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Preface

Counting things is probably mankind’s earliest mathematical ex-
perience, and so, not surprisingly, combinatorial enumeration oc-
cupies an important place in virtually every mathematical field.
Yet apart from such time-honored notions as binomial coefficients,
inclusion-exclusion, and generating functions, combinatorial enu-
meration is a young discipline. Its main principles, methods, and
fields of application evolved into maturity only in the last century,
and there has been an enormous growth in recent years. The aim
of this book is to give a broad introduction to combinatorial enu-
meration at a leisurely pace, covering the most important subjects
and leading the reader in some instances to the forefront of current
research.
The text is divided into three parts: Basics, Methods, and Topics.
This should enable the reader to understand what combinatorial
enumeration is all about, to apply the basic tools to almost any
problem he or she may encounter, and to proceed to more advanced
methods and some attractive and lively fields of research.
As prerequisites, only the usual courses in linear algebra and cal-
culus and the basic notions of algebra and probability theory are
needed. Since graphs are often used to illustrate a particular result,
it may also be a good thing to have a text on graph theory at hand.
For terminology and notation not listed in the index the books by
R. Diestel, Graph Theory, Springer 2006, and D. B. West, Introduc-
tion to Graph Theory, Prentice Hall 1996, are good sources. Given
these prerequisites, the book is best suited for a senior undergrad-
uate or first-year graduate course.
It is commonplace to stress the importance of exercises. To learn
enumerative combinatorics one simply must do as many exercises
as possible. Exercises appear throughout the text to illustrate some
points and entice the reader to complete proofs or find generali-
zations. There are 666 exercises altogether. Many of them contain
hints, and for those marked with � you will find a solution in the
appendix. In each section, the exercises appear in two groups, di-
vided by a horizontal line. Those in the first part should be doable
with modest effort, while those in the second half require a little
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more work. Each chapter closes with a special highlight, usually a
famous and attractive problem illustrating the foregoing material,
and a short list of references for further reading.
I am grateful to many colleagues, friends, and students for all
kinds of contributions. My special thanks go to Mark de Longueville,
Jürgen Schütz, and Richard Weiss, who read all or part of the book
in its initial stages; to Margrit Barrett and Christoph Eyrich for the
superb technical work and layout; and to David Kramer for his
meticulous copyediting.
It is my hope that by the choice of topics, examples, and exer-
cises the book will convey some of the intrinsic beauty and intuitive
mathematical pleasure of the subject.

Berlin, Spring 2007 Martin Aigner
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Introduction

Enumerative combinatorics addresses the problem how to count
the number of elements of a finite set given by some combinato-
rial conditions. We could ask, for example, how many pairs the set
{1,2,3,4} contains. The answer is 6, as everybody knows, but the
result is not really exciting. It gives no hint how many pairs the sets
{1,2, . . . ,6} or {1,2, . . . ,100} will contain. What we really want is a
formula for the number of pairs in {1,2, . . . , n}, for any n.
A typical problem in enumerative combinatorics looks therefore as
follows: We are given an infinite family of sets Sn, where n runs
through some index set I (usually the natural numbers), and the
problem consists in determining the counting function f : I → N0,
f(n) = |Sn|. The sets may, of course, have two or more indices, say
Si,j , with f(i, j) = |Si,j|.
There is no straightforward answer as to what “determining” a
counting function means. In the example of the number of pairs,
f(n) = n(n−1)

2 , and everybody will accept this as a satisfactory an-
swer. In most cases, however, such a “closed” form is not attainable.
How should we proceed then?

Summation.
Suppose we want to enumerate the fixed-point-free permutations
of {1,2, . . . , n}, that is, all permutations σ with σ(i) ≠ i for all i.
Let Dn be their number; they are called the derangement numbers,
since after permuting them no item appears in its original place. For
n = 3,

(
1 2 3
2 3 1

)
and

(
1 2 3
3 1 2

)
are the only fixed-point-free permutations,

hence D3 = 2. We will later prove Dn = n!
∑n
k=0

(−1)k
k! ; the counting

function is expressed as a summation formula.

Recurrence.
Combinatorial considerations yield, as we shall see, the recurrence
Dn = (n − 1)(Dn−1 + Dn−2) for n ≥ 3. From the starting values
D1 = 0, D2 = 1, one obtains D3 = 2, D4 = 9, D5 = 44, and by

induction the general formula Dn = n!
∑n
k=0

(−1)k
k! . Sometimes we

might even prefer a recurrence to a closed formula. The Fibonacci
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numbers Fn are defined by F0 = 0, F1 = 1, Fn = Fn−1+Fn−2 (n ≥ 2).
We will later derive the formula Fn = 1√

5

[
(1+√5

2 )n − (1−√5
2 )n

]
. This

expression is quite useful for studying number-theoretic questions
about Fn, but the combinatorial properties are much more easily
revealed through the defining recurrence.

Generating Function.
An entirely different idea regards the values f(n) as coefficients of
a power series F(z) = ∑

n≥0 f(n)zn. F(z) is then called the gener-
ating function of the counting function f . If f has two arguments,
then it will be represented by F(y, z) = ∑

m,n f(m,n)ymzn, and
similarly for any number of variables. So why should this say any-
thing new about f ? The strength of the method rests on the fact
that we can perform algebraic operations on these series, like sum,
product, or derivative, and then read off recurrences or identities as
equations between coefficients. As an example, we shall see that for
the derangement numbers,

∑
n≥0

Dn
n! z

n = e−z
1−z , and this generating

function encodes all the information about the numbers Dn.
The first two chapters lay the ground for these ideas. They contain,
so to speak, the vocabulary of combinatorial enumeration, the fun-
damental coefficients, and types of generating functions with which
all counting begins.
In Part II we are going to apply the elementary combinatorial objects
and data sets. In most problems the work to be done is to
– solve recurrences,
– evaluate sums,
– establish identities,
– manipulate generating functions,
– find explicit bijections,
– compute determinants.
In Chapters 3–6 general methods are developed that will allow a sys-
tematic, almost mechanical approach to a great variety of concrete
enumeration problems.
Finally, in the third part we look at several important and beautiful
topics where enumeration methods have proved extremely useful.
They range from questions in analysis and algebra to problems in
knot theory and models in statistical physics, and will, it is hoped,
convince the reader of the power and elegance of combinatorial rea-
soning.



Part I: Basics





1 Fundamental Coefficients

1.1 Elementary Counting Principles

We begin by collecting a few simple rules that, though obvious, lie
at the root of all combinatorial counting. In fact, they are so obvious
that they do not need a proof.

Rule of Sum. If S = ⋃ti=1 Si is a union of disjoint sets Si, then |S| =∑t
i=1 |Si|.

In applications, the rule of sum usually appears in the following
form: we classify the elements of S according to a set of properties
ei (i = 1, . . . , t) that preclude each other, and set Si = {x ∈ S :
x has ei}.

The sum rule is the basis for most recurrences. Consider the follow-
ing example. A set X with n elements is called an n-set. Denote by
S =

(
X
k

)
the family of all k-subsets of X. Thus |S| =

(
n
k

)
, where

(
n
k

)
is the usual binomial coefficient. For the moment

(
n
k

)
is just a sym-

bol, denoting the size of
(
X
k

)
. Let a ∈ X. We classify the members of

S as to whether they do or do not contain a: S1 = {A ∈ S : a ∈ A},
S2 = {A ∈ S : a �∈ A}. We obtain all sets in S1 by combining all
(k−1)-subsets of X�a with a; thus |S1| =

(
n−1
k−1

)
. Similarly, S2 is the

family of all k-subsets of X�a: |S2| =
(
n−1
k

)
. The rule of sum yields

therefore the Pascal recurrence for binomial coefficients(
n
k

)
=
(
n− 1
k− 1

)
+
(
n− 1
k

)
(n ≥ k ≥ 1)

with initial value
(
n
0

)
= 1.

Note that we obtain this recurrence without having computed the
binomial coefficients.

Rule of Product. If S = ∏t
i=1 Si is a product of sets, then |S| =∏t

i=1 |Si|.
S consists of all t-tuples (a1, a2, . . . , at), ai ∈ Si, and the sets Si are
called the coordinate sets .
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Example. A sequence of 0’s and 1’s is called a word over {0,1},
and the number of 0’s and 1’s the length of the word. Since any co-
ordinate set Si has two elements, the product rule states that there
are 2n n-words over {0,1}. More generally, we obtain rn words if
the alphabet A contains r elements. We then speak of n-words over
the alphabet A.

Rule of Bijection. If there is a bijection between S and T , then |S| =
|T |.

The typical application goes as follows: Suppose we want to count
S. If we succeed in mapping S bijectively onto a set T (whose size t
is known), then we can conclude that |S| = t.

Example. A simple but extremely useful bijection maps the power-
set 2X of an n-set X, i.e., the family of all subsets of X, onto the n-
words over {0,1}. Index X = {x1, x2, . . . , xn} in any way, and map
A ⊆ X to (a1, a2, . . . , an) where ai = 1 if xi ∈ A and ai = 0 if xi �∈
A. This is obviously a bijection, and we conclude that |2X| = 2n.
The word (a1, . . . , an) is called the incidence vector or characteristic
vector of A.

The rule of bijection is the source of many intriguing combinatorial
problems. We will see several examples in which we deduce by alge-
braic or other means that two sets S and T have the same size. Once
we know that |S| = |T |, there exists, of course, a bijection between
these sets. But it may be and often is a challenging problem to find
in the aftermath a “natural” bijection based on combinatorial ideas.

Rule of Counting in Two Ways. When two formulas enumerate
the same set, then they must be equal.

This rule sounds almost frivolous, yet it often reveals very interest-
ing identities. Consider the following formula:

n∑
i=1

i = (n+ 1)n
2

. (1)

We may, of course, prove (1) by induction, but here is a purely com-
binatorial argument. Take an (n+1)×(n+1) array of dots, e.g., for
n = 4:
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The diagram contains (n + 1)2 dots. But there is another way to
count the dots, namely by way of diagonals, as indicated in the fig-
ure. Clearly, both the upper and lower parts account for

∑n
i=1 i dots.

Together with the middle diagonal this gives 2
∑n
i=1 i + (n + 1) =

(n+ 1)2, and thus
∑n
i=1 i = (n+1)n

2 .

We even get a bonus out of it: the sum
∑n
i=1 i enumerates another

quantity, the family S of all pairs in the (n + 1)-set {0,1,2, . . . , n}.
Indeed, we may partition S into disjoint sets Si according to the
larger element i, i = 1, . . . , n. Clearly, |Si| = i, and thus by the sum
rule |S| = ∑n

i=1 i. Hence we have the following result: the number
of pairs in an n-set is

(
n
2

)
= n(n−1)

2 .

The typical application of the rule of counting in two ways is to
consider incidence systems. An incidence system consists of two
sets S and T together with a relation I. If aIb, a ∈ S, b ∈ T , then
we call a and b incident. Let d(a) be the number of elements in T
that are incident to a ∈ S, and similarly d(b) for b ∈ T . Then∑

a∈S
d(a) =

∑
b∈T

d(b) .

The equality becomes obvious when we associate to the system its
incidence matrix M . Let S = {a1, . . . , am}, T = {b1, . . . , bn}, then
M = (mij) is the (0,1)-matrix with

mij =
{

1 if aiIbj,
0 otherwise.

The quantity d(ai) is then the i-th row sum
∑n
j=1mij , d(bj) is the

j-th column sum
∑m
i=1mij . Thus we count the total number of 1’s

once by row sums and the other time columnwise.

Example. Consider the numbers 1 to 8, and set mij = 1 if i di-
vides j, denoted i | j, and 0 otherwise. The incidence matrix of this
divisor relation looks as follows, where we have omitted the 0’s:
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1 2 3 4 5 6 7 8
1 1 1 1 1 1 1 1 1
2 1 1 1 1
3 1 1
4 1 1
5 1
6 1
7 1
8 1

The j-th column sum is the number of divisors of j, which we de-
note by t(j) thus, e.g., t(6) = 4, t(7) = 2. Let us ask how many
divisors a number from 1 to 8 has on average. Hence we want to
compute t(8) = 1

8

∑8
j=1 t(j). In our example t(8) = 5

2 , and we de-
duce from the matrix that

n 1 2 3 4 5 6 7 8

t(n) 1 3
2

5
3 2 2 7

3
16
7

5
2

How large is t(n) for arbitrary n? At first sight this appears hope-
less. For prime numbers p we have t(p) = 2, whereas for powers
of 2, say, an arbitrarily large value t(2k) = k + 1 results. So we
might expect that the function t(n) shows an equally erratic be-
havior. The following beautiful application of counting in two ways
demonstrates that quite the opposite is true!

Counting by columns we get
∑n
j=1 t(j). How many 1’s are in row i?

They correspond to the multiples of i, 1 · i,2 · i, . . . , and the last
multiple is �ni 	i. Our rule thus yields

t(n) = 1
n

n∑
j=1

t(j) = 1
n

n∑
i=1

�n
i
	 ∼ 1

n

n∑
i=1

n
i
=

n∑
i=1

1
i
,

where the error going from the second to the third sum is less than
1. The last sum Hn = ∑n

i=1
1
n is called the n-th harmonic num-

ber. We know from analysis (by approximating logx = ∫x1 1
t dt) that

Hn ∼ logn, and obtain the unexpected result that the divisor func-
tion, though locally erratic, behaves on average extremely regularly:
t(n) ∼ logn.

You will be asked in the exercises and in later chapters to pro-
vide combinatorial proofs of identities or recurrences. Usually, this
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means a combination of the elementary methods we have discussed
in this section.

Exercises

1.1 We are given t disjoint sets Si with |Si| = ai. Show that the number
of subsets of S1∪ . . .∪St that contain at most one element from each Si is
(a1+1)(a2+1) · · · (at+1). Apply this to the following number-theoretic
problem. Let n = pa1

1 p
a2
2 · · ·patt be the prime decomposition of n then

t(n) = ∏t
i=1(ai + 1). Conclude that n is a perfect square precisely when

t(n) is odd.

� 1.2 In the parliament of some country there are 151 seats filled by 3
parties. How many possible distributions (i, j, k) are there that give no
party an absolute majority?

1.3 Use the sum rule to prove
∑n
k=0 2k = 2n+1 − 1, and to evaluate∑n

k=1(n− k)2k−1.

1.4 Suppose the chairman of the math department stipulates that every
student must enroll in exactly 4 of 7 offered courses. The teachers give
the number in their classes as 51,30,30,20,25,12, and 18, respectively.
What conclusion can be drawn?

� 1.5 Show by counting in two ways that
∑n
i=1 i(n− i) =∑n

i=1

(
i
2

)
=
(
n+1

3

)
.

* * *

1.6 Join any two corners of a convex n-gon by a chord, and let f(n)
be the number of pairs of crossing chords, e.g., f(4) = 1, f(5) = 5.
Determine f(n) by Pascal’s recurrence. The result is very simple. Can
you establish the formula by a direct argument?

1.7 In how many ways can one list the numbers 1,2, . . . , n such that
apart from the leading element the number k can be placed only if either
k−1 or k+1 already appears? Example: 324516, 435216, but not 351246.

� 1.8 Let f(n, k) be the number of k-subsets of {1,2, . . . , n} that do not

contain a pair of consecutive integers. Show that f(n, k) =
(
n−k+1
k

)
, and

further that
∑n
k=0 f(n, k) = Fn+2 (Fibonacci number).

1.9 Euler’s ϕ-function is ϕ(n) = #{k : 1 ≤ k ≤ n, k relatively prime to
n}. Use the sum rule to prove

∑
d|nϕ(d) = n.

1.10 Evaluate
∑n
i=1 i2 and

∑n
i=1 i3 by counting configurations of dots as

in the proof of
∑n
i=1 i = n(n+1)

2 .
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� 1.11 Let N = {1,2, . . . ,100}, and A ⊆ N with |A| = 55. Show that A
contains two numbers with difference 9. Is this also true for |A| = 54?

1.2 Subsets and Binomial Coefficients

Let N be an n-set. We have already introduced the binomial coeffi-
cient

(
n
k

)
as the number of k-subsets of N . To derive a formula for(

n
k

)
we look first at words of length k with symbols from N .

Definition. A k-permutation of N is a k-word over N all of whose
entries are distinct.

For example, 1235 and 5614 are 4-permutations of {1,2, . . . ,6}. The
number of k-permutations is quickly computed. We have n possi-
bilities for the first letter. Once we have chosen the first entry, there
are n−1 possible choices for the second entry, and so on. The prod-
uct rule thus gives the following result:

The number of k-permutations of an n-set equals n(n− 1) · · · (n−
k+ 1) (n,k ≥ 0).

For k = n we obtain, in particular, n! = n(n − 1) · · ·2 · 1 for the
number of n-permutations, i.e., of ordinary permutations of N . As
usual, we set 0! = 1.

The expressions n(n − 1) · · · (n − k + 1) appear so frequently in
enumeration problems that we give them a special name:

nk := n(n−1) · · · (n−k+1) are the falling factorials of length
k, with n0 = 1 (n ∈ Z, k ∈ N0).

Similarly,

nk := n(n+1) · · · (n+k−1) are the rising factorials of length
k, with n0 = 1 (n ∈ Z, k ∈ N0).

Now, every k-permutation consists of a unique k-subset of N .
Since every k-subset can be permuted in k! ways to produce a k-
permutation, counting in two ways gives k!

(
n
k

)
= nk, hence(

n
k

)
= nk

k!
= n(n− 1) · · · (n− k+ 1)

k!
(n,k ≥ 0 ) , (1)
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where, of course,
(
n
k

)
= 0 for n < k.

Another way to write (1) is(
n
k

)
= n!
k!(n− k)! (n ≥ k ≥ 0), (2)

from which
(
n
k

)
=
(
n
n−k

)
results.

Identities and formulas involving binomial coefficients fill whole
books; Chapter 5 of Graham–Knuth–Patashnik gives a comprehen-
sive survey. Let us just collect the most important facts.

Pascal Recurrence.(
n
k

)
=
(
n− 1
k− 1

)
+
(
n− 1
k

)
,
(
n
0

)
= 1 (n,k ≥ 0). (3)

We have already proved this recurrence in Section 1.1; it also follows
immediately from (1).

Now we make an important observation, the so-called polynomial
method. The polynomials

xk = x(x−1)(x−2) · · · (x−k+1),xk = x(x+1)(x+2) · · · (x+k−1)

over C (or any field of characteristic 0) are again called the falling
resp. rising factorials, where x0 = x0 = 1. Consider the polynomials

xk

k!
and

(x − 1)k−1

(k− 1)!
+ (x − 1)k

k!
.

Both have degree k, and we know that two polynomials of degree k
that agree in more than k values are identical. But in our case they
even agree for infinitely many values, namely for all non-negative
integers, and so we obtain the polynomial identity

xk

k!
= (x − 1)k−1

(k− 1)!
+ (x − 1)k

k!
(k ≥ 1). (4)

Thus, if we set
(
c
k

)
= ck

k! = c(c−1)···(c−k+1)
k! for arbitrary c ∈ C (k ≥

0), then Pascal’s recurrence holds for
(
c
k

)
. In fact, it is convenient to

extend the definition to negative integers k, setting
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(
c
k

)
=
⎧⎨⎩
ck
k! (k ≥ 0)

0 (k < 0) .

Pascal’s recurrence holds then in general, since for k < 0 both sides
are 0: (

c
k

)
=
(
c − 1
k− 1

)
+
(
c − 1
k

)
(c ∈ C, k ∈ Z) . (5)

As an example,
(−1
n

)
= (−1)(−2)···(−n)

n! = (−1)n.

Here is another useful polynomial identity. From

(−x)k = (−x)(−x−1) · · · (−x−k+1) = (−1)kx(x+1) · · · (x+k−1)

we get

(−x)k = (−1)kxk, (−x)k = (−1)kxk . (6)

With xk = (x + k− 1)k this gives(
−c
k

)
= (−1)k

(
c + k− 1

k

)
, (−1)k

(
c
k

)
=
(
k− c − 1

k

)
. (7)

Equation (6) is called the reciprocity law between the falling and
rising factorials.

The recurrence (3) gives the Pascal matrix P =
((
n
k

))
with n as row

index and k as column index. P is a lower triangular matrix with 1’s
on the main diagonal. The table shows the first rows and columns,
where the 0’s are omitted.

n k 0 1 2 3 4 5 6 7

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1

(
n
k

)
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There are many beautiful and sometimes mysterious relations in
the Pascal matrix to be discovered. Let us note a few formulas that
we will need time and again. First, it is clear that

∑n
k=0

(
n
k

)
= 2n,

since we are counting all subsets of an n-set. Consider the column-
sum of index k down to row n, i.e.,

∑n
i=0

(
i
k

)
. By classifying the

(k + 1)-subsets of {1,2, . . . , n + 1} according to the last element
i+ 1 (0 ≤ i ≤ n) we obtain

n∑
i=0

(
i
k

)
=
(
n+ 1
k+ 1

)
. (8)

Let us next look at the down diagonal from left to right, starting
with row m and column 0. That is, we want to sum

∑n
i=0

(
m+i
i

)
. In

the table above, the diagonal withm = 3, n = 3 is marked, summing
to 35 =

(
7
3

)
. Writing

∑n
i=0

(
m+i
i

)
= ∑n

i=0

(
m+i
m

)
= ∑m+n

k=0

(
k
m

)
, this is

just a sum like that in (8), and we obtain

n∑
i=0

(
m+ i
i

)
=
(
m+n+ 1

n

)
. (9)

Note that (9) holds in general for m ∈ C.

From the reciprocity law (7) we may deduce another remarkable
formula. Consider the alternating partial sums in row 7: 1,1 − 7 =
−6,1−7+21 = 15,−20,15,−6,1,0. We note that these are precisely
the binomial coefficients immediately above, with alternating sign.
Let us prove this in general; (7) and (9) imply

m∑
k=0

(−1)k
(
n
k

)
=

m∑
k=0

(
k−n− 1

k

)
=
(
m−n
m

)
= (−1)m

(
n− 1
m

)
.

(10)
The reader may wonder whether there is also a simple formula for
the partial sums

∑m
k=0

(
n
k

)
without signs. We will address this ques-

tion of when a “closed” formula exists in Chapter 4 (and the answer
for this particular case will be no).

Next, we note an extremely useful identity that follows immediately
from (2); you are asked in the exercises to provide a combinatorial
argument: (

n
m

)(
m
k

)
=
(
n
k

)(
n− k
m− k

)
(n,m,k ∈ N0) . (11)
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Binomial Theorem.

(x +y)n =
n∑
k=0

(
n
k

)
xkyn−k . (12)

Expand the left-hand side, and classify according to the number
of x’s taken from the factors. The formula is an immediate conse-
quence.

For y = 1 respectively y = −1 we obtain

(x + 1)n =
n∑
k=0

(
n
k

)
xk, (x − 1)n =

n∑
k=0

(−1)n−k
(
n
k

)
xk , (13)

and hence for x = 1,
∑n
k=0

(
n
k

)
= 2n and

n∑
k=0

(−1)k
(
n
k

)
= δn,0 , (14)

where δi,j is the Kronecker symbol

δi,j =
{

1 i = j,
0 i ≠ j.

This last formula will be the basis for the inclusion–exclusion prin-
ciple in Chapter 5. We may prove (14) also by the bijection principle.
Let N be an n-set, and set S0 = {A ⊆ N : |A| even}, S1 = {A ⊆ N :
|A| odd}. Formula (14) is then equivalent to |S0| = |S1| for n ≥ 1.
To see this, pick a ∈ N and define φ : S0 → S1 by

φ(A) =
⎧⎨⎩A∪ a if a �∈ A,
A�a if a ∈ A.

This is a desired bijection.

Vandermonde Identity.(
x +y
n

)
=

n∑
k=0

(
x
k

)(
y

n− k

)
(n ∈ N0) . (15)
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Once again the polynomial method applies. Let R and S be disjoint
sets with |R| = r and |S| = s. The number of n-subsets of R ∪ S
is
(
r+s
n

)
. On the other hand, any such set arises by combining a k-

subset of R with an (n−k)-subset of S. Classifying the n-subsets A
according to |A∩ R| = k yields(

r + s
n

)
=

n∑
k=0

(
r
k

)(
s

n− k

)
for all r , s ∈ N0 .

The polynomial method completes the proof.

Example. We have
∑n
k=0

(
n
k

)2 =∑nk=0

(
n
k

)(
n
n−k

)
=
(

2n
n

)
.

Multiplying both sides of (15) by n! we arrive at a “binomial” theo-
rem for the falling factorials:

(x +y)n =
n∑
k=0

(
n
k

)
xkyn−k (16)

and the reciprocity law (6) gives the analogous statement for the
rising factorials:

(x +y)n =
n∑
k=0

(
n
k

)
xkyn−k . (17)

Multisets.
In a set all elements are distinct, in a multiset we drop this require-
ment. For example, M = {1,1,2,2,3} is a multiset over {1,2,3} of
size 5, where 1 and 2 appear with multiplicity 2. Thus the size of
a multiset is the number of elements counted with their multiplici-
ties. The following formula shows the importance of rising factori-
als:

The number of k-multisets of an n-set is

nk

k!
= n(n+ 1) · · · (n+ k− 1)

k!
=
(
n+ k− 1

k

)
. (18)

Just as a k-subset A of {1,2, . . . , n} can be interpreted as a mono-
tone k-word A = {1 ≤ a1 < a2 < · · · < ak ≤ n}, a k-multiset is a
monotone k-word with repetitions {1 ≤ a1 ≤ · · · ≤ ak ≤ n}. This
interpretation immediately leads to a proof of (18) by the bijection
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rule. The map φ : A = {a1 ≤ a2 ≤ · · · ≤ ak} �→ A′ = {1 ≤ a1 <
a2 +1 < a3 +2 < · · · < ak+k−1 ≤ n+k−1} is clearly a bijection,
and (18) follows.

Multinomial Theorem.

(x1 + · · · + xm)n =
∑

(k1,··· ,km)

(
n

k1 . . . km

)
xk1

1 · · ·xkmm , (19)

where (
n

k1 . . . km

)
= n!
k1! · · ·km!

,
m∑
i=1

ki = n , (20)

is the multinomial coefficient.

The proof is similar to that of the binomial theorem. Expanding
the left-hand side we pick x1 out of k1 factors; this can be done
in
(
n
k1

)
= n!

k1!(n−k1)! ways. Out of the remaining n − k1 factors we

choose x2 from k2 factors in
(
n−k1
k2

)
= (n−k1)!
k2!(n−k1−k2)! ways, and so on.

A useful interpretation of the multinomial coefficients is the fol-
lowing. The ordinary binomial coefficient

(
n
k

)
counts the number of

n-words over {x,y} with exactly k x’s and n− k y ’s. Similarly, the
multinomial coefficient

(
n

k1...km

)
is the number of n-words over an

alphabet {x1, . . . , xm} in which xi appears exactly ki times.

Lattice Paths.
Finally, we discuss an important and pleasing way to look at bino-
mial coefficients. Consider the (m × n)-lattice of integral points in
Z2, e.g., m = 6, n = 5 as in the figure,

(6,5)

(0,0)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
n = 5

︸ ︷︷ ︸
m = 6
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and look at all lattice paths starting at (0,0), terminating at (m,n),
with steps one to the right or one upward. We will call the hori-
zontal steps (1,0)-steps since the x-coordinate is increased by 1,
and similarly, we call the vertical steps (0,1)-steps. Let L(m,n)
be the number of these lattice paths. The initial conditions are
L(m,0) = L(0, n) = 1, and classification according to the first step
immediately gives

L(m,n) = L(m− 1, n)+ L(m,n− 1) .

This is precisely Pascal’s recurrence for
(
m+n
m

)
, and we conclude

that

L(m,n) =
(
m+n
m

)
. (21)

Another quick way to see this is by encoding the paths. We assign
the symbol E(ast) to a (1,0)-step and N(orth) to a (0,1)-step. The
lattice paths correspond then bijectively to (m + n)-words over
{E,N} with precisely m E’s, and this is

(
m+n
m

)
. In the example

above, the encoding is given by ENEENNENEEN. The lattice path in-
terpretation allows easy and elegant proofs of many identities in-
volving binomial coefficients.

Example. Consider the following variant of the Vandermonde
identity:

∑n
k=0

(
s+k
k

)(
n−k
m

)
=
(
s+n+1
s+m+1

)
(s,m,n ∈ N0). For n < m,

both sides are 0, so assume n ≥ m, and look at the (s +m + 1) ×
(n −m)-lattice. The number of paths is

(
s+n+1
s+m+1

)
. Now we classify

the paths according to the highest coordinate y = k where they
touch the vertical line x = s.

k

(s +m+ 1, n−m)

︸ ︷︷ ︸
s (s +m+ 1,0)

Then the next step is a (1,0)-step, and the sum and product rules
give
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s +n+ 1
s +m+ 1

)
=
n−m∑
k=0

(
s + k
k

)(
m+ (n−m− k)

m

)

=
n∑
k=0

(
s + k
k

)(
n− k
m

)
.

Exercises

1.12 Prove
(
n
m

)(
m
k

)
=
(
n
k

)(
n−k
m−k

)
(n ≥ m ≥ k ≥ 0) by counting pairs of

sets (A, B) in two ways, and deduce
∑m
k=0

(
n
k

)(
n−k
m−k

)
= 2m

(
n
m

)
.

� 1.13 Use the previous exercise to show that
(

2n
2k

)(
2n−2k
n−k

)(
2k
k

)
=
(

2n
n

)(
n
k

)2

for n ≥ k ≥ 0.

1.14 Show that
(
n
k

)
= n

k

(
n−1
k−1

)
,
(
n
k

)
= k+1

n−k
(
n
k+1

)
, and use this to verify the

unimodal property for the sequence
(
n
k

)
, 0 ≤ k ≤ n :

(
n
0

)
<
(
n
1

)
< · · · <(

n
�n/2	

)
=
(

n
�n/2�

)
> · · · >

(
n
n

)
.

1.15 Show that that the sum of right–left diagonals in the Pascal matrix

ending at (n,0) is the Fibonacci number Fn+1, i.e., Fn+1 =∑k≥0

(
n−k
k

)
.

1.16 Show that rk(r − 1
2)
k = (2r)2k

22k (r ∈ C, k ∈ N0), and deduce
(−1/2

n

)
=

(−1
4)
n
(

2n
n

)
,
(−3/2

n

)
= (−1

4)
n(2n+ 1)

(
2n
n

)
.

� 1.17 Show that the multinomial coefficient
(

n
n1...nk

)
assumes for fixed n

and k its maximum in the “middle,” where |ni −nj| ≤ 1 for all i, j. Prove

in particular that
(

n
n1n2n3

)
≤ 3n

n+1 (n ≥ 1).

1.18 Prove the identities (8) and (9) by counting lattice paths.

* * *

� 1.19 The Pascal matrix (slightly shifted) gives a curious prime number
test. Index rows and columns as usual by 0,1,2, . . . . In row n we insert the

n + 1 binomial coefficients
(
n
0

)
,
(
n
1

)
, . . . ,

(
n
n

)
, but shifted to the columns

2n, . . . ,3n . In addition, we draw a circle around each of these numbers
that is a multiple of n, as in the table.
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n k 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

Show that k is a prime number if and only if all elements in column k are
circled. Hint: k even is easy, and for odd k the element in position (n, k)
is
(

n
k−2n

)
.

1.20 Let an = 1
(n0)

+ 1
(n1)

+ · · · + 1
(nn)

. Show that an = n+1
2n an−1 + 1 and

compute limn→∞ an (if the limit exists). Hint: an > 2 + 2
n and an+1 < an

for n ≥ 4 .

� 1.21 Consider (m + n)-words with exactly m 1’s and n 0’s. Count the
number of these words with exactly k runs, where a run is a maximal
subsequence of consecutive 1’s. Example: 1011100110 has 3 runs.

1.22 Prove the following variants of Vandermonde’s identity algebraically
(manipulating binomial coefficients) and by counting lattice paths.

a.
∑
k

(
r

m+k
)(

s
n−k

)
=
(
r+s
m+n

)
, b.

∑
k

(
r

m+k
)(

s
n+k

)
=
(

r+s
r−m+n

)
,

1.23 Give a combinatorial argument for the identity∑
k

(
2r

2k−1

)(
k−1
s−1

)
= 22r−2s+1

(
2r−s
s−1

)
, r , s ∈ N0 .

� 1.24 Consider the (m × n)-lattice in Z2. A Delannoy path from (0,0) to
(m,n) uses steps (1,0), (0,1) and diagonal steps (1,1) from (x,y) to
(x + 1, y + 1). The number of these paths is the Delannoy number Dm,n.
Example for D2,1 = 5:

.

Prove that Dm,n =∑k

(
m
k

)(
n+k
m

)
. Hint: Classify the paths according to the

number of diagonal steps.

1.25 Prove the identity
∑
k

(
m−r+s

k

)(
n+r−s
n−k

)(
r+k
m+n

)
=
(
r
m

)(
s
n

)
, m,n ∈ N0.

Hint: Write
(
r+k
m+n

)
=∑i

(
r

m+n−i
)(
k
i

)
, and apply (11).

1.26 Prove that 22n

2
√
n ≤

(
2n
n

)
≤ 22n√

n for n ≥ 1. Hint: For the upper bound

prove the stronger result
(

2n
n

)
≤ 22n / (1 + 1

n)
√
n .
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1.3 Set-partitions and Stirling Numbers Sn,k

Our next combinatorial objects are the partitions of a set N into
non-empty disjoint sets Ai, N = A1

.∪ · · · .∪ Ak. Let us denote by∏
(N) the family of all partitions of N . The sets Ai are called the

blocks of the partition, and a partition into k blocks is a k-partition.

Definition. The Stirling number Sn,k (of the second kind) is the
number of k-partitions of an n-set, where by definition S0,0 = 1,
S0,k = 0 (k > 0). The number of all partitions is the Bell number
Bell(n); thus Bell(n) =∑nk=0 Sn,k, Bell(0) = 1.

Why the numbers Sn,k are called Stirling numbers of the second kind
has historical reasons that will become clear in the next section. (As
expected there are also those of the first kind.) The notation Sn,k
is the most widely used; in computer science books one also finds{
n
k

}
.

Example. N = {1,2,3,4,5} has fifteen 2-partitions; thus S5,2 = 15:

1234|5
1235|4
1245|3
1345|2
2345|1

123|45
124|35
125|34
134|25
135|24

145|23
234|15
235|14
245|13
345|12

Stirling numbers occur quite naturally when we count mappings
between sets N and R. Let us denote by Map(N,R) the set of all
mappings from N to R, by Inj(N,R) the injective mappings, and by
Surj (N,R) the surjective mappings.

Suppose |N| = n, |R| = r . Clearly, |Map(N,R)| = rn, and |Inj(N,R)|
= rn, since any injective mapping can be thought of as an n-
permutation of the set R. What about Surj (N,R)? For f ∈ Surj (N,R)
the pre-images f−1(y) (y ∈ R) form an ordered r -partition of N ,
f−1(y1)|f−1(y2)| · · · |f−1(yr ). Since an ordinary r -partition of N
corresponds to r ! surjective mappings (by permuting the blocks),
we infer

|Map(N,R)| = rn, |Inj(N,R)| = rn, |Surj (N,R)| = r !Sn,r . (1)

Now, every f ∈ Map(N,R) has a unique image f(N) = A ⊆ R onto
which it is mapped surjectively. If we classify Map(N,R) according
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to the image we arrive at

rn = |Map(N,R)| =
∑
A⊆R

|Surj (N,A)| =
r∑
k=0

∑
A:|A|=k

|Surj (N,A)|

=
r∑
k=0

(
r
k

)
k!Sn,k =

r∑
k=0

Sn,krk .

In conclusion, we have found a formula that combines powers,
falling factorials, and Stirling numbers, and our familiar polynomial
argument gives the polynomial identity

xn =
n∑
k=0

Sn,kxk . (2)

Note that we may stop the summation at n, since obviously Sn,k = 0
for n < k.

Polynomial Sequences.
Formula (2) is the first instance in which two polynomial sequences
(xn) and (xn) are linearly connected. Such “connecting” identities
are a fertile source for various relations involving combinatorial co-
efficients. We will elaborate on this theme in Section 2.4; for the
moment, let us collect some basic facts.

A polynomial sequence is a sequence p0(x),p1(x),p2(x), . . . of
polynomials (over C, or some field K of characteristic 0) with
degpn(x) = n. Usually, we assume that all pn(x) have leading co-
efficient 1. Any such sequence

(
pn(x)

)
is a basis of the vector space

K[x]. Hence, given two such sequences
(
pn(x)

)
and

(
qn(x)

)
there

are unique coefficients an,k and bn,k with

pn(x) =
n∑
k=0

an,kqk(x), qn(x) =
n∑
k=0

bn,kpk(x) . (3)

The numbers an,k respectively bn,k are called the connecting co-
efficients between the sequences

(
pn(x)

)
and

(
qn(x)

)
. They form

infinite lower triangular matrices (an,k) and (bn,k), since clearly
an,k = bn,k = 0 for n < k.

The Stirling numbers Sn,k are thus the connecting coefficients of
the sequence (xn) expressed in terms of the basis (xn). As a first
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application, we use (2) to derive a recurrence for the numbers Sn,k.
We have

xk+1 = xk(x − k) = x · xk − kxk ,
or

x · xk = xk+1 + kxk .
This implies

xn = x · xn−1 =
∑
k
Sn−1,k(x · xk) =

∑
k
Sn−1,kxk+1 +

∑
k
kSn−1,kxk

=
∑
k
Sn−1,k−1xk +

∑
k
kSn−1,kxk .

Comparing this to (2), we have proved algebraically the recurrence

Sn,k = Sn−1,k−1 + kSn−1,k (n ≥ 1) . (4)

Of course, we can explain (4) also by a combinatorial argument. Fix
a ∈ N , |N| = n. The first summand in (4) counts all k-partitions
of N in which {a} is a singleton block, and the second summand
counts those in which a appears in a block of size ≥ 2, since a may
be added to any of the k blocks of a k-partition of N�a.

Stirling Matrix.
The first rows and columns of the Stirling matrix (Sn,k) look as
follows, where the 0’s above the main diagonal are omitted:

n k 0 1 2 3 4 5 6 7
0 1
1 0 1
2 0 1 1
3 0 1 3 1
4 0 1 7 6 1
5 0 1 15 25 10 1
6 0 1 31 90 65 15 1
7 0 1 63 301 350 140 21 1

Sn,k

A few special values are easily seen: Sn,1 = 1, Sn,2 = 2n−1 − 1,

Sn,n−1 =
(
n
2

)
, Sn,n = 1. That Sn,n−1 =

(
n
2

)
is clear, since any (n−1)-

partition must contain exactly one pair and otherwise singletons. A
partition of N into two blocks is a pair {A,N�A} of complementary
non-empty subsets; hence Sn,2 = 2n−2

2 = 2n−1 − 1.
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Finally, for the Bell numbers we have the recurrence

Bell(n+ 1) =
n∑
k=0

(
n
k

)
Bell(k) . (5)

For the proof fix a ∈ N and classify the partitions according to the
size of the block containing a.

Exercises

� 1.27 Show that
∑
k Sn+1,k+1xk = (x+1)n, and use the polynomial method

to prove Sn+1,k+1 = ∑
i

(
n
i

)
Si,k. Verify this last equality also by a combi-

natorial argument, and deduce again the Bell number recurrence (5).

1.28 Prove the identities
∑n
i=k Si,k(k+1)n−i = Sn+1,k+1, and

∑n
i=0 iSm+i,i =

Sm+n+1,n , reminiscent of (8), (9) of the previous section.

1.29 Find a formula for Sn,3.

1.30 Determine the connecting coefficients of (xn) expressed in terms of
the rising factorials (xn).

* * *

1.31 Verify Sn,k =
∑

1a1−12a2−1 · · ·kak−1, where the sum extends over all
solutions of a1 + a2 + · · · + ak = n in positive integers.

� 1.32 Show that
(
k+r
k

)
Sn,k+r =

∑n−r
i=k

(
n
i

)
Si,kSn−i,r .

1.33 Define the polynomials pn(x) =
∑n
k=0 Sn,kxk. Use the previous exer-

cise to prove the “Stirling binomial theorem”

pn(x +y) =∑n
k=0

(
n
k

)
pk(x)pn−k(y).

1.34 Determine the number f(n, k) of sequences a1a2 . . . an of positive
integers such that the largest entry is k, and the first occurrence of i
appears before the first occurence of i+1 (1 ≤ i ≤ k−1). Hint: f(n, k) =
Sn,k.

� 1.35 Give a combinatorial argument that the number of partitions of
{1, . . . , n} such that no two consecutive numbers appear in the same
block is precisely the Bell number Bell(n− 1).

1.36 Show that (Sn,0, Sn,1, . . . , Sn,n) is a unimodal sequence, for every n.
More precisely, prove that there is an index M(n) such that
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Sn,0 < Sn,1 < · · · < Sn,M(n) > Sn,M(n)+1 > · · · > Sn,n
or

Sn,0 < Sn,1 < · · · < Sn,M(n)−1 = Sn,M(n) > · · · > Sn,n ,
where M(n) =M(n− 1) or M(n) = M(n− 1)+ 1.

Hint: Use recurrence (4) and Exercise 1.27.

1.4 Permutations and Stirling Numbers sn,k

For a set N we denote by S(N) the set of all permutations of N , and
in particular, by S(n) the set of all permutations of {1,2, . . . , n}.
Permutations are one of the classical fields of algebra as well as
combinatorics.

A permutation σ ∈ S(n) is first of all a bijective mapping whose
canonical notation is

σ =
(

1 2 . . . n
σ(1) σ(2) . . . σ(n)

)
.

With composition, S(n) forms a group, the symmetric group of or-
der n. We read a product always from right to left, thus for

σ =
(

123456
234165

)
, τ =

(
123456
134526

)
,

we have

τσ =
(

123456
345162

)
and στ =

(
123456
241635

)
.

If we fix the domain {1,2, . . . , n} in increasing order, the second
line is a unique n-permutation. We call σ = σ(1)σ(2) . . . σ(n)
the word representation of σ . Another way to describe σ is by its
cycle decomposition. For every i, the sequence i, σ(i),σ2(i), . . .
must eventually terminate with, say, σk(i) = i, and we denote
by

(
i,σ(i),σ2(i), . . . , σk−1(i)

)
the cycle containing i. Repeating

this for all elements, we arrive at the cycle decomposition σ =
σ1σ2 · · ·σt .
Example. σ =

(
12345678
35146827

)
has word representation σ = 35146827

and cycle form σ = (13)(25687)(4).
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Cycle Decomposition.
Let us discuss first the cycle decomposition. It is clear that we may
start a cycle with any element in the cycle; the rest is then deter-
mined. For example, (2568) and (5682) describe the same cycle.
The cycles of length 1 are the fixed points of σ , those of length 2
correspond to transpositions i ↔ j. A permutation that consists of
one cycle only is called a cyclic permutation. By fixing the leading
element, we find that there are (n−1)! cyclic permutations of S(n).

The order in which we write down the cycles is clearly irrelevant. We
sometimes use the following standard form: Start each cycle with
the largest element, and order the cycles with increasing leading el-
ements. The standard form of σ = (13)(25687)(4) is therefore σ =
(31)(4)(87256). Conversely, from any n-permutation a1a2 . . . an
we may uniquely recover the cycle decomposition: (a1a2 . . .)
(ai . . .)(aj . . .) . . ., where ai is the first entry larger than a1, aj is
the first entry after ai larger than ai, and so on. Thus, the number
of cycles determined in this way equals the number of left-to-right
maxima of the word a1a2 . . . an.

A natural and very useful graphical representation is to interpret
σ ∈ S(n) as a directed graph with i → j if j = σ(i). The cycles of
σ correspond then to the directed circuits of the graph.

Example. σ = (142)(738)(5)(69) corresponds to the graph

1

2

3

96

7 8 54

Definition. The Stirling number sn,k of the first kind is the num-
ber of permutations of an n-set with precisely k cycles, where we
set s0,0 = 1 and s0,k = 0 (k > 0) as usual.

Hence
∑n
k=0 sn,k = n!, and the recurrence reads

sn,k = sn−1,k−1 + (n− 1)sn−1,k (n ≥ 1) . (1)

For the proof we classify the permutations in the familiar way ac-
cording to a fixed element a ∈ N . The first summand counts all
permutations of N that have a as fixed point. The second sum-
mand counts the remaining permutations, since we may insert a
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before each of the n − 1 elements of any cycle of a permutation of
N�a with k cycles.

Recurrence (1) immediately yields the polynomial identity

xn =
n∑
k=0

sn,kxk . (2)

To show this we note that

xn = xn−1(x +n− 1) = x · xn−1 + (n− 1)xn−1

and hence by induction that

xn = x
∑
k≥1

sn−1,k−1xk−1 +
∑
k≥0

(n− 1)sn−1,kxk

=
∑
k≥1

sn−1,k−1xk +
∑
k≥0

(n− 1)sn−1,kxk

=
∑
k≥0

sn,kxk .

By the reciprocity law (6) of Section 1.2 we obtain

xn = (−1)n(−x)n = (−1)n
n∑
k=0

sn,k(−x)k ,

that is,

xn =
n∑
k=0

(−1)n−ksn,kxk . (3)

The coefficients (−1)n−ksn,k are thus the counterparts of xn =∑n
k=0 Sn,kxk, this time expressing xn in terms of the basis (xn).

And this is, of course, the origin of the name Stirling numbers of
the first and second kinds. Incidentally, in some texts (−1)n−ksn,k
are called the Stirling numbers of the first kind, and sn,k the signless
Stirling numbers.

Stirling Matrix.
The table lists the first values of the Stirling matrix (sn,k); clearly
(sn,k) is again lower triangular.
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n k 0 1 2 3 4 5 6 7

0 1
1 0 1
2 0 1 1
3 0 2 3 1
4 0 6 11 6 1
5 0 24 50 35 10 1
6 0 120 274 225 85 15 1
7 0 720 1764 1624 735 175 21 1

sn,k

We already know that sn,1 = (n − 1)! (counting the cyclic permu-

tations). Furthermore, sn,n−1 =
(
n
2

)
, sn,n = 1. To compute sn,2, we

make use of recurrence (1). Dividing by (n− 1)! we obtain

sn,2
(n− 1)!

= (n− 2)!
(n− 1)!

+ (n− 1)sn−1,2

(n− 1)!
= sn−1,2

(n− 2)!
+ 1
n− 1

,

and thus with s2,2 = 1,

sn,2
(n− 1)!

= 1
n− 1

+ 1
n− 2

+ · · · + 1
2
+ 1

1
= Hn−1 ,

that is,
sn,2 = (n− 1)!Hn−1 , (4)

where Hn−1 is the (n− 1)-st harmonic number.

Word Representation.
Now we look at permutations of {1,2, . . . , n} in word form σ =
a1a2 . . . an, ai = σ(i). The pair {i, j} is called an inversion if i < j
but ai > aj . The inversion number inv(σ) is the number of inver-
sions of σ , and σ is called even (odd) if inv(σ) is even (odd). The
sign of σ is defined as sign (σ) = (−1)inv(σ). Thus sign (σ) = 1 if σ
is even and sign (σ) = −1 if σ is odd.

The following graphic representation of a permutation σ will prove
very useful. We write 1,2, . . . , n into two rows and join i with ai =
σ(i) by an edge. For example, σ = 314265 has the diagram

1 2 3 4 5 6

1 2 3 4 5 6
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A moment’s thought shows that {i, j} is an inversion if and only
if the edges iai and jaj cross in the diagram. Hence the inversion
number inv(σ) equals the number of crossings.

From this setup we may easily deduce a few useful facts. First, it is
clear that inv(σ) = 0 holds exactly for the identity permutation σ =
id. Next we see that the diagram read from the bottom up gives the
permutation σ−1; thus inv(σ) = inv(σ−1), sign (σ) = sign (σ−1).
To represent a product τσ we attach another row to the diagram
corresponding to τ . Suppose σ = 314265, τ = 513642; then we
obtain

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

Following the paths of length 2 from top to bottom we get τσ =
356124. Furthermore, we see that inv(σ) + inv(τ) ≡ inv(τσ)
(mod 2). Indeed, {i, j} is an inversion in τσ if and only if the paths
starting at i and j cross in the first half but not in the second, or
they cross in the second half but not in the first. If they cross in
both, as for 5 and 6, then the crossings cancel out, and {5,6} is not
an inversion. In summary, we have sign (τσ) = sign (τ)sign (σ).
Thus sign: S(n) → {1,−1} is a homomorphism, from which it fol-
lows that for n ≥ 2 half of the permutations are even and half are
odd.

Suppose σ = σ1σ2 · · ·σt is the cycle decomposition of σ . Regard-
ing a cycle (i1, i2, . . . , ik) as a permutation of {1,2, . . . , n} by keep-
ing all elements not in the cycle fixed, we see that σ = σ1σ2 · · ·σt
is, in fact, a product of permutations. Hence sign (σ) = ∏t

i=1

sign (σi), so to compute sign (σ) it suffices to determine the sign
for cycles. But this is easy. First we note that any transposition (i, j)
is odd. Look at the diagram

1

1

2

2

i

i

k

k

j

j

n

n

. . . . . .

. . . . . .
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Any edge kk with k < i or k > j contributes no crossing, while the
edges kk with i < k < j add 2. Hence modulo 2 there remains the
one crossing induced by the inversion {i, j}, and we get sign (i, j) =
−1. Now let (i1, . . . , i	) be a cycle of length 	 ≥ 3. Then it is easily
checked that the product

(i	−1, i	)(i	−2, i	−1) · · · (i1, i2)(i1, i2, . . . , i	)

is the identity permutation. Hence (−1)	−1sign (i1, . . . , i	) = 1, and
we obtain the following result:

A cyclic permutation of length 	 has sign = (−1)	−1.

Exercises

1.37 Use the polynomial method to show that sn+1,k+1 = ∑n
i=0

(
i
k

)
sn,i .

Can you find a combinatorial proof?

1.38 What is the expected number of fixed points when all n! permuta-
tions of S(n) are equally likely?

1.39 A permutation σ ∈ S(n) is an involution if σ2 = id, that is, if all
cycles have length 1 or 2. Prove for the number in of involutions the
recurrence in+1 = in +nin−1 (i0 = 1). What is the number of fixed-point-
free involutions?

� 1.40 Let i(r)n be the number of permutations of {1, . . . , n} with no cycles
of length greater than r . Prove the recurrence i(r)n+1 = ∑n

k=n−r+1 nn−ki
(r)
k ,

generalizing the previous exercise.

1.41 Let 	 > n
2 . Show that the number of permutations σ ∈ S(n) that

have a cycle of length 	 equals n!
	 . What is the proportion t(n) of σ ∈

S(n) that contain a cycle of length > n
2 when all permutations are equally

likely? Compute limn→∞ t(n).

� 1.42 Let In,k be the number of permutations in S(n) with exactly k in-

versions, k = 0,1, . . . ,
(
n
2

)
. Prove: a. In,0 = 1, b. In,k = In,(n2)−k, c. In,k =

In−1,k + In,k−1 for k < n. Is this also true for k = n? d.
∑(n2)
k=0(−1)kIn,k = 0

for n ≥ 2. The In,k are called inversion numbers.

1.43 Let σ = a1a2 . . . an ∈ S(n) be given in word form, and denote by bj
the number of elements to the left of j that are larger than j (thus they
form an inversion with j). The sequence b1b2 . . . bn is called the inversion
table of σ . Show that 0 ≤ bj ≤ n− j (j = 1, . . . , n) and prove, conversely,
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that every sequence b1b2 . . . bn with 0 ≤ bj ≤ n− j is the inversion table
of a unique permutation.

1.44 A permutation σ ∈ S(n) is called connected if for any k, 1 ≤ k < n,
{σ(1), σ(2), . . . , σ(k)} ≠ {1, . . . , k}. Prove

∑n
i=1 c(i)(n − i)! = n!, where

c(i) is the number of connected partitions in S(i).

* * *

1.45 Define the type of σ ∈ S(n) to be the formal expression 1c12c2 . . .
ncn , where ci is the number of cycles in σ of length i; thus

∑n
i=1 ici =

n. Show that the number of σ ∈ S(n) with type 1c12c2 . . . ncn equals
n!

1c1c1!2c2c2!···ncncn! .

� 1.46 Let σ ∈ S(n) have type t(σ) = 1c1 . . . ncn . Show that the number of
π ∈ S(n) that commute with σ , i.e., πσ = σπ , is 1c1c1!2c2c2! · · ·ncncn!
(where this is now a real product). Hint: The graph representation helps.

1.47 Prove the following identities for the Stirling numbers sn,k:

a.
∑n
i=k si,knn−i = n!

n∑
i=k

si,k
i! = sn+1,k+1, b.

∑n
i=0(m + i)sm+i,i = sm+n+1,n,

c.
∑
k sn+1,k+1

(
k
m

)
(−1)k−m = sn,m, d.

∑
k sk,	sn−k,m

(
n
k

)
= sn,	+m

(
	+m
m

)
(	,m,n ∈ N0).

� 1.48 Let σ = a1a2 . . . an ∈ S(n) be given in word form. A run in σ is a
largest increasing subsequence of consecutive entries. The Eulerian num-
ber An,k is the number of σ ∈ S(n) with precisely k runs or equivalently
with k − 1 descents ai > ai+1. Thus, e.g., An,1 = An,n = 1 with 12 . . . n
respectively n n − 1 . . .1 as the only permutations. Prove the recurrence
An,k = (n − k+ 1)An−1,k−1 + kAn−1,k for n,k ≥ 1 with A0,0 = 1, A0,k = 0

(k > 0). Use induction to prove xn = ∑n
k=0An,k

(
x+n−k
n

)
and deduce the

formula An,k =
∑k
i=0(−1)i

(
n+1
i

)
(k− i)n.

1.49 Use the previous exercise to show further: a.
∑n
k=1An,k = n!, b.

An,k = An,n+1−k, c.
∑n
k=1 kAn,k = 1

2(n + 1)!. What is the expected num-
ber of runs when all permutations are equally likely?

1.50 When all permutations are equally likely, what is the probability that
k specified elements are in the same cycle? Hint: Consider the standard

cycle representation and use
∑n−1
i=0 ik−1 = nk

k , which will be proved in
Chapter 5.

� 1.51 With all permutations equally likely, what is the expected number of
cycles?

1.52 Derive by a combinatorial argument the following recurrence for
the derangement numbers: Dn = (n − 1)(Dn−1 +Dn−2) (n ≥ 2), D0 = 1,
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D1 = 0. Deduce from this Dn = nDn−1 + (−1)n. Can you find a direct
argument for this latter recurrence?

1.5 Number-Partitions

After partitions of sets we consider now partitions of positive in-
tegers into integer summands. A number-partition of n is n =
λ1 + λ2 + · · · + λk, where we assume λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 1.
The summands λi are called the parts of n. We write λ = λ1λ2 . . . λk
for short and set |λ| = n if n = ∑k

i=1 λi is the number partitioned
by λ. If λ has k parts, then λ is called a k-partition.

Par(n) denotes the set of partitions of n, Par(n;k) the set of k-
partitions of n, with p(n) = |Par(n)|, p(n;k) = |Par(n;k)|. By defi-
nition, Par(0) consists of the empty partition, p(0) = 1.

Example. For n = 5 we get the following seven partitions:

5, 41, 32, 311, 221, 2111, 11111;

thus p(5) = 7.

Note that we deal with unordered partitions. When the order mat-
ters, then, e.g., 311,131, and 113 are distinct ordered partitions. A
nice application of the bijection principle yields

The number of ordered k-partitions of n equals

(
n− 1
k− 1

)
.

Map the ordered partition n1n2 . . . nk ofn to the (k−1)-set {n1, n1+
n2, . . . , n1+· · ·+nk−1}. Since ni ≥ 1, this is a subset of {1,2, . . . , n−
1}, and the map is easily seen to be bijective. Ordered partitions are
also called compositions.

The ordered k-partitions of n are thus the solutions of the equa-
tion x1 + x2 + · · · + xk = n in positive integers. It is interesting
to note that the solutions in non-negative integers correspond to
n-multisets of {1,2, . . . , k} (the xi’s being the multiplicities). Hence
their number is

(
n+k−1
n

)
.

Partition Numbers.
Back to ordinary unordered partitions. We have introduced the no-
tation Par(n), Par(n;k). Similarly, we use Par(n;≤ k) for the set
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of all partitions of n with at most k parts, and set p(n;≤ k) =
|Par(n;≤ k)|. For the partition numbers p(n;k) there is no recur-
rence of order 2. Instead, we have

p(n;k) = p(n− k;≤ k) = p(n− k; 1)+ · · · + p(n− k;k) . (1)

Indeed, the mappingφ : Par(n;k)→ Par(n−k;≤ k)withφ(λ1 . . . λk)
= λ1 − 1, λ2 − 1, . . . , λk − 1 is clearly a bijection, where we omit pos-
sible 0’s at the end.

Formula (1) immediately implies the recurrence

p(n;k) = p(n− 1;k− 1)+ p(n− k;k) . (2)

For small values we have

p(n;k)

n k 0 1 2 3 4 5 6 7

0 1
1 0 1
2 0 1 1
3 0 1 1 1
4 0 1 2 1 1
5 0 1 2 2 1 1
6 0 1 3 3 2 1 1
7 0 1 3 4 3 2 1 1

n 0 1 2 3 4 5 6 7
p(n) 1 1 2 3 5 7 11 15

An extremely useful graphic description of number-partitions is
provided by the so-called Ferrers diagram. Let λ = λ1λ2 . . . λk be
a partition of n. We put λ1 dots in row 1, λ2 dots in row 2, and so
on, starting in the same column.

Example. λ = 64221 has the diagram

Thus for λ ∈ Par(n;k) the diagram has k rows. Reflecting the di-
agram at the main diagonal y = −x, i.e., interchanging rows and
columns, we obtain the conjugate partition λ∗. In our example this
is λ∗ = 542211:
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Clearly, λ� λ∗ is an involution of the set Par(n). Note further that
λ∗i = #{j : λj ≥ i}, and that the number of parts of λ∗ is equal to the
highest summand λ1 of λ. Let us therefore introduce this parame-
ter into our notation. Par(n;k;m) is the set of all partitions of n
with k parts and highest summand m. Par(n;k;≤ m) and Par(n;≤
k;≤ m) are similarly defined, with sizes p(n;k;m), p(n;k;≤ m),
p(n;≤ k;≤ m). Finally, p( ;≤ k;≤ m) = |Par( ;≤ k;≤ m)|, with no
restriction on n.

Example. For k = 3, m = 2 the set Par( ;≤ 3;≤ 2) consists of the
following partitions:

222 22 2 �
221 21 1
211 11
111

p( ;≤ 3;≤ 2) = 10 .

