary 5.4]. In Exercise 12.7 we will see that Theorem 12.9
may fail if R is not Noetherian.

It is a consequence of Theorem 12.9 that for every nonzero a ∈ R there
exists a nonnegative integer d such that a ∈ md but a /∈ md+1. We write this d
as d =: ord(a), the order of a. Using the description (12.3) of the graded
components of gr(R), we also define gr(a) := a+md+1 ∈ gr(R)d \{0}. Setting
gr(0) := 0, we obtain a map R → gr(R). Unfortunately, this map is neither
additive nor multiplicative in general. However, for two nonzero elements a
and b ∈ R of orders ord(a) = d and ord(b) = e, the formula (12.4) yields
gr(a) · gr(b) = ab + md+e+1 ∈ gr(R)d+e, so gr(a) · gr(b) �= 0 if and only if
ab /∈ md+e+1, and in this case multiplicativity holds, i.e.,

gr(ab) = gr(a) gr(b). (12.9)

We are now ready to prove the following theorem about heredity of some
properties from gr(R) to R.

Theorem 12.10 (Properties passing from gr(R) to R). Let R be a Noether-
ian local ring and let gr(R) be its associated graded ring.

(a) If gr(R) is an integral domain, then the same is true for R.
(b) If gr(R) is normal, then the same is true for R.

Proof. (a) R is not the zero ring since it is local. Let a, b ∈ R be nonzero
elements of orders d and e, respectively. By hypothesis, gr(a) · gr(b) �= 0,
so ab /∈ md+e+1 by the discussion preceding (12.9). This implies ab �= 0.

(b) By (a), R is an integral domain. Let a, b ∈ R with b �= 0 such that
a/b ∈ Quot(R) is integral over R. We need to show that a ∈ (b)R. Using
induction on n, we will prove the (seemingly) weaker statement

a ∈ mn + (b)R for all nonnegative integers n. (12.10)

This is true for n = 0, so assume n > 0. By induction, there exist ã ∈
mn−1 and r ∈ R with

a = ã+ rb. (12.11)
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We are done if ã ∈ mn, so assume ord(ã) = n − 1. From (12.11) we
see that ã/b = a/b − r is integral over R. By Lemma 8.11, it is almost
integral, so there exists c ∈ R \ {0} such that cãn ∈ (bn)R for all n ∈ N0.
Since gr(R) is an integral domain, (12.9) holds for all elements of R,
so gr(c) gr(ã)n ∈ (gr(b)n)gr(R) for all n. This means that gr(ã)/ gr(b) ∈
Quot (gr(R)) is almost integral over gr(R). Since gr(R) is Noetherian,
we can use Lemma 8.11 to conclude that gr(ã)/ gr(b) lies in gr(R). Since
gr(ã) ∈ gr(R)n−1 and gr(b) ∈ gr(R)ord(b) are homogeneous, their fraction
must be homogeneous of degree n − 1 − ord(b), so it can be written as
gr(s) with s ∈ mn−1−ord(b) \mn−ord(b). Using (12.9) again, we obtain

0 = gr(ã)− gr(s) gr(b) = gr(ã)− gr(sb) = ã− sb+ mn,

so ã = (ã − sb) + sb ∈ mn + (b)R. With (12.11), we conclude that a ∈
mn+(b)R, so (12.10) is proved. We may assume b ∈ m, since otherwise b is
invertible in R and so a ∈ (b)R is certainly true. Therefore R := R/(b)R

is a Noetherian local ring with maximal ideal m := m/(b)R. Applying
the canonical map R → R, x �→ x, to (12.10) yields a ∈ mn for all n.
By Krull’s intersection theorem (Theorem 12.9), this implies a = 0, so
a ∈ (b)R and we are done. 
�

Exercises for Chapter 12

12.1 (Dimension theory with minimal use of Part III). The goal of
this exercise it to make it possible to skip the third part of the book almost
entirely. Modify parts of Chapters 11 and 12 in such a way that the asser-
tion dim(R) = dim (gr(R)) from Theorem 12.8 can be proved with minimal
dependence on the material from Part III. In particular, the proof should not
depend on the material on monomial orderings and Gröbner bases.
Hint: Instead of showing that the Hilbert function becomes a polynomial
eventually, consider the least integer δ such that the Hilbert function can be
bounded above by a polynomial of degree δ. With this modification, the con-
cepts of Hilbert polynomial and Hilbert–Samuel polynomial will be omitted.
(Solution on page 228)

12.2 (Length and exact sequences). Let

{0} −→M1 −→M2 −→ · · · −→Mn−1 −→Mn −→ {0}

be a finite exact sequence of modules over a ring R (see Exercise 6.3 for the
definition of an exact sequence). Assume that at most one of the Mi has
infinite length. Show that
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n∑

i=1

(−1)i length(Mi) = 0.

In particular, all Mi have finite length.

12.3 (Hilbert series of a graded module over a graded ring). In this
exercise the Hilbert–Serre theorem is proved in a rather general situation. Let
R = R0⊕R1⊕R2⊕ · · · be a graded ring. An R-module M is called graded
if it has a direct sum decomposition

M =
⊕

i∈Z

Mi

(as an abelian group) such that RiMj ⊆Mi+j for all i ∈ N0 and j ∈ Z. (So as
an important special case, R itself is a graded R-module.) In particular, every
Mi is an R0-module. We make the following assumptions: R0 is a Artinian, R
is finitely generated as an R0-algebra, and M is a finitely generated, graded
R-module. First show that

R = R0[a1, . . . , an]

with ai homogeneous and di := deg(ai) positive, and that there exists m ∈ Z
such that Mi = {0} for i < m. Show that every Mi has finite length as an
R0-module. So we may define the Hilbert series of M as a formal Laurent
series by

HM(t) :=
∑

i∈Z

length(Mi)ti ∈ Z((t)).

(Observe that in the important special case that R0 is a field K, the length
is equal to the K-dimension.) Show that the Hilbert series has the form

HM (t) =
cmt

m + cm+1t
m+1 + · · ·+ ckt

k

(1− td1) · · · (1− tdn)
(12.12)

with k ≥ m and ci ∈ Z.
Remark: If R is standard graded, i.e., if all ai can be chosen of degree 1, then
it follows as in Corollary 11.10 that there exists a polynomial pM ∈ Q[x] such
that length(Mi) = pM (i) for all sufficiently large i.
Hint: For every i consider the map Mi−d1 → Mi given by multiplication
by a1. Complete this map to an exact sequence {0} → X →Mi−d1 →Mi →
Y → {0}. Use Exercise 12.2 and induction on n.

12.4 (Easier computation of the Hilbert–Samuel function). Let m ⊂
R be a maximal ideal of a ring, and consider the localizationRm with maximal
ideal mm. Show that for every nonnegative integer i there is an isomorphism
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mi
m/m

i+1
m
∼= mi/mi+1

of R-modules. With K := R/m ∼= Rm/mm, show that the isomorphism is
K-linear, so dimK

(
mi

m/m
i+1
m

)
= dimK

(
mi/mi+1

)
.

*12.5 (The associated graded ring and the tangent cone). Let I ⊆
K[x1, . . . , xn] be an ideal in a polynomial ring over a field. If f ∈ I \ {0},
write fin for the initial form of f , defined to be the nonzero homogeneous
part of f of least degree. Using this, define the initial form ideal as

Iin := (fin | f ∈ I \ {0})K[x1,...,xn] .

Set A := K[x1, . . . , xn]/I and assume that I ⊆ (x1, . . . , xn) =: n, so m := n/I
is a maximal ideal in A. Show that there is an isomorphism

gr(Am) ∼= K[x1, . . . , xn]/Iin,

which sends homogeneous elements to homogeneous elements of the same
degree.
Remark: Our assumption means that (0, . . . , 0) ∈ V(I). Since any point in
V(I) can be shifted to (0, . . . , 0) by changing coordinates, we obtain a pre-
sentation of the associated graded ring of the coordinate ring of an affine
variety, localized at a point. The affine variety V(Iin) is called the tangent
cone. The geometric interpretation of the tangent cone is contained in its
very name: It is the best approximation of V(I) by a cone, i.e., an affine
variety made up of lines through the origin. Iin can be computed by Mora’s
tangent cone algorithm [39], which essentially is a subtle variant of Buch-
berger’s algorithm applied to a “monomial ordering” that does not satisfy (2)
from Definition 9.1(a). The book by Greuel and Pfister [22] has a systematic
treatment of such orderings. (Solution on page 230)

12.6 (Examples of associated graded rings). For the following exam-
ples of local rings R, determine the Hilbert–Samuel function hR(d) and the
associated graded ring gr(R). Here gr(R) should be determined only up to
isomorphism.

(a) R = K[[x1, . . . , xn]], the formal power series ring in n indeterminates over
a field. Why is R local? Hint: You may use Exercise 11.1.

(b) Let X1, X2, X3 ⊆ K2 be the cubic curves over an algebraically closed
field K given by the equations ξ31 − ξ22 = 0, ξ22 − ξ21(ξ1 + 1) = 0, and
ξ22 − ξ1(ξ21 + 1) = 0, respectively, as shown in Fig. 12.1. Let Ri be the
localization of the coordinate ring of Xi at the point (0, 0). If you own
this book, you can draw the tangent cones into the pictures in Fig. 12.1.
Hint: You may use Exercise 12.5.

(c) This example is from algebraic number theory. Let A = Z[
√−3] ⊂ C,

m =
(
2, 1 +

√−3
) ⊆ A, and R = Am. Why is m a maximal ideal?
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X1 X2 X3

Fig. 12.1. Affine cubic curves, displaying a cusp, a double point, and smoothness

Hint: You may use Exercise 12.4. It may also be helpful to determine
the powers of m as Z-modules.

12.7 (Hypotheses of Krull’s intersection theorem). This exercise pro-
vides an example of a (non-Noetherian) local ring where Krull’s intersection
theorem (Theorem 12.9) fails. We will consider the ring R of germs of contin-
uous functions, which we define as follows. Let I be the set of all continuous
functions R → R that vanish on a neighborhood of 0. (Here R is equipped
with the Euclidean topology.) Obviously I is an ideal in the ring C0(R,R) of
all continuous functions R→ R. The ring R is defined as R := C0(R,R)/I.

(a) Show that R is a local ring. Hint: You may use Exercise 6.7(b).
(b) Find a nonzero element of R that lies in every power mn of the maximal

ideal of R. So Theorem 12.9 fails for R.

12.8 (Does Theorem 12.10 have a converse?). Construct an example
of a normal local ring R such that the associated graded ring gr(R) is
not an integral domain. This shows that the converse statements of The-
orem 12.10(a) and (b) do not hold.
Hint: You may use Exercises 8.4 and 12.5.





Chapter 13

Regular Local Rings

As mentioned before, local rings serve for the study of the local behavior
of a global object, such as an affine variety. In particular, notions of local
“niceness” can be defined as properties of local rings. There is a range of
much-studied properties of local rings. This includes the Cohen–Macaulay
property, the Gorenstein property, normality, and regularity. In this book
only normality and regularity are dealt with at some length, and one exercise,
13.3, is devoted to the Cohen–Macaulay property. It turns out that regularity
is the nicest of these properties, meaning that it implies all others. After
defining the notion of regularity of a Noetherian local ring R, we will see
that this is equivalent to the condition that the associated graded ring gr(R)
is isomorphic to a polynomial ring. If R is the coordinate ring of an affine
variety, localized at a point, gr(R) can be interpreted as the coordinate ring
of the tangent cone at that point (see Exercise 12.5). So in this situation
regularity means that the tangent cone is (isomorphic to) affine n-space.

How can we determine the points x of an affine variety X where the local-
ized coordinate ring K[X ]x is regular? This is the topic of the second section
of this chapter, where we prove the Jacobian criterion. A consequence is that
an affine variety is “nice” at “most” of its points.

13.1 Basic Properties of Regular Local Rings

Throughout this section, let R be a Noetherian local ring with maximal ideal
m and residue class field K := R/m. If M is an R-module, then M/mM
is annihilated by m, so it is a K-vector space. The following lemma is a
consequence of Nakayama’s lemma. If you have done Exercise 7.3, you can
skip the proof, since it is contained in the exercise.

Lemma 13.1 (Generating modules over a local ring). In the above setting,
assume M to be finitely generated. Let m1, . . . ,mn ∈M . Then the following
statements are equivalent:

G. Kemper, A Course in Commutative Algebra, Graduate Texts
in Mathematics 256, DOI 10.1007/978-3-642-03545-6 14,
c© Springer-Verlag Berlin Heidelberg 2011
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(a) M is generated by m1, . . . ,mn as an R-module.
(b) M/mM is generated by m1 + mM, . . . ,mn + mM as a K-vector space.

In particular, all minimal generating systems of M have the same size,
namely dimK (M/mM).

Proof. It is clear that (a) implies (b). Conversely, assume (b) and set N :=
(m1, . . . ,mn) ⊆M . Then (b) implies M ⊆ N+mM , so M/N ⊆ m ·M/N . By
Nakayama’s lemma (Theorem 7.3), this implies M/N = {0}, so M = N . ��

Applying Lemma 13.1 to M = m shows that every minimal generating
systems of m has the size dimK

(
m/m2

)
. Since we know from the principal

ideal theorem (more precisely, from Corollary 7.6) that m cannot be generated
by fewer than dim(R) (the Krull dimension) elements, we obtain

dimK

(
m/m2

) ≥ dim(R). (13.1)

This inequality prompts the definition of regularity.

Definition 13.2. (a) The local ring R is called regular if

dimK

(
m/m2

)
= dim(R).

(Here dim(R) signifies the Krull dimension.) So R is regular if and only
if m can be generated by dim(R) elements, which in turn is equivalent to
the condition that R has a system of parameters that generates m. Such
a system of parameters is called a regular system of parameters.

(b) Let S be a Noetherian ring and X := Spec(S). An element P ∈ X is
called a nonsingular point if the localization SP is regular. Otherwise,
P is called a singular point. If X has no singular points, S is called a
regular ring.

(c) A point x ∈ X of an affine variety is called nonsingular if the localiza-
tion K[X ]x of the coordinate ring at x is regular. Otherwise, x is called
singular. If every point is nonsingular, X is called nonsingular.

Remark. The above definition of a regular ring raises the following question:
Is a regular local ring R also a regular ring in the sense of Definition 13.2(b)?
In other words, is RP regular for every P ∈ Spec(R)? This is indeed true,
but not at all easy to prove (see Matsumura [37, Corollary 18.G]). �

Example 13.3. By Definition 13.2(a), a zero-dimensional local ring is regular
if and only if it is a field (equivalently, if and only if it is reduced). �

Before treating more examples, it is useful to establish the following regu-
larity criterion in terms of the associated graded ring. It is a consequence of
Theorem 12.8.

Theorem 13.4 (Associated graded ring and regularity). The local ring R is
regular if and only if the associated graded ring gr(R) is isomorphic to a
polynomial ring over K.
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Proof. Write A := gr(R). By Theorem 12.8 we have dim(A) = dim(R) =: n.
First assume that R is regular, so the maximal ideal m is generated by n

elements. By the discussion preceding (12.5) on page 172, it follows that A
is generated by n elements as a K-algebra, so by Theorem 5.9 and Proposi-
tion 5.10 these elements must be algebraically independent. It follows that A
is isomorphic to a polynomial ring.

Conversely, assume that A is isomorphic to a polynomial ring. By Corol-
lary 5.7 it follows that A is generated by n elements b1, . . . , bn. By the
discussion preceding (12.3) on page 171 we have a grading A =

⊕
d∈N0

Ad
with A0

∼= K and A1
∼= m/m2. We may assume that the homogeneous

component of degree 0 of every bi is 0. Let π: A → A1 be the projection
on the component of degree 1. Every a ∈ A can be written as a polyno-
mial over K in the bi, and it follows that π(a) is a K-linear combination
of the π(bi). Therefore A1 is generated by π(b1), . . . , π(bn), and we get
dimK

(
m/m2

)
= dimK(A1) ≤ n. With (13.1) this implies that R is regular.

��
To get a geometric interpretation of regularity, consider the case that R =

K[X ]x is the coordinate ring of an affine variety, localized at a point x ∈ X .
Exercise 12.5 gives a presentation gr(R) ∼= K[x1, . . . , xn]/J of gr(R) in this
case, where the variety VKn(J) can be interpreted as the tangent cone at x,
i.e., the best approximation of X by an affine variety made up of lines passing
through x. So roughly speaking, Theorem 13.4 tells us that x is a nonsingular
point if and only if the tangent cone at x is an affine n-space. Geometrically,
this makes a lot of sense, since nonsingularity should mean that the variety
looks “nice” locally. However, there is a catch. Even if the tangent cone is
some affine n-space, gr(R) need not necessarily be isomorphic to a polynomial
ring, since J need not be a radical ideal. This happens, for example, if x
is a cusp of X . In such a case, the geometric interpretation may be saved
by viewing the affine variety of a nonradical ideal J has having “double
components” or “hidden embedded components.”
Example 13.5. (1) The formal power series ring R := K[[x1, . . . , xn]] in n

indeterminates over a field is a regular local ring. This can be seen by
doing Exercise 12.6(a) (the result is gr(R) ∼= K[x1, . . . , xn]) and applying
Theorem 13.4, or by observing that the maximal ideal is generated by
x1, . . . , xn and using Exercise 7.10 to conclude that dim(R) = n.

(2) Let X1, X2, X3 be the cubic curves from Exercise 12.6(b), shown in
Fig. 12.1 on page 179. Let Ri be the localization of the coordinate ring
of Xi at the point x := (0, 0). In Exercise 12.6(b) the associated graded
rings gr(Ri) are determined, and the result is isomorphic to a polynomial
ring only for R3. So x is a singular point ofX1 andX2, but not of X3. The
curve X1 is particularly interesting, since it has a cusp at x. Here the tan-
gent cone may be viewed as a “double line.” By changing coordinates one
can also determine the associated graded ring of the localization at other
points. The result is that all points other than the origin are nonsingular.
This is what one expects from looking at Fig. 12.1. �
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This may be a good place for a short digression on completions. By con-
sidering two elements from R as “near” if their difference lies in a high
power of m, we get a concept of convergence. Krull’s intersection theorem
(Theorem 12.9) guarantees that with this concept, the limit of a convergent
series is unique. Exercise 13.4 gives more background on this. We also have
a concept of Cauchy sequences. Given this, R is called complete if every
Cauchy sequence has a limit in R. Most of the local rings we have seen in
this book are not complete. However, one can construct an extension R̂ of
R that is a complete local ring; R̂ also is Noetherian, and it has the prop-
erty that all of its elements are limits of R-valued sequences. The ring R̂
is called the completion of R. In a sense, the construction of completion
mimics the passage from the rational numbers to the real numbers. From
the construction of R̂ it can be shown that R and R̂ have the same asso-
ciated graded ring. So the associated graded ring may serve to transport
properties from R to R̂ and vice versa. For example, it follows from The-
orem 12.8 that dim(R̂) = dim(R), and it follows from Theorem 13.4 that
R̂ is regular if and only if R is regular. A nice example of a complete local
ring is the formal power series ring K[[x1, . . . , xn]] in n indeterminates over a
field. In fact, it is the completion of K[x1, . . . , xn](x1,...,xn) (see Exercise 13.5).
Another well-known example of a complete ring is the ring Zp of p-adic inte-
gers (with p a prime number), which plays an important role in algebraic
number theory and computer algebra. In fact, Zp is the completion of Z(p),
the ring of rational numbers with denominator not divisible by p.

Completion is an important tool in commutative algebra. Philosophically,
the idea is that localization is not “local enough,” but completion describes
the behavior of a variety on a smaller scale. For example, the local ring
at a point of an irreducible affine variety X contains all the information of
the variety that is invariant under birational equivalence, since the field of
fractions of the local ring is the function field K(X) = Quot(K[X ]), and bira-
tional equivalence is just defined as isomorphy of the function fields. So the
local ring still contains some sort of global information, even if it is regular.
However, if we assume that the local ring is regular, it turns out that its
completion is isomorphic to the formal power series ring K[[x1, . . . , xn]] with
n = dim(X) (see Matsumura [37, Corollary 2 to Theorem 60, page 206]). So
in this case completion eliminates global information. Another illustration of
this philosophy is contained in Exercise 13.6. For more on completion, we
refer to Eisenbud [17, Chapter 7].