The involution λ � λ∗ implies that we may interchange the second
and third parameters:

p(n;k;m) = p(n;m;k),
p(n;k;≤m) = p(n;≤m;k), (3)

p( ;≤ k;≤m) = p( ;≤m;≤ k) .

The partitions λ = λ1λ2 . . . λk, where all parts are distinct, i.e., λ1 >
λ2 > · · · > λk, will play a special role. These sets shall be denoted
by Pard(n), Pard(n;k;m), etc. with cardinalities pd(n),pd(n;k;m),
etc. As a first result we have the following relations:

pd(n;k;≤m) = p(n−
(
k+ 1

2

)
;≤ k;≤m− k),

(4)
pd( ;k;≤m) = p( ;≤ k;≤m− k) .

This time we use the map φ : Pard(n;k;≤ m) → Par(n −
(
k+1

2

)
;≤

k;≤m−k) defined by φ(λ1 . . . λk) = λ1 −k, λ2 − (k−1), . . . , λk−1,
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omitting possible 0’s at the end. This is the desired bijection, also
for the second equality.

Lattice Paths.
To end these introductory remarks about number-partitions we dis-
cuss an important and perhaps unexpected connection to binomial
coefficients via lattice paths. Remember that

(
m+n
m

)
counts the lat-

tice paths from (0,0) to (m,n). The following figure demonstrates
a natural bijection between these paths and the set Par( ;≤ n;≤m),
by interpreting the part above the lattice path as a Ferrers diagram.

Example.
(5,4)

(0,0)

n = 4

m = 5

�→ λ = 4311

Hence

p( ;≤ n;≤m) =
(
m+n
m

)
. (5)

Note that the path that goes up to y = n and then horizontally to
(m,n) corresponds to the empty partition. In our example above,
n = 3, m = 2, we obtain p( ;≤ 3;≤ 2) =

(
2+3

2

)
= 10.

Summary.
An easy way to remember some of the fundamental coefficients we
have encountered so far is to interpret them as distributions of n
balls into r boxes. Let N be the set of balls, and R the boxes. Any
mapping f : N → R is then a distribution of the balls, and injective
or surjective mappings have the usual meaning. Now suppose the
balls cannot be distinguished, but the boxes can. In this case, the
different mappings correspond to sequences x1x2 . . . xr with x1 +
· · ·+xr = n, where xj is the number of balls in box j. Hence these
mappings correspond to n-multisets of R, the injective mappings to
n-subsets of R, and the surjective mappings to ordered r -partitions
of n. The reader may easily complete the other rows of the following
table.
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f : N �→ R arbitrary injective surjective
N
R

dist.
dist.

rn rn r !Sn,r

N
R

indist.
dist.

rn
n! =

(
r+n−1
n

)
rn
n! =

(
r
n

) (
n−1
r−1

)
N
R

dist.
indist.

r∑
k=0

Sn,k 0 or 1 Sn,r

N
R

indist.
indist.

r∑
k=1

p(n;k) 0 or 1 p(n; r)

Exercises

� 1.53 Show that the number of self-conjugate partitions, i.e., λ∗ = λ,
equals the number of partitions of n with all summands odd and dis-
tinct.

1.54 Show that p(n;n− t) = p(t) if and only if n ≥ 2t.

1.55 Prove pd(n;k) = p(n−
(
k
2

)
;k).

1.56 Verify the recurrence

pd(n;k) = pd(n− k;k)+ pd(n− k;k− 1),2 ≤ k ≤ �n2 	, n ≥ 5 ,

with starting values

pd(n; 1) = 1, pd(n;k) = 0 for n <
(
k+1

2

)
, pd

((
k+1

2

)
;k
)
= 1 .

1.57 Express the following quantities in terms of Fibonacci numbers: a.
The number of ordered partitions of n into parts greater than 1; b. the
number of ordered partitions ofn into parts equal to 1 or 2; c. the number
of ordered partitions of n into odd parts.

1.58 Show that the number of partitions of n with all parts ≥ 2 equals
p(n)− p(n− 1).

� 1.59 Determine the number of solutions of x1 + · · · + xk ≤ n in positive
integers; in non-negative integers.

* * *

1.60 Let e(n), o(n), and sc(n) denote, respectively, the number of par-
titions of n with an even number of even parts, with an odd number of
even parts, and that are self-conjugate. Show that e(n)− o(n) = sc(n).
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1.61 Prove that for n ≥ 2, exactly half of the partitions of n into pow-
ers of 2 have an even number of parts. For example, when n = 5 the
partitions are 41,221,2111,11111.

� 1.62 For λ ∈ Par(n), let fm(λ) be the number of times m appears in
λ, and let gm(λ) be the number of distinct parts of λ that occur at
least m times. Example: f2(4333211) = 1, g2(4333211) = 2. Show that∑
λ fm(λ) = ∑

λ gm(λ), where both sums range over Par(n), m fixed.
What is

∑
|λ|=n f1(λ)? Hint: Show that the sums satisfy the same recur-

rence.

1.63 . Let bm be the number of pairs λ = λ1λ2 . . . λk, μ = μ1μ2 . . . μk for
some k such that λ1 > λ2 > · · · > λk ≥ 1, μ1 > μ2 > · · · > μk ≥ 0 and∑
λj+

∑
μj =m. Prove that bm = p(m). Hint: Use a clever decomposition

of the Ferrers diagram.

� 1.64 A partition of n is called perfect if it contains precisely one partition
for every m < n. Thus, if x1 + 2x2 + · · · + nxn = n (xi ≥ 0), then there
is a unique solution of y1 +2y2 +· · ·+nyn =m with 0 ≤ yi ≤ xi for all
i and m < n. For example, 311,221, and 11111 are the perfect partitions
of 5. Show that the number of perfect partitions of n equals the number
of ordered factorizations of n+ 1 without unit factors.

1.6 Lattice Paths and Gaussian Coefficients

We have discussed several connecting relations between polynomial
sequences, the simplest being xn =∑nk=0

(
n
k

)
(x−1)k, with the bino-

mials
(
n
k

)
as connecting coefficients. Now we turn to an important

generalization of the coefficient
(
n
k

)
.

Definition. The polynomials gn(x) = (x−1)(x−q) · · · (x−qn−1),
g0(x) = 1, are called the Gaussian polynomials, where q is an arbi-
trary complex number or, more generally, an indeterminate.

Writing xn =∑nk=0[
n
k ]qgk(x), the connecting coefficients are called

the Gaussian coefficients. Note that for q = 1, gk(x) = (x − 1)k,
whence [nk ]1 =

(
n
k

)
.

The generalization to arbitrary q turns out to be a fertile source for
many enumeration problems. First we note the recurrence

[n
k

]
q
=
[n− 1
k− 1

]
q
+ qk

[n− 1
k

]
q
(n ≥ k ≥ 1),

[n
0

]
q
= 1 . (1)
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We certainly have [n0 ]q = 1, so assume k ≥ 1. From gk(x) = (x −
qk−1)gk−1(x), we infer

xn = x · xn−1 = x
∑
k≥1

[n− 1
k− 1

]
q
gk−1(x) =

∑
k≥1

[n− 1
k− 1

]
q
xgk−1(x)

=
∑
k≥1

[n− 1
k− 1

]
q
gk(x)+

∑
k≥1

qk−1
[n− 1
k− 1

]
q
gk−1(x)

=
∑
k≥0

([n− 1
k− 1

]
q
+ qk

[n− 1
k

]
q

)
gk(x) ,

and hence [nk ]q = [n−1
k−1 ]q + qk[n−1

k ]q as claimed.

Now we want to compute the coefficients [nk ]q. The guiding idea
is the fact that [nk ]q becomes for q = 1 the binomial coefficient(
n
k

)
= n!
k!(n−k)! .

Define [n]q := 1−qn
1−q as an expression in the variable q. Since 1−qn

1−q =
1 + q + q2 + · · · + qn−1, this becomes the integer n when q = 1.
Accordingly, we call [n]q the q-integer n. Next, we set

[n]q! = [n]q[n− 1]q · · · [1]q = (1 − qn)(1 − qn−1) · · · (1 − q)
(1 − q)n (2)

with [0]q! = 1 by definition, which becomes n! for q = 1.

Claim. [n
k

]
q
= [n]q!

[k]q![n− k]q!
(n ≥ k ≥ 0) . (3)

This is certainly true for n = 0 or k = 0; we proceed by induction
on n. From [n]q! = 1−qn

1−q [n− 1]q! and (1) we obtain

[n
k

]
q
=
[n− 1
k− 1

]
q
+ qk

[n− 1
k

]
q

= [n− 1]q!

[k− 1]q![n− k]q!
+ qk [n− 1]q!

[k]q![n− 1 − k]q!

= [n− 1]q!

[k]q![n− k]q!

(
1 − qk
1 − q + qk(1 − qn−k)

1 − q

)

= [n− 1]q!

[k]q![n− k]q!
· 1 − qn

1 − q = [n]q!

[k]q![n− k]q!
.

Note that (3) implies [nk ]q = [ n
n−k]q. Cancelling terms we may also

write



38 1 Fundamental Coefficients

[n
k

]
q
= [n]q[n− 1]q · · · [n− k+ 1]q

[k]q!
= (1 − qn) · · · (1 − qn−k+1)

(1 − qk) · · · (1 − q) ,

(4)

reminiscent of
(
n
k

)
= nk

k! for q = 1.

This suggests that we should define the q-falling and q-rising facto-
rial polynomials

xnq = x(x − [1]q) · · · (x − [n− 1]q) ,

xnq = x(x + [1]q) · · · (x + [n− 1]q) .

Expressing xn in terms of xkq , we call the connecting coefficients
the q-Stirling numbers Sn,k;q, and similarly for xnq we obtain the
numbers sn,k;q. Thus for every q we may develop a calculus of q-
coefficients, generalizing the previous results (see the exercises).

Lattice Paths.
The most interesting of these “q-generalizations” concerns the in-
terpretation of the binomial coefficients as counting numbers of
lattice paths. Recall Section 1.5, where we have demonstrated the
remarkable result

|Par( ;≤ n;≤m)| =
(
m+n
m

)
,

by bijecting lattice paths to the Ferrers diagram above the path.
It is natural to classify these paths according to the number i of
points in the diagram, i.e., i is the number that is partitioned by λ,
i = 0,1, . . . ,mn.

Accordingly, we set

Am,n(q) =
∑

λ∈Par( ;≤n;≤m)
q|λ| =

mn∑
i=0

aiqi , (5)

where ai = p(i;≤ n;≤ m). Thus Am,n(1) = p( ;≤ n;≤ m) =(
m+n
m

)
.

Proposition 1.1. We have

Am,n(q) =
∑
i≥0

p(i;≤ n;≤m)qi =
[m+n

m

]
q
. (6)
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Proof. We show that Am,n(q) and [m+n
m ]q satisfy the same initial

conditions and the same recurrence. For m = 0 or n = 0 we have
A0,n(q) = Am,0(q) = 1 since in this case we get only the empty
partition, and also [0+n

0 ]q = [m+0
m ]q = 1. Assume m,n ≥ 1; then

the recurrence for [m+n
m ]q is by (1),[m+n

m

]
q
=
[m+n− 1

m− 1

]
q
+ qm

[m+n− 1
m

]
q
. (7)

For Am,n(q) we split the paths into two classes, depending on
whether for the largest summand, λ1 < m or λ1 = m. In the first
case we obtain Am−1,n(q), and in the second (after deleting the top
row containing m dots) qmAm,n−1(q). Hence

Am,n(q) = Am−1,n(q)+ qmAm,n−1(q) ,

and this is precisely recurrence (7). �

As a corollary we can state the q-binomial theorem generalizing
(x + 1)n =∑nk=0

(
n
k

)
xk.

Corollary 1.2. We have

(1 + xq)(1 + xq2) · · · (1 + xqn) =
n∑
k=0

[n
k

]
q
q(

k+1
2 )xk .

Proof. Expanding the left-hand side we obtain

(1 + xq) · · · (1 + xqn) =
n∑
k=0

bk(q)xk,

where
bk(q) =

∑
λ∈Pard( ;k;≤n)

q|λ| .

Now recall the bijection Pard( ;k;≤ n) → Par( ;≤ k;≤ n− k) proved
in Section 1.5 (equation (4)) by subtracting k dots from the first row,
k − 1 from the second row, and so on. Taking these k + (k − 1) +
· · · + 1 =

(
k+1

2

)
dots into account we obtain

bk(q) = q(
k+1

2 )
∑

λ∈Par( ;≤k;≤n−k)
q|λ| ,

and thus by the proposition bk(q) = q(
k+1

2 )[nk ]q. �
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As a final application let us generalize the multinomial coefficient(
n

k1...km

)
. In analogy to

(
n

k1...km

)
= n!
k1!···km! we define

[ n
k1k2 . . . km

]
q

:= [n]q!

[k1]q! · · · [km]q!
= (1 − qn) · · · (1 − q)

k1∏
i=1
(1 − qi) · · ·

km∏
i=1
(1 − qi)

,

(8)
where

∑m
j=1 kj = n.

We know that the multinomial coefficient counts the set S(k1, . . . ,
km) of all n-words s = s1 . . . sn over {1, . . . ,m} with ki i’s (1 ≤ i ≤
m). As usual, we say that i < j (1 ≤ i < j ≤ n) is an inversion if
si > sj , inv(s) = # inversions is the inversion number of s.

Example. s = 12231133 ∈ S(3,2,3) has inversion number inv(s)
= 6.

Note that S (1,1, . . . ,1)︸ ︷︷ ︸
n

is exactly the set of permutations S(n), and

inv(s) reduces to the inversion number defined for permutations.

Corollary 1.3. We have

[ n
k1 . . . km

]
q
=

∑
s∈S(k1,...,km)

qinv(s),
m∑
j=1

kj = n .

Proof. We use induction on m. For m = 1, S(k1) = S(n) consists
of the single word s = 11 . . .1 with inv(s) = 0, and also [nn]q = 1 =
q0. Consider m = 2. By the proposition,

[k1 + k2

k1 k2

]
q
=
[k1 + k2

k2

]
q
=
∑
i≥0

aiqi

with ai = p(i; ≤ k1;≤ k2). Any word s with k1 1’s and k2 2’s cor-
responds bijectively to a lattice path by going up for 1 and right
for 2.
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Example.

s = 12122121 �→ inv(s) = 8

A moment’s thought shows that inv(s) equals precisely the number
i of dots above the path, which means that

∑
i≥0 aiqi =

∑
s qinv(s).

Now let m ≥ 3. To s ∈ S(k1, . . . , km) we associate a pair (t,u) of
words such that t ∈ S(k1, . . . , km−2, km−1 + km) arises from s by
replacing in s every m by m− 1, and where u ∈ S(km−1, km) is the
subword of m− 1 and m.

Example. s = 21331211 �→ t = 21221211, u = 2332.

Since s can be recovered uniquely from t and u, the map s � (t,u)
is a bijection. Furthermore, we have inv(s) = inv(t) + inv(u), that
is,
∑
s qinv(s) =∑t qinv(t) ·∑u qinv(u) . With induction this gives

∑
t
qinv(t) = [n]q!

[k1]q! · · · [km−2]q![km−1 + km]q!

∑
u
qinv(u) = [km−1 + km]q!

[km−1]q![km]q!
,

and we conclude that

∑
s
qinv(s) =

∑
t
qinv(t) ·

∑
u
qinv(u) = [n]q!

[k1]q! · · · [km]q!
. �

For k1 = k2 = · · · = kn = 1 we have [ n
1···1]q = [n]q !

[1]q !···[1]q ! = [n]q! ,

and we infer the following corrollary.

Corollary 1.4.

∑
σ∈S(n)

qinv(σ) = (1 − qn)(1 − qn−1) · · · (1 − q)
(1 − q)n . (9)
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Example. For n = 3, the inversion numbers are I3,0 = 1, I3,1 =
I3,2 = 2, I3,3 = 1. Thus∑

σ∈S(3)
qinv(σ) = q3 + 2q2 + 2q + 1 ,

in agreement with

(1 − q3)(1 − q2)(1 − q)
(1 − q)3 = (1 + q + q2)(1 + q) = q3 + 2q2 + 2q + 1 .

Exercises

1.65 Verify [nk ]q =
[n]q
[k]q [

n−1
k−1 ]q, n ≥ k ≥ 0.

� 1.66 Prove the recurrence [nk ]q = qn−k[n−1
k−1 ]q + [n−1

k ]q.

1.67 Verify the reciprocity law [n]kq = (−1)kqkn+(
k
2)[−n]kq .

1.68 Prove [ nm]q[
m
k ]q = [nk ]q[ n−km−k]q, n ≥m ≥ k ≥ 0 .

1.69 The identities xnq = ∑n
k=0 sn,k;qxk, xn = ∑n

k=0 Sn,k;qx
k
q define the

q-Stirling numbers. Derive the following recurrences, generalizing the
results in Sections 1.3 and 1.4: a. sn,k;q = sn−1,k−1;q + [n − 1]qsn−1,k;q ,
b. Sn,k;q = Sn−1,k−1;q + [k]qSn−1,k;q .

* * *

� 1.70 Prove
∑n
i=0

[
i
k

]
q
q(k+1)(n−i) = [n+1

k+1 ]q.

1.71 Show that the q-Stirling numbers Sn,r ;q can be expressed in the fol-
lowing way:

Sn,r ;q = q−(
r
2)

[r]q!

r∑
k=0

(−1)r−kq(
r−k

2 )[
r
k
]q[k]nq .

1.72 Prove the q-Vandermonde identity

[r + s
n

]
q
=

n∑
k=0

[r
k

]
q

[ s
n− k

]
q
q(r−k)(n−k) .

� 1.73 The sum Gn =∑n
k=0[

n
k ]q is called a Galois number . Prove the recur-

rence Gn+1 = 2Gn + (qn − 1)Gn−1 (n ≥ 1).
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1.74 Let V be an n-dimensional vector space over the finite field GF(q),
q a prime power. Prove that [nk ]q equals the number of k-dimensional
subspaces of V .

� 1.75 Let φn,k = q(
k+1

2 )[nk ]q. Prove the identity φn,k = φn−1,k−1 +φn−1,k +
(qn−k+1 − 1)φn,k−1 .
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Highlight: Aztec Diamonds

A time-honored topic in combinatorics is to cover a given figure
with a set of “bricks” of the same type without overlaps. Any such
covering is called a tiling, and the task consists in proving that there
exists a tiling at all, and if possible to count the number of such
tilings. There is a vast and well-developed theory of tilings with reg-
ular polygons, as witnessed by ornaments and wallpaper patterns
dating back to ancient times.

We consider the simplest type, tilings of a plane lattice figure with
the usual 1 × 2-dominoes. Even for the most natural case, domino
tilings of an m×n-rectangle, to determine the number of tilings is
no easy task. In Section 10.1 we will derive an intricate and unex-
pected formula, and for more complicated figures one would expect
even greater difficulties.

So it came as a surprise when not long ago, Noam Elkies, Greg Ku-
perberg, Michael Larsen, and James Propp introduced a plane figure,
which they called Aztec diamond, for which the answer is as simple
as one could hope for.

Take n rows with 2,4,6, . . . ,2n cells, stack them on top of each
other in the form of a staircase, and reflect this staircase about the
x-axis. The resulting configuration is the Aztec diamond AZ(n).
The figure shows the diamonds for n = 1,2,3:

For later reference we note that AZ(n) contains 2n(n+ 1) cells.

Let A(n) be the number of domino tilings of AZ(n). For example,
A(1) = 2, and A(2) = 23, A(3) = 26 are easily seen. The result we
want to prove is the following:

Theorem. We have
A(n) = 2(

n+1
2 ) . (1)
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Noam Elkies et al. gave four proofs for this astonishing formula,
using various different ideas. One proof stands out in its simplicity
and beauty. It uses an ingenious device called domino shuffling, and
this is the proof we want to follow.

Domino Shuffling.
Consider the infinite Z × Z-chessboard Z, checkered as usual with
white and black cells. Every domino thus occupies a black and a
white cell. T is called a partial tiling of Z if T covers part (possibly
all) of Z. The uncovered cells are called free cells, and the uncovered
part the free region.

Now we introduce the basic operation on a domino tiling, called
domino shuffling. Horizontal dominoes move one step up or down,
vertical dominoes one step to the left or right, as explained in the
figure:

Performing the shuffling operation simultaneously for all dominoes
of T , we obtain a new configuration S(T).

A 2× 2-square filled with two dominoes and with a black cell in the
upper left-hand corner is called a black block:

or

Notice that a black block is left invariant under the shuffling, since
the dominoes just change their places. We now come to the crucial
definition.

Definition. A partial tiling T is called reduced if

a. T contains no black blocks,
b. the free region can be filled with disjoint black blocks.

Main Lemma. The shuffling operation is an involution on the set of
all reduced tilings of Z.

We postpone the (quite subtle) proof, and show first how the Main
Lemma implies (1), or what is the same, the recurrence

A(n) = 2nA(n− 1). (2)



46 1 Fundamental Coefficients

We place AZ(n) on the infinite board such that the upper left-hand
cell is black, and use the partial tiling T ′′ outside AZ(n) as in the
figure:

. . . . . .

. . . . . .

free free

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭

The tiling T ′′ is complete except for AZ(n) and the two strips right
and left of height 2. Note that T ′′ contains no black blocks, and
that the free region outside AZ(n) can be filled with disjoint black
blocks. Notice further that the shuffled tiling S(T ′′) leaves precisely
the smaller Aztec diamond AZ(n − 1) uncovered. Consider now a
complete tiling T of AZ(n), delete the black blocks, and call the
resulting partial tiling T ′. Then T ′ ∪ T ′′ is a reduced tiling of Z.
By the Main Lemma, S(T ′) ∪ S(T ′′) is again a reduced tiling, with
S(T ′) ⊆ AZ(n − 1). Thus we have a bijective correspondence φ :
T ′ ⊆ AZ(n)� S(T ′) ⊆ AZ(n− 1) of reduced tilings of AZ(n) onto
reduced tilings of AZ(n− 1).

Suppose T ′ contains t dominoes and k black holes. Then S(T ′) has
again t dominoes and, say, 	 black holes. Since |AZ(n)| = 2n(n+1),
we obtain

2n(n+ 1)− 4k = 2t = 2n(n− 1)− 4	

and thus

k = n+ 	 .

Example. The unfilled 2 × 2-squares correspond to “black holes.”
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	 = 0

S

AZ(4)

k = 4

AZ(3)

Now any black hole in T ′ can be filled with dominoes in two ways.
Thus to a reduced tiling of AZ(n) with k = n + 	 holes there cor-
respond 2n+	 complete tilings of AZ(n), and similarly there are
2	 complete tilings of AZ(n − 1) corresponding to S(T ′). Hence
to any given pair

(
T ′, S(T ′)

)
the number of tilings of AZ(n) is

2n times the number of tilings of AZ(n − 1), and the recurrence
AZ(n) = 2nAZ(n− 1), and thus the theorem, follows.

Proof of the Main Lemma.
Let T be a reduced tiling. We have to prove four things:

1. S(T) is a partial tiling,
2. S(T) has no black blocks,
3. S

(
S(T)

) = T ,
4. S(T) is reduced.

To prove (1) suppose to the contrary that a white cell s is covered
twice in S(T) (the case of a black cell is analogous). Then we have
in T without loss of generality the following situation:

or ss

Since T contains no black blocks, s is a free cell of T . But then s
could not be in a free black block, which is impossible, since T is
reduced.
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The assertion (2) is clear, since black blocks are left invariant under
S, and (3) is directly implied by the definition of shuffling. So all
that is left is the proof that the free region of S(T) can be filled
with disjoint black blocks. This is subtler than one might think at
first sight, in particular when the free region of T is not connected.
The following clever graph-theoretic approach was suggested by my
students Felix Breuer and Daria Shymura.

Take the infinite checkered chessboard. A black block is called a
block for short. Consider now the (infinite) graph B = (V, E), where
the vertices are the blocks, and two blocks B1, B2 are adjacent if
they share a cell s:

B2

B1

s

The graph B is bipartite, thus 2-colorable, and 4-regular. Consider a
partial tiling T without (black) blocks. A block A ∈ V is called rich
(with respect to T ) if A contains a complete domino D of T (and
therefore exactly one, since T contains no blocks). We say that D is
the domino belonging to A. Otherwise, A is called poor.

Example.

poorrich

In particular, free blocks that are uncovered by T are always poor.
Let BT = (VT , ET ) be the induced subgraph of B consisting of the
poor blocks. As a subgraph of a 2-colorable graph, BT is 2-colorable
as well.

Consider a rich block A. We define a local 2-coloring of its poor
neighbors C as follows: If C contains one-half of the domino be-
longing to A, we color C red; otherwise, C is colored green.
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Example.

A

C1

C3 C4

C2

In the figure, C1, C2 are colored red, C3 green, and C4 is not colored
since it is rich.

The following lemma is the main step toward the proof.

Lemma. Let T be a partial tiling without (black) blocks. Then T is
reduced if and only if

a. S(T) is a partial tiling,
b. there exists a 2-coloring of BT that coincides with the local 2-

colorings of all rich blocks.

Proof. Suppose T is a reduced tiling. Then we have already seen
that (a) holds. Denote by G the set of disjoint blocks that fill up the
free region, and by R the poor blocks not in G; thus VT = G .∪ R. We
color the blocks in G green, and those of R red.

First we show that this is an admissible 2–coloring of BT . Let C1 and
C2 be two adjacent blocks in BT , and s the common cell:

C1

C2

s

or

C1

C2

s

Since C1 and C2 are poor blocks, s is not covered in T . But then s is
in a green block, so one of C1 or C2 is in G, and the other must be
in R, since no two green blocks overlap.

It remains to verify that this coloring agrees with all local 2-colorings
induced by the rich blocks. Let A be a rich block, and C1 and C2 two
poor neighbors of A as in the figure:
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C2

C1

s
A

The cell s is not covered in T , since C1 is poor. It follows that C1 is
in G. On the other hand, C2 contains a covered cell and hence is in
R by definition. So the colorings coincide, and (b) follows.

Now assume (a) and (b), and let VT = G
.∪ R, where G

.∪ R is the
2-coloring of BT according to (b). The blocks of G are disjoint, and
it remains to prove that they fill up the free region of T .

Let s be a free cell, and C1, C2 the neighboring blocks containing s.
If C1 and C2 were both rich, then s would be covered twice in S(T),
contradicting (a). If C1, C2 are both poor, then one of C1 or C2 is in
G (and the other in R). Finally, if C1 is poor and C2 is rich, then the
local 2-coloring of C2 forces C1 to be in G. So every free cell is in
a block of G. Next we see that no free cell is covered by two green
blocks, since no two adjacent blocks of BT are colored alike. Finally,
it is easily seen that no cell that is covered in T belongs to a green
block.

In summary, the blocks of G are all contained in the free region of
T , and they cover it without overlap, which means that T is reduced.
�

With this result in hand it is an easy matter to complete the proof
of the Main Lemma. Let T be reduced; then S(T) has no (black)
blocks. A rich block A with respect to T stays rich in S(T), and vice
versa. Hence the rich blocks, and therefore also the poor blocks of
T and S(T), are the same, and thus BT = BS(T). The shuffling clearly
switches the color-classes of the local 2-colorings. Hence (a) and (b)
are satisfied for S(T), and the lemma implies that S(T) is reduced.
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Notes and References

The material on counting coefficients presented in this chapter
forms the established core of combinatorial enumeration, from the
classic treatise by MacMahon to the comprehensive monographs by
Stanley. For those who are interested in the history of enumeration,
the article of Biggs is a valuable source. Good introductions are the
books by Riordan and Comtet, and for further reading Chapters 5
and 6 in the book by Graham–Knuth–Patashnik are recommended.
The idea of representing combinatorial objects as words or paths
has a long history and was in more recent times primarily devel-
oped by the French school of combinatorialists. Particularly influen-
tial was the article by Foata and Schützenberger. The original proof
of the Aztec domino tilings is contained in the paper by Elkies et
al., in which they showed unexpected connections to various other
branches of mathematics. Their work has sparked a flurry of activ-
ity, and indeed there now exist several more proofs drawing from
a variety of ideas. Finally, a book that should be on every enumer-
ator’s shelf is Sloane’s handbook of integer sequences, with a list
of several thousand sequences in lexicographic order. If a sequence
you have just discovered is known, chances are you will find it there.

1. N.L. Biggs (1979): The roots of combinatorics. Historia Math. 6,
109–136.

2. L. Comtet (1974): Advanced Combinatorics. Reidel, Dordrecht
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2 Formal Series and Infinite
Matrices

We come to the most important idea in enumerative combinatorics,
which will allow surprisingly simple proofs of identities and recur-
rences. Suppose we are interested in the counting function f : N0 →
C. We associate to f the formal series F(z) =∑n≥0 f(n)zn, and say
that F(z) is the generating function of f .

The adjective “formal” refers to the fact that we regard these series
as algebraic objects that can be added and multiplied; the symbol
zn is just a mark for where the n-th coefficient f(n) is placed. We
do not consider F(z) as a function in the usual sense; that is, we
are, with some exceptions, not interested for which values of z the
series F(z) converges. Two formal series F(z) and G(z) are simply
termed equal if and only if they agree in all coefficients. Whenever
we have manipulated two such series algebraically and have ob-
tained F(z) = G(z), then we can read off f(n) = g(n) for all n, and
may interpret these identities combinatorially.

2.1 Algebra of Formal Series

If A(z) = ∑
n≥0 anzn, then an is the n-th coefficient of A(z), for

which we also write an = [zn]A(z). Sometimes it is useful to con-
sider coefficients with negative index, with the understanding that
ak = 0 for k < 0. The coefficient a0 is called the constant coeffi-
cient, and we also write a0 = A(0). The set of all formal series over
C shall be denoted by C[[z]].

Sum and Product.
The sum

∑
anzn +∑bnzn is defined to be

∑
(an + bn)zn, and the

scalar product c
∑
anzn as

∑
(can)zn. With these operations C[[z]]

becomes a vector space with 0 as zero-element.
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We also have a natural product. For A(z) = ∑
n≥0 anzn, B(z) =∑

n≥0 bnzn we set

A(z)B(z) =
∑
n≥0

⎛⎝ n∑
k=0

akbn−k

⎞⎠zn . (1)

This product is called the convolution of A(z) and B(z); it is sug-
gested by the product zkz	 = zk+	. What is the contribution to zn

in A(z)B(z)? We must choose akzk and bn−kzn−k, i.e., akbn−k, and
take the sum from k = 0 to k = n. We see that the convolution is
commutative with A(z) = 1 as multiplicative identity.

The reader may easily check that these operations satisfy all the
usual properties such as associativity and distributivity. Hence
C[[z]] is a commutative ring over C, in fact an integral domain,
since A(z)B(z) = 0 clearly implies A(z) = 0 or B(z) = 0. Let us
ask next which series A(z) have a multiplicative inverse B(z) with
A(z)B(z) = 1. This has an easy answer:

A(z) =
∑
n≥0

anzn has an inverse if and only if a0 ≠ 0.

Since A(z)B(z) = 1 implies a0b0 = 1, the condition a0 ≠ 0 is
certainly necessary. Suppose, conversely, a0 ≠ 0. We determine
the coefficients bn of B(z) step by step. At the start, b0 = a−1

0 .
Suppose b0, b1, . . . , bn−1 are already (uniquely) determined. Then
it follows from 0 = ∑n

k=0 akbn−k = a0bn + ∑n
k=1 akbn−k, that

bn = −a−1
0

∑n
k=1 akbn−k is uniquely determined.

Example. The geometric series
∑
n≥0 zn has as inverse 1 − z by

(1); hence we write
∑
n≥0 zn = 1

1−z . Let A(z) = ∑n≥0 anzn. Then by
convolution,

A(z)
1 − z =

∑
n≥0

anzn ·
∑
n≥0

zn =
∑
n≥0

⎛⎝ n∑
k=0

ak

⎞⎠zn, (2)

thus A(z)
1−z adds the coefficients up to n. In particular, we have

1
(1 − z)2 =

∑
n≥0

(n+ 1)zn.

The multiplication zmA(z), m ≥ 0, corresponds to a shift of the
index by −m:
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zm
∑
n≥0

anzn =
∑
n≥0

anzn+m =
∑
n≥0

an−mzn. (3)

For example, z
(1−z)2 =∑n≥0nzn.

Composition.
Next, we consider the composition of two series. For A(z) =∑anzn,
B(z) =∑bnzn, we set

A
(
B(z)

) = ∑
n≥0

an
(
B(z)

)n.
Expanding the right-hand side,

a0 +a1(b0 +b1z+b2z2 +· · · )+a2(b0 +b1z+b2z2 +· · · )2 +· · · ,

we find that the composition is at any rate well defined if A(z) is a
polynomial. But whenA(z) has infinitely many nonzero coefficients,
we must assume that b0 = 0, since otherwise we would obtain an
infinite sum a0+a1b0+a2b2

0+· · · as constant coefficient. If on the
other hand, b0 = 0, then

[zn]A
(
B(z)

) = [zn] n∑
k=0

ak(b1z + b2z2 + · · · )k

is well defined, since there are no nonzero contributions to [zn] for
k > n. In summary, we note:

A(B(z)) is well defined when A(z) is a polynomial or B(0) = 0.

As for compositional inverses, you are asked in the exercises to
prove the following:

Let A(0) = 0. Then there exists a unique series B(z) with
B(0) = 0 such that A

(
B(z)

) = B
(
A(z)

) = z if and only if
a1 ≠ 0. The series B(z) is called the compositional inverse of
A(z), denoted by A〈−1〉(z). The compositional unit is z.

It is straightforward to verify that sum and product are compatible
with composition (whenever defined), that is,

C(z) = A(z)+ B(z) implies C
(
D(z)

) = A(D(z))+ B(D(z)) ,
C(z) = A(z)B(z) implies C

(
D(z)

) = A(D(z)) · B(D(z)) ;
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furthermore, associativity holds. In particular, when A(z) has a
compositional inverse and A

(
B(z)

) = A
(
C(z)

)
, then B(z) = C(z),

and A
(
D(z)

)−1 = A−1
(
D(z)

)
, whenever defined.

As examples we have
∑
n≥0 z2n = 1

1−z2 and further 1
(1−cz)2 =∑

n≥0(n+ 1)cnzn.

Important Series.
Here is a list of formal series that we will constantly use:

1.
∑
n≥0

zn = 1
1−z ,

2.
∑
n≥0

(−1)nzn = 1
1+z ,

3.
∑
n≥0

z2n = 1
1−z2 ,

4.
∑
n≥0

(
m
n

)
zn = (1 + z)m (m ∈ Z),

5.
∑
n≥0

(
m+n−1

n

)
zn = 1

(1−z)m (m ∈ Z),

6.
∑
n≥0

(
m+n
n

)
zn = 1

(1−z)m+1 (m ∈ Z),

7.
∑
n≥0

(
n
m

)
zn = zm

(1−z)m+1 (m ∈ N0).

We have already seen (1) to (3). When m ∈ N0, equation (4) is just
the binomial theorem. Suppose m < 0. Since (1 + z)m is the in-
verse of (1 + z)−m, we have to show that

∑
n≥0

(
m
n

)
zn (m < 0) is

the inverse of
∑
n≥0

(−m
n

)
zn. But this is an immediate consequence

of Vandermonde’s identity: The n-th coefficient of
∑(−m

n

)
zn ·∑(m

n

)
zn is by convolution

n∑
k=0

(
−m
k

)(
m
n− k

)
=
(

0
n

)
= δn,0 .

Equation (5) (and hence (6)) follows from (4) by the reciprocity law(
m+n−1

n

)
= (−1)n

(−m
n

)
. Finally, for (7) we see by index shift that

zm

(1 − z)m+1
= zm

∑
n≥0

(
m+n
m

)
zn =

∑
n≥0

(
n
m

)
zn .

Equation (4) suggests that we define

∑
n≥0

(
c
n

)
zn =: (1 + z)c for arbitrary c ∈ C ,
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and similarly we may replace m by c ∈ C in (5) and (6). In other
words, (1 + z)c is a symbol for the formal series on the left-hand
side, since we have no definition, in general, of a real or complex
power of a formal series. Still, the familiar equality

(1 + z)a+b = (1 + z)a(1 + z)b (a,b ∈ C)

holds, since the convolution reduces simply to Vandermonde’s
identity: (

a+ b
n

)
=

n∑
k=0

(
a
k

)(
b

n− k

)
.

Alternatively, we may consider c as an indeterminate and regard∑(c
n

)
zn as a formal series in (C[c])[[z]]. The coefficient of zn is

then a polynomial in c, and all the expected properties are formally
valid.

Let us list three important series known from analysis:

8.
∑
n≥0

zn
n! = ez,

9.
∑
n≥1

(−1)n−1 zn
n = log(1 + z),

10.
∑
n≥1

zn
n = − log(1 − z).

Formally, ez and log(1 + z) are as above just names for the series
on the left–hand side. We know from analysis that ez and logz are
compositional inverses of each other. As we have seen, for formal
series such inverses exist only when a0 = 0, a1 ≠ 0. Hence we
will expect that log(1 + z) is the compositional inverse of ez − 1 =∑
n≥1

zn
n! . This is indeed the case, but the proof is a little subtle and

will be given in the next chapter. Note that this implies elogF(z) =
F(z) whenever F(0) = 1 .

Derivative.
Another useful operation that can be defined formally is the deriva-
tive. If F(z) = ∑

n≥0 anzn, then the formal derivative is the series
F ′(z) = ∑

n≥1nanzn−1 = ∑
n≥0(n + 1)an+1zn. It is easy to check

that all familiar properties hold:

(F +G)′ = F ′ +G′ , (FG)′ = F ′G + FG′,

(F−1)′ = − F
′

F2
, F

(
G(z)

)′ = F ′(G(z)) ·G′(z) .
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Furthermore, we see
∑
n≥0nanzn = zF ′(z),

∑
n≥1nan−1zn−1 =(

zF(z)
)′.

As examples, (ez)′ = ez,
(

log(1 + z))′ = ∑
n≥1(−1)n−1zn−1 = 1

1+z ,
and more generally for F(z) with F(0) = 1,

(logF(z))′ = F ′(z)
F(z)

. (4)

The inverse operation is, of course, formal indefinite integration:∫ ∑
n≥0

anzn =
∑
n≥0

an
zn+1

n+ 1
+ constant. (5)

Example. Consider F(z) =∑n≥0

(
2n
n

)
zn, an =

(
2n
n

)
. We have an =(

2n
n

)
= 2n(2n−1)

n2 an−1, and thus nan = 4nan−1 − 2an−1. Comparing

coefficients for zn−1 we get

F ′(z) = 4
(
zF(z)

)′ − 2F(z) ,

hence

F ′(z) = 4F(z)+ 4zF ′(z)− 2F(z)
= 4zF ′(z)+ 2F(z) .

This, in turn, yields

(
logF(z)

)′ = F ′(z)
F(z)

= 2
1 − 4z

= −1
2

(
log(1 − 4z)

)′ ,
and thus by indefinite integration

logF(z) = −1
2

log(1 − 4z) ,

since both sides have vanishing constant term. Accepting the famil-
iar factm logA(z) = log

(
A(z)m

)
for A(0) = 1, which will be proved

later (see Exercise 2.12), we obtain F(z) = (1 − 4z)−1/2, that is,

F(z) =
∑
n≥0

(
2n
n

)
zn = 1√

1 − 4z
. (6)

Now that we know the result let us check it using Vandermonde.
According to Exercise 1.16,
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−1/2
n

)
=
(
− 1

4

)n(
2n
n

)
,

and hence by Vandermonde’s identity,

(−1)n =
(
−1
n

)
=

n∑
k=0

(
−1/2
k

)(
−1/2
n− k

)

=
(
− 1

4

)n n∑
k=0

(
2k
k

)(
2(n− k)
n− k

)
,

or
n∑
k=0

(
2k
k

)(
2(n− k)
n− k

)
= 4n (n ≥ 0) . (7)

But this is equivalent to F(z)2 = 1
1−4z , and we obtain again F(z) =

1√
1−4z .

Remark. We know from analysis that if two series F(z) and G(z)
agree as functions in a neighborhood of the origin, then they have
identical coefficients, i.e., they are equal as formal series. In other
words, if the computations we perform are formally justified, and
if the resulting series have as functions nonzero radius of conver-
gence, then we have an identity as formal series. But even if a series
has radius of convergence 0 such as

∑
n!zn, we may still manipu-

late the series formally in a meaningful way.

Exercises

2.1 Let F(z) =∑n≥0 anzn. Show that

F(z)+F(−z)
2 =∑n≥0 a2nz2n, F(z)−F(−z)2 =∑n≥0 a2n+1z2n+1 .

The series F(z) is called even (odd) if all an with odd (even) index are 0.
Prove: F(z) is even if and only if F(z) = F(−z), and odd if and only if
F(z) = −F(−z).

� 2.2 Find the unique sequence (an) of real numbers with
∑n
k=0 akan−k =

1 (n ≥ 0).

2.3 Prove e(a+b)z = eazebz (a, b ∈ C), and deduce emz = (ez)m (m ∈
Q).
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2.4 Let F(z) = ∑
n≥0 anzn with a0 = 0. Show that F(z) has a composi-

tional inverse F 〈−1〉(z) =∑n≥0 bnzn with b0 = 0 if and only if a1 ≠ 0.

2.5 Consider the double series F(y, z) = ∑
n≥0

∑
k≥0

(
n
k

)
ykzn. Deter-

mine F(y, z), and also G(y, z) =∑n≥0
∑
k≥0

(
n
k

)
yk z

n

n! .

� 2.6 Find the generating function F(z) with [zn]F(z) =∑k

(
r
k

)(
r

n−2k

)
.

* * *
2.7 Give a combinatorial argument for

∑n
k=0

(
2k
k

)(
2(n−k)
n−k

)
= 4n.

� 2.8 Determine
∑
n≥0

(
2n+1
n

)
zn and

∑
n≥0

(
n

�n/2	
)
zn.

Hint: Use
∑
n≥0

(
2n
n

)
zn = (1 − 4z)−1/2.

2.9 Compute the coefficients of the series F(z) =
√

1+z
1−z .

2.10 Verify the associativity F
(
G
(
H(z)

)) = F(G(z))(H(z)) whenever de-
fined.

� 2.11 When F(0) = 1, show that
(

logF(z)
)′ = F ′(z)

F(z) .

2.12 Prove m log(1 + z) = log((1 + z)m) for m ∈ Q .

2.2 Types of Formal Series

We can represent a sequence (an) not only by an ordinary gener-
ating function

∑
n≥0 anzn, but also by a so-called exponential gen-

erating function
∑
n≥0 an

zn
n! , which is sometimes better adapted to

the problem at hand. One example is
∑
n≥0

zn
n! = ez, which corre-

sponds to the sequence (1,1,1, . . .). Hence ez plays a similar role
for exponential series as

∑
n≥0 zn = 1

1−z does for ordinary series.

What natural types appear is the subject of this section. We start
with the following setup. Let q1, q2, q3, . . . be a sequence of nonzero
complex numbers with q1 = 1. We set Qn = q1q2 · · ·qn with Q0 =
1, and associate to the counting function f : N0 → C the Q-series

F(z) =
∑
n≥0

f(n)
zn

Qn
. (1)

Thus when qn = 1 for all n, we obtain ordinary series, while for
qn = n, i.e., Qn = n!, exponential series result.
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The q-Derivative.
Next we define the q-derivative operator Δ as follows: Δ is a linear
operator on C[[z]] defined by

Δz0 = 0
(2)

Δzn = qnzn−1 (n ≥ 1).

By linearity we find for F(z) =∑n≥0 an
zn
Qn ,

ΔF(z) =
∑
n≥0

an
Δzn

Qn
=
∑
n≥1

an
zn−1

Qn−1
=
∑
n≥0

an+1
zn

Qn
.

Thus Δ shifts the sequence (a0, a1, a2, . . .) to (a1, a2, a3, . . .).

Consider the product C(z) = A(z)B(z) as Q-series. Comparing co-
efficients for zn we obtain

cn
Qn

=
n∑
k=0

ak
Qk

bn−k
Qn−k

.

The convolution formula for Q-series reads therefore

cn =
n∑
k=0

Qn
QkQn−k

akbn−k =
n∑
k=0

[n
k

]
akbn−k , (3)

where [n
k

]
= Qn
QkQn−k

= qnqn−1 · · ·qn−k+1

qkqk−1 · · ·q1
,

[n
0

]
= 1 . (4)

The symbol [nk ] satisfies [nk ] = [ n
n−k], and it looks very much like

the binomial coefficient. That this is no coincidence will be shortly
made clear.

There are few general results on these Q-series. We restrict our-
selves to those sequences (qn) for which Δ satisfies the following
product property:

Δ
(
F(z)G(z)

) = (ΔF(z))G(qz)+ F(z)(ΔG(z))
for some fixed q, and (5)

Δ
(
F(z)G(z)

) = Δ(G(z)F(z)) .
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Looking at (2) we obtain from zm+n = zmzn,

Δzm+n = qm+nzm+n−1 = (qmzm−1)(qnzn)+ zmqnzn−1 .

Comparing coefficients and exchanging zm and zn gives

qm+n = qmqn + qn = qnqm + qm .

For m = 1, this yields

qn+1 = qn + qn = q · qn + 1 ,

or

qn = 1 − qn
1 − q . (6)

Conversely, it is easily checked that the sequence (qn = 1−qn
1−q ) satis-

fies (5) for every q. Thus our requirement leads us to the q-calculus
discussed in Section 1.6.

From Δzn = 1−qn
1−q z

n−1 = zn−(qz)n
(1−q)z , we infer by linearity

ΔF(z) = F(z)− F(qz)
(1 − q)z . (7)

The Three q-Calculi.
In summary, every q ∈ C gives rise to a class of formal Q–series
with Qn = [n]q!. The cases q = 0 and 1 play a special role.

A. q = 0. Here we have qn = 1 for all n, i.e.,Qn = 1, and we obtain
the calculus of ordinary series F(z) = ∑

n≥0 anzn. The coefficients
[nk ] are all equal to 1; thus (3) is the ordinary convolution as defined
in the previous section. We write Δ = D0 for the derivative and have
by (7),

D0F(z) = F(z)− F(0)
z

. (8)

The product rule is

D0
(
F(z)G(z)

) = (D0F(z)
)
G(0)+ F(z)(D0G(z)

)
. (9)

B. q = 1. Here 1−qn
1−q = 1+q+· · ·+qn−1 = n, Qn = n!, as we have

noted before. If (an) is a sequence, then we denote its exponential
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generating function by F̂(z) = ∑
n≥0 an

zn
n! . The convolution coeffi-

cients are
[n
k
] = n!

k!(n−k)! =
(
n
k

)
, and the product Ĉ(z) = Â(z)B̂(z)

corresponds to the binomial convolution

cn =
n∑
k=0

(
n
k

)
akbn−k . (10)

The derivative is, of course, the formal derivative of the last sec-
tion, which we denote by F̂ ′(z) or DF̂(z). The product rule reads as
usual, and we obtain for F̂(z),

(F̂k(z))′ = kF̂k−1(z)F̂ ′(z) . (11)

C. For general q (or q an indeterminate) we get series of the form

F(z) =
∑
an
zn

Qn
, where Qn = [n]q! =

n∏
i=1
(1 − qi)

(1 − q)n .

The coefficients [nk ] = [nk ]q are the Gaussian coefficients

[n
k

]
q
= (1 − qn) · · · (1 − qn−k+1)

(1 − qk) · · · (1 − q) ,

and the convolution for C(z) = A(z)B(z) is

cn =
n∑
k=0

[n
k

]
q
akbn−k .

We write Dq for the derivative and have by (7),

DqF(z) = F(z)− F(qz)
(1 − q)z .

Example. Consider the Stirling series Sk(z) =
∑
n≥0 Sn,kzn, S0(z)

= 1. The recurrence Sn,k = Sn−1,k−1 + kSn−1,k leads to

D0Sk(z) = Sk(z)
z

= Sk−1(z)+ kSk(z) (k ≥ 1) ;

thus

Sk(z) =
zSk−1(z)

1 − kz .
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Iterating, we arrive at

Sk(z) = zk

(1 − z)(1 − 2z) · · · (1 − kz) .

Looking at the right-hand side, this gives

Sn,k = [zn−k]
1

(1 − z) · · · (1 − kz) =
∑

∑
bj=n−k

1b12b2 · · ·kbk

=
∑

1a1−12a2−1 · · ·kak−1 ,

where the sum extends over all solutions of
∑k
j=1 aj = n in positive

integers (see Exercise 1.31).

Example. A product B̂(z) = Â(z)ez for exponential series corre-
sponds to the convolution

bn =
n∑
k=0

(
n
k

)
ak for all n.

Now B̂(z) = Â(z)ez holds if and only if Â(z) = B̂(z)e−z, which
means for the coefficients with e−z = ∑

n≥0

(−1)nzn
n! ,

an =
n∑
k=0

(−1)n−k
(
n
k

)
bk for all n,

and we have proved the so-called binomial inversion formula

bn =
n∑
k=0

(
n
k

)
ak (∀n)⇐⇒ an =

n∑
k=0

(−1)n−k
(
n
k

)
bk (∀n). (12)

As another example consider the exponential generating function
D̂(z) = ∑

n≥0Dn
zn
n! of the derangement numbers. Classifying the

permutations according to their fixed-point set, we clearly have∑n
k=0

(
n
k

)
Dn−k =

∑n
k=0

(
n
k

)
Dk = n!; thus by convolution,

D̂(z)ez =
∑
n≥0

n!
n!
zn =

∑
n≥0

zn = 1
1 − z ,

or
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D̂(z) = e−z

1 − z .

If we interpret this last identity in terms of ordinary generating
functions, we obtain by equation (2) in the previous section our old
formula

Dn
n!

=
n∑
k=0

(−1)k

k!
.

Example. Consider the Gaussian polynomials gn(x) = (x − 1) · · ·
(x − qn−1). We claim that

Dqgn(x) = 1 − qn
1 − q gn−1(x) . (13)

This is certainly true for n = 0,1, so assume n ≥ 2. The identity
gn(x) = gn−1(x)(x − qn−1) and the product rule (5) yield with
induction

Dqgn(x) =
(
Dqgn−1(x)

)
(qx − qn−1)+ gn−1(x)

= 1 − qn−1

1 − q gn−2(x)(x − qn−2)q + gn−1(x)

= gn−1(x)
(1 − qn−1

1 − q q + 1
)

= 1 − qn
1 − q gn−1(x) .

Exercises

2.13 From B(z) = A(z)
1−z ⇐⇒ A(z) = B(z)(1 − z) derive an inversion for-

mula for the coefficients an of A(z) and bn of B(z).

2.14 If F(0) = 0, show that D0Fk(z) = Fk−1(z)
(
D0F(z)

)
.

2.15 Show that (Dqz − zDq)F(z) = F(qz) for q-series.

� 2.16 We know the chain rule F̂(Ĝ(z))′ = F̂ ′(Ĝ(z)) · Ĝ(z)′ for the expo-
nential calculus (q = 1). Extend this to arbitrary q if the inner function is
linear, that is, DqF(cz) = (DqF)(cz) · c, where (DqF)(cz) means that we
compute DqF(z) and then replace z by cz.

2.17 Prove the chain rule D0F(zm) = (D0F)(zm) · zm−1, m ≥ 1.
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� 2.18 Define Hn(x) =
∑n
k=0[

n
k ]qx

k; Hn(x) is called q-Hermite polynomial.

Show that DqHn(x) = 1−qn
1−q Hn−1(x), and further Hn+1(x) = xHn(x) +

Hn(qx).

* * *

2.19 Derive an inversion formula from

B(z) = A(z)
(1 − z)m ⇐⇒ A(z) = B(z)(1 − z)m .

2.20 Prove the general Leibniz rule in the q-calculus

Dmq
(
F(z)G(z)

) = m∑
k=0

[m
k

]
q

(
DkqF(z)

)(
Dm−k
q G(z)

)
(qkz) .

Specialize to D0 (q = 0).

� 2.21 Show that
∑
n≥0[

m+n−1
n ]qzn = 1

(1−z)(1−zq)···(1−zqm−1) (m ∈ N).
Hint: Consider 1

(1−zq)(1−zq2)···(1−zqm) and expand as a series, or apply Dq
to both sides.

2.22 Compute the exponential generating function of the polynomials

sn(x) =
n∑
k=0

sn,kxk (sn,k Stirling number of the first kind), and derive

sn(x +y) =
n∑
k=0

(
n
k

)
sk(x)sn−k(y).

2.23 Let ŝk(z) =
∑
n≥0 sn,k

zn
n! . Derive the identity ŝk(z)′ = ŝk−1(z)

1−z for k ≥ 1.
What are ŝ1(z) and ŝ2(z)? Derive an expression for sn,2 and sn,3 in terms
of harmonic numbers.

� 2.24 Prove the q-binomial theorem of Section 1.6 by writing fn(x) = (1+
xq)(1 + xq2) · · · (1 + xqn) in the form fn(x) =

∑n
k=0 q(

k+1
2 )an,kxk, and

taking the derivative Dq to determine an,k.

2.25 Show that the q-Vandermonde formula in Exercise 1.72 follows from
fr+s(x) = fr (x)fs(qrx), where fn(x) is the polynomial of the previous
exercise.

2.3 Infinite Sums and Products

We have defined the sum and product of two formal series, and
we may extend this to any finite number of summands or fac-
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tors. In some instances, especially in discussing series of number-
partitions, it is advantageous also to consider countably infinite
sums and products.

To treat these problems we introduce the following simple notion
of formal convergence. Let a0, a1, a2, . . . be a sequence of complex
numbers (or elements of a field of characteristic 0). We say that the
sequence (an) converges to b if an = b for all but finitely many n.
In other words, an = b for n ≥ n0.

Definition. Suppose A0(z),A1(z),A2(z), . . . is a sequence of or-
dinary series, Ai(z) = ∑

n≥0 ai,nzn. We say
(
Ai(z)

)
converges to

F(z) =∑n≥0 fnzn if for every n, the sequence (ai,n = [zn]Ai) con-
verges to fn = [zn]F .

The limit series F(z) is obviously unique if it exists. Furthermore,(
Ai(z)

)
converges if and only if for every n, the sequence of n-th

coefficients becomes eventually constant.

The following facts are immediately established (see Exercise 2.26).
Suppose

(
Ai(z)

)→ F(z),
(
Bi(z)

)→ G(z). Then

(Ai + Bi)→ F +G, (AiBi)→ FG, (A′
i)→ F ′ , (1)

and if Bi(0) = 0 for all i, then(
Ai
(
Bi(z)

))→ F
(
G(z)

)
. (2)

A quick way to observe convergence goes as follows. Define the
degree of a series A(z) =∑n≥0 anzn ≠ 0 as

degA = mink with ak ≠ 0 .

For the 0-series we set deg 0 = ∞. Note that deg(AB) = deg A +
deg B.

Proposition 2.1. A sequence
(
Ai(z)

)
of series converges if and only

if for any n, deg
(
Ai+1(z) − Ai(z)

)
> n for all but finitely many i.

We write this, for short, as lim deg
(
Ai+1(z)−Ai(z)

) = ∞ .

Proof. Suppose
(
Ai(z)

)
converges to F(z). Then for fixed k, ai,k =

fk for i ≥ ik, and so ai+1,k − ai,k = 0 for i ≥ ik . Now let n be
arbitrary. Then for k = 0,1, . . . , n,



68 2 Formal Series and Infinite Matrices

ai+1,k − ai,k = 0 for i ≥ max(i0, i1, . . . , in),

which implies

deg(Ai+1 −Ai) > n for i ≥ max(i0, i1, . . . , in) .

Thus lim deg(Ai+1 −Ai) = ∞ .

Conversely, if lim deg(Ai+1 − Ai) = ∞, then given n, we have
deg(Ai+1 − Ai) > n for i ≥ 	 . This implies ai+1,n = ai,n for i ≥ 	,
and so

(
Ai(z)

)
converges. �

Infinite Sums and Products.
We can now apply this convergence notion to infinite sums and
products of formal series. Let A0(z),A1(z), . . . be a sequence of se-
ries. Then we define the sum

∑
k≥0Ak(z) as the limit of the partial

sums Si(z) =
∑i
k=0Ak(z) if this limit exists. Since Si+1(z)−Si(z) =

Ai+1(z), we infer the following result.

Corollary 2.2. The sum
∑
k≥0Ak(z) exists if and only if lim deg Ak

= ∞ .

Another way to state this is that
∑
k≥0Ak(z) exists if and only if for

any n, there are only finitely many non-zero n-th coefficients among
the Ak(z). So our notion of convergence agrees with the natural way
to define the sum F(z) =∑k≥0Ak(z) as fn =∑k≥0 ak,n for all n .

Next we turn to infinite products
∏
k≥1Ak(z) . To avoid technical

details we always assume in such a product that Ak(0) = 1 for all k.
We define, of course, the infinite product

∏
k≥1Ak(z) as the limit of

the partial products Pi(z) =
∏i
k=1Ak(z), if it exists. Again there is

a simple criterion when such an infinite product exists as a series,
whose proof is left to the exercises.

Proposition 2.3. Let
(
Ak(z)

)
be a sequence of series with Ak(0) = 1

for all k. Then the infinite product
∏
k≥1Ak(z) exists if and only if

lim deg(Ak(z)− 1) = ∞ .

As an example, (1+z)(1+z2)(1+z3) · · · is an admissible product;
that is, it can be expanded into a formal series, while (1 + z)(1 +
z2)(1+z)(1+z2) · · · is not. Note that the order of the summands in∑
Ak(z) or of the factors in

∏
Ak(z) does not matter, since the limit

conditions on the degrees and the limit functions are not affected.
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Since the constant coefficient of an admissible product F(z) =∏
k≥1Ak(z) is 1, F(z) is invertible, and we will expect that F(z)−1 =∏
k≥1A−1

k (z) holds. This is indeed the case. More generally, we have
the following result. First we note the following easy fact (see Exer-
cise 2.29):

deg
(
A(z)B(z)− 1

) ≥ min
(

deg
(
A(z)− 1

)
,deg

(
B(z)− 1

))
(3)

with equality if deg
(
A(z)−1

)
≠ deg

(
B(z)−1

)
. Note that deg

(
A(z)−

1
) = deg

(
A−1(z)− 1

)
.

Proposition 2.4. If
∏
k≥1Ak(z) and

∏
k≥1 Bk(z) are admissible prod-

ucts, then so is
∏
k≥1Ak(z)Bk(z), and we have∏

k≥1

Ak(z) ·
∏
k≥1

Bk(z) =
∏
k≥1

Ak(z)Bk(z) . (4)

Proof. From (3) we immediately infer that
∏
k≥1Ak(z)Bk(z) is

again admissible. Furthermore, the factors that make a non-trivial
contribution to [zn] are the same on both sides, so we have in real-
ity reduced the multiplication to finite products. �

Accordingly, if
∏
i≥1 Fi(z) is admissible, then so is

∏
i≥1 F−1

i (z), and
further, ∏

i≥1

Fi(z) ·
∏
i≥1

F−1
i (z) = 1 ,

that is, ⎛⎝∏
i≥1

Fi(z)

⎞⎠−1

=
∏
i≥1

F−1
i (z) . (5)

More generally, if
∏
i≥1 Fi(z) and

∏
i≥1Gi(z) are both admissible

products, then ∏
i≥1
Fi(z)∏

i≥1
Gi(z)

=
∏
i≥1

Fi(z)
Gi(z)

. (6)

Example. The following infinite products will be of prime impor-
tance when we study generating functions of number-partitions.
The product

∏
i≥1(1 − zi) is admissible, and hence so is 1∏

i≥1(1−zi) .

Now consider the quotient
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i≥1
(1 − z2i)∏

i≥1
(1 − zi) .

By (6) we have∏
i≥1
(1 − z2i)∏

i≥1
(1 − zi) =

∏
i≥1

1 − z2i

1 − zi =
∏
i≥1

(1 + zi) .

But on the other hand, by interpreting the numerator as the product
1 · (1 − z2) · 1 · (1 − z4) · 1 · (1 − z6) · · · , the factors 1− z2i cancel
out, and we obtain ∏

i≥1
(1 − z2i)∏

i≥1
(1 − zi) = 1∏

i≥1
(1 − z2i−1)

.

In summary, this gives the important (and unexpected) identity∏
i≥1

(1 + zi) = 1∏
i≥1
(1 − z2i−1)

. (7)

We will see in Chapter 3 how infinite products provide stupendously
simple proofs for identities between sets of number-partitions.

Exercises

2.26 Prove the assertions in (1) and (2).

2.27 Show that
∑
n≥0 anzn is the limit series of the polynomials pi(z) =∑i

k=0 akzk.

� 2.28 Show that
∏
k≥1Ak(z) converges if and only if lim deg(Ak(z)− 1) =

∞ .

2.29 Prove deg
(
A(z)B(z) − 1

) ≥ min
(

deg
(
A(z) − 1

)
,deg

(
B(z) − 1

))
with equality if deg

(
A(z) − 1

)
≠ deg

(
B(z) − 1

)
, and deg

(
A(z) − 1

) =
deg

(
A−1(z)− 1

)
if A(0) ≠ 0.

2.30 Why is the identity 1
1−z = (1 + z)(1 + z2)(1 + z4) · · · (1 + z2k) · · ·

true?

* * *
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� 2.31 Let F(z) = ∏
i≥1 Fi(z) be an admissible product. Show that F ′(z)

F(z) =∑
i≥1

F ′i (z)
Fi(z) , and compute F ′(z)

F(z) for F(z) = 1∏
i≥1(1−zi) .

� 2.32 We will show in the next section that
∑n
k=1

n!
k!

(
n−1
k−1

)
(n ≥ 1) counts

the number of partitions of {1,2, . . . , .n} in which every block is linearly
ordered. Example: n = 3; 123 gives six orders, 12|3 gives two orders,
1|2|3 gives one order; hence we obtain altogether 6 + 3 · 2 + 1 = 13.
Derive from this the identity

∏
i≥1 ez

i = e
∑
i≥1 zi = e

z
1−z . Hint: e

z
1−z = 1 +∑

n≥1

[∑n
k=1

n!
k!

(
n−1
k−1

)]
zn
n! .

2.33 Compute
∑
k≥1

zk
1−zk .

� 2.34 The Möbius function in number theory is μ(1) = 1, μ(n) = 0 if n
is divisible by a square, μ(n) = (−1)t if n is the product of t distinct
primes. Find a simple expression for F(z) =∏n≥1(1 − zn)− μ(n)

n . Hint: Use
the fact log(

∏
Fk) =

∑
logFk where Fk(0) = 1 and

∑
d|n μ(d) = δn,1. We

will consider the function μ in Chapter 5.

2.35 What combinatorial significance has the n-th coefficient in the prod-
uct

∏
k≥1(1 + zk)?

2.36 Let an be the number of partitions of n into powers of 2, where the
order of summands does not matter, a0 = 1. Example: a3 = 2, 3 = 2+1 =
1+1+1, a4 = 4 with 4 = 2+2 = 2+1+1 = 1+1+1+1 . Let bn = ∑n

k=0 ak.
Compute the generating functions A(z) and B(z). What follows for an,
bn?

2.4 Infinite Matrices and Inversion of Sequences

There is another algebraic setup that will prove very useful. Let M
be the set of infinite complex matrices, whose rows and columns are
indexed by N0. With entry-wise addition and scalar multiplication,
M becomes a vector space over C. Now let us look at the usual
matrix productA·B for two such matrices. In order that this become
meaningful, the inner product of the i-th row of A with the j-th
column of B must consist of finitely many non-zero summands.

The most important case in which this happens is that either A is
a lower triangular matrix (i.e., aij = 0 for i < j) or B is an upper
triangular matrix (bij = 0 for i > j). Let us denote these sets by
M	 respectively Mu.
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It is easily checked that A ∈ M	 has a (unique) inverse A−1, which
is again in M	 with AA−1 = A−1A = I, I the infinite identity matrix,
if and only if the main diagonal of A consists of elements ≠ 0. The
analogous result holds for Mu.

Inversion Formulas.
Let us take a closer look at M	. We have introduced in Section
1.3 the idea of connecting two polynomial sequences

(
pn(x)

)
and(

qn(x)
)
,

pn(x) =
n∑
k=0

an,kqk(x), qn(x) =
n∑
k=0

bn,kpk(x) . (1)

The simplest example connects (xn) and (x − 1)n,

xn =
n∑
k=0

(
n
k

)
(x − 1)k, (x − 1)n =

n∑
k=0

(−1)n−k
(
n
k

)
xk , (2)

and we also know the Stirling connection

xn =
n∑
k=0

Sn,kxk, xn =
n∑
k=0

(−1)n−ksn,kxk . (3)

Since
(
pn(x)

)
and

(
qn(x)

)
are two bases of the vector space C[x],

the matrices A = (an,k), B = (bn,k) are inverses of each other; in
fact, they are in M	.

Now let u = (u0, u1, . . .), v = (v0, v1, . . .) be two sequences of com-
plex numbers. Then

u = Av ⇐⇒ v = Bu .

Written out, this means that

un =
n∑
k=0

an,kvk (∀n)⇐⇒ vn =
n∑
k=0

bn,kuk (∀n) . (4)

We call this an inversion formula connecting the sequences u and v .
The importance of such a formula is clear: If we know one sequence
and the connecting coefficients, then we can compute the other
sequence. Any pair (pn(x)), (qn(x)) of polynomial sequences fur-
nishes therefore an inversion formula. Furthermore, from B = A−1

we obtain
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k≥0

ai,kbk,j = δi,j . (5)

The most important inversion formula arises from (2); we have al-
ready encountered it in the context of exponential series in Sec-
tion 2.2.

Binomial Inversion.
The sequences (xn) and

(
(x − 1)n

)
give

un =
n∑
k=0

(
n
k

)
vk (∀n)⇐⇒ vn =

n∑
k=0

(−1)n−k
(
n
k

)
uk (∀n) , (6)

or in symmetric form,

un =
n∑
k=0

(−1)k
(
n
k

)
vk (∀n)⇐⇒ vn =

n∑
k=0

(−1)k
(
n
k

)
uk (∀n) .

The inverse matrix of the Pascal matrix (
(
n
k

)
) is thus

(
(−1)n−k

(
n
k

))
.

Example. We have seen in Section 1.3 that for fixed n,

rn =
n∑
k=0

(
r
k

)
k!Sn,k for all r .

Setting uk = kn, vk = k!Sn,k, binomial inversion gives

r !Sn,r =
r∑
k=0

(−1)r−k
(
r
k

)
kn ,

hence

Sn,r = 1
r !

r∑
k=0

(−1)r−k
(
r
k

)
kn . (7)

Example. An important application of binomial inversion con-
cerns the so-called Newton representation of a polynomial f(x).
Since the falling factorials xk constitute a basis, we may uniquely
write

f(x) =
∑
k≥0

akxk =
∑
k≥0

k!ak

(
x
k

)
.

For x = n, this gives
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f(n) =
n∑
k=0

k!ak

(
n
k

)
.

We set uk = f(k), vk = k!ak, and obtain

n∑
k=0

(−1)n−k
(
n
k

)
f(k) = n!an (n ∈ N0) . (8)

In particular,

n∑
k=0

(−1)n−k
(
n
k

)
f(k) = 0 when degf < n . (9)

As an example consider the sum
∑n
k=0(−1)k

(
n
k

)(
n+k
k

)
. One way

to compute this sum is to use the Vandermonde identity. Since
(−1)k

(
n+k
k

)
=
(−n−1

k

)
, we get

n∑
k=0

(−1)k
(
n
k

)(
n+ k
k

)
=

n∑
k=0

(
n

n− k

)(
−n− 1
k

)
=
(
−1
n

)
= (−1)n .

Alternatively, we may employ (8). The polynomial f(x) =
(
x+n
n

)
written in Newton form

(
x+n
n

)
= xn

n! +· · · has degree n and leading

coefficient an = 1
n! . The sum is therefore

n∑
k=0

(−1)k
(
n
k

)
f(k) = (−1)nn!an = (−1)n .

Stirling Inversion.
Stirling numbers provide according to (3) another inversion for-
mula:

un =
n∑
k=0

Sn,kvk (∀n)⇐⇒ vn =
n∑
k=0

(−1)n−ksn,kuk (∀n) ,

and we have
∑
k≥0 Sn,k(−1)k−msk,m = δn,m .

Going the Other Way.
So far, we have used the recurrence of combinatorial numbers such
as the binomial coefficients or the Stirling numbers to infer rela-
tions between polyomial sequences. But we may also go the other
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way. We begin with polynomial sequences that enjoy certain com-
binatorial properties, and deduce recurrences for the connecting
coefficients.

The bases

xn = (x − 0)(x − 0) · · · (x − 0), xn = x(x − 1) · · · (x −n+ 1),

xn = x(x + 1) · · · (x +n− 1)

have a property in common: The n-th polynomial arises from the
(n− 1)-st by adjoining a factor x − an. This suggests the following
definition.

Definition. Letα = (a1, a2, a3, . . .) be a sequence of complex num-
bers. The persistent sequence of polynomials associated with α is

p(α)0 (x) = 1, p(α)n (x) = (x − a1)(x − a2) · · · (x − an) (n ≥ 1) .

Thus the sequences xn,xn,xn are persistent with α = (0,0,0, . . .),
α = (0,1,2, . . .), and α = (0,−1,−2, . . .), respectively. Another ex-
ample is the Gaussian polynomials gn(x) with α = (1, q, q2, . . .).

The following result shows that the connecting coefficients of two
persistent sequences always satisfy a 2-term recurrence.

Proposition 2.5. Let p(α)n (x) =∑nk=0 cn,kp
(β)
k (x) with α = (a1, a2,

. . .), β = (b1, b2, . . .). Then

c0,0 = 1, c0,k = 0 (k > 0),
cn,0 = (b1 − a1)(b1 − a2) · · · (b1 − an) (n ≥ 1) , (10)

cn,k = cn−1,k−1 + (bk+1 − an)cn−1,k (n, k ≥ 1) .

Proof. To simplify the notation we set pn(x) = p(α)n (x), qn(x) =
p(β)n (x); thus pn(x) =

∑n
k=0 cn,kqk(x).

Clearly, c0,k = δ0,k. Substituting x = b1 we get

pn(b1) =
n∑
k=0

cn,kqk(b1) = cn,0 ,

since b1 is a root of qk(x) for k ≥ 1; thus cn,0 = (b1 −a1) · · · (b1 −
an) .
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Now pn(x) = (x − an)pn−1(x) and qk+1(x) = (x − bk+1)qk(x)
imply

pn(x) =
∑
k
cn−1,kxqk(x)− an

∑
k
cn−1,kqk(x)

=
∑
k
cn−1,kqk+1(x)+

∑
k
bk+1cn−1,kqk(x)−

∑
k
ancn−1,kqk(x)

=
∑
k
[cn−1,k−1 + (bk+1 − an)cn−1,k]qk(x) ,

and the result follows. �

Examples. For α = (0,0,0, . . .), β = (1,1,1, . . .), that is, p(α)n (x) =
xn, p(β)n (x) = (x − 1)n, we obtain the recurrence

cn,0 = 1, cn,k = cn−1,k−1 + cn−1,k ,

and thus cn,k =
(
n
k

)
. Similarly, for an = 0, bn = n− 1 we obtain the

recurrence for Sn,k, while for an = −(n−1), bn = 0, the recurrence
for the Stirling numbers sn,k results.

The case xn = ∑n
k=0[

n
k ]qgk(x) corresponds to an = 0, bn = qn−1,

and we get the recurrence [nk ]q = [n−1
k−1 ]q + qk[n−1

k ]q for the Gaus-
sian coefficients.

Exercises

2.37 Show that a lower triangular matrix A has an inverse if and only if
the main diagonal consists of nonzero elements.

2.38 Let P =
((
n
k

))
be the Pascal matrix. Verify for the m-th power the

identity Pm(n,k) =
(
n
k

)
mn−k (m ∈ Z) .

2.39 Prove an identity of Euler:
∑n
k=0(−1)k

(
n
k

)
(x − k)n = n! .

� 2.40 Determine the connecting coefficients Ln,k between the sequences
(xn) and (xn); thus xn =∑n

k=0 Ln,kxk. You may use either Vandermonde
or a counting argument. The numbers Ln,k are called Lah numbers.

2.41 Derive the 2-term recurrence for the Lah numbers and the Lah in-
version formula.

2.42 Show that (x + 1)n = ∑n
k=0 Ln+1,k+1(x − 1)k, where Ln,k are the Lah

numbers.
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� 2.43 Determine the numbers an ∈ N0 from the identity n! = a0 +a1n1 +
a2n2 + · · · + annn (n ≥ 0).

* * *

2.44 Show that
∑n
k=0

(
n
k

)(
m
k

)−1 = m+1
m+1−n for m ≥ n, and derive another

formula by binomial inversion.

2.45 Show that for the Lah numbers

Ln+1,k+1 =
n∑
i=0

Li,k(n+ k+ 1)n−i .

2.46 Use the recurrence for the Lah numbers to prove that Ln,k equals
the number of k-partitions of {1,2, . . . , n} in which every block is linearly
ordered. Example: L3,2 = 6, with 12|3,21|3,13|2,31|2,23|1,32|1 (see Ex-
ercise 2.32).

� 2.47 Express the Gaussian polynomial gn(x) in terms of xk and derive
the Gaussian inversion formula

un =∑n
k=0[

n
k ]qvk ⇐⇒ vn =∑n

k=0(−1)n−kq(
n−k

2 )[nk ]quk .

2.48 The following formula is called inversion of Chebyshev type:

un =
�n/2	∑
k=0

(
n
k

)
vn−2k ⇐⇒ vn =

�n/2	∑
k=0

(−1)k
n

n− k

(
n− k
k

)
un−2k .

Hint: Use the polynomial tn(x) =
∑�n/2	
k=0 (−1)k n

n−k
(
n−k
k

)
xn−2k.

� 2.49 Given an = ∑n
k=0

(
m+k
k

)
bn−k for m ∈ N0, invert the sum to find a

formula for bn in terms of ak.

2.50 Let a1, . . . , an be non-negative reals, and set p(x) = (x + a1) · · ·
(x+an). Write p(x) = ∑n

k=0 ckxk, and show that the sequence (c0, . . . , cn)
is unimodal. Hint: Prove the stronger result ck−1ck+1 ≤ c2

k for
k = 1, . . . , n−1. This latter property is called logarithmic concavity. Apply
the result to known sequences.

2.5 Probability Generating Functions

In several examples we have considered probability distributions
on a set Ω and asked for the expected value of a random variable
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X : Ω → N0. For example, in Exercise 1.38 we looked at the set Ω =
S(n) of all permutations of {1, . . . , n} and considered the random
variable X : S(n) → N0, where X(π) is the number of fixed points
of π .

Expectation and Variance.
Generating functions often provide a quick way to compute expec-
tation and variance. Let X : Ω → N0 be a random variable, and let
pn = Prob(X = n) be the probability that X takes the value n. The
probability generating function is defined as

PX(z) =
∑
n≥0

pnzn . (1)

Thus the coefficients of PX(z) are all nonnegative, and PX(1) = 1 .
Conversely, any such function may be interpreted as a probability
generating function.

As usual, the expected value of X is declared as

EX =
∑
n≥0

npn .

Hence taking the derivative P ′X(z) =
∑
n≥1npnzn−1, we obtain

EX = P ′X(1) , (2)

if P ′X(1) exists. The variance

VarX = EX2 − (EX)2

is computed similarly. From

P ′′X (z) =
∑
n≥2

n(n− 1)pnzn−2 =
∑
n≥2

n2pnzn−2 −
∑
n≥2

npnzn−2

we get
P ′′X (1) = EX2 − EX ,

and hence by (2),

VarX = P ′′X (1)+ P ′X(1)− (P ′X(1))2 . (3)

Remark. In contrast to our formal treatment, we regard PX(z) and
its derivatives as functions and evaluate them at z = 1. For polyno-
mials this presents, of course, no difficulties; in the countable case
we have to resort to convergence arguments.
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Example. Let Ω = S(n) with the uniform distribution. Consider
the random variable Xn(π) = inv(π), hence Prob(Xn = k) = In,k

n! ,
where In,k is the number of permutations with exactly k inversions
(see Exercise 1.42). The probability generating function is therefore

PXn(z) =
∑
k≥0

In,k
n!
zk .

Classifying the permutations according to the position of n, we ob-
tain In,k = In−1,k + In−1,k−1 + · · · + In−1,k−n+1; hence

PXn(z) =
1 + z + · · · + zn−1

n
PXn−1(z) .

With PX1(z) = 1 this gives

PXn(z) =
n∏
i=1

1 + z + · · · + zi−1

i
,

P ′Xn(z) =
n∑
i=1

⎛⎝∏
j≠i

1 + z + · · · + zj−1

j

⎞⎠ 1 + 2z + · · · + (i− 1)zi−2

i
.

Setting z = 1 we obtain

EXn =
n∑
i=1

i− 1
2

= n(n− 1)
4

.

Using (3), the variance is easily computed as

VarXn = (n− 1)n(2n+ 5)
72

.

Random Lattice Walks.
Let us look at an example that is a little more involved. Consider all
lattice walks on the integers Z = {. . . ,−2,−1,0,1,2, . . .} that start
at 0 and go at every stage one step to the right or left with equal
probability 1/2. Given an integer m ≥ 1, what is the probability
that a walk reaches m or −m ? Suppose this probability is 1 (we are
going to show this). Then we may consider the random variable X
on these walks, where X is the number of steps needed to reach m
or −m for the first time.
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To compute the probability generating function we proceed as fol-
lows. Let G(m)n be the number of walks that reach m or −m for the
first time at the n-th step, and set G(m)(z) = ∑

n≥0G
(m)
n zn. Then

Prob(X = n) = G(m)n
2n , and so

PX(z) = G(m)
(z

2

)
.

For the probability of a walk reachingm or −m at all we thus obtain

PX(1) = G(m)
(1

2

)
, (4)

and assuming this to be 1, for the expectation

EX = 1
2
G(m)

′(1
2

)
. (5)

To find G(m)(z) we solve a few related problems on the way.

A. For m ≥ 1, let E(m)n be the number of positive walks that return
to 0 for the first time at the n-th step, and never reach m. A pos-
itive walk is one that moves only along the non-negative integers.
Similarly, let Ẽ(m)n be the number of all positive walks that return to
0 at the n-th step, and again do not hit m.

The initial conditions are E(m)0 = 0, Ẽ(m)0 = 1 for all m ≥ 1. Classify-
ing the walks according to the first return to 0 we obtain

Ẽ(m)n =
n∑
k=1

E(m)k Ẽ(m)n−k (n ≥ 1) ,

and thus

Ẽ(m)(z) = E(m)(z)Ẽ(m)(z)+ 1 ,

that is,

Ẽ(m)(z) = 1
1 − E(m)(z) . (6)

On the other hand, a walk counted by E(m)n must go first to 1 and at
the n-th step from 1 to 0; hence E(m)n = Ẽ(m−1)

n−2 . This implies by (6),

E(m)(z) = z2Ẽ(m−1)(z) = z2

1 − E(m−1)(z)
, E(1)(z) = 0 . (7)
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Now set Am = E(m)(1
2). Then Am = 1

4(1−Am−1) , A1 = 0, and an easy
induction on m yields

Am = m− 1
2m

(m ≥ 1) . (8)

Using again (7) one further computes for Bm = E(m)′(1
2),

Bm = 2(m2 − 1)
3m

(m ≥ 1) . (9)

B. Next we consider F(m)n , the number of positive walks that reach
m for the first time at the n-th step. Such a walk may return to 0
before it reaches m, or it may stay strictly positive after the first
step. Taking these two possibilities into account, we obtain

F(m)n =
n∑
k=1

E(m)k F(m)n−k + F(m−1)
n−1 , F(m)0 = 0 ,

which translates into

F(m)(z) = E(m)(z)F(m)(z)+ zF(m−1)(z), F(1)(z) = z .

Again we are interested in the quantities Un = F(m)(1
2), Vm =

F(m)′(1
2). The (inductive) proof of the following formulas is left to

the exercises:

Um = 1
m+ 1

, Vm = 2m(m+ 2)
3(m+ 1)

. (10)

Now we are all set to solve the original problem. A walk counted by
G(m)n goes to 1 or −1 on the first step; suppose it goes to 1. After
that it may return to 0 before it reaches m (or −m), or it may stay
strictly positive. With the analogous argument for −1 we arrive at

G(m)n = 2

⎛⎝ n∑
k=1

E(m)k G(m)n−k + F(m−1)
n−1

⎞⎠ , G(m)0 = 0 .

For the generating functions this means that

G(m)(z) = 2
(
E(m)(z)G(m)(z)+ zF(m−1)(z)

)
;

hence
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G(m)(z) = 2zF(m−1)(z)
1 − 2E(m)(z)

. (11)

With (8) and (10) the probability of a walk reaching m or −m is

PX(1) = G(m)
(1

2

)
= Um−1

1 − 2Am
= 1

m(1 − m−1
m )

= 1

as announced at the beginning. To compute EX we have to differ-
entiate (11). An easy calculation yields

EX = 1
2
G(m)

′(1
2

)
= (Um−1 + 1

2Vm−1)(1 − 2Am)+Um−1Bm
(1 − 2Am)2

,

and plugging in the values in (8), (9), and (10) we obtain

EX =m2 .

So we get the nice result that on average, a lattice walk needs m2

steps until it reaches distance m from the origin for the first time.

Fibonacci Walks.
We close with another random walk problem on Z. Suppose the
walker starts at 1 and jumps at each stage with equal probability
1
2 one step to the left or two steps to the right. What is the prob-
ability that the walker ever reaches the origin? We call such walks
Fibonacci walks for reasons to be explained shortly.

As before, we classify the walks according to the first time they
reach 0. Let an be the number of Fibonacci walks that hit 0 for the
first time at the n-th step, a0 = 0. Setting A(z) = ∑

n≥0 anzn, we
are thus interested in the probability

p = A
(1

2

)
.

To determine p we generalize our problem. Let a(m)n be the number
of Fibonacci walks that start at m ≥ 1 and reach 0 for the first time
at the n-th step, a(1)n = an. Now, when such a walk starts at m+ 1,
it must eventually go to m (since it moves only one step to the left
at each stage), and we obtain the recurrence

a(m+1)
n =

n∑
k=0

aka
(m)
n−k (m ≥ 1) .
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In terms of the generating functions this means that A(m+1)(z) =
A(z)A(m)(z); hence

A(m)(z) = A(z)m, A(0)(z) = 1. (12)

This is nice, but how does it help to compute A(z)? Consider the
original walk starting at 1. The first step leads to 0 or 3, which
means that an = a(0)n−1 + a(3)n−1, that is,

A(z) = z + zA(z)3 . (13)

Evaluation at z = 1
2 gives p = 1

2 + 1
2p

3; thus p is a root of the
equation

p3 − 2p + 1 = (p − 1)(p2 + p − 1) = 0 .

This gives as possible answers p = 1, p = −1+√5
2 , or p = −1−√5

2 .
The last root is negative and hence impossible, and there remain

the possibilities p = 1 and p = τ − 1, where τ = 1+√5
2 is the golden

section.

We surmise that p = τ−1 = 0.618 is the correct answer. To see this
we use for once analytical arguments. Clearly, A(z) =∑n≥0 anzn is
an increasing function in the interval [0, 1

2]; thus A′(1
2) > 0. Now by

(13), A′(z) = 1 +A(z)3 + 3zA(z)2A′(z); hence

A′(z) = 1 +A(z)3
1 − 3zA(z)2

. (14)

If p = A(1
2) were equal to 1, then (14) would yield

A′(
1
2
) = 2

1 − 3
2

= −4 < 0 ,

a contradiction. So we have proved p = τ − 1.

Many readers will be familiar with the connection between Fibonacci
numbers and the golden section τ (and this is, of course, the reason
why we speak of Fibonacci walks). For those who are not, the next
section will provide all the necessary details.

Since A(m)(z) = A(z)m, we get as a bonus that for a Fibonacci
walk starting at m ≥ 1 the probability of it ever reaching the origin
equals pm = (τ − 1)m.
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Exercises

� 2.51 Suppose the random variable X takes the values 0,1, . . . , n− 1 with
equal probability 1

n . Compute PX(z).

2.52 Let X be the number of heads when a fair coin is tossed n times.
Compute PX(z), and EX, VarX.

2.53 Suppose X and Y are independent random variables, that is, Prob(X
= m ∧ Y = n) = Prob(X = m) · Prob(Y = n). Show that PX+Y (z) =
PX(z)PY (z).

� 2.54 Toss a fair coin until you get heads for the n-th time. Let X be the
number of throws necessary. What are PX(z), EX, and VarX?

2.55 Prove formula (10).

* * *

2.56 LetH(m)n be the number of lattice walks that reachm ≥ 0 for the first
time at the n-th step, H(m)(z) = ∑

n≥0H
(m)
n zn. Show that H(m)(1

2) = 1,
and compute the expected number of steps needed. Can you interpret
the result?

2.57 The moments μk of a random variable X are μk = E(Xk). Show that

1 +∑k≥1 μk
yk
k! = PX(ey).

� 2.58 What is the probability generating function for the number of times
needed to roll a fair die until all faces have turned up? Find EX .

2.59 How many times do we need to throw a fair coin until we get heads
twice in a row? Compute PX(z), EX, and VarX. Hint: Use that

∑
n≥0 Fnzn =

z
1−z−z2 , Fn the n-th Fibonacci number, proved in the next chapter.

2.60 Suppose 2n points are arranged around a circle, and that they are
pairwise joined by n chords. Clearly, there are (2n− 1)(2n− 3) · · ·3 · 1
such chord arrangements. Let X be the random variable counting pairs
of crossing chords, with all arrangements equally likely. Compute EX and
VarX.

� 2.61 Suppose two particles are initially at adjacent vertices of a pentagon.
At every step each of the particles moves with equal probability 1

2 to an
adjacent vertex. Let X be the number of stages until both particles are at
the same vertex. Find the expected value of X and the variance. What are
the results when the two particles start two vertices apart?
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Highlight: The Point of (No) Return

Suppose a random walker starts at the origin of the d-dimensional
lattice Zd and goes at every step with equal probability to one of its
2d neighboring lattice points. What is the probability p(d) that he or
she eventually returns to the origin? In particular, when is p(d) = 1;
that is, when does the walker surely return to the origin?

This latter problem was posed and essentially solved by George
Pólya with the following beautiful result:

Theorem. We have

p(d) = 1 for d = 1,2,

p(d) < 1 for d ≥ 3 .
(1)

We proceed in the spirit of the last section. Let P(d)n be the number
of walks of length n that return to 0 for the first time at the n-th
step, and Q(d)n the number of all walks of length n that return to 0
at the n-th step. Thus P(d)0 = 0 and Q(d)0 = 1 for all d.

Setting P(d)(z) =∑n≥0 P
(d)
n zn, Q(d)(z) =∑n≥0Q

(d)
n zn, we have

p(d) = P(d)
( 1

2d

)
=
∑
n≥0

P(d)n

(2d)n
, q(d) = Q(d)

( 1
2d

)
=
∑
n≥0

Q(d)n
(2d)n

. (2)

Furthermore, classifying the paths counted byQ(d)n according to the
first return to 0, we obtain

Q(d)n =
n∑
k=0

P(d)k Q(d)n−k ,

and so

Q(d)(z) = 1 + P(d)(z)Q(d)(z) ,

or

P(d)(z) = 1 − 1
Q(d)(z)

.

It follows that
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p(d) = 1 ⇐⇒ q(d) =
∑
n≥0

Q(d)n
(2d)n

= ∞,
(3)

p(d) < 1 ⇐⇒ q(d) =
∑
n≥0

Q(d)n
(2d)n

< ∞ .

In order to prove Pólya’s result (1) we thus have to show that the

series
∑
n≥0

Q(d)n
(2d)n diverges for d = 1 and 2, and converges for all

d ≥ 3. We have chosen the new formulation (3) because the numbers
Q(d)n admit a simple recurrence in d, while the P(d)n ’s are hard to
handle.

A Recurrence for Q(d)
n .

Let us first make a simple observation. Since any walk that returns
to the origin must proceed in every dimension equally often in the
positive and negative direction, all these walks must be of even
length.

As a warm-up let us look at d = 1. Any walk of length 2n must
contain n steps to the right and n to the left, hence

Q(1)2n =
(

2n
n

)
. (4)

Now consider Zd+1. Suppose the walk (of length 2n) contains 2k
steps in the first d dimensions and 2n−2k steps in the last dimen-
sion. Since we may place these 2k steps in

(
2n
2k

)
ways, we obtain the

recurrence

Q(d+1)
2n =

n∑
k=0

(
2n
2k

)(
2n− 2k
n− k

)
Q(d)2k . (5)

We may simplify this further.

Claim. We have

Q(d)2n =
(

2n
n

)
q(d)2n , (6)

where the q(d)2n ’s satisfy the recurrence⎧⎪⎪⎨⎪⎪⎩
q(1)2n = 1 for all n,

q(d+1)
2n =

n∑
k=0

(
n
k

)2
q(d)2k .

(7)
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For d = 1, q(1)2n = 1 by (4). Induction and (5) yields with the help of
Exercise 1.13,

Q(d+1)
2n =

n∑
k=0

(
2n
2k

)(
2n− 2k
n− k

)(
2k
k

)
q(d)2k

=
(

2n
n

) n∑
k=0

(
n
k

)2

q(d)2k ,

as claimed.

As examples, we obtain q(2)2n =
n∑
k=0

(
n
k

)2 =
(

2n
n

)
, and thus Q(2)2n =(

2n
n

)2
, and for d = 3,

q(3)2n =
n∑
k=0

(
n
k

)2(
2k
k

)
. (8)

The Cases d = 1, 2.
For d = 1 we get by (4) and

(
2n
n

)
≥ 22n

2
√
n (see Exercise 1.26),

q(1) =
∑
n≥0

(
2n
n

)
22n ≥ 1 +

∑
n≥1

1
2
√
n

≥ 1 + 1
2

∑
n≥1

1
n
,

and hence q(1) = ∞, since the harmonic series diverges.

Similarly, for d = 2 we have Q(2)2n =
(

2n
n

)2
, and thus with the above

estimate,

q(2) =
∑
n≥0

(
2n
n

)2

42n ≥ 1 + 1
4

∑
n≥1

1
n
,

and so again q(2) = ∞ .

The Case d ≥ 3.
Suppose we already know that

q(d)2n ≤ d2n

n
for d ≥ 3 and all n . (9)

Then invoking the upper bound in Exercise 1.26, we obtain
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q(d) =
∑
n≥0

(
2n
n

)
(2d)2n

q(d)2n ≤ 1 +
∑
n≥1

22n
√
n(2d)2n

d2n

n

= 1 +
∑
n≥1

1
n3/2 <∞ ,

since we know from analysis that
∑
n≥1

1
nα converges for any α > 1.

To finish the proof we have to verify (9). It is plausible that d = 3
is the hardest case, since as the dimension increases we expect that
the proportion of random walks that stay away from the origin also
increases.

Suppose we have already proved (9) for d = 3. Then the recurrence
(7) easily extends the inequality (9) to all d ≥ 3. Indeed, using the

simple inequality
(
n
k

)2 ≤
(

2n
2k

)
and induction we obtain

q(d+1)
2n =

n∑
k=0

(
n
k

)2

q(d)2k ≤ 1 +
n∑
k=1

(
2n
2k

)
d2k

k
,

and it suffices to prove the inequality

1 +
n∑
k=1

(
2n
2k

)
d2k

k
≤ (d+ 1)2n

n
= 1
n

2n∑
i=0

(
2n
i

)
di . (10)

But this is easy. First we have 1 ≤ 1
n

[(
2n
0

)
+
(

2n
1

)
d
]
= 1

n(1 + 2nd).
For 1 ≤ k ≤ n − 1 we combine the two summands with indices 2k
and 2k+ 1 on the right of (10) and want to show that(

2n
2k

)
d2k

k
≤ 1
n

[(
2n
2k

)
d2k +

(
2n

2k+ 1

)
d2k+1

]
. (11)

Now,
(

2n
2k+1

)
=
(

2n
2k

)
2n−2k
2k+1 ; hence (11) reduces to

n
k
≤ 1 + 2n− 2k

2k+ 1
d , (12)

and an easy calculation shows that (12) holds for k ≤ n and d ≥ 3.

Finally, for the last term k = n we find that
(

2n
2n

)
d2n

n ≤ 1
n

(
2n
2n

)
d2n

holds with equality.

Thus (10) is true, and it remains to prove (9) for d = 3.
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A Combinatorial Argument.
Looking at (8), our final task is to prove

n∑
k=0

(
n
k

)2(
2k
k

)
≤ 9n

n
. (13)

One could use estimates such as Stirling’s formula, but here is a
neater way by interpreting the left-hand side of (13) combinatori-
ally. Consider all words a1 . . . anb1 . . . bn of length 2n over {0,1,2},
where there are n − k 0’s in a1 . . . an and also in b1 . . . bn, and k
1’s (and therefore k 2’s) in the remaining 2k positions. Clearly, the

number of these words is
(
n
k

)2(2k
k

)
, and therefore

∑n
k=0

(
n
k

)2(2k
k

)
counts all words a1 . . . anb1 . . . bn over {0,1,2} with⎧⎨⎩#0’s in a1 . . . an = #0’s in b1 . . . bn,

#1’s = #2’s.
(14)

Here is the main observation. Given any of the 3n words a1 . . . an
with, say, n0 0’s, n1 1’s, n2 2’s, then the multiplicities of 0, 1, and
2 of any compatible word b1 . . . bn are also determined. Indeed, by
(14), b1 . . . bn must contain n0 0’s, n2 1’s, and n1 2’s. It follows that

n∑
k=0

(
n
k

)2(
2k
k

)
≤ 3n

(
n

m1m2m3

)
,

where
(

n
m1m2m3

)
is the largest trinomial coefficient. According to

Exercise 1.17 the trinomial coefficients are bounded above by 3n

n+1 ,
and so

n∑
k=0

(
n
k

)2(
2k
k

)
≤ 3n · 3n

n+ 1
<

9n

n
,

and the proof is complete.

A final remark: Using analytical methods one can prove that p(3) =
0.3405 for the 3-dimensional lattice, and p(d) → 0 for d → ∞, as is
to be expected.
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Notes and References

The technique of encoding combinatorial sequences as coefficients
of a power series has a long history, dating back to Euler and de
Moivre. The formal standpoint and formal convergence, however,
took a long time to be accepted. The article of Niven was one of the
first to attempt a rigorous foundation. For an advanced treatment
of rational and algebraic generating functions the books by Stan-
ley are highly recommended. Riordan presents an extensive collec-
tion of inverse relations. We have only touched on the subject of
probability generating functions. For more on this topic, Chapter
8 in the book by Graham, Knuth, and Patashnik is a good start.
Those readers who are interested in an analytical treatment includ-
ing asymptotics should consult the soon-to-appear book by Flajo-
let and Sedgewick. For a general background on combinatorics the
books by Aigner, Lovász, and van Lint–Wilson are recommended.
Lovász’s book, in particular, is a veritable treasure trove of combi-
natorial problems, complete with hints and solutions.
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3 Generating Functions

3.1 Solving Recurrences

The classical application of generating functions is recurrences with
constant coefficients. As an introductory example that will serve as
a model for the general case, let us consider the simplest recurrence
of order 2:

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 (n ≥ 2) .

The solution is the sequence Fn of Fibonacci numbers. They appear
in so many counting problems that a whole journal is dedicated to
them. Here is a table of the first numbers:

n 0 1 2 3 4 5 6 7 8 9 10
Fn 0 1 1 2 3 5 8 13 21 34 55

The Four Steps.
How can we compute the n-th Fibonacci number? The following
steps are typical for the general case.

Step 1. Write the recurrence as a single equation including the initial
conditions.

As always, Fn = 0 for n < 0, so the recurrence is also correct for
n = 0. But for n = 1 we have F1 = 1, while the right-hand side is 0.
The complete recurrence is therefore

Fn = Fn−1 + Fn−2 + [n = 1] . (1)

Here and later we use the “truth”-symbol

[P] =
{

1 if P is true
0 if P is false.

Step 2. Express (1) as an equation between generating functions.

We know that lowering the index corresponds to multiplication by
a power of z. Thus
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F(z) =
∑
n≥0

Fnzn =
∑
n≥0

Fn−1zn +
∑
n≥0

Fn−2zn +
∑
n≥0

[n = 1]zn

(2)
= zF(z)+ z2F(z)+ z .

Step 3. Solve the equation.

This is easy:

F(z) = z
1 − z − z2 . (3)

Step 4. Express the right-hand side of (3) as a generating function
and compare coefficients.

This is, of course, the only step that requires some work. First we
write 1 − z − z2 = (1 − αz)(1 − βz), and compute then the partial
fractions form

1
(1 −αz)(1 − βz) =

a
1 −αz + b

1 − βz . (4)

Now we are through, since

F(z) = z
(

a
1 −αz + b

1 − βz

)
= z

⎛⎝a ∑
n≥0

αnzn + b
∑
n≥0

βnzn
⎞⎠

=
∑
n≥0

(aαn−1 + bβn−1)zn ,

which gives the final result

Fn = aαn−1 + bβn−1 (n ≥ 0) . (5)

To get (5) we must therefore compute α and β, and then a and b.

Setting c(z) = 1 − z − z2, we call cR(z) = z2 − z − 1 the reflected
polynomial, and we claim that cR(z) = (z−α)(z−β) implies c(z) =
(1 −αz)(1 − βz). In other words, α and β are the roots of cR(z).

Let us prove this in full generality. Let c(z) = 1 + c1z + · · · + cdzd
be a polynomial with complex coefficients of degree d ≥ 1. The
reflected polynomial is then cR(z) = zd+ c1zd−1 +· · ·+ cd, cd ≠ 0,
and we clearly have c(z) = zdcR(1

z ). Let α1, . . . , αd be the roots of
cR(z). Then cR(z) = (z −α1) · · · (z −αd), and therefore
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c(z) = zd
(

1
z
−α1

)
· · ·

(
1
z
−αd

)
= (1 −α1z) · · · (1 −αdz)

as claimed.

For the Fibonacci numbers this gives

cR(z) = z2 − z − 1 =
(
z − 1 +√

5
2

)(
z − 1 −√

5
2

)
,

c(z) =
(

1 − 1 +√
5

2
z
)(

1 − 1 −√
5

2
z
)
.

The usual notation is τ = 1+√5
2 , τ̂ = 1−√5

2 , where τ is the famous
golden section known since antiquity. From z2−z−1 = (z−τ)(z−τ̂)
we infer τ + τ̂ = 1, τ̂ = −τ−1.

The final step is the partial fractions form:

1
(1 − τz)(1 − τ̂z) =

a
1 − τz + b

1 − τ̂z .

Taking the common denominator on the right-hand side we obtain

a+ b = 1,
τ̂a+ τb = 0 ,

which gives a = τ√
5
, b = − τ̂√

5
. The final result is therefore by (5),

Fn = 1√
5
(τn − τ̂n) = 1√

5

[(
1 +√

5
2

)n
−
(

1 −√
5

2

)n]
. (6)

Since
∣∣∣1−√5

2

∣∣∣ < 1, we observe that Fn is the integer nearest to 1√
5
τn.

The following fundamental theorem states that these four steps al-
ways work.

Theorem 3.1. Let c1, . . . , cd be a fixed sequence of complex num-
bers, d ≥ 1, cd ≠ 0, and set c(z) = 1 + c1z + · · · + cdzd =
(1 − α1z)d1 · · · (1 − αkz)dk , where α1, . . . , αk are the distinct roots
of cR(z). For a counting function f : N0 → C the following conditions
are equivalent:

(A1) Recurrence of order d: For all n ≥ 0,

f(n+ d)+ c1f(n+ d− 1)+ · · · + cdf (n) = 0 .
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(A2) Generating function:

F(z) =
∑
n≥0

f(n)zn = p(z)
c(z)

,

where p(z) is a polynomial of degree less than d.

(A3) Partial fractions:

F(z) =
∑
n≥0

f(n)zn =
k∑
i=1

gi(z)
(1 −αiz)di

for polynomials gi(z) of degree < di, i = 1, . . . , k.

(A4) Explicit form:

f(n) =
k∑
i=1

pi(n)αni ,

where pi(n) is a polynomial in n of degree less than di, i = 1, . . . , k.

Proof. Let us define sets Vi by

Vi = {f : N0 → C : f satisfies (Ai)}, i = 1, . . . ,4 .

Each Vi is clearly a vector space, since in each of the four cases
sum and scalar product respect the condition. Next we observe that
each vector space Vi has dimension d. In (A1) the initial values
f(0), . . . , f (d− 1) can be chosen arbitrarily, in (A2) the coefficients
p0, p1, . . . , pd−1 of the polynomial p(z), and in (A3), (A4) the di co-
efficients of gi respectively pi, summing to d. Hence if we can show
that Vi ⊆ Vj , then Vi = Vj holds.

Suppose f ∈ V2. Then equating coefficients in c(z)
∑
n≥0 f(n)zn =

p(z) for zn+d yields precisely the recurrence (A1). Thus f ∈ V1, and
so V1 = V2.

Assume f ∈ V3. Then

∑
n≥0

f(n)zn =

k∑
i=1
gi(z)

∏
j≠i
(1 −αjz)dj

k∏
i=1
(1 −αiz)di

= p(z)
c(z)

,

where degp(z) ≤ max1≤i≤k(deggi(z)+
∑
j≠i dj) < d. Hence f ∈ V2,

and so V1 = V2 = V3.
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Finally, we show that V3 ⊆ V4. Let f ∈ V3, and look at a summand
gi(z)

(1−αiz)di
of F(z). Our list of generating functions in Section 2.1

shows that

1
(1 −αiz)di

=
∑
n≥0

(
di +n− 1

n

)
αni z

n =
∑
n≥0

(
di +n− 1
di − 1

)
αni z

n .

Multiplication by gi(z) = g0 + g1z + · · · + gdi−1zdi−1 means index
shift, that is,

gi(z)
(1 −αiz)di

=
∑
n≥0

⎡⎣di−1∑
j=0

gj

(
di +n− j − 1

di − 1

)
αn−ji

⎤⎦zn
=
∑
n≥0

⎡⎣di−1∑
j=0

α−j
i gj

(
n+ di − j − 1

di − 1

)⎤⎦αni zn .
Now we set pi(n) =

∑di−1
j=0 α−j

i gj
(
n+di−j−1
di−1

)
; then pi(n) is a poly-

nomial in n of degree less than or equal to di − 1. Hence f ∈ V4,
and the proof is complete. �

Readers who have a background in algebra may note that instead of
C we may take any algebraically closed field of characteristic 0.

Example. Suppose we are asked to solve the recurrence

an = 6an−1 − 9an−2, a0 = 0, a1 = 1 .

The associated polynomial is c(z) = 1−6z+9z2, cR(z) = z2−6z+
9 = (z − 3)2. Thus 3 is a root of multiplicity 2. (A4) yields an =
(a+bn)3n, and with the initial conditions 0 = a0 = a, 1 = a1 = 3b,
b = 1

3 , we obtain the solution an = n3n−1.

Example. Our task is to compute the eigenvalues of the n × n-
matrix

Mn =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1
1 0 1

0

1 0
. . . 10

1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠. Let cn(x) = det

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x −1
−1 x −1 0

−1 x

0
. . . −1
−1 x

⎞⎟⎟⎟⎟⎟⎟⎟⎠
be the characteristic polynomial ofMn. Developing the determinant
according to the first row, we arrive at the recurrence
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cn(x) = xcn−1(x)− cn−2(x), c0(x) = 1, c1(x) = x .

Hence c(z) = 1 − xz + z2 = cR(z) with roots α = x+
√
x2−4
2 , β =

x−
√
x2−4
2 . Step 4 of our familiar procedure gives

cn(x) = 1√
x2 − 4

⎡⎣(x +
√
x2 − 4
2

)n+1

−
(
x −

√
x2 − 4
2

)n+1
⎤⎦ . (7)

If λ is a root of cn(x), then
(
λ+
√
λ2−4

λ−
√
λ2−4

)n+1

= 1; hence

λ+
√
λ2 − 4

λ−
√
λ2 − 4

= e 2kπi
n+1 (k = 1, . . . , n) . (8)

Note that k = 0, i.e., λ+
√
λ2 − 4 = λ−

√
λ2 − 4, is impossible (why?).

Multiplying both sides of (8) by λ+
√
λ2 − 4, we get

(λ+
√
λ2 − 4)2 = 4e

2kπi
n+1 ;

hence λ+
√
λ2 − 4 = ±2e

kπi
n+1 ,

√
λ2 − 4 = ±2e

kπi
n+1 − λ, and so

λ2 − 4 = 4e
2kπi
n+1 ± 4λe

kπi
n+1 + λ2 .

This, in turn, gives

λ = ±e
2kπi
n+1 + 1

e
kπi
n+1

= ±
(
e
kπi
n+1 + e− kπi

n+1

)
= ±2 cos

kπ
n+ 1

.

The eigenvalues are therefore 2 cos kπ
n+1 (k = 1, . . . , n), since

cos
kπ
n+ 1

= − cos
(n+ 1 − k)π

n+ 1
.

Simultaneous Recurrences.
The method of generating functions is also successful when we
want to solve simultaneous recurrences. In a mathematical compe-
tition in 1980 the following problem was posed: Write the number
(
√

2+√
3)1980 in decimal form. What is the last digit before and the

first digit after the decimal point?

This appears rather hopeless at first sight, and what has it got to
do with recurrences? Consider in general (

√
2 + √

3)2n. We obtain
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(
√

2 +√
3)0 = 1, (

√
2 +√

3)2 = 5 + 2
√

6, (
√

2 +√
3)4 = (5 + 2

√
6)2 =

49+20
√

6. Are all powers (
√

2+√
3)2n of the form an+bn

√
6? With

induction we obtain

(
√

2 +
√

3)2n = (
√

2 +
√

3)2n−2(
√

2 +
√

3)2

= (an−1 + bn−1

√
6)(5 + 2

√
6)

= (5an−1 + 12bn−1)+ (2an−1 + 5bn−1)
√

6 .

Hence we obtain the simultaneous recurrences

an = 5an−1 + 12bn−1,
(9)

bn = 2an−1 + 5bn−1,

with initial conditions a0 = 1, b0 = 0.

Now we start our machinery.

Step 1. an = 5an−1 + 12bn−1 + [n = 0],
bn = 2an−1 + 5bn−1 .

Step 2. A(z) = 5zA(z)+ 12zB(z)+ 1,
B(z) = 2zA(z)+ 5zB(z).

Step 3. Solving for A(z), we obtain A(z) = 1−5z
1−10z+z2 .

Step 4. cR(z) = c(z) = z2−10z+1 = (z−(5+2
√

6)
)(
z−(5−2

√
6)
)
;

hence α1 = 5 + 2
√

6, α2 = 5 − 2
√

6. Partial fractions finally
yield

an = 1
2
[(5 + 2

√
6)n + (5 − 2

√
6)n] . (10)

Thus we know an (and we may also compute bn in this way), but
what does this say about the digits in (

√
2+√

3)2n = an+bn
√

6 for
n = 990? First of all we have (5+2

√
6)n = (√2+√

3)2n = an+bn
√

6;
hence (10) gives an = 1

2(an + bn
√

6 + (5 − 2
√

6)n), or

an = bn
√

6 + (5 − 2
√

6)n. (11)

Let {x} be the fractional part of x, that is, x = �x	 + {x}, 0 ≤ {x}
< 1. Since an is an integer, we infer from (11) that {bn

√
6} +

{(5 − 2
√

6)n} = 1. The term (5 − 2
√

6)n goes to 0. Hence for large
n, and certainly for n = 990, (5 − 2

√
6)n = 0.000 . . ., and thus

{bn
√

6} = 0.99 . . . The first digit after the decimal point is there-
fore 9.
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Now let A be the last digit of a990 and B that of b990
√

6, i.e., a990 =
. . . A, b990

√
6 = . . . B.999 . . . It follows from (11) that A ≡ B + 1

(mod 10), and so the last digit of a990 + b990
√

6 is A + B ≡ 2A − 1
(mod 10). It remains to determine A, and for this we use the original
recurrence (9). The first values (mod 10) are

n 0 1 2 3 4 5
an 1 5 9 5 1 5
bn 0 2 0 8 0 2

and we see that the digits repeat with period 4. In particular, 990 ≡
2 (mod 4); thus A = 9, and hence the last digit before the decimal
point is 2A− 1 ≡ 7 (mod 10).

Exponential Generating Functions.
In summary, recurrences with constant coefficients can be effi-
ciently dealt with using ordinary generating functions. Whenever
the running parameter n is involved in the recurrence, exponential
generating functions are usually called for.

As an example, let us consider the number in of involutions in S(n).
In Exercise 1.39 you were asked to prove combinatorially the recur-
rence

in+1 = in +nin−1 (n ≥ 0), i0 = 1 .

Comparing coefficients for zn means for the exponential generating
function Î′(z) = Î(z)+ zÎ(z); hence

(
log Î(z)

)′ = Î′(z)
Î(z)

= 1 + z ,

and thus log Î(z) = z + z2

2 , or Î(z) = ez+ z2

2 .

But we can also go the other way, from the generating function to
a recurrence. We know that the exponential generating function for
the derangement numbers is D̂(z) = ∑n≥0Dn

zn
n! = e−z

1−z . Taking the
derivative we have

D̂′(z) = −e−z(1 − z)+ e−z
(1 − z)2 = ze−z

(1 − z)2 = zD̂(z)
1 − z ,

and thus (1−z)D̂′(z) = zD̂(z). Comparison of coefficients for zn−1

now gives Dn − (n− 1)Dn−1 = (n− 1)Dn−2, or
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Dn = (n− 1)(Dn−1 +Dn−2) for n ≥ 1 .

Catalan Numbers.
Quite a different kind of recurrence is that of a convolution type.
The Catalan numbers are defined by

Cn+1 = C0Cn + C1Cn−1 + · · · + CnC0 (n ≥ 0), C0 = 1 . (12)

The Catalan numbers are almost as ubiquitous as the binomial co-
efficients. We will encounter them in many future situations. The
first values are

n 0 1 2 3 4 5 6 7 8
Cn 1 1 2 5 14 42 132 429 1430

The classical instance counted by the Catalan numbers is rooted
binary plane trees with n vertices (or equivalently, bracketings).
From any inner vertex emanates a left or right edge, or both:

C1 = 1

C2 = 2 C3 = 5

In general, the situation at the root of a tree with n+ 1 vertices is

(k = 0, . . . , n)

Ck Cn−k

from which Cn+1 =∑nk=0 CkCn−k immediately follows.

How can we compute Cn? No problem with generating functions.
Let C(z) = ∑

n≥0 Cnzn. Then the convolution (12) translates into
C(z) = zC2(z)+ 1, or

C2(z)− 1
z
C(z)+ 1

z
= 0 .

Solving this quadratic equation, we get

C(z) = 1 −√
1 − 4z

2z
, (13)
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where the minus sign before the square root must hold since C(0) =
1. By Exercise 1.16 we obtain

(1 − 4z)1/2 =
∑
n≥0

(
1/2
n

)
(−4)nzn = 1 +

∑
n≥1

1
2n

(
−1/2
n− 1

)
(−4)nzn

= 1 − 2
∑
n≥1

1
n

(
2n− 2
n− 1

)
zn

= 1 − 2
∑
n≥0

1
n+ 1

(
2n
n

)
zn+1 ,

or

1 −
√

1 − 4z = 2
∑
n≥0

1
n+ 1

(
2n
n

)
zn+1 .

Dividing by 2z gives the unexpectedly simple answer

Cn = 1
n+ 1

(
2n
n

)
. (14)

Note that Cn =
(

2n
n

)
−
(

2n
n−1

)
.

Exercises

3.1 The polynomials cn(x) = xcn−1(x) − cn−2(x) (n ≥ 2), c0(x) = 1,
c1(x) = x considered in the text are called the Chebyshev polynomials.

Prove the explicit expression cn(x) = xn−
(
n−1

1

)
xn−2 +

(
n−2

2

)
xn−4 ∓· · · .

3.2 The following exercises treat the Fibonacci numbers. Prove
a.
∑n
k=0 Fk = Fn+2 − 1, b.

∑n
k=1 F2k−1 = F2n, c.

∑n
k=0 F

2
k = FnFn+1 .

3.3 Let A be the matrix
(

1 1
1 0

)
. Prove An =

(
Fn+1 Fn
Fn Fn−1

)
and derive from

this Fn+1Fn−1 −F2
n = (−1)n. Show conversely that |m2 −mk−k2| = 1 for

m,k ∈ Z implies m = ±Fn+1, k = ±Fn for some n.

� 3.4 A subset A ⊆ {1,2, . . . , n} is called fat if k ≥ |A| for all k ∈ A. For
example, {3,5,6} is fat, while {2,4,5} is not. Let f(n) be the number of
fat subsets, where � is fat by definition. Prove: a. f(n) = Fn+2 (Fibonacci

number) and derive from this b. Fn+1 =∑k≥0

(
n−k
k

)
, c.

∑n
k=0

(
n
k

)
Fk = F2n.

3.5 Let An be the number of domino tilings of a 2 × n-rectangle. For
example, A1 = 1, A2 = 2, A3 = 3. Compute An.
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� 3.6 Let f(n) be the number of n-words over the alphabet {0,1,2} that
contain no neighboring 0’s, e.g., f(1) = 3, f(2) = 8, f(3) = 22. Determine
f(n).

3.7 Compute
∑

0<k<n
1

k(n−k) using partial fractions or generating func-
tions.

3.8 Decompose a regular n-gon, n ≥ 3, into triangles by inserting diag-
onals.
Example: n = 4 , .
Show that the number of triangulations is the Catalan number Cn−2,
n ≥ 3.

3.9 In an election, exactly n persons vote for candidate A and n people
for candidate B. They throw their ballots into the ballot box one after the
other. Show that the number of possible ballot lists in which at any stage
the number of votes for A is at least as large as that for B equals Cn.
Example: n = 3, AAABBB, AABABB, AABBAB, ABAABB, ABABAB.

3.10 Assuming Exercise 3.9, give a bijection proof that Cn equals the
number of arrangements of {1,2, . . . ,2n} in two rows of length n such
that the numbers in any row and column appear in increasing order.

� 3.11 Let C(z) be the generating function of the Catalan numbers. Prove:

C′(z) = C2√
1−4z , and derive from this (n+ 1)Cn+1 =∑n

k=0

(
2k
k

)
Cn−k+1.

3.12 Prove C( z
4z−1) = 2 − C(z) and C( z

1+2z ) = 1 + zC(z2).

* * *

3.13 Solve the recurrence g0 = 1, gn = gn−1 +2gn−2 +· · ·+ng0 (n ≥ 1).
Hint: Consider the Fibonacci series

∑
n≥0 F2nzn.

3.14 Compute the ordinary generating function of the harmonic numbers
Hn = 1 + 1

2 + · · · + 1
n , and further

∑n−1
k=1 HkHn−k.

� 3.15 Determine the number An of ways to fill a 3×n-rectangle with 1×2-
dominoes; thus A1 = 0, A2 = 3. Hint: Consider the number Bn of tilings
for which the upper left-hand corner is left free, e.g., B1 = 1, B2 = 0, and
solve simultaneously .

3.16 In how many ways can one build a 2 × 2 × n-tower with 2 × 1 × 1
bricks?

3.17 Let An be the number of ways to tile a 4 × n-rectangle using 1 × 1-
squares and copies of L, where L is a 2 × 2-square with the upper right
corner missing (no rotations allowed). Find the generating function of An.

� 3.18 A row of n light bulbs must be completely turned on; initially they
are all off. The first bulb can always be turned on or off. For i > 1, the i-th
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bulb can be switched (turned on or off) only when bulb i− 1 is on and all
earlier bulbs are off. Let an be the number of switches needed to turn all
bulbs on, and bn the number needed to turn the n-th bulb on for the first
time. Find recurrences for an and bn, and determine these numbers.

3.19 Evaluate the sum sn = ∑n
k=0

(
n+k
2k

)
2n−k with the following steps:

a. generating function
∑
n≥0 snzn, b. recurrence of second order, c. ex-

plicit formula.

� 3.20 Determine the generating function
∑
n≥0 pn(x)zn of the polynomi-

als pn(x) =
∑n
k=0

(
n
k

)(
2k
k

)
xk, and consider the special cases x = −1

2 and

x = −1
4 . Hint: Use

∑
n≥0

(
2n
n

)
zn = (1 − 4z)−1/2.

3.21 Prove the formula
∑n
k=0 FkFn−k = 1

5(2nFn+1−(n+1)Fn), Fn the n-th
Fibonacci number.

3.22 Compute the exponential generating function for the numbers gn
defined by g0 = 0, g1 = 1, gn = −2ngn−1 + ∑n

k=0

(
n
k

)
gkgn−k (n ≥ 2).

Hint: Use Exercise 1.16.

3.23 Let f(n) be the number of cyclic permutations (a1, a2, . . . , an)
where ai, ai+1 are never consecutive numbers 1,2; 2,3; . . . ;n − 1, n;n,1.
Example: f(1) = f(2) = 0, f(3) = 1 with (1,3,2) as only possibility.
Show that f(n) + f(n + 1) = derangement number Dn, and determine
the exponential generating function of f(n).

� 3.24 Consider the Fibonacci walks of Section 2.5. We have shown that
the probability pm of a walk starting at m ≥ 0 to reach the origin is
pm = (τ − 1)m. Compute p−m for m > 0. Hint: Establish a recurrence to
prove p−m = 3τ −4+ (5−3τ)(Fm+1 −Fmτ), Fm Fibonacci number. What
is limm→∞ p−m?