By putting together Theorem 13.4, Proposition 8.8, and Theorem 12.10,
we obtain the following:

Corollary 13.6. (a) Every regular local ring is an integral domain.
(b) Every regular local ring is normal.

In fact, a bit more is true: Every regular local ring is factorial. This is
clear for zero-dimensional rings by Example 13.3, and will be proved for one-
dimensional rings on page 197. In dimension > 1, the result is much harder
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to prove (see Eisenbud [17, Theorem 19.19]), and it will not be used in this
book. By Exercise 12.8 there exist normal local rings that are not regular.
So in general, the converse of Corollary 13.6 does not hold. However, the
converse of Corollary 13.6(b) holds if R has dimension 1 (see Theorem 14.1).
Example 13.7. (1) Let S be a Noetherian ring, and suppose that P ∈ Spec(S)

is contained in more than one irreducible component of Spec(S). This
means that P contains more than one minimal prime ideal of S. By The-
orem 6.5, it follows that the localization SP has more than one minimal
prime ideal. But since an integral domain has {0} as the only minimal
prime ideal, SP is not an integral domain, and by Corollary 13.6(a) we
conclude that SP is not regular. So P is a singular point of Spec(S).

(2) A special case of (1) is the following: Every point of an affine variety
that lies in the intersection of more than one irreducible component is a
singular point.

(3) The last example is from algebraic number theory. Let A = Z[
√−3] ⊂ C,

m =
(
2, 1 +

√−3
) ⊆ A, and R = Am (see Exercise 12.6(c)). Then R is

not normal, since z := 1+
√−3
2 ∈ Quot(R) \ R, but z2 − z + 1 = 0. By

Corollary 13.6(b), R is not regular. The result of Exercise 12.6(c) also
shows that gr(R) is not isomorphic to a polynomial ring. �

13.2 The Jacobian Criterion

In this section we study the singular locus (which by definition is the set of
all singular points) in the spectrum of an affine algebra. So as a special case
we are also treating the singular locus of an affine variety.

We need some preparations from field theory, concerning separable field
extensions. Recall that every algebraic field extension of a field of character-
istic 0 is separable. In contrast, an algebraic element α of a field extension
of a field K in characteristic p > 0 is separable if and only if its minimal
polynomial irr(α,K) ∈ K[x] cannot be written as a polynomial in xp, i.e.,
irr(α,K) /∈ K[xp]. We say that a finitely generated (but not necessarily finite)
field extension L of K is separable if there exists a transcendence basis T
such that L is separable (as an algebraic extension) over K(T ), the subfield
generated by T . In this case T is called a separating transcendence basis.
We need the following proposition, which is not part of the standard cur-
riculum of an abstract algebra course. Readers who are interested only in
characteristic 0 can skip the proposition and Lemma 13.9.

Proposition 13.8 (Facts about separable field extensions).

(a) Every finitely generated field extension of a perfect field is separable.
(b) If L is a finitely generated separable field extension of K, then every

generating set of L over K contains a separating transcendence basis.
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Proof. (a) The proof follows Mac Lane [35]. LetK be a perfect field, which we
may assume to have positive characteristic p. We will prove the following
by induction on n: If L is a finitely generated extension of K with a
transcendence basis T such that L has degree n over the separable closure
of K(T ) in L, then L is separable over K. There is nothing to prove for
n = 1, so assume n > 1. This means that there exists α ∈ L that is
not separable over K(T ), so g := irr (α,K(T )) ∈ K(T )[xp]. We write
T p for the set of all pth powers of elements of T . If all coefficients of g
lay in K(T p), then g would be a pth power of a polynomial in K(T )[x],
since by hypothesis every element of K has a pth root in K. This would
contradict the irreducibility of g, so g /∈ K(T p)[x]. Applying Lemma 13.9
below yields a new transcendence basis T ′ such that the separable closure
of K(T ′) in L contains that of K(T ). Since α ∈ T ′, the inclusion is strict,
so the result follows by induction.

(b) If char(K) = 0, every transcendence basis is separating. In the case
char(K) = p > 0 we proceed by induction on the transcendence degree
n := trdeg(L/K). If n = 0, then T = ∅ is a separating transcendence
basis by hypothesis. So we may assume n > 0. By hypothesis there exists
a separating transcendence basis T . For every element α ∈ L, the min-
imal polynomial irr (α,K(T )) is separable, so if all its coefficients lie in
the subfield K(T p), then α is separable over K(T p). Assume that this
happens for every element of a given generating set S of L over K. Then
L would be separable over K(T p) (see Lang [33, Chapter VII, Theo-
rem 4.8]). But every element t from T has irr (t,K(T p)) = xp− tp, which
is inseparable. This contradiction shows that there exists α ∈ S such that
g := irr (α,K(T )) does not lie in K(T p)[x]. Applying Lemma 13.9 below
yields a new transcendence basis T ′ such that L is separable over K(T ′),
and α ∈ T ′. So viewed as an extension of K(α), L has the separating
transcendence basis T ′ \ {α}, and it is still generated by S. By induction,
L has a separating transcendence basis T ′′ ⊆ S overK(α), so as an exten-
sion of K it has the separating transcendence basis T ′′ ∪ {α} ⊆ S. ��

The following lemma was used in the proof.

Lemma 13.9. Let L be an extension of a field K of characteristic p > 0. Let
T be a finite transcendence basis, and write T p for the set of all pth powers of
elements of T . If the minimal polynomial g := irr (α,K(T )) of an α ∈ L does
not lie in K(T p)[x], then there exists t ∈ T such that T ′ := (T \ {t})∪{α} is
a transcendence basis, and all elements from L that are separable over K(T )
are also separable over K(T ′).

Proof. Since K[T ] is factorial, there exists 0 �= h ∈ K[T ] such that f := hg ∈
K[T ][x] is a primitive polynomial, so by the Gauss lemma, f is irreducible
(see Lang [33, Chapter V, Theorem 6.3]). Since h is the leading coefficient
of f (as a polynomial in x), f does not lie in K[T p][x], so there exists t ∈ T
such that f , viewed as a polynomial in t, is separable. This shows that t
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is separable over K(T ′). Therefore T ′ is a new transcendence basis, and all
elements of T are separable over K(T ′). This implies that all elements from
L that are separable over K(T ) are separable over K(T ′) (see Lang [33,
Chapter VII, Theorem 4.9]). ��

We come back to the goal of calculating the singular locus in the spec-
trum of an affine algebra A. If A = K[x1, . . . , xn]/I is given as a quotient
ring of a polynomial ring over a field, then an element of X := Spec(A)
is given as P/I, where P ⊂ K[x1, . . . , xn] is a prime ideal with I ⊆ P .
The main goal of this section is to prove the Jacobian criterion for the
regularity of the local ring AP/I . This criterion involves an irreducible com-
ponent of X containing P/I. Such a component corresponds to a prime ideal
Q ⊂ K[x1, . . . , xn] that is minimal over I, and contained in P . The criterion
also involves the rank of a matrix of polynomials modulo P , defined as follows:
If (gi,j) ∈ K[x1, . . . , xn]m×k, then rank (gi,j mod P ) denotes the rank of the
matrix (gi,j + P ) ∈ Quot (K[x1, . . . , xn]/P )m×k. The matrix that appears
in the Jacobian criterion is made up of the (formal) partial derivatives of
polynomials generating I. This is often called the Jacobian matrix.

Theorem 13.10 (Jacobian criterion). Let I = (f1, . . . , fm) ⊆ K[x1, . . . , xn]
be an ideal in a polynomial ring over a field, and let P ⊂ K[x1, . . . , xn] be
a prime ideal containing I. Furthermore, let Q ⊂ K[x1, . . . , xn] be a prime
ideal that is minimal over I and is contained in P . Then

(a)

rank
(
∂fi
∂xj

mod P
)

≤ ht(Q).

(b) If equality holds in (a), then the local ring (K[x1, . . . , xn]/I)P/I is regular.
(c) If Quot (K[x1, . . . , xn]/P ) is a (not necessarily finite) separable field

extension of K, then the converse of (b) holds. The separability hypoth-
esis is automatically satisfied if K is a perfect field or if P = (x1 −
ξ1, . . . , xn − ξn) corresponds to a point (ξ1, . . . , ξn) ∈ VKn(I).

If the separability hypothesis of Theorem 13.10(c) is not satisfied, then it
can happen that the converse of (b) fails (see Exercise 13.7).

Before we turn to the proof of Theorem 13.10, let us note that it can
be reformulated as follows: The nullity of the Jacobian matrix modulo P is
greater than or equal to the dimension of every irreducible component of
Spec (K[x1, . . . , xn]/I) that contains P , with equality if and only if the local
ring is regular (provided the hypothesis of part (c) holds). Moreover, notice
that if P = (x1−ξ1, . . . , xn−ξn) corresponds to a point (ξ1, . . . , ξn) ∈ VKn(I),
then the Jacobian matrix modulo P is

(
∂fi

∂xj
(ξ1, . . . , ξn)

)
∈ Km×n. The kernel

of the Jacobian matrix modulo P can be interpreted as the tangent space at
the point P . So for an affine variety X we have a tangent space attached to
every point, and its dimension is greater than or equal to the dimension of an
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irreducible component on which the point lies. The singular points are those
where the dimension of the tangent space exceeds that lower bound.

We need two lemmas for proving Theorem 13.10.

Lemma 13.11. Let P ⊂ K[x1, . . . , xn] be a prime ideal of height m in a
polynomial ring over a field.

(a) There exist f1, . . . , fm ∈ P generating the localized ideal PP ⊆
K[x1, . . . , xn]P .

(b) If Quot (K[x1, . . . , xn]/P ) is a separable field extension of K, then

rank
(
∂fi
∂xj

mod P
)

= m.

Proof. As a field extension ofK, L := Quot (K[x1, . . . , xn]/P ) is generated by
α1, . . . , αn with αi := xi+P . We express this by writing L = K(α1, . . . , αn).
By Corollaries 5.7 and 8.23, K[x1, . . . , xn]/P has dimension k := n − m,
so by Theorem 5.9, L has transcendence degree k. Since every generating
set of a field extension contains a transcendence basis, we may assume that
α1, . . . , αk form a transcendence basis, so they are algebraically independent,
and L is a finite extension of L0 := K(α1, . . . , αk). If L is separable over K,
we may use Proposition 13.8(b) and additionally assume that L is separable
over L0. For every l ∈ {0, . . . ,m}, consider the map

ϕl: K(x1, . . . , xk)[xk+1, . . . , xk+l]→ L, xi �→ αi.

We claim that im(ϕl) = K(α1, . . . , αk+l) =: Ll and ker(ϕl) = (f1, . . . , fl)
with fi ∈ K[x1, . . . , xk+i] ∩ P . Additionally, if L is separable over L0, then
∂fi/∂xk+i /∈ P . All this is true for l = 0. Using induction on l, we may
assume that l > 0 and that f1, . . . , fl−1 have already been found. Since
αk+l is algebraic over Ll−1, it follows that Ll = Ll−1[αk+l] (see Lang [33,
Chapter VII, Proposition 1.4]), and so Ll = L0[αk+1, . . . , αk+l] by induc-
tion. This shows that im(ϕl) = Ll. Set g := irr (αk+l, Ll−1) ∈ Ll−1[xk+l].
Since Ll−1 = L0[αk+1, . . . , αk+l−1], there exist fl ∈ K[x1, . . . , xk+l] and
h ∈ K[x1, . . . , xk] \ P such that g = fl(α1,...,αk+l−1,xk+l)

h(α1,...,αk)
. It follows that

fl ∈ K[x1, . . . , xk+l] ∩ P . Moreover, if L is separable over L0, then Ll is also
separable over Ll−1 (see Lang [33, Chapter VII, Theorem 4.9]), and it follows
that g has no multiple roots, so ∂g

∂xk+l
(αk+l) �= 0. This implies ∂fl/∂xk+l /∈ P .

Clearly fl ∈ ker(ϕl). For proving ker(ϕl) = (f1, . . . , fl), take f ∈ ker(ϕl).
Then g divides f(α1, . . . , αk+l−1, xk+l), so there exist r ∈ K[x1, . . . , xk+l]
and s ∈ K[x1, . . . , xk] \ P with

f(α1, . . . , αk+l−1, xk+l) · h(α1, . . . , αk)
fl(α1, . . . , αk+l−1, xk+l)

=
r(α1, . . . , αk+l−1, xk+l)

s(α1, . . . , αk)
.
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Therefore all coefficients of hsf − rfl (as a polynomial in xk+l) lie in
ker(ϕl−1). So by induction hsf − rfl ∈ (f1, . . . , fl−1)K(x1,...,xk)[xk+1,...,xk+l].
Since h, s �=0, this implies f ∈ (f1, . . . , fl), and the claim is proved.

For l = m we get ker(ϕm) = (f1, . . . , fm)K(x1,...,xk)[xk+1,...,xn]. The alge-
braic independence of α1, . . . , αk implies that K(x1, . . . , xk)[xk+1, . . . , xn] ⊆
K[x1, . . . , xn]P , so (ker(ϕm))K[x1,...,xn]P

= (f1, . . . , fm)K[x1,...,xn]P follows.
We obtain

PP ⊆ (ker(ϕm))K[x1,...,xn]P
= (f1, . . . , fm)K[x1,...,xn]P ⊆ PP ,

proving (a).
For proving (b), consider the last m columns of the Jacobian matrix,

which form the square matrix A := (∂fi/∂xk+j) ∈ K[x1, . . . , xn]m×m. Since
fi ∈ K[x1, . . . , xk+i], A is a lower triangular matrix with diagonal entries
∂fi/∂xk+i. Since these entries do not lie in P under the hypothesis of (b),
det(A) /∈ P follows, proving (b). ��

Notice that in Lemma 13.11, K[x1, . . . , xn]P is a local ring of dimension m
with maximal ideal PP . Therefore part (a) says thatK[x1, . . . , xn]P is regular,
so K[x1, . . . , xn] is a regular ring. This is generalized in Exercise 13.1.

The following lemma gives an interpretation of the rank of the Jacobian
determinant of f1, . . . , fm modulo a prime ideal in terms of the ideal generated
by the fi.

Lemma 13.12. Let I = (f1, . . . , fm) ⊆ K[x1, . . . , xn] be an ideal in a
polynomial ring over a field, and let P ⊂ K[x1, . . . , xn] be a prime ideal
containing I. If L := K[x1, . . . , xn]P /PP (which is a field isomorphic to
Quot (K[x1, . . . , xn]/P )), then

(a)

rank
(
∂fi
∂xj

mod P
)

≤ dimL

((
IP + P 2

P

)/
P 2
P

)
.

(b) If L is a separable field extension of K, then equality holds in (a).

Proof. We will construct linear maps ϕ: Lm → PP /P
2
P and ψ: PP /P 2

P → Ln.
First

ϕ: Lm → PP /P
2
P , (g1 + PP , . . . , gm + PP ) �→

m∑

j=1

gjfj + P 2
P

gives a well-defined, L-linear map with image im(ϕ) =
(
IP + P 2

P

)
/P 2

P . To
define ψ, consider f ∈ P 2

P . This means that hf =
∑r
j=1 gjhj with h ∈

K[x1, . . . , xn] \ P and gj, hj ∈ P . For 1 ≤ i ≤ n we get

h
∂f

∂xi
+ f

∂h

∂xi
=

r∑

j=1

(

gj
∂hj
∂xi

+ hj
∂gj
∂xi

)

∈ P,
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so ∂f/∂xi ∈ PP . Therefore the map

ψ: PP /P 2
P → Ln, f + P 2

P �→
(
∂f

∂x1
+ PP , . . . ,

∂f

∂xn
+ PP

)

,

is well defined. An easy calculation shows that ψ is L-linear. By considering
the images of the standard basis vectors of Lm under the composition ψ ◦
ϕ: Lm → Ln, we see that ψ ◦ ϕ is given by the Jacobian matrix modulo PP .
It follows that

rank
(
∂fi
∂xj

mod P
)

= dimL

(
im(ψ ◦ ϕ)

)

≤ dimL

(
im(ϕ)

)
= dimL

((
IP + P 2

P

)/
P 2
P

)
,

with equality if ψ is injective. So we have proved (a), and for proving (b) it
suffices to show that ψ is injective under the hypothesis of (b). Under this
hypothesis, Lemma 13.11(b) is applicable. Notice that ψ is independent of
f1, . . . , fm. So for showing the injectivity of ψ we may assume that f1, . . . , fm
are the polynomials given by Lemma 13.11. Then IP=PP by Lemma 13.11(a),
so ϕ is surjective. Moreover, dimL (im(ψ ◦ ϕ)) = rank (∂fi/∂xj mod P ) = m
by Lemma 13.11(b), so ψ ◦ ϕ: Lm → Ln is injective. Therefore ψ has to be
injective, and the proof is complete. ��

We are now ready for the proof of the Jacobian criterion.

Proof of Theorem 13.10. LetQ0 ∈ Spec (K[x1, . . . , xn]) be a prime ideal with
I ⊆ Q0 ⊆ P having minimal height among all prime ideals between I and P .
Assume that the theorem has been proved for Q0 in the place of Q. Then
part (a) also follows for Q, since ht(Q0) ≤ ht(Q). Moreover, if Q �= Q0, then
(K[x1, . . . , xn]/I)P/I is not regular by Example 13.7(1). So (b) tells us that
the inequality in (a) is strict for Q0 and therefore also for Q. Moreover, the
converse of (b) is trivially true since (K[x1, . . . , xn]/I)P/I is not regular. So
we may assume that Q has minimal height among the prime ideals between
I and P . By Lemma 1.22 and Theorems 6.5 and 8.22, this implies

dim (K[x1, . . . , xn]P /IP ) = ht(P )− ht(Q).

The quotient ring R := K[x1, . . . , xn]P /IP is a Noetherian local ring with
maximal ideal PP /IP and residue class field L := K[x1, . . . , xn]P /PP .
Since R ∼= (K[x1, . . . , xn]/I)P/I , we are interested in whether R is regular.
From (13.1) we obtain

dimL

(
(PP /IP )

/
(PP /IP )2

)
≥ dim(R) = ht(P )− ht(Q),

with equality if and only if R is regular. We have L-linear isomorphisms
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(PP /IP )
/

(PP /IP )2 ∼= PP
/(
IP + P 2

P

) ∼= (
PP /P

2
P

) /((
IP + P 2

P

)/
P 2
P

)
,

so
dimL

(
PP /P

2
P

)− dimL

((
IP + P 2

P

)/
P 2
P

)
≥ ht(P )− ht(Q),

with equality if and only if R is regular. Since Lemma 13.11(a) shows that
K[x1, . . . , xn]P is regular, dimL

(
PP /P

2
P

)
is equal to ht(P ), so combining the

above inequality with Lemma 13.12(a) yields

rank
(
∂fi
∂xj

mod P
)

≤ dimL

((
IP + P 2

P

)/
P 2
P

)
≤ ht(Q), (13.2)

and R is regular if and only if the second inequality is in fact an equality.
Parts (a) and (b) follow immediately from this. Moreover, if the hypothesis
of part (c) is satisfied, then Lemma 13.12(b) shows that the first equality
of (13.2) is in fact an equality, so (c) also follows.

The remark that the hypothesis of (c) is satisfied if K is a perfect field
follows from Proposition 13.8(a). ��

The Jacobian criterion gives a straightforward procedure for determining
the singular locus of an affine variety X ⊆ Kn. Assume for simplicity that
X is equidimensional of dimension m. Then a point x ∈ X is singular if and
only if the Jacobian matrix of the polynomials defining X , evaluated at x, has
rank less than h := n−m. This is equivalent to the condition that all h× h
minors of the Jacobian matrix vanish at x. So the singular locus is given by
the polynomials defining X together with the h × h minors of the Jacobian
matrix. In particular, we see that the singular locus is Zariski closed. But we
do not (yet) know whether it may happen that X consists entirely of singular
points.

Also notice that in the case of a hypersurface X = V(f), the singular
locus consists of the points in X where all partial derivatives ∂f/∂xi vanish.
Exercises 13.9 and 13.10 have some explicit examples.

The following result states the closedness of the singular locus in a slightly
more general situation. To address the question whether all points may be sin-
gular, we consider the nonsingular locus, the set of all nonsingular points,
and show that under reasonable hypotheses this set is dense. The upshot is
that in most situations singular points may be regarded as “rare.” For exam-
ple, it follows that an affine curve (= an affine variety over an algebraically
closed field that is equidimensional of dimension 1) has only finitely many
singular points.