� 3.25 Let C(z) be the Catalan generating function. Prove the identity

∑
n≥0

(
2n+ k
n

)
zn = C(z)k√

1 − 4z
.

3.26 . Let am,n = ∑
k≥0 ak

(
m
k

)(
n
k

)
. Prove F(y, z) = ∑

m,n≥0 am,nymzn =
1

1−y−z−(a−1)yz .

� 3.27 The Delannoy numbers of Exercise 1.24 satisfy Dm,n = Dm−1,n +
Dm,n−1 + Dm−1,n−1 (m,n ≥ 1) with Dm,0 = D0,n = 1 (clear?). Find from
this the generating function D(y, z) = ∑

m,n Dm,nymzn, and deduce
from the previous exercise a new formula for Dm,n.
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3.2 Evaluating Sums

Generating functions give us several methods to compute sums, or
to establish identities between sums.

The simplest case occurs when sn = ∑n
k=0 ak. We then know that

S(z) = A(z)
1−z for the corresponding ordinary generating functions.

Example. We want to compute sn = ∑nk=1Hk, where Hk = 1 + 1
2 +

· · · + 1
k are the harmonic numbers. Let H(z) =∑n≥1Hnzn be their

generating function. Then

H(z) =
∑
n≥1

1
nz

n

1 − z ,

and thus

S(z) =
∑
n≥1

snzn =
∑
n≥1

1
nz

n

(1 − z)2 .

With 1
(1−z)2 =∑n≥0(n+ 1)zn, convolution yields

sn =
n∑
k=1

1
k
(n− k+ 1) = (n+ 1)Hn −n ,

which can also be written as

n∑
k=1

Hk = (n+ 1)(Hn+1 − 1) . (1)

Convolution.
A more powerful method is to recognize the sum sn as a convolu-
tion product. In this case S(z) = A(z)B(z), and we may be able to
compute the product A(z)B(z) efficiently.

As a start, consider the sum sn = ∑n
k=0

(
2k
k

)
4−k. To make it into a

convolution we write it as sn = 4−n∑n
k=0

(
2k
k

)
4n−k. The inner sum

is now the convolution of the two series
∑
n≥0

(
2n
n

)
zn = 1√

1−4z and∑
n≥0 4nzn = 1

1−4z . The product is (1 − 4z)−3/2, und thus the n-

th coefficient is
(−3/2

n

)
(−4)n. Exercise 1.16 now finishes the work,

sn = 1
4n (2n+ 1)

(
2n
n

)
.
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When the sum contains
(
n
k

)
, then binomial convolution is called for.

Suppose we want to compute sn = ∑n
k=1(−1)k−1k

(
n
k

)
rn−k. This is

then-th coefficient of the binomial convolution of
∑
n≥1(−1)n−1nz

n

n!

= z
∑
n≥0

(−z)n
n! = ze−z and

∑
n≥0

(rz)n
n! = erz. Now ze(r−1)z =∑ (r−1)n−1zn

(n−1)! =∑ n(r−1)n−1zn
n! , and we conclude that

n∑
k=1

(−1)k−1k
(
n
k

)
rn−k = n(r − 1)n−1 (n ≥ 1).

“Free Parameter” Method.
Both methods discussed so far have n as limit in the summa-
tion. When n does not appear explicitly in the summation, we
may consider n as a “free” parameter, treat sn as a coefficient of
F(z) = ∑

snzn, change the order of the summations on n and k,
and try to compute the inner sum. This method (called “snake oil”
by H. Wilf) often provides amazingly simple proofs.

Example. We want to compute

sn =
∑
k≥0

(
n+ k
m+ 2k

)(
2k
k

)
(−1)k

k+ 1
(m,n ∈ N0) .

We treat n as a “free” parameter, and set

F(z) =
∑
n≥0

⎡⎣∑
k≥0

(
n+ k
m+ 2k

)(
2k
k

)
(−1)k

k+ 1

⎤⎦zn .
Interchanging summation gives

F(z) =
∑
k≥0

(
2k
k

)
(−1)k

k+ 1
z−k

∑
n≥0

(
n+ k
m+ 2k

)
zn+k .

Now the inner sum is zm+2k

(1−z)m+2k+1 (see the list in Section 2.1). Thus
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F(z) = zm

(1 − z)m+1

∑
k≥0

1
k+ 1

(
2k
k

)( −z
(1 − z)2

)k

= zm

(1 − z)m+1

∑
k≥0

Ck
( −z
(1 − z)2

)k
(Ck = Catalan)

= zm

(1 − z)m+1

1 −
√

1 + 4z
(1−z)2

−2z
(1−z)2

= −zm−1

2(1 − z)m−1

(
1 − 1 + z

1 − z
)

= zm

(1 − z)m = z zm−1

(1 − z)m .

But this generating function is again in our list, and we obtain the
stupendously simple result

sn =
(
n− 1
m− 1

)
for m ≥ 1, sn = [n = 0] for m = 0 .

Example. One of the nicest examples in which this approach works
concerns the Delannoy numbers Dm,n. Recall that we noted that

Dm,n = ∑
k≥0

(
m
k

)(
n+k
m

)
in Exercise 1.24 and found the generating

function
∑
m,n Dm,nymzn = 1

1−y−z−yz in Exercise 3.27. Now we
want to compute the generating function D(z) = ∑

n≥0Dn,nzn of
the central Delannoy numbers Dn,n.

We have
(
n
k

)(
n+k
k

)
=
(

2k
k

)(
n+k
2k

)
. Thus by our familiar argument,

D(z) =
∑
n≥0

∑
k≥0

(
2k
k

)(
n+ k

2k

)
zn

=
∑
k≥0

(
2k
k

)
z−k

∑
n≥0

(
n+ k

2k

)
zn+k

=
∑
k≥0

(
2k
k

)
z−k

z2k

(1 − z)2k+1 = 1
1 − z

∑
k≥0

(
2k
k

)(
z

(1 − z)2
)k

= 1
1 − z

1√
1 − 4z

(1−z)2
= 1√

1 − 6z + z2
.

Once we know the generating function we can try to extract a recur-
rence out of it.

From D(z) = (1 − 6z + z2)−1/2 we obtain
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D′(z)
D(z)

= −1
2
· −6 + 2z

1 − 6z + z2
= 3 − z

1 − 6z + z2
;

thus
D′(z)(1 − 6z + z2) = D(z)(3 − z) .

Comparing coefficients for zn−1, this translates into

nDn,n−6(n−1)Dn−1,n−1+(n−2)Dn−2,n−2 = 3Dn−1,n−1−Dn−2,n−2 ,

and we obtain the unexpected recurrence

nDn,n = (6n− 3)Dn−1,n−1 − (n− 1)Dn−2,n−2 (n ≥ 1) . (2)

Power Sums.
As a final example of summation techniques let us study the classi-
cal problem of evaluating the m-th power sums Pm(n) =

∑n−1
k=0 km.

The first values are

P0(n) = n,

P1(n) =
n−1∑
k=0

k =
(
n
2

)
= n2

2
− n

2
,

P2(n) =
n−1∑
k=0

k2 = (n− 1)(n− 1
2)n

3
= n3

3
− n2

2
+ n

6
,

P3(n) =
n−1∑
k=0

k3 =
(
n
2

)2

= n4

4
− n3

2
+ n2

4
.

It appears that Pm(n) is always a polynomial in n of degree m + 1
and leading coefficient 1

m+1 . To determine Pm(n) we use exponen-
tial generating functions. Let

P̂ (z,n) =
∑
m≥0

Pm(n)
zm

m!
.

Substituting for Pm(n) we get

P̂ (z,n) =
∑
m≥0

⎛⎝n−1∑
k=0

km
⎞⎠ zm
m!

=
n−1∑
k=0

⎛⎝ ∑
m≥0

(kz)m

m!

⎞⎠
(3)

=
n−1∑
k=0

ekz = enz − 1
ez − 1

.
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Now we set
z

ez − 1
=
∑
n≥0

Bn
zn

n!
=: B̂(z) . (4)

The coefficients Bn are called the Bernoulli numbers. Notice that
z

ez−1 is well defined, since ez − 1 has constant coefficient 0, whence
ez−1
z is invertible. The equality B̂(z)(ez−1) = z implies by convolu-

tion
n−1∑
k=0

(
n
k

)
Bk = [n = 1] , (5)

and the Bn can be successively computed. We obtain for n = 1,
B0 = 1, and for n = 2, B0+2B1 = 0; thus B1 = −1

2 . The first Bernoulli
numbers are given in the table:

n 0 1 2 3 4 5 6 7 8

Bn 1 −1
2

1
6 0 − 1

30 0 1
42 0 − 1

30

It appears that B2n+1 = 0 for all n ≥ 1. Indeed, if we add z
2 to both

sides of (4), the linear term in B̂(z) vanishes, and we obtain for the
left-hand side

z
ez − 1

+ z
2
= z

2
ez + 1
ez − 1

.

This is an even function, F(z) = F(−z), and so B2n+1 = 0 for n ≥ 1.

The rest is easy. We consider B̂(z)(enz − 1) and look at the coeffi-

cient [zm+1]
(m+1)! . On the one hand, by (4) and (3) we have

B̂(z)(enz − 1) = ze
nz − 1
ez − 1

= zP̂(z,n) ;

hence this coefficient is (m+1)Pm(n). On the other hand, binomial
convolution of B̂(z) and (enz − 1) gives

∑m
k=0

(
m+1
k

)
Bknm+1−k, and

thus the final result

n−1∑
k=0

km = 1
m+ 1

m∑
k=0

(
m+ 1
k

)
Bknm+1−k (m ≥ 0) . (6)

For m = 4 we get from the list of Bernoulli numbers

n−1∑
k=0

k4 = 1
5

(
n5 − 5

2
n4 + 5

3
n3 − 1

6
n
)
.
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The identity
∑
m≥0 Pm(n)

zm
m! = enz−1

ez−1 reveals some nice properties
of the polynomial Pm(n). First it is clear that Pm(1) = 0 for m ≥ 1,
and Pm(0) = 0. Now consider Pm(1−n). By multiplying numerator
and denominator by e−z we obtain

e(1−n)z − 1
ez − 1

= e−nz − e−z
1 − e−z = −e

−nz − 1
e−z − 1

+ 1 − e−z
1 − e−z

and thus

Pm(1 −n) = (−1)m+1Pm(n) for m ≥ 1 .

In particular, Pm(1
2) = 0 for m ≥ 2 even, and since Pm(2) = 1 for

m ≥ 1, we get Pm(−1) = (−1)m+1 .

Exercises

3.28 Express
∑n−1
k=1 HnHn−k in terms of the harmonic numbers.

3.29 Re-prove
∑n
k=0 Fk = Fn+2−1 (Fn Fibonacci number) using generating

functions.

3.30 Use generating functions to evaluate:

a.
∑n
k=0(−1)k

(
m
k

)(
m
n−k

)
, b.

∑
k≥0 2k

(
n
2k

)
, c.

∑n
k=0 k

(
n
k

)2
.

� 3.31 Prove the identity
∑n
k=0

(
n+k
k

)
2−k = 2n and deduce

∑
k>n

(
n+k
k

)
2−k =

2n .

3.32 Find
∑(n

k

)
2k−n as a sum on k, and also as a sum on n.

3.33 Show that
∑
k≥0 Ck

(
n−2k
	−k

)
=
(
n+1
	

)
, n,	 ∈ N0, and give a combinato-

rial interpretation (Ck = Catalan number).

3.34 What are the coefficients of z
ez+1? Hint: Use e2z−1 = (ez−1)(ez+1).

� 3.35 Show that
∑n
k=0

(
n
k

)
(kFk−1 − Fk)Dn−k = (−1)nFn, where Fn and Dn

are the Fibonacci and derangement numbers, respectively.

3.36 Let sn,k be the Stirling numbers of the first kind. Use snake oil to re-

prove the identities sn+1,k+1 = ∑
i

(
i
k

)
sn,i, and

∑
k sn+1,k+1

(
k
m

)
(−1)k−m =

sn,m.

* * *
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3.37 Use the method of free parameters to show that the Chebyshev poly-

nomials cn(x) = ∑
k(−1)k

(
n−k
k

)
xn−2k satisfy the recurrence cn(x) =

xcn−1(x) − cn−2(x). Hint: Compute the generating function. What is
cn(2)?

3.38 Prove the identity below by the method of free parameters, and give
a combinatorial argument that the sum equals the number of k-subsets of
{1, . . . , n} that contain no three consecutive integers, where k = n−m+1:

∑
i≥0

(
i

k− i

)(
m
i

)
=
∑
j≥0

(
�j/2	
k− j

)(
m− k+ �3j/2	

j

)
.

3.39 . Find
∑
k

(
n

m+k
)(
m+k

2k

)
4k .

� 3.40 We know two expressions for the Delannoy numbers

Dm,n =
∑
k

(
m
k

)(
n+ k
m

)
=
∑
k

(
m
k

)(
n
k

)
2k

(see Exercises 1.24, 3.27). Generalize to the following identity, using
snake oil: ∑

k

(
m
k

)(
n+ k
m

)
xm−k =

∑
k

(
m
k

)(
n
k

)
(1 + x)k .

� 3.41 Any generating function F(z) = ∑
n≥0 anzn with a0 = 1, a1 ≠ 0,

defines a polynomial sequence (pn(x)) by F(z)x = ∑n≥0 pn(x)zn, where
pn(1) = an and pn(0) = [n = 0]. Show that pn(x) has degree n and
prove the convolution formulas pn(x + y) = ∑n

k=0 pk(x)pn−k(y) and
(x + y)∑n

k=0 kpk(x)pn−k(y) = nxpn(x + y). Hint: [zn]ex log F(z) is for
n > 0 a polynomial pn(x) in x of degree nwith pn(0) = 0. For the second
identity use the derivative.

3.42 Apply the preceding exercise to derive the so-called Abel identities:

a.
∑
k

(
tk+r
k

)(
tn−tk+s
n−k

)
r

tk+r =
(
tn+r+s

n

)
,

b.
∑
k

(
n
k

)
(tk+ r)k(tn− tk+ s)n−k r

tk+r = (tn+ r + s)n.

Look at some familiar examples for special values of r , s, t.

� 3.43 Prove the following identity relating Stirling and Bernoulli numbers:

∑
j≥0

Sm,jsj+1,k
(−1)j+1−k

j + 1
= 1
m+ 1

(
m+ 1
k

)
Bm+1−k .

What do you get for k = 1?

Hint: Express Pm(n) =
∑n−1
k=0 km in terms of Sm,j , and use

∑n−1
k=0 k

j = nj+1

j+1 .
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3.3 The Exponential Formula

In the previous section we have studied enumeration problems that
can be solved by looking at the product of formal series. Now we
turn to composition, in particular composition of exponential gen-
erating functions.

Let f : N0 → C be a counting function, and

F̂(z) =
∑
n≥0

f(n)
zn

n!

its exponential generating function. We start with an alternative de-
scription of the binomial convolution.

Lemma 3.2. Let f ,g : N0 → C and h : N0 → C be defined by

h(|X|) =
∑
(S,T)

f (|S|)g(|T |),

where (S, T) runs through all ordered pairs with S∪T = X, S∩T = �.
Then

Ĥ(z) = F̂(z)Ĝ(z).

Proof. Let |X| = n. There are
(
n
k

)
such pairs (S, T) with |S| = k,

|T | = n− k; hence

h(n) =
n∑
k=0

(
n
k

)
f(k)g(n− k) ,

and this is precisely binomial convolution. �

We can immediately extend this to k factors. Let f1, f2, . . . , fk : N0 →
C, and

h(|X|) =
∑

(T1,...,Tk)
f1(|T1|) · · · fk(|Tk|) , (1)

where (T1, . . . , Tk) runs through all k-tuples with
⋃k
i=1 Ti = X, Ti ∩

Tj = � (i ≠ j). Then we have

Ĥ(z) =
k∏
i=1

F̂i(z) (2)

for the corresponding generating functions.
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Theorem 3.3 (Composition Formula). Let f ,g : N0 → C with f(0) =
0, and let h : N0 → C be defined through

h(|X|) =
∑
k≥1

∑
{B1,...,Bk}∈

∏
(X)
f (|B1|) · · · f(|Bk|)g(k) (|X| > 0),

(3)
h(0) = g(0) ,

where the inner sum extends over all k-partitions of X. Then

Ĥ(z) = Ĝ(F̂(z)) .
Proof. Let |X| = n, and denote by hk(n) the inner sum of the right-
hand side of (3) for fixed k. Since the blocks Bi are nonempty (and
therefore distinct), they can be permuted in k! ways. Hence we get
by (2) (note that f(0) = 0)

Ĥk(z) =
∑
k≥0

hk(n)
zn

n!
= g(k)

k!
F̂(z)k .

Summing over k we obtain

Ĥ(z) = g(0)+
∑
k≥1

g(k)
k!

F̂(z)k = Ĝ(F̂(z)). �

In particular, when g(k) = 1 for all k, i.e., Ĝ(z) = ez, we obtain the
following corollary.

Corollary 3.4 (Exponential Formula). Let f : N0 → C with f(0) = 0
and h : N0 → C be defined by

h(|X|) =
∑
k≥1

∑
{B1,...,Bk}∈

∏
(X)
f (|B1|) · · · f(|Bk|) (|X| > 0),

h(0) = 1 .

Then Ĥ(z) = eF̂(z).

The combinatorial significance rests on the following idea. Many
structures, for example graphs, are made up as disjoint union of
“connected” substructures. The function g determines the struc-
ture on the set of components, and f the inner structure within the
individual components. The following examples should make this
clear.
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Example. In how many ways h(n) can we decompose an n-set into
nonempty blocks and choose a linear order on each block? Here
g(n) = 1 for all n, f(n) = n!; hence Ĝ(z) = ez, F̂(z) =∑n≥1n!z

n

n! =
1

1−z − 1 = z
1−z , and we obtain the result

Ĥ(z) = e z
1−z .

But this should look familiar to you. According to Exercise 2.46 the
coefficient of z

n

n! is
∑n
k=0 Ln,k, where Ln,k are the Lah numbers. More

precisely,
∑
n≥0 Ln,k

zn
n! = 1

k!(
z

1−z )
k, from which one easily obtains by

the methods of the previous section the formula Ln,k = n!
k!

(
n−1
k−1

)
.

Example. We want to compute the Stirling series Ŝ(z, k) =∑n≥0

Sn,k z
n

n! . Since we are interested only in k-partitions, we set g(k) = 1,
g(i) = 0 for i ≠ k, and f(n) = 1 for n ≥ 1. Hence Ĝ(z) = zk

k! ,
F̂(z) = ez − 1, and so

Ŝ(z, k) = (ez − 1)k

k!
. (4)

Summation over k yields the exponential generating function for
the Bell numbers Bell(n) =∑nk=0 Sn,k ,

∑
n≥0

Bell(n)
zn

n!
= eez−1 . (5)

More generally, we get

∑
n≥0

⎛⎝∑
k≥0

Sn,kxk
⎞⎠ zn
n!

=
∑
k≥0

⎛⎝∑
n≥0

Sn,k
zn

n!

⎞⎠xk
(6)

=
∑
k≥0

(
x(ez − 1)

)k
k!

= ex(ez−1) .

There is also a permutation version for the composition formula.

Theorem 3.5. Let f ,g : N0 → C with f(0) = 0 and h : N0 → C be
defined by

h(|X|) =
∑

σ∈S(X)
f (|C1|) · · · f(|Ck|)g(k) (|X| > 0), (7)

h(0) = g(0) ,
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where C1, . . . , Ck are the cycles of σ . Then

Ĥ(z) = Ĝ
⎛⎝∑
n≥1

f(n)
zn

n

⎞⎠ .
Proof. There are (j − 1)! ways to make a j-set into a cyclic permu-
tation. Hence we may write

h(|X|) =
∑

{B1,...,Bk}∈
∏
(X)
(|B1| − 1)!f(|B1|) · · · (|Bk| − 1)!f(|Bk|)g(k) ,

and obtain from the composition formula

Ĥ(z) = Ĝ
⎛⎝∑
n≥1

(n− 1)!f(n)
zn

n!

⎞⎠ = Ĝ
⎛⎝∑
n≥1

f(n)
zn

n

⎞⎠ . �

Corollary 3.6. Let f : N0 → C and h : N0 → C be defined through

h(|X|) =
∑

σ∈S(X)
f (|C1|) · · · f(|Ck|) (|X| > 0),

h(0) = 1 ,

where C1, . . . , Ck are the cycles of σ . Then

Ĥ(z) = e
∑
n≥1

f(n)z
n
n .

Example. If we set g(n) = 1 for all n, and f(1) = f(2) = 1, f(n) =
0 for n ≥ 3, then we are counting permutations with no cycles of
length greater than or equal to 3, in other words involutions. Our
theorem immediately yields the familiar result∑

n≥0

in
zn

n!
= ez+ z2

2 .

Example. As a particularly interesting application we can now ver-
ify that log(1 + z) = ∑

n≥1(−1)n−1 zn
n and ez − 1 are compositional

inverses. Set g(k) = 1 for all k ≥ 1, that is, Ĝ(z) = ez − 1, and
f(n) = (−1)n−1. Then Ĥ(z) = elog(1+z) − 1, where by (7),

h(n) =
n∑
k=0

(−1)n−ksn,k (n ≥ 1), h(0) = 0 .
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Now we know that xn = ∑n
k=0(−1)n−ksn,kxk, and for x = 1, this

equals 1 for n = 1, and 0 otherwise. It follows that Ĥ(z) = z as
claimed.

Number of Trees.
One of the most beautiful applications of the exponential formula
concerns Cayley’s formula for the number of labeled trees with n
vertices. Let Tn be this number, and take {1, . . . , n} as vertex-set.

Example. T3 = 3: 1

2 3

2

1 3

3

1 2

Instead of ordinary trees we consider rooted trees, which are better
suited for applying the exponential formula. In a rooted tree we
designate one vertex as the root. Each tree gives rise to n rooted
trees; thus tn = nTn, where tn is the number of rooted trees. For
example, the first tree in our example produces the three rooted
trees 1

2 3

1

2 3

1

2 3

More generally, we speak of rooted forests when every component
tree is rooted. Let fn be the number of rooted forests on n vertices,
with f0 = 1 by definition. The following picture shows Tn+1 = fn,
and hence

tn+1 = (n+ 1)fn . (8)

n+ 1

a1 a2 . . . ak a1 a2 . . . ak

tree on n+ 1 vertices rooted forest on n vertices

←→

Set y = T̂ (z) =∑n≥1 tn
zn
n! , F̂(z) =

∑
n≥0 fn

zn
n! . The exponential for-

mula tells us that F̂(z) = ey . On the other hand, by (8),

zF̂(z) =
∑
n≥0

fn
zn+1

n!
=
∑
n≥0

tn+1
zn+1

(n+ 1)!
= T̂ (z) = y .



3.3 The Exponential Formula 117

In other words, zey = y , z = ye−y , and so T̂ (ye−y) = y . Substi-
tuting this into T̂ (z) gives

∑
k≥1

tk
yk

k!
e−ky =

∑
k≥1

tk
yk

k!

∑
	≥0

(−ky)	
	 !

=
∑
n≥0

⎛⎝∑
k≥1

(
n
k

)
tk(−k)n−k

⎞⎠ yn
n!

= y .

Hence (tn) is the unique sequence with

n∑
k=1

(
n
k

)
tk(−k)n−k =

{
1 n = 1,
0 n ≠ 1. (9)

Let us compute the first values:

n = 1 : t1 = 1 ,
n = 2 : −2t1 + t2 = 0 �⇒ t2 = 2 ,
n = 3 : 3t1 − 6t2 + t3 = 0 �⇒ t3 = 9 ,
n = 4 : −4t1 + 24t2 − 12t3 + t4 = 0 �⇒ t4 = 64 .

This should be enough to conjecture tk = kk−1; that is, we want to
show that

n∑
k=1

(−1)n−k
(
n
k

)
kn−1 = 0 for n ≥ 2 .

This does not look very promising, but it is simple! Take the poly-
nomial f(x) = xn−1. Then the Newton formula (9) in Section 2.4
does the job. With Tn = tn

n we have thus proved Cayley’s formula.

Theorem 3.7. There are precisely nn−2 trees on n vertices.

Such a beautiful and simple result calls for equally simple proofs,
and indeed there are plenty of them. You may look up four more
proofs in Aigner–Ziegler.

Lagrange Inversion Formula.
Not only is this approach to counting trees nice, it also leads to a
combinatorial proof of the famous inversion formula of Lagrange.

Theorem 3.8. Suppose F(z) = zG(F(z)), G(0) ≠ 0. Then

[zn]F(z) = 1
n
[zn−1]G(z)n (n ≥ 1) . (10)
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Proof. We write F(z) and G(z) in exponential form, F̂(z) = ∑n≥1

f(n)z
n

n! , Ĝ(z) =
∑
n≥0 g(n)

zn
n! . For a rooted tree T on {1, . . . , n} let

gT := g(0)r0g(1)r1g(2)r2 · · · ,
where ri is the number of vertices in T with out-degree i (edges
pointing away from the root). The sequence (r0, r1, r2, . . .) is called
the type of T . Since T has n− 1 edges, we have∑

i≥0

ri = n,
∑
i≥0

iri = n− 1 . (11)

Example. 2
3

1
6

5

4

T

gT = g(0)3g(1)g(2)2,

type = (3,1,2,0, . . .) .

Let f(n) = ∑
T gT over all rooted trees on {1, . . . , n}. For example,

f(1) = g(0), f(2) = 2g(0)g(1), f(3) = 6g(0)g(1)2 + 3g(0)2g(2).

Claim 1. F̂(z) =∑n≥1 f(n)
zn
n! is the solution of the functional equa-

tion F̂(z) = zĜ(F̂(z)).
The claim is easily proved using the composition formula. Consider
a rooted tree T on {1, . . . , n,n+ 1} whose root r has out-degree k:

r

T1 T2 . . . Tk

T

The vertices of the Ti’s form a partition of {1, . . . , n+1}�r . Let h(n)
be defined as in (3) for the blocks T1, . . . , Tk; then Ĥ(z) = Ĝ(F̂(z)).
Furthermore, we see that f(n + 1) = (n + 1)h(n), since the term
g(k) in (3) takes care of the out-degree of the root, and there are
n+ 1 ways to choose the root. It follows that

F̂(z) =
∑
n≥0

f(n+ 1)
zn+1

(n+ 1)!
= z

∑
n≥0

h(n)
zn

n!
= zĤ(z) = zĜ(F̂(z)) .

Since [zn]F(z) = f(n)
n! , it remains to show that

f(n) = (n− 1)![zn−1]G(z)n . (12)
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Claim 2. There are precisely
(

n−1
d1d2...dn

)
rooted trees on {1, . . . , n} in

which vertex i has out-degree di,
∑n
i=1 di = n− 1 .

Since
(
n−1
d1...dn

)
is the number of sequences of length n− 1 in which

i appears exactly di times, the claim will follow if we can find a
bijection between the trees and these sequences. This bijection is
provided by the famous Prüfer code, associating to every tree T a
word a1a2 . . . an−1 .

Example. Consider the following tree

3
2

5
7

1
8
9

4
6

The word is constructed as follows:

1. Take the leaf with the smallest number; a1 is then the number of
the unique neighbor.

2. Delete the leaf and the incident edge, and go to 1. Iterate n − 1
times.

In our example, we obtain the word 89232393. You are asked in the
exercises to prove that this is indeed a bijection.

The proof of (12) is now readily established. By Claim 2, there are
precisely (

n
r0 r1 . . .

)
(n− 1)!

0!r01!r1 · · ·
rooted trees on {1, . . . , n} with type (r0, r1, . . .). Hence

f(n) =
∑

(r0,r1,...)

(
n

r0 r1 . . . rn

)
(n− 1)!

0!r01!r1 · · ·g(0)
r0g(1)r1 · · · , (13)

where the sum ranges over all sequences with
∑
ri = n,

∑
iri =

n− 1. On the other hand,

G(z)n =
(
g(0)+ g(1) z

1!
+ g(2)z

2

2!
+ · · ·

)n
,

and thus

[zn−1]G(z)n =
∑

(r0,r1,...)

(
n

r0 r1 . . . rn

)
g(0)r0g(1)r1 · · ·

0!r01!r1 · · · . (14)

Comparison of (13) and (14) finishes the proof. �
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Example. We can now give a quick proof of Cayley’s result tn =
nn−1 for the number of rooted trees. We have seen that T̂ (z) =
zeT̂(z), and hence Ĝ(z) = ez. Formula (10) yields

tn
n!

= 1
n
[zn−1]enz = 1

n
nn−1

(n− 1)!
,

and thus tn = nn−1 .

The Lagrange inversion formula gives in principle the coefficients
of the compositional inverse.

Corollary 3.9 (Lagrange). LetH(z) = zG(z),G(0) ≠ 0, andH〈−1〉(z)
the compositional inverse, H〈−1〉(0) = 0. Then

[zn]H〈−1〉(z) = 1
n
[zn−1]G−n(z) (n ≥ 1) .

Proof. Note that F(z) = H〈−1〉(z) satisfies the equation

F(z) = zG−1(F(z)) ,
since

H
(
F(z)

) = F(z)G(F(z)) = zG−1(F(z))G(F(z)) = z .
By (10),

[zn]F(z) = 1
n
[zn−1]G−n(z),

and we are finished. �

Example. What is H〈−1〉(z) for H(z) = z(1 − z)? We have G(z) =
1 − z, G−n(z) = 1

(1−z)n , and thus

[zn]H〈−1〉(z) = 1
n
[zn−1]

1
(1 − z)n = 1

n

(
2n− 2
n− 1

)
= Cn−1 (Catalan).

The answer is therefore H〈−1〉(z) = zC(z).
Once we know the answer, we see that it also follows from the defin-
ing equation C(z) = zC2(z)+ 1 of the Catalan series. Indeed,

H
(
H〈−1〉(z)

) = zC(z)(1 − zC(z)) = zC(z)− z2C2(z)

= z2C2(z)+ z − z2C2(z) = z .
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Similarly, with H(z) = z(1 + z) we obtain H〈−1〉(z) = zC(−z).
Inversion Relations.
The Lagrange formula can also be used to establish the kind of in-
version relations studied in Section 2.4. Suppose an = ∑n

k=0 cn,kbk
for all n, and thus

∑
n≥0

anzn =
∑
n≥0

⎛⎝ n∑
k=0

cn,kbk

⎞⎠zn =
∑
k≥0

bk

⎛⎝∑
n≥0

cn,kzn
⎞⎠ .

Assume that we succeed in expressing the inner sum in the form
H(z)k; then A(z) = B(H(z)). Setting y = H(z), z = H〈−1〉(y), this
gives B(y) = A(H〈−1〉(y)

)
, and now we work backward, interchang-

ing the summation to obtain bn =∑nk=0 dn,kak .

Example. Suppose an = ∑n
k=0

[(
n+1−k
k

)
+
(
n−k
k−1

)]
bn−k . With k �

n− k this gives

∑
n≥0

anzn =
∑
n≥0

⎛⎝ n∑
k=0

[(
k+ 1
n− k

)
+
(

k
n− k− 1

)]
bk

⎞⎠zn
=
∑
k≥0

bkzk
∑
n≥0

(
k+ 1
n− k

)
zn−k

+
∑
k≥0

bkzk+1
∑
n≥0

(
k

n− k− 1

)
zn−k−1

=
∑
k≥0

bkzk(1 + z)k+1 +
∑
k≥0

bkzk+1(1 + z)k

=
∑
k≥0

bk
(
z(1 + z))k · (1 + 2z) ;

hence A(z) = (1 + 2z)B
(
z(1 + z)). With y = H(z) = z(1 + z) we

have z = H〈−1〉(y) = yC(−y) by the previous example. Now 1 +
2yC(−y) = 1 − (1 − √1 + 4y) = √1 + 4y , and we get

B(y) = A
(
yC(−y))√
1 + 4y

=
∑
k≥0

ak

(
yC(−y))k√

1 + 4y
.

Now Exercise 3.25 comes to our help and we can work backward:
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∑
k≥0

ak

(
yC(−y))k√

1 + 4y
=
∑
k≥0

akyk
∑
n≥0

(
2n− k
n− k

)
(−y)n−k

=
∑
n≥0

⎡⎣ n∑
k=0

(−1)n−k
(

2n− k
n− k

)
ak

⎤⎦yn .
With the substitution k � n − k we arrive at an inversion formula
of Chebyshev type:

an =
n∑
k=0

[(
n+ 1 − k

k

)
+
(
n− k
k− 1

)]
bn−k ⇐⇒

bn =
n∑
k=0

(−1)k
(
n+ k
k

)
an−k .

Exercises

3.44 Let hn be the number of ordered set partitions of {1, . . . , n}. Com-
pute

∑
n≥0 hn

zn
n! .

3.45 Prove the formula Bell(n) = 1
e
∑
k≥0

kn
k! .

� 3.46 Let kn be the number of ordered set-partitions of {1, . . . , n} where
in addition, every block is linearly ordered. Compute kn with the compo-
sitional formula and give a direct proof. Example: k2 = 4 with 12,21,1|2,
2|1.

3.47 Let mn be the number of n × n-matrices over {0,1} with each row
and column sum equal to 2.
a. Prove mn = n!

∑
σ 2−c(σ), c(σ) = # cycles of σ , where σ ranges over

all fixed-point-free permutations in S(n). Hint: Use the matrix to define a
set of fixed-point-free permutations on the rows.

b. Prove that
∑
n≥0mn

zn
(n!)2 = e− z

2 (1 − z)− 1
2 .

� 3.48 Use Corollary 3.9 and log(1 + z) = (ez − 1)〈−1〉 to find a formula
involving the Bernoulli numbers.

3.49 Verify the bijection given by the Prüfer code that was used in the
proof of the Lagrange inversion formula.

3.50 Set pn(x) =
∑n
k=0 Sn,kxk, Sn,k = Stirling numbers. Use exponential

generating functions to re-prove pn(x+y) =
∑n
k=0

(
n
k

)
pk(x)pn−k(y) (see

Exercise 1.33).
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3.51 Let hk(n) be the number of permutations in S(n) all of whose cycle
lengths are divisible by k. Compute hk(n).

* * *

3.52 There are n parking spaces 1,2, . . . , n available for n drivers. Each
driver has a favorite space, driver i space f(i), 1 ≤ f(i) ≤ n. The drivers
arrive one by one. When driver i arrives he tries to park his car in space
f(i). If it is taken he moves down the line to take the first free space
greater than f(i), if any. Example: n = 4, f = 3221; then driver 1 →
3,2 → 2,3 → 4,4 → 1, but for f = 2332 we have 1 → 2,2 → 3,3 → 4,2 →?
Let p(n) be the number of sequences f that allow each driver to park his
car; f is then called a parking sequence. Prove: a. f is a parking sequence
if and only if #{i : f(i) ≤ k} ≥ k. b. p(n) = (n + 1)n−1. This looks like
Cayley’s formula for the number of trees, can you find a bijection?

� 3.53 Let an be the number of permutations in S(n) in which every cycle
has odd length, and bn the number of permutations in which all cycles

have even length. Prove Â(z) =
√

1+z
1−z , B̂(z) = 1√

1−z2 . What relation follows
between an and bn?

3.54 Find a closed form for the sum
∑
k(−1)kSn,k2n−kk! .

Hint: Consider the Bernoulli numbers and Exercise 3.34.

� 3.55 Let cn,i,k be the number of graphs on n vertices, with i edges and k
components. Use the exponential formula to prove

∑
n,i,k≥0

cn,i,kαiβk
zn

n!
=
⎡⎣∑
n≥0

(1 +α)(n2) z
n

n!

⎤⎦β .
3.56 Mimic the proof of the Lagrange formula (using rooted forests)
to derive the general formula (notation the same as in the theorem):
[zn]F(z)k = k

n[z
n−k]G(z)n. Derive the Corollary [zn]H〈−1〉(z)k =

k
n[z

n−k]G−n(z), where H(z) = zG(z) .

3.57 Use the previous exercise to prove the general formula [zn]A
(
F(z)

)
= 1

n[z
n−1]A′(z)G(z)n.

� 3.58 Show that there are
(
n−1
k−1

)
nn−k rooted forests on {1, . . . , n} with k

components.

3.59 Prove [zn]C(z)k = k
2n+k

(
2n+k
n

)
, C(z) = Catalan series, using Exer-

cise 3.56 or alternatively C(z) = zC2(z)+ 1 and induction.

3.60 Prove the inversion formula
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an =
∑
k

(
n− k
k

)
bn−k ⇐⇒ bn =

∑
k
(−1)k

n− k
n+ k

(
n+ k
k

)
an−k .

� 3.61 A tree on {0,1, . . . , n} is called alternating if for every vertex i all
neighbors are either greater than i or all are smaller than i. Let hn be
their number. Prove that Ĥ(z) = ∑

hn z
n

n! satisfies the equation Ĥ(z) =
e
z
2 (Ĥ(z)+1). Deduce from this hn = 1

2n
∑n
k=0

(
n
k

)
(k+ 1)n−1.

Example: h2 = 2,

0

1 2

2

0 1
. Hint: Consider alternating forests.

3.62 Use Exercise 3.57 to find the sum of the first n terms in the expan-

sion (1− 1
2)

−n = 1+ 1
2n+ 1

4

(
n+1

2

)
+ 1

8

(
n+2

3

)
+ · · · . Example: For n = 2 we

get 1+ 2
2 = 2, for n = 3, 1+ 3

2 + 6
4 = 4, and for n = 4 we get 8. Conjecture?

You may also use a summation formula (see Exercise 3.31).

� 3.63 Show the Abel identity
∑n
k=0

(
n
k

)
(k+1)k−1(n−k+1)n−k = (n+2)n.

Hint: Use y = T̂ (z) = ∑
n≥1 tn

zn
n! , tn = number of rooted trees and y =

zey , and take the derivative.

3.4 Number-Partitions and Infinite Products

The study of number-partitions by means of generating functions
goes back to Euler, and was in fact the starting point and first high-
light for this method.

Consider the infinite product of series

(1 + z + z2 + · · · )(1 + z2 + z4 + · · · ) · · · (1 + zk + z2k + · · · ) · · ·

Expanding the product we recognize that the coefficient of zn is the
number of ways to write n = a1 · 1 + a2 · 2 + . . . + an · n . But this
is just the partition n = 1 . . .1︸ ︷︷ ︸

a1

2 . . .2︸ ︷︷ ︸
a2

. . ., that is [zn] = p(n), and we

have the identity ∑
n≥0

p(n)zn =
∏
i≥1

1
1 − zi . (1)

More precisely, we see that the first factor 1
1−z = 1 + z + z2 + · · ·

accounts for the 1’s in the partition, 1
1−z2 for the 2’s, and so on. Thus
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if we restrict ourselves to partitions with largest part less than or
equal to k, or equivalently with at most k summands, then∑

n≥0

p(n;≤ k)zn = 1
(1 − z)(1 − z2) · · · (1 − zk) (2)

results. With p(n;k) = p(n;≤ k)− p(n;≤ k− 1) this implies

∑
n≥0

p(n;k)zn = zk

(1 − z) · · · (1 − zk) . (3)

Comparing (2) and (3) we obtain our old result

p(n;k) = p(n− k;≤ k) .

Partitions with unequal parts are clearly counted by∑
n≥0

pd(n)zn = (1 + z)(1 + z2)(1 + z3) · · · . (4)

Now recall equation (7) in Section 2.3:∏
i≥1

(1 + zi) =
∏
i≥1

1
(1 − z2i−1)

,

which gives the unexpected result

pd(n) = po(n) , (5)

where po(n) is the number of partitions of n into odd parts. Such
a simple identity calls for a bijection proof; we present two of them
in the exercises, and two more in Chapter 5.

Example. For n = 7, pd(7) = po(7) = 5 with the partitions
7,61,52,43,421 and 7,511,331,31111,1111111, respectively.

Partition Functions.
If we want to enumerate partitions according to the number of parts
and highest summand, we use generating functions in two variables
q and z. Expanding the left-hand side, we obtain

(1+qz+q2z2+· · · )(1+qz2+q2z4+· · · ) · · · =
∑
k≥0

∑
n≥0

p(n;k)znqk ;

thus
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∑
k≥0

∑
n≥0

p(n;k)znqk = 1∏
i≥1
(1 − qzi) . (6)

More precisely, setting pm(z,k) =
∑
n≥0

p(n;k;≤m)zn we have

Pm(z,q) =
∑
k≥0

pm(z,k)qk = 1
m∏
i=1
(1 − qzi)

. (7)

From (7) we immediately infer

(1 − qz)Pm(z,q) = (1 − qzm+1)Pm(z, qz) ,

which translates for the coefficient series pm(z,k) into the identity

pm(z,k)− zpm(z,k− 1) = zkpm(z, k)− zm+kpm(z, k− 1) ,

or

pm(z,k) = z1 − zm+k−1

1 − zk pm(z, k− 1) .

Iteration down to k = 0 gives

∑
n≥0

p(n;k;≤m)zn = zk (1 − zm) · · · (1 − zm+k−1)
(1 − z)(1 − z2) · · · (1 − zk) . (8)

Furthermore, with p(n;k;m) = p(n;k;≤m)− p(n;k;≤m− 1),

∑
n≥0

p(n;k;m)zn = zm+k−1 (1 − zm)(1 − zm+1) · · · (1 − zm+k−2)
(1 − z)(1 − z2) · · · (1 − zk−1)

.

(9)
The two products in (8) and (9) should look familar to you; they
are Gaussian coefficients multiplied by an appropriate power of z.
In fact, the formulas follow directly from Proposition 1.1 in Section
1.6, where we proved via lattice paths that

∑
n≥0

p(n;≤ k;≤m)zn =
[
m+ k
k

]
z
= (1 − zm+1) · · · (1 − zm+k)

(1 − z) · · · (1 − zk) .

The identities (8) and (9) are then obtained from the recurrence of
the Gaussian coefficients.

Now let us enumerate the partitions with unequal summands by the
number of parts. This is analogously given by
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n,k≥0

pd(n;k)znqk = (1 + qz)(1 + qz2)(1 + qz3) · · · .

To express the right-hand side we could proceed as before, but here
is a quicker way. The q-binomial theorem in Section 1.6 states with
the substitutions x � q, q � z,

(1 + qz)(1 + qz2) · · · (1 + qzn) =
n∑
i=0

z(
i+1

2 )
[
n
i

]
z
qi .

Thus letting n→∞, we immediately obtain

∑
n,k≥0

pd(n;k)znqk =
∑
i≥0

z(
i+1

2 )

(1 − z) · · · (1 − zi)q
i , (10)

since for fixed i the Gaussian coefficient
[
n
i

]
z
= ∑

j≥0 p(j;≤ i;≤
n− i)zj goes to

∑
j≥0 p(j;≤ i)zj = 1

(1−z)···(1−zi) according to (2).

Note that the limiting process is formally justified as explained in
Section 2.3. Several other examples of “proof by going to infinity”
are contained in the exercises.

Example. Let us enumerate the number psc(n) of self-conjugate
partitions of n. Exercise 1.53 says that their number is the same as
that of partitions with all parts odd and distinct. Hence∑

n≥0

psc(n)zn =
∏
i≥1

(1 + z2i−1) . (11)

But there is another way to look at self-conjugate partitions λ = λ∗ .
Take the Ferrers diagram and suppose that the largest square in the
upper left-hand corner is of the form k×k; this is called the Durfee
square of λ. In the example we have k = 3:

• • • • • • •
• • • • •
• • • •
• • •
• •
•
•

λ = 7543211
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Since λ = λ∗, the partitions (of n−k2

2 ) on the right and below the
square are the same, and the number of parts is at most k. In our
example, those “small” partitions are 421. For fixed k, the contri-

bution to psc(n) is therefore [z
n−k2

2 ] 1
(1−z)···(1−zk) . With the substi-

tution z � z2 this is [zn−k2] 1
(1−z2)···(1−z2k) = [zn]

zk2

(1−z2)···(1−z2k) .
Summing over k, we obtain

∑
n≥0

psc(n)zn =
∑
k≥0

zk2

(1 − z2) · · · (1 − z2k)
,

which proves the astounding identity

∏
i≥1

(1 + z2i−1) =
∑
k≥0

zk2

k∏
i=1
(1 − z2i)

. (12)

Euler’s Pentagonal Theorem.
Let us return to our first identity∑

n≥0

p(n)zn =
∏
i≥1

1
1 − zi ,

and let us study the inverse
∏
i≥1(1 − zi) of the partition function.

The first terms in the expansion are∏
i≥1

(1 − zi) = 1 − z − z2 + z5 + z7 − z12 − z15 + z22 + z26 ∓ · · · .

It appears that all coefficients are 0,1, and −1, and that the nonzero
coefficients after the first come in pairs, with exponents 1,2; 5,7;
12,15; 22,26; . . . . A little experimentation reveals the pattern: The

exponents seem to come in pairs
(

3j2−j
2 , 3j2+j

2

)
or shorter

(
3j2+j

2 :

j ∈ Z) with sign (−1)j , and this is what we want to show.

Set
∏
i≥1(1 − zi) =∑n≥0 a(n)zn. Then∑

n≥0

a(n)zn ·
∑
n≥0

p(n)zn = 1 ,

that is,
n∑
k=0

a(k)p(n− k) = 0 for n ≥ 1 . (13)



3.4 Number-Partitions and Infinite Products 129

Our conjecture thus reads

a(k) =

⎧⎪⎪⎨⎪⎪⎩
1 k = 3j2+j

2 , j ∈ Z even,

−1 k = 3j2+j
2 , j ∈ Z odd,

0 otherwise.

If we set b(j) = 3j2+j
2 (j ∈ Z), and substitute b(j) into (13), the con-

jecture takes on the form∑
j even

p
(
n− b(j)) = ∑

j odd

p
(
n− b(j)) (j ∈ Z) ,

and this, of course, calls for a bijection⋃
j even

Par
(
n− b(j)) �→ ⋃

j odd

Par
(
n− b(j)) .

The following marvelous bijection φ was found by Bressoud and
Zeilberger (in fact, φ is an involution). Let λ = λ1λ2 . . . λt ∈ Par

(
n−

b(j)
)
. Then

φλ =

⎧⎪⎨⎪⎩
t + 3j − 1, (λ1 − 1), . . . , (λt − 1) if t + 3j ≥ λ1,
(λ2 + 1), . . . , (λt + 1), 1, . . . ,1︸ ︷︷ ︸

λ1−3j−t−1

if t + 3j < λ1 , (14)

where we omit possible 0’s at the end.

Once you know φ, the verification is straightforward (see Exer-
cise 3.70).

Example. Take n = 12, j = −2; thus b(−2) = 5, and consider λ =
3211 ∈ Par(7) = Par

(
12 − b(−2)

)
. The second case applies, and

φλ = 3221111 since λ1 − 3j − t − 1 = 3 + 6 − 4 − 1 = 4. Thus
φλ ∈ Par(11) = Par(12−1) = Par

(
12−b(−1)

)
, b(−1) = 1. Applying

φ to μ = 3221111 ∈ Par
(
12 − b(−1)

)
, the first case holds, and we

return to the original partition φμ = 3211 .

In summary, we have proved Euler’s famous “pentagonal” theorem.

Theorem 3.10. We have∏
i≥1

(1 − zi) = 1 +
∑
j≥1

(−1)j
(
z

3j2−j
2 + z 3j2+j

2

)
. (15)
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Here is the reason for the name “pentagonal.” The number 3j2−j
2

counts the number of dots in nested pentagons up to side length j
(check it!).
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j = 4

Not only is Euler’s theorem beautiful, it also yields an efficient
method for calculating the partition numbers p(n) for small n.
Looking at (13), we obtain

p(n) = p(n− 1)+ p(n− 2)− p(n− 5)− p(n− 7)
+ p(n− 12)+ p(n− 15)∓ · · · .

As an example,

p(7) = p(6)+ p(5)− p(2)− p(0) = 11 + 7 − 2 − 1 = 15,
p(8) = p(7)+ p(6)− p(3)− p(1) = 15 + 11 − 3 − 1 = 22 .

Jacobi’s Triple Product Theorem.
A far-reaching generalization of Euler’s theorem is provided by the
equally famous triple product theorem of Jacobi.

Theorem 3.11. We have the identity

∏
k≥1

(1 + zqk)(1 + z−1qk−1)(1 − qk) =
∞∑

n=−∞
q
n(n+1)

2 zn . (16)

Proof. Set

F(z) =
∏
k≥1

(1 + zqk)(1 + z−1qk−1) =
∞∑

n=−∞
an(q)zn .

Then the theorem claims that

F(z) = 1∏
k≥1
(1 − qk)

∞∑
n=−∞

q
n(n+1)

2 zn , (17)



3.4 Number-Partitions and Infinite Products 131

where the factor in front is just the partition function in the variable
q. The series F(z) is a so-called Laurent series, where the index-
set ranges over Z instead of the familiar set N0. We could argue
analytically that F(z) converges for |z| < 1. But in the spirit of the
book we proceed in purely formal terms. Write

F(z) = (1 + zq)(1 + zq2) · · · (1 + z−1)(1 + z−1q) · · · .

What is the coefficient of znqm, n ∈ Z, m ∈ N0? If n ≥ 0, then
we have to take n+ i factors from the first product and i from the
second, so that the q-exponents add to m, for all i ≥ 0. In other
words,

[znqm]F(z) = # pairs λ1λ2 . . . λn+i, μ1μ2 . . . μi ,

where

λ1 > λ2 > · · · > λn+i ≥ 1, μ1 > μ2 > · · · > μi ≥ 0,∑
λj +

∑
μj =m.

So we have to consider all pairs of these partitions λ,μ whose parts
add up to m, and of these there are only finitely many. Similarly,
when n < 0, then we have to take i factors out of the first product
and −n + i out of the second. Again this reduces to pairs of parti-
tions, and so [znqm]F(z) is well-defined. The coefficient an(q) in
F(z) is thus a bona fide generating function for every n ∈ Z.

The definition of F(z) implies the functional equation

F(qz) =
∏
k≥1

(1 + zqk+1)(1 + z−1qk−2)

= F(z)1 + z−1q−1

1 + zq = z−1q−1F(z) ;

thus ∞∑
n=−∞

an(q)qnzn =
∞∑

n=−∞
an(q)q−1zn−1 .

Comparing coefficients for zn−1 we get an(q) = qnan−1(q). For

n ≥ 0, iteration gives an(q) = q
n(n+1)

2 a0(q), and for negative indices

−n, a−n(q) = qn−1a−(n−1)(q) implies a−n(q) = q
n(n−1)

2 a0(q), and

hence an(q) = q
n(n+1)

2 a0(q) for all n ∈ Z .
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In summary, F(z) = a0(q)
∑∞
n=−∞ q

n(n+1)
2 zn, and it remains to com-

pute the series a0(q). Set a0(q) =
∑
m≥0 bmqm. By the same argu-

ment as above,

bm = #λ1, . . . , λi, μ1, . . . , μi with
(18)

λ1 > · · · > λi ≥ 1, μ1 > · · · > μi ≥ 0,
∑
λj +

∑
μj =m.

Claim. bm = p(m) .

You were already asked to show this in Exercise 1.63. The bijection
φ : Par(m)→ (λ, μ) in the following figure does it.

Example. m = 26 = 7 + 6 + 4 + 4 + 3 + 1 + 1

• • • • • • •
• • • • • •
• • • •
• • • •
• • •
•
•

λ = 7521

μ = 6320

→

↓

Hence a0(q) =
∏
k≥1

1
1−qk , and the theorem follows. �

Specialization of z and q in Jacobi’s theorem now leads to a plethora
of identities relating infinite products and sums. For example, if we
set q = q3, z = −q−1 in the triple product theorem, then

∏
k≥1

(1 − q3k−1)(1 − q3k−2)(1 − q3k) =
∞∑

n=−∞
(−1)nq

3n2+n
2 ,

and this is precisely Euler’s Theorem 3.10.

Exercises

3.64 Let cn,k be the number of ordered k-partitions of n, n ≥ k ≥ 1.
Show that

∑
n≥1 cn,kzn = (z + z2 + z3 + · · · )k and deduce our old result

cn,k =
(
n−1
k−1

)
.
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� 3.65 Prove po(n) = pd(n) by the following bijection φ : Paro(n) →
Pard(n), due to Glaisher.
Let λ ∈ Paro(n), n = λ1 + · · · + λ1︸ ︷︷ ︸

n1

+λ2 + · · · + λ2︸ ︷︷ ︸
n2

+· · · .

Write n1 = 2m1+2m2+· · ·+2mk in binary form, and similarly the other ni.
Then φλ = 2m1λ1 +· · ·+2mkλ1 +· · · . Example: n = 25, λ = 555331111;
then φλ = (2 + 1)5 + (2)3 + (4)1 = 10 + 5 + 6 + 4.

3.66 Generalizing pd(n) = po(n), show that the number of partitions of
n in which every part appears at most k− 1 times equals the number of
partitions in which every part is not divisible by k, for every k ≥ 2.

3.67 Show that the following two sets of partitions have the same size:
a. the partitions of n in which the even summands appear at most once,
b. the partitions of n for which every summand appears at most three
times.

� 3.68 Prove a result of I. Schur: The number of partitions of n into parts
congruent to 1 or 5 (mod 6) equals the number of partitions of n into
distinct parts all congruent to 1 or 2 (mod 3).

3.69 Prove the following identities:

a.
∏
i≥1

1
1−qzi =

∑
k≥0

qkzk
(1−z)···(1−zk) =

∑
k≥0

qkzk2

(1−z)···(1−zk)(1−qz)···(1−qzk)

b.
∏
i≥1(1 + qz2i−1) = ∑k≥0

qkzk2

(1−z2)(1−z4)···(1−z2k) .
Hint: For the second equality in (a) consider the Durfee square.

3.70 Verify the Bressoud–Zeilberger bijection (14).

� 3.71 Show that
∏
i≥1(1−zi) =

∑
n≥0

(
pd,e(n)−pd,o(n)

)
zn, where pd,e(n)

and pd,o(n) count the partitions in Pard(n) with an even and odd number
of parts, respectively. Hence by Euler’s theorem the difference pd,e(n) −
pd,o(n) is always 0,±1. Hint: Use

∏
i≥1(1 + qzi) and set q = −1.

3.72 Prove the identity

∏
k≥1(1 − q4k−3)(1 − q4k−1)(1 − q4k) =∑∞

n=−∞(−1)nq2n2+n .

* * *

3.73 Give another proof of po(n) = pd(n) using Sylvester’s bijection,
modifying the Ferrers diagram as in the figure. Example: 21 = 7+ 5+ 3+
3 + 1 + 1 + 1.
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• • • • • • •
• • • • •

• • •
• • •

•
•
•

λ = 7533111

↓

�→

• • • • • • •
• • • • •

• • •
• • •

•
•
•

6

1

10

4

φλ = 10 641

3.74 Show that Sylvester’s bijection proves the following: The number of
distinct odd parts that appear in λ ∈ Paro(n) is the same as the number of
runs in φλ ∈ Pard(n), where a run is a maximal sequence of consecutive
integers. Example: 86521 has the three runs {8}, {6,5}, {2,1}.

� 3.75 Use generating functions to re-prove Exercise 1.60.

3.76 Let r(n) be the number of partitions of n whose parts differ by at
least 2, and s(n) the number of those in which, in addition, the summand
1 does not appear. Prove

a.
∑
n≥0 r(n)zn =∑k≥0

zk2∏k
i=1(1−zi)

, b.
∑
n≥0 s(n)zn =∑k≥0

zk2+k∏k
i=1(1−zi)

.

Hint: Use the fact that k2 = 1+3+5+· · ·+(2k−1). The famous Rogers–
Ramanujan identities will show to which infinite products these sums are
equal (see the highlight at the end of Chapter 10).

� 3.77 By taking P ′(z)
P(z) for the partition function P(z) =∑n≥0 p(n)zn prove

the recurrence p(n) = 1
n
∑n
i=1 σ(i)p(n− i), where σ(i) is the sum of di-

visors of i. Give also a combinatorial proof. Hint: Exercise 2.31.

3.78 Given a set S ⊆ N, let pS(n) and pd,S(n) denote the number of
partitions in Par(n) respectively Pard(n) that use only parts from S. Call
(S, T) an Euler pair if pS(n) = pd,T (n) for all n. For example, S = odd
integers and T = N is an Euler pair. Prove that (S, T) is an Euler pair if
and only if 2T ⊆ T and S = T�2T , where 2T = {2t : t ∈ T}. Consider the
example S = {1}, T = {1,2,22,23, . . .}. What does it imply?

3.79 Prove that p(n) equals the number of partitions into distinct parts
whose odd-indexed parts sum ton. Example: p(5) = 7, with the partitions
5,5+ 1,5 + 2,5 + 3,5 + 4,4+ 3 + 1, and 4 + 2 + 1.
Hint: p(n;k) = #λ ∈ Pard with λ1 + λ3 + λ5 + · · · = n, |λ| = 2n− k.

3.80 Show that p(n;≤ 3) is the integer nearest to (n+3)2
12 .

� 3.81 Show that
∏
k≥1(1 − qk)3 = ∑

n∈Z(−1)nnq
n(n+1)

2 = ∑
n≥0(−1)n(2n+

1)q
n(n+1)

2 . Hint: Use the triple product theorem, make the substitution
z = y − 1, and consider both sides at y = 0.
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� 3.82 Prove the following finite version of Jacobi’s triple product theorem:

N∏
k=1

(1 + zqk)(1 + z−1qk−1) =
N∑

n=−N
q
n(n+1)

2

[
2N
N +n

]
q
zn ,

and deduce Jacobi’s theorem by letting N go to ∞.
Hint: Use the q-binomial theorem with n = 2N , and make some clever
substitutions.

3.83 Let r ,m be integers with 1 ≤ r < m
2 . Apply Jacobi’s theorem to

prove

∏
k≥1

(1 − q(k−1)m+r )(1 − qkm−r )(1 − qkm) =
∞∑

n=−∞
(−1)nq

mn2+(m−2r)n
2 .

For m = 5, r = 1 or 2, we get the formulas

∏
k≥1

(1 − q5k−4)(1 − q5k−1)(1 − q5k) =
∞∑

n=−∞
(−1)nq

n(5n+3)
2 ,

∏
k≥1

(1 − q5k−3)(1 − q5k−2)(1 − q5k) =
∞∑

n=−∞
(−1)nq

n(5n+1)
2 .
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Highlight: Ramanujan’s Most Beautiful Formula

In the section on partition identities we have seen several formulas
involving products of the form

∏
(1 − aqk). To shorten these ex-

pressions we employ the following concise notation familiar to all
partition theorists:

(a;q) := (1 − a)(1 − aq)(1 − aq2) · · · =
∏
i≥0

(1 − aqi) .

When there are several infinite products we write

(a1, . . . , as ;q) = (a1;q) · · · (as ;q) ,

and even more generally,

(
a1, . . . , as
b1, . . . , bt

;q
)
=

s∏
i=1
(ai;q)

t∏
j=1
(bj ;q)

.

As an example, the ordinary partition function may be abbreviated
as ∑

n≥0

p(n)qn = 1
(q;q)

. (1)

Jacobi’s triple product Theorem 3.11 translates into

(−zq,−z−1, q;q) =
∑
n∈Z

q
n(n+1)

2 zn ,

or with the substitution z � −z into

(zq, z−1, q;q) =
∑
n∈Z

(−1)nq
n(n+1)

2 zn . (2)

Our goal is to prove the following formula due to Ramanujan, which
his mentor and collaborator Hardy regarded as his most beautiful.

Theorem. We have∑
n≥0

p(5n+ 4)qn = 5
(q5;q5)5

(q;q)6
.

In particular, p(5n+ 4) is a multiple of 5 for every n.
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The following elegant approach was suggested by Michael Hirsch-
horn.

Paving the Way.
Note first that by classifying the factors in (q;q) = ∏

k≥1(1 − qk)
according to the exponents modulo 5, we have

(q;q) = (q, q2, q3, q4, q5;q5) ,

and therefore

(q;q) = (q, q4, q5;q5)(q2, q3, q5;q5)
(q5;q5)

. (3)

Each of the factors in the numerator contains three terms, and this
calls, of course, for an application of Jacobi’s theorem.

Making in (2) the substitutions z � q−4, q � q5 respectively z �
q−3, q � q5, we see that (3) becomes

(q;q) = 1
(q5;q5)

∑
r∈Z
(−1)rq

5r2−3r
2 ·

∑
s∈Z
(−1)sq

5s2−s
2

= 1
(q5;q5)

⎡⎣ ∑
r ,s∈Z

(−1)r+sqr+2sq
5r2+5s2−5r−5s

2

⎤⎦ . (4)

Next we split the sum in (4) into five sums
∑
i, according to the

residue of r + 2s modulo 5, that is, r + 2s = 5n+ i, i = 0,1,2,3,4.
Let us just compute

∑
0; the other sums are dealt with by analogous

arguments.

Suppose r + 2s = 5n, and thus r ≡ n (mod 2). We set r = n − 2t,
and hence s = 2n+ t, and replace the running indices r and s by n
and t. We have (−1)r = (−1)n, (−1)s = (−1)t , and

5r2 + 5s2 − 5r − 5s
2

= 25n2 + 25t2 − 15n+ 5t
2

.

Moving the terms involving n to the front we get

Σ0 =
∑
n∈Z

(−1)nq
25n2−5n

2 ·
∑
t∈Z
(−1)tq

25t2+5t
2 . (5)

The substitutions z � q−15, q � q25 in (2) for the first sum in (5)
respectively z � q−10, q � q25 for the second sum yield (check it!)
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Σ0 = (q10, q15, q25;q25) · (q10, q15, q25;q25) ,

and thus as contribution to (4),

(q10, q15, q25;q25)(q10, q15, q25;q25)
(q5;q5)

= (q25;q25)
(q10, q15;q25)
(q5, q20;q25)

.

(6)
For the other sums we obtain the contributions

1
(q5;q5)

Σ1 = −q(q25;q25),

(7)
1

(q5;q5)
Σ2 = −q2(q25;q25)

(q5, q20;q25)
(q10, q15;q25)

,

while Σ3 and Σ4 are both equal to 0.

With the abbreviation

R(q) =
(
q2, q3

q,q4 ;q5

)

we have thus proved another formula of Ramanujan:

(q;q) = (q25;q25)[R(q5)− q − q2R(q5)−1] . (8)

Since (q;q) = (q5;q5)(q, q2, q3, q4;q5) we may write (8) also as

(q5;q5)(q, q2, q3, q4;q5) = (q25;q25)[R(q5)− q − q2R(q5)−1] . (9)

Using Roots of Unity.
Denote by Ω the set of fifth roots of unity, that is, of the roots of
the polynomial x5 − 1. Thus x5 − 1 = ∏

ω∈Ω(x −ω). Note that for
any a,∏

ω∈Ω
(1 − aω) = a5

∏
ω
(a−1 −ω) = a5(a−5 − 1) = 1 − a5 . (10)

With the substitution q �ωq, equation (9) becomes

(q5;q5)(ωq,ω2q2,ω3q3,ω4q4;q5) =
(q25;q25)[R(q5)−ωq −ω2q2R(q5)−1] . (11)

Now we take the product of the left-hand side over all ω ∈ Ω. Since
{ωi : ω ∈ Ω} = Ω for i = 1,2,3,4, we have for fixed i, using (10),
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ω
(ωiqi;q5) =

∏
ω
(ωqi;q5) =

∏
k≥0

∏
ω
(1 −ωq5k+i)

=
∏
k≥0

(1 − q25k+5i) = (q5i;q25) .

Taking the product over all ω, the left-hand side of (11) therefore
becomes

(q5;q5)5(q5, q10, q15, q20;q25) = (q5;q5)6

(q25;q25)
. (12)

Next we look at the right-hand side. Set R(q5) = c, and regard the
second factor in (11) as the polynomial p(ω) = c −ωq −ω2q2c−1

in ω. It is easily seen that

p(ω) = c
(
1 − q

c
τω

)(
1 − q

c
τ̂ω

)
,

where τ = 1+√5
2 , τ̂ = 1−√5

2 . By (10),

∏
ω
p(ω) = c5

(
1 − q5

c5 τ
5
)(

1 − q5

c5 τ̂
5
)

= c5 − q5(τ5 + τ̂5)+ q10

c5 (ττ̂)
5 .

Now ττ̂ = −1, and it is easily verified that τ5 + τ̂5 = 11. So the
product over ω on the right-hand side of (11) equals

(q25;q25)5[R(q5)5 − 11q5 − q10R(q5)−5] , (13)

and so, equating (12) and (13),

1 = (q25;q25)6

(q5, q5)6
[R(q5)5 − 11q5 − q10R(q5)−5] . (14)

The Final Step.
Look at the equations (14) and (8) and divide (14) by (8). This gives

∑
n≥0

p(n)qn = 1
(q;q)

= (q25;q25)5

(q5;q5)6
· R(q

5)5 − 11q5 − q10R(q5)−5

R(q5)− q − q2R(q5)−1 .

Setting again c = R(q5), the second factor is a rational function in
q, and polynomial division readily yields the polynomial
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f(q) = c−4q8 − c−3q7 + 2c−2q6 − 3c−1q5

+ 5q4 + 3cq3 + 2c2q2 + c3q + c4, (15)

and thus ∑
n≥0

p(n)qn = (q25;q25)5

(q5;q5)6
f(q) .

Now look at the coefficients of powers q5n+4. In (q25;q25) and
(q5;q5) all exponents are multiples of 5, and this is also true for
R(q5) and R(q5)−1. So the exponents in the expression (15) of f(q)
are all incongruent to 4 (modulo 5) except for the term 5q4, and we
conclude that

∑
n≥0

p(5n+ 4)q5n+4 = (q25;q25)5

(q5;q5)6
5q4 ,

that is, ∑
n≥0

p(5n+ 4)q5n = 5
(q25;q25)5

(q5;q5)6
.

Now replace q by q1/5, and out comes Ramanujan’s formula

∑
n≥0

p(5n+ 4)qn = 5
(q5;q5)5

(q;q)6
. (16)

We may express (16) also as follows. Since

(q5;q5)
(q;q)

= 1
(q, q2, q3, q4;q5)

=
∏
k≥1

1
(1 − q5k−1)(1 − q5k−2)(1 − q5k−3)(1 − q5k−4)

,

we obtain

∑
n≥0

p(5n+ 4)qn = 5

⎛⎝∑
n≥0

p(n)qn
⎞⎠⎛⎝∑

n≥0

s(n)qn
⎞⎠5

,

where s(n) is the number of partitions of n with no part divisible
by 5.
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Notes and References

Solving recurrences and computing sums via generating functions
belongs again to the classical part of enumerative combinatorics.
The books by Goulden–Jackson and Wilf contain a wealth of exam-
ples. The composition formula has many origins; we follow here
the approach taken by Foata and Schützenberger. For an extensive
treatment see Chapter 5 in Stanley’s book. A more general setup,
called the theory of species, was proposed by Joyal. Cayley’s for-
mula on the number of trees was anticipated by Borchardt, and was
known even earlier to Sylvester. See the book by Aigner and Ziegler
for four more proofs and historical references. Andrews is the au-
thoritative source for the theory of number-partitions. There you
find references to all the important results such as Euler’s pentag-
onal theorem or Jacobi’s triple product theorem. For connections
to additive number theory and the many contributions of Ramanu-
jan the book of Hardy–Wright is recommended. The proof of the
highlight follows the paper by Hirschhorn.
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4 Hypergeometric Summation

We have seen many sums of the form s(n) = ∑
k an,k such as∑

k

(
r
k

)(
s

n−k
)
=
(
r+s
n

)
or
∑
k

(
n+k
m+2k

)(
2k
k

)
(−1)k
k+1 =

(
n−1
m−1

)
. In this chap-

ter we want to review some techniques that permit an almost auto-
matic evaluation of sums like these, and we also study when such
a sum can be presented in closed form at all. It is clear that when
the sums get more complicated, doing them by hand becomes out
of the question. So the emphasis lies on algorithms that can be and
have been implemented in computer packages.

4.1 Summation by Elimination

Suppose we are given numbers F(n,k) with n,k ∈ Z, and we want
to compute the sum s(n) =∑k F(n,k). Of course, this makes sense
only when there is only a finite number of nonzero parts F(n,k)
involved, that is, the sum extends over a finite range

∑M
k=−m F(n,k)

with m,M ≥ 0. We then say that F(n,k) becomes eventually 0 as
k → ±∞, and denote this fact by limk→±∞ F(n,k) = 0. As an exam-
ple, for an integer n, limk→±∞

(
n
k

)
= 0 holds precisely when n is

nonnegative.

Using Operators.
The key idea in this section is to rewrite recurrence relations in
operator notation. Take, for example, the recurrence a(n + 2) =
3a(n + 1) − (n − 1)a(n). With the operator N : a(n) → a(n + 1)
this translates into the equation

(
N2 − 3N + (n − 1)I

)
a(n) = 0,

where I is the identity operator. Now we introduce operators for
both parameters n and k.

Let N and K be the linear shift operators N : F(n,k) → F(n + 1, k)
and K : F(n,k) → F(n,k+ 1), and define Ni,Ki (i ∈ Z) as shifts by
i. We extend this definition by linearity to all (finite) expressions of
the form
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i,j∈Z

pi,j(n, k)NiKj , (1)

where all pi,j(n, k) are polynomials in n and k.

Example. We have (N2K − 2nNK2)F(n,k) = F(n + 2, k + 1)
− 2nF(n+ 1, k+ 2).

The operators in (1) thus form a (noncommutative) ring generated
by N,K,n,k, observing the relations

NK = KN, kN = Nk, nK = Kn, Nn = (n+ 1)N,
Kk = (k+ 1)K, nk = kn .

As in our example above, operators P(N,K,n,k) that satisfy P(N,K,
n,k)F(n,k) = 0 for all n and k give rise to recurrences for F(n,k),
and we call them accordingly recurrence operators.

Example. The Pascal recurrence
(
n+1
k+1

)
=
(
n
k

)
+
(
n
k+1

)
for F(n,k) =(

n
k

)
corresponds to the operator equation

NK
(
n
k

)
= (I +K)

(
n
k

)
;

hence P = NK − I −K is a recurrence operator for
(
n
k

)
.

If P is a recurrence operator, then so is every left multiple AP , since
AP(F(n,k)) = A(PF(n,k)) = 0. Here is the main idea. If P1, . . . , Pt
are recurrence operators, then so is every combination A1P1+· · ·+
AtPt . Suppose we succeed by an appropriate choice of the Ai to
eliminate k, that is,

R(N,K,n) =
t∑
i=1

Ai(N,K,n,k)Pi(N,K,n,k)

no longer depends on k. Setting S(N,n) = R(N, I,n), we obtain by
polynomial division Kj − I = (K − I)(Kj−1 + · · · + I),

R(N,K,n)− S(N,n) = (K − I)R(N,K,n) .

With C = −R this gives

S(N,n) =
t∑
i=1

AiPi + (K − I)C . (2)
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Claim. S(N,n) is a recurrence operator for the sum s(n) =∑
k F(n,k). To prove this we set G(n,k) = C(N,K,n)F(n,k) and

infer from (2),

S(N,n)F(n,k) = (K − I)G(n,k) = G(n,k+ 1)−G(n,k) ,

and hence by linearity

S(N,n)
∑
k
F(n,k) =

∑
k
(G(n,k+ 1)−G(n,k)) = 0 ,

provided that limk→±∞G(n,k) = 0.

Notice that the same conclusion holds when in (2) the operator
C(N,K,n,k) also depends on k. But keep in mind that we multi-
ply the recurrence operators Pi from the left, and K − I by C on the
right. Let us state this as our first result.

Proposition 4.1. Let Pi be recurrence operators for F(n,k). If

S(N,n) =
t∑
i=1

Ai(N,K,n,k)Pi(N,K,n,k)+ (K − I)C(N,K,n,k)

does not depend on K,k, then S(N,n) is a recurrence operator for
the sum s(n) =∑k F(n,k), whenever lim

k→±∞
C(N,K,n,k)F(n,k) = 0.

Example. The simplest case arises when there is a single recur-
rence operator P that does not depend on k. For the binomial coef-
ficients F(n,k) =

(
n
k

)
, we have the recurrence operator from above

P = NK − I −K = (K − I)(N − I)+N − 2I ;

hence N − 2I is a recurrence operator for s(n) = ∑
k

(
n
k

)
. In other

words, s(n + 1) = 2s(n), and we conclude that s(n) = 2n since
s(0) = 1. Note that in this case, G(n,k) = (I − N)

(
n
k

)
=
(
n
k

)
−(

n+1
k

)
= −

(
n
k−1

)
, which becomes eventually 0 for n ≥ 0, so the

result s(n) = 2n is justified for n ≥ 0.

In most cases a single recurrence operator will not do, so we try to
find two such operators P andQ (and under certain technical condi-
tions two will suffice), eliminate k in AP+BQ, calculate “mod K−I,”
and read off the recurrence for s(n).
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Example. Consider
∑
k

(
n
k

)(
m
k

)
, m ∈ Z fixed.

With F(n,k) =
(
n
k

)(
m
k

)
, we have

F(n+ 1, k)
F(n,k)

= n+ 1
n− k+ 1

,
F(n,k+ 1)
F(n,k)

= (n− k)(m− k)
(k+ 1)2

.

By cross-multiplication we obtain

(n− k+ 1)F(n+ 1, k)− (n+ 1)F(n,k) = 0 ,

(k+ 1)2F(n,k+ 1)− (n− k)(m− k)F(n,k) = 0 ,

and thus the recurrence operators (we omit I)

P = (n− k+ 1)N − (n+ 1), Q = (k+ 1)2K − (n− k)(m− k) .

Ordered according to powers of k this gives

P = −kN + (n+ 1)(N − I), Q = (K − I)k2 + k(m+n)−mn.

We can now eliminate k by multiplying P on the left by m + n + 1,
and Q by N . Mod K − I this gives

S(N,n) = (m+n+ 1)(n+ 1)(N − I)−m(n+ 1)N .

The sum s(n) therefore satisfies the recurrence (dividing by n+ 1)

(n+ 1)s(n+ 1) = (m+n+ 1)s(n) ,

that is,

s(n) = m+n
n

s(n− 1) .

With s(0) = 1 this yields

s(n) =
(
m+n
n

)
=
∑
k

(
n
k

)(
m
k

)
,

our old Vandermonde convolution.

Example. This is all familiar and easy, but here is a mechanical
proof of one of the most famous formulas involving binomial coef-
ficients which no longer looks so easy, Dixon’s identity :
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∑
k
(−1)k

(
n+m
n+ k

)(
m+ p
m+ k

)(
p +n
p + k

)
= (n+m+ p)!

n!m!p!
,

m,p ∈ N0 fixed. (3)

We proceed as before with F(n,k) being the summand.

Cross-multiplication gives

F(n+ 1, k)
F(n,k)

= n+ 1 +m
n+ 1 + k · n+ 1 + p

n+ 1 − k ,
F(n,k+ 1)
F(n,k)

= − m− k
n+ k+ 1

· p − k
m+ k+ 1

· n− k
p + k+ 1

,

and hence the recurrence operators

P = N(n2 − k2)− (n+ 1 +m)(n+ 1 + p)
= −k2N +Nn2 − (n+ 1 +m)(n+ 1 + p) ,

Q = K(n+ k)(m+ k)(p + k)+ (m− k)(n− k)(p − k)
= 2k2(n+m+ p)+ 2mnp (mod K − I) ,

or dividing by 2,

Q = k2(n+m+ p)+mnp (mod K − I) .

To eliminate k we multiply P on the left by n+m+ p + 1, Q by N ,
and obtain with a short computation

S(N,n) = (n+ 1)N − (n+m+ p + 1) .

Hence (n+ 1)s(n+ 1) = (n+m+ p + 1)s(n), or

s(n) = n+m+ p
n

s(n− 1) ,

and this yields with s(0) =
(
m+p
m

)
,

s(n) =
(
n+m+ p

n

)(
m+ p
m

)
= (n+m+ p)!

n!m!p!
.
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Exercises

4.1 Compute
∑
k

(
n−k
k

)
by elimination, n ≥ 0. Notice that for fixed n this

is not a finite sum, so modify the definition of the summand F(n, k).

4.2 Translate the recurrence for the Stirling numbers sn,k into an oper-
ator equation, and verify

∑n
k=0 sn,k = n! .

� 4.3 Generalize the previous exercise to the following situation: Suppose
we have the recurrence F(n + 1, k + 1) = f(n)F(n, k) + g(n)F(n, k + 1)
with F(n, k) = 0 for n < k and for k < 0. Then

s(n) =
n∑
k=0

F(n, k) = a
⎡⎣n−1∏
i=0

(
f(i)+ g(i))

⎤⎦ , a = F(0,0) .

* * *

4.4 Compute
∑
k(−1)k

(
n+m
n+k

)(
n+m
m+k

)
, m ∈ N0 fixed.

� 4.5 Show that
∑
k
(−1)k
m+k

(
n
k

)
= 1

m

(
m+n
n

)−1
, m ≥ 1 fixed.

4.6 Evaluate
∑n
k=0 k

(
m−k−1
m−n−1

)
, m > n ≥ 0, by elimination.

4.7 Find
∑n
k=0(−4)k

(
n+k
2k

)
, n ∈ N0.

� 4.8 Compute s(n) = ∑
k(−1)k

(
2n
k

)3
, which gives another identity of

Dixon.

4.2 Indefinite Sums and Closed Forms

We now address the question of what we mean that a sequence
(a(n)) can be “nicely” presented. The simplest case arises when
a(n)
a(n−1) is a constant c for all n. Such sequences are called geometric
since a(n) = cna(0) .

Definition. A sequence
(
a(n)

)
n≥0 is said to be hypergeometric or a

closed form (CF ) if a(n)
a(n−1) =

p(n)
q(n) is a rational function in n.

Hence (a(n)) is a CF if q(n)a(n) − p(n)a(n − 1) = 0, or in the
language of the previous section, when q(n)N−p(n) is a recurrence
operator of first order.
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To every sequence
(
a(n)

)
there corresponds an indefinite sum S(n)

with a(n) = S(n + 1) − S(n). Gosper’s remarkable algorithm com-
pletely answers the following question.

Question. Given a CF
(
a(n)

)
, when is the indefinite sum sequence(

S(n)
)

also a closed form?

Remark. If
(
S(n)

)
is a CF, then also

(
a(n)

)
, since with a(n) =

S(n+ 1)− S(n) we obtain

a(n)
a(n− 1)

= S(n+ 1)− S(n)
S(n)− S(n− 1)

=
S(n+1)
S(n) − 1

1 − S(n−1)
S(n)

= rational function.

To get a feeling for the main idea, let us work backward. The sim-
plest CF that is not geometric is S(n) = n! with S(n)

S(n−1) = n . Here
a(n) = S(n+ 1)− S(n) = n ·n! . Now we have

a(n)
a(n− 1)

= n
n− 1

· n
1
= p(n)
p(n− 1)

· q(n)
r(n)

.

The first factor is called the “polynomial” part, and the second q(n)
r(n)

the “factorial” part. Note that

S(n+ 1) = (n+ 1)! = a(n)(n+ 1)
n

= a(n)q(n+ 1)
p(n)

.

Let’s make it a bit more complicated. Consider S(n) = (n + 2)n!,
a(n) = S(n+1)−S(n) = (n+3)(n+1)!−(n+2)n! = (n2+3n+1)n!,
so p(n) = n2 + 3n+ 1,

a(n)
a(n− 1)

= p(n)
p(n− 1)

· n
1

;

hence q(n) = n, r(n) = 1. For S(n+ 1) this gives

S(n+1) = (n+3)(n+1)! = n!(n+1)(n+3) = a(n)q(n+ 1)
p(n)

f(n) ,

where f(n) = n+ 3.

Gosper’s Algorithm.
Gosper’s amazing discovery states that if

(
S(n)

)
is a CF, then it can

always be written in this form, where p(n), q(n), f (n) are polyno-
mials determined by the sequence

(
a(n)

)
. The equality then also

computes the indefinite sum S(n+ 1).
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Let us carefully go through the stages of the algorithm. Let
(
a(n)

)
be a closed form, a(n) = S(n+ 1)− S(n).
Step 1. Set

a(n)
a(n− 1)

= p(n)
p(n− 1)

· q(n)
r(n)

, gcd
(
q(n), r(n)

) = 1 , (1)

where p(n), q(n), r(n) are polynomials in n, and p(n) is a polyno-
mial of maximal degree such that a(n)

a(n−1) can be written in the form
(1).

Lemma 4.2. The maximality of the degree of p(n) implies gcd
(
q(n),

r(n+ j)) = 1 for all j ≥ 0 .

Proof. Suppose to the contrary that g(n) = gcd
(
q(n), r(n+j)) ≠

1 for some j > 0. Then g(n− j) | r(n) and

q(n)
r(n)

= g(n)
g(n− 1)

· g(n− 1)
g(n− 2)

· · · g(n− j + 1)
g(n− j)

q∗(n)
r∗(n)

with q(n) = g(n)q∗(n), r(n) = g(n−j)r∗(n). Hence we may move
g(n)g(n−1) · · ·g(n−j+1) into the polynomial part, contradicting
the maximality of the degree. �

Note that the lemma gives a recipe for how to find p(n) of max-
imal degree. Start with p(n) = 1 or some obvious p(n) as in
the examples. If the second factor contains q(n) and r(n) with
gcd

(
q(n), r(n + j)) ≠ 1 for some j ≥ 0, apply the procedure of

the lemma and continue.

Step 2. Set

S(n+ 1) = a(n)q(n+ 1)
p(n)

f(n) . (2)

Of course, we can always do this, since everything apart from f(n)
is known.

Lemma 4.3.
(
S(n)

)
is a CF if and only if f(n) is a rational function.

Proof. If f(n) is a quotient of polynomials, then
(
S(n)

)
is clearly

a closed form since
(
a(n)

)
is. Suppose, conversely, that

(
S(n)

)
is a

CF. Then
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f(n) = p(n)S(n+ 1)
q(n+ 1)a(n)

= p(n)S(n+ 1)
q(n+ 1)(S(n+ 1)− S(n))

= p(n)
q(n+ 1)(1 − S(n)

S(n+1))
,

thus f(n) is rational. �

Step 3. f(n) satisfies the functional equation

q(n+ 1)f (n)− r(n)f(n− 1) = p(n) . (3)

Indeed, we have

a(n) = S(n+ 1)− S(n)

= a(n)q(n+ 1)
p(n)

f(n)− a(n− 1)q(n)
p(n− 1)

f (n− 1)

(1)= a(n)
(
q(n+ 1)f (n)

p(n)
− p(n− 1)r(n)q(n)
p(n− 1)q(n)p(n)

f(n− 1)
)

= a(n)
(
q(n+ 1)f (n)

p(n)
− r(n)f(n− 1)

p(n)

)
,

and (3) follows. �

What makes the algorithm work is the surprising fact that not only
is f rational, it is a polynomial in n.

Lemma 4.4. A rational function f(n) that satisfies (3) (under the
hypothesis (1)) is a polynomial.

Proof. Let f(n) = c(n)
d(n) , gcd

(
c(n),d(n)

) = 1. In order to prove
d(n) = 1, we will show more generally that gcd

(
d(n),d(n+k)) = 1

for all k ≥ 0; the case k = 0 will then prove d(n) = 1. Suppose this
is false, and let j ≥ 0 be maximal with

gcd
(
d(n),d(n+ j)) = g(n) ≠ 1 . (4)

If d(n) ≠ 1, then such an index j exists. Indeed, if α is a root of
g(n), then α and β = α+j are roots of d(n). Hence, if j > max

(
β−

α : α,β roots of d(n)
)
, then (4) cannot be satisfied. It follows from

the definition of j that

gcd
(
d(n),d(n+ j + 1)

) = 1 . (5)
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With f(n) = c(n)
d(n) equation (3) can be written as

q(n+1)c(n)d(n−1)−r(n)c(n−1)d(n) = p(n)d(n)d(n−1) . (6)

We derive the desired contradiction by showing that

A. g(n− 1) | q(n),
B. g(n− 1) | r(n+ j) .

Lemma 4.2 implies then g(n) = 1, and we are through.

Proof of A. Let h(n) = gcd(g(n),d(n − 1)). Then we have h(n) |
g(n), hence h(n+ 1) | g(n+ 1) | d(n+ j + 1) and h(n+ 1) | d(n).
Thus h(n) = 1 by (5). Looking at equation (6), we infer from g(n) |
d(n) that g(n) | q(n + 1) holds (since g(n) is relatively prime to
d(n− 1) and c(n)), and therefore g(n− 1) | q(n) .

Proof of B. Let k(n) = gcd(g(n− j − 1),d(n)). Then we have k(n+
j + 1) | g(n) | d(n) and also k(n + j + 1) | d(n + j + 1), and so
k(n) = 1 by (5). Furthermore, g(n) | d(n+ j) implies g(n− j−1) |
d(n − 1) . Looking again at equation (6), this gives g(n − j − 1) |
r(n)c(n−1)d(n). Since g(n− j−1) and d(n) are relatively prime,
we have g(n−j−1) | r(n)c(n−1) . Since g(n−j−1) | d(n−1), and
d(n−1), c(n−1) are relatively prime, we have, in fact, g(n−j−1) |
r(n) or g(n − 1) | r(n + j) . This proves B, and thus the lemma.
�

Now we are all set for the algorithm of Gosper.

Input. A closed form
(
a(n)

)
.

(I) Set a(n)
a(n−1) =

p(n)
p(n−1)

q(n)
r(n) , p(n) of maximal degree.

(II) Write f(n) = ∑L
i=0 fini in indeterminates fi, and solve the

equation
q(n+ 1)f (n)− r(n)f(n− 1) = p(n) .

If no solution exists, then
(
S(n)

)
is not a closed form.

(III) Otherwise,

S(n+ 1) = a(n)q(n+ 1)
p(n)

f(n)

is the desired indefinite sum with a(n) = S(n+ 1) − S(n) . For the
definite sum we thus obtain
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n∑
i=0

a(i) = S(n+ 1)− S(1)+ a(0)

or
n∑
i=r
a(i) = S(n+ 1)− S(r + 1)+ a(r)

for some starting index r .

Two remarks are in order:

1. In the proof of Lemma 4.4 we need that q(n) and r(n + j) are
relatively prime for all j ≥ 0. One way to check this is to use
resultants, known from linear algebra.

2. How large is the degree L of f(n)? Equation (3) implies L =
degp(n)−max(degq(n),deg r(n)), except when the highest co-
efficients of q(n+ 1) and r(n) cancel. Then a larger L may exist.

Now it’s time for examples.

Example. a(n) = (n2 +n− 1)(n− 1)!, n ≥ 1 .

(I) a(n)
a(n−1) = n2+n−1

(n−1)2+(n−1)−1 · n−1
1 , q(n) = n− 1, r(n) = 1 .

(II) nf(n) − f(n − 1) = n2 + n − 1; hence degf(n) = 1, f(n) =
f0 + f1n. Comparing coefficients gives the system of equations

n0 : −f0 + f1 = −1 ,
n1 : f0 − f1 = 1 ,
n2 : f1 = 1 ,

with solution f0 = 2, f1 = 1 .

(III) S(n+ 1) = (n− 1)!n(n+ 2) = (n+ 2)n!, and hence

n∑
i=1

a(i) = (n+ 2)n! − 2 .

Example. Is the sum
∑n
i=0 i! a closed form? Here we have a(n) =

n!, and thus
a(n)

a(n− 1)
= n ,

p(n) = 1, q(n) = n, r(n) = 1 . The functional equation is

(n+ 1)f (n)− f(n− 1) = 1 ,



154 4 Hypergeometric Summation

and this clearly has no solution. Hence
(
S(n)

)
is not a closed form.

Example. Let us now look at the partial sums of binomial coeffi-
cients. We have already raised the question in Section 1.2 whether
the following partial sums are closed forms:

n∑
i=0

(−1)i
(
m
i

)
and

n∑
i=0

(
m
i

)
, m ≥ 0 .

In the first case we find for a(n) = (−1)n
(
m
n

)
a(n)

a(n− 1)
= −m−n+ 1

n
= n−m− 1

n
,

p(n) = 1, q(n) = n −m − 1, r(n) = n. Note that n −m − 1 and
n+ j are relatively prime for all j ≥ 0. The equation is

(n−m)f(n)−nf(n− 1) = 1 .

Here we encounter the special case that the highest coefficients of
q(n+1) = n−m and r(n) = n cancel. Setting f(n) = f0, we obtain
as solution f0 = − 1

m , and thus

S(n+ 1) = (−1)n
(
m
n

)
(n−m)

(
− 1
m

)
= (−1)n

(
m− 1
n

)
,

and with S(1) = a(0) = 1,

n∑
i=0

(−1)i
(
m
i

)
= (−1)n

(
m− 1
n

)
.

In the second case, a(n) =
(
m
n

)
,

a(n)
a(n− 1)

= m−n+ 1
n

,

p(n) = 1, q(n) =m−n+ 1, r(n) = n ,

(m−n)f(n)−nf(n− 1) = 1 .

Since the highest coefficients of q(n + 1) and r(n) do not cancel
out, there is no solution, and

(
S(n)

)
is not a closed form.
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Exercises

4.9 Is the sum
∑n
i=0 Ci of the Catalan numbers a closed form?

4.10 Can the harmonic numbersHn =∑n
i=1

1
i be written as a closed form?

4.11 Prove
∑n
i=0

(
m+i
i

)
=
(
m+n+1

n

)
using Gosper’s algorithm.

� 4.12 Use Gosper’s method to find
∑n
i=2

1
i2−1 . Verify your answer using

1
i2−1 = 1

2(
1
i−1 − 1

i+1). What about
∑n
i=2

i
i2−1 ? Is it still a closed form?

4.13 For which values of z is
∑n
k=0

(
m
k

)
zk a closed form?

4.14 Prove that
∑n
k=0

2k

k+1 is not a closed form.

* * *

� 4.15 Show that a(n, k) = ∑
k
(nk)
2n is not Gosper-summable in k, but that

a(n+ 1, k)− a(n, k) is.

4.16 Consider
∑n
k=0

(−m
k

)
, m ≥ 1. What is the polynomial p(n) in

Gosper’s algorithm? Evaluate the sum for m ≤ 4.

4.17 Find a constant α for which
∑n
i=0

(
m
i

)
(i + α) is a closed form, and

evaluate the sum.

� 4.18 Find the unique value a ∈ Q such that
∑n
k=0

(
2k
k

)
ak is a closed form,

and compute it for this value a.

4.19 Evaluate the sum
∑n
k=0 km2k for m = 1,2,3.

� 4.20 Evaluate
∑n−1
k=1

k2−2k−1
k2(k+1)2 2k, using Gosper’s algorithm.

4.3 Recurrences for Hypergeometric Sums

Let us return to our original problem. Given F(n,k), we want to
compute the sum s(n) = ∑

k F(n,k), or at least find a recurrence
for s(n). Gosper’s algorithm finds the partial sums when F(n,k) is
a hypergeometric term in k, but in general, we want to sum over all
k. We know for example that

∑(n
k

)
is not indefinitely summable in

the sense of Gosper, but of course
∑
k

(
n
k

)
= 2n.

Zeilberger’s Algorithm.
Zeilberger ingeniously extended Gosper’s algorithm to handle the
definite summation for a vast variety of cases. Suppose F(n,k)
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is a hypergeometric term with respect to both n and k. We know
from Section 4.1 that with G(n,k) = C(N,K,n,k)F(n,k) for some
C(N,K,n,k),

S(N,n)F(n,k) = G(n,k+ 1)−G(n,k) , (1)

where S(N,n) is a recurrence operator for the sum s(n). Suppose
that G(n,k) is a hypergeometric term in k. Then G(n,k) is just
the indefinite sum of S(N,n)F(n,k), and can thus be computed via
Gosper’s algorithm. For precise conditions, when this is the case we
refer to the book by Petovšek–Wilf–Zeilberger.

We proceed as follows. Set H(n,k) = S(N,n)F(n,k), where the op-
erator is written S(N,n) = ∑M

j=0 sj(n)Nj , with sj(n) polynomials
in n. We “guess” the degree M of S(N,n), or try M = 1,2, . . . . Since
G(n,k) is a closed form, some degree must eventually work.

The algorithm works as follows:

(I) Set H(n,k) = S(N,n)F(n,k) .
(II) Compute p(k), q(k), r(k), where these are polynomials in k

with polynomial coefficients in n .
(III) From q(k+1)f (k)−r(k)f (k−1) = p(k), f(k) =∑Li=0 fi(n)ki

there results a system of equations for f0(n), . . . , fL(n) and
s0(n), . . . , sM(n) .

A solution of this system gives the recurrence operator S(N,n) and
at the same time the “certificate” G(n,k) with

S(N,n)F(n,k) = G(n,k+ 1)−G(n,k) .

Example. Consider s(n) =∑k (nk)(n+kk )(−1)k. Let us try all meth-
ods we have seen so far.

1. Elimination. F(n,k) =
(
n
k

)(
n+k
k

)
(−1)k gives

F(n+ 1, k)
F(n,k)

= n+ 1 + k
n− k+ 1

, hence P = N(n− k)− (n+ 1 + k)
= −(N + I)k+Nn− (n+ 1);

F(n,k+ 1)
F(n,k)

= −(n+ 1 + k)(n− k)
(k+ 1)2

,

hence Q = Kk2 + (n− k)(n+ 1 + k)
= −k+n2 +n (mod K − I) .
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With

S(N,n) = −P + (N + I)Q = −Nn+ (n+ 1)+ (N + I)(n2 +n)
= (n+ 1)2N + (n+ 1)2 ,

we obtain the recurrence

s(n+ 1) = −s(n), and thus s(n) = (−1)n .

2. Gosper–Zeilberger. With S(N,n) = s0(n)+ s1(n)N we have

H(n,k) = s0(n)
(
n
k

)(
n+ k
k

)
(−1)k

+ s1(n)
(
n+ 1
k

)(
n+ 1 + k

k

)
(−1)k

= (n+ k)!(−1)k

k!2(n+ 1 − k)!
(
k(s1 − s0)+ (n+ 1)(s0 + s1)︸ ︷︷ ︸

p(k)

)
,

H(n,k)
H(n,k− 1)

= p(k)
p(k− 1)

(k+n)(k− 2 −n)
k2

,

q(k) = (k+n)(k− 2 −n), r(k) = k2 ,

(k2 − (n+ 1)2)f (k)− k2f(k− 1) = k(s1 − s0)+ (n+ 1)(s0 + s1) .

This equation is satisfied with s0(n) = s1(n) = n + 1, f(k) = −2,
and we obtain

S(N,n) = (n+ 1)+ (n+ 1)N ,

and thus again s(n+ 1) = −s(n), s(n) = (−1)n.

The Gosper–Zeilberger algorithm seems to be more complicated,
and it is a little distressing that Vandermonde does it in one line:

∑
k

(
n
k

)(
n+ k
k

)
(−1)k =

∑
k

(
n
k

)(
−n− 1
k

)
=
(
−1
n

)
= (−1)n .

But consider now the following innocuous looking sum, where we
just delete (−1)k.

Example.
∑
k

(
n
k

)(
n+k
k

)
. The elimination method is messy, and Van-

dermonde does not help either. Let’s try Gosper–Zeilberger with
S(N,n) = s0 + s1N + s2N2. Here
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H(n,k) = s0
(
n
k

)(
n+ k
k

)
+ s1

(
n+ 1
k

)(
n+ 1 + k

k

)

+ s2
(
n+ 2
k

)(
n+ 2 + k

k

)

= (n+ k)!
k!2(n− k+ 2)!

p(k)

with p(k) = s0(n − k + 1)(n − k + 2) + s1(n + 1 + k)(n − k + 2) +
s2(n+ 1 + k)(n+ 2 + k) . Now we have

H(n,k)
H(n,k− 1)

= p(k)
p(k− 1)

(n+ k)(n− k+ 3)
k2 ,

q(k) = (n+ k)(n− k+ 3), r(k) = k2 .

The functional equation

(n+ k+ 1)(n− k+ 2)f (k)− k2f(k− 1) = p(k)

leads therefore to degf = 0, that is f = f(n), and thus to the
following system of equations:

k0 : (n+ 1)(n+ 2)f = (n+ 1)(n+ 2)(s0 + s1 + s2)
�⇒ f = s0 + s1 + s2,

k1 : f = s0(−2n− 3)+ s1 + s2(2n+ 3)
= (2n+ 3)(s2 − s0)+ s1,

k2 : −2f = s0 − s1 + s2 .

This is easily solved with s0 = n+1, s1(n) = −6n−9, s2(n) = n+2,
f(n) = −4n− 6, and we obtain the recurrence operator

S(N,n) = (n+ 2)N2 − (6n+ 9)N + (n+ 1) .

The sum s(n) therefore satisfies the recurrence

ns(n) = (6n− 3)s(n− 1)− (n− 1)s(n− 2) = 0 (2)

with initial values s(0) = 1, s(1) = 3 .

This recurrence relation should look familiar. The sum
∑
k

(
n
k

)(
n+k
k

)
is just the central Delannoy number Dn,n, whose recurrence (2) was
derived in Section 3.2 using generating functions. The advantage of
the present method is that it is completely mechanical. It amounts



4.3 Recurrences for Hypergeometric Sums 159

to solving a system of linear equations, and we can safely leave
this to a computer. And what’s more, it tells us that no recurrence
of first order exists for Dn,n (since Gosper–Zeilberger returns “no
solution”). The algorithm will find a recurrence of some order if
one exists at all, and in most cases it has minimal order.

Example. The most involved sum that we will explicitly compute
is the famous identity of Pfaff–Saalschütz:

∑
k

(
m− r + s

k

)(
n+ r − s
n− k

)(
r + k
m+n

)
=
(
r
m

)(
s
n

)
(m,n ∈ N0) .

(3)
We try S(N,n) = s0(n)+ s1(n)N , and set

H(n,k) = S(N,n)F(n,k)

= s0
(
m− r + s

k

)(
n+ r − s
n− k

)(
r + k
m+n

)

+ s1
(
m− r + s

k

)(
n+ 1 + r − s
n+ 1 − k

)(
r + k

m+n+ 1

)
.

The usual method leads to (check it!)

p(k) = s0(n+ 1 − k)(m+n+ 1)
+ s1(n+ 1 + r − s)(r + k−m−n) ,

q(k) = (n+ 2 − k)(m− r + s − k+ 1)(r + k) ,
r(k) = k(r − s + k)(r + k−m−n) .

The functional equation q(k+1)f (k)−r(k)f (k−1) = p(k) has the
solution f(k) = 1, s0(n) = s − n, s1(n) = −(n + 1). This gives the
recurrence operator S(N,n) = (n+ 1)N − (s −n), and thus

s(n) = s −n+ 1
n

s(n− 1)

for the desired sum. Hence s(n) =
(
s
n

)
s(0), and with s(0) =

(
r
m

)
we obtain the result s(n) =

(
r
m

)(
s
n

)
, as claimed.

Finite Summation.
The Gosper–Zeilberger algorithm can also be used to sum over a
specified range, as in the following example.
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Example. We want to compute sn(z) =
∑n
k=0

(
n+k
k

)
zk. Elimination

will not work, since
(
n+k
k

)
does not become eventually 0. Let us try

our new approach with S(N,n) = t0(n)+ t1(n)N . We obtain

H(n,k) = t0
(
n+ k
k

)
zk + t1

(
n+ 1 + k

k

)
zk

=
(
n+ k
k

)
zk

n+ 1

(
(n+ 1)t0 + (n+ 1 + k)t1︸ ︷︷ ︸

p(k)

)
,

H(n,k)
H(n,k− 1)

= p(k)
p(k−1)

n+k
k z , q(k) = (n+ k)z, r(k) = k ,

(n+ k+ 1)zf (k)− kf(k− 1) = (n+ 1)t0 + (n+ 1 + k)t1 .
The functional equation clearly has the solution f(k) = 1, t0(n) =
1, t1(n) = z − 1. So, S(N,n) = (z − 1)N + I is a recurrence oper-
ator, leading to Sn(z) = 1

1−zSn−1(z), and thus with S0(z) = 1
1−z to

Sn(z) = 1
(1−z)n+1 , when we sum over all k. Of course, we have known

this expression since Chapter 2, but now we want to compute the
finite sum sn(z). Gosper–Zeilberger tells us that

H(n,k) = S(N,n)
(
n+k
k

)
zk =

(
n+k
k

)
zk + (z − 1)

(
n+1+k
k

)
zk

(4)
= G(n,k+ 1)−G(n,k) ,

so let us compute the certificate G(n,k + 1). Proceeding as usual,
we obtain

G(n,k+ 1) = H(n,k)q(k+ 1)
p(k)

f (k) =
(
n+ k
k

)
zk+1n+ k+ 1

n+ 1

=
(
n+ k+ 1

k

)
zk+1 .

Summing equation (4) from k = 0 to k = n+ 1, we get

sn(z)+
(

2n+ 1
n+ 1

)
zn+1 + (z − 1)sn+1(z) = G(n,n+ 2)−G(n,0)

=
(

2n+ 2
n+ 1

)
zn+2 ,

hence
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sn+1(z) = 1
1 − z

[
sn(z)+ (1 − 2z)

(
2n+ 1
n

)
zn+1

]
,

or

sn(z) = 1
1 − z

[
sn−1(z)+ (1 − 2z)

(
2n− 1
n

)
zn
]
, s0(z) = 1 . (5)

We immediately see that sn(1
2) = 2sn−1(1

2), which produces the nice
sum

∑n
k=0

(
n+k
k

)
2−k = 2n. And we get a bonus out of (5). Multiplying

(5) by (1 − z)n, we obtain

(1−z)nsn(z) = (1−z)n−1sn−1(z)+(1−z)n−1(1−2z)
(

2n− 1
n− 1

)
zn .

Unwrapping this recurrence for (1−z)nsn(z), we obtain with some
easy manipulations the even nicer identity

(1 − z)n
n∑
k=0

(
n+ k
k

)
zk = 1 + 1 − 2z

2 − 2z

n∑
k=1

(
2k
k

)
(z(1 − z))k .

Exercises

4.21 Determine a recurrence for
∑n
k=0

1
k!(n−k)! and compute the sum.

4.22 Do the same for
∑n
k=0

(
n
k

)2
.

� 4.23 Compute
∑
k(−1)k

(
n−k
k

)
2n−2k, i.e., the value of the Chebyshev poly-

nomial at x = 2 .

4.24 What recurrence does the Gosper–Zeilberger algorithm produce for

s(n) =∑k

(
n
2k

)
?

* * *

� 4.25 Prove the identity

2n∑
k=0

(
k
n

)
zk = ( z

1 − z)
n

⎡⎣1 + z(1 − 2z)
n−1∑
j=0

(
2j + 1
j

)(
z(1 − z))j

⎤⎦
and derive

∑2n
k=0

(
k
n

)
(1

2)
k = 1 for all n . Hint: Use F(n, k) =

(
k
n

)
zk .

4.26 Find a recurrence satisfied by s(n) = ∑
k

n!
k!2k(n−2k)! . The recurrence

should look familiar; what does s(n) count?
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4.27 Re-prove Dixon’s identity using the Gosper–Zeilberger method.

� 4.28 Prove that
∑
k

(
n−1
k

)
n−k(k + 1)! = n, and give a combinatorial argu-

ment. Hint: Multiply by nn−1 and consider mappings from {1, . . . , n} into
itself.

4.29 We have looked at the sum
∑n
k=0

(
n
k

)−1
in Exercise 1.20. Re-prove

the recurrence given there by Gosper–Zeilberger. Hint: Prove on the way
n+2

(nk)
− 2n+2

(n+1
k )

= n−k
( n
k+1)

− n+1−k
(nk)

and sum over k.

4.30 Let s(n) = ∑
k≥0

(
2n−2k
n−k

)(
2k
k

)2
. Derive the recurrence n3s(n) =

8(2n− 1)(2n2 − 2n+ 1)s(n− 1)− 256(n− 1)3s(n− 2).

4.4 Hypergeometric Series

We have assembled a large repertoire of summation methods, and
they work almost mechanically, especially when binomial coeffi-
cients are involved. And some formulas, like the Vandermonde
identity, seem to crop up every other time, allowing us to simplify
a complicated expression. We discuss now a general framework in
which all summations with rational quotients of consecutive terms,
i.e., hypergeometric sequences, will find their place.

Definition. A general hypergeometric series is a power series in the
variable z with m+n parameters a1, . . . , am, b1, . . . , bn,

F
(
a1, . . . , am
b1, . . . , bn

;z
)
=
∑
k≥0

ak1 · · ·akm
bk1 · · ·bkn

zk

k!
, (1)

provided that the denominator is nonzero for all k.

Examples.
a. When m = n = 0, then F( ;z) =∑k≥0

zk
k! = ez. We could, of

course, also write F(1
1 ;z) = ez .

b. m = 1, n = 0. F(1 ;z) = F(1,1
1 ;z) =∑k≥0 zk = 1

1−z , and in general

F(a,11 ;z) =∑k≥0 ak
zk
k! =

∑
k≥0

(
a+k−1
k

)
zk = 1

(1−z)a .

c. m = 0, n = 1 . F(1 ;z) = F( 1
1,1 ;z) =∑k≥0

zk
k!2 .

d. m = 2, n = 1 . This is the most famous hypergeometric series

studied since Euler’s time: F(a,bc ;z) =∑k≥0
akbk

ck
zk
k! .
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As an example,

zF
(

1,1
2

;−z
)
= z

∑
k≥0

(−z)k
k+ 1

=
∑
k≥1

(−1)k−1

k
zk = log(1 + z) .

The Hypergeometric Setup.
Why do we call them hypergeometric series? Let tk be the k-th sum-
mand of F(z); then

tk+1

tk
= ak+1

1 · · ·ak+1
m

ak1 · · ·akm
· bk1 · · ·bkn
bk+1

1 · · ·bk+1
n

k!
(k+ 1)!

zk+1

zk

= (k+ a1)(k+ a2) · · · (k+ am)
(k+ b1)(k+ b2) · · · (k+ bn)

z
k+ 1

.

The quotient tk+1/tk is thus a rational function in k. Now, every
rational function p(k)/q(k) over C can be decomposed into linear
factors in the numerator and denominator. The −ai’s are the roots
of p(k), and the −bj ’s the roots of q(k). If k+ 1 does not appear in
the denominator, then we add it to both the numerator and denomi-
nator. There remains a constant, which shall be z. So the expression
(1) captures all series with hypergeometric terms in k.

Example. Let tk+1
tk

= k2+7k+10
4k2−1 . We have

tk+1

tk
= (k+ 2)(k+ 5)(k+ 1)
(k+ 1

2)(k− 1
2)(k+ 1)

(
1
4

)
,

and obtain ∑
k≥0

tk = t0F
(

2,5,1
1
2 ,−1

2

;
1
4

)
.

A note of caution: We must make sure that the denominators are
all nonzero. However, if this is not the case, one can often proceed
with some limiting process.

Example. Vandermonde convolution:

∑
k≥0

(
r
k

)(
s

n− k

)
=
(
r + s
n

)
(n ∈ N0) . (2)

With tk =
(
r
k

)(
s

n−k
)

we obtain
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tk+1

tk
= r − k
k+ 1

· n− k
s −n+ k+ 1

= (k− r)(k−n)
(k+ s −n+ 1)(k+ 1)

, t0 =
(
s
n

)
.

Interpreted as a hypergeometric series (1) this becomes(
s
n

)
F
( −r ,−n
s −n+ 1

; 1
)
=
(
r + s
n

)
(n ∈ N0) .

With a = −r , c = s −n+ 1 we can rewrite this as

F
(
a,−n
c

; 1
)
=
(−a+c+n−1

n

)
(
c+n−1
n

) =
(
a−c
n

)
(−c
n

) ,
obtaining the formula

F
(
a,−n
c

; 1
)
= (a− c)n

(−c)n = (c − a)n
cn

(n ∈ N0) . (3)

Specializations of (3) lead to a multitude of summation formulas
that have their root in the Vandermonde identity. All we have to
make sure is that the second parameter on top is a nonpositive
integer.

Examples. Consider
∑
k

(
n
k

)
/
(
m
k

)
, m ≥ n ≥ 0. We have

tk+1

tk
= n− k
k+ 1

· k+ 1
m− k = (k−n)(k+ 1)

(k−m)(k+ 1)
, t0 = 1 ;

hence

∑
k≥0

(
n
k

)
/
(
m
k

)
= F

(
1,−n
−m ; 1

)
= (m+ 1)n

mn = m+ 1
m−n+ 1

.

Let us next look at the sum
∑
k

(
n+k
2k

)(
2k
k

)
(−1)k
k+1 (m,n ∈ N0), which

we have computed in Section 3.2 by a rather lengthy argument via
generating functions. We quickly obtain

tk+1

tk
= (n+ k+ 1)(n− k)

(2k+ 2)(2k+ 1)
· (2k+ 2)(2k+ 1)
(k+ 1)(k+ 1)

· k+ 1
k+ 2

(−1)

= (k+n+ 1)(k−n)
(k+ 2)(k+ 1)

, t0 = 1 ;

hence
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∑
k≥0

(
n+ k

2k

)(
2k
k

)
(−1)k

k+ 1
= F

(
n+1,−n

2 ; 1
)
= (1 −n)n

2n

=
{

1 n = 0,
0 n > 0. (4)

Although the sum looks as if the Catalan numbers Ck were involved,
it is really Vandermonde in disguise.

The General Program.
The general approach is now clear: Take any (hypergeometric) sum-
mation formula, write it as a hypergeometric series, and specialize.

One particularly interesting candidate is the Pfaff–Saalschütz iden-
tity proved in the previous section:

∑
k

(
m− r + s

k

)(
n+ r − s
n− k

)(
r + k
m+n

)
=
(
r
m

)(
s
n

)
(m,n ∈ N0) .

In hypergeometric terms this becomes

tk+1

tk
= m− r + s − k

k+ 1
· n− k
r − s + k+ 1

· r + k+ 1
r + k−m−n+ 1

= (k−m+ r − s)(k−n)(k+ r + 1)
(k+ r − s + 1)(k+ r −m−n+ 1)(k+ 1)

,

t0 =
(
n+r−s
n

)(
r

m+n
)
.

Hence

F
(
r−m−s, r+1,−n
r+1−s, r−m−n+1 ; 1

)
=

(
r
m

)(
s
n

)
(

r
m+n

)(
n+r−s
n

) =
sn
(
m+n
n

)
(r −m)n

(
r−s+n
n

)
= sn

(r −m)n · (−m− 1)n

(s − r − 1)n
.

If we set a = r −m− s, b = r + 1, c = r + 1 − s, then we get on the
right-hand side s = b−c, −m−1 = a−c, r−m = a+b−c, s−r−1 =
−c. This gives the Pfaff–Saalschütz identity in the hypergeometric
setting:

F
(

a,b,−n
c,a+b−c−n+1 ; 1

)
= (a− c)n(b − c)n
(−c)n(a+ b − c)n

= (c − a)n(c − b)n
cn(c − a− b)n (n ∈ N0) . (5)
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The formula thus applies to any a1, a2, a3 = −n, b1, b2:

F
(
a1,a2,−n
b1,b2

; 1
)
= (a1 − b1)n(a2 − b1)n

(−b1)n(a1 + a2 − b1)n

= (b1 − a1)n(b1 − a2)n

bn1 (b1 − a1 − a2)n
, (6)

where n ∈ N0, b1 + b2 = a1 + a2 + a3 + 1 .

Example. Let us compute
∑
k≥0

(
n+k
2k

)(
2k
k

)
(−1)k
k+1+m (m,n ∈ N0) . We

obtain

tk+1

tk
= −(n+ k+ 1)(n− k)

(2k+ 2)(2k+ 1)
· (2k+ 2)(2k+ 1)
(k+ 1)(k+ 1)

· k+ 1 +m
k+ 2 +m

= (k+n+ 1)(k+ 1 +m)(k−n)
(k+ 2 +m)(k+ 1)(k+ 1)

, t0 = 1
m+ 1

,

and thus by (5),

∑
k≥0

(
n+ k

2k

)(
2k
k

)
(−1)k

k+ 1 +m = 1
m+ 1

F
(
n+1,m+1,−n

1,m+2 ; 1
)

= 1
m+ 1

nnmn

(−1)n(n+m+ 1)n

= (−1)n
mn

(m+n+ 1)n+1 ,

generalizing formula (4) from above.

Example. Now let us try something different. Obviously, the sum∑
k(−1)k

(
n
k

)2
is 0 for n odd, so let us assume n = 2m. The usual

procedure gives

tk+1

tk
= (n− k)2
(k+ 1)2

(−1) , t0 = 1 ,

and thus ∑
k
(−1)k

(
2m
k

)2

= F
(−2m,−2m

1 ;−1
)
. (7)

But so far we don’t know how to evaluate hypergeometric series at
z = −1. The following simple computation comes to our help. The
identity (1 − z)r (1 + z)r = (1 − z2)r gives by convolution
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n∑
k=0

(−1)k
(
r
k

)(
r

n− k

)
= (−1)n/2

(
r
n/2

)
[n even] ;

hence
2m∑
k=0

(−1)k
(
r
k

)(
r

2m− k

)
= (−1)m

(
r
m

)
.

For the left-hand side we obtain

tk+1

tk
= −r − k

k+ 1
2m− k

k+ r − 2m+ 1
, t0 =

(
r

2m

)
.

This gives

2m∑
k=0

(−1)k
(
r
k

)(
r

2m− k

)
=
(
r

2m

)
F
( −r ,−2m
r−2m+1 ;−1

)
= (−1)m

(
r
m

)
,

and thus Kummer’s identity

F
( −r ,−2m
r−2m+1 ;−1

)
= (−1)m

(
r
m

)
(
r

2m

) , m ∈ N0 . (8)

If we set r = 2m, then our sum becomes

n∑
k=0

(−1)k
(
n
k

)2

=
{
(−1)n/2

(
n
n/2

)
n even,

0 n odd.

A Transformation Formula.
We could go on like this for a long time; the database for hyper-
geometric identities is enormous and still growing. To finish let us
discuss the following useful reflection law:

1
(1 − z)aF

(
a,b
c

;
−z

1 − z
)
= F

(
a, c − b
c

;z
)
, c > 0 . (9)

For the left-hand side we get directly from the definition
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∑
k≥0

akbk

ck
(−z)k
k!

1
(1 − z)k+a =

∑
k≥0

akbk

ck
(−z)k
k!

∑
	≥0

(
a+ k+ 	 − 1

	

)
z	

=
∑
n≥0

zn
∑
k≥0

akbk

ck
(−1)k

k!

(
n+ a− 1
n− k

)

=
∑
n≥0

anzn

n!

⎛⎝∑
k≥0

bk(−n)k
ckk!

⎞⎠
=
∑
n≥0

F
(
b,−n
c

; 1
)
anzn

n!
,

and the result follows from the Vandermonde identity (3).

Example. If we set on the right-hand side of (9), z = −1, a = −r ,
b = r + 1, c = r − 2n+ 1, then (8) and (9) yield

(−1)n
(
r
n

)
(
r

2n

) = F
( −r ,−2n
r − 2n+ 1

;−1
)
= 2r F

( −r , r + 1
r − 2n+ 1

;
1
2

)
,

and thus the identity

∑
k≥0

(−r)k(r + 1)k

(r − 2n+ 1)k
1

2kk!
=
(−1)n

(
r
n

)
2r
(
r

2n

) ,

or ∑
k≥0

(−1
2
)k
(
r
k

)(
r+k
k

)
(
r+k−2n

k

) =
(−1)n

(
r
n

)
2r
(
r

2n

) for r ≥ 2n .

Taking n = 1, we obtain the special sum

r∑
k=0

(−1
2
)k
(
r
k

)(
r+k
k

)
(
r+k−2
k

) = 1
2r−1(1 − r) (r ≥ 2) .

Exercises

4.31 Show that the following identities all come from Vandermonde:

a.
∑
k≥0

(
n−k
m

)(
r
k−s
)
(−1)k = (−1)m+n

(
r−m−1
n−m−s

)
, m,n, s ∈ N0,

b.
∑
k≥0

(
m
n+k

)(
r+k
s

)
(−1)k = (−1)m+n

(
r−n
s−m

)
, m,n, s ∈ N0,
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c.
∑n
k=0

(
r+k
k

)
=
(
r+n+1
n

)
,

d.
∑n
k=0

(
k+r
k

)(
n−k+s
n−k

)
r
k+r =

(
r+s+n
n

)
(r , s fixed).

4.32 Compute
∑n
k=0

(
m
k

)(
n
k

)
k, m fixed. Since t0 = 0, you must make an

index shift.

� 4.33 Compute
∑n
k=0 k

(
m−k
m−n

)
, m ≥ n fixed.

4.34 Look at Exercise 4.4 and its solution, and translate it into a hyperge-
ometric series equation. What do you get?

� 4.35 Write Dixon’s identity (3) of Section 4.1 as a formula involving hy-
pergeometric series.

4.36 When you differentiate a general hypergeometric series F
(
a1,...,am
b1,...,bn ;z

)
you get another one, what is it?

� 4.37 Use the usual procedure to evaluate
∑n
k=0(−1)k

(
r
k

)(
r+n−k
n−k

)
s

s+n−k ,
s ≥ 0 .

4.38 Prove the identity F
(
a,b
c ;z

)
= (1−z)c−a−bF

(
c−a,c−b

c ;z
)

by applying
the reflection law (9) twice.