Corollary 13.13 (The singular locus and the nonsingular locus).

(a) If A is an affine algebra over a perfect field, then the singular locus Xsing

in X := Spec(A) is closed.
(b) If R is a reduced Noetherian ring, then the nonsingular locus in Spec(R)

is dense.
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(c) The singular locus Xsing in an affine variety X is closed.
(d) The nonsingular locus in an affine variety over an algebraically closed

field is open and dense.

Proof. (a) Write A = K[x1, . . . , xn]/I with I = (f1, . . . , fm), and let
Q1, . . . , Qk ∈ Spec (K[x1, . . . , xn]) be the prime ideals that are mini-
mal over I. For a positive integer h, let Jh ⊆ K[x1, . . . , xn] be the ideal
generated by the h× h minors of the Jacobian matrix of the fi, and set
J0 := K[x1, . . . , xn]. With this, Theorem 13.10 yields

Xsing =
k⋃

i=1

VX
((
Jht(Qi) +Qi

)
/I

)
,

which is closed.
(b) Since the Zariski closure of the nonsingular locus consists of those prime

ideals containing the intersection of all prime ideals P ∈ Spec(R) such
that RP is regular, it suffices to show that RP is regular for all minimal
prime ideals P of R. An easy calculation shows that every localization
of a reduced ring is reduced, so in particular nil(RP ) = {0} for P a
minimal prime ideal. By Theorem 6.5, RP has precisely one prime ideal.
By Corollary 3.14(c), this prime ideal is equal to nil(RP ) = {0}. It follows
that RP is a field and therefore a regular local ring.

(c) Let I ⊆ K[x1, . . . , xn] be the ideal corresponding to the affine variety X .
Let Q1, . . . , Qk and Jh be as in the proof of part (a). With this notation,
Theorem 13.10 yields

Xsing =
k⋃

i=1

VKn

(
Jht(Qi) +Qi

)
,

which is closed.
(d) With I and Q1, . . . , Qk as above, we have K[X ] = K[x1, . . . , xn]/I, and

the Qi/I are the minimal prime ideals of K[X ]. By (a) there exists an
ideal J ⊆ K[x1, . . . , xn] such that K[X ]P/I (with P ⊂ K[x1, . . . , xn] a
prime ideal containing I) is regular if and only if J �⊆ P . Part (b) applies
to K[X ] by Theorem 1.25(a), so by the proof of (b), J is not contained
in any of the Qi. So Xi := V(Qi) �⊆ V(J) = Xsing holds for all i. In other
words, Xi ∩ Xsing is properly contained in Xi. If Y ⊆ X is the Zariski
closure of the nonsingular locus, we obtain Xi = (Xi ∩Xsing)∪ (Xi ∩ Y ).
Since K is algebraically closed we have I(Xi) = Qi, so Xi is irreducible
by Theorem 3.10(a), and it follows that Xi = Xi ∩ Y . Therefore X =
X1 ∪ · · · ∪Xk ⊆ Y . This shows that the nonsingular locus is dense. ��

Example 13.14. Consider the algebra A = K[x]/(x2) with K a field. Then
P = (x) is the only prime ideal in K[x] containing I := (x2). The Jacobian
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matrix reduced modulo P is zero. So by the Jacobian criterion (Theo-
rem 13.10), the local ring R := AP/I is not regular. (This is also clear since R
is zero-dimensional but not a field.) This example shows that for nonreduced
rings, the nonsingular locus may be empty. �

It holds in much greater generality that the singular locus is a closed sub-
set of the spectrum of a ring. For example, all so-called excellent rings satisfy
this. In fact, excellence is defined by a list of properties, among them the
closedness of the singular locus and the Noether property. The notion of an
excellent ring is due to Grothendieck. His objective was to capture some prop-
erties that many Noetherian rings share with affine algebras, but to exclude
other, more pathological, rings. The notion has led to some fruitful research.
Important results are that every localization of an excellent ring and every
finitely generated algebra over an excellent ring are excellent again. More-
over, all fields and the ring Z are excellent, and so are formal power series
rings over fields. So informally speaking, all Noetherian rings that mathe-
maticians usually deal with are excellent. More on excellent rings can be
found in Matsumura [37, Chapter 13]. But there do exist Noetherian rings
for which the singular locus is not closed. One such example was given by
Nagata [40, §5].

Exercises for Chapter 13

13.1 (Regular rings). Prove the following.

(a) If R is a regular local ring with maximal ideal m and P ∈ Spec(R[x]) is
a prime ideal with m ⊆ P , then R[x]P is regular.

(b) If S is a regular Noetherian ring, then so is S[x].
(c) Z and all polynomial rings Z[x1, . . . , xn] are regular rings.

*13.2 (Quotient rings of regular local rings). Let R be a regular local
ring and I ⊆ R an ideal. Show that the following statements are equivalent:

(a) R/I is a regular local ring.
(b) I = (a1, . . . , ak), where the ai are taken from a regular system of

parameters of R.

Show that if (b) is satisfied, then dim(R/I) = dim(R)− k. Give an example
in which I is proper but R/I is not regular.

13.3 (Cohen–Macaulay rings). In this exercise we look at Cohen–
Macaulay rings. A regular sequence of length n is a sequence a1, . . . , an
of elements of a ring R such that (a1, . . . , an) �= R and such that for
every i ∈ {1, . . . , n}, multiplication with ai induces an injective map on
R/(a1, . . . , ai−1). If R is a Noetherian local ring, then R is called Cohen–
Macaulay if R has a regular sequence of length equal to dim(R). In general,
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a Noetherian ring is called Cohen–Macaulay if the localization at every
prime ideal is Cohen–Macaulay.

(a) Show that every regular local ring is Cohen–Macaulay.
(b) Give an example of a Cohen–Macaulay local ring that is not regular.
(c) Show that the affine algebra A := K[x1, x2]/(x2

1, x1x2) is not Cohen–
Macaulay.

Cohen–Macaulay rings are an important topic in commutative algebra. In
this exercise we have barely scratched the surface. Readers can find more on
the subject in Eisenbud [17, Chapters 17 and 18] and Bruns and Herzog [8].

13.4 (The Krull topology). Let R be a ring and let I0 ⊇ I1 ⊇ I2 ⊇ · · · be
a descending chain (also known as a filtration) of ideals in R. An important
special case is In = In with I ⊆ R an ideal. We define the Krull topology
on R (with respect to the chain (In)) by calling a subset U ⊆ R open if for
every a ∈ U there exists a nonnegative integer n such that the residue class
a+ In is contained in U .

(a) Show that this defines a topology on R.
(b) We say that an R-valued sequence (ak)k∈N0 converges to an a ∈ R if for

every neighborhood U of a there are at most finitely many k with ak /∈ U .
Prove the equivalence of the following three statements:

(1) R is a Hausdorff space.
(2) Every R-valued sequence converges to at most one a ∈ R.
(3)

⋂
n∈N0

In = {0}.
So if R is a Noetherian local ring with maximal ideal m and In = mn,
these statements hold by Krull’s intersection theorem (Theorem 12.9).

(c) Let (ak)k∈N0 and (bk)k∈N0 be two R-valued sequences converging to a
and b, respectively. Show that (ak + bk) and (ak · bk) converge to a + b
and a · b, respectively.

13.5 (The formal power series ring is complete). Suppose that S =
K[[x1, . . . , xn]] is the formal power series ring in n indeterminates over a
field. Recall that S is a local ring with maximal ideal m = (x1, . . . , xn)S (see
Exercise 12.6(a)).

(a) Let (fk)k∈N be a sequence with fk ∈ S such that for every nonnegative
integer m there exists km such that fk′ − fk ∈ mm for all k, k′ ≥ km.
In other words, assume that (fk) is a Cauchy sequence. Show that there
exists f ∈ S such that limk→∞ fk = f . So S is a complete local ring.

(b) Show that every polynomial f ∈ K[x1, . . . , xn] \ (x1, . . . , xn)K[x1,...,xn] is
invertible in S. So the local ring R := K[x1, . . . , xn](x1,...,xn) is embedded
in S.

(c) Show that every f ∈ S is the limit of a convergent sequence (fk)k∈N0

with fk ∈ K[x1, . . . , xn]. So S is the completion of R.
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(d) Assume that char(K) �= 2. Show that the polynomial 1+x1 has a square
root in S. Conclude that R � S, so R is not complete.

Remark: By the result of Exercise 12.6(a), we have gr(S) ∼= K[x1, . . . , xn].
From Exercise 12.5 it follows that gr(R) ∼= K[x1, . . . , xn], too. This exem-
plifies that a local ring and its completion have the same associated graded
ring.

13.6 (Completion is more local than localization). The goal of this
exercise is to illustrate the idea that completion provides a look at a smaller
scale than localization. The exercise, and in particular Fig. 13.1, were inspired
by Eisenbud [17, Section 7.2 and Figure 7.3]. Consider the cubic curve
X ⊆ K2 given by the equation ξ22−ξ21(ξ1+1) = 0, where K is an algebraically
closed field of characteristic not equal to 2. Let R be the localization of the
coordinate ring K[X ] at the (singular) point (0, 0).

(a) Show that R is an integral domain, so that Spec(R) is irreducible.
(b) Show that the completion R̂ is not an integral domain. So Spec(R̂) decom-

poses into components. Hint: Inspired by Exercise 13.5(d), construct two
R-valued Cauchy sequences whose product converges to 0. Then use
Exercise 13.4(c).

Remark: In fact, it is not hard to prove that Spec(R̂) has two irreducible
components. Since X has a double point at (0, 0), we should expect to see
two components on a small scale. So completion meets this expectation, but
localization does not. See Fig. 13.1 for an illustration. (Solution on page 230)

��

��

�

Fig. 13.1. Local and “more local”: enlarged area represents completion

13.7 (Hypotheses of the Jacobian criterion). Give an example in which
the converse of Theorem 13.10(b) fails.

13.8 (A nicer version of the Jacobian criterion?). It would be nice to
have the following unified version of parts (b) and (c) of Theorem 13.10:
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(b’) Equality holds in (a) if and only if (K[x1, . . . , xn]/I)P/I is regular and
Quot (K[x1, . . . , xn]/P ) is a separable extension of K.

Is this true? Give a proof or a counterexample.

13.9 (The singular locus). Determine the singular locus of the affine vari-
eties X over K = C given by the following equations:

(a) x3
1 − x2

2 = 0 (see Fig. 12.1 on page 179)

(b) x2
2 − x2

1(x1 + 1) = 0 (see Fig. 12.1 on page 179)

(c) x2
2 − x1(x2

1 + 1) = 0 (see Fig. 12.1 on page 179)

(d)
(
(x1 − 3)2 + x2

2 − 25
)
·
(
(x1 + 3)2 + x2

2 − 25
)

(e) x2
1 − x2

2x3 = 0 (this surface is called the Whitney umbrella)

(f) (x3
1 − x2

2) · (x2
1 + x2

2 − 2) = 0 and (x3
1 − x2

2) · x3 = 0

Visualize the results by a drawing or in your imagination.

13.10 (Elliptic curves). Let K be an algebraically closed field of charac-
teristic not equal to 2. Let a, b ∈ K. Show that the cubic curve E in K2 given
by the equation

x2
2 = x3

1 + ax1 + b

is nonsingular if and only if 4a3 + 27b2 �= 0.
Remark: The above equation is the Weierstrass normal form of a cubic curve.
If E is nonsingular, it is called an elliptic curve.

13.11 (The singular locus of Z[
√−3]). This is an example from algebraic

number theory. Consider the ring R := Z[
√−3] ⊂ C.

(a) Show that the ring S = Z
[
(1 +

√−3)/2
]

is Euclidean. Hint: You may
use the norm function N : C→ R, z �→ |z|2.

(b) Use (a) and Example 13.7(3) to determine the singular locus Xsing ⊆
X := Spec(R).



Chapter 14

Rings of Dimension One

Noetherian rings of dimension 0 are rather well understood: They are semilo-
cal, and a Noetherian local ring of dimension 0 is regular if and only if it
is a field. The next step is to study one-dimensional rings. In geometry,
one-dimensional rings occur as coordinate rings of affine curves. In algebraic
number theory, they occur as rings of algebraic integers. The final chapter
of this book is devoted to rings of dimension one. We first show that a Noe-
therian local ring of dimension one is regular if and only if it is normal. As
a consequence, we see that the process of normalization, when applied to an
affine curve, amounts to desingularization.

In the second section of this chapter we look at the multiplicative theory of
ideals. We extend the notion of ideals by including so-called fractional ideals,
and ask which ideals are invertible as fractional ideals. This is closely linked
having height one.

The last section is about Dedekind domains. These can be characterized
as normal Noetherian domains of dimension ≤ 1. It turns out that this is
equivalent to the condition that all nonzero ideals are invertible (as fractional
ideals). Yet another equivalent condition is that every ideal can be written
as a product of prime ideals. If this is satisfied, then the factorization of an
ideal as a product of prime ideals is unique. So ideals in Dedekind domains
enjoy the unique factorization property, while elements in general do not.
The extent to which a Dedekind domain fails to be factorial is measured
by the ideal class group, which we introduce. As an application, we will see
that the group law on an elliptic curve can be defined by a correspondence
between points and elements of the ideal class group of the coordinate ring.

14.1 Regular Rings and Normal Rings

We start by taking a closer look at one-dimensional regular local rings. By
definition, the maximal ideal of a one-dimensional regular local ring R is
a principal ideal m = (π). A generator π is often called a uniformizing
parameter. It follows that mn = (πn) for all nonnegative integers n. Krull’s

G. Kemper, A Course in Commutative Algebra, Graduate Texts
in Mathematics 256, DOI 10.1007/978-3-642-03545-6 15,
c© Springer-Verlag Berlin Heidelberg 2011
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intersection theorem (Theorem 12.9) shows that for every nonzero a ∈ R
there exists a maximal integer n such that a ∈ mn, so a = u ·πn with u ∈ R×

an invertible element. Since R is an integral domain by Corollary 13.6(a), we
can form K := Quot(R) and write every a ∈ K× (:= the multiplicative group
K\{0}) as a = u·πn with n ∈ Z and u ∈ R×. It is easy to see that n and u are
unique (and n does not depend on the choice of the uniformizing parameter).
A consequence is that R is factorial with exactly one prime element, up
to invertible elements. (As mentioned before, it is true but much harder to
show that regular local rings of any dimension are factorial.) Mapping a to n
defines a map ν: K× → Z. This map is a group homomorphism, and if we
set ν(0) := ∞, then ν satisfies ν(a + b) ≥ min{ν(a), ν(b)} for all a, b ∈ K,
and ν(a) = ∞ if and only if a = 0. A map with these properties is called a
discrete valuation on K. We can retrieve R from K by means of ν, since

R = {a ∈ K | ν(a) ≥ 0}.

This is usually expressed by saying that R is the valuation ring belonging
to the valuation ν. One also says that R is a discrete valuation ring
(abbreviated DVR). Viewing regular local rings of dimension one as discrete
valuation rings has become so common that these rings are often just referred
to as DVRs. This is justified since as a converse of what we have just found,
all DVRs are one-dimensional regular local rings (see Exercise 14.1).

Theorem 14.1. A Noetherian local ring of dimension one is regular if and
only if it is normal.

Proof. Regularity implies normality by Corollary 13.6(b).
For the converse, assume that R is a one-dimensional normal Noetherian

local domain with maximal ideal m. By Corollary 7.9 there exists a ∈ m
with

√
(a) = m. By the Noether property there exists an ideal P that is

maximal among all colon ideals (a) : (y) := {x ∈ R | xy ∈ (a)} ⊆ R with
y ∈ R \ (a). So P := (a) : (b) with b ∈ R \ (a). We claim that P is a prime
ideal. Indeed, P �= R since b /∈ (a), and if x, y ∈ R \ P , then xb /∈ (a)
and (a) : (b) ⊆ (a) : (xb), so (a) : (xb) = P by the maximality. Therefore
y /∈ (a) : (xb), so xy /∈ P . We have (a) ⊆ P , and since m is the only prime
ideal of R that contains (a), we conclude that m = P = (a) : (b). Clearly
a �= 0, so we may consider the R-submodule

I :=
b

a
·m ⊆ Quot(R).

From m = (a) : (b) we get I ⊆ R, so I is an ideal. By way of contradiction
assume that I ⊆ m. Then m is an R

[
b
a

]
-module, so by Lemma 8.3, b/a is

integral over R. By hypothesis, this implies b/a ∈ R, so b ∈ (a), a contra-
diction. We conclude that I = R. Multiplying this equation by a/b yields
m = R · ab , so m is a principal ideal. Therefore R is regular. 	
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Exercise 12.8 shows that this result does not extend to higher dimensions.
In fact, there are examples of nonregular normal Noetherian local rings of all
dimensions ≥ 2.

Theorem 14.1 has some nice consequences. For example, if R is a Noether-
ian normal ring, then RP is normal for all P ∈ Spec(R) by Proposition 8.10,
so Theorem 14.1 says that RP is regular for all P with ht(P ) ≤ 1. Geomet-
rically, this means that if X is a normal variety over an algebraically closed
field, then the singular locus has codimension at least 2 in X . Both these
statements are referred to as regularity in codimension 1. However, regularity
in codimension 1 does not imply normality; a second condition, usually called
“S2,” is required (see Eisenbud [17, Theorem 11.15], and Exercise 14.3 for an
explicit example). The situation is better for rings of dimension 1. In fact,
it follows from Proposition 8.10 and Theorem 14.1 that a one-dimensional
Noetherian domain is normal if and only if it is regular, and an irreducible
affine curve is normal if and only if it is nonsingular. An important point is
that normality is a property that can be achieved by normalization (whereas
there is no such process as “regularization” in general). So in particular, by
combining Corollary 8.28 with Theorem 14.1 we get the following result.

Corollary 14.2 (Desingularization of affine curves). Let X be an irreducible
affine curve. Then there exists an affine curve X̃ with a surjective morphism
f : X̃ → X such that:

(a) X̃ is nonsingular.
(b) All fibers of f are finite, and if x ∈ X is a nonsingular point, then the

fiber of x consists of one point.

Generalizing Corollary 14.2, we could speak of “desingularization in codi-
mension 1” of a higher-dimensional irreducible affine variety. Moreover, in
Exercise 14.4, the corollary is generalized to arbitrary affine curves. What
Corollary 14.2 does can best be pictured in the situation of a double point:
The two branches of the curve that cross are taken apart by raising one
to a higher dimension, thereby deleting the double point. Sometimes one
also speaks of blowing up a singularity. Example 8.9(4) illustrates this. The
example also shows that the “higher” dimension can in fact be smaller. The
following is an example in which the dimension does go up.
Example 14.3. We wish to desingularize the plane complex curve X ⊆ C2

given by the equation x4
1 +x4

2−x2
1 = 0, which is irreducible by the Eisenstein

criterion (see Lang [33, Chapter V, Theorem 7.1]). The curve X is shown in
Fig. 14.1. The idea is to desingularize X by forming the normalization of the
coordinate ring A := C[X ]. How can we find quotients of elements of A that
are integral over A? The Jacobian criterion (Theorem 13.10) yields (0, 0) as
the only singular point. By Theorem 14.1, the localization of the coordinate
ring A = C[X ] is normal at all points except (0, 0). So the normalization Ã

is contained in all Ax with x �= (0, 0). This means that an f/g ∈ Ã satisfies
g(x) �= 0 for x �= (0, 0). From this is it straightforward to try the residue class
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Fig. 14.1. A “butterfly” curve

of x1 as the denominator g. By trial and error, we find that a := x2
2/x1 (with

xi := xi + (x4
1 + x4

2 − x2
1) ∈ A) is integral over A, since dividing the defining

equation by x2
1 yields x2

1 + a2 − 1 = 0. Putting this equation together with
the defining equation for a, we consider the variety

X̃ :=
{
(ξ1, ξ2, ξ3) ∈ C3 | ξ21 + ξ23 − 1 = ξ1ξ3 − ξ22 = 0

} ⊂ C3.

We hope and guess that X̃ is the desired desingularization. To verify this, we
first check that

f : X̃ → X, (ξ1, ξ2, ξ3) �→ (ξ1, ξ2),

is a morphism, since (ξ1, ξ2, ξ3) ∈ X̃ obviously implies ξ41 + ξ42 − ξ21 = 0.
Secondly, every point (ξ1, ξ2) ∈ X \ {(0, 0)} has the unique preimage
(ξ1, ξ2, ξ22/ξ1), and the singular point (0, 0) has two preimages: (0, 0, 1) and
(0, 0,−1). Finally, the Jacobian matrix of X̃ is

J =
(

2x1 0 2x3

x3 −2x2 x1

)

.