* * *

4.39 Prove
∑n
k=0

(
2n+1
2k+1

)(
m+k
2n

)
=
(

2m
2n

)
, m ∈ N fixed, using the identity of

Pfaff–Saalschütz.

4.40 Verify F
(

2a,2b
a+b+ 1

2
;z
)

= F
(

a,b
a+b+ 1

2
; 4z(1 − z)

)
by showing that both

functions satisfy the same differential equation

z(1 − z)F ′′(z)+ (a+ b + 1
2)(1 − 2z)F ′(z)− 4abF(z) = 0 .

Derive from this the identity F
(

2a,2b
a+b+ 1

2
; 1

2

)
= F

(
a,b

a+b+ 1
2
; 1
)

, due to Gauss.

� 4.41 We have noted that
∑
k>n

(
n+k
k

)
2−k = 2n in the previous section.

Translate the equation into hypergeometric series. How is it connected to
the previous exercise?

4.42 Prove the polynomial identity

∑m
k=0

(
m+r
k

)
xm−k =∑m

k=0(−1)k
(−r
k

)
(1 + x)m−k (m ∈ N0) .

Hint: Considered as polynomials in r both sides have degreem; findm+1
values where they agree.
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� 4.43 Use the previous exercise to show that∑m
k=0

(
m+r
k

)(
m−k
n

)
xm−n−k =∑m

k=0(−1)k
(−r
k

)(
m−k
n

)
(1 + x)m−n−k

and deduce from this that

F
(
a,−n
c ; 1 − z

)
= (a−c)n

(−c)n F
(

a,−n
a−n−c+1 ;z

)
.

4.44 Show that
∑
k≥0(−2)k (

2n
k )

2

(4n
k )

= (−1)n (
2n
n )
(4n

2n)
.

Hint: Use (8), and the previous exercise.

� 4.45 Prove the following variants of Vandermonde’s relation (3), where
N,n ∈ N0 :

a. F
(
−N

2 − 1
2 ,−N

2

n+ 1
2

; 1
)
= 2N (2n)!(n+N)!n!(2n+N)!

b. F
(
−N

2 + 1
2 ,−N

2
n+1 ; 1

)
= 2−N (2n+2N)!n!

(2n+N)!(n+N)! ,

c. F
(
−N

2 + 1
2 ,−N

2

−n−N+ 1
2

; 1
)
= 2N (n+N)!(2n+N)!(2n+2N)!n! .

4.46 Use the previous exercise to prove the following formulas,m,n, 	 ∈
N0 :
a.

∑
k

(
m
2k

)(
k
n

)
= 2m−2n−1

[(
m−n
n

)
+
(
m−n−1
n−1

)]
b.

∑
k

1
(m−n−2k)!(n+k)!(k−	)!4k = 2n−m (2m−2	)!

(m−n−2	)!(m−	)!(n+m)!

c.
∑
k(−1)k

(
m−1
k

)(
2m−2k−1
m+n−1

)
= 2m−n−1m+n

m

(
m
n

)
.
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Highlight: New Identities from Old

Hypergeometric functions have occupied a prominent place in an-
alysis and algebra at least since Euler’s time. Many of the great
names made an imprint, and the theory abounds with impressive
identities, some of them too long for a single line.

Among the recent developments, one idea stands out in its sim-
plicity and elegance—the method of WZ pairs, named after their
inventors Herb Wilf and Doron Zeilberger.

WZ Pairs.
Suppose we know or conjecture an identity of the form∑

k≥0

a(n,k) = s(n) .

Assuming s(n) ≠ 0 and setting F(n,k) = a(n,k)
s(n) we rewrite this as∑

k≥0

F(n,k) = 1 .

In other words, our task is to prove that
∑
k F(n,k) is a constant (in

this case = 1) independent of n.

Here is the idea: Suppose we can find another function G(n,k) such
that for all nonnegative integers n and k,

F(n+ 1, k)− F(n,k) = G(n,k+ 1)−G(n,k) (1)

holds. Then we are done, provided that for all n,

G(n,0) = 0 and lim
k→∞

G(n,k) = 0 . (2)

Indeed, summing (1) over all k we get∑
k≥0

F(n+ 1, k)−
∑
k≥0

F(n,k) = 0 ,

and thus
∑
k≥0 F(n,k) = constant for all n. It then remains to check

the sum for one value of n.

A pair (F,G) satisfying (1) is called a WZ pair, and G a mate for F .
We also know how to find G(n,k). Input F(n + 1, k) − F(n,k) as a
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function of k into Gosper’s algorithm, and output G(n,k+ 1) as an
indefinite sum. Note that when both F(n+1, k)/F(n,k) andG(n,k+
1)/G(n,k) are rational functions, then so is G(n,k)/F(n,k), since

G(n,k)
F(n,k)

= F(n+ 1, k)/F(n,k)− 1
G(n,k+ 1)/G(n,k)− 1

.

Hence we get the mate in the form G(n,k) = F(n,k)R(n,k), R(n,k)
rational.

Example. Let us look at Vandermonde’s identity

∑
k≥0

(
n
k

)(
m
k

)
=
(
n+m
n

)
, m ∈ N0 ,

that is,

F(n,k) =
(
n
k

)(
m
k

)
(
n+m
n

) .
The input

a(k) = F(n+ 1, k)− F(n,k) =
(
n
k

)(
m
k

)
(
n+m
n

) k(n+m+ 1)−m(n+ 1)
(n− k+ 1)(n+m+ 1)

returns the mate (check it!)

G(n,k) =
(
n
k−1

)(
m
k−1

)
(
n+m+1

n

) k− 1 −m
m+ 1

. (3)

Condition (2) is clearly satisfied, and with the single evaluation∑
k≥0 F(0, k) = 1 the proof is complete.

This is nice, and the method of WZ pairs can be used to furnish
quick verifications of practically all standard identities. The real
beauty, however, lies in the fact that it produces new identities
from old. We follow the informative (and entertaining) book A =
B by Petovšek, Wilf, and Zeilberger, and some clever variants by Ira
Gessel.
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The Companion Identity.
Suppose (F,G) is a WZ pair that satisfies (2). Is there also a natural
identity associated with G(n,k)? There is, and again it is surpris-
ingly simple. Suppose that in addition to (1) and (2), the following
condition holds:

For every k ≥ 0, the limit fk = lim
n→∞F(n,k) exists, and is finite. (4)

Summing (1) from n = 0 to n = N gives

F(N + 1, i)− F(0, i) =
N∑
n=0

G(n, i+ 1)−
N∑
n=0

G(n, i) ,

and with N →∞,

fi − F(0, i) =
∑
n≥0

G(n, i+ 1)−
∑
n≥0

G(n, i) .

Now we sum the last equation from i = 0 to i = k − 1, and obtain
the companion identity

k−1∑
i≡0

(
fi − F(0, i)

) = ∑
n≥0

G(n,k) (k ≥ 1) , (5)

since G(n,0) = 0 according to (2).

Example. Let us look at the Vandermonde pair (F,G) from above.
Clearly, F(0, i) = δ0,i, and

fi = lim
n→∞

(
n
i

)(
m
i

)
(
n+m
m

) = 0 for m > i ,

since the leading power in the numerator is ni, while it is nm in
the denominator. Replacing k by k+ 1 in (3), we get the companion
identity

∑
n≥0

(
n
k

)
(
n+m+1

n

) = m+ 1

(k+ 1)
(
m
k+1

) for m > k ≥ 0 ,

which according to Wilf–Zeilberger is not immediately deducible
from the known database of hypergeometric functions.
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As illustration, m = k+ 1 yields the infinite family of identities

∑
n≥0

(
n
k

)
(
n+k+2
n

) = k+ 2
k+ 1

(k ≥ 0) .

Typically, the original sum for the F(n,k)’s is finite, while the com-
panion identity has infinitely many terms.

The Gamma Function.
The real power of the method is displayed by the following clever
idea. In the definition (1) of WZ pairs there is no reason why n and
k shouldn’t be arbitrary complex numbers. So let us call (F,G) a
WZ pair if (1) is satisfied for n,k ∈ C. We can now manufacture
new WZ pairs out of a given pair (F,G). It is easily seen that with(
F(n,k),G(n,k)

)
the following are also WZ pairs:

a.
(
F(n+α,k+ β),G(n+α,k+ β)), α,β ∈ C,

b.
(
γF(n,k), γG(n,k)

)
, γ ∈ C,

c.
(
F(−n,k),−G(−n− 1, k)

)
,

d.
(
F(n,−k),−G(n,−k+ 1)

)
.

We will illustrate with an example how this approach opens the
door to a plethora of new hypergeometric identities. To do this we
need the classical gamma function, which extends the factorial n!
to complex numbers. The function

Γ(z) =
∞∫
0

tz−1e−tdt

is defined (by analytical continuation) for all complex numbers ex-
cept the negative integers. Using partial integration, one obtains

Γ(z + 1) = zΓ(z) , (6)

and so in particular, with Γ(1) = 1 ,

Γ(n+ 1) = n! for n ∈ N0 .

The identity (6) implies for the rising factorials

ak = Γ(a+ k)
Γ(a)

(k ∈ N0) , (7)
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and further, for k ∈ N0,

a−k = Γ(a− k)
Γ(a)

= 1
(a− 1) · · · (a− k) = (−1)k

1

(1 − a)k . (8)

Abbreviating

Γ
(
a1, . . . , as
b1, . . . , bt

)
=

s∏
i=1
Γ(ai)

t∏
j=1

Γ(bj)
,

a typical hypergeometric term can thus be expressed with the help
of the gamma function as

ak1 · · ·aks zk
bk1 · · ·bkt k!

= Γ
(

a1 + k, . . . , as + k,b1, . . . , bt
a1, . . . , as, b1 + k, . . . , bt + k,k+ 1

)
zk .

The following formula, called the Chu–Vandermonde identity, gen-
eralizes the terminating sum (3) of the last section from b = −n to
arbitrary b ∈ C:

F
(
a,b
c

; 1
)
= Γ

(
c, c − a− b
c − a, c − b

)
. (9)

Indeed, for b = −n the right-hand side becomes by (7),

Γ
(
c, c − a+n
c − a, c +n

)
= (c − a)n

cn
.

Using WZ pairs.
Let us start with the identity of Exercise 4.40,

F
(

2a,2b
a+ b + 1

2

;
1
2

)
= F

(
a,b

a+ b + 1
2

; 1

)
,

which we can rewrite by (9) as

∑
k≥0

(2a)k(2b)k

(a+ b + 1
2)kk!

(
1
2

)k
Γ
(
a+ 1

2 , b + 1
2

a+ b + 1
2 ,

1
2

)
= 1 .

So far, the running variable n does not appear. To get a candidate
for a WZ pair we make the substitution a � a − n, and obtain as
summand
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(2a− 2n)k(2b)k

(a−n+ b + 1
2)kk!

(
1
2

)k
Γ
(
a−n+ 1

2 , b + 1
2

a−n+ b + 1
2 ,

1
2

)
.

Using (8), the Γ -term can be written as (1
2 −a− b)n/(1

2 −a)n, times
a factor that depends only on a and b and can therefore be deleted.
Our candidate is thus

F(n,k) = (2a− 2n)k(2b)k

(a−n+ b + 1
2)kk!

(
1
2
)k
(1

2 − a− b)n
(1

2 − a)n
. (10)

Application of the Gosper algorithm gives the WZ mate

G(n,k) = F(n,k) 2k(a−n+ b + k− 1
2)

(2a−n+ k− 1)(2a−n+ k− 2)
. (11)

Condition (2) is satisfied when 2a − 2n is a negative integer. For
example, the choice a = −1

2 yields

F(n,k) = (−2n− 1)k(2b)k

(b −n)kk!
(
1
2
)k
(1 − b)n
n!

,

and
∑
k≥0 F(n,k) is independent of n. The case n = 0 yields∑

k≥0

F(0, k) = 1 − 2b
b

1
2
= 0 ,

and thus the identity

F
(

2b,−2n− 1
b −n ;

1
2

)
= 0 (n ∈ N0) .

Next consider the substitution k � k + c in (10). This gives, apart
from a constant factor,

(2a− 2n+ c)k(2b + c)k
(a−n+ b + 1

2 + c)k(1 + c)k
(

1
2

)k (1
2 − a− b)n
(1

2 − a)n

× Γ
(

2a− 2n+ c,a−n+ b + 1
2

a−n+ b + 1
2 + c,2a− 2n

)
.

Now replace k by −k, n by −n, and consider the specializations
b = a− 1

2 , c = 1−2a. This gives the new term apart from a constant
(using (8) again),



4.4 Hypergeometric Series 177

(2a− 1)k(−n)k
(−2n)kk!

2k
(1

2 + a)n
(2a)2n

(2n)!
n!

.

The product of the last two factors is (1
2)
n/an, which finally pro-

duces the candidate

F(n,k) = (2a− 1)k(−n)k
(−2n)kk!

2k
(1

2)
n

an
.

Gosper’s algorithm returns the mate

G(n,k) = −1
4

k(2n− k+ 1)
(n+ a)(n− k+ 1)

F(n,k) .

Now, F(n,k) = 0 for n + 1 ≤ k ≤ 2n, and G(n,k) = 0 for n + 2 ≤
k ≤ 2n+ 1; hence

n+1∑
k=0

F(n+ 1, k)−
n+1∑
k=0

F(n,k) =
n+1∑
k=0

(
F(n+ 1, k)− F(n,k))

=
n+1∑
k=0

(
G(n,k+ 1)−G(n,k))

= G(n,n+ 2)−G(n,0) = 0.

We conclude that
∑n
k=0 F(n,k) is independent of n for n ≥ 1.

Checking in addition n = 0 gives the formula

F
(

2a− 1,−n
−2n

; 2
)
= an

(1
2)n

(n ∈ N0) .

Let us close with an identity (one of more than 50 others) from
Gessel’s paper. It is derived from Dixon’s identity and should con-
vincingly demonstrate the power of WZ pairs: For n ≥ 3,

F

⎛⎝−3
2 ,1 − 6n

11 ,
1−n

2 ,−n
2 ,4 − 2n

−6n
11 ,

2−2n
3 , 3−2n

3 , 4−2n
3

;
16
27

⎞⎠ = 1
6

(−3
2)
n

(−1
2)n

.
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Notes and References

Hypergeometric functions have been the subject of intensive study
since Euler and Gauss. An excellent survey is the book by An-
drews, Askey, and Roy. The organization of this chapter and, in
particular, the treatment of more recent topics has greatly bene-
fited from lecture notes of Zeilberger and the very readable book by
Petovšek, Wilf, and Zeilberger. The references list the original pa-
pers on Gosper’s algorithm and the extension due to Zeilberger. See
also Chapter 5 in the book by Graham, Knuth, and Patashnik for
further examples and ramifications. The presentation of WZ pairs
in the highlight follows the articles by Wilf, Zeilberger, and Gessel.
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5 Sieve Methods

Sieve methods are used in essentially two variants. In order to de-
termine the size of a set we overcount the set, subtract from this
count, add again, subtract again, until finally the exact number of
elements is determined. The classical example is the principle of
inclusion–exclusion. In the second variant we sieve out the unwanted
elements through a suitable weighting. This is the fundamental idea
behind the involution principle.

5.1 Inclusion–Exclusion

Consider a finite set X and three subsetsA,B,C . To obtain |A∪B∪C|
we take the sum |A| + |B| + |C|. Unless A,B,C are pairwise disjoint,
we have an overcount, since the elements of A ∩ B, A ∩ C , B ∩ C
have been counted twice. So we subtract |A∩B| + |A∩C| + |B∩C|.
Now the count is correct except for the elements in A∩B∩C which
have been added three times, but also subtracted three times. The
answer is therefore

|A∪B∪C| = |A|+|B|+|C|−|A∩B|−|A∩C|−|B∩C|+|A∩B∩C| ,
or equivalently,

|X�(A∪ B ∪ C)| = |X| − |A| − |B| − |C| + |A∩ B|
+ |A∩ C| + |B ∩ C| − |A∩ B ∩ C| .

A B

C

X
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The following formula addresses the general case.

Let A1,A2, . . . ,An be subsets of X. Then

|X�
n⋃
i=1
Ai| = |X| −

n∑
i=1

|Ai|

+
∑
i<j

|Ai ∩Aj| ∓ · · · + (−1)n|A1 ∩ · · · ∩An| . (1)

For the proof we check how often an element x ∈ X is counted on
both sides. If x �∈ ⋃n

i=1Ai, then it is counted once on either side.
Suppose x ∈ ⋃n

i=1Ai, and more precisely, that x is in exactly m of
the sets Ai. The count on the left-hand side is 0, and on the right-
hand side we obtain

1 −
(
m
1

)
+
(
m
2

)
−
(
m
3

)
± · · · + (−1)m

(
m
m

)
= 0,

since m ≥ 1, and (1) follows.

The standard interpretation leads to the principle of inclusion–
exclusion. Suppose we are given a set X, called the universe, and
a set E = {e1, . . . , en} of properties that the elements of X may or
may not possess. Let Ai be the subset of elements that enjoy prop-
erty ei (and possibly others). Then |X�⋃ni=1Ai| is the number of
elements that possess none of the properties. Now consider a term
on the right–hand side of (1). Clearly, Ai1 ∩ · · · ∩ Ait is the set of
elements that possess the properties ei1 , . . . , eit (and maybe others).
Using the notation

N⊇T := #{x ∈ X : x possesses at least the properties in T} ,
(2)

N=T := #{x ∈ X : x possesses precisely the properties in T} ,

we arrive at the principle of inclusion–exclusion.

Principle of Inclusion–Exclusion. LetX be a set, and E = {e1, . . . , en}
a set of properties. Then

N=� =
∑
T⊆E

(−1)|T |N⊇T =
n∑
k=0

(−1)k
∑

T :|T |=k
N⊇T . (3)

The formula becomes even simpler when N⊇T depends only on the
size |T | = k. We can then write N⊇T = N≥k for |T | = k, and call E a
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homogeneous set of properties. We will see in a moment that in this
case N=T = N=k also depends only on the cardinality of T . Hence
for homogeneous properties, we have

N=0 =
n∑
k=0

(−1)k
(
n
k

)
N≥k . (4)

Example. One of the earliest examples concerns the computation
of Euler’s function ϕ(n) = #{d : 1 ≤ d ≤ n, gcd(d,n) = 1}.
Suppose n = pa1

1 · · ·patt is the prime decomposition of n. Let
X = {1,2, . . . , n}, and ei the property that pi divides d. Clearly,
N=� = ϕ(n), whereas N⊇T counts the integers ≤ n that are multi-
ples of

∏
ei∈T pi. Hence N⊇T = n∏

ei∈T pi
, and (3) gives

ϕ(n) = n−
t∑
i=1

n
pi

+
∑
i<j

n
pipj

∓ · · · + (−1)t
n

p1 · · ·pt

= n
⎛⎝1 −

t∑
i=1

1
pi

+
∑
i<j

1
pipj

∓ · · · + (−1)t
1

p1 · · ·pt

⎞⎠ ,
or

ϕ(n) = n
t∏
i=1

(
1 − 1

pi

)
. (5)

As an example, for n = 20 = 22 · 5, we get

ϕ(20) = 20 · 1
2
· 4

5
= 8 .

The numbers less than or equal to 20 relatively prime to 20 are
1,3,7,9,11,13,17,19. Note that (5) immediately implies ϕ(mn) =
ϕ(m)ϕ(n) when m and n are relatively prime.

Example. We know that the number of non-negative integer solu-
tions of x1 + x2 + · · · + xn = k is given by

(
n+k−1
k

)
=
(
n+k−1
n−1

)
.

How many of the solutions satisfy the additional restriction xi < s
for all i? No problem with inclusion–exclusion. The universe X is
the set of all solutions, and property i means that xi ≥ s. Clearly,
this set of properties is homogeneous, with N=0 the desired num-
ber. Take T = {1, . . . , j}; then N⊇T is the number of solutions with
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x1 ≥ s, . . . , xj ≥ s. Setting yi = xi − s (i ≤ j), yi = xi (i > j), this is
the same as the number of solutions of the system

y1 + · · · +yn = k− js ,

and the answer is therefore

N=0 =
n∑
j=0

(−1)j
(
n
j

)(
n+ k− js − 1

n− 1

)
. (6)

In particular, for s = 1, all xi must be 0, and (6) yields the binomial
identity

n∑
j=0

(−1)j
(
n
j

)(
n+ k− j − 1

n− 1

)
=
{

1 k = 0 ,
0 k > 0 .

Inclusion–exclusion leads to alternating sums, and whenever a sum
of the form

∑n
k=0(−1)k

(
n
k

)
ck is given it may be advantageous to

look for a proof via inclusion–exclusion, by interpreting ck as N≥k
for some set of homogeneous properties. Consider the sum

m∑
k=0

(−1)k
(
m
k

)(
n− k
r

)
(m ≤ r ≤ n) .

Since c0 = |X| =
(
n
r

)
, we take as universe the family of all r -subsets

R of an n-set. A little reflection shows that the following set of
properties will work. Let M = {a1, . . . , am} be a fixed m-set, and
E = {e1, . . . , em}, where property ei means that element ai is not
contained in R. Then N≥k =

(
n−k
r

)
, N=0 counts all r -subsets R with

M ⊆ R, and so

m∑
k=0

(−1)k
(
m
k

)(
n− k
r

)
=
(
n−m
r −m

)
.

Example. Here is another classical problem that is a bit more com-
plicated. At a long dinner table with seats numbered 1,2, . . . ,2n, n
couples take their places. In how many ways can they be seated so
that no couple sit next to each other? Let X be the set of all seatings;
thus |X| = (2n)!, and ei the property that the i-th couple sit side by
side. Clearly, this is again a homogeneous set of properties, and we
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are looking for N=0. Let |T | = k. In order to compute N⊇T , consider
the initial positions a1 < · · · < ak, where these k couples sit next
to each other. The ai’s are between 1 and 2n− 1 and ai,ai+1 differ
by at least 2 (since the next seat ai + 1 is occupied by the partner).
According to Exercise 1.8 there are

(
2n−k
k

)
possible choices for the

ai’s. Since the couples may be permuted in k! ways, the couples
interchanged, and the remaining seats taken arbitrarily, we obtain

N≥k =
(

2n− k
k

)
k!2k(2n− 2k)! = (2n− k)!2k . (7)

Inclusion–exclusion yields as the number of possible arrangements

N=0 =
n∑
k=0

(−2)k
(
n
k

)
(2n− k)! . (8)

Example. Recall the beautiful result that the number po(n) of
partitions of n into odd summands equals the number pd(n) of
partitions of n into distinct parts. Here is a new proof that uses
inclusion–exclusion in an unexpected way. Consider po(n) first.
Take as universe X = Par(n), and let ei be the property that the
even summand i appears (i ≤ n). How many partitions contain 2?
Clearly p (n − 2), since we may add 2 to any λ ∈ Par(n − 2). Simi-
larly, p (n − 6) counts the number of partitions that contain 2 and
4, and so on. Inclusion–exclusion yields therefore

po(n) = p (n)
− p (n− 2)− p (n− 4)− p (n− 6)− · · ·
+ p (n− 2 − 4)+ p (n− 2 − 6)+ p (n− 2 − 8)+ · · ·
− p(n− 2 − 4 − 6)− · · · .

To compute pd(n), we consider the properties ei, where ei means
that i appears at least twice. This gives

pd(n) = p (n)
− p (n− 1 − 1)− p (n− 2 − 2)− p (n− 3 − 3)− · · ·
+ p (n− 1 − 1 − 2 − 2)+ p (n− 1 − 1 − 3 − 3)+ · · · .

The computations agree in every row, and po(n) = pd(n) follows.
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A Generalization of Inclusion–Exclusion.
So far we have expressed N=� in terms of N⊇T as in (3). It is natural
to ask for a general formula expressing N=A in an analogous way.
From the definition (2) we immediately infer

N⊇A =
∑
T⊇A

N=T . (9)

Now we are going to prove that, conversely,

N=A =
∑
T⊇A

(−1)|T |−|A|N⊇T , (10)

which reduces to (3) for A = �. Note that this implies N=A = N=B for
|A| = |B| when E is a homogeneous set of properties, as announced
earlier. We prove the inversion relations (9), (10) for arbitrary set
functions.

Theorem 5.1. Let E be a finite set, and f ,g : 2E → K functions into
a field K of characteristic 0. Then

f(A) =
∑
T⊇A

g(T) (∀A) ⇐⇒ g(A) =
∑
T⊇A

(−1)|T |−|A|f(T) (∀A) . (11)

Proof. Assume the equality on the left-hand side. Then∑
T⊇A

(−1)|T |−|A|f(T) =
∑
T⊇A

(−1)|T |−|A|
∑
U⊇T

g(U)

=
∑
U⊇A

⎛⎝ ∑
U⊇T⊇A

(−1)|T |−|A|
⎞⎠g(U) .

If |U�A| = m, then the inner summand is
∑m
k=0(−1)k

(
m
k

)
= δm,0,

whence g(A) results. The other direction is proved in an analogous
fashion. �

Formula (10) is now an immediate consequence by considering the
functions g(A) = N=A, f(A) = N⊇A.

Corollary 5.2. Let X be a universe, E = {e1, . . . , en} a set of prop-
erties, and Np the number of elements in X that possess precisely p
properties. Then

Np =
n∑
k=p

(−1)k−p
(
k
p

) ∑
T :|T |=k

N⊇T . (12)
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In particular, if E is homogeneous, then

Np =
(
n
p

) n∑
k=p

(−1)k−p
(
n− p
k− p

)
N≥k . (13)

Proof. We have by (10),

Np =
∑

A:|A|=p
N=A =

∑
A:|A|=p

∑
T⊇A

(−1)|T |−|A|N⊇T

=
∑

T :|T |≥p
(−1)|T |−p

∑
A:|A|=p,T⊇A

N⊇T

=
n∑
k=p

(−1)k−p
(
k
p

) ∑
|T |=k

N⊇T ,

which in the homogeneous case is

n∑
k=p

(−1)k−p
(
k
p

)(
n
k

)
N≥k =

(
n
p

) n∑
k=p

(−1)k−p
(
n− p
k− p

)
N≥k . �

Example. How many permutations in S(n) have precisely p fixed
points? We set X = S(n), and let ei be the property that i is a fixed
point. Then E is clearly homogeneous with N≥k = (n − k)!, and so
by (13),

Np =
(
n
p

) n∑
k=p

(−1)k−p
(
n− p
k− p

)
(n− k)! =

(
n
p

)
(n− p)!

n−p∑
k=0

(−1)k

k!

=
(
n
p

)
Dn−p ,

which is also immediately clear from the definition of the derange-
ment numbers.

The equivalence in Theorem 5.1 uses inversion “from above,” since
we consider all sets T containing a given A. By taking complements,
the following inversion “from below” is easily seen.

Theorem 5.3. Let E be a finite set, and f ,g : 2E → K two functions.
Then

f(A) =
∑
T⊆A

g(T) (∀A) ⇐⇒ g(A) =
∑
T⊆A

(−1)|A|−|T |f(T) (∀A) . (14)
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Note that in the homogeneous case f(A) = uk, g(A) = vk for
|A| = k, (14) reduces to the binomial inversion formula considered
in Section 2.4.

An important generalization of inclusion–exclusion arises when the
elements of X are weighted. Suppose w : X → K is a weight-
function, which we extend to 2X , setting w(A) = ∑

x∈Aw(x) with
w(�) = 0. Now, for a set E = {e1, . . . , en} of properties, let

W⊇T :=
∑

{w(x) : x possesses at least the properties of T} ,
(15)

W=T :=
∑

{w(x) : x possesses precisely the properties in T} .

Thus for the constant weighting w = 1 we get W⊇T = N⊇T and
W=T = N=T . Since W⊇A = ∑

T⊇AW=T clearly holds, we obtain the
following general principle of inclusion–exclusion.

General Principle of Inclusion–Exclusion. Let X be a set, w : X →
K a weighting, and E = {e1, . . . , en} a set of properties. Then

W=� =
∑
T⊆E

(−1)|T |W⊇T =
n∑
k=0

(−1)k
∑

T :|T |=k
W⊇T , (16)

and in general

Wp =
n∑
k=p

(−1)k−p
(
k
p

) ∑
T :|T |=k

W⊇T , (17)

where Wp =∑w(x) over all x that possess precisely p properties.

Example. Let M = (mij) be an n × n-matrix. The permanent
of M is defined as per(M) = ∑

σ∈S(n)m1σ(1) · · ·mnσ(n); thus it
uses the same summands as the determinant, but without signs.
To compute per(M), we take as universe X the set of all map-
pings ρ from {1,2, . . . , n} into itself with the weighting w(ρ) =
m1ρ(1) · · ·mnρ(n). Let E = {e1, e2, . . . , en}, where ei ∈ E means that
i �∈ im(ρ) . Clearly, W=� = per(M), and it remains to find an expres-
sion for W⊇T . Now,

W⊇T =
∑
ρ
m1ρ(1) · · ·mnρ(n)
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over all mappings ρ with im(ρ) ⊆ {1, . . . , n}�T . Let us denote by
M|C the n × |C|-submatrix with column-set C , and by P(M|C) the
product of its row-sums. Then

W⊇T = P(M|{1, . . . , n}�T) ,
as is easily seen by expanding the right-hand side. According to (16)
we obtain

per(M) =
n∑
k=1

(−1)n−k
∑

T :|T |=k
P(M|T) . (18)

As examples, consider the all-1’s matrix Jn, and Jn − In, where In
is the identity matrix. Clearly, per(Jn) = n!, per(Jn − In) = Dn (de-
rangement number), which yields the identities

n! =
n∑
k=1

(−1)n−k
(
n
k

)
kn ,

Dn =
n∑
k=1

(−1)n−k
(
n
k

)
(k− 1)kkn−k .

Probability Theory.
A natural setting for inclusion–exclusion is probability theory. This
just means that we divide all terms by |X|, and consider all elements
of X equally likely. For example, the probability that x possesses all
properties in T is N⊇T

|X| . Let X and E = {e1, . . . , en} be as before, and
consider the random variable Z : X → {0,1, . . . , n} counting the
number of properties. If we set σk = 1

|X|
∑
T :|T |=k N⊇T , (12) becomes

Prob(Z = p) =
n∑
k=p

(−1)k−p
(
k
p

)
σk . (19)

For the expectation E(Z) =∑np=0p Prob(Z = p) we thus compute

E(Z) =
n∑
p=0

p
n∑
k=p

(−1)k−p
(
k
p

)
σk =

n∑
k=0

k∑
p=1

(−1)k−pp
(
k
p

)
σk

=
n∑
k=1

(−1)k−1kσk
k∑
p=1

(−1)p−1

(
k− 1
p − 1

)

=
n∑
k=1

(−1)k−1kσk
k−1∑
p=0

(−1)p
(
k− 1
p

)
.
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The inner sum is 0 for k ≥ 2, and 1 for k = 1, and we obtain

E(Z) = σ1 . (20)

Of course, this can also be seen by considering the indicator variable
Zi(x) = 1 if x possesses property ei, and 0 otherwise. Then E(Zi) =
Prob(x has i) = N⊇{i}

|X| , and linearity of expectation implies

E(Z) =
n∑
i=1

E(Zi) = σ1 .

Similarly, the variance Var(Z) = E(Z2)−E(Z)2 is quickly computed
to

Var(Z) = σ1 + 2σ2 −σ2
1 . (21)

Example. With n couples sitting down at a table with 2n seats,
what is the expected number of couples that sit next to each other?

According to (7), σk =
(
n
k

)
(2n−k)!2k
(2n)! , and thus

E(Z) = σ1 = n(2n− 1)!2
(2n)!

= 1 ,

which may come as a mild surprise.

Inclusion–exclusion has, however, its drawbacks. If we want to com-
pute Prob(Z = 0) = N=0

|X| , we have to consider in principle 2n

terms. Number theorists have developed ingenious methods to ob-
tain good bounds, considering only a small number of terms in (19).
Let us just quote one result from probability theory, Chebyshev’s
inequality: For a > 0,

Prob(|Z − E(Z)| ≥ a) ≤ VarZ
a2

.

In particular, in our case

Prob(Z = 0) ≤ Prob(|Z − E(Z)| ≥ E(Z)) ≤ VarZ
E(Z)2

,

which by (20) and (21) becomes

Prob(Z = 0) ≤ σ1 + 2σ2

σ2
1

− 1 .
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Exercises

5.1 How many numbers less than one million are not of the form x2 or
x3 or x5?

5.2 Derive the formula for the Stirling numbers

Sn,r = 1
r !

∑r
k=0(−1)r−k

(
r
k

)
kn

using inclusion–exclusion.

� 5.3 Obtain a summation formula for the number of permutations in
S(n) with no cycles of length 	. Verify your answer, using the composi-
tion formula of Section 3.3.

5.4 Evaluate each sum by an inclusion–exclusion argument and check it
using generating functions:

a.
∑n
k=1(−1)kk

(
n
k

)
,

b.
∑n
k=0(−1)k

(
n
k

)
2n−k,

c.
∑n
k=0(−1)k

(
n
k

)(
n−k
m−k

)
,

d.
∑n
k=0(−1)k

(
n
k

)(
n+k+r−1

r

)
.

5.5 Prove the following identities:

a.
∑n
k=p(−1)k−p

(
2n−k
n

)(
n−p
k−p

)
=
(
n
p

)
,

b.
∑n
k=p(−1)k−p

(
k
p

)(
n
k

)
2n−k =

(
n
p

)
.

� 5.6 Show that the number of permutations in S(n) with an even number
of fixed points is always greater than those with an odd number, for
n ≥ 4.

5.7 How many integer solutions x1 + x2 + x3 + x4 = 30 exist with the
restriction −10 ≤ xi ≤ 20?

5.8 Each of nmen checks a hat and an umbrella when entering a restau-
rant. When they leave they are given a hat and an umbrella at random.
What is the probability that no one gets his own hat or umbrella?

� 5.9 With the notation as in (12), prove

n∑
p=0

Npxp =
n∑
k=0

(x − 1)kSk, where Sk =
∑

T :|T |=k
N⊇T .

5.10 What is the probability that σ ∈ S(n) has exactly p fixed points
when n →∞?

* * *
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� 5.11 Color the integers 1 to 2n red or blue in such a way that if i is red
then i− 1 is red too. Use this to prove that

n∑
k=0

(−1)k
(

2n− k
k

)
22n−2k = 2n+ 1 ,

and verify it using generating functions. Use m + 1 colors to derive the
identity

∑
k≥0

(−1)k
(
n− k
k

)
mk(m+ 1)n−2k = mn+1 − 1

m− 1
(m ≥ 2) .

5.12 Set Sk =
∑
T :|T |=k N⊇T in formula (3); thus N=� =

∑n
k=0(−1)kSk. Prove

the Bonferroni inequalities:
a. N=� −

∑r
k=0(−1)kSk ≥ 0 for r odd,

b. N=� −
∑r
k=0(−1)kSk ≤ 0 for r even.

Hint: Show first that Sk =
∑n
p=k

(
p
k

)
Np .

5.13 Prove kSk ≤ (n− k+ 1)Sk−1 with Sk as in the previous exercise, and
sharpen this to kSk ≤ Sk−1 if Sk+1 = 0.

� 5.14 Determine the number of seatings of n couples at a table of length
2n as in (8), with no couple sitting side by side, but with the additional
restriction that men and women take alternate seats.

5.15 The ménage problem of Lucas asks for the number of seatings as in
the previous problem, but with the 2n persons sitting around a circular
table. Determine this number.

5.16 Consider an n × n-chessboard colored white and black as usual.
The number of ways that n non-attacking rooks can be placed is clearly
n!. Determine the number of ways of placing n non-attacking rooks on
the board such that k of them are placed on a white square and n − k
on a black square. Hint: Interpret the condition “white” or “black” as a
restriction on the associated permutation.

5.17 Galileo problem. Let G(n, s) be the number of different outcomes
after throwing n distinguishable dice, summing to s. Show that

G(n, s) =
r∑
k=0

(−1)k
(
n
k

)(
s − 6k− 1
n− 1

)
, r =

⌊s −n
6

⌋
.

� 5.18 Let C(n, k, s) be the number of k-subsets of {1,2, . . . , n} that contain
no run of s consecutive integers. Show that

C(n, k, s) =
�k/s	∑
i=0

(−1)i
(
n− k+ 1

i

)(
n− is
n− k

)
.
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Hint: Use formula (6).

5.19 Let D(n,k, s) be the number of k-subsets of {1, . . . , n} in which any

two numbers are at least s + 1 apart. Prove D(n,k, s) =
(
n−(k−1)s

k

)
, and

show further that when 1, . . . , n are arranged around a circle, this number

is n
n−ks

(
n−ks
k

)
.

5.20 Brun’s sieve: Let f : {1, . . . , n} → N0 be any function, and set T =
{T ⊆ {1, . . . , n} : |T ∩ {1, . . . , k}| ≤ 2f(k) for all k}. Prove that N=� ≤∑
T∈T (−1)|T |N⊇T .

� 5.21 Coupon collector’s problem. A company produces s series of n
coupons, and puts one coupon in each of sn packages. A customer col-
lects r packages. What is the probability that he gets a complete set of n
different coupons? What is the expected number of different coupons?

5.22 Letϕ(m) be Euler’sϕ-function, andn an integer that is greater than

m−ϕ(m). Prove that
∑n
k=1(−1)k

(
n
k

)
km is divisible by m. Hint: Interpret

the sum.

� 5.23 Let the natural number n have t distinct prime divisors p1, . . . , pt .
Prove that

∑
k2 = n2

3 ϕ(n) + (−1)t
6 p1 · · ·ptϕ(n), where the sum extends

over all k, 1 ≤ k ≤ n, that are relatively prime to n. Find a similar formula
for

∑
k3. Hint: Use a weighting.

5.24 A λ-coloring of a graph G = (V , E) is a mapping c : V → {1,2, . . . , λ}
such that c(u) ≠ c(v) if {u,v} ∈ E. Use inclusion–exclusion to prove
that the number χ(λ) of λ-colorings is given by χ(λ) =∑|V |

k=0 akλ
k, where

ak =
∑|E|
i=0(−1)iN(i, k), and N(i, k) is the number of spanning subgraphs

with i edges and k connected components. What is a|V |, a|V |−1, a1 for
simple graphs?

5.2 Möbius Inversion

A far-reaching generalization of inclusion–exclusion is provided by
inversion on posets. Let P< be a poset. We call P< locally finite if
every interval [a,b] := {x ∈ P : a ≤ x ≤ b} is finite. Examples are
N or Z with the natural order, the poset B(S) of all finite subsets
of a set S ordered by inclusion, or the divisor lattice D on N with
divisibility m | n as ordering.

A convenient way to represent a poset P graphically is to draw P
as a graph with the relation < going upward, and where we include
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only the covering relations a <· b as edges. We say that b covers a if
[a,b] = {a,b}. The other relations are then induced by transitivity.

Example. The picture shows the interval [1,60] in D.

12

60

20 30

10 15

53

1

2

4 6

For a locally finite poset P we define the incidence algebra of P over
a field K of characteristic 0 as

A(P) = {f : P2 → K : x �≤ y �⇒ f(x,y) = 0} .

With the usual addition and scalar multiplication, A(P) becomes a
vector space. Next we define the convolution product f ∗ g by

(f ∗ g)(a,b) =
∑

a≤x≤b
f (a,x)g(x,b) for a ≤ b , (1)

and (f ∗g)(a,b) = 0 if a �≤ b. By the assumption of local finiteness,
the product in (1) is well-defined.

It is a routine matter to verify that the convolution product is asso-
ciative, and has the Kronecker delta

δ(x,y) =
{

1 x = y,
0 x ≠ y,

as two-sided identity. The question when f ∈ A(P) has a multiplica-
tive inverse is easily answered.

An element f ∈ A(P) has a (unique) two-sided inverse f−1 if and
only if f(x,x) ≠ 0 for all x ∈ P .

If f has an inverse f−1, then f(x,x)f−1(x,x) = δ(x,x) = 1, and
thus f(x,x) ≠ 0 for all x. Conversely, let f(x,x) ≠ 0 for all x ∈ P .
We define the left inverse inductively by
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f−1(x,x) = 1
f(x,x)

,

f−1(x,y) = 1
f(y,y)

⎛⎝− ∑
x≤z<y

f−1(x, z)f (z,y)

⎞⎠ .
In the same way the existence of a right inverse is proved, and that
the two inverses are the same follows from associativity.

Now consider the function ζ ∈ A(P) defined by

ζ(x,y) =
{

1 if x ≤ y,
0 if x �≤ y .

Then ζ is called the zeta-function of P ; ζ is obviously invertible.

Definition. The inverse μ = ζ−1 ∈ A(P) is called the Möbius func-
tion of P .

The origin of the names zeta and Möbius function will be shortly ex-
plained. The following proposition is immediate fom (1), and could
be alternatively used as definition for the Möbius function.

Proposition 5.4. Let P be a locally finite poset. Then the Möbius func-
tion satisfies

μ(a,a) = 1 (a ∈ P),
(2)

μ(a,b) = −
∑

a≤z<b
μ(a, z) = −

∑
a<z≤b

μ(z,b) (a < b) .

Example. In the following poset the numbers next to the elements
a denote μ(0, a), where 0 is the minimal element

0

−1

1

−1

−1

2

1

−1−1

1

The main result of this section generalizes Theorems 5.1 and 5.3 of
the previous section to arbitrary posets.
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Theorem 5.5 (Möbius Inversion). Let P be a locally finite poset, and
f ,g : P → K. Then

(i) Inversion from below:

f(a) =
∑
x≤a

g(x) (∀a ∈ P)⇐⇒

g(a) =
∑
x≤a

f(x)μ(x,a) (∀a ∈ P) .

(ii) Inversion from above: (3)

f(a) =
∑
x≥a

g(x) (∀a ∈ P)⇐⇒

g(a) =
∑
x≥a

f(x)μ(a,x) (∀a ∈ P) .

In (i) we assume the existence of a minimum element 0 in P , and in
(ii) of a maximum element 1.

Proof. Set f(0, a) = f(a), and f(x,y) = 0 for x ≠ 0, and simi-
larly g(0, a) = g(a), g(x,y) = 0 for x ≠ 0. The left-hand side in
(i) is then equivalent to f = g ∗ ζ. This, in turn, is equivalent to
g = f ∗μ, which is precisely the right-hand side. The proof of (ii) is
analogous, setting f(a,1) = f(a), g(a,1) = g(a) . �

Difference Calculus.
Consider a chain of length n, Cn = {0 < 1 < · · · < n}. Formula (2)
immediately implies for the Möbius function of Cn ,

μ(i, j) =

⎧⎪⎨⎪⎩
1 j = i,

−1 j = i+ 1,
0 j ≥ i+ 2 .

(4)

Inversion from below gives

f(m) =
m∑
k=0

g(k) (∀m) ⇐⇒ g(m) = f(m)− f(m− 1) (∀m) ,

which is, of course, just telescoping. Let us look at (4) from an op-
erator standpoint. It is convenient to end the summation at n − 1,
that is,
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f(n) =
n−1∑
k=0

g(k) (∀n)⇐⇒ g(n) = f(n+ 1)− f(n) (∀n) . (5)

To f(x) we associate the (forward) difference operator Δf(x) =
f(x + 1)− f(x), and set∑

g(x) = f(x)⇐⇒ Δf(x) = g(x) (6)

if f ,g are related by (5).

Hence we may regard Σ and Δ as the discrete analogues of indefi-
nite integration and derivative. As in calculus, we can now compute
definite sums, since

b∑
k=a

g(k) =
b∑
k=a

(
f(k+ 1)− f(k)) = f(b + 1)− f(a) .

To calculate a sum we may therefore proceed as follows. Take an
indefinite sum, and compute

b∑
k=a

g(k) =
b+1∑
a
g(x) = f(x)

∣∣∣b+1

a
= f(b + 1)− f(a) . (7)

Beware that the upper limit is b + 1.

To make use of this idea we need a list of indefinite sums. For ex-
ample,

Δxn = (x + 1)n − xn = (x + 1)xn−1 − xn−1(x −n+ 1)

= nxn−1 ,

hence ∑
xn = xn+1

n+ 1
(n ≥ 0) . (8)

The falling factorials thus play the role of xn in our difference cal-

culus. We would like to extend (8) to negative n. From x3

x2 = x − 2,
x2

x1 = x − 1, x
1

x0 = x, it is plausible to set x0

x−1 = 1
x−1 = x + 1, and

hence to define x−1 = 1
x+1 , and in general

x−n = 1
(x + 1) · · · (x +n) (n > 0) . (9)
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It is an easy matter to verify that with (9), we have Δxn = nxn−1

for all n ∈ Z, and thus

∑
xn = xn+1

n+ 1
(n ≠ −1) . (10)

And what is
∑
x−1 ? From x−1 = 1

x+1 = f(x + 1)− f(x), we obtain

f(x) = 1 + 1
2 + · · · + 1

x = Hx , or

∑
x−1 = Hx . (11)

The harmonic function Hx is thus the discrete analogue to the log-
arithm, and this is one reason why Hn appears in many summation
formulas.

Example. Suppose we want to compute
∑n
k=0 k3.

From x3 =∑3
k=0 S3,kxk = x3 + 3x2 + x1 results

n∑
k=0

k3 =
n+1∑

0

x3 =
n+1∑

0

x3 + 3
n+1∑

0

x2 +
n+1∑

0

x1

= x4

4

∣∣∣n+1

0
+ 3

x3

3

∣∣∣n+1

0
+ x2

2

∣∣∣n+1

0

= (n+ 1)n(n− 1)(n− 2)
4

+ (n+ 1)n(n− 1)+ (n+ 1)n
2

=
(
(n+ 1)n

2

)2

.

There is also a rule for partial summation. Writing

Δ
(
u(x)v(x)

) = u(x + 1)v(x + 1)−u(x)v(x)
= u(x + 1)v(x + 1)−u(x)v(x + 1)

+u(x)v(x + 1)−u(x)v(x)
= (Δu(x))v(x + 1)+u(x)(Δv(x)) ,

we obtain ∑
uΔv = uv −

∑
(Δu)Tv , (12)

where Tv(x) = v(x + 1) is the translation operator.
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Example. We have proved in Section 3.2 the formula
∑n
k=1Hk =

(n + 1)(Hn+1 − 1). Let us evaluate the general sum
∑n
k=1

(
k
m

)
Hk.

From the Pascal recurrence
(
x+1
m+1

)
=
(
x
m

)
+
(

x
m+1

)
follows Δ

(
x

m+1

)
=(

x
m

)
or
∑(x

m

)
=
(

x
m+1

)
. If we set u(x) = Hx , v(x) =

(
x
m

)
, then

partial summation yields

n∑
k=1

(
k
m

)
Hk =

n+1∑
1

(
x
m

)
Hx =

(
x

m+ 1

)
Hx
∣∣∣n+1

1
−
n+1∑

1

1
x + 1

(
x + 1
m+ 1

)

=
(

x
m+ 1

)
Hx
∣∣∣n+1

1
− 1
m+ 1

n+1∑
1

(
x
m

)

=
(

x
m+ 1

)
Hx
∣∣∣n+1

1
− 1
m+ 1

(
x

m+ 1

)∣∣∣n+1

1

=
(
n+ 1
m+ 1

)(
Hn+1 − 1

m+ 1

)
for m ≥ 0 .

Möbius Function.
Let us return to the general case. In order to apply Möbius inversion
on the poset P we must be able to compute the Möbius function
efficiently. There are many deep results; let us just collect some
basic facts. First it is clear that μ(a,b) = μ(c,d) if the intervals
[a,b] and [c,d] are isomorphic posets. Consider next a product
P = P1 × P2 of two posets. This means that

(a,b) ≤
P
(c,d) ⇐⇒ a ≤

P1
c and b ≤

P2
d .

Claim. μ
(
(a,b), (c,d)

) = μ1(a, c)μ2(b,d), where μi is the Möbius
function of Pi .

If a = c, b = d, there is nothing to prove, so assume without loss of
generality b < d. By (2) and induction, we have
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μ
(
(a,b), (c,d)

) = −
∑

(a,b)≤(x,y)<(c,d)
μ
(
(a,b), (x,y)

)
= −

∑
b≤y<d

μ
(
(a,b), (c,y)

)
−

∑
a≤x<c

∑
b≤y≤d

μ
(
(a,b), (x,y)

)

= μ1(a, c)

⎛⎝− ∑
b≤y<d

μ2(b,y)

⎞⎠
−

∑
a≤x<c

μ1(a,x)

⎛⎝ ∑
b≤y≤d

μ2(x,y)

⎞⎠
= μ1(a, c)μ2(b,d) ,

since the last sum is 0 because of b < d .

Suppose P and Q are finite posets with minimum and maximum el-
ements 0P ,1P , and 0Q,1Q, respectively. Then we abbreviate μ(P) =
μP(0P ,1P ), and similarly μ(Q) = μ(0Q,1Q). By what we just proved,

μ(P ×Q) = μ(P)μ(Q) . (13)

Examples. Suppose C = Ck1 × · · · × Ckt is a product of chains of
lengths k1, . . . , kt ≥ 1. Then by (4) and (13),

μ(C) =
{
(−1)t if k1 = · · · = kt = 1,
0 if ki ≥ 2 for some i . (14)

Consider the Boolean poset B(n) of all subsets of an n-set S, or-
dered by inclusion. Then B(n) = C1 × · · · × C1, as is easily seen
via the characteristic vector, and thus μ

(
B(n)

) = (−1)n. More pre-
cisely, for A ⊆ T ⊆ S we have [A,T] = {A ⊆ U ⊆ T} � B(t), where
t = |T�A|, and hence

μ(A,T) = (−1)|T |−|A| .

Möbius inversion from above in the Boolean poset reduces thus pre-
cisely to Theorem 5.1, and similarly, inversion from below yields
Theorem 5.3.

Let us consider next the divisor lattice D, and suppose 	 | m
with m

	 = pk1
1 · · ·pktt being the decomposition into prime pow-

ers. A moment’s thought shows that [	,m] � Ck1 × · · · × Ckt . In



5.2 Möbius Inversion 199

the example [1,60] from above we have 60 = 22 · 3 · 5, and thus
[1,60] � C2 × C1 × C1. In general, equation (14) gives

μ(	,m) =

⎧⎪⎨⎪⎩
1 if 	 =m,
(−1)t if m	 = p1 · · ·pt, pi distinct primes,
0 otherwise .

(15)

At this point it is convenient to introduce the Möbius function μ(n)
from number theory:

μ(n) =

⎧⎪⎨⎪⎩
1 n = 1,
(−1)t if n = p1 · · ·pt, pi distinct primes,
0 otherwise .

(16)

Hence we have μ(	,m) = μ(m	 ) for 	 |m.

Remark. This connection is the origin of the name Möbius func-
tion, and the term zeta-function is also borrowed from number the-
ory. We may relate a certain subalgebra of the incidence algebra ofD

to so-called Dirichlet series, mapping f ∈ A(D) to
∑
n≥1

f(n)
ns , where

f(n) = f(	,m), m	 = n, and s is a complex variable. Thus ζ ∈ A(D)
is associated with the famous Riemann ζ-function ζ(s) = ∑

n≥1
1
ns

and μ with
∑
n≥1

μ(n)
ns . The relation μ = ζ−1 then translates into

ζ(s)−1 = ∑
n≥1

μ(n)
ns , as can be formally proved by comparing coef-

ficients.

Example. Consider a finite field K = GF(q) with q elements. A
basic result of algebra states that

xq
n − x =

∏
f(x) ,

where f(x) runs through all irreducible polynomials over GF(q)
with leading coefficient 1, and degree d, d | n . Let Ud be the number
of these irreducible polynomials of degree d. Then

qn =
∑
d|n
dUd ,

since every polynomial of degree d contributes d roots of xqn − x.
Möbius inversion over [1, n] thus yields

Un = 1
n

∑
d|n
μ(d)q

n
d .
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For q = 2, n = 3, we obtain

U3 = 1
3
[23 − 2] = 2 ,

with the polynomials x3 + x2 + 1 and x3 + x + 1.

Möbius inversion sometimes provides a convenient way to evaluate
determinants. Let P = {a1, . . . , an} be a lower semilattice. That is,
P is a poset, and to every pair ai,aj there exists a unique maximal
element ai ∧ aj ≤ ai,aj . Let f ,g : P → K be functions with f(a) =∑
x≤a g(x) for all a ∈ P ,and denote by F = (fij) the n × n-matrix

with fij = f(ai ∧ aj). Then

detF = g(a1)g(a2) · · ·g(an) . (17)

For the proof let G = (gij) be the diagonal matrix with gii = g(ai),
and Z = (zij) with

zij =
{

1 ai ≤ aj,
0 ai �≤ aj. .

We have ZTGZ = F , since

(ZTGZ)i,j =
n∑
k=1

n∑
	=1

zkigk	z	j =
n∑
k=1

zkigkkzkj

=
∑
ak≤ai
ak≤aj

g(ak) =
∑

ak≤ai∧aj
g(ak) = f(ai ∧ aj) = fij .

Now, detZ = 1 (clear?), and it follows that

detF = detG = g(a1) · · ·g(an).

Hence whenever we are able to invert f(a) = ∑
x≤a g(x), we can

read off detF from (17).

Exercises

5.25 Prove associativity of the convolution product ∗.

5.26 Let η ∈ A(P) be defined by η = ζ −δ. Show that ηk(a, b) counts the
numbers of chains from a to b of length k. Determine ηk for the chain
Cn and the Boolean poset B(n).
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� 5.27 Show that μ = ∑
k≥0(−1)kηk in A(P), and apply this to the posets

Cn and B(n).

5.28 Interpret ζk(a, b) for a poset P , and compute ζk for Cn and B(n).

5.29 Show that the incidence algebra A(P) is commutative if and only if
P is an antichain, that is, there are no relations in P .

5.30 Compute the Möbius function for the poset

n n′

2
1

0

1′
2′

...3 3′

that is, i < j, i < j′, i′ < j, i′ < j′, if i < j as natural numbers.

� 5.31 Interpret ϕ(n) = n − ∑i
n
pi +

∑
i<j

n
pipj ∓ · · · in the poset D, and

derive n =∑d|nϕ(d) with Möbius inversion.

5.32 Let Fx be the Fibonacci function. Show that ΔFx = Fx−1, and re-prove∑n
k=0 Fk = Fn+2 − 1.

5.33 Show that
∑
cx = cx

c−1 (c ≠ 1), and use this to evaluate
∑n
k=0 k2k and∑n

k=0 k22k.

� 5.34 Evaluate
∑n−1
k=1

Hk
(k+1)(k+2) with partial summation.

5.35 Show that
∑
k≥0 ηk(a, b) = 1

2δ−ζ (a, b), a ≤ b, where η is defined as
in Exercise 5.26, and apply this to the posets Cn and B(n).

* * *

� 5.36 Prove μr = ∑
k≥0(−1)k

(
r+k−1
k

)
ηk in A(P), and deduce from this the

following identities:

a.
∑
k(−1)n−k

(
r+k−1
k

)
k!Sn,k = rn, b.

∑
k(−1)k

(
r+k−1
k

)(
n−1
k−1

)
= (−1)n

(
r
n

)
.

5.37 Let L(n, q) be the poset of all subspaces of an n-dimensional vector
space over the finite field GF(q). Prove μ(L(n, q)) = (−1)nq(

n
2). Hint: Use

Exercise 1.74.

� 5.38 Use the previous exercise to compute the number of surjective linear
transformations from an n-dimensional vector space to an r -dimensional
vector space, both over GF(q).

5.39 Prove that the number of n×m-matrices over GF(q) with rank r is
given by
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[
m
r

]
q

r∑
k=0

(−1)r−k
[
r
k

]
q
qnk+(

r−k
2 ) .

� 5.40 Let S be an n-set. The set Π(S) of all partitions becomes a poset with
the refinement relation. That is, π ≤ σ if any block of π is contained in
a block of σ . Compute μ(Π(S)). Hint: For a map h : S → X let ker(h) be
the partition of S induced by the pre-images. Define g : Π(S) �→ R[x] by
g(π) = #{h ∈ Map(S,X) : ker(h) = π}, where X is an x-set, and consider
g(0), where 0 is the minimum element in Π(S).

5.41 The number 15 can be written in four ways as a sum of consecutive
integers: 15 = 8+ 7 = 6+ 5+ 4 = 5+ 4+ 3+ 2+ 1. Compute the number
f(n) of these representations for arbitrary n.

Hint: Consider
∑	
k x = 1

2(	
2 − k2) = 1

2(	 − k)(	 + k− 1).

5.42 Compute
∑n
k=0(−1)k/

(
n
k

)
with the difference calculus.

5.43 Determine
∑n
k=1(−1)k

(
n
k

)
Hk with partial summation. The result is

very simple. Deduce with binomial inversion a new formula for Hn.

� 5.44 The sorting algorithm Quicksort has an average running time Qn
observing the recurrence Qn = (n − 1) + 1

n
∑n
k=1(Qk−1 +Qn−k), Q0 = 0.

Use the difference calculus to compute Qn. Hint: Write the recurrence as
nQn = n(n− 1)+ 2

∑n−1
k=0 Qk (n ≥ 1) .

5.45 Determine
∑
n≤x μ(n)� xn	. Hint: � xn	 =

∑
n|k,k≤x 1 .

5.46 Evaluate the determinant of the n × n-matrix M = (mij), where
mij = gcd(i, j).

� 5.47 Suppose D is a down-set of 2X , that is, A ∈ D, B ⊆ A implies B ∈ D.
List the members of D as U1, U2, . . . , and let M = (mij) be the matrix
with

mij =
{

1 Ui ∩ Uj = �
0 otherwise

.

Prove detM = (−1)	, 	 = # (odd-sized sets in D).

5.3 The Involution Principle

We have seen many examples in which identities or counting for-
mulas were found by producing suitable bijections. The involution
principle generalizes this idea.
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Let S = S+ ∪ S− be a partition of a finite set S into two parts, the
positive part S+ and the negative part S−. We then call S a signed
set. What we are interested in is the difference |S+| − |S−|. Let us
call an involution ϕ : S → S alternating (or sign-reversing) if x and
ϕx are in different parts of S whenever ϕx ≠ x. It follows for the
set of fixed points that

|S+| − |S−| = |FixS+| − |FixS−| . (1)

If, in particular, FixS− = �, that is, all of S− is carried over into S+

by ϕ, then

|S+| − |S−| = |FixS+| . (2)

Our method thus proceeds as follows: In order to enumerate a set
X,

1. embed X into a signed set S = S+ ∪ S− with X ⊆ S+,
2. find an alternating involution ϕ with FixS− = �, FixS+ = X.

Then |X| = |S+| − |S−|.
Example. Catalan Paths. We want to count all lattice paths from
(0,0) to (n,n) with the usual (1,0)- and (0,1)-steps that never go
beyond the diagonal y = x. Let An be their number.