For points (ξ1, ξ2, ξ3) ∈ X̃ with ξ2 �= 0, also ξ1 and ξ3 are nonzero, so
J(ξ1, ξ2, ξ3) has rank 2. On the other hand, if ξ2 = 0, then ξ1 or ξ3, but not
both, are zero, and again rank (J(ξ1, ξ2, ξ3)) = 2. By the Jacobian criterion,
this shows that X̃ is nonsingular. So we have indeed found a desingulariza-
tion. With a bit more work (i.e., by verifying that the equations for X̃ define
a prime ideal) we could also establish that X̃ is exactly the normalization
of X .

This example shows very nicely what happens: The original plane curve is
wound around the cylinder given by the equation ξ11 + ξ23 − 1 = 0 in such a
way that the branches of the curve are on different sides of the cylinder. In
this way the double point is blown up. �
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More examples are contained in Exercise 14.5.
In dimension greater than one, the existence and calculation of a desin-

gularization is a much harder problem. In fact, in positive characteristic
the existence problem is still open. For a good overview and an in-depth
treatment, readers should turn to Cutkosky [14].

14.2 Multiplicative Ideal Theory

For any ring R, the set of ideals together with the ideal product forms an
abelian monoid with R as neutral element. The only invertible element in
this monoid is R itself. The situation becomes more interesting if we enlarge
our view by including fractional ideals, according to the following definition.

Definition 14.4. Let R be an integral domain and K := Quot(R) its field
of fractions.

(a) A fractional ideal is an R-submodule I ⊆ K. The product of two
fractional ideals is defined as the product of ordinary ideals (see Defi-
nition 2.5), making the set of fractional ideals into an abelian monoid
with neutral element R. (It should be noted that some authors require
fractional ideals to be nonzero, and/or impose the additional condition
that there exist a nonzero a ∈ R with aI ⊆ R.)

(b) A fractional ideal is called invertible if there exists a fractional ideal J
with I · J = R. So the invertible fractional ideals form an abelian group,
which we write as C(R). (We will give an explanation for the choice of
the letter C on page 205.)

It is possible to generalize the above definition to rings that need not be
integral domains by considering the total ring of fractions instead of the field
of fractions. However, almost none of the theory that we will develop here
carries over to this case. So we continue to assume that R is an integral
domain.

If a product I · J of fractional ideals is invertible then so are I and J
(multiply the inverse of I · J by J and by I), and conversely. For every
nonzero a ∈ K, the principal fractional ideal (a)R is invertible (with inverse(
a−1

)
R
). This gives a homomorphism from K× into C(R) with kernel R×.

In general, this is not surjective, i.e., there may exist nonprincipal invertible
ideals, as the following example shows.
Example 14.5. In the ring R := Z

[√−5
] ⊆ C, consider the ideal I =

(
2, 1 +

√−5
)
R
⊆ R. If J :=

(
1, 1−√−5

2

)

R
⊆ Quot(R), then

I · J =
(
2, 1−√−5, 1 +

√−5, 3
)
R

= R,
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so I is invertible. But I is not a principal ideal. Indeed, from the assumption
I = (z)R with z = a+b

√−5, a, b ∈ Z, we deduce that a2+5b2 (the norm of z,
which by definition is the product of z and its complex conjugate) divides
4 and 6, the norms of 2 and of 1 +

√−5. This implies a = ±1 and b = 0, so
I = R. But I =

{
x+ y

√−5 | x, y ∈ Z, x ≡ y mod 2
} �= R.

We have already studied this ring R in Example 8.9(3), and seen that it
is normal but not factorial. �

So invertible ideals generalize principal ideals. But they are not very far
away from being principal, as the following result shows.

Proposition 14.6 (Invertible ideals are locally principal). Let R be an inte-
gral domain and I ⊆ K := Quot(R) a fractional ideal. Then the following
statements are equivalent:

(a) I is invertible.
(b) If I ′ := {a ∈ K | aI ⊆ R}, then I · I ′ = R.
(c) I is nonzero, finitely generated, and for every prime ideal P ∈ Spec(R)

there exists a ∈ I such that the localization of I satisfies

IP = (a)RP .

We describe the latter property of I by saying that I is locally principal.

Proof. We start by showing that (a) implies (c). So we assume that there
exists a fractional ideal J ⊆ K with I · J = R. In particular, we have 1 =∑n
i=1 aibi with ai ∈ I and bi ∈ J . So every x ∈ I satisfies x =

∑n
i=1 xbiai,

and xbi ∈ I · J = R. Therefore I is generated by a1, . . . , an. Clearly I is
nonzero. Moreover, for every P ∈ Spec(R) there exist a ∈ I and y ∈ J with
ay ∈ R\P (otherwise, I ·J would be contained in P ). So for a general element
b/u ∈ IP (with b ∈ I and u ∈ R \ P ) we have

b

u
=

by

uay
· a ∈ (a)RP ,

since by ∈ I · J = R and uay ∈ R \ P . So I is locally principal.
Now we assume (c) and wish to deduce (b). By the definition of I ′, I ·I ′ ⊆ R

is an ideal. By way of contradiction, assume that it is proper. Then there
exists a maximal ideal P ∈ Spec(R) with I ·I ′ ⊆ P . (This conclusion requires
Zorn’s lemma.) By hypothesis we have a ∈ I with IP = (a)RP , and I =
(a1, . . . , an). It follows that there exists u ∈ R \ P with uai ∈ (a)R for all i,
so uI ⊆ (a)R. Since I �= {0}, a is nonzero, and it follows that u/a ∈ I ′, so
u = a · u/a ∈ I · I ′, in contradiction to I · I ′ ⊆ P . Therefore (b) holds.

Finally, (b) implies (a) since I ′ is a fractional ideal, and we are done. Let
us add that (b) can easily be deduced directly from (a). 	


In view of part (b) of the above proposition, we define

I−1 := {a ∈ Quot(R) | aI ⊆ R}
for any fractional ideal of an integral domain.
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The finiteness condition in part (c) cannot be omitted: Although it may
seem unlikely, there are examples of Noetherian domains with fractional ideals
that are locally principal but not finitely generated (see Exercise 14.6).

We draw a few consequences from Proposition 14.6.

Corollary 14.7 (Properties of invertible ideals). Let I ∈ C(R) be an invert-
ible fractional ideal of a Noetherian domain R.

(a) There exist invertible ideals J1, J2 ⊆ R with I = J1 · J−1
2 .

(b) If I ⊆ R, then every prime ideal P ∈ Spec(R) that is minimal over I has
height 1.

(c) If I =: P is a prime ideal of R, then P has height 1 and RP is regular.

Proof. (a) By Proposition 14.6, I is finitely generated. If a ∈ R \ {0} is
a common denominator of all elements in a generating set, then J1 :=
I · (a) ⊆ R and I = J1 · (a)−1. Since J2 := (a) and I are invertible, the
same holds for J1.

(b) Let P ∈ Spec(R) be minimal over I. Then PP is minimal over IP , which
by Proposition 14.6 is a principal ideal. So ht(PP ) ≤ 1 by the principal
ideal theorem (Theorem 7.4). Since {0} �= I ⊆ PP , the height must be
equal to 1. So ht(P ) = ht(PP ) = 1.

(c) By part (b), P has height 1, so dim(RP ) = 1. By Proposition 14.6, the
maximal ideal of RP is principal, so RP is regular. 	


So we cannot hope that prime ideals of height other than 1 are invert-
ible. But when are all height-one prime ideals invertible? By the corollary, a
necessary condition for this is regularity in codimension 1. So a normal Noe-
therian domain would be a good candidate. However, in Exercise 14.7 we find
an example of a normal Noetherian domain with a prime ideal of height 1
that is not invertible. So more is required. Recall that by Proposition 8.8,
factoriality is a stronger condition than normality, and by Proposition 8.10,
the condition that every localization at a prime ideal is factorial lies between
the two. We call an integral domain R locally factorial if RP is factorial
for every P ∈ Spec(R).

Theorem 14.8 (Invertible ideals in a locally factorial ring). Let R be a Noe-
therian domain.

(a) If R is locally factorial, then every height-one prime ideal of R is
invertible.

(b) If every height-one prime ideal of R is invertible, then an ideal I ⊆ R is
invertible if and only if it is a finite product of prime ideals of height 1
(where I = R occurs as the empty product).

Remark. As mentioned before, every regular ring is locally factorial. (We
have proved this only for rings of dimension at most 1; see page 197.) So all
regular domains lie within the scope of the theorem. �
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Proof of Theorem 14.8. (a) Let Q ⊂ R be a prime ideal of height 1. We
use Proposition 14.6. Clearly Q is finitely generated and nonzero, so we
need to show only that QP ⊆ RP is a principal ideal for every P ∈
Spec(R). If Q �⊆ P , then Q contains elements that are invertible in RP ,
so QP = (1)RP is a principal ideal. On the other hand, if Q ⊆ P , then by
Theorem 6.5, QP is a prime ideal of RP of height 1. Since RP is factorial,
it follows by Lemma 5.14 that QP is a principal ideal in this case, too.

(b) It follows from the hypothesis that every product of height-one prime
ideals is also invertible. We prove the converse by Noetherian induction.
So assume that there exists an invertible ideal that is not a product of
height-one prime ideals. By the Noether property we can choose I be
maximal among all counterexamples. Since R is not a counterexample,
I �= R, and therefore there exists a prime ideal P ∈ Spec(R) that is
minimal over I. By Corollary 14.7(b), P has height 1, so it is invertible.
Using Lemma 14.9 below, we obtain I � J := I · P−1 ⊆ R. Since I is
invertible, so is J . With the maximality of I, this implies that J is a
product of height-one prime ideals. So the same holds for I, and we are
done. 	


In the proof we have used the following lemma.

Lemma 14.9. Let R be a Noetherian domain and let I ⊆ R be a nonzero
ideal that is contained in an invertible prime ideal P . Then I � I ·P−1 ⊆ R.

Proof. From I ⊆ P it follows that J := I ·P−1 ⊆ P ·P−1 = R. Moreover, I =
J ·P ⊆ J . Assume that I = J . Then I = P · I. This localizes to IP = PP · IP ,
which by Nakayama’s lemma (Theorem 7.3) gives IP = {0}. Since there are
no zero divisors, we obtain I = {0}, contradicting the hypothesis. 	


Theorem 14.8(b) becomes even more interesting if we combine it with the
following unique factorization result.

Proposition 14.10 (Unique factorization of invertible ideals). Let R be an
integral domain and let I ⊆ R be an invertible ideal that has a factorization

I = P1 · · ·Pn

with Pi prime ideals (where n = 0 occurs if I = R). Then this factorization
is unique up to the order of the factors.

Proof. We use induction on n. Let I = Q1 · · ·Qm be another factorization
with Qi ∈ Spec(R). If n = 0 then m = 0, since otherwise I ⊆ Q1 � R=I.
Consider the case n > 0. By renumbering, we may assume that P1 is min-
imal among the Pi. Since Q1 · · ·Qm ⊆ P1, there exists i with Qi ⊆ P1. By
renumbering, we may assume i = 1. Since P1 · · ·Pn ⊆ Q1, there exists j
with Pj ⊆ Q1, so Pj ⊆ Q1 ⊆ P1. With the minimality of P1, this implies
P1 = Q1. Since I is invertible, so are all Pi. Multiplying by P−1

1 = Q−1
1 gives

P2 · · ·Pn = Q2 · · ·Qm, and the result follows by induction. 	
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Assume thatR is a locally factorial Noetherian domain, or more generally a
Noetherian domain in which all height-one prime ideals are invertible. We can
extend Theorem 14.8(b) and Proposition 14.10 to invertible fractional ideals.
In fact, if I ⊆ Quot(R) is an invertible fractional ideal, then it follows by
Corollary 14.7(a) and Theorem 14.8(b) that I can be written as a product of
height-one prime ideals and inverses of height-one prime ideals. Conversely, it
follows from the group property of C(R) that every such product is invertible.
More formally, let M ⊆ Spec(R) be the set of all prime ideals of height 1.
Then a fractional ideal I is invertible if and only if it can be written as

I =
∏

Q∈M
QeI,Q (14.1)

with eI,Q ∈ Z, and all but finitely many eI,Q equal to 0. It follows from
Proposition 14.10 that the eI,Q are unique. In fact, if there existed two dif-
ferent factorizations, we could multiply both by height-one prime ideals until
we obtained two different factorizations of a nonfractional ideal, contradict-
ing Proposition 14.10. It also follows that I ⊆ R if and only if all eI,Q are
nonnegative.

If we multiply two invertible ideals, the corresponding exponents eI,Q
in (14.1) get added. So our results can be expressed by saying that the group
C(R) of invertible fractional ideals is isomorphic to the free abelian group
generated by the height-one prime ideals. This motivates the following def-
inition. For any ring R, the group Div(R) of Weil divisors is defined to
be the free abelian group generated by the height-one prime ideals of R. In
contrast to C(R), the group of Weil divisors is usually written additively, so
a Weil divisor is a “formal” Z-linear combination of height-one prime ideals.
In particular, if R is the coordinate ring of an affine curve, a Weil divisor can
be written as a formal Z-linear combination of points.

In this context, an invertible ideal of an integral domain R is called a
Cartier divisor, and C(R) is the group of Cartier divisors. This explains the
use of the letter C. (It should be noted that the standard definition of Cartier
divisors in algebraic geometry is different; see Hartshorne [26, page 141].) So
if R is a locally factorial Noetherian domain (or, more generally, a Noe-
therian domain in which all height-one prime ideals are invertible), we have
C(R) ∼= Div(R). Using the isomorphism, we can speak of the Weil divisor
associated to an invertible ideal or to a nonzero element a ∈ R: The latter is∑n

i=1 ei ·Pi if (a) =
∏n
i=1 P

ei
i . The situation becomes less nice when we relax

the conditions on R. Exercise 14.8 deals with the case that R is a normal
Noetherian domain.
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14.3 Dedekind Domains

In this theory, the best-behaved domains are those in which every nonzero
ideal is invertible. We will study these rings now, and see that the invertibility
of nonzero ideals is equivalent to various other interesting conditions.

Theorem 14.11 (Rings with a perfect multiplicative ideal theory). For an
integral domain R, the following statements are equivalent:

(a) Every nonzero ideal of R is invertible.
(b) R is Noetherian and every ideal of R is locally principal.
(c) R is Noetherian and normal and has dimension at most 1.
(d) Every ideal I ⊆ R is a finite product of prime ideals (where I = R occurs

as the empty product).

If these conditions are satisfied, then the factorization of a nonzero ideal as
a product of prime ideals is unique up to the order of the factors. Moreover,
every finitely generated, nonzero fractional ideal has a unique factorization
as (14.1).

Proof. It follows from Proposition 14.6 that (a) implies (b).
We now assume (b) and wish to deduce (c). It follows that for every

P ∈ Spec(R), PP ⊆ RP is a principal ideal. If ht(P ) = 0, then P = {0} and
RP = Quot(R) is regular. Otherwise, it follows that RP is one-dimensional
and regular. Therefore R is regular (and hence normal by Corollary 13.6(b)
and Proposition 8.10) and of dimension at most 1. So we have deduced (c).

Next we assume (c) and wish to prove (d). By (c), R is locally factorial
since for every P ∈ Spec(R), the local ring RP is a field (in the case P = {0})
or a discrete valuation ring (by Theorem 14.1 and the discussion preceding it).
So by Theorem 14.8(a), every height-one prime ideal of R is invertible. By
way of contradiction, assume that there exists an ideal I ⊆ R that is not
a finite product of prime ideals. Since R is Noetherian, we may assume I
to be maximal with this property. We have {0} �= I � R, so there exists a
prime ideal P that contains I. Since dim(R) ≤ 1 and P �= {0}, P must have
height 1, so it is invertible. Lemma 14.9 yields I � I · P−1 ⊆ R, so by the
maximality of I, I · P−1 is a finite product of prime ideals. Therefore the
same is true for I.

The most work is required for deducing (a) from (d). We will first show
that (under the assumption (d)) every invertible prime ideal is maximal.
From this we will draw the (at first sight surprising) consequence that every
nonzero prime ideal is invertible, which together with the hypothesis (d)
implies (a) directly. So let P ⊆ R be an invertible prime ideal. To show that
P is maximal, we need to prove that P + (a) = R for every a ∈ R \ P . We
have factorizations

P + (a) = P1 · · ·Pn and P + (a2) = P ′
1 · · ·P ′

m
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as products of prime ideals. Computing modulo P and writing a := a+ P ∈
R := R/P , we get

(a)R = P1 · · ·Pn and (a2)R = P ′
1 · · ·P ′

m.

This gives two factorizations of (a2), which is an invertible ideal of R.
By Proposition 14.10 it follows that m = 2n and, after renumbering,
P i = P ′

2i−1 = P ′
2i for i = 1, . . . , n. By Lemma 1.22, the same holds for

the original Pi and P ′
j , and we conclude that P + (a2) = (P + (a))2. In par-

ticular, every x ∈ P can be written as x = y+ az + a2w with y ∈ P 2, z ∈ P ,
and w ∈ R. But then w ∈ P since a2w = x − y − az ∈ P and a2 /∈ P . So
x ∈ P 2 + a · P , and we obtain

P ⊆ P · (P + (a)) ⊆ P.

Multiplying by P−1 yields P + (a) = R, as claimed.
The second (and final) step is to show that every nonzero prime ideal is

invertible. So assume that {0} �= Q ∈ Spec(R). Choose a nonzero b ∈ Q.
By hypothesis, we have (b) = Q1 · · ·Qr with Qi ∈ Spec(R). Since (b) is
invertible, the Qi are invertible, too, so by what we have shown they are
maximal. Since Q1 · · ·Qr ⊆ Q, there exists an i with Qi ⊆ Q, so Q = Qi
by the maximality of Qi. Therefore Q is invertible, and the proof of the
equivalence of (a) through (d) is complete.

The uniqueness of a factorization of a nonzero ideal follows from (a), (d),
and Proposition 14.10. If I is a finitely generated, nonzero fractional ideal,
there exists a nonzero a ∈ R such that J := aI ⊆ R. Since J and (a) are
products of prime ideals, I has a factorization as (14.1). If there are two
such factorizations, we can multiply both by prime ideals until we obtain
two factorizations of a nonfractional ideal. So the factorizations are unique
after all. 	


An integral domain that satisfies the equivalent conditions from
Theorem 14.11 is called a Dedekind domain. Of these conditions, (c) is the
one that tends to be easiest to verify. The condition (b) shows that Dedekind
domains are not too far away from principal ideal domains. Although our
investigation originated from studying condition (a), condition (d) and the
unique factorization statement may be the most interesting. Notice that ele-
ments of a Dedekind domain do not always enjoy the unique factorization
property that holds for ideals: consider Example 8.9(3). So ideals are “ide-
alized” elements. Many more properties that are equivalent to R being a
Dedekind domain can be found in the literature. For instance, Larsen and
McCarthy [34, Theorem 6.20] list 16.

An important class of Dedekind domains comes from algebraic geometry:
If X is an irreducible, nonsingular affine curve, then the coordinate ringK[X ]
is a Dedekind domain since it satisfies (c) from Theorem 14.11.
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Another class of arguably even more importance comes from number the-
ory: Let K be a number field, i.e., a finite field extension of Q. Then the
ring of algebraic integers in K is defined as the integral closure of Z in K,
and is written as OK . It follows from Lemma 8.27 that OK is Noetherian.
Being an integral closure of a ring in a field, it is also normal. Since OK
is an integral extension of Z, it has dimension 1 by Corollary 8.13. So OK
satisfies condition (c) and is therefore a Dedekind domain. Rings of algebraic
integers are the central object of study in the field of algebraic number the-
ory. Historically, much of the interest in rings of algebraic integers originated
from the study of Diophantine problems. For instance, the question which
integers can be represented as x2 + dy2 (with x, y, d ∈ Z, but d fixed) can
be translated into a question about algebraic integers using the factorization
x2 + dy2 =

(
x+ y

√−d) (
x− y√−d). So one is led to calculations in the ring

OK of algebraic integers in the number field K = Q(
√−d). Clearly the ques-

tion whether OK is factorial plays a central role in this game. The answer is
yes for some d (e.g., d = 1), but no for most (e.g., d = 5; see Example 8.9(3)).
Another extremely well-known Diophantine equation is the Fermat equation
xn + yn = zn. With ζ2n a primitive (2n)th root of unity, this translates to

n∏

i=1

(
x− ζ2i−1

2n y
)

= zn,

an equation in the ring OK of algebraic integers in the cyclotomic field
K = Q(ζ2n). Again, the question whether OK is factorial arises naturally.
In fact, there were attempts at proving Fermat’s last theorem that hinged
on the assumption that OK is factorial. Again, this is false for most n. The
following example illustrates how the nonuniqueness of factorization in a ring
of algebraic integers is resolved by turning to ideals.
Example 14.12. Consider the ring R = Z

[√−5
]
. In Example 8.9(3) we have

seen that R is normal, so R is the ring of algebraic integers in Q(
√−5). There

we have also exhibited an example of a nonunique factorization:

6 = 2 · 3 =
(
1 +
√−5

) (
1−√−5

)
. (14.2)

How do the corresponding principal ideals (2)R, (3)R, etc. factorize? In Exer-
cise 14.9 it is shown that every ideal of a Dedekind domain is generated by
two elements. With this in mind, it is not too hard to find the following
factorizations, which are easy to verify:

(2)R =
(
2, 1 +

√−5
)2

R
,

(3)R =
(
3, 1 +

√−5
)
R

(
3, 1−√−5

)
R
,

(
1 +
√−5

)
R

=
(
2, 1 +

√−5
)
R

(
3, 1 +

√−5
)
R
,

(
1−√−5

)
R

=
(
2, 1 +

√−5
)
R

(
3, 1−√−5

)
R
.
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To see that
(
2, 1 +

√−5
)
R

and
(
3, 1±√−5

)
R

are prime ideals, observe that
they are the kernels of the ring homomorphisms R→ F2, a+ b

√−5 �→ a+ b
mod 2, and R → F3, a+ b

√−5 �→ a∓ b mod 3, respectively. So we get the
unique factorization

(6)R =
(
2, 1 +

√−5
)2

R

(
3, 1 +

√−5
)
R

(
3, 1−√−5

)
R

of ideals, and the nonuniqueness in (14.2) is explained by regroupings of the
above factors. �

We have mentioned before that for any integral domain R, the principal
ideals (a) with a ∈ Quot(R) \ {0} form a subgroup of C(R). The quotient
group

Cl(R) := C(R)
/{

(a) | a ∈ Quot(R) \ {0}
}

is called the ideal class group of R. This name is most intuitive in the case
that R is a Dedekind domain, and some authors restrict the definition to
that case. Since C(R) and Div(R) are isomorphic if R is a Dedekind domain,
Cl(R) is isomorphic to the group of equivalence classes of Weil divisors, where
two Weil divisors are called linearly equivalent if they map to a principal
fractional ideal in C(R). For a Dedekind domain R, the ideal class group
is trivial if and only if R is a principal ideal domain (which by the follow-
ing theorem is equivalent to R being factorial). So Cl(R) can be viewed as
quantifying the extent to which a Dedekind domain fails to be factorial.

Theorem 14.13 (Factorial Dedekind domains). For a Dedekind domain R,
the following statements are equivalent:

(a) R is factorial;
(b) R is a principal ideal domain.

Proof. First assume that R is factorial. By Lemma 5.14, it follows that every
prime ideal of height 1 is principal. Since every nonzero ideal is a product of
height-one prime ideals, this implies (b).

The fact that every principal ideal domain is factorial is usually part of
an abstract algebra course (see Lang [33, Chapter II, Theorem 4.2]). We give
a (shorter) proof for the case of Dedekind domains here. Let a ∈ R be a
nonzero, noninvertible element. Then (a) = P1 · · ·Pn with Pi prime ideals.
By assumption, we have Pi = (pi) with pi ∈ R prime elements. Multiplying
p1 by an invertible element if necessary, we can achieve that a = p1 · · · pn.
Now suppose that we have another factorization a = q1 · · · qm with qj ∈ R
irreducible. Since p1 is a prime element that divides the product of the qj , it
divides one of the qj , say q1. Therefore we can achieve q1 = p1 by multiplying
q1 by an invertible element if necessary. Continuing in this way, we end up
with pi = qi for i = 1, . . . , n and 1 = qn+1 · · · qm, so m = n. This proves the
uniqueness of factorization. 	
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A generalization of Theorem 14.13 is given in Exercise 14.10.
How large can ideal class groups become? For rings OK of algebraic inte-

gers in a number field, the answer is that the ideal class group is finite. Its
order is called the class number. This is one of the central results of algebraic
number theory. For a proof, see Neukirch [42, Chapter I, Theorem 6.3]. This
is in sharp contrast to the behavior in more general cases. In fact, we will
see in the following example that for a nonsingular, irreducible affine curve
X , Cl(K[X ]) can become infinite. (In fact, it is finite only in exceptional
cases.) Moreover, Claborn [10] proved that any abelian group whatsoever is
isomorphic to the ideal class group of a suitable Dedekind domain.

We finish this chapter with an example that shows how the ideal class
group can be used to give an elliptic curve the structure of an abelian group.
Example 14.14 (The group law on an elliptic curve). Let E ⊆ K2 be an
elliptic curve over an algebraically closed field K of characteristic not equal
to 2, given by the equation

x2
2 = x3

1 + ax1 + b

with a, b ∈ K such that 4a3 + 27b2 �= 0 (see Exercise 13.10). The goal of
this example is to give E (enriched by a point at infinity) the structure of an
abelian group, which is isomorphic to the ideal class group of the coordinate
ring R := K[E]. For some details and proofs we will refer to the exercises. By
Exercise 13.10, E is nonsingular, so R is a Dedekind domain. For two points
P1, P2 ∈ E, let L be the line passing through P1 and P2. If P1 = P2, take the
tangent line to E through P1. (The remark at the end of Exercise 14.11
says exactly how this is done.) If L is not parallel to the x2-axis, then
L meets E at another point P3. This is shown in Fig. 14.2, and proved in
Exercise 14.11. Notice that P3 may be equal to P1 or to P2 if P1 �= P2 and
L is tangent to E at this point, or if P1 = P2 is an inflection point of E. If
l ∈ K[x1, x2] is a polynomial of degree 1 defining L and l ∈ R is the corre-
sponding regular function on X , then l vanishes at the points Pi, so it lies in

�P1

�

P2

� P3

�P3 = P1 + P2

�

P1 = P2

�

P3

�P3 = 2P1

�

P1 + P3

�

P1 = P2 = P3

�

P1 = 2P1

Fig. 14.2. The group law on the elliptic curve y2 = x3 − x + 1
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the corresponding maximal ideals mPi ∈ Specmax(R). It is very plausible that
(l)R = mP1mP2mP3 . Exercise 14.11 gives an exact proof. (The subtlety lies
in the multiplicities in the case that some Pi coincide.) So the Weil divisor
P1 + P2 + P3 is linearly equivalent to 0. We write this as

P1 + P2 + P3 ∼ 0. (14.3)

Next we consider the case that L is parallel to the x2-axis. This happens if
and only if P2 = P1, where for any point P = (ξ1, ξ2) we write P := (ξ1,−ξ2).
In this case, P1 and P1 are the only intersections of L and E. So for every
P ∈ E we obtain

P + P ∼ 0. (14.4)

Putting this together with (14.3) yields

P1 + P2 ∼ P 3. (14.5)

This already looks like an addition on E. To show that it really defines a
group law, consider the map

ϕ: E → Cl(R), P �→ [mP ] (the class of mP in Cl(R)) .

So in terms of Weil divisors, ϕ maps every point to its equivalence class. Let
d =

∑m
i=1 niPi ∈ Div(R) (with coefficients ni ∈ Z and Pi ∈ E) be a Weil

divisor. We obtain another Weil divisor d =
∑m
i=1 kiQi by substituting every

Pi with ni < 0 in d by −Pi. Then d ∼ d by (14.4), and all coefficients ki in d
are nonnegative. If the coefficient sum of d is greater than 2, we can use (14.5)
to find a Weil divisor that is linearly equivalent to d, but has coefficient sum
one smaller than that of d. So by induction on the coefficient sum, we see
that every Weil divisor is linearly equivalent to a point P ∈ E or to 0. We
conclude that every nontrivial element of Cl(R) lies in the image of ϕ.

The most difficult part of this discussion is to prove that ϕ is injective,
i.e., that for two distinct points P,Q ∈ E, there exists no f ∈ Quot(R) with
(f)R = mP ·m−1

Q . This is the content of Exercise 14.12. In this exercise, it is
also shown that the trivial class is not in the image of ϕ, i.e., there exists no
f ∈ Quot(R) such that (f)R = mP with P ∈ E. With this, we can extend ϕ

to a bijection between Ê := E ∪{∞} and Cl(R) by mapping∞ to the trivial
class. The geometric interpretation of the additional point∞ is that it is the
point at infinity. This makes sense since we can think of the line through
P and P as meeting E at infinity. Having a bijection between Ê and the
abelian group Cl(R), we can use this to transfer the group law from Cl(R)
to Ê. With this, (14.5) indeed defines the sum of two points P1, P2 ∈ E as
given by the following recipe: Draw the line through P1 and P2 and take
the third point P3 of E meeting this line (always counting intersections with
multiplicities). Then reflect P3 in the x1-axis to obtain the desired point
P3 = P1 + P2. Special cases apply: P +∞ := P , and P + P :=∞.
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It is of course possible to define the addition on Ê directly by this recipe.
Then the main difficulty is to verify the associative law (e.g., this takes 12
pages in the book of Washington [52]). But by using the bijection with Cl(R),
we get the associative law automatically. This approach also gives a concep-
tual explanation of why the group law is defined in such a seemingly arbitrary
way. On the other hand, it provides the ideal class group Cl(R) with the
structure of a projective variety. In this way, elliptic curves act as the first
significant example for the theories of Jacobian varieties and abelian varieties,
which are deep and fascinating subjects in algebraic geometry.

Another important aspect is rational points. Suppose that k ⊆ K is a
subfield with a, b ∈ k (i.e., the equation defining E lies in k[x1, x2]). A point
P ∈ E(k) := k2∩E is called (k-)rational. If P is a rational point, then clearly
the same is true for −P = P . Moreover, if P1, P2 ∈ E(k) with P1 �= −P2,
then substituting a parametrization of the line through P1 and P2 into the
equation defining E gives a polynomial of degree 3 with coefficients in k.
(Exercise 14.11 has more details.) Since this polynomial has two zeros in k,
corresponding to the points P1 and P2 (or a double zero if P1 = P2), its third
zero lies in k, too. This means that P1 + P2 is also a rational point. So we
have seen that Ê(k) := E(k) ∪ {∞} is a subgroup of Ê.

This has applications in cryptography. In fact, if k is a (large) finite field,
then Ê(k) provides a finite group G in which the discrete logarithm prob-
lem (i.e., determining n from the given data g and gn, with g ∈ G, written
multiplicatively) is supposedly very hard. This gives rise to public-key cryp-
tosystems. In this business, the choice of the elliptic curve and of a “base
point” P ∈ E with large order are crucial for the security of the cryptosystem.
Applications to cryptography are among the reasons why elliptic curves have
become very fashionable (and useful) in recent years. See Washington [52] for
a good introduction to elliptic curves and their use in cryptography. �

Exercises for Chapter 14

14.1 (Discrete valuation rings). Let K be a field and let ν: K → Z∪{∞}
be a discrete valuation. Assume that ν is nontrivial, i.e., im(ν) �= {0,∞}.
Show that the valuation ring R := {a ∈ K | ν(a) ≥ 0} is a one-dimensional
regular local ring.

14.2 (Discrete valuations on the rational function field). Let K(x) be
the rational function field over a field. Classify all nontrivial discrete valua-
tions on K(x) that vanish on K×.
Hint: You will find that the valuation rings are in bijective correspondence
with the set of all monic irreducible polynomials in K[x] together with one
extra element, usually written as ∞ (why?).
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14.3 (Regular in codimension 1 does not imply normal). This exer-
cise deals with an example of an affine domain that is regular in codimension 1
but not normal. The example is drawn from Shafarevich [46, Chapter II, §5.1],
where is appears in geometric terms. The example is the subalgebra

A := K[f1, f2, f3, f4] ⊆ K[x1, x2]

with
f1 = x1, f2 = x1x2, f3 = x2(x2 − 1), f4 = x2

2(x2 − 1),

where K[x1, x2] is the polynomial algebra in two indeterminates over a field.

(a) Show that K[x1, x2] is the normalization of A.
(b) Show that there exist two maximal ideals n1, n2 ∈ Specmax (K[x1, x2])

with A ∩ ni = (f1, f2, f3, f4)A =: m.
*(c) Show that K[x1, x2] ⊆ AP for all P ∈ Spec(A) \ {m}, and conclude that

there exists Q ∈ Spec (K[x1, x2]) with AP = K[x1, x2]Q. Hint: Two of
the relations of the fi are f2

1 f3+f2(f1−f2) = 0 and f3
3 +f4(f3−f4) = 0.

(d) Conclude that A is a two-dimensional nonnormal domain such that the
singular locus in Spec(A) is {m}, so regularity in codimension 1 holds.

14.4 (Desingularization of nonirreducible curves). Show that Corol-
lary 14.2 holds for all (not necessarily irreducible) affine curves.
Hint: Use Exercises 4.3 and 6.6.

14.5 (Examples of desingularization). Find desingularizations of the
plane complex curves given by the following equations.

(a) x3
1 − x2

2 = 0 (the cubic curve with a cusp shown in Fig. 12.1)
(b) x4

1 − x2
1 + x2

2 = 0 (lemniscate of Gerono, an ∞-shaped curve)
(c) x6

1 + x6
2 − x2

1 (butterfly-shaped, similar to Fig. 14.1)
(d) x4

1 + x4
2 − x1x2 (another figure-eight curve, but tilted by 45◦ and with

perpendicular crossing)

Hint: It may be hard to do (d) by hand. If you have access to MAGMA [5]
you can use the function Normalization.

14.6 (Finite generation of fractional ideals). (a) Give an example of
a fractional Z-ideal I ⊆ Q that is locally principal but not finitely
generated.

(b) Show that for a nonzero fractional ideal I ⊆ Quot(R) of a Noetherian
domain R, I−1 is finitely generated.

(c) For your example in (a), what are I−1, I · I−1, and (I−1)−1?

14.7 (A noninvertible prime ideal of height 1). This example is taken
from Hutchins [28, Example 47] (with a slight modification), and due to
Gilmer [20, page 554, Exercise 2]. Consider the ring R = Z[x, x2/2] ⊂ Q[x].



214 14 Rings of Dimension One

(a) Show that R is a normal Noetherian domain. Hint: For this part, it may
lead to a nicer notation to consider the isomorphic ring S := Z

[
x,
√

2x
]
.

You may look at Example 8.9(3) for inspiration.
(b) Show that the ideal P :=

(
x, x2/2

)
R

is a prime ideal of height 1.
(c) Show that P is not invertible.

14.8 (Cartier divisors and Weil divisors). Let R be a normal Noether-
ian domain. The goal of this exercise is to construct an injective homomor-
phism C(R)→ Div(R). WriteM for the set of height-one prime ideals of R,
and write F for the set of all finitely generated nonzero fractional ideals. For
each Q ∈ M, RQ is a Dedekind domain, so for I ∈ F there exists a unique
eI,Q ∈ Z with IQ = Q

eI,Q

Q .

(a) Show that
Φ: F → Div(R), I �→

∑

Q∈M
eI,Q ·Q,

defines a homomorphism of monoids. Hint: The hardest part is to show
that eI,Q = 0 for all but finitely many Q.

(b) Show that the restriction

Ψ := Φ|C(R): C(R)→ Div(R)

of Φ to C(R) is an injective group homomorphism. Hint: Use Exercise 8.3.
*(c) Show that Ψ is surjective if and only if every P ∈ M is invertible. In this

case, Ψ coincides with the isomorphism described on page 205. Hint: If
Ψ(I) = P ∈ M, consider P · I−1.

Remark: It follows that Exercise 14.7 gives an example in which Ψ is not
surjective.

*14.9 (Properties of Dedekind domains). LetR be a Dedekind domain.
Prove the following.

(a) If P1, . . . , Pn ∈ Spec(R) are pairwise distinct nonzero prime ideals and
e1, . . . , en are nonnegative integers, there exists a ∈ R \ {0} such that

(a) = P e11 · · ·P en
n · J

with J ⊆ R an ideal in whose factorization none of the Pi appear.
(b) Every ideal of R is generated by at most two elements.

14.10 (Factorial rings). Show that for an integral domain R, the following
statements are equivalent:

(a) R is factorial of dimension ≤ 1.
(b) R is a principal ideal domain.
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If these conditions are satisfied, then R is Noetherian. Is it true that every
factorial ring is Noetherian?

Exercises 14.11 and 14.12 fill the gaps in Example 14.14. Together with
the example, they form a nice application project of our methods.

14.11 (Divisor of a line intersecting a curve). In this exercise we study
a situation that seems rather special, but is general enough to handle elliptic
curves, for example. Let K be an algebraically closed field and let X ⊂ K2

be a nonsingular, irreducible affine curve. So I(X) = (g) with g ∈ K[x1, x2]
irreducible (see Theorem 5.13). Consider a line

L = {(aξ + b, cξ + d) | ξ ∈ K} ⊂ K2 (with a, b, c, d ∈ K, a or c nonzero),

and assume L �= X . With t a new indeterminate, set f := g(at+ b, ct+ d) ∈
K[t] and let f = an ·

∏n
i=1(t − ξi) with an ∈ K \ {0} and ξi ∈ K, not

necessarily distinct. So the Pi := (aξi + b, cξi + d) are the points of the
intersection L ∩ X , counted with “multiplicities.” Multiplicity greater than
one means that L is “tangent” to X in Pi. Let mi ∈ Specmax (K[X ]) be the
maximal ideal belonging to Pi. Furthermore, let l := cx1 − ax2 + ad − bc
(which defines L), and let l := l + (g) ∈ K[X ] be the corresponding regular
function on X . Show that

(l) = m1 · · ·mn.

So the Weil divisor P1 + · · ·+ Pn is linearly equivalent to 0.
Remark: If X is an elliptic curve defined as in Example 14.14, then f has
degree 3 if a �= 0, i.e., if L is not parallel to the x2-axis. So in this case we get
three points whose sum is linearly equivalent to 0. Otherwise, f has degree 2,
so the sum of two points is linearly equivalent to 0. It is also clear that (for
general X) if P is a point of X , then by setting a := ∂g

∂x2
(P ), b := − ∂g

∂x1
(P ),

and (b, d) := P , one achieves that the polynomial f will become divisible
by t2, which geometrically means that L is tangent to X in P . (Solution on
page 231)

*14.12 (Rational functions on an elliptic curve). Let K be an alge-
braically closed field of characteristic not equal to 2, and let E ⊂ K2 be
an elliptic curve given by the equation

x2
2 = x3

1 + ax1 + b

with a, b ∈ K, 4a3 + 27b2 �= 0 (see Exercise 13.10). Let R := K[E] be the
coordinate ring and L := Quot(R) the field of rational functions on E. By
a place of L we mean a discrete valuation ring O such that K ⊂ O ⊂ L
and Quot(O) = L. So giving a place of L is the same as giving a nontrivial
discrete valuation on L that vanishes on K× (see Exercise 14.1).
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(a) Show that L has the following places: (1) the localizations RP =: OP of
R at points P ∈ E, and (2) one further place, which we will write as O∞.
We will write the maximal ideals of the places as pP and p∞. Also show
that R ∩ p∞ = {0}. Hint: The last statement can be proved by using a
suitable K-automorphism ϕ: L→ L.

(b) Show that L is not isomorphic (as a K-algebra) to the rational func-
tion field K(x). This result is usually expressed by saying that E is not
a rational curve. Hint: This can be done by giving a K-automorphism
ϕ: L → L that fixes four places of L (in the sense that ϕ(O) = O), and
showing that K(x) has no such automorphism.

(c) Assume that there exists f ∈ L such that (f)R = mP ·m−1
Q with P,Q ∈ E

distinct points, or (f)R = mP (:= the maximal ideal of R belonging to
P ). In other words, assume that as a Weil divisor, P is linearly equivalent
to Q or to 0. Show that this implies L ∼= K(f), contradicting (b). Hint:
Consider the integral closureA of K[f ] in L. Apply the structure theorem
for finitely generated modules over a principal ideal domain (see Lang [33,
Chapter XV, Theorem 2.2]) to A.