A1 = 1 A2 = 2 A3 = 5

Let S+ be the set of all lattice paths from (1,0) to (n + 1, n), and
S− all paths from (0,1) to (n+1, n). By our old result from Section
1.2, |S+| =

(
2n
n

)
, |S−| =

(
2n
n−1

)
. ForW ∈ S+∪S−, let ϕW be the path

in which the part from (1,0) or (0,1) until the first arrival at the
diagonal is reflected (and the rest kept unchanged). If W never hits
the diagonal, then ϕW = W . As an example,

(4,3)

(1,0)
W

� (0,1)

(0,0)

(4,3)

ϕW
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It is clear that ϕ is an alternating involution. Furthermore, FixS− =
� because any path in S− must eventually cross the diagonal. The
paths in FixS+ correspond precisely to the Catalan paths by moving
them one step to the left, and we obtain

An = |FixS+| = |S+| − |S−| =
(

2n
n

)
−
(

2n
n− 1

)
= 1
n+ 1

(
2n
n

)
.

Hence the number of these paths is precisely the Catalan num-
ber Cn.

It is convenient to represent Catalan paths (by a rotation and reflec-
tion) as paths from (0,0) to (2n,0) with diagonal steps up (1,1)
and down (1,−1) that never fall below the x-axis.

C3 = 5

Example. Inclusion–Exclusion. Let us re-prove the formula

N=� =
∑
T⊆E

(−1)|T |N⊇T

from Section 5.1 via an involution argument. Let X be the under-
lying set, and E = {e1, . . . , en} the set of properties. For x ∈ X set
Ex = {ei : x possesses ei} . Our signed set is S = {(x, T) : T ⊆ Ex}
for x ∈ X, T ⊆ E, with (x, T) ∈ S+ if |T | is even, and (x, T) ∈ S− if
|T | is odd. For x ∈ X let m(x) = max{i : ei ∈ Ex} whenever Ex ≠ �.
Now define ϕ : S → S by

ϕ(x,T) =
{
(x, T�em(x)) if em(x) ∈ T ,
(x, T ∪ em(x)) if em(x) �∈ T ,

whenever Ex is nonempty, and ϕ(x,�) = (x, �) for Ex = �.

The mapping ϕ is clearly an alternating involution, and the only
fixed points are (x, �) with Ex = �. Since |�| = 0 is even, we obtain
|FixS| = |FixS+| = N=�. Furthermore,

N⊇T = ∣∣ ⋃
x:T⊆Ex

(x, T)
∣∣ ,
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and the involution principle gives

N=� = |FixS+| = |S+| − |S−| =
∑
T⊆E

(−1)|T |N⊇T .

Just as for inclusion–exclusion we can readily extend the involution
principle to the weighted case. Let S = S+ ∪ S− be a signed set, and
suppose the elements x of S have weights w(x). We call ϕ : S → S
an alternating weight-preserving involution if w(ϕx) = w(x) for
all x ∈ S. It then follows that

w(S+)−w(S−) = w(FixS+)−w(FixS−) . (3)

Example. Vandermonde Determinant. We want to prove

det

⎛⎜⎜⎜⎜⎜⎜⎝
xn−1

1 xn−1
2 . . . xn−1

n
xn−2

1 xn−2
2 . . . xn−2

n
. . .

x1 x2 . . . xn
1 1 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎠ =
∏

1≤i<j≤n
(xi − xj) . (4)

This formula is of eminent importance in linear algebra, and will
play a prominent role in Chapter 8, on symmetric functions. The
following proof is certainly not the quickest, but it very nicely illus-
trates the applicability of the involution principle.

The left-hand side in (4) contains n! summands, and the right-hand
side 2(

n
2); hence we must sieve out 2(

n
2) −n! summands. The deter-

minant equals

det =
∑

σ∈S(n)
(sign σ)xn−1

σ(1)x
n−2
σ(2) · · ·x0

σ(n) , (5)

whereas the right-hand side is the sum of all expressions

(−1)mxa1
1 x

a2
2 · · ·xann (6)

with
∑n
i=1 ai =

(
n
2

)
, where m = #{j : xj is taken from xi − xj} .

Our set consists of the tournaments on {1,2, . . . , n}, that is, all di-
rected graphs on the vertex–set {1,2, . . . , n} with precisely one di-
rected edge i → j or j → i for any pair i ≠ j. Hence there are 2(

n
2)

tournaments, and we now want to associate to each tournament a
unique term as in (6).
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Let T be a tournament, and e : k → 	 an edge in T . We call k the
winner, and define the weight w(e) by

w(e) = xk with sign e =
{

1 k < 	.
−1 k > 	,

If we define the weight w(T) of the tournament T as

w(T) =
∏
e∈T

w(e), sign T =
∏
e∈T

sign e,

then it is clear that we obtain precisely the expression (6),

(−1)mxa1
1 · · ·xann , w(T) = xa1

1 · · ·xann , (−1)m = sign T ,

where ai is the out-degree d−(i), or in our language the number of
wins of i.

In sum, we get ∏
1≤i<j≤n

(xi − xj) =
∑
T
(sign T)w(T) . (7)

Example. Consider the tournament

1

5 2

4 3

We pick the winners from the product

(x1 − x2)(x1 − x3)(x1 − x4)(x1 − x5)(x2 − x3)
× (x2 − x4)(x2 − x5)(x3 − x4)(x3 − x5)(x4 − x5)

and obtain as weight x2
1x2x4

3x4x2
5 with sign = −1.

Among the tournaments there is a special type, the transitive tour-
naments, which satisfy that i → j, j → k implies i → k. Every tran-
sitive tournament can be thought of as a (unique) linear order or
permutation σ(1)σ(2) . . . σ(n), where σ(1) is the overall winner,
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σ(2) the second best, and so on. Hence there are n! transitive tour-
naments.

Example. The permutation 35142 corresponds to the transitive
tournament

5

1

2

34

For a transitive tournament Tσ we obtain

w(Tσ) = xn−1
σ(1)x

n−2
σ(2) · · ·x0

σ(n), sign Tσ = (−1)inv(σ) = sign σ ,

and so
det =

∑
σ∈S(n)

(sign σ)w(Tσ) . (8)

Comparing (7) and (8) we see that we must sieve out the non-
transitive tournaments. Let S be the set of non-transitive tourna-
ments, with S+ = {T ∈ S : sign T = 1}, S− = {T ∈ S : sign T = −1} .
All that remains to find is an alternating weight-preserving involu-
tion on S without fixed points.

A little reflection shows that any non-transitive tournament con-
tains two vertices i and j with d−(i) = d−(j). Consider T ∈ S, and
d−(i) = ai. Among all double occurrences ai = aj choose i0 to be
the minimal index, and among all aj = ai0 , let j0 be minimal. We
may assume i0 → j0, the other case being analogous. For k ≠ i0, j0

we have the following four possibilities:

� � � �� �� �� �� �

k k k k

i0 i0 i0 i0j0 j0 j0 j0

I II III IV

Since d−(i0) = d−(j0), there must be at least one triangle of type II,
more precisely,

#II = #I + 1 .
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Now we define the tournament ϕT by reversing i0 → j0, and the
other two directions in all triangles of types I and II, keeping the
rest unchanged. Set d−(k) = bk in ϕT , then clearly bk = ak for all
k ≠ i0, j0, and for i0 and j0 we obtain

bi0 − ai0 = #II − #I − 1 = 0 ,
bj0 − aj0 = #I − #II + 1 = 0 .

Thus ϕ is a weight-preserving map, and it is an involution, since
i0, j0 have the same meaning in ϕT as in T , returning in ϕ(ϕT)
the original directions. Finally, we note that ϕ reverses two edges
in every triangle of type I or II plus the single edge i0 → j0, hence
altogether an odd number. It follows that sign ϕT = −sign T , and
we are finished.

Example. The Pfaffian. As our final example we discuss an im-
portant theorem from linear algebra, where the involution princi-
ple is applied in an unexpected way. Let A = (aij) be a real skew-
symmetric n×n-matrix, that is, AT = −A. If n is odd, then

detA = detAT = (−1)n detA = −detA ,

and hence detA = 0.

But what happens when n is even? For n = 4 one easily computes

det

⎛⎜⎜⎜⎝
0 a12 a13 a14

−a12 0 a23 a24

−a13 −a23 0 a34

−a14 −a24 −a34 0

⎞⎟⎟⎟⎠ = (a12a34 − a13a24 + a14a23)2 . (9)

We see that the terms on the right-hand side are of the form
ai1j1ai2j2 with {i1, j1, i2, j2} = {1,2,3,4}, with different signs. This
leads to the following idea. Let n be even. We call any partition of
{1,2, . . . , n} into n

2 pairs a matching μ on {1,2, . . . , n}, writing

μ = i1j1, i2j2, . . . , in/2jn/2 with ik < jk for all k .

There are clearly (n − 1)(n − 3) · · ·3 · 1 different matchings alto-
gether. Given the skew-symmetric matrix A, we use the notation

aμ = ai1j1ai2j2 · · ·ain/2jn/2 .
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To define the sign of μ we list 1,2, . . . as in the diagram; #μ denotes
the number of crossings, and the sign of μ is sign μ = (−1)#μ .

1 2 3 i1 i2 j1 j2

. . .
n

Example. For n = 4 we have three matchings:

1 2 3 4

12,34 sign = 1

1 2 3 4

13,24 sign = −1

1 2 3 4

14,23 sign = 1

Note that the signs are precisely the same as in (9), and this is no
coincidence, as we are now going to prove.

Definition. Let A be a real skew-symmetric n × n-matrix, n even.
The Pfaffian Pf(A) is defined as

Pf(A) =
∑
μ
(sign μ)aμ .

Theorem 5.6 (Cayley). Let A be a real skew-symmetric n×n-matrix,
n even. Then

detA = [Pf(A)]2 . (10)

Proof. We start with the usual expression for the determinant,

detA =
∑

σ∈S(n)
(signσ)aσ , where aσ = a1σ(1)a2σ(2) · · ·anσ(n) .

(11)
Let S be the subset of those permutations that possess at least one
cycle of odd length. We define ϕ : S → S as follows. For σ ∈ S, let
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σ = σ1σ2 · · ·σt be the cycle decomposition, where σ1 shall be the
cycle of odd length that contains the smallest element among all
cycles of odd length, and define

σ = σ1σ2 · · ·σt ϕ
�→ σ ′ = σ−1

1 σ2 · · ·σt . (12)

Then ϕ is obviously an involution on S, and ϕσ = σ means that
σ1 = (k) is a cycle of length 1. In this case, k is a fixed point of σ ,
which implies aσ = 0, since akk = 0.

Example. σ = (237)(15)(4)(68) �→ϕσ = (273)(15)(4)(68) .

Looking at (12) we obtain

aσ1 =
∏
i
aiσ1(i) = −

∏
i
aσ1(i)i (since σ1 has odd length)

= −
∏
i
aiσ−1

1 (i) = −aσ−1
1
.

We conclude that aσ = −aσ ′ , and thus (sign σ)aσ = −(sign σ ′)aσ ′ ,
since the sign stays the same. In other words, allϕ-pairs of S cancel
out in (11), and we obtain

detA =
∑
σ∈E

(sign σ)aσ , (13)

where E ⊆ S(n) is the set of permutations all of whose cycles have
even length.

To prove [Pf(A)]2 = detA, it suffices therefore to find a bijection

(μ1, μ2)
φ
�→ σ ∈ E with

(sign μ1)aμ1 · (sign μ2)aμ2 = (sign σ)aσ . (14)

The mapping φ is explained in the following picture.

Example. μ1 = 14,28,35,67, μ2 = 15,26,34,78.

1 2 3 4 5 6 7 8

μ1

μ2
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The pair (μ1, μ2) decomposes {1,2, . . . , n} into disjoint directed cy-
cles of even length (these are the cycles of σ ), where we choose the
orientation in a cycle, starting at the smallest element in the direc-
tion of μ1.

In our example, this gives

� �

� �

� �	 	

5 3

1 4

6 7

2 8

μ1 μ1

μ1 μ1

μ2 μ2 μ2 μ2, ,

thus σ = (1 4 3 5)(2 8 7 6).

The reverse construction is now clear.

Example. Given σ = (1 3)(2 6 5 8)(4 10 9 7) in E, then we have pic-
torially

�

�1 3 � �

� �

� �	 	 �

8 5

2 6

7 9

4 10

1 2 3 4 5 6 7 8 9 10

and obtain μ1 = 13,26,4 10,58,79, μ2 = 13,28,47,56,9 10.

It remains to check (14) for σ = φ(μ1, μ2). We clearly have

aμ1aμ2 = (−1)e(σ)aσ , eσ = #{i : σ(i) < i} . (15)

Let σ = σ1σ2 · · ·σt be the cycle decomposition; then sign σ =
(−1)t , since all σi have even length, and thus negative sign. Equa-
tion (14) is therefore equivalent to

sign μ1 · sign μ2 = (−1)e(σ)+t ,
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or
#μ1 + #μ2 − e(σ) ≡ t (mod 2) . (16)

For the final step you are asked in the exercises to prove the follow-
ing: Let σ ∈E, σ = φ(μ1, μ2), and σ̂ ∈E the permutation that arises
from σ by interchanging the positions of i and i+1 in the cycle de-
composition. Then the parity of #μ1 + #μ2 − e(σ) stays invariant,
that is,

#μ1 + #μ2 − e(σ) ≡ #μ̂1 + #μ̂2 − e(σ̂ ) (mod 2) , (17)

where φ(μ̂1, μ̂2) = σ̂ .

We may transform σ = σ1σ2 · · ·σt by a sequence of such ex-
changes into the natural order from 1 to n (clear?),

σ̃ = (1 . . . k)︸ ︷︷ ︸
σ1

(k+ 1 . . .)︸ ︷︷ ︸
σ2

. . . (. . . n)︸ ︷︷ ︸
σt

,

where by the exercise,

#μ1 + #μ2 − e(σ) ≡ #μ̃1 + #μ̃2 − e(σ̃ ) (mod 2) .

The matchings μ̃1, μ̃2 corresponding to σ̃ are

1 2 3 k
. . .

It follows that #μ̃1 + #μ̃2 = 0, e(σ̃ ) = t, and hence

#μ1 + #μ2 − e(σ) ≡ t (mod 2) .

This proves (16), and thus the theorem. �

General Involution Principle.
The general involution principle, introduced by Garsia and Milne,
carries these ideas to two signed sets S and T . One of their moti-
vations was to find concrete combinatorial bijections between two
sets X and Y , where equality |X| = |Y | had been proven by, say,
generating functions. Recall Section 3.4, which contains a number
of these proofs via infinite products, relating two sets of partitions.
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The general setup is as follows. Consider two signed sets S =
S+ ∪ S−, T = T+ ∪ T−, and suppose f : S → T is a sign-preserving
bijection. This, of course, implies |S+| = |T+|, |S−| = |T−|, and
|S+| − |S−| = |T+| − |T−| .

Theorem 5.7 (Involution Principle). Let f : S → T be a sign-
preserving bijection between two signed sets S and T , and let ϕ
and ψ be alternating involutions on S and T , respectively, with
FixϕS ⊆ S+, FixψT ⊆ T+. Then |FixϕS| = |FixψT |, and for each
x ∈ FixϕS there is a least integer m(x) such that

f((ϕf−1ψf)m(x))(x) ∈ FixψT . (18)

The map β : x � f((ϕf−1ψf)m(x))(x) is a bijection from FixϕS to
FixψT .

Proof. Since |FixϕS| = |S+| − |S−| = |T+| − |T−| = |FixψT |, it
remains to verify (18). We have the two involutionsϕ andψ, and we
may regard f and f−1 together as a third fixed-point-free involution
on S ∪ T . We now construct the following graph G on the vertex-
set S ∪ T . The edges are {s, t} with t = f(s), and all pairs {a,b},
a ≠ b ∈ S with b =ϕa, and all pairs {c,d}, c ≠ d ∈ T , with d = ψc.
The picture should make this clear:

fs t
a c

b d

ϕ ψ

S+

S−

T+

T−

Every vertex is incident to an f -edge and at most one edge produced
by ϕ and ψ. Hence G decomposes into disjoint circuits and paths,
and it is clear that the vertices of degree 1 are precisely the points
in FixϕS ∪ FixψT . In other words, the endpoints of the paths pair
off the elements in FixϕS ∪ FixψT , and it remains to show that
if one end is in FixϕS, the other is in FixψT . But this is easy. Let
x ∈ FixϕS and look at the path in G
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. . .f ψ f−1 ϕ
x ∈ FixϕS T+ T− S− S+

If the path were to end with an f−1-edge terminating at y , then
y ∈ S−, which is not a fixed point. Hence it must end in FixψT , and
(18) gives the desired bijection. �

In practice, the method then goes as follows. To find a bijection
between X and Y , embed X into a signed set S, and Y into a signed
set T with a bijection f : S → T . Find alternating involutions with
X = FixϕS+, FixϕS− = �, Y = FixψT+, FixψT− = �, and construct
β : X → Y as in (18). Frequently, the sets X and Y may be very small
compared to S and T , and of course, the number of iterations in (18)
may be very large. Garsia and Milne invented their principle to give
the first bijective proof of the famous Rogers–Ramanujan identities,
which we will prove as a highlight in Chapter 10 by totally different
methods.

Example. The simplest case arises when S = T and f is the iden-
tity. If ϕ and ψ are two alternating involutions on the signed set
S with FixϕS ⊆ S+, FixψS ⊆ S+, then |FixϕS| = |FixψS|, and the
involution principle will produce an explicit bijection.

As an illustration let us re-prove |Paro(n)| = |Pard(n)|. To do this
we have to find a signed set S and two involutions ϕ and ψ such
that FixϕS = Paro(n) and FixψS = Pard(n). There are several pos-
sibilities, of which the easiest may be the following:

Let Pard,e(n) be the set of all partitions of n into distinct even parts,
and set S = ⋃n

k=0(Par(k) × Pard,e(n − k)). That is, S consists of
all pairs (λ, μ) of partitions with λ ∈ Par(k), μ ∈ Pard,e(n − k),
k = 0, . . . , n. Define the sign of (λ, μ) as (−1)b(μ), where b(μ) is the
number of parts of μ .

For (λ, μ) ∈ S,ϕ(λ,μ) is declared as follows: Take the smallest even
part e of λ or μ. If e is in μ, move e to λ; otherwise, move e from
λ to μ. Clearly, FixϕS = {(λ, �) : λ ∈ Paro(n)} ⊆ S+ (since � has 0
parts), and ϕ is alternating.

To define ψ we proceed accordingly. For (λ, μ) ∈ S, let i be the
smallest repeated number in λ, and 2j the smallest part in μ. If
i < j or μ = �, ψ moves ii to μ, creating a summand 2i. If i ≥ j,
ψ moves 2j from μ to λ, creating jj. Again it is immediate that
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FixψS = {(λ, �) : λ ∈ Pard(n)} ⊆ S+, and ψ is alternating. The
involution principle thus implies |Paro(n)| = |Pard(n)|.
As an example consider n = 6. We have Paro(6) = {51,33,3111,
111111}, Pard(6) = {6,51,42,321}. Running the algorithm in (18)
we obtain

51 × � f
�→ 51 × � ∈ Fixψ ,

33 × � f
�→ 33 × � ψ

�→ �× 6
f
�→ �× 6

ϕ
�→ 6 × � f

�→ 6 × � ∈ Fixψ ,

3111×� f
�→ 3111×� ψ

�→ 31×2
f
�→ 31×2

ϕ
�→ 321×� f

�→ 321×� ∈ Fixψ ,

111111× � ψ
�→ 1111× 2

ϕ
�→ 21111× � ψ

�→ 211× 2
ϕ
�→ 2211× � ψ

�→ 22 × 2
ϕ
�→ 222×� ψ

�→ 2×4
ϕ
�→ �×42

ψ
�→ 11×4

ϕ
�→ 411×� ψ

�→ 4×2
ϕ
�→ 42×� ∈

Fixψ .

In a sense, the involutions are modeled after the “forbidden” con-
figurations as in the inclusion–exclusion proof in Section 5.1. But
the method does give an explicit bijection. And what is this bijec-
tion? You are asked in the exercises to show that it is, surprisingly,
precisely Glaisher’s correspondence discussed in Exercise 3.65.

Exercises

5.48 Determine
∑n
k=0(−1)k

(
n
k

)2
with an alternating involution on a signed

set.

5.49 Let An be the number of Catalan paths. Verify An = Cn directly by
proving the recurrence An =∑n−1

k=0 AkAn−1−k, A0 = 1.

5.50 Generalize the result about Catalan paths, counting the number of
lattice paths from (0,0) to (m,n), m ≥ n, that never cross the diagonal
y = x.

� 5.51 Let S be the family of k-subsets of {1,2, . . . , n}, n even. For A ∈ S
let w(A) = ∑

i∈A i, and set S+ = {A ∈ S : w(A) even}, S− = {A ∈ S :
w(A) odd}. Find an alternating involution to show that

|S+| − |S−| =
{

0, k odd,

(−1)k/2
(
n/2
k/2

)
, k even .

5.52 Find suitable involutions to prove the following identities:

a.
∑n
k=p

(
n
k

)(
k
p

)
(−1)k = δn,p(−1)p ,
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b.
∑m
k=0

(
n
k

)(
n

m−k
)
(−1)k =

{
0 m odd,

(−1)m/2
(
n
m/2

)
m even,

c.
∑m
k=0

(
n+k−1
k

)(
n

m−k
)
(−1)m−k = δm,0.

� 5.53 Define a signed weighted set of partitions and an alternating involu-
tion to prove the obvious identity

(1 − zk+1)(1 − zk+2) · · ·
(1 − z)(1 − z2)(1 − z3) · · · = 1

(1 − z)(1 − z2) · · · (1 − zk) .

5.54 Consider the set S of all graphs G on {1, . . . , n} with m edges. A
graph G is called even (or Eulerian) if every vertex has even degree. Define
an alternating involution on the set of pairs (G,A), A ⊆ {1, . . . , n} for
which the fixed points are precisely the pairs (G,A), G even.

* * *

� 5.55 Write σ = σ(1)σ(2) . . . σ(n) ∈ S(n) in word form, and define
D(σ) = {i : i ≥ σ(i)}, P(σ) = 1

|D(σ)|
∑
i∈D(σ)(i + σ(i)) . Prove that∑

σ∈S(n) P(σ) = (n+1)!. Hint: Look at σ∗ with σ∗(i) = j if σ(n+1−j) =
n+ 1 − i, and consider P(σ)+ P(σ∗) .

5.56 Re-prove

n∑
k=0

(−1)k
(
n
k

)3

=
{
(−1)n/2(3n/2)!/(n/2)!3 n even,
0 n odd

(see Exercise 4.8).

5.57 Use the involution principle to re-prove the result of Exercise 3.68:
The number of partitions of n into parts congruent to 1 or 5 (mod 6)
equals the number of partitions of n into distinct parts congruent to 1
or 2 (mod 3). Hint: Model your set and the involutions according to the
forbidden parts.

5.58 Use involutions to prove
∑n
k=m Sn,k(−1)k−msk,m = δm,n, where Sn,k

and sk,m are the Stirling numbers.

5.59 Find a proper weighting to prove xn =∑n
k=0(−1)n−kSn,kxk .

� 5.60 Prove assertion (17) of the text.

5.61 Show that the bijection φ : Paro(n) �→ Pard(n) produced in the text
is precisely Glaisher’s correspondence (Exercise 3.65).

� 5.62 Consider the length h(n) of the algorithm to produce the mate of
11 . . .1 ∈ Paro(n), counting only the occurrences ψ,ϕ,ψ,ϕ, . . . ,ϕ. For
example: h(2) = h(3) = 2, h(4) = h(5) = 6, h(6) = h(7) = 12. Does
h(2n+ 1) = h(2n) always hold? What is the mate in Pard(n)?
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5.63 Extend the involution principle to the following general situation:
Let S = S+∪S−, T = T+∪T− be two signed sets, and set (S∪T)+ = S+∪T−,
(S∪T)− = S−∪T+. We call f a signed bijection between S and T if f is an
alternating involution on S∪T without fixed points. Note that this implies
|S+|−|S−| = |T+|−|T−|. Supposeϕ andψ are alternating involutions on
S and T . Then there exists a signed bijection between FixϕS and FixψT .

5.4 The Lemma of Gessel–Viennot

We come to a most elegant theorem, one that reveals via involutions
an astounding connection between lattice paths and determinants.
It was originally proved by Lindström, but its combinatorial signifi-
cance was seen first and expounded by Gessel and Viennot, and the
name has stuck ever since.

Let us start with the usual permutation description of the determi-
nant of an n×n-matrix M = (mij):

detM =
∑

σ∈S(n)
(signσ)m1σ(1) · · ·mnσ(n) . (1)

We may represent M as a directed weighted bipartite graph in an
obvious way, letting the rows correspond to vertices A1, . . . ,An, and
the columns to B1, . . . , Bn :

	 	
 �

. . . . . . . . . . . .

. . . . . .. . . . . . . . .

. . .
B1 B2 Bj Bn

A1 A2 Ai An

m11 m21 mij

rows

columns

mnn

We can now give (1) the following interpretation. The left-hand side
of (1) is the determinant of the path matrix, where the (i, j)-entry is
the weightmij of the unique directed path from Ai to Bj . The right-
hand side is the weighted signed sum over all vertex-disjoint path
systems from A = {A1, . . . ,An} to B = {B1, . . . , Bn}. Such a system
Pσ is determined by

P1 : A1 → Bσ(1), . . . , Pn : An → Bσ(n) ,
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and the weight of Pσ is the product of the weights of the individual
paths,

w(Pσ ) = w(P1) · · ·w(Pn) .
In this interpretation, (1) becomes

detM =
∑
σ
(sign σ)w(Pσ ) .

Recall that we used a similar idea in the computation of the Van-
dermonde matrix in the last section.

The lemma of Gessel–Viennot generalizes this idea from bipartite to
arbitrary graphs. Let G = (V, E) be a finite directed graph without
directed circuits. We call such a graph acyclic. In particular, in an
acyclic graph there are only finitely many directed paths between
any two vertices, where we include the trivial paths A→ A of length
0. Every edge e has a weight w(e). Let P : A → B be a directed path
from A to B. Then the weight of P is

w(P) =
∏
e∈P

w(e) , (2)

with w(P) = 1 if P has length 0.

Suppose A = {A1, . . . ,An} and B = {B1, . . . , Bn} are two n-sets of
vertices, which need not be disjoint. To A and B we associate the
path matrix M = (mij), where

mij =
∑

P :Ai→Bj
w(P) . (3)

A path system P from A to B consists of a permutation σ , and n
paths Pi : Ai → Bσ(i), with sign P = sign σ . The weight of P is

w(P) =
n∏
i=1

w(Pi) . (4)

Finally, we call the path system P vertex-disjoint if no two paths
have a vertex in common. Let VD be the family of vertex-disjoint
path systems.

Lemma 5.8 (Gessel–Viennot–Lindström). Let G = (V, E) be a di-
rected acyclic graph with weights on E, A = {A1, . . . ,An}, B =
{B1, . . . , Bn}, and M the path–matrix from A to B. Then
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detM =
∑

P∈VD
(signP)w(P) . (5)

Proof. A typical summand of M is

(sign σ)m1σ(1) · · ·mnσ(n)

= (sign σ)

⎛⎜⎝ ∑
P1:A1→Bσ(1)

w(P1)

⎞⎟⎠ · · ·

⎛⎜⎝ ∑
Pn:An→Bσ(n)

w(Pn)

⎞⎟⎠ .
Summation over σ immediately yields

detM =
∑
P
(sign P)w(P) ,

where P runs through all path systems from A to B. To prove (5),
all we need to show is that∑

P∈N
(sign P)w(P) = 0 , (6)

where N is the family of all path systems that are not vertex-
disjoint. And this is where involutions come into the game. We de-
fine a fixed-point-free involution ϕ on N with w(ϕP) = w(P) and
sign (ϕP) = −sign P. This will prove (6), and thus the lemma.

The involution ϕ is declared in the most natural way. Suppose P ∈
N with paths Pi : Ai → Bσ(i). Among the crossing paths we define

i0 = smallest index such that Pi0 crosses with some Pj ,
X = first common vertex on Pi0 ,
j0 = smallest index such that X ∈ Pi0 ∩ Pj0 (j0 > i0) .

The situation is thus as in the figure:

Aj0

Ai0
X

Bσ(i0)

Bσ(j0)

�



�

�

�




�

�


Now we construct ϕP = {P ′1, . . . , P ′n} as follows: For k ≠ i0, j0 set
P ′k = Pk. The new path P ′i0 goes from Ai0 to X along Pi0, and then
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along Pj0 from X to Bσ(j0). Similarly, P ′j0 goes along Pj0 from Aj0
to X, and then proceeds along Pi0 to Bσ(i0). Clearly, ϕ(ϕP) = P,
since i0, X, j0 retain their significance in ϕP. Since P and ϕP use
the same edges, we have w(ϕP) = w(P), and finally, sign (ϕP) =
−sign P, since σ ′ equals σ times the transposition (i0, j0). �

Matrix Theorems.
Before discussing a number of applications, let us see how the
lemma proves some theorems on determinants “at a glance.”

Example. detMT = detM . Just look at the bipartite graph corre-
sponding to M from bottom to top, that is, the path systems from
B to A. Since sign σ−1 = sign σ , the result follows.

Example. det(MM′) = (detM)(detM′). We concatenate the two
bipartite graphs as in the figure:

� � �

� � �

. . . . . .

. . . . . .

. . . . . .

C1 Cj Cn

B1
Bk Bn

A1 Ai An

m′
kj

mik

columns of M′

columns of M = rows of M′

rows of M

Consider the paths from A to C. The path matrix is

∑
P :Ai→Cj

w(P) =
n∑
k=1

mikm′
kj ,

that is, MM′. The vertex-disjoint path systems from A to C corre-
spond to pairs of systems from A to B and B to C, and the result
follows on noticing that sign (στ) = (sign σ)(sign τ).

Combinatorial Applications.
One of the beautiful features of the lemma of Gessel–Viennot is that
it can be applied in two ways. It gives a method to evaluate a deter-
minant if we are able to handle the path systems P on the right-
hand side of (5). But it can also lead to an effective enumeration of
the path systems if we succeed in computing the determinant. The
following examples should make this clear.
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A word on the notation: We write a matrix (mij)ni,j=1 with the un-
derstanding that i is the row-index and j the column-index. For
example, the Vandermonde matrix is written (xn−ij ).

Example. Binomial Determinants. Let 0 ≤ a1 < · · · < an and
0 ≤ b1 < · · · < bn be two sets of natural numbers. Our task is
to compute detM with mij =

(
ai
bj

)
, the binomial coefficient. The

method consists in finding a suitable directed graph G and vertex
sets A and B such that M is precisely the path matrix.

We take the lattice graph with steps up and to the right, and with all
weights equal to 1. Let Ai = (0,−ai), Bj = (bj,−bj) as in the figure:

�

�

An

(0,−ai) = Ai

A1

(0,0)

B1

Bj = (bj,−bj)

Bn

Then mij =
(
bj+(ai−bj)

bj

)
=
(
ai
bj

)
. It is clear that all vertex-disjoint

path systems must correspond to the identity permutation, and we
obtain

det(
(
ai
bj

)
)ni,j=1 = #vertex-disjoint path systems

P1 : A1 → B1, . . . , Pn : An → Bn .

As an example, suppose ai =m+ i− 1, bj = j − 1; then

M =

⎛⎜⎜⎜⎜⎜⎜⎝

(
m
0

) (
m
1

)
. . .

(
m
n−1

)(
m+1

0

) (
m+1

1

)
. . .

(
m+1
n−1

)
...(

m+n−1
0

) (
m+n−1

1

)
. . .
(
m+n−1
n−1

)

⎞⎟⎟⎟⎟⎟⎟⎠ .
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In this case the graph looks as follows, and it is plain that there is
only the one vertex-disjoint path system depicted in the figure. It
follows that detM = 1.

An

A3

A2

(0,−m) = A1

B1

B2

B3

Bn

Example. Catalan Numbers. Let (B0, B1, B2, . . .) be any sequence
of numbers. To (Bn) we associate the so-called Hankel matrices
Hn,H

(1)
n :

Hn =

⎛⎜⎜⎜⎜⎝
B0 B1 . . . Bn
B1 B2 . . . Bn+1
...
Bn Bn+1 . . . B2n

⎞⎟⎟⎟⎟⎠ , thus Hn = (Bi+j)ni,j=0,

H(1)n =

⎛⎜⎜⎜⎜⎝
B1 B2 . . . Bn+1

B2 B3 . . . Bn+2
...

Bn+1 Bn+2 . . . B2n+1

⎞⎟⎟⎟⎟⎠ , H(1)n = (Bi+j+1)ni,j=0 .

Every sequence (Bn) uniquely determines the sequence detH0,
detH(1)0 ,detH1, detH(1)1 , . . . . If, conversely, this latter sequence is

given, and if all detHn ≠ 0, detH(1)n ≠ 0, then (Bn) can be uniquely
recovered. Indeed, detH0 = B0, detH(1)0 = B1, detH1 = det

(
B0B1
B1B2

)
=

B0B2 − B2
1, which gives B2 since B0 ≠ 0, and so on.

The following result gives an unexpected and beautiful characteri-
zation of the Catalan numbers.

Claim. The Catalan numbers Cn are the unique sequence of real
numbers with detHn = detH(1)n = 1 for all n.
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For the proof we consider the lattice graph above the x-axis, this
time with diagonal steps (1,1) or (1,−1), and all weights 1. Let
Ai = (−2i,0), Bj = (2j,0), i, j = 0,1, . . . , n. For n = 3 we obtain

A3 A2 A1 A0 = B0 B1 B2 B3

We know from the previous section that Ck counts the number of
these paths of length 2k. In other words, the path matrixM = (mij)
satisfiesmij = Ci+j , and thus M = Hn. Since there is again only one
vertex-disjoint path system from A to B, shown by the bold edges
in the figure, we conclude that detHn = 1. You are asked in the
exercises to prove similarly detH(1)n = 1. Hankel matrices play an
important role in general recurrences; we will return to this topic in
Chapter 7.

Now we want to discuss two famous examples that will shed light
on the second feature of the lemma.

Example. Rhombic Tilings. We are given a hexagon of side length
n that is triangulated. A rhombus consists of two triangles with a
common side. What we want to determine is the number h(n) of
decompositions of the hexagon into rhombi.

The figure on the right shows a rhombic tiling for n = 3.

Clearly, h(1) = 2, and h(2) = 20 can still be done by hand. But
already n = 3 appears rather hopeless (in fact, h(3) = 980).
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We associate to the hexagon a directed graph as in the figure with
edges directed upward and to the right (all weights equal to 1). Let
A = {A0,A1, . . . , An−1} be the vertices on the left bottom line, and
B = {B0, B1, . . . , Bn−1} those on the right top line, as indicated in the
figure. Again it is clear that any vertex-disjoint path system must
connect Ai with Bi (i = 0, . . . , n− 1).

A2
A1

A0

B2
B1

B0

Now comes an elegant observation: The vertex-disjoint path sys-
tems P : A → B correspond bijectively to the rhombic tilings. To
see this, look at such a tiling in a “3-dimensional” fashion. We shade
all rhombi of the form and keep the others white, as in the
figure:

A3 A2A1 A0

B3 B2
B1
B0

Climbing up the white stairs, we obtain a vertex-disjoint path sys-
tem Pi : Ai → Bi. Conversely, if such a system is given, then we keep
the rhombi along the paths white, and fill in the others in a unique
way. Hence we have
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h(n) = # vertex-disjoint path systems,

and this is by Gessel–Viennot equal to the determinant of the path-
matrix M . Now the paths P : Ai → Bj correspond to ordinary lattice
paths from Ai = (−i, i) to Bj = (n− j,n+ j), which gives

mij =
(
n− j + i+n+ j − i

n+ i− j

)
=
(

2n
n+ i− j

)
,

and thus

h(n) = det

((
2n

n+ i− j

))n−1

i,j=0

. (7)

This determinant is easily computed (you are asked in Exercise 5.75
to do it), and out comes a remarkable formula due to MacMahon:

h(n) =
n−1∏
i=0

(
2n+i
n

)
(
n+i
n

) . (8)

For n = 3, this gives

h(3) =
(

6
3

)(
7
3

)(
8
3

)
(

3
3

)(
4
3

)(
5
3

) = 20 · 35 · 56
1 · 4 · 10

= 980 ,

and further, h(4) = 232848 .

Example. Plane Partitions. One of the great successes of the
lemma of Gessel–Viennot was its application to the enumeration
of plane partitions. A plane partition of n is an array of integers
λij ≥ 1,

λ11 λ12 . . . λ1s
λ21 λ22 . . .

...
λr1 λr2 . . .

with
∑
λij = n ,

such that every row λi1 ≥ λi2 ≥ · · · and every column λ1j ≥ λ2j ≥
· · · is weakly monotone. It follows that

λik ≥ λj	 whenever i ≤ j, k ≤ 	 . (9)

Example. n = 15: 3 2 1
2 2 1
2 1
1
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Every plane partition consists of r ordinary number partitions
(of the rows) and s partitions (of the columns). Let pp(r , s, t)
be the number of plane partitions with at most r rows and at
most s columns, and in which the highest summand is at most
t, and pp(n; r , s, t) the number of those for which |λ| = n, with
pp(0; r , s, t) = 1.

In other words, if we represent the numbers λij by stacks of λij unit
cubes, we ask for the number of arrangements of stacks that fit into
an r × s× t-box. For example, the partition from above corresponds
to

It is convenient to consider r × s-arrays with λij ≤ t by filling up
the remaining cells with 0’s.

Example. pp(2,2,2) = 20:

00
00

n = 0

10
00

n = 1

11 10 20
00 10 00︸ ︷︷ ︸
n = 2

11 21 20
10 00 10︸ ︷︷ ︸
n = 3

11 22 20 21
11 00 20 10︸ ︷︷ ︸

n = 4

21 22 21
11 10 20︸ ︷︷ ︸
n = 5

22 21 22
11 21 20︸ ︷︷ ︸
n = 6

22
21

n = 7

22
22

n = 8

∑
n≥0

pp(n; 2,2,2)qn = 1+q+3q2 +3q3 +4q4 +3q5 +3q6 +q7 +q8 .

Every plane partition λ gives by reflection a conjugate partition λ∗,
which implies

pp(r , s, t) = pp(s, r , t) . (10)

To determine pp(r , s, t) we consider the usual lattice graph G
with steps up and to the right, and the sets A = {A1, . . . ,Ar},
B = {B1, . . . , Br }, where Ai = (−i, i), Bj = (t−j, s+j), i, j = 1, . . . , r .
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Example. r = 5, s = 3, t = 4:

(−1,1) = A1

A2

A3

A4

A5
B1 = (t − 1, s + 1) = (3,4)

B2

B3

B4

B5

The path matrix M = (mij) is therefore given by

mij =
(
t − j + i+ s + j − i

s + j − i

)
=
(

t + s
s + j − i

)
.

Consider now the vertex-disjoint path systems from A to B. Again
only σ = id is possible. Let P = {P1, . . . , Pr} be such a system,
Pi : Ai → Bi. We know from Section 1.6 that every such path cor-
responds bijectively to a partition λi1λi2 . . . λik with λi1 ≤ t, k ≤ s,
by looking at the Ferrers diagram above the path. If k < s, then we
fill up with 0’s. Hence every such path corresponds uniquely to a
partition λi1λi2 . . . λis with λi1 ≤ t.
Claim. Let λ1, . . . , λr be the partitions corresponding to the paths
Pi : Ai → Bi. Then λ1 . . . λr form a plane partition, (that is, (9) is sat-
isfied) if and only if P = {P1, . . . , Pr} is a vertex-disjoint path system.

For the proof consider a path Pi : Ai → Bi with partition λi1λi2 . . . λis ,
and mark the points at the end of an upward step. These are pre-
cisely the marks where the points in the Ferrers diagram of this row
end.

(−i, i) = Ai

× (x,y)
λik �→

(Bi = (t − i, s + i)
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Looking at the diagram we see that

λik = x + i, with k = s + i+ 1 −y . (11)

Suppose i < j. Then Pi and Pj meet at the point (x,y) if and only
if

λj	 ≥ x + j, 	 = s + j + 1 − (y + 1) = s + j −y

as seen from the figure:

Aj

Ai

×(x,y)← λik

← λj	

This implies 	 = s+j−y = k+j−(i+1). Since i < j, we have k ≤ 	,
and λj	 ≥ x + j > x + i = λik in violation of (9). Hence if two paths
intersect, then the partitions do not form a plane partition. The
converse is just as easily seen, and the lemma of Gessel–Viennot
yields the formula

pp(r , s, t) = det

(
t + s

s + j − i

)r
i,j=1

. (12)

Example. Looking at the example r = s = t = 2 from above we
again obtain

pp(2,2,2) = det

((4
2

)(
4
3

)
(

4
1

)(
4
2

)) = 20 .

We could now ask for the generating function
∑
n≥0pp(n; r , s, t)qn

and, in particular for
∑
n≥0pp(n)qn, where pp(n) is the number

of plane partitions of n. The proper place for this is the theory
of symmetric functions, where the lemma of Gessel–Viennot will
again play a prominent role. So we postpone this discussion until
Chapter 8.
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Exercises

5.64 Show that the involution used in the proof of the lemma of Gessel–
Viennot does not work if we just choose i0 minimal, then the minimal j0

such that the paths Pi0 , Pj0 intersect, and then the first common point X
on Pi0 . What could go wrong?

� 5.65 Show “graphically” that detM = 0 if the rows of M are linearly de-
pendent.

5.66 Generalize the product theorem for determinants to the Binet–
Cauchy formula: Let M be an n× p-matrix and M′ an p ×n-matrix, with
n ≤ p. Then det (MM′) = ∑|R|=n(det MR)(det M′

R), whereMR is the n×n-
submatrix of M with columns in R, and M′

R the corresponding submatrix
of M′ with rows in R.

5.67 Prove the usual formula, developing detM according to the i-th row
or the j-th column.

� 5.68 The Motzkin number is the number of lattice paths from (0,0) to
(n,0) with horizontal steps and diagonal steps up or down, staying above

y = 0. For example M3 = 4 with , , , . Show
that det Hn = 1, where Hn is the Hankel matrix of the sequence (Mn).

5.69 Show that det H(1)n = 1 for H(1)n = (Ci+j+1)ni,j=0 , Cn Catalan.

5.70 Let M =
((

ai
bj

))n
i,j=1

, and suppose ak = bk. Prove that

det M = det
((

ai
bj

))k−1

i,j=1
· det

((
ai
bj

))n
i,j=k+1

.

* * *

� 5.71 Let λ1λ2 . . . λk be a partition with Ferrers diagram D. Given a cell s
of D, let 	 be the lowest cell below s, and r the cell farthest to the right
of s. Insert in s the number h(s) of paths starting in 	, ending in r , with
all steps up and to the right. Example: λ = 43311

6 3 1 1

3 2 1

1 1 1

1

1

Let M be the Durfee square of λ (largest square contained in D). Prove
det M = 1.
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5.72 Deduce from the recurrence Sn,k = Sn−1,k−1 + kSn−1,k (Sn,k Stirling
number) the formula det(Sm+i,j)ni,j=1 = (n!)m, m ≥ 0, n ≥ 1. Hint: Use a
lattice graph that mirrors the recurrence.

� 5.73 Generalize the previous exercise to recurrences an,k = an−1,k−1 +
ckan−1,k, a0,0 = 1, where (c0, c1, c2, . . .) is a fixed sequence with ci ≠ 0 for

i ≥ 1. Prove det(am+i,j)ni,j=1 = (c1c2 · · · cn)m·∑0≤in≤···≤i1≤m s
i1
1 s

i2
2 · · · sinn ,

where si = ci−1
ci . Look at the special case ci = q−i. What do you get for the

right-hand side?

5.74 Compute det
((

m+i−1
k+j−1

))n
i,j=1

directly (without using Gessel–Viennot).

For k = 1 you get

det
(
m+i−1
j

)n
i,j=1

=
(
m+n−1

n

)
,

which also counts the number of sequences m − 1 ≥ a1 ≥ a2 ≥ · · · ≥
an ≥ 0. Give a bijective proof of this last formula using Gessel–Viennot.

5.75 Complete the analysis of the rhombic tilings by showing that

det
((

2n
n+i−j

))n−1

i,j=0
=∏n−1

i=0
(2n+i)n
(n+i)n .

� 5.76 Let S = {(ai, bi) : i = 1, . . . , n} be a set of lattice points with 0 ≤
a1 ≤ · · · ≤ an ≤ r , 0 ≤ b1 ≤ · · · ≤ bn ≤ s. Count the number of lattice
paths from (0,0) to (r , s) with steps up and to the right that avoid the
set S. Do the same thing using inclusion–exclusion. What identity do you
get?

5.77 Choose r = s = n+ 1 and ai = bi = i (i = 1, . . . , n) in the previous
exercise. Derive a determinant formula for the Catalan numbers Cn, and
prove further that

∑n
k=0

(
2k
k

)
Cn−k =

(
2n+1
n

)
.

5.78 Let M be an n × n-matrix, and define M to be the usual cofactor
matrix, mij = (−1)i+j det Mj,i, where Mj,i is the matrix with row j and
column i deleted. Use Gessel–Viennot to prove MM = (det M)In.

5.79 Re-prove the Vandermonde result det(xn−ij )ni,j=1 = ∏
i<j(xi − xj)

using weighted lattice paths.
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Highlight: Tutte’s Matrix–Tree Theorem

A classical theorem of graph theory, due essentially to Kirchhoff,
relates the number of spanning trees of a connected graph to the
determinant of a certain matrix. We discuss an important general-
ization to directed graphs, first established by W. T. Tutte, and give
a proof via the lemma of Gessel–Viennot. The proof was suggested
by Jürgen Schütz.

Arborescences in Directed Graphs.
Suppose T = (V, E) is a directed graph and u a vertex. We say that
T is an arborescence converging to u if there is a directed path from
any v ≠ u to u, and the out-degree d−T (v) equals 1 for all v ≠ u
(and d−T (u) = 0). This implies, of course, that there is exactly one
such path from any v to u. Given a directed graph G = (V, E), then
a subgraph T ⊆ G is called a spanning arborescence converging to
u if T is an arborescence towards u, and V(T) = V(G).
Example. The bold edges constitute a spanning arborescence con-
verging to u.

u

Similarly, T ⊆ G is a spanning arborescence diverging from u if
there is (precisely) one directed path in T from u to any vertex
v ≠ u and in-degree d+T (v) = 1 for v ≠ u, d+T (u) = 0.

Given G = (V, E), our goal is to compute the numbers t−(G,u)
and t+(G,u) of spanning arborescences in G converging to u and
diverging from u, respectively.

Since loops clearly play no role, we may and will assume that G
contains no loops, but there may be multiple edges between v ≠ w
in either direction. Before we start our discussion of t−(G,u) and
t+(G,u) let us note that these quantities yield also a formula for
the number t(G) of spanning trees of an undirected graph G.

Indeed, replace each edge {v,w} of G by a pair of directed edges
(v,w), (w,v) in each direction, and call the resulting graph G′.
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Then we have, for any u ∈ V ,

t(G) = t−(G′, u) = t+(G′, u) . (1)

To see (1), note that each spanning arborescence in G′ converging
to u (or diverging from u) yields a spanning tree in G, by deleting
the orientations. Conversely, let T be a spanning tree of G. Orienting
the edges of T in the (unique) way toward u (respectively away from
u) gives a spanning arborescence in G, and the correspondences are
clearly bijections.

Laplace Matrix.
Let G = (V, E) be a directed loopless graph with V = {1, . . . , n}, and
denote by A = (aij) the n×n-matrix with

aij = number of directed edges i→ j .

Furthermore, let D− and D+ be the diagonal out-degree respectively
in-degree matrices,

D− =

⎛⎜⎜⎝
d−(1)

. . . 0

0 d−(n)

⎞⎟⎟⎠ and D+ =

⎛⎜⎜⎝
d+(1)

. . . 0

0 d+(n)

⎞⎟⎟⎠ .
The Laplace matrices L−(G) and L+(G) are then

L−(G) = D− −A and L+(G) = D+ −A .

Finally, for any matrix M = (mij) we denote as usual by Ms,t the
(n − 1) × (n − 1)-submatrix where row s and column t have been
deleted.

Now we are all set for the theorem of Tutte.

Theorem. Let G = (V, E) be a loopless directed graph, V =
{1, . . . , n}. Then for any s, t ∈ V (where s = t is possible),

t−(G, s) = (−1)s+t detL−(G)s,t ,
(2)

t+(G, s) = (−1)s+t detL+(G)t,s .
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Let us note first that the second formula in (2) follows from the
first. Assume the formula for t−, and let G′ be the graph derived
from G by reversing all directions. Then

t+(G, s) = t−(G′, s), L+(G) = L−(G′)T ,

and therefore for s, t ∈ V ,

t+(G, s) = t−(G′, s) = (−1)s+t detL−(G′)s,t

= (−1)s+t detL+(G)t,s ,

as claimed. It thus suffices to prove (2) for converging arbores-
cences.

Using the Lemma of Gessel–Viennot.
Let the directed graph G = (V, E) be given. In order to prove (2) we
construct a weighted directed graphH and two vertex sets A and B
of H whose path matrix is precisely L−(G). It remains then to find a
correspondence between the vertex-disjoint path systems of H and
the arborescences in G.

The graph H is declared as follows. The vertex set is (V × {0}) .∪
(V × {1}) .∪ E, where we use the notation Ak = (k,0) and Bk =
(k,1) for k = 1, . . . , n. To every edge e = (k, 	) ∈ E we have the
H-edges Ak → e, e → Bk, each of weight 1, and further e → B	 of
weight −1. The figure shows a small example, where the vertices of
H corresponding to E are depicted by hollow circles.

A1

B3

A3

A5

B5

A2

B2

B1

B4

A4

G

54

2 3

1

The following facts are immediate from the definition:
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1. Directed paths from Ak to Bk are of the form Ak → e → Bk, where
e is any edge leaving k in G. Each such path has weight 1, and hence
the total weight of these paths is d−G(k).
2. For i ≠ j, the paths from Ai to Bj are Ai

1
�→ e −1

�→ Bj , where e
is an edge e = (i, j) in G. The weight of the path is −1, and hence
the total weight −aij . We conclude that L−(G) is precisely the path
matrix with respect to A = {A1, . . . ,An} and B = {B1, . . . , Bn}.

Next we delete all edges in H incident with As and Bt , and insert a
single edge As → Bt of weight 1 (or no edge if s = t). Call the new
graph H′. The path matrix in H′ from A to B is clearly L−(G)′s,t ,
where L−(G)′s,t is the matrix that results by setting all elements in
the s-th row and t-th column of L(G−) to 0, except the entry (s, t),
which is equal to 1. In particular,

detL−(G)′s,t = (−1)s+t detL−(G)s,t , (3)

which is the right-hand side of (2).

Now we look at the vertex-disjoint path systems in H′. Let P =
{P1, . . . , Pn} be such a system, Pi : Ai → Bσ(i) . The paths are of the
form

Ps : As → Bσ(s) = Bt, w(Ps) = 1 ,
Pk : Ak → ek → Bσ(k) , k ≠ s ,

where k is the initial vertex of ek ∈ E, and either σ(k) is also the
initial vertex of ek, in which case σ(k) = k with w(Pk) = 1, or σ(k)
is the terminal vertex of ek =

(
k,σ(k)

)
with w(Pk) = −1.

Let σ = σ0σ1 · · ·σh be the cycle decomposition of σ in which we
have omitted the fixed points (other than possibly s), and σ0 is the
cycle containing s,σ0(s) = t. Look at a cycle σi (i ≥ 1) of, say,
length 	; then

Ak → ek → Bσ(k),Aσ(k) → eσ(k) → Bσ2(k),
. . . ,Aσ	−1(k) → eσ	−1(k) → Bk .

All these paths have weight −1, and so

(signσi)
(
w(Pk)w(Pσ(k)) · · ·w(Pσ	−1(k))

) = (−1)	−1(−1)	 = −1 .

Similarly for σ0, we obtain
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(signσ0)
(
w(Ps)w(Pσ(s)) · · ·w(Pσ	−1(s))

) = 1 ,

since w(Ps) = 1, while the other paths have weight −1.

In summary, we see that

(signP)w(P) = (−1)h , (4)

with h as defined above, σ = σ0σ1 · · ·σh.

For the final step we associate to each vertex-disjoint path system
P the subgraph TP = (V, {ek : k ≠ s, k = 1, . . . , n}) of G. Since the
paths in P are vertex-disjoint we obtain

d−TP(k) =
{

1 k ≠ s ,
0 k = s . . (5)

The following two assertions will finish the proof.

A. If T is a spanning arborescence in G converging to s, then there
is precisely one vertex-disjoint path system in H′ with TP = T . Fur-
thermore, (signP)w(P) = 1.

B. On the set of all vertex-disjoint path systems P for which TP is
not an arborescence converging to u, there is an involution ϕ with

(signϕP)w(ϕP) = −(signP)w(P) .

The lemma of Gessel–Viennot will then give

(−1)s+t detL−(G)s,t =
∑

P∈VD
(signP)w(P)

=
∑
TP
(signP)w(P), TP arborescence to s,

= t−(G, s).

Proof of A. Let T be a spanning arborescence in G converging to
s, and denote by ek the unique edge leaving k ≠ s in T . Suppose
Q : t = k1 → ·· · → k	 → s is the path from t to s. The system P in
H′,

Ps : As → Bt ,
Pki : Aki → eki → Bki+1 (i = 1, . . . , 	),
Pk : Ak → ek → Bk (k not on Q),
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is clearly vertex-disjoint with TP = T and (signP)w(P) = 1 by
(4), since all cycles not containing s are fixed points. Uniqueness is
easily established by induction on the number of vertices.

Proof of B. If TP is not an arborescence toward s, then by (5) it
must contain directed circuits. Let k be minimal such that k is on a
circuit C in TP , C = {i1

ei1�→ i2
ei2�→ ·· · �→ i	

ei	�→ i1}. Note that k �∈ σ0.
For the paths Pij in P there are two possibilities:

Pij : Aij → eij → Bij for all j = 1, . . . , 	 , or

Pij : Aij → eij → Bij+1 for all j = 1, . . . , 	 .

Denote by ϕ(P) the system in which the paths Pij follow the other
possibility. Since Tϕ(P) = TP , ϕ is an involution. Now we observe
that ϕ changes the number h in σ = σ0σ1 · · ·σh precisely by 1,
and we conclude from (4) that

(signϕP)w(ϕP) = −(signP)w(P) ,
and have thus proved the theorem.

We get a bonus out of the theorem. Suppose G = (V, E) is an Eu-
lerian directed graph, that is, d−(i) = d+(i) for all i ∈ V , hence
L−(G) = L+(G). Then for s, t ∈ V , we conclude from (2) that

t−(G, s) = (−1)s+t detL−(G)s,t = (−1)s+t detL+(G)s,t
= t+(G, t) .

Hence all quantities t−(G, i) and t+(G, i) are the same, and we ob-
tain the following beautiful result:

Corollary. In an Eulerian directed graph G, there is the same num-
ber of arborescences converging to a vertex u (or diverging from u),
for all u ∈ V .

Finally, the bijection G → G′ spelled out in (1) gives the correspond-
ing result for undirected graphs, which is usually called Kirchhoff’s
theorem.

Corollary. Let G = (V, E) be a loopless undirected graph, A the
adjacency matrix, and D the diagonal matrix of the vertex-degrees,
L(G) = D −A. Then

t(G) = (−1s+tL(G)s,t

for any s, t ∈ V .
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Notes and References

The origin of the principle of inclusion–exclusion is unclear. The
combinatorial form is sometimes attributed to Sylvester, but it may
have been known to Euler when he evaluated the function ϕ(n),
now named after him. In probabilistic terms the principle can be
traced back to de Moivre and Poincaré. The general theory of Möbius
inversion on posets was advanced in the influential paper of Rota;
for a detailed treatment see the books by Stanley and Aigner. A nice
introduction to most of the topics of this chapter is given by Stan-
ton and White. More on the Pfaffian and other algebraic questions
can be found in the book by Godsil. The general involution principle
was introduced by Garsia and Milne. The significance of the lemma
of Gessel–Viennot, with many applications, was, logically enough,
expounded by Gessel and Viennot. The original statement of the
lemma appears in the paper of Lindström. For some important gen-
eralizations see also Stembridge. The matrix–tree theorem of the
highlight appears (with a different proof) in Chapter 6 of the book
by Tutte.
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6 Enumeration of Patterns

Many enumeration problems are of a different kind from those we
have discussed so far. They are determined by symmetries on the
underlying structure. How to approach problems of this type is the
content of the present chapter.

6.1 Symmetries and Patterns

The following three examples should make clear what it is all about.
We will solve all three problems as we go along.

Examples.

A. Consider a necklace with n beads colored black or white, lying
on the table. How many different colored necklaces are there? First
of all, what do we mean by “different”? We consider two necklaces
as equal if one can be transformed into the other by some rotation.

As an example, for n = 4 we obtain 6 different necklaces:

Suppose we color the four beads with three colors: W (hite), B(lack),
and R(ed). Classifying the types with W ≥ B ≥ R we get the follow-
ing table:

W B R number
4 0 0 1
3 1 0 1
2 2 0 2
2 1 1 3

In each type we may permute the colors, which gives altogether
3 · 1 + 6 · 1 + 3 · 2 + 3 · 3 = 24 necklaces. Of course, what we really
want to know is the general result for n beads and r colors.



240 6 Enumeration of Patterns

B. Consider a cube whose faces are colored black or white. We will
consider two colored cubes as equal if they can be transformed into
each other by a rotation of the cube. The following table is readily
verified:

color type
6 0
5 1
4 2
3 3

number
2 · 1
2 · 1
2 · 2
1 · 2
10

Again we are interested in the general case in which r colors are
available.

C. Let us now look at an example that is a bit more involved. An
alcohol consists of one OH-group (1-valent), C-atoms (4-valent), and
H-atoms (1-valent). We are interested in the number of alcohols with
precisely n C-atoms. The figure shows the alcohols for n ≤ 3:

n = 0: OH H

n = 1: OH C H

H

H
n = 3: OH C C C H

H

H

H

H

H

H

n = 2: OH C C H

H

H

H

H

H C

C

H

H

H

OH C

H

H

H

In all examples “equality” is determined by a group of symmetries.
In example A, it consists of the cyclic group Cn of all rotations
through an angle i360◦

n (i = 0, . . . , n − 1). In example B, it is the
group of symmetries of the cube, and in the last example the sym-
metric group S(3) of the three substructures attached to OH–C.
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The Problem.

This leads to the following setup. We are given finite sets N and R.
Any mapping f : N → R can be thought of as a coloring of N with
colors in R. Next we are given a group G ≤ S(N) of permutations
on N , where S(N) denotes the full symmetric group on N .