Remark: Part (c) shows that for a nonrational, nonsingular, irreducible affine
curve that has only one point at infinity, no point is linearly equivalent to
another point or to 0. In this context, it would be more natural to consider
projective curves. Then zeros and poles at infinity would be included in the
divisor of a rational function, and the hypothesis on the number of points at
infinity would vanish. (Solution on page 232)
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1.3. Let n ∈ Specmax(R) and consider the homomorphism

ϕ: R[x]→ R/n, f �→ f(0) + n.

The kernel m of ϕ is a maximal ideal ofR[x], andR∩m = n, so n ∈ Specrab(R).

2.5.

(a) That S generates A means that for every element f ∈ A there exist
finitely many elements f1, . . . , fm ∈ S and a polynomial F ∈
K[T1, . . . , Tm] in m indeterminates such that f = F (f1, . . . , fm). Let
P1, P2 ∈ Kn be points with f(P1) �= f(P2). Then

F (f1(P1), . . . , fm(P1)) �= F (f1(P2), . . . , fn(P2)),

so fi(P1) �= fi(P2) for at least one i. This yields part (a).
(b) Consider the polynomial ring B := K[x1, . . . , xn, y1, . . . , yn] in 2n inde-

terminates. Polynomials from B define functions Kn × Kn → K. For
f ∈ K[x1, . . . , xn], define

Δf := f(x1, . . . , xn)− f(y1, . . . , yn) ∈ B.

So for P1, P2 ∈ Kn we have Δf(P1, P2) = f(P1) − f(P2). Consider the
ideal

I := (Δf | f ∈ A)B ⊆ B.

G. Kemper, A Course in Commutative Algebra, Graduate Texts
in Mathematics 256, DOI 10.1007/978-3-642-03545-6,
c© Springer-Verlag Berlin Heidelberg 2011
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By Hilbert’s basis theorem (Corollary 2.13), B is Noetherian, so by
Theorem 2.9 there exist f1, . . . , fm ∈ A such that

I = (Δf1, . . . , Δfm)B .

We claim that S := {f1, . . . , fm} is A-separating. For showing this, take
two points P1 and P2 in Kn and assume that there exists f ∈ A with
f(P1) �= f(P2). Since Δf ∈ I, there exist g1, . . . , gm ∈ B with

Δf =
m∑

i=1

giΔfi,

so
m∑

i=1

gi(P1, P2)Δfi(P1, P2) = Δf(P1, P2) �= 0.

Therefore we must have Δfi(P1, P2) �= 0 for some i, so fi(P1) �= fi(P2).
(c) S = {x, xy} is R-separating.

3.6. Define a partial ordering “≤” on setM := {P ∈ Spec(R) | P ⊆ Q} by

P ≤ P ′ ⇐⇒ P ′ ⊆ P

for P, P ′ ∈ M. Let C ⊆ M be a chain (=totally ordered subset) in M. Set
C′ := C ∪ {Q} and P :=

⋂
P ′∈C′ P ′. Clearly P is an ideal of R, and P ⊆ Q.

For showing that P is a prime ideal, take a, b ∈ R with ab ∈ P but b /∈ P .
There exists P0 ∈ C′ with b /∈ P0. Let P ′ ∈ C′. Since C′ is a chain, we have
P ′ ⊆ P0 or P0 ⊆ P ′. In the first case, b /∈ P ′ but ab ∈ P ′, so a ∈ P ′. In
particular, a ∈ P0. From this, a ∈ P ′ follows in the case that P0 ⊆ P ′. We
have shown that a ∈ P , so P ∈ M. By the definition of the ordering, P is
an upper bound for C. Now Zorn’s lemma yields a maximal element of M,
which is a minimal prime ideal contained in Q.

If R �= {0}, there exists a maximal ideal m of R (by Zorn’s lemma applied
to {I � R | I ideal} with the usual ordering), and by the above, m contains
a minimal prime ideal.

5.3. As in the proof of Theorem 5.9 and Proposition 5.10, we only have
to show that trdeg(A) ≤ dim(A). By hypothesis, A ⊆ B with B an affine
K-algebra. By induction on n, we will show the following, stronger claim:
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Claim. If trdeg(A) ≥ n, then there exists a chain

Q0 ⊆ Q1 ⊆ · · · ⊆ Qn

in Spec(B) such that with Pi := A∩Qi ∈ Spec(A) there are strict inclusions
Pi−1 � Pi for i = 1, . . . , n.

The claim is correct for n = 0. To prove it for n > 0, let a1, . . . , an ∈ A
be algebraically independent. As in the proof of Theorem 5.9, we see that
there exists a minimal prime ideal Mi of B (not A!) such that the ai are
algebraically independent modulo Mi. Replacing B by B/Mi and A by A/A∩
Mi, we may assume that B is an affine domain. Set L := Quot(K[a1]),
A′ := L · A and B′ := L · B, which are all contained in Quot(B). A′ has
transcendence degree at least n− 1 over L. By induction, there is a chain

Q′
0 ⊆ Q′

1 ⊆ · · · ⊆ Q′
n−1

in Spec(B′) such that with P ′
i := A′ ∩Q′

i ∈ Spec(A′) there are strict inclu-
sions P ′

i−1 � P ′
i for i = 1, . . . , n − 1. Set Qi := B ∩ Q′

i ∈ Spec(B) and
Pi := A∩Qi = A ∩ P ′

i ∈ Spec(A). For i = 1, . . . , n − 1, we have Pi−1 � Pi,
since Pi−1 = Pi would imply

P ′
i ⊆ (L · A) ∩ P ′

i ⊆ L · Pi = L · Pi−1 ⊆ L · P ′
i−1 = P ′

i−1 ⊆ P ′
i .

As in the proof of Theorem 5.9, we see that A/Pn−1 is not algebraic over
K. Since A/Pn−1 is contained in B/Qn−1, it follows from Lemma 1.1(b)
that A/Pn−1 is not a field. Choose a maximal ideal Qn ⊂ B which contains
Qn−1. By Proposition 1.2, Pn := A ∩ Qn is a maximal ideal of A. Clearly
Pn−1 ⊆ Pn. Since A/Pn−1 is not a field, the inclusion is strict. So we have
shown the claim, and the result follows.

6.8.

(a) We prove that the negations of both statements are equivalent. First, if
a ∈ P , then Ua ∩ P �= ∅ since a ∈ Ua. If P + (a)R = R, then 1 = b+ xa
with b ∈ P and x ∈ R, so b = 1−xa ∈ Ua ∩P . Conversely, if Ua∩P �= ∅,
then am(1 + xa) ∈ P with m ∈ N0 and x ∈ R. This implies a ∈ P or
1 + xa ∈ P . In the second case we obtain P + (a)R = R.

(b) Assume that dim(R) ≤ n, and let Q0 � · · · � Qk be a chain of prime
ideals in U−1

a R, with a ∈ R. By Theorem 6.5, setting Pi := ε−1(Qi)
(with ε: R → U−1

a R the canonical map) yields a chain of length k in
Spec(R), and we have Ua ∩ Pi = ∅. By part (a), this implies that Pi is
not a maximal ideal (otherwise, Pi+(a)R would be R), so we can append
a maximal ideal to this chain. Therefore k + 1 ≤ dim(R) ≤ n, and we
conclude dim

(
U−1
a R

) ≤ n− 1.
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Conversely, assume dim
(
U−1
a R

) ≤ n− 1 for all a ∈ R. Let P0 � · · · � Pk
be a chain in Spec(R) of length k > 0. Choose a ∈ Pk \ Pk−1. Then
Pk−1 + (a)R �= R (both ideals are contained in Pk), so Ua ∩ Pk−1 = ∅ by
part (a). By Theorem 6.5, setting Qi := U−1

a Pi (i = 0, . . . , k− 1) yields a
chain of length k − 1 in Spec

(
U−1
a R

)
. Therefore k − 1 ≤ dim

(
U−1
a R

) ≤
n − 1. We conclude dim(R) ≤ n if n > 0. If n = 0, the above argument
shows that there cannot exist a chain of prime ideals in R of positive
length, so dim(R) ≤ 0.

(c) We use induction on n, starting with the case n = 0. By part (b),
dim(R) ≤ 0 is equivalent to U−1

a R = {0} for all a ∈ R. This condi-
tion is equivalent to 0 ∈ Ua, which means that there exist m ∈ N0 and
x ∈ R with am(1 − xa) = 0. This is equivalent to am ∈ (am+1)R, which
is (6.5) for n = 0.
Now assume n > 0. By part (b), dim(R) ≤ n is equivalent to dim

(
U−1
a R

)

≤ n − 1 for all a ∈ R. By induction, this is equivalent to the follow-
ing: For all a0, . . . , an−1 ∈ R and all u0, . . . , un−1 ∈ Ua, there exist
m0, . . . ,mn−1 ∈ N0 such that

n−1∏

i=0

(
ai
ui

)mi

∈
(
aj
uj
·
j∏

i=0

(
ai
ui

)mi
∣
∣
∣
∣ j = 0, . . . , n− 1

)

U−1
a R

.

Multiplying generators of an ideal by invertible ring elements does not
change the ideal. Since the ε(ui) are invertible in U−1

a R, it follows that
the above condition is independent of the ui. In particular, the condition
is equivalent to

n−1∏

i=0

ε(ai)mi ∈
(
ε(aj) ·

j∏

i=0

ε(ai)mi

∣
∣
∣ j = 0, . . . , n− 1

)

U−1
a R

.

By the definition of localization, this is equivalent to the existence of
m ∈ N0 and x ∈ R with

am(1 + xa) ·
n−1∏

i=0

ami

i ∈
(
aj ·

j∏

i=0

ami

i

∣
∣
∣ j = 0, . . . , n− 1

)

R
.

Writing an and mn instead of a and m, we see that this condition is
equivalent to (6.5).

7.4.

(a) Let P ∈ Spec(R) be a prime ideal containing I := (x)R. For all nonneg-
ative integers i we have (xyi)2 = x · xy2i ∈ I, so xyi ∈ P . Therefore P
contains the ideal (x, xy, xy2, . . .)R, which is maximal. So
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P = (x, xy, xy2, . . .)R.

(b) The ideal
Q := (xy, xy2, xy3, . . .)R

is properly contained in P , and R/Q ∼= K[x], so Q is a prime ideal. The
chain

{0} � Q � P

shows that ht(P ) ≥ 2. But dim(R) ≤ trdeg(R) = 2 by Theorem 5.5, so
ht(P ) = 2.

(c) Let Sn = K[x, y1, . . . , yn−1] be a polynomial ring in n indeterminates
(countably many for n = ∞), and set Rn := K + Sn · x. As in (a), we
see that P = Sn ·x is the unique prime ideal of Rn containing (x)Rn . For
0 ≤ k < n, we have prime ideals

Qk := x · (y1, . . . , yk)Sn = R ∩ (y1, . . . , yk)Sn ∈ Spec(R)

forming a strictly ascending chain. Since all Qk are properly contained
in P , we obtain ht(P ) ≥ n, and equality follows by Theorem 5.5.

7.7. We first show that S is infinite-dimensional. For i ∈ N0, we have strictly
ascending chains of prime ideals

Qi,j =
(
xi2+1, . . . , xi2+j

)
R
⊂ R (1 ≤ j ≤ 2i+ 1)

with Qi,j ∩ U = ∅. By Theorem 6.5, this corresponds to a chain of length 2i
in Spec(S). It follows that dim(S) =∞.

For showing that S is Noetherian, we first remark that RPi is Noetherian
for all i ∈ N0. Indeed, with Ri := K[x(i+1)2+1, x(i+1)2+2, x(i+1)2+3, . . .] ⊆ R
we have Ri\{0} ⊂ R\Pi, so RPi is a localization of Quot(Ri)[x1, . . . , x(i+1)2 ].
Therefore RPi is Noetherian by Corollaries 2.13 and 6.4. Now let I ⊆ R
be a nonzero ideal. Take f ∈ I \ {0}, and choose n ∈ N0 such that all
indeterminates xj occurring in f satisfy j ≤ (n+1)2. Since RPi is Noetherian,
there exist f1, . . . , fm ∈ I such that

(I)RPi
= (f1, . . . , fm)RPi

for 0 ≤ i ≤ n. (S.7.1)

Take g ∈ I and consider the ideal

J := {h ∈ R | h · g ∈ (f1, . . . , fm, f)R} ⊆ R.
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Clearly f ∈ J . By (S.7.1), for 0 ≤ i ≤ n there exists hi ∈ R \ Pi with hi ∈ J .
By Lemma 7.7, there exists h ∈ J \ ∪ni=0Pi. Assume that J ⊆ ∪i∈N0Pi. Then
there exists i > n with h ∈ Pi. With ϕi: R→ R the homomorphism sending
xi2+1, xi2+2, . . . , x(i+1)2 to 0 and fixing all other indeterminates, this means
ϕi(h) = 0. The choice of n implies that ϕi(f) = f . Since f + h ∈ J , there
exists j ∈ N0 with f + h ∈ Pj , so ϕj(f + h) = 0. We obtain

ϕj(h) = ϕj (f + h− ϕi(f + h)) = ϕj(f + h)− ϕi (ϕj(f + h)) = 0, (S.7.2)

so ϕj(f) = ϕj(f + h) − ϕj(h) = 0. This implies j ≤ n. Since h ∈ Pj
by (S.7.2), this is a contradiction to the choice of h. We conclude that there
exists u ∈ J \ ∪i∈N0Pi. In other words, u ∈ U and ug ∈ (f1, . . . , fm, f)R, so
g ∈ (f1, . . . , fm, f)S. It follows that

(I)S = (f1, . . . , fm, f)S .

Since every ideal I ′ ⊆ S in S can be written as I ′ = (I)S with I = R∩ I ′ ⊆ R,
we conclude that every ideal in S is finitely generated, so S is Noetherian.

8.7. Set K := Quot(R). For showing that R̃[x] ⊆ R̃[x], let f ∈ Quot (R[x]) =
K(x) be integral over R[x], so

fm =
m−1∑

i=1

gif
i with gi ∈ R[x]. (S.8.1)

Then f is integral over K[x], so f ∈ K[x] by Example 8.9(1). Therefore there
exists u ∈ R\{0} with ufk ∈ R[x] for all 0 ≤ k < m. In order to reduce to the
case that R is Noetherian, we may substitute R by the subring generated by
the coefficients of all ufk (0 ≤ k < m) and of all gi from (S.8.1). By (S.8.1),
ufk ∈ R[x] holds for all k ≥ 0. If an ∈ K is the highest coefficient of f ,
this implies uakn ∈ R for all k, so R[an] ⊆ u−1R. By Theorem 2.10 (and
using that R is Noetherian), this implies that R[an] is finitely generated as
an R-module, so an ∈ R̃ by Lemma 8.3. This implies that f̂ := f − anxn is
integral over R[x], so by induction on n we obtain f̂ ∈ R̃[x]. This completes
the proof of R̃[x] ⊆ R̃[x].

Conversely, let f ∈ R̃[x]. Then all coefficients of f are integral over R
and therefore also over R[x], so f itself is integral over R[x]. This implies
f ∈ R̃[x]. The equivalence R[x] normal ⇐⇒ R normal is now clear.
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8.11. Clearly ci − ci(x) ∈ m for all i, so

I := (c1 − c1(x), . . . , cn − cn(x))A ⊆ m.

By Corollary 8.24, ht(m) = dim(A) = n. So all we need to show is that
mm ⊆

√
Im.

A is integral over K[c1, . . . , cn], so for every a ∈ A there exist polynomials
g1, . . . , gm ∈ K[x1, . . . , xn] such that

am + g1 (c1, . . . , cn) am−1 + · · ·+ gm−1 (c1, . . . , cn) a+ gm (c1, . . . , cn) = 0.

Computing modulo I and setting γi := ci(x) ∈ K, this yields

am + g1 (γ1, . . . , γn) am−1 + · · ·+ gm−1 (γ1, . . . , γn) a+ gm (γ1, . . . , γn) ∈ I,

so A/I is algebraic. By Theorem 5.11, it follows that it is Artinian. The ideals
(m/I)k ⊆ A/I form a descending chain, so there exists k ∈ N with (m/I)k =
(m/I)k+1. Localizing at m, we obtain M := (mm/Im)k = (mm/Im)k+1. So
M is a finitely generated Rm-module satisfying mmM = M . Nakayama’s
lemma (Theorem 7.3) yields M = {0}, so mk

m ⊆ Im. This implies mm ⊆
√
Im.

9.2.

(a) It is clear from the definition that C is closed under addition. From this,
the result follows for αi ∈ N>0. Take c ∈ Zn such that kc = e − f with
k ∈ N>0 and e, f ∈ Nn0 such that f < e. There exists x ∈ Nn0 with x ≡ −e
mod k (componentwise congruence), so also x ≡ −f mod k since f ≡ e
mod k. Set e′ := (e+x)/k and f ′ := (f+x)/k. Then e′, f ′ ∈ Nn0 , e′−f ′ = c,
and kf ′ < ke′ (where we used (3) from Definition 9.1(a)). If e′ ≤ f ′, then
also ke′ ≤ kf ′ by induction on k (using (3) from Definition 9.1(a) again),
a contradiction. By (1) from Definition 9.1(a), we conclude f ′ < e′ and
so c ∈ C.
Since we already have the result for αi ∈ N>0, it follows for αi ∈ Q>0

from the above.
Now assume αi ∈ R>0 and ci ∈ C such that c :=

∑m
i=1 αici ∈ Zn. We

will see that the αi can be modified in such a way to make them rational.
The set

L :=
{
(β1, . . . , βm) ∈ Rm |

m∑

i=1

βici = c
}
⊆ Rm

is the solution set of an inhomogeneous system of linear equations with
coefficients in Q, so L is theimage of a map ϕ: Rl → Rm, (γ1, . . . , γl) �→
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v0 +
∑l

j=1 γjvj with v0, . . . , vl ∈ Qm. By hypothesis (α1, . . . , αm) ∈
im(ϕ)∩Rm>0, so the preimage U := ϕ−1(Rm>0) ⊆ Rl is nonempty. Since ϕ
is continuous, U is open. It follows that there is a point (γ1, . . . , γl) ∈
U ∩Ql. So (α′

1, . . . , α
′
m) := ϕ(γ1, . . . , γl) ∈ Qm ∩L∩Rm>0 = Qm

>0 ∩L, and
therefore

∑m
i=1 α

′
ici = c. By what we have shown already, it follows that

c ∈ C.
(b) It follows from (2) in Definition 9.1(a) that the standard basis vectors

ej ∈ Rn lie in C, so we may include them into the given list of ci. By
definition, 0 /∈ C, and so 0 /∈ H by part (a). (Notice that if some αi are
zero, this means that we are just considering fewer vectors ci.)
H is the image of the compact set

D :=
{
(α1, . . . , αm) ∈ Rm≥0 | α1 + · · ·+ αm = 1

}

under the map ψ: Rm → Rn, (α1, . . . , αm) �→ ∑m
i=1 αici. Also con-

sider the map δ: D → R≥0, x �→ 〈ψ(x), ψ(x)〉, where 〈·, ·〉 denotes the
Euclidean scalar product. With d := inf (im(δ)), there exists a D-valued
sequence (xk) such that δ(xk) converges to d. By the Bolzano–Weierstrass
theorem we may substitute (xk) by a convergent subsequence. With x =
limk→∞ xk ∈ D, the continuity of δ implies δ(x) = limk→∞ δ(xk) = d.
Setting, w′ := ψ(x) ∈ H, we get d = 〈w′,w′〉. Since 0 /∈ H, this implies
d > 0. We claim that 〈w′, c〉 ≥ d for all c ∈ H. Indeed, for all α ∈ R with
0 ≤ α ≤ 1 we have w′ + α(c −w′) ∈ H, so the definition of d implies

d ≤ 〈w′ + α(c−w′),w′ + α(c−w′)〉 =

d+ 2 (〈w′, c〉 − d)α+ 〈c−w′, c−w′〉α2.

Applying this with α small yields 〈w′, c〉 ≥ d, so in particular 〈w′, ci〉 > 0
for all i. So the preimage of Rm>0 under the map Rn → Rm, w →
(〈w, c1〉, . . . , 〈w, cm〉) is nonempty. Since the map is continuous, the
preimage is open, and it follows that it contains points in Qn. So there
exists w ∈ Qn with 〈w, ci〉 > 0 for all i. Multiplying w by a com-
mon denominator of the components, we may assume w ∈ Zn. Since
the standard basis vectors ej are contained among the ci, it follows that
w ∈ Nn>0.

(c) Let G = {g1, . . . , gr}. For 1 ≤ i < j ≤ r set gi,j := spol(gi, gj). By
Buchberger’s criterion (Theorem 9.12), we have gi,j =

∑r
k=1 gi,j,k · gk

with gi,j,k ∈ K[x1, . . . , xn] such that LM(gi,j,k · gk) ≤ LM(gi,j). Let M ⊂
K[x1, . . . , xn] be the set of all gi, gi,j , and gi,j,k. For a monomial t =
xe11 · · ·xen

n , write e(t) := (e1, . . . , en). Observe that for g ∈ K[x1, . . . , xn]
and t ∈ Mon(g) with t �= LM(g), we have e(LM(g))− e(t) ∈ C. Form the
finite set

D :=
{
e (LM(g))− e(t) | g ∈M and LM(g) �= t ∈Mon(g)

}
⊂ C.
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By part (b) there exists w ∈ Nn>0 such that 〈w, c〉 > 0 for all c ∈ D. By
the definition of “≤w” it follows that LM≤w(g) = LM≤(g) for all g ∈M .
Here the subscripts indicate the monomial ordering that is used. This
implies

spol≤w
(gi, gj) = spol≤(gi, gj) = gi,j =

r∑

k=1

gi,j,k · gk

and LM≤w(gi,j,k · gk) = LM≤(gi,j,k · gk) ≤ LM≤(gi,j) = LM≤w(gi,j).
Applying Buchberger’s criterion (Theorem 9.12) again yields that G is a
Gröbner basis with respect to “≤w”. Moreover, we obtain

L≤w(I) = (LM≤w(g1), . . . ,LM≤w(gr)) =
(LM≤(g1), . . . ,LM≤(gr)) = L≤(I).

10.3. By substituting R by its image in A, we may assume that R ⊆ A is a
subring. Quot(A) is finitely generated as a field extension of Quot(R), so the
same is true for Quot(B). It follows that there exists a subalgebra C ⊆ B
such that Quot(C) = Quot(B), and C is finitely generated. Since A is finitely
generated as a C-algebra, Corollary 10.2 applies and yields an a ∈ C \ {0}
such that Aa is free as a module over Ca, and there exists a basis M with
1 ∈M. We claim that Ba = Ca. The inclusion Ca ⊆ Ba is clear. Conversely,
for every x ∈ Ba we have

x =
∑

b∈M
cb · b

with cb ∈ Ca, and only finitely many cb are nonzero. Since Quot(B) =
Quot(C), there exists y ∈ C \ {0} such that yx ∈ C, so

yx · 1 =
∑

b∈M
ycb · b.

The linear independence of M yields cb = 0 for b �= 1, so x = c1 · 1 ∈ Ca.
We have shown that Ba = Ca. This completes the proof, since Ca is clearly
finitely generated.

10.7. According to the hypothesis, we have Y =
⋃m
i=1 Li with Li ⊆ X locally

closed. Being a subset of a Noetherian space, the closure Y is Noetherian,
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too, so Theorem 3.11 yields

Y =
n⋃

j=1

Zj

with Zj the irreducible components, which are closed in X . Pick a Zj and let
Z∗
j be the union of all other components. Since

Zj = Zj ∩ Y =
m⋃

i=1

(
Zj ∩ Li

)
,

there exists i with Zj ⊆ Li. Li is not a subset of Z∗
j , since otherwise Zj ⊆ Z∗

j ,
so Zj would be contained in a component other than itself. Write Li = Ci ∩Ui
with Ci closed and Ui open, and form U ′

j := Ui \ Z∗
j , which is also open.

Then Li �⊆ Z∗
j and Li ⊆ Y = Zj ∪ Z∗

j imply U ′
j ∩ Zj �= ∅. We have Zj =

(U ′
j ∩ Zj) ∪

(
Zj \ U ′

j

)
. With the irreducibility of Zj , this yields

Zj = U ′
j ∩ Zj.

Moreover,
U ′
j ∩ Zj ⊆ Ui ∩ Zj ⊆ Ui ∩ Li = Li ⊆ Y.

Form the open set U ′ :=
⋃n
j=1 U

′
j . Then

U := U ′ ∩ Y =
n⋃

j=1

(
U ′
j ∩ (Zj ∪ Z∗

j )
)

=
n⋃

j=1

(
U ′
j ∩ Zj

) ⊆ Y,

and

U =
n⋃

j=1

U ′
j ∩ Zj =

n⋃

j=1

Zj = Y .

So U is a subset of Y that is open and dense in Y .

10.9. SinceX is a union of finitely many locally closed sets, it suffices to prove
the result for the case that X itself is locally closed. So X = VSpec(S)(I) \
VSpec(S)(J) with I, J ⊆ S ideals. If J = (a1, . . . , an)S, then X is the union of
all VSpec(S)(I) \ VSpec(S)(ai). So we may assume

X := VSpec(S)(I) \ VSpec(S)(a) = {Q ∈ Spec(S) | I ⊆ Q and a /∈ Q}

with a ∈ S. With ψ: S → Sa/Ia the canonical map, Lemma 1.22 and
Theorem 6.5 yield X = ψ∗ (Spec(Sa/Ia)). So

ϕ∗(X) = (ψ ◦ ϕ)∗ (Spec(Sa/Ia)) .
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Observe that Sa is generated as an R-algebra by 1
a and the images of the

generators of S, so Sa/Ia is finitely generated as an R-algebra, too. Apply-
ing Corollary 10.8 to ψ ◦ ϕ: R → Sa/Ia shows that ϕ∗(X) is constructible.

11.7. In order to avoid introducing a lot of additional notation, it is useful
to choose and fix the weight vector w = (w1, . . . , wn) ∈ Nn>0 throughout,
and from now on write deg for degw. Everything in Definition 11.1 carries
over to the weighted situation. (Notice that dimK(A≤d) <∞ since all wi are
positive.) The formulas in Proposition 11.4 need to be modified as follows:

HI(t) =
1− tdeg(f)

∏n
i=0(1 − twi)

if f �= 0, HI (t) =
1

∏n
i=0(1− twi)

if f = 0,

where we set w0 := 1. The induction step in the proof works by using the
direct sum decomposition

K[x1, . . . , xn]≤d =
⊕

i,j∈N0,
i+wnj=d

K[x1, . . . , xn−1]≤i · xjn,

which implies

Hn(t) = Hn−1(t) ·
( ∞∑

j=0

twnj
)

= Hn−1(t) · 1
1− twn

=
1

∏n
i=0(1− twi)

.

The definition of a weighted degree ordering is straightforward, and Theo-
rem 11.6 and its proof carry over word by word to the weighted situation.
Ditto for the concept of homogeneity and Lemma 11.7. In Algorithm 11.8,
the proof of Theorem 11.9, and Corollary 11.10, every occurrence of the
denominator (1 − t)n+1 should be replaced by

∏n
i=0(1 − twi). Obtaining

an analogue of the Hilbert polynomial is a bit less straightforward. Write
w := lcm{w1, . . . , wn}. Since 1

1−twi
= 1+twi+t2wi+···tw−wi

1−tw , the formula from
the first part of Corollary 11.10 can be rewritten as

HI(t) =
a0 + a1t+ · · ·+ akt

k

(1 − tw)n+1
.

Since

1
(1− tw)n+1

=
∞∑

d=0

(
d+ n

n

)

twd =
∑

d∈N0,
d≡0 mod w

(
d/w + n

n

)

td
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we get

HI(t) =
∞∑

d=0

∑

0≤i≤min{k,d},
i≡d mod w

ai

(
(d− i)/w + n

n

)

td.

So if we define

pI,j :=
∑

0≤i≤k,
i≡j mod w

ai

(
(x− i)/w + n

n

)

∈ Q[x] (j = 0, . . . , w − 1),

we get hI(d) = pI,j(d) for d ≥ k with d ≡ j mod w. So instead of one
Hilbert polynomial we obtain w polynomials to choose from according to the
congruence class modulo w. We could substitute the degree of the Hilbert
polynomial by the maximal degree of the pI,j. Equivalently (and more con-
veniently), we define deg(hI) to be the minimal k such that the Hilbert
function is bounded above by a polynomial of degree k. With this, we get
an analogue of Lemma 11.12, where K[y1, . . . , ym] may be equipped with
another weighted degree. The proof remains unchanged. Now consider the
proof of Theorem 11.13. By the freedom of the choice of the weight vector
in Lemma 11.12, we may equip K[y1, . . . , ym, z1, . . . , zr] with the “standard”
weight vector (1, 1, . . . , 1). Therefore the proof of deg(pJ ) = m remains valid,
and we obtain the generalized form deg(hI) = dim(A) of Theorem 11.13. So
Corollary 11.14 follows for “≤” a weighted degree ordering.

Finally, let “≤” be an arbitrary monomial ordering and I ⊆ K[x1, . . . , xn]
an ideal. By Exercise 9.2(c) there exists a weight vector w ∈ Nn>0 such that
L≤(I) = L≤w(I). Clearly “≤w” is a weighted degree ordering, so with the
generalized version of Corollary 11.14 we get

dim (K[x1, . . . , xn]/I) = dim (K[x1, . . . , xn]/L≤(I)) .

12.1. We keep Definition 11.1 except for the definition of the Hilbert series,
which we omit. We omit Example 11.2 and Remark 11.3(a). The other parts
of Remark 11.3 are optional. Remark 11.5 is replaced by the following

Lemma. For the zero ideal {0} ⊂ K[x1, . . . , xn] the formula

h{0}(d) =
(
d+ n

n

)

holds.
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Proof. Since the Hilbert function of the zero ideal depends on the number n
of indeterminates, we will write it in this proof as hn(d). We proceed by
induction on n. For n = 0, h0(d) = 1, so the formula is correct. For n > 0,
we use the direct sum decomposition (11.1) on page 153, which implies

hn(d) =
d∑

i=0

hn−1(i) =
d∑

i=0

(
i+ n− 1
n− 1

)

,

where induction was used for the second equality. We now show by induction
on d that the latter sum equals

(
d+n
n

)
. This is correct for d = 0. For d > 0,

we obtain

hn(d) =
d∑

i=0

(
i+ n− 1
n− 1

)

=
(
d+ n− 1

n

)

+
(
d+ n− 1
n− 1

)

=
(
d+ n

n

)

,

using a well-known identity of binomial coefficients in the last step. ��
The Lemma implies that the Hilbert function of an ideal I ⊆ K[x1, . . . , xn]

is bounded above by a polynomial. So we can define δ(I) ∈ N0 ∪ {−1} to
be the smallest integer δ such that hI can be bounded above by a polyno-
mial in Q[x] of degree δ. We skip the rest of Section 11.1. We modify the
assertion of Lemma 11.12 to δ(I) = δ(J). The proof works for the modified
assertion with a slight change of last two sentences. The assertion of Theo-
rem 11.13 becomes δ(I) = dim(A). In the proof of Theorem 11.13, we replace
deg(pI) and deg(pJ) by δ(I) and δ(J), and use the above Lemma instead
of Remark 11.5. Otherwise, the proof needs no modification. We skip every-
thing else from Section 11.2. So only the following material is required from
Part III: The shortened Definition 11.1, the above Lemma, the definition of
δ(I), and the modified versions of Lemma 11.12 and Theorem 11.13.

We make no change to Section 12.1, except using the above Lemma instead
of Remark 11.5 in the proof of Lemma 12.4. In Section 12.2, we modify the
assertion of Proposition 12.5 to: dim (gr(R)) is the least degree of a polyno-
mial providing an upper bound for length

(
R/md+1

)
. This follows from (12.5)

and the modified Theorem 11.13. We omit the definition of the Hilbert–
Samuel polynomial. The modified version of Proposition 12.5 and Lemma 12.4
yield (12.7). The next modification is to the proof of Lemma 12.7. We start
with: “In order to use Proposition 12.5, we compare the Hilbert–Samuel func-
tions hR/Ra and hR.” We replace the last sentence of the proof by: “From this,
the lemma follows by Proposition 12.5.” Finally, we delete the last sentence
from Theorem 12.8. The proof of the theorem remains unchanged. Observe
that the Hilbert–Samuel polynomial is not used anywhere outside Chapter 12
in the book.
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12.5. The elements ci := xi+I
1 ∈ Am =: R generate the maximal ideal

mm of R. By Exercise 12.4 we have R/mm
∼= A/m ∼= K. By the discussion

before Proposition 12.5, gr(R) is generated as a K-algebra by the elements
ai := cit + (mm)R∗ , and the ai are homogeneous of degree 1. Let J be the
kernel of the map K[x1, . . . , xn] → gr(R), xi �→ ai. We are done if we can
show that J = Iin.

To prove that Iin is contained in J , take f ∈ I \ {0} and write f̂ :=
fin − f . So fin ≡ f̂ mod I, and every monomial in f̂ has degree larger than
deg(fin) =: d. Therefore

fin(c1t, . . . , cnt) = fin(c1, . . . , cn)td = f̂(c1, . . . , cn)td ∈ md+1
m td ⊆ (mm)R∗ ,

where the last inclusion follows from the definition of R∗. We conclude fin ∈
J , so Iin ⊆ J .

For proving the reverse inclusion, take f ∈ J . Since J is a homogeneous
ideal, we may assume that f is homogeneous of some degree d, and f �= 0. We
have 0 = f(a1, . . . , an) = f(c1, . . . , cn)td + (mm)R∗ , so f(c1, . . . , cn) ∈ md+1

m

by the definition of R∗. This means that there exists a ∈ A \ m such that
a · (f + I) ∈ md+1. We may write a = h + I with h ∈ K[x1, . . . , xn], so
hf + I ∈ md+1. This means that there exists g ∈ nd+1 with hf − g ∈ I. From
a /∈ m we conclude h /∈ n, so h(0) �= 0 and (hf)in = h(0) · f . The condition
g ∈ nd+1 means that every monomial of g has degree > d, so by the above

(hf − g)in = h(0) · f.

We conclude that h(0) · f ∈ Iin, so also f ∈ Iin. This completes the proof.

13.6.

(a) Since the polynomial x2
2 − x2

1(x1 + 1) ∈ K[x1, x2] is irreducible, K[X ] is
an integral domain. Therefore the same holds for its localization R.

(b) By Exercise 13.5(d) there exists f =
∑∞
i=0 aix

i
1 ∈ K[[x1]] with f2 =

x1 + 1. For k ∈ N0, form the polynomials

Ak := x2 − x1

k∑

i=0

aix
i
1 and Bk := x2 + x1

k∑

i=0

aix
i
1 ∈ K[x1, x2].

Clearly (Ak) and (Bk) are Cauchy sequences with respect to the Krull
topology given bythe filtration In := nn with n := (x1, x2), and the
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product sequence (Ak ·Bk) converges to x2
2−x2

1(x1 +1). Also observe that
none of the Ak or Bk lie in n2. Applying the canonical mapK[x1, x2]→ R
to the Ak and Bk yields Cauchy sequences in R whose product converges
to 0, and no element of these sequences lies in m2, the square of the max-
imal ideal of R. The sequences have limits, A and B, in the completion
R̂. A and B must be nonzero, since the Ak and Bk lie outside m2. Since
the limit of the product sequence is 0, it follows with Exercise 13.4(c)
that A ·B = 0. So R̂ has zero divisors.

14.11. Since R := K[X ] is a Dedekind domain and l �= 0, (l) is a finite
product of maximal ideals. A maximal ideal m ∈ Specmax(R) occurs in this
product if and only if l ∈ m, i.e., if and only if m corresponds to a point in
the intersection L ∩X . So the mi are precisely the maximal ideals occurring
in the product. The difficulty lies in the fact that some mi may coincide, so
we have to get the multiplicities right. If ξi has multiplicity ni as a zero of f ,
we need to show that (l) ∈ mni

i , but (l) /∈ mni+1
i . Fix an i. By a change of

coordinates, we may assume that

Pi = (0, 0), L = {(ξ, 0) | ξ ∈ K} , ξi = 0, and l = x2.

Then g = x2 · h + f(x1) with h ∈ K[x1, x2] and f ∈ K[t] as defined in the
exercise. By definition, ni is the maximal k such that xk1 divides f(x1). With
n := (x1, x2) ∈ Specmax (K[x1, x2]) (so mi = n/(g)), we need to show that ni
is the maximal k with

x2 + (g) ∈ (n/(g))k . (S.14.1)

The condition (S.14.1) is equivalent to the existence of u ∈ K[x1, x2] such
that all monomials in x2 − ug have degree ≥ k. First consider the case that
h(0, 0) = 0. Since X is nonsingular, it follows by the Jacobian criterion (The-
orem 13.10) that f ′(0) �= 0, so ni = 1. In this case, x2 occurs as a monomial
in x2 − ug = x2(1 − uh)− uf(x1) for every u ∈ K[x1, x2], so the maximal k
satisfying (S.14.1) is 1 = ni.

Now consider the case h(0, 0) �= 0. Then h is invertible as an element of
the formal power series ring K[[x1, x2]] (see Exercise 1.2(b)). In particular,
there exists u ∈ K[x1, x2] such that all monomials in uh−1 have degree ≥ ni,
so the same is true for x2−ug = x2(1−uh)−uf(x1). On the other hand, for
every u ∈ K[x1, x2], x2−ug has monomials of degree ≤ ni, since x2 occurs if
u(0, 0) = 0, and otherwise xni

1 occurs. Therefore in this case the maximal k
satisfying (S.14.1) is ni again. This finishes the proof.
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14.12.

(a) We have L = K (x1, x2) with x2
2 − x3

1 − ax1 − b = 0, and R = K[x1, x2].
Let O be a place of L with maximal ideal p, and let ν: L → Z be the
corresponding discrete valuation. If ν were trivial on K(x1), then K(x1)
would be contained in O, so O = L since L is integral over K(x1) and O
is integrally closed in L. This contradiction shows that ν is nontrivial on
K(x1). Consider two cases.
(1) ν(x1) ≥ 0. Then by the results of Exercise 14.2, K[x1] ⊆ O, and there
exists ξ1 ∈ K such that x1 − ξ1 ∈ p. We have x2

2 ∈ O, so x2 ∈ O and
hence R ⊆ O. Choose ξ2 ∈ K with ξ22 = ξ31 + aξ1 + b. Then

(x2 − ξ2) (x2 + ξ2) = x3
1 + ax1 + b− (

ξ31 + aξ1 + b
) ∈ p,

so x2 − ξ2 ∈ p or x2 + ξ2 ∈ p. By changing our choice of ξ2, we may
assume the first possibility. With P := (ξ1, ξ2) ∈ E, we get mP =
(x1 − ξ1, x2 − ξ2)R ⊆ p, soR∩ p = mP . This implies R\mP ⊆ O\p = O×,
so RP := RmP ⊆ O. But RP is a place of L since E is nonsingular by
Exercise 13.10. Therefore if RP were strictly contained in O, O would be
equal to L. This contradiction shows that O = RP .
(2) ν(x1) < 0. Then y1 := 1/x1 ∈ p. With y2 := x1/x2 we have the
relation

y2
2 ·

(
1 + ay2

1 + by3
1

)
= y1,

so y2 ∈ p. Therefore S := K[y1, y2] ⊆ O, and m := (y1, y2)S ⊆ p. Using
the Jacobian criterion (Theorem 13.10), we conclude from the above
relation that Sm is regular. By the same argument as above, we obtain
O = Sm. So there exists exactly one place for which ν(x1) < 0. We write
this place as O∞, and its maximal ideal as p∞.
We now show that R ∩ p∞ = {0}. It follows from the equation defining
E that we have a K-automorphism ϕ of L mapping x1 to itself and x2

to −x2. If f ∈ R, then clearly f ·ϕ(f) ∈ K[x1]. Moreover, ϕ maps p∞ to
itself, so if f ∈ R ∩ p∞ we obtain

f · ϕ(f) ∈ K[x1] ∩ p∞ = K[1/y1] ∩ p∞ = {0},

so f = 0.
(b) Let ϕ: L→ L be as above. By the assumption on a and b, the polynomial

x3
1 + ax1 + b has three pairwise distinct zeros α1, α2, α3 ∈ K. With Pi :=

(0, αi) ∈ E, ϕ fixes the places OPi . Looking at the results from (a), we
see that ϕ also fixes O∞.
Now we considerK(x) and claim that for everyK-automorphism ψ:K(x)
→ K(x) thereexist α, β, γ, δ ∈ K with
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ψ(x) =
αx+ β

γx+ δ
.

(Notice that this gives an automorphism only if αδ − βγ �= 0, but we
do not need this here.) Indeed, if we write ψ(x) = g/h with g, h ∈ K[x]
coprime, then K(x) = K(g/h). We have g(x)− g

h · h(x) = 0. With a new
indeterminate t, the polynomial g(x) − th(x) ∈ K[t, x] is irreducible, so
it is also irreducible in K(t)[x]. Since g/h is transcendental over K, it
follows that g(x)− g

h
·h(x) = 0 is a minimal equation for x over K(g/h).

So its degree must be one, and we get g = αx + β and h = γx + δ as
claimed. If ψ = id, then ψ fixes infinitely many places. Which places are
fixed if ψ �= id? The places of K(x) are determined in Exercise 14.2. A
place corresponding to a point ξ ∈ K is fixed if and only if αξ+β

γξ+δ
= ξ, so

at most two such places are fixed. In addition, the place corresponding
to the point at infinity may be fixed, giving at most three fixed places.
This concludes the proof of (b).

(c) If (f)R = mP , then f ∈ R, so f /∈ p∞ by (a). On the other hand, if
(f)R = mP · m−1

Q and f ∈ p∞, then by interchanging P and Q and
substituting f by f−1, we also get f /∈ p∞. (In fact, the latter case turns
out to be impossible by the theory of divisors of projective curves.) So in
both cases, f ∈ pP \ p2

P , and f does not lie in the maximal ideal of any
place O �= OP of L.
Since f /∈ K, f is transcendental over K, so L is a finite field extension of
K(f). We are done if we can show that the degree d := [L : K(f)] is one.
Let A be the integral closure of K[f ] in L. By Lemma 8.27, A is finitely
generated as a module over K[f ]. Since A is torsion-free, the structure
theorem for finitely generated modules over a principal ideal domain (see
Lang [33, Chapter XV, Theorem 2.2]) tells us that A is free. Clearly A
contains a basis of L over K(f), and on the other hand no more than d
elements of A can be linearly independent. So A is a free K[f ]-module of
rank d. This implies that A/(f)A has dimension d as a vector space over
K[f ]/(f)K[f ] = K.
From f ∈ pP it follows that K[f ] ⊆ OP , so also A ⊆ OP since OP is
integrally closed in L. Since OP = RP , there is a map

ψ: A→ K, a �→ a(P ),

which is clearly K-linear and surjective. We claim that ker(ψ) = (f)A. If
we can prove this, then A/(f)A ∼= K, so d = 1, and we are done. Since
f ∈ pP , f lies in ker(ψ). Conversely, take a ∈ ker(ψ) and consider the
quotient b := a/f ∈ L. We need to show that b ∈ A. This is true if b ∈ Am

for every m ∈ Specmax(A), since then the ideal {c ∈ A | c · b ∈ A} ⊆ A is
not contained in any maximal ideal. (One could also use Exercise 8.3 for
this conclusion.)
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So let m ∈ Specmax(A). Since A is a normal Noetherian domain of dimen-
sion 1, Am is a DVR. We also have K ⊆ Am ⊆ L and L = Quot(Am).
Therefore Am is a place of L. If Am �= OP , then f does not lie in the max-
imal ideal of Am, so 1/f ∈ Am. Since also a ∈ A ⊆ Am, we get b ∈ Am.
On the other hand, if Am = OP , then b lies in Am since a ∈ pP and
f /∈ p2

P . So b ∈ Am for every m ∈ Specmax(A), and the proof is complete.
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uate Studies in Mathematics 3, American Mathematical Society, Providence, 1994
[117].

2. Michael F. Atiyah, Ian Grant Macdonald, Introduction to Commutative Algebra,
Addison-Wesley, Reading, 1969 [174].
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Notation

(a1, . . . , ak), 8

(a1, . . . , ak)R, 8

A≤d, 152

Ann(M), 69

Ann(m), 69

Ass(M), 73
a
u

, see m
u

AutK(N), 102

Cl(R), 209

C(R), 201

deg(f), 151

deg(I), 161

degw, 162

δi,j , 75

det(A), 75

∂f/∂xj , 187

dimK(V ), 56

dim(M), 69

dim(R), 52

dim(X), 51

Div(R), 205

ε: M → U−1M , 63

fin, 178

gr(a), 175

gr(R), 171

G(x), 145

Gx, 145

hI(d), 152
HI (t), 152
HomK(A, B), 21
hR(d), 172
ht(I), 68
ht(P ), 68

Hgrad
V (t), 153

√
I, 12

Iin, 178
IJ , see IM
I : J , 20
IK[x1,...,xn](X), 15
IM , 25
I−1, 202
In, 25
IP , see MP

irr(α, K), 185

IR(X), 36
IS , 127
I(X), 15

K[a1, . . . , an], see R[a1, . . . , an]
κ(P ) ⊗R S, 90
K×, see R×
Kn×m, 60
K[X], 16
K((x)), 19
K[[x]], 19
K[x], see K[x1, . . . , xn]
K(x1, . . . , xn), 55
K[x1, . . . , xn], see R[x1, . . . , xn]
K[X]G, 146
K[X]x, 64

LC(f), 119
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LCy(f), 132
length(M), 167
length(M), 51
L(I), see L(S)
LM(f), 119
LMy(f), 132
L(S), 120
LT(f), 119

(m1, . . . , mk), 8

(m1, . . . , mk)R, 8
Ma, 65
M/N , 24
Mon(f), 118
Mor(X, Y ), 35
MP , 64
m
u

, 63

NFG, 122
NG, 102
nil(R), 18

OK , 208
ord(a), 175

ϕ∗, 37
pI , 157
PP , see MP

pR, 172

Quot(R), 9

R̃, 96
Ra, see Ma

R[a1, . . . , an], 8
rank (gi,j mod P ), 187

R×, 198
RG, 111
R/I, see quotient ring
Rn×m , 75
RP , see MP

R∗, 170
R[[x]], 31
R[x1, . . . , xn], 7
R[x1, . . . , xn]/I, 8

(S), 8
S[P ], 82
Specmax(R), 12
Spec(R), 12
Specrab(R), 12
spol(f, g), 123
(S)R, 8
Supp(M), 69

T (f), 118
trdeg(A), 53

U−1M , 63
U−1R, see U−1M

VX(S), 18
V(I), see V(S)
VKn (S), 10
V(S), 10
VSpec(R)(S), 36

≤w, 134

X , 34
Xsing, 191
X × Y , 43
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abelian variety, 212

adjugate

Please note that a boldface page number indicates the page on which the word or phrase
is defined.

matrix, 75

affine algebra, 8

chains of prime ideals, 107

dimension, 55

explicit computation, 123

is a Jacobson ring, 15

is Noetherian, 30

subalgebra, 30, 60

affine curve, 191, 197, 199, 205, 207, 213,
215

affine domain, 8

chains of prime ideals, 107

affine n-space, 54, 55

affine scheme, 21

affine variety, 10

test for emptiness, 123

a-invariant, 162

algebra, 7

finitely generated, 8

algebra homomorphism, see homomor-
phism of algebras

algebraic, 8, 57

algebraic integer, 197, 208

algebraic number theory, 208, 210

algebraically closed field, 10

algebraically independent, 9, 53, 104

almost integral, 99, 176

analytic function, 32

annihilator, 69

Artin–Rees lemma, 172, 174

Artinian module, 23, 31, 168

need not be Noetherian, 31

Artinian ring, 24, 27, 57, 77, 114, 168

characterization, 27

is Noetherian, 27

ascending chain condition, 23, 38

associated graded ring, 171, 173–176,
178, 182

dimension, 174

presentation, 178
associated prime, 73

axiom of choice, 11, 28

basis theorem, see Hilbert’s basis theo-
rem

Benson, David, viii
Bézout’s theorem, 164

Binder, Anna Katharina, 133
birational equivalence, 184

block ordering, 119, 128, 132, 135, 139

dominating, 120
blowing up, 199

blowup algebra, 171
Buchberger’s algorithm, 126

extended, 126

Buchberger’s criterion, 124, 224
butterfly, 200, 213

canonical map

of localization, 63

Cartier divisor, 205
category

of affine K-algebras, 35
of affine K-varieties, 35

catenary, 107
Cauchy sequence, 184, 194

Cayley–Hamilton theorem, 87

chain, 51
maximal, 106

Chevalley, 143
class number, 210

CoCoA, 126

241



242 Index

codimension

of an ideal, see height
Cohen–Macaulay ring, 164, 181, 193

colon ideal, 20, 112, 136, 198
complete intersection, 109, 114

complete ring, 184
completion, 184, 184, 194–195

composition series, 168
computational commutative algebra,

117
computer algebra system, 126

cone, 85, 178
constructible subset, 143, 150

convergence, 184
convex cone, 134

convex hull, 134
coordinate ring, 16, 18, 45, 52, 68

is reduced, 18
coproduct, 48

cryptography, 212
cubic curve, 97, 178, 183, 195, 213

curve, see affine curve
rational, see rational curve

cusp, 179, 183, 213
Cutkosky, Dale, vii

Dedekind domain, 197, 207, 206–210,
214

degree

of a polynomial, 151
of an ideal, 161, 163–164

weighted, see weighted degree
dense subset, 37

descending chain condition, 23, 38, 120
desingularization, 98, 197, 199–201, 213

dimension, 51
and Hilbert polynomial, 158

and transcendence degree, 53, 55
can be infinite, 52, 89
computation, 128, 159–161

is maximal dimension of a compo-
nent, 52

of a field, 52

of a module, 69
of a polynomial ring, 54, 84

of a ring, 51
of a topological space, 51

of an affine variety, 52
of an intersection, 114

of Kn, 55
prime-ideal-free definition, 72

zero, 57, 135
dimension theory, 174

Diophantine equation, 208

direct sum of rings, 48
discrete logarithm problem, 212
discrete valuation, 198, 212, 215

nontrivial, 212
discrete valuation ring, 198, 206, 212

divisor, see Cartier divisor or Weil divi-
sor

domain
integral, see integral domain

dominant morphism, 48, 48, 85, 113, 142
double point, 179, 195, 199

DVR, see discrete valuation ring

elementary symmetric polynomials, 136
elimination ideal, 127, 127–131

geometric interpretation, 131
elimination ordering, 127, 135

elliptic curve, 89, 196, 210–212, 215–216
equidimensional, 53, 58, 107, 108, 142
Euclidean topology, 34, 38, 179

exact functor, 70
exact sequence, 70, 176

excellent ring, 193
extended Buchberger algorithm, 126

factor ring, see quotient ring

factorial ring, 9, 58, 96, 184, 198, 203,
208, 209, 214

is normal, 96

locally, 203
of dimension one, 215

Fermat equation, 208

Fermat’s last theorem, 208
fiber, 81, 82, 159

fiber dimension, 82, 81–87, 142–143, 149,
160

upper semicontinuity, 149
fiber ring, 82, 89

as tensor product, 89
field of fractions, 9

field of invariants, 147
figure-eight curve, 213
filtration, 152, 173, 194

first associated graded ring, 171
flat deformation, 159
flatness, 139, 160

formal Laurent series, 19, 177
formal power series ring, 19, 20, 31, 60,

68, 90, 152, 178, 183, 184, 194

dimension, 60, 90
is complete, 194
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is local, 19

is Noetherian, 31
fractional ideal, 201, 213

invertible, 201

need not be finitely generated, 213
free module, 8, 86, 91, 137, 138, 233

free resolution, 126
functor, 35, 37, 70

Galois theory, 21
generic flatness lemma, 139
generic freeness lemma, 137–139, 148,

160

for modules, 148
hypotheses, 148

germs of functions, 179
Gilbert, Steve, vii
going down, 85, 86, 101, 103, 113

and fiber dimension, 86
and freeness, 86

and normal rings, 103
counterexample, 113

going up, 99

Gordan, Paul, 23
graded algebra, 153

standard, see standard graded alge-
bra

graded module, 177
graded reverse lexicographic ordering,

see grevlex

graded ring, 31, 153, 171, 177
associated, see associated graded ring

graded vector space, 153
Greuel, Gert-Martin, vii
grevlex, 119, 128, 154, 156, 160

Gröbner basis, 120, 120–127
complexity, 127
over a ring, 123, 132

reduced, see reduced Gröbner basis
Grothendieck, Alexandre, 139, 193

G-variety, 144

Hartshorne, Robin, vii

Hausdorff space, 34, 38, 43, 194
height, 68

complementary to dimension, 107

is finite, 79
not always complementary to dimen-

sion, 114

height-one prime ideal, see prime ideal
of height 1

Heinig, Peter, vii, 72

Hilbert function, 152

Hilbert polynomial, 157, 157–159
Hilbert series, 152, 153, 177

graded case, 153
of a graded module, 177

Hilbert’s basis theorem, 30, 39
Hilbert’s Nullstellensatz, 11, 15, 20, 45,

123
first version, 11

second version, 15
Hilbert, David, 23

Hilbert–Samuel function, 172
Hilbert–Samuel polynomial, 172

Hilbert–Serre theorem, 157, 177
homeomorphism, 35, 43, 71

homogeneous
element, 32, 171

ideal, 155, 161
part, 155, 162, 178
polynomial, 155

homogenization, 160
homomorphism

induced, 35
of algebras, 7, 35

of rings, 7
hypersurface, 41, 57, 191

ideal
of a set of points, see vanishing ideal

ideal class group, 209
ideal power, 25

ideal product, 25
identity element, 7
image

of a morphism, see morphism
image closure, 130, 139, 144, 149

induced homomorphism, 35
induced map, 38, 82

surjectivity, 86, 99
induced morphism, see induced map

initial form, 178
integral closure, 96, 118

computation, 118
integral domain, 7
integral element, 93

integral equation, 93
integral extension, 93, 93–104

and finite modules, 95
and height, 101

preserves dimension, 101
towers, 95

integrally closed, 96
invariant ring, see ring of invariants
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invariant theory, vii, 111, 136, 144, 150

invertible fractional ideal, 201
irreducible components, 41

computation, 118

irreducible space, 38, 39
and Zariski topology, 39

irrelevant ideal, 32

isomorphism
of varieties, 19, 35, 35

Jacobian criterion, 187, 195

Jacobian matrix, 187
Jacobian variety, 212
Jacobson radical, 77

Jacobson ring, 14, 19, 20, 37

Kamke, Tobias, 133
Kohls, Martin, vii, 12, 43, 122

Kramer, David, viii
Krull dimension, see dimension
Krull topology, 194, 194, 230

Krull’s intersection theorem, 175, 176,
179, 184, 194, 198

Krull’s principal ideal theorem, see prin-
cipal ideal theorem

K-variety, 10

Laurent polynomials, 13, 60
Laurent series, see formal Laurent series

leading coefficient, 119
leading ideal, 120, 154
leading monomial, 119
leading term, 119

lemniscate, 213
length

of a chain, 51

of a module, 167
lexicographic ordering, 72, 119, 128,

131, 136
linear algebraic group, 144

linearly equivalent, 209
local ring, 19, 67, 71, 79, 80, 169–185

finite dimension, 79

invertible elements, 71
local–global principle, 71
localization

and dimension, 67
and Noether property, 66
at a point, 65

at a prime ideal, 64
hides components, 71

universal property, 65

with respect to a multiplicative sub-
set, 63

locally closed, 143
locally factorial, 203

locally principal, 202, 206, 213
locus of freeness, 91

lying over, 99

MACAULAY, 126

MAGMA, 127, 213
maximal chain, 106, 168
maximal ideal

in a polynomial ring, 10
maximal spectrum, 12
membership test, 122, 135

minimal polynomial, 185
minimal prime ideal, 41, 43

over an ideal, 42, 77
module, 8
monic polynomial, 93

monomial, 118
monomial ideal, 160

monomial ordering, 118
grevlex, see grevlex
lexicographic, see lexicographic

ordering

restricted, 128
Mora, Teo, 178

morphism, 38
and homomorphism of algebras, 35
computing image, 139–142

image is constructible, 143
in algebraic geometry, 38
of spectra, 38, 47

of varieties, 35, 46
multiplicative ideal theory, 201–205

multiplicative subset, 63

Nakayama’s lemma, 77, 78, 87, 100, 114,
174, 181, 204

and systems of generators, 87
hypotheses, 87

Ngo, Viet-Trung, vii, 88

nilpotent, 18
nilradical, 18, 41, 48

is intersection of minimal primes, 41

Noether normalization, 104–106, 109,
113, 136, 158

and systems of parameters, 113

constructive, 136
with linear combinations, 105
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Noetherian domain, 108

Noetherian induction, 144, 204
Noetherian module, 23, 28

alternative definition, 28

finite generation, 28
Noetherian ring, 23

counterexample, 24
may have infinite dimension, 89
subring, 30

Noetherian space, 38, 39
and Zariski topology, 39

nonsingular locus, 191
nonsingular point, 182, 183
nonsingular variety, 182

norm, 97, 202
normal field extension, 102
normal form, 121, 121–123

not unique, 121
unique for S a Gröbner basis, 122

normal ring, 96, 96–99, 175, 184, 198–
199

and localization, 98
and regularity, 184, 198

normal variety, 96, 199
normalization, 96, 104, 109–113, 118,

197, 199

computation, 118
need not be Noetherian, 110
of a polynomial ring, 112

of a variety, 110, 111
of an affine domain, 109

Nullstellensatz, see Hilbert’s Nullstellen-
satz

number field, 208
number theory, 178, 184, 185, 196, 197,

208

order, 175

p-adic integers, 184

partial derivative, 187
partially ordered set, 20

perfect field, 187
place, 215
polynomial ring, 7

dimension, 52, 54, 84
is Noetherian, 29, 30

polynomials
are Zariski continuous, 34

power

of an ideal, see ideal power
power series, see formal power series ring

prime avoidance lemma, 79, 80, 102

prime ideal
of height 1, 59, 111, 203–205
over an ideal, 42

principal ideal domain, 52, 61, 207, 209
principal ideal theorem, 77–80, 88, 108,

182, 203

converse, 80
fails for non-Noetherian rings, 88
for affine domains, 108

product ordering, 119
product variety, 43, 59

pullback, 90
pushout, 90

quadratic extension, 112

quasi-compact, 43
quotient module, 24

quotient ring, 8

Rabinowitsch spectrum, 12

Rabinowitsch’s trick, 12
radical ideal, 12, 13, 15, 118, 135

computation, 118

membership test, 135
rational curve, 216
rational function field, 9, 55, 76, 212

rational point, 212
R-domain, 148

reduced Gröbner basis, 126, 135
reduced ring, 18, 182, 191
Rees ring, 171

regular function, 17, 35, 45
regular local ring, 89, 182, 182–185, 198

is an integral domain, 184
is factorial, 184, 198, 203
is normal, 184

regular ring, 182, 193, 203
regular sequence, 193

regular system of parameters, 182, 193
regularity in codimension 1, 199, 203,

213
relation ideal, 130

residue class field, 90, 170
restricted monomial ordering, 128
ring, 7

of algebraic integers, see algebraic
integer

of invariants, 23, 111, 111, 136, 146

of polynomials, see polynomial ring
of regular functions, see coordinate

ring
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s-polynomial, 123
S2, 199
semicontinuity, see upper semicontinuity
semilocal ring, 88, 197
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separable field extension, 185
separating subset, 31
separating transcendence basis, 185
short exact sequence, 71
simple module, 168
singleton, 34, 38, 52
SINGULAR, 127
singular locus, 185, 191–193, 196
singular point, 97, 182, 183, 185

on intersection of components, 185
singularity, see singular point
spectrum, 12
standard graded algebra, 171, 177
Sturmfels, Bernd, viii

subalgebra, 7
not finitely generated, 30, 148

subring, 7
subset topology, 34, 60
subvariety, 17, 34
support, 69, 72
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symmetric group, 136
system of parameters, 80, 89, 113, 169,

174, 182
regular, see regular system of param-
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systems of polynomial equations, 11, 131
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T1 space, 34
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tangent cone, 171, 178, 181, 183
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total degree ordering, 154, 155, 159, 160

total ring of fractions, 64, 96, 201
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transcendence basis, 185

transcendence degree, 53
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unique factorization domain, see facto-
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of localization, 65

of normalization, 113
of the coproduct, 48

of the pushout, 90

upper semicontinuity, 143, 149
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