In problem A, N = {1, . . . , n} and G = Cn is the cyclic group of ro-
tations. Colored necklaces correspond to mappings f ∈ Map(N,R).
Clearly, two necklaces f , f ′ are “equal” if and only if f ′ = f ◦ g for
some g ∈ G. Let us call f , f ′ ∈ Map(N,R) equivalent, f ∼ f ′, if
f ′ = f ◦g for some g ∈ G. The relation ∼ is an equivalence relation
(since G is a group), and we call the equivalence classes the pat-
terns of Map(N,R) under G. Thus we are interested in the number
of patterns.

Example. Suppose N = {1, . . . , n}. If G = S(n), then the patterns
correspond to n-multisets of R. The number of patterns is therefore(
r+n−1
n

)
, with |R| = r . On the other hand, if G = {id}, then the

number of patterns is rn.

Before we state the main problem we need an important general-
ization. Consider problem B, where G is the group of symmetries
of the cube, and N the six faces. Instead of the faces we could just
as well color the edges (|N| = 12), or the vertices (|N| = 8). Each
time, the same group G acts as a group of permutations on the set
N under consideration.

Hence we give the following definition. Let G be a finite group. We
say that G acts on N if there is a homomorphism τ : G → S(N),
g � g. We call g ∈ S(N) the permutation induced by g, and have

gh(a) = g(a)h(a) for all a ∈ N .

We set again

f ′ ∼ f ⇐⇒ f ′ = f ◦ g for some g ∈ G ,

and call the resulting equivalence classes the patterns of Map(N,R)
under the action of G.

In problem B, g is thus the actual permutation of the faces (or edges,
or vertices) induced by the symmetry g ∈ G.
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Problem. Given N , R, and a group G that acts on N , count the
number of patterns of Map(N,R) under G.

Let us study this problem in full generality. Let G be a group that
acts on the set X. As before, we set y ∼ x if y = gx for some
g ∈ G, and call the equivalence classes the patterns. In group theory
the patterns are called orbits, but we stick to the more expressive
term “patterns”. Thus in our previous setup, X = Map(N,R), and
f ′ = gf if f ′ = f ◦ g.

The pattern containing x is therefore M(x) = {gx : g ∈ G}. The
following concepts pave the way to our first important result. The
stabilizer of x ∈ X is Gx = {g ∈ G : gx = x}, which is clearly a
subgroup of G. The fixed-point set of g ∈ G is Xg = {x ∈ X : gx =
x}. Counting the pairs {(x,g) : gx = x} in two ways immediately
gives ∑

x∈X
|Gx| =

∑
g∈G

|Xg| . (1)

Lemma 6.1. Let G act on X. Then for any x ∈ X,

|M(x)| = |G|
|Gx|

. (2)

Proof. We have M(x) = {gx : g ∈ G}. Now,

gx = hx ⇐⇒ g−1hx = x ⇐⇒ g−1h ∈ Gx ⇐⇒ h = ga,a ∈ Gx .

This means that for every g ∈ G, exactly |Gx| group elements,
namely all h = ga with a ∈ Gx , give the same element hx = gx ∈
M(x), and (2) follows immediately. �

Results (1) and (2) imply the following famous lemma of Burnside–
Frobenius.

Lemma 6.2 (Burnside–Frobenius). Let the group G act on X, and let
M be the set of patterns. Then

|M| = 1
|G|

∑
g∈G

|Xg| . (3)

Proof. Let y ∈ M(x), or equivalently M(y) = M(x). Then by (2),
|Gx| = |Gy |, and therefore
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|G| = |M(x)||Gy| =
∑

y∈M(x)
|Gy| .

Summation over all patterns together with (1) gives

|M||G| =
∑

patternsM(x)

∑
y∈M(x)

|Gy| =
∑
y∈X

|Gy | =
∑
g∈G

|Xg| ,

and thus the result. �

The importance of the lemma rests on the fact that in many exam-
ples the sets Xg are easily enumerated, whereas the patterns M(x)
may be harder to count.

Example. Consider the necklace problem with n = p a prime num-
ber and r colors. We set X = Map(N,R) and want to determine
|Xρi|, where ρi is the rotation through the angle i360◦

p . Obviously,
|Xρ0| = rp. Consider f ∈ Xρi , that is, f = f ◦ ρi for 0 < i ≤ p − 1.
Since i and p are relatively prime, a moment’s thought shows that
all beads must be colored alike. This means that |Xρi| = r , and the
lemma implies

|M| = 1
p
(rp + (p − 1)r) .

Since the right-hand side is an integer, we have proved Fermat’s
theorem

rp ≡ r (mod p) ,

or
rp−1 ≡ 1 (mod p)

if r and p are relatively prime.

The following idea helps to greatly reduce the number of g ∈ G that
we have to consider in (3). Call two elements g,g′ ∈ G conjugate if
g′ = h−1gh for some h ∈ G. Clearly, conjugacy is an equivalence re-
lation on G, whose equivalence classes are called conjugacy classes
C(g).

Claim. If g and g′ are conjugate, then |Xg| = |Xg′ |.
Suppose g′ = h−1gh, and consider the bijection h : X → X, x � hx.
We have

x ∈ Xg′ ⇐⇒ h
−1
ghx = x ⇐⇒ g(hx) = hx ⇐⇒ hx ∈ Xg ,
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and thus |Xg′ | = |Xg| .

It suffices therefore to pick a representative out of each conjugacy
class; let us call such a set a transversal of the conjugacy classes.

Corollary 6.3. Let G act on X, and let T be a transversal of the
conjugacy classes of G. Then

|M| = 1
|G|

∑
g∈T

|C(g)||Xg| . (4)

Example. If the group G is commutative, then h−1gh = g for any
h, and the conjugacy classes consist of singletons. So in this case,
for example for the cyclic group Cn, the corollary does not help.

But consider now the dihedral group Dn, n ≥ 3. It consists of all
rotations of a regular n-gon plus n reflections. For the necklace
problem this means that we may take off the necklace and put it
back on the other way around. Let N = {0,1, . . . , n − 1} with 0 on
top as in the figure.

0

5 1

24

3

We write the group Dn in multiplicative form. Thus the subgroup
of rotations is {ρ0 = 1, ρ, ρ2, . . . , ρn−1}, where

ρk : i→ i+ k (mod n) (k = 0, . . . , n− 1) .

Let σ be the reflection along the vertical middle axis,

σ : i→ n− i (mod n) .

Then Dn = {ρ0, ρ, . . . , ρn−1, σ ,σρ, . . . , σρn−1}, with

σρk = ρ−kσ .

It is easy to see that the rotations split into the conjugacy classes

{ρ0}, {ρ,ρn−1}, . . . , {ρn−1
2 , ρ

n+1
2 } for odd n ,
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and

{ρ0}, {ρ,ρn−1}, . . . , {ρn
2 −1, ρ

n
2 +1}, {ρn

2 } for even n .

For odd n, there is one class for the reflections, and for even n there
are the two classes

{σ,σρ2, σρ4, . . . , σρn−2}, {σρ,σρ3, σρ5, . . . , σρn−1} .

A Famous Example.
To demonstrate the full power of the lemma of Burnside–Frobenius
let us look at the following famous chessboard problem. In how
many ways can we place n non-attacking rooks on an n × n-
chessboard? These arrangements {(i,πi) : i = 1, . . . , n} correspond
bijectively to the n! permutations π ∈ S(n). But how many patterns
are there? The symmetry group of the board is the dihedral group
D4, |D4| = 8. Let us denote as before the rotations in clockwise
fashion by 1, ρ, ρ2, ρ3, and by σ the reflection along the vertical
axis.

Here are the patterns up to n = 4:

n = 1 × n = 2 ×× n = 3
×××

× ××

n = 4
××××

×× ××
× ×××

× ×× ×
× ×××

×× ××
× ×× ×

To obtain the general result, let N2 = {(i, j) : 1 ≤ i, j ≤ n} be
the cells of the board, and X the set of non-attacking rook arrange-
ments. We identify Π = {(i,πi) : i = 1, . . . , n} ∈ X with the permu-
tation π ∈ S(n), and write i π

�→ j if (i, j) ∈ Π. In order to apply
the lemma we must determine where a cell (i, j) is moved by the
elements of D4. The following table shows this (check it!):

(i, j)
ρ0

�→ (i, j)
ρ
�→ (j,n+ 1 − i)
ρ2

�→ (n+ 1 − i,n+ 1 − j)
ρ3

�→ (n+ 1 − j, i)

(i, j) σ
�→ (i,n+ 1 − j)
σρ
�→ (j, i)
σρ2

�→ (n+ 1 − i, j)
σρ3

�→ (n+ 1 − j,n+ 1 − i) .

(5)
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Notice that any h ∈ D4 carries Π ∈ X again into an hΠ ∈ X. It re-
mains to determine the size of Xg for g ∈ D4, where by the remarks
on conjugacy we may restrict ourselves to ρ0, ρ, ρ2, σ , and σρ.

We just consider ρ; the other cases are settled in a similar fashion.
Let Π ∈ Xρ; we describe Π by looking at its corresponding permuta-

tion π . If i π
�→ j, then j π

�→ n+ 1 − i according to (5). This, in turn,
implies n+1− i π

�→ n+1−j π
�→ i. Hence π decomposes into cycles

of the form (i, j,n + 1 − i,n + 1 − j), but of course the cycle may
close before n+ 1 − j.
Suppose i π

�→ i. Then i π
�→ i π

�→ n + 1 − i = i, that is, i = n+1
2 .

So this can happen only for odd n, and it is clear that in this case
the central cell

(
n+1

2 , n+1
2

)
is fixed. Now let i π

�→ j ≠ i. If (i, j) is

a 2-cycle of π , then i π
�→ j π

�→ n + 1 − i = i π
�→ n + 1 − j = j;

thus i = j = n+1
2 , which cannot be. Hence there are no 2-cycles,

and similarly there are no 3-cycles. We therefore have the following
result:

If n is odd, then π ∈ Xρ consists of one fixed point and n−1
4 4-

cycles; thus n = 4t + 1. If n is even, then π ∈ Xρ consists of n
4

4-cycles; thus n = 4t. Furthermore, we see that in every 4-cycle
(i, j,n + 1 − i,n + 1 − j), two numbers are less than or equal n

2 ,
and two numbers are at least n

2 + 1. Hence after choosing a set
{i, j,n + 1 − i,n + 1 − j} we have two possible choices for the 4-
cycle.

Example. Consider n = 5 and the 4-set {1,2,4,5}. The two possi-
ble 4-cycles are (1,2,5,4) and (1,4,5,2), corresponding to the rook
configurations {(1,2), (2,5), (3,3), (4,1), (5,4)} and {(1,4), (2,1),
(3,3), (4,5), (5,2)}:

×
×

×
×

×

×
×

×
×

×

Both configurations are invariant under ρ, which they must be.

It remains to count in how many ways we can split the set N (or
N�{n+1

2 }) into 4-sets of the form {i, j,n+1− i,n+1− j}. But this
is easy. We may pair 1 with any other number j ≤ n

2 ; the remaining
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numbers n and n+ 1 − j are then determined. Now we choose the
next element, and so on. Altogether this gives

n−3
2 · n−7

2 · · ·1 for n = 4t + 1 ,
n−2

2 · n−6
2 · · ·1 for n = 4t

possibilities. Taking into account that every 4-set may be made into
two 4-cycles we obtain

|Xρ| = |Xρ3| =
⎧⎨⎩ (n− 3)(n− 7) · · ·2 n = 4t + 1 ,

(n− 2)(n− 6) · · ·2 n = 4t .
(6)

The result for ρ2 is

|Xρ2| =
⎧⎨⎩ (n− 1)(n− 3) · · ·2 n odd,

n(n− 2) · · ·2 n even ,
(7)

and, of course, |Xρ0| = n! .

The table (5) easily implies |Xσ | = |Xσρ2| = 0, whereas for σρ (and
by conjugacy for σρ3), π ∈ Xσρ consists of 2-cycles and 1-cycles.
Thus

|Xσρ| = |Xσρ3| = in , (8)

where in is the number of involutions in S(n). In Exercise 1.39 we
derived the recurrence in+1 = in + nin−1 (i0 = 1), which gives the
small values

n 0 1 2 3 4 5 6 7 8

in 1 1 2 4 10 26 76 232 764

With some straightforward algebraic manipulations we arrive with
(6), (7), (8), and the lemma of Burnside–Frobenius at the final result.
Let Rn be the patterns of non-attacking rook configurations. Then
for n ≥ 2,

|Rn| =

⎧⎪⎨⎪⎩
1
8

(
n!+ 2in + (2t)!22t + (2t)! 2

t!

)
for n = 4t,4t + 1 ,

1
8

(
n! + 2in + (2t + 1)!22t+1

)
for n = 4t + 2,4t + 3 .

For n = 4 we compute |R4| = 1
8(24+20+2 ·4+2 ·2) = 7, verifying

our example from above, and further, |R5| = 23, |R6| = 115, |R7| =
694, |R8| = 5282.
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Exercises

6.1 A flag is divided into n horizontal stripes. How many black–white
coloring patterns exist in which the flag can be turned upside down and
look the same?

6.2 How many patterns do we obtain when we color the 12 edges of a
cube with 12 different colors?

� 6.3 Consider a necklace with 6 beads, colored black or white, and let
C6 act on the necklace (rotations only) or D6 (also reflections). Compute
the number of patterns. There are exactly two patterns that are different
under C6, but equal under D6; which?

6.4 Use the lemma of Burnside–Frobenius to count the number of four-
bead necklaces that can be formed with three colors such that no two
consecutive beads receive the same color. Consider C4 and D4.

� 6.5 Count the number of lattice paths from (0,0) to (n,n) with steps
up and to the right, when two paths are considered equal if one can be
moved on top of the other by a rotation or reflection. Example:

•
•
•

•

• •
= • • •

•

•

Hint: Represent a path as a sequence of 0’s and 1’s and determine the
group that acts on these sequences.

6.6 Show that there are precisely three vertex-patterns of the octahe-
dron in which three vertices are red, two are blue, and one is green. Draw
them.

6.7 Complete the computation in the example of the non-attacking rook
patterns by determining the sizes of the other fixed-point sets.

� 6.8 Consider a triangular array of
(
n+1

2

)
balls on a table, for example

for n = 3. Find the number of patterns (under C3) when three colors are
available.

6.9 A rotating table has a pocket at each corner that may contain 1, 2,
or 3 balls. Compute the number of different arrangements with a total
number of 8 balls.

* * *
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6.10 A company introduces quadratic 3×3-cards with two holes punched
in them as identity cards, for example,

.

The two sides of the cards are not distinguishable. How many people can
be employed?

� 6.11 Let N be an n-set, G ≤ S(N). We call two subsets A and B G-
equivalent if B = {g(a) : a ∈ A} for some g ∈ G. Show for the number m
of inequivalent subsets that m = 1

|G|
∑
g∈G 2c(g), where c(g) denotes the

number of cycles of g.

6.12 Use the previous exercise to prove
∑
σ∈S(n) 2c(σ) = (n+ 1)! .

� 6.13 Determine the number of non-isomorphic multiplication tables on
two elements 0 and 1. There are 24 = 16 tables. Two multiplications
x · y and x ◦ y are isomorphic if there is a bijection ϕ with ϕ(x · y) =
ϕ(x) ◦ϕ(y). Determine this number also for three elements.

6.14 A caterpillar is a tree in which deletion of end-vertices (vertices of

degree 1) leaves a path. Example: . Prove that the number of
non-isomorphic caterpillars on n vertices is 2n−4 + 2�n/2	−2 for n ≥ 3.

6.15 Let p be a prime, and r , 	 positive integers. Generalize Fermat’s the-

orem to prove that rp	 − rp	−1
is divisible by p	.

6.16 Consider an arbitrary group G. The group G acts on itself by h :
G → G, h(g) = h−1gh, for h ∈ G. The patterns under this action are the
conjugacy classes. Describe the stabilizer Gg under this action.

� 6.17 Consider the symmetric group S(n). Show that if π and σ are con-
jugate, then they have the same type. Use the previous exercise and Ex-
ercises 1.45, 1.46 to conclude that two permutations are conjugate if and
only if they have the same type.

6.18 Let p be a prime, and consider the (trivial) action of S(p) on a sin-
gle point N = {a}. Use (4) and the previous exercise to deduce Wilson’s
theorem from number theory: (p − 1)! ≡ −1 (mod p).

6.2 The Theorem of Pólya–Redfield

Let us return to our original problem in which we are given two sets
N and R, and a group G that acts on N . The lemma of Burnside–
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Frobenius gives the number of patterns of Map(N,R), where the
action on Map(N,R) is

f ′ = gf ⇐⇒ f ′ = f ◦ g . (1)

We see with (1) that we may more generally consider subsets F ⊆
Map(N,R) such that f ◦ g ∈ F whenever f ∈ F holds. Let us call
these families F closed under G. Two obvious examples are the in-
jective mappings Inj(N,R) and the surjective mappings Surj (N,R).

For many applications it is important to specify the patterns fur-
ther. In the necklace problem A we could ask how many patterns
exist with k white beads. In problem C it is of interest to determine
the number of alcohols with exactly k C-atoms.

Let us treat this in full generality. We associate to j ∈ R a variable
xj , and define the weight w(f) of f ∈ F by

w(f) =
∏
i∈N

xf(i) . (2)

Now if f ′ ∼ f , f ′ = f ◦ g, then

w(f ′) =
∏
i∈N

xf ′(i) =
∏
i∈N

xf(gi) =
∏
i∈N

xf(i) = w(f) ,

since with i ∈ N , gi runs through all of N as well. We can therefore
unambiguously define the weight of a pattern M by

w(M) = w(f) (f ∈ M) . (3)

With this we come to the following general problem.

Problem. Given setsN and R, |N| = n, |R| = r , a group G that acts
on N , and variables xj (j ∈ R); let MF be the set of patterns of the
G-closed family F ⊆ Map(N,R). Determine the weight enumerator

w(F ;G) =
∑

M∈MF
w(M) . (4)

In particular, if we set xj = 1 for all j ∈ R, then we obtain the
number |MF| of all patterns of F .

Example. Consider the necklace problem with n = 4, r = 2, and
the variables W and B. Then
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w(Map(N,R);C4) = W4 +W3B + 2W2B2 +WB3 + B4 .

If we color the faces of the cube white or black, then

w(Map(N,R);G) = W6+W5B+2W4B2+2W3B3+2W2B4+WB5+B6 .

Theorem 6.4. Let N and R be sets, G a group that acts on N , F a
G-closed class, and xj (j ∈ R) variables. Then

w(F ;G) =
∑

M∈MF

w(M) = 1
|G|

∑
g∈G

∑
f∈F ,f◦g=f

w(f) . (5)

Proof. Let M be a pattern of F under G. If we apply G to M , then,
of course, we obtain only one pattern, namely M . By the lemma of
Burnside–Frobenius,

1 = 1
|G|

∑
g∈G

|Mg| , (6)

where Mg = {f ∈ M : f ◦ g = f}. We know that all f ∈ M have the
same weightw(f) = w(M). Multiplication of (6) byw(M) therefore
gives

w(M) = 1
|G|

∑
g∈G

|Mg|w(f) = 1
|G|

∑
g∈G

∑
f∈M :f◦g=f

w(f) ,

and summation over all patterns yields (5). �

Theorem of Pólya–Redfield.
To apply Theorem 6.4 we must be able to evaluate the inner sum∑
f∈F :f◦g=f w(f). In general, this raises grave difficulties, but for

the most important case F = Map(N,R) there is an elegant solution
due to Pólya and Redfield.

Consider f ∈ Map(N,R) with f ◦ g = f , and let

(a,ga,g2a, . . . , gk−1a)

be a cycle of g. Then f(a) = f(ga) = f(g2a) = · · · = f(gk−1a),
that is, f is constant on all cycles of g. It follows that f ◦ g = f if
and only if f is constant on all cycles of g. Now suppose g has type
1c12c2 . . . ncn , and f maps the 1-cycles to f11, . . . , f1c1 , the 2-cycles
to f21, . . . , f2c2 , and so on. This gives the weight of f as
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w(f) = xf11 · · ·xf1c1
x2
f21

· · ·x2
f2c2

· · ·xnfn1
· · ·xnfncn . (7)

Since all mappings f appear that are constant on the cycles of g,
we conclude that

∑
f :f◦g=f

w(f) =
⎛⎝∑
j∈R

xj

⎞⎠c1
⎛⎝∑
j∈R

x2
j

⎞⎠c2

. . .

⎛⎝∑
j∈R

xnj

⎞⎠cn . (8)

In other words, to evaluate an inner sum
∑
f :f◦g=f w(f) in (5) only

the cycle structure of g matters, and this suggests the following
definition.

Definition. Let G be a group that acts on N , |N| = n. The cycle
index of G is the polynomial in the variables z1, . . . , zn given by

Z(G;z1, . . . , zn) = 1
|G|

∑
g∈G

zc1(g)
1 · · ·zcn(g)n ,

where t(g) = 1c1(g) . . . ncn(g) is the type of g.

With this definition we immediately infer from (5) and (8) the fol-
lowing fundamental theorem.

Theorem 6.5 (Pólya–Redfield). Let N and R be sets, |N| = n, |R| =
r , and G a group acting on N , xj (j ∈ R) variables. Then

w(Map(N,R);G) =
∑
M∈M

w(M)

= Z
⎛⎝G;

∑
j∈R

xj,
∑
j∈R

x2
j , . . . ,

∑
j∈R

xnj

⎞⎠ . (9)

In particular,
|M| = Z(G; r , r , . . . , r ) . (10)

The Three Problems.
With this theorem in hand we can easily solve our three problems.
Each time, we have to compute the cycle index of the group in ques-
tion.

Problem A. Let N = {0,1, . . . , n − 1}, and ρk : i → i + k (mod n)
as before. It is clear that ρk decomposes N into cycles of the same
length d; hence t(ρk) = dn/d for some divisor d of n. Furthermore,
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d is the smallest number such that after d rotations ρk we arrive
again at 0. This implies that d is the smallest number with n | dk. It
follows that n

gcd(n,k) | d, and hence d = n
gcd(n,k) by the minimality of

d. In the solution of Exercise 1.9 it was shown that there are exactly
ϕ(d) numbers k with gcd(n,k) = n

d , where ϕ is Euler’s function.
In sum, we obtain the beautiful formula

Z(Cn;z1, . . . , zn) = 1
n

∑
d|n
ϕ(d)zn/dd . (11)

By the theorem of Pólya–Redfield the number of n-necklaces with r
colors is thus given by

|Mn,r | = 1
n

∑
d|n
ϕ(d)rn/d . (12)

For n = 4 this gives

|M4,r | = 1
4
(r4 + r2 + 2r) .

For example, there are 70 such necklaces with 4 colors, and 616
with 7 colors.

Problem B. One learns in geometry that every symmetry of the
cube possesses an axis. This axis passes through opposite faces
(more precisely through the middle points), through diametrically
opposite edges, or through diametrically opposite vertices. Hence
there are 3 face axes, 6 edge axes, and 4 vertex axes. The figure
shows that every face axis produces three symmetries (rotations)
apart from the identity.

3

1

4

3

2 1
4

4

3 2

Altogether, G consists of the 24 symmetries
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identity 1
face axes 3 · 3
edge axes 6 · 1
vertex axes 4 · 2

24

It is now an easy matter to determine the cycle index for the action
on the faces:

identity z6
1 ,

face axis 3(z2
1z

2
2 + 2z2

1z4) ,
edge axis 6z3

2 ,
vertex axis 8z2

3 ,

and so

Z(G;z1, . . . , z6) = 1
24
(z6

1 + 3z2
1z

2
2 + 6z2

1z4 + 6z3
2 + 8z2

3) . (13)

By the theorem the number of face patterns with r colors is

|Mr | = 1
24
(r6 + 3r4 + 12r3 + 8r2)

(14)
= 1

24
r2(r + 1)(r3 − r2 + 4r + 8) .

For r = 2 and r = 3 we obtain |M2| = 10 and |M3| = 57 .

Problem C. We want to determine the generating function A(x) =∑
n≥0 anxn, where an is the number of alcohols with n C-atoms.

We have a0 = 1, and for n ≥ 1 we call the C-atom attached to OH
the root of the alcohol. There are three subalcohols attached to the
root (the root now plays the role of OH), which may be permuted
arbitrarily:

OH C 2

1

3

Accordingly, the group is S(3) on N = {1,2,3}. Let R be the set of
alcohols with weight w(A) = xn if A contains n C-atoms. Note that
R is an infinite set, but this poses no difficulties. Any alcohol corre-
sponds therefore to a map f : N → R, and the different alcohols are
precisely the patterns under S(3). The cycle index of S(3) is
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Z(S3;z1, z2, z3) = 1
6
(z3

1 + 3z1z2 + 2z3) ;

furthermore,
∑
A∈R w(A)k = A(xk). Taking the root into account

we arrive with Pólya–Redfield at the functional equation

A(x) = 1 + x
6
[A(x)3 + 3A(x)A(x2)+ 2A(x3)] ,

which gives by comparing coefficients

an = 1
6

⎡⎣ ∑
i+j+k=n−1

aiajak + 3
∑

i+2j=n−1

aiaj + 2an−1
3

⎤⎦ (n ≥ 1) .

The first values are

n 0 1 2 3 4 5 6 7 8

an 1 1 1 2 4 8 17 39 89

The figure shows the 8 alcohols for n = 5, where only the OH-group
and the C-atoms are given:

OH OH OH OH

OH OH OH OH

A Generalization.
The alcohol example can immediately be generalized to the fol-
lowing situation. Let R be a set (possibly countably infinite), and
suppose every element of R has a weight xn (n ≥ 0); R(x) =∑
n≥0 rnxn is the generating function, where rn is the number of

elements of R of weight xn (assumed to be finite). Now let G act
on the n-set N , and consider as before the patterns of Map(N,R)
under G.

Corollary 6.6. Let mk be the number of patterns of weight xk in
Map(N,R) under G, where all mk are assumed to be finite. Then

w(Map(N,R);G) =
∑
k≥0

mkxk

= Z(G;R(x),R(x2), . . . , R(xn)
)
. (15)
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Proof. As in problem C,
∑
a∈R w(a)k = R(xk), and the result fol-

lows. �

When G = S(n) we get from this a very interesting formula. Con-
sider the permutation version of the exponential formula in Section
3.3 with the notation there, and let f(n) = zn (n ≥ 1). Then with

h(n) =
∑

σ∈S(n)
zc1(σ)

1 zc2(σ)
2 · · ·zcn(σ)n ,

we have

Ĥ(y) =
∑
n≥0

h(n)
yn

n!
= exp

⎛⎝∑
k≥1

zk
yk

k

⎞⎠ .
But h(n)n! = 1

n!

∑
σ∈S(n) z

c1(σ)
1 · · ·zcn(σ)n = Z(S(n);z1, . . . , zn), and so

we obtain

∑
n≥0

Z(S(n);z1, . . . , zn)yn = exp

⎛⎝∑
k≥1

zk
yk

k

⎞⎠ . (16)

With the substitution zk � R(xk), this gives the following result.

Corollary 6.7. Let R(x) = ∑
n≥0 rnxn be a generating function.

Then

∑
n≥0

Z(S(n);R(x),R(x2), . . . , R(xn))yn = exp

⎛⎝ ∑
k≥1

R(xk)
yk

k

⎞⎠ .
(17)

Example. We want to determine the generating function U(x) =∑
n≥1unxn, where un is the number of isomorphism classes of

rooted trees with n vertices. Two rooted trees (T ,v) and (T ′, v′)
are isomorphic if ϕ : T → T ′ is an isomorphism that carries v into
v′. Thus, for example, u1 = u2 = 1, u3 = 2, u4 = 4 . The figure
shows the trees:

Suppose the root v has degree n. Let N = {1, . . . , n}, and R the set
of rooted trees, with w(T) = xn if T has n vertices:
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v
1

u1 u2

2
. . .
n

un

Considering the neighbors u1, . . . , un of v as roots of the subtrees,
we may permute these subtrees arbritrarily, and hence obtain from
(15), taking the root into account,

Vn(x) = xZ
(
S(n);U(x),U(x2), . . . , U(xn)

)
,

where Vn(x) is the generating function of the number of isomor-
phism classes when the root has degree n ≥ 0. Summing over n, we
get with (17) for y = 1 the functional equation

U(x) = xe
∑
k≥1

U(xk)
k . (18)

Now, U(xk) =∑i≥1uixik, and therefore

∑
k≥1

U(xk)
k

=
∑
k≥1

1
k

∑
i≥1

uixik =
∑
i≥1

ui
∑
k≥1

(xi)k

k

=
∑
i≥1

(−ui log(1 − xi))
=
∑
i≥1

log(1 − xi)−ui ,

which gives with (18) the formula

U(x) = x
∏
i≥1

(1 − xi)−ui . (19)

Self-complementary Patterns.
There is another natural question that can be effectively dealt
with using the Pólya–Redfield approach. Let N be an n-set, R =
{0,1}, and G a group acting on N . We call f : N → {0,1} self-
complementary if f and h ◦ f belong to the same pattern, where
h is the involution 0 ↔ 1 on R. What is the number of self-
complementary patterns? Interpreted as black/white colorings, we
are asking for the number of patterns that are invariant under color
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exchange. Of course, this can happen only when n is even, and
|f−1(0)| = |f−1(1)|.
Suppose f is self-complementary, that is,

h ◦ f = f ◦ kf for some kf ∈ G .

Now if f ′ ∼
G
f , f ′ = f ◦ g, then

h ◦ f ′ = (h ◦ f) ◦ g = f ◦ (kf ◦ g) = f ◦ kfg ,

which means that h◦f ′ ∼
G
f , and thus h◦f ′ ∼

G
f ′. Any f ′ equivalent

to a self-complementary map is therefore also self-complementary,
and we can unambiguously speak of a self-complementary pattern.
Suppose F ⊆ Map(N,R) is a family closed under G, and Fc the
set of self-complementary mappings in F . Let MFc be the set of
self-complementary patterns in F .

Proposition 6.8. Let N be an n-set, R = {0,1}, G a group acting on
N , and F ⊆ Map(N,R) a G-closed class. Then with h : 0 ↔ 1 in R,

w(Fc ;G) =
∑

M∈MFc
w(M) = 1

|G|
∑
g∈G

⎛⎝ ∑
f∈F :h◦f=f◦g

w(f)

⎞⎠ .
Proof. Consider the action of G on Fc defined by

f → f ′ = h ◦ f ◦ g (g ∈ G) .

Now, f ′ = h ◦ f ◦ g implies f ′ = f ◦ kfg . Conversely, if f ′ = f ◦ g,
then f ′ = h ◦ (h ◦ f) ◦ g = h ◦ f ◦ kfg. Hence the patterns of
Fc under G and the new action are the same, and the proposition
follows from (5). �

Let us consider F = Map(N,R). As in the Pólya–Redfield theorem
we want to relate the inner sum

∑
f :h◦f=f◦g w(f) to the cycle index

of G. Consider a ∈ N , f(a) = b ∈ R, and assume h ◦ f = f ◦ g.
Suppose a lies in a k-cycle of g. Applying f to the cycle containing
a we infer

a

f
��

g(a)

��

g2(a)

��

. . . gk−1(a)

��
b h(b) h2(b) . . . hk−1(b)
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It follows that (f ◦gk)(a) = f(a) = b = hk(b), and thus 2 | k. Since
we may choose as b = f(a) both 0 and 1, we conclude that∑

f :h◦f=f◦g
w(f) = λc1(g)

1 λc2(g)
2 · · ·λcn(g)n

with

λk =
{

2(x0x1)k/2 k even,
0 k odd,

and thus the following result.

Corollary 6.9. The weight enumerator of the self-complementary
patterns of Map(N,R) is given by

w(Map(N,R)c ;G) = Z(G;λ1, . . . , λn) ,

with

λk =
{

2(x0x1)k/2 k even,
0 k odd.

In particular,

|Map(N,R)c| = Z(G; 0,2,0,2, . . .) .

Example. For the necklace problem with r = 2 we have according
to (11),

|Mc
n| =

1
n

∑
d|n2

ϕ(2d)2n/2d .

In particular, when n = 2m, this gives

|Mc
2m| =

1
2m

∑
d|2m−1

ϕ(2d)22m−1/d = 1
2m

m−1∑
k=0

ϕ(2k+1)22m−1−k

= 1
2m

m−1∑
k=0

2k+2m−1−k =
m−1∑
k=0

22k−k−1 .

The figure shows the four self-complementary necklaces for n = 8:
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Exercises

6.19 Let G be the symmetry group of the cube. Compute the cycle index
when N is the set of edges, and when N is the set of vertices.

� 6.20 Consider the cycle index of S(n). Without computing it deduce that∑n
k=0 sn,kxk = xn, where sn,k is the Stirling number.

6.21 How many 2-colored face patterns of the cube exist when white and
black appear equally often? The same question with edges and vertices.

6.22 Consider molecules analogous to alcohols with OH- and H-atoms
as before, but 3-valent D-atoms. Determine the functional equation for
the generating function D(x) = ∑

n≥0 dnxn, dn = # molecules with n
D-atoms, and dn for n ≤ 8.

6.23 Let N be an n-set, G ≤ S(N). Consider subset equivalence as in
Exercise 6.11, and let mk be the number of k-subset patterns. Show that∑n
k=0mkxk = Z(G; 1 + x,1 + x2, . . . ,1 + xn) .

� 6.24 Derive from the previous exercise the following formulas:

a.
∑n
k=0

(
n
k

)
xk = (1 + x)n ,

b. (n+ 1)! =∑σ∈S(n) 2c(σ) = ∑n
k=0 sn,k2k ,

c.
∑
d|nϕ(d) = n .

6.25 Let G ≤ S(M), H ≤ S(N), where M and N are disjoint. The product
G ·H is the permutation group on M ∪N , G ·H = {g · h : g ∈ G,h ∈ H},
with

(g · h)(a) =
{
g(a) if a ∈M ,
h(a) if a ∈ N .

Prove that Z(G ·H) = Z(G) · Z(H) .

6.26 What do you get in (17) for R(x) = 1 + x?

6.27 Determine the number of different dice that bear the numbers
1, . . . ,6 as usual. How many have, as is customary, 1 and 6, 2 and 5, 3
and 4 on opposite faces? Hint: N = faces, R = {1, . . . ,6}, F = Inj(N,R) .

* * *

6.28 Determine the symmetry groups of the tetrahedron and octahedron,
and compute the cycle indices for the set of faces.

� 6.29 Compute the cycle index of the dihedral group Dn, and deter-
mine the number of n-necklaces, colored black and white, that are self-
complementary under Dn.

6.30 For some k we have Z(Cn; 2, . . . ,2) = Z(Dn; 2, . . . ,2) for all n ≤ k,
and Z(Cn) ≠ Z(Dn) for n > k. Determine k.
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6.31 Find the number of self-equivalent subset patterns of {1, . . . ,12}
when G = C12 and G = D12 .

6.32 Let x1, . . . , xr be variables. A polynomial p(x1, . . . , xr ) is said to be
symmetric if p(xσ(1), . . . , xσ(r)) = p(x1, . . . , xr ) for all σ ∈ S(r). Exam-
ples are the elementary symmetric functions en(x1, . . . , xr ) =

∑
i1<···<in

xi1xi2 · · ·xin , and the power functions pk(x1, . . . , xr ) = ∑r
j=1 x

k
j . Con-

sider the closed class Inj(N,R) and prove

w(Inj(N,R);G) = n!
|G|en(x1, . . . , xr ) .

What follows for x1 = · · · = xr = 1, and G = {id}, G = S(n) ?

� 6.33 Clearly,
∑
n≥0 en(x1, . . . , xr )zn = ∏r

j=1(1 + xjz). Now set xj = j
(j = 1, . . . , r ), and deduce sn,m = ∑

1≤k1<···<kn−m≤n−1 k1k1 · · ·kn−m,
where sn,m is the Stirling number.

� 6.34 With en(x1, . . . , xr ) and pk(x1, . . . , xr ) as defined in Exercise 6.32
use (16) to prove the following formula of Waring:

en(x1, . . . , xr ) = Z(S(n);p1,−p2, . . . , (−1)n−1pn) .

6.35 Let U(x) = ∑
n≥1unxn be the generating function of isomorphism

classes of rooted trees. Prove that

un =
∑

λ∈Par(n−1)

ui1λ1
ui2λ2

· · ·uitλt
i1!i2! · · · it !

,

where λ ∈ Par(n− 1) is written as

λ1 . . . λ1︸ ︷︷ ︸
i1

λ2 . . . λ2︸ ︷︷ ︸
i2

. . . λt . . . λt︸ ︷︷ ︸
it

, λ1 > λ2 > · · · > λt .

� 6.36 Suppose trees are rooted at an edge. Call two such trees isomorphic

if the root edge is carried onto the root edge by an isomorphism. Show
for the corresponding generating function U(e)(x) = ∑n≥1u

(e)
n xn of iso-

morphism classes that U(e)(x) = 1
2[U(x)

2 + U(x2)], with U(x) as in the
previous exercise.

6.37 A planted tree is a rooted tree whose root has degree 1. Two such
trees are isomorphic if they are transformed into each other by a contin-
uous motion in the plane. For instance,

��



262 6 Enumeration of Patterns

Let kn be the number of isomorphism classes of planted trees with n
edges (= n + 1 vertices) whose vertices all have degree 1 or 3. Prove for
the generating function K(x) =∑n≥1 knxn:
a. K(x) = x + K(x)2, b. k2n = 0, k2n+1 = Cn (Catalan number).

6.3 Cycle Index

We have seen in the last section that the cycle index Z(G) contains
all the information needed to enumerate patterns of mappings un-
der the action of the group G. It is therefore important to have some
general results on the cycle index at hand.

Enumeration of Graphs.
As our first example let us consider the enumeration of graphs,
where in this section a graph is always assumed to be simple. We
are given a fixed vertex set V with n vertices. Clearly, there are

2(
n
2) graphs on V , and

((n2)
k

)
such graphs with k edges. Now we

want to count non-isomorphic graphs. Two graphs G = (V, E) and
G′ = (V, E′) are isomorphic if there is a permutation σ ∈ S(V) such
that {σu,σv} ∈ E′ ⇐⇒ {u,v} ∈ E.

Let g(n) be the number of non-isomorphic graphs on n vertices,
and more precisely, g(n,k) the number of non-isomorphic graphs
with k edges. We want to determine the polynomial g(x) =∑(n2)
k=0 gn,kx

k.

To apply the Pólya–Redfield theorem we identify each graph G =
(V, E) with the mapping f :

(
V
2

)
→ {0,1}, where f({u,v}) = 1

means that {u,v} ∈ E, and f({u,v}) = 0 otherwise. Hence N =(
V
2

)
, R = {0,1}, and S(n) acts on

(
V
2

)
through σ{u,v} = {σu,σv} .

Clearly, (V, E) � (V, E′) if and only if f ′ = f ◦ σ holds for some
σ ∈ S(n). The induced group S(n) = {σ : σ ∈ S(n)} is called the
pair group. Assigning as usual the weights w(1) = x, w(0) = 1, the
Pólya–Redfield theorem implies the following result:

Proposition 6.10. We have

(n2)∑
k=0

gn,kxk = Z
(
S(n); 1 + x,1 + x2, . . . ,1 + x(n2)

)
,
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and in particular,

g(n) = Z(S(n); 2,2, . . . ,2) .

Thus our task consists in computing the cycle index Z(S(n)) . Let
σ ∈ S(n) have type t(σ) = 1c12c2 . . . ncn , and consider a cycle A =
(a1, . . . , ak) of σ . Let us check what happens to the set of pairs

(
A
2

)
under σ . We have

{a1, ai} σ
�→ {a2, ai+1} �→ ·· · �→ {ak,ai+k−1} �→ {a1, ai} (mod k) .

If {a	,ai+	−1} = {am,ai+m−1}, then 	 ≡ i +m − 1, m ≡ i + 	 − 1
(mod k), hence i+m− 1 ≡ −i+m+ 1 (mod k), which means that
2(i−1) ≡ 0 (mod k). Hence if k is odd, this cannot happen, and if k
is even then i = k

2 +1. We conclude that for odd k,
(
A
2

)
decomposes

into k−1
2 cycles of length k, and for even k,

(
A
2

)
splits into k

2 − 1

cycles of length k and one cycle of length k
2 .

Now consider two cycles A = (a1, . . . , ak), B = (b1, . . . , b	) of σ .
The pair {ai, bj} is carried into {ai+1, bj+1}, and so forth. The cycle

length in σ is therefore lcm(k, 	), and we obtain k	
lcm(k,	) = gcd(k, 	)

cycles, each of length lcm(k, 	) .

Example. For n = 4 we have

Z(S(4);z1, . . . , z4) = 1
24
(z4

1 + 6z2
1z2 + 8z1z3 + 3z2

2 + 6z4) .

By our analysis,

z4
1 → z6

1, z2
1z2 → z2

1z
2
2, z1z3 → z2

3, z2
2 → z2

1z
2
2, z4 → z2z4 ;

thus

Z(S(4);z1, . . . , z6) = 1
24
(z6

1 + 9z2
1z

2
2 + 8z2

3 + 6z2z4) .

Substituting zk � 1 + xk, this gives

6∑
k=0

g4,kxk =
1
24
[(1 + x)6 + 9(1 + x)2(1 + x2)2 + 8(1 + x3)2

+ 6(1 + x2)(1 + x4)]

= 1 + x + 2x2 + 3x2 + 2x4 + x5 + x6 .
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The figure shows these 11 non-isomorphic graphs:

Applying Corollary 6.9 we immediately obtain the number of non-
isomorphic self-complementary graphs, that is, (V, E) � (V,

(
V
2

)
�E).

Corollary 6.11. The number of non-isomorphic self-complementary
graphs on n vertices is given by

Z(S(n); 0,2,0,2, . . .) .

In the example n = 4 we have Z(S(4); 0,2,0,2,0,2) = 1
24[6 ·2 ·2] =

1, with the path being the only such graph.

The proposition can easily be generalized to the enumeration of
subgraphs of a given graph G = (V, E). Let SG be the group of edge-
preserving permutations of V . Then SG induces a group SG = {σ :
σ ∈ SG} on the edge set E, called the edge group of G, just as S(n)
induced S(n) on the complete graph Kn. Notice that two subgraphs
of G may be isomorphic graphs, but non-isomorphic as subgraphs
of G.

Example. The subgraphs G1 and G2 of G are clearly isomorphic
but non-isomorphic as subgraphs, since every isomorphism of G
must fix a .

a

G

a

G1 G2
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Corollary 6.12. Let G = (V, E) be a graph, and gk(G) the number
of non-isomorphic subgraphs of G with k edges. Then∑

k≥0

gk(G)xk = Z(SG; 1 + x,1 + x2, . . .) .

The number of self-complementary subgraphs is Z(SG; 0,2,0,2, . . .) .

Example. Consider the graph G from above:

5

3 4

1 2

The edge group consists of the four permutations id, (5)(12)(34),
(5)(13)(24), (5)(14)(23) (the Klein 4-group), and we compute

Z(SG;z1, . . . , z5) = 1
4
[z5

1 + 3z1z2
2] .

Thus
5∑
k=0

gk(G)xk =
1
4
[(1 + x)5 + 3(1 + x)(1 + x2)2]

= 1 + 2x + 4x2 + 4x3 + 2x4 + x5 .

The graphs are shown in the figure:
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Operations on Groups.
Let A and B be two disjoint sets, |A| = m, |B| = n, and G ≤ S(A),
H ≤ S(B) . There is a natural product G×H acting on A×B, obtained
by defining

(g,h)(a,b) = (ga,hb), g ∈ G,h ∈ H; a ∈ A,b ∈ B .

You are asked in the exercises to show that

Z(G ×H;z1, . . . , zmn) = 1
|G||H|

∑
(g,h)

m,n∏
k,	=1

zgcd(k,	)ck(g)c	(h)
lcm(k,	) . (1)

Consider as an example the complete bipartite graph G = Km,n with
m ≠ n. The group acting on the edge set is clearly S(m)×S(n), and
thus∑
k≥0

gk(Km,n)xk = Z(S(m)× S(n); 1 + x, . . . ,1 + xmn) (m ≠ n) .

Example. For K2,3 we obtain by (1),

Z(S(2)× S(3);z1, . . . , z6) = 1
12
(z6

1 + 3z2
1z

2
2 + 4z3

2 + 2z2
3 + 2z6) ,

hence ∑
k≥0

gk(K2,3)xk = 1 + x + 3x2 + 3x3 + 3x4 + x5 + x6 .

The figure shows these 13 graphs:

If m = n, then the edge group of Kn,n contains in addition to
S(n)× S(n) all swappings A↔ B followed by (g,h) ∈ S(n)× S(n).
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This group is called the exponentiation group [S(n)]S(2) (see Exer-
cise 6.48).

Just as we have a product G ×H there is a natural composition of
two permutation groups. Let A and B be two sets A = {a1, . . . , an},
B = {b1, . . . , bp}, and G ≤ S(A), H ≤ S(B) .

Definition. The composition G[H] is the permutation group on
A× B whose elements are all (n+ 1)-tuples

[g;h1, . . . , hn] with g ∈ G,hi ∈ H ,

where
[g;h1, . . . , hn](ai, bj) = (gai,hibj) .

It is easily checked that G[H] is indeed a group of size |G||H|n.

The typical situation for the composition arises when we are given
n copies of a structure with p elements. The composition G[H]
first permutes the n copies according to g ∈ G, and then applies
individual permutations hi ∈ H to each copy.

Proposition 6.13. Let G ≤ S(A), H ≤ S(B), |A| = n, |B| = p . Then

Z(G[H];z1, . . . , znp)
= Z(G;Z(H;z1, . . . , zp), Z(H;z2, z4, . . . , z2p), . . .) , (2)

that is, zk is replaced by Z(H;zk, z2k, . . . , zpk) .

Proof. To establish (2), we represent each side as the enumera-
tor of a certain set of patterns (after the substitution zk �

∑
xkj ),

and construct then a weight-preserving bijection between the pat-
tern sets. Since the xj are variables, the two polynomials must be
identical.

Let A = {a1, . . . , an}, B = {b1, . . . , bp}, and R an r -set disjoint from
both A and B. To each j ∈ R we assign as usual the weight xj . The
enumerator of the G[H]-patterns M of Map(A × B,R) is by Pólya–
Redfield

w(Map(A× B,R);G[H]) = Z
(
G[H];

∑
xj,

∑
x2
j , . . . ,

∑
xnpj

)
. (3)

Similarly, the enumerator of all H-patterns B of Map(B,R) is given
by
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w(Map(B,R);H) = Z
(
H;
∑
xj,

∑
x2
j , . . . ,

∑
xpj
)
. (4)

Next we compute the enumeratorw(Map(A,B);G) of all G-patterns
N of mappings f : A → B, where the weight is given by w(f) =∏n
i=1w(f(ai)):

w(Map(A,B);G) = Z
⎛⎝G;

∑
F∈B

w(F),
∑
F∈B

w2(F), . . . ,
∑
F∈B

wn(F)

⎞⎠ .
(5)

By assigning the weight xkj to j ∈ R we obtain

∑
F∈B

wk(F) = Z
(
H;
∑
xkj ,

∑
x2k
j , . . . ,

∑
xpkj

)
,

and thus

w(Map(A,B);G)

= Z
(
G;Z

(
H;
∑
xj,

∑
x2
j , . . .

)
, Z
(
H;
∑
x2
j ,
∑
x4
j , . . .

)
, . . .

)
,

which is precisely the right-hand side of (2) after the substitution
zk �

∑
xkj .

It remains to find a weight-preserving bijection φ : M→N . This is
accomplished as follows. ForM ∈M with representative f : A×B →
R define f̂ : A→ Map(B,R) by

f̂ (ai)(bj) = f(ai, bj) ∈ R (i = 1, . . . , n; j = 1, . . . , p) .

The mapping f̂ induces another mapping F̂ : A→ B, setting

F̂(ai) = H-pattern of f̂ (ai) ∈ B .

Finally, we set
φM = G-pattern of F̂ ∈ N .

It is readily seen thatφ is independent of the chosen representative
function f ∈ M . The proof that φ is a weight-preserving bijection
is left to the exercises. �

Example. Consider three necklaces A,B,C with four beads, each
of them colored red or blue. Two colorings F and F ′ are considered
equal if F ′ arises from F by some permutation of the necklaces
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followed by a rotation. The group involved is therefore S(3)[C4].
Now

Z(S(3)) = 1
6
(z3

1 + 3z1z2 + 2z3), Z(C4) = 1
4
(z4

1 + z2
2 + 2z4) ,

and with Z(C4; 2, . . . ,2) = 6 we obtain for the total number of col-
orings

Z(S(3); 6,6,6) = 1
6
(63 + 3 · 62 + 2 · 6) = 56 .

Exercises

6.38 Determine the cycle index of S(n) and of the alternating group A(n)
of all even permutations in S(n).

6.39 Compute the generating polynomial
∑10
k=0 g5,kxk of all subgraphs of

K5 . How many graphs are self-complementary?

� 6.40 Let Cn be the circuit graph of n vertices. Determine the number of
non-isomorphic subgraphs of Cn .

6.41 Prove formula (1) for Z(G ×H) .

6.42 Consider two disjoint n-sets A = {a1, . . . , an}, B = {b1, . . . , bn} and
color A ∪ B with black or white. Two colorings are equal if one is trans-
formed into the other by the involution ai � bi (i = 1, . . . , n). Compute∑2n
k=0mkxk, where mk is the number of colorings with k black elements.

How many are self-complementary?

� 6.43 Suppose we are given m n-sets whose elements are colored with
two colors. Two colorings are equal if they arise from each other by a
permutation of the m sets followed by permutations of the individual
sets. Determine the number of different colorings.

* * *

6.44 We are given n cubes whose faces are colored red or blue. Equiva-
lence of colorings is defined by permutations of the cubes and symme-
tries of the individual cubes. How many color patterns are there? Show
that Z(S(n); 2,10,2,10, . . .) counts the number of patterns invariant un-
der color-exchange. Example: For n = 4 we obtain 27 different patterns.

6.45 Find the group of symmetries for digraphs, i.e., there are no loops
and at most one arrow u → v in each direction for each pair u ≠ v .
Compute the number of non-isomorphic digraphs on n vertices for n ≤ 4.

6.46 Complete the proof of Proposition 6.13.
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� 6.47 Let en and on, respectively, count the isomorphism classes of graphs
on n vertices having an even resp. odd number of edges. Prove that en ≥
on for all n with equality when n ≡ 2 or 3 (mod 4) .

6.48 Determine the edge group of K3,3, and give the polynomial∑9
k=0 gk(K3,3)xk .

� 6.49 Let sn be the number of self-complementary graphs on n vertices,
and �sn the corresponding number for directed graphs as in Exercise 6.45,
where the complement of a digraph has an edge u → v if and only if
u→ v does not appear in the original digraph. Prove that s4n = �s2n .

6.4 Symmetries on N and R

At the end of Section 1.5 we classified mappings f : N → R as
to whether the elements of N and R are distinguishable or not. In
the language of this chapter, distinguishable (labeled) means that
the identity group acts on N (or R), whereas indistinguishable (un-
labeled) refers to the group G = S(N) or H = S(R). The Pólya–
Redfield theorem adresses the general problem in which G ≤ S(N)
is an arbitrary permutation group, andH = {id}. It is natural to con-
sider the most general setting with two arbitrary groups G ≤ S(N)
and H ≤ S(R).
As usual, N is an n-set, R an r -set, and we are given groups G ≤
S(N), H ≤ S(R), and a set F ⊆ Map(N,R) closed under G and H.
That is, f ∈ F implies h ◦ f ◦ g ∈ F for all g ∈ G and h ∈ H. The
typical examples of closed sets are, of course, Map(N,R), Inj(N,R),
and Surj (N,R). We call f , f ′ equivalent if f ′ = h ◦ f ◦ g for some
g ∈ G, h ∈ H, and our goal is to enumerate the (weighted) patterns
of mappings in F .

Let us treat first a single permutation h of R. We say that f ∈ F is
h-invariant if h ◦ f ∼

G
f , that is,

h ◦ f = f ◦ kf for some kf ∈ G . (1)

Let F(h) be the set of h-invariant mappings in F . Note that this
generalizes the notion of self-complementary maps in Section 6.2,
with R = {0,1} and h being the involution 0 ↔ 1. The proof of
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Proposition 6.8 goes through without change, yielding the following
result:

Proposition 6.14. Let G ≤ S(N), h ∈ S(R). Then

w(F(h);G) =
∑

M∈MF(h)

w(M) = 1
|G|

∑
g∈G

⎛⎝ ∑
f∈F :h◦f=f◦g

w(f)

⎞⎠ . (2)

Now we look at the general case G ≤ S(N), H ≤ S(R). It is clear that
any G-pattern of F is contained in a G,H-pattern. If we assign as
usual variables xj to j ∈ R, then G-equivalent mappings have the
same weight, but G,H-equivalence will, in general, not preserve the
weight. To remedy this fact we proceed as follows.

Let P1, . . . , Pm be the H-patterns (orbits) of R. To each Pj we assign
a variable xj , and define then the weight of f ∈ F by

w(f) = x|f−1(P1)|
1 · · ·x|f−1(Pm)|

m , (3)

where f−1(Pi) = {a ∈ N : f(a) ∈ Pi}.

Now if f ′ = h ◦ f ◦ g, then f ′(a) ∈ Pi ⇐⇒ h ◦ f(g(a)) ∈ Pi ⇐⇒
f(g(a)) ∈ Pi, and thus w(f ′) = w(f). We can therefore unam-
biguously speak of the weight of a G,H-pattern w(M) = w(f) for
f ∈M .

Notice that forH = {id}, allH-orbits of R consist of single elements,
and the definition (3) reduces to the previous case.

Theorem of de Bruijn.
We denote again by MF the set of G,H-patterns in F , and can now
state the theorem of de Bruijn, generalizing Theorem 6.4.

Theorem 6.15 (de Bruijn). Let F ⊆ Map(N,R) be aG,H-closed class.
Then

w(F ;G,H) = 1
|H|

∑
h∈H

w(F(h);G)

= 1
|G||H|

∑
g∈G,h∈H

⎛⎝ ∑
f∈F :h◦f=f◦g

w(f)

⎞⎠ . (4)

In particular,

|MF| = 1
|G||H|

∑
g∈G,h∈H

|{f ∈ F : h ◦ f = f ◦ g}| . (5)
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Proof. Let M ∈ MF . The G,H-pattern M splits into disjoint G-
patterns, which we denote by fG. Regarding them as new elements,
we obtain by the same argument as in the proof of Theorem 6.4,

w(M) = 1
|H|

∑
h∈H

⎛⎝ ∑
fG⊆M :h◦fG=fG

w(fG)

⎞⎠ ,
and by summing over M ,

w(F ;G,H) = 1
|H|

∑
h∈H

⎛⎝ ∑
fG⊆F :h◦fG=fG

w(f)

⎞⎠ .
Now, the inner sum is precisely w(F(h);G), and the result follows
from the previous proposition. �

Consider F = Map(N,R). As in the Pólya–Redfield theorem we want
to relate the inner sum

∑
f :h◦f=f◦g w(f) to the cycle index of G. Let

a ∈ N , f(a) = b ∈ R, and assume h ◦ f = f ◦ g. Suppose a lies in
a k-cycle of g, and b in a j-cycle of h. Applying f to the cycle we
infer

a

f
��

g(a)

��

g2(a)

��

. . . gk−1(a)

��
b h(b) h2(b) . . . hk−1(b)

(6)

It follows that (f ◦ gk)(a) = f(a) = b = hk(b), and thus j | k.
Conversely, if we choose for every k-cycle of g a j-cycle of h with
j | k, and determine f according to (6), then h ◦ f = f ◦ g holds.
Since we may pick as image of a any of the j elements of the chosen
j-cycle of h, we conclude that∑

f :h◦f=f◦g
w(f) = λc1(g)

1 λc2(g)
2 · · ·λcn(g)n

with

λk =
∑
j|k
j

∑
j-cycles of h

(xixh(i) · · ·xhj−1(i))
k/j ,

and thus obtain the following result.
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Corollary 6.16. Let G ≤ S(N), H ≤ S(R), |N| = n, |R| = r , and
P1, . . . , Pm the H-orbits of R. Any h ∈ H decomposes uniquely into a
product h = h1 · · ·hm with hi ∈ S(Pi). We have

w(Map(N,R);G,H) = 1
|H|

∑
h∈H

Z
(
G;λ1(h), . . . , λn(h)

)
, (7)

where

λk(h) =
m∑
i=1

⎛⎝∑
j|k
jcj(hi)

⎞⎠xki (k = 1, . . . , n) .

In particular,

|M| = 1
|H|

∑
h∈H

Z
(
G;λ1(h), . . . , λn(h)

)
(8)

with
λk(h) =

∑
j|k
jcj(h) .

Examples.
1. Suppose G = {id}, and let mn(H) be the number of {id},H-
patterns of Map(N,R). Then

mn(H) = 1
|H|

∑
h∈H

(
c1(h)

)n . (9)

For H = S(r), this gives

∑
n≥0

mn
(
S(r)

)zn
n!

= 1
r !

∑
h∈S(r)

⎛⎝∑
n≥0

(
c1(h)z

)n
n!

⎞⎠
= 1
r !

∑
h∈S(r)

ec1(h)z = Z(S(r); ez,1, . . . ,1) .
With the identity (16) in Section 6.2 we get

∑
r≥0

Z(S(r); ez,1, . . . ,1)yr = exp

(
ezy + y2

2
+ y3

3
+ · · ·

)

= ey(ez−1)

1 −y ,
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and thus ∑
n,r≥0

mn(S(r))
zn

n!
yr = ey(ez−1)

1 −y .

We know from the list at the end of Section 1.5 that mn
(
S(r)

) −
mn

(
S(r − 1)

)
counts precisely all partitions of an n-set into r

blocks, and we have re-proved our old result∑
n,r≥0

Sn,r
znyr

n!
= ey(ez−1) .

2. Let H = S(r), and G arbitrary. In this case, the patterns may
be thought of as partition patterns of N under G. For example, for
r = 2, this gives partition patterns containing at most two blocks.
Let m(G,≤ 2) be their number. By (8),

m(G;≤ 2) = 1
2

(
Z(G; 2, . . . ,2)+ Z(G; 0,2,0,2, . . .)

)
.

Since Z(G; 2, . . . ,2) counts all patterns, Z(G; 0,2,0,2, . . .) enumer-
ates those that are self-complementary, reaffirming our earlier re-
sult.

Injective Patterns.
Finally, we look at the closed set Inj(N,R). Arguing as in (6), it fol-
lows from the injectivity of f that b = f(a) must also be in a k-
cycle. Thus, the ck(g) k-cycles of g are mapped injectively into the
ck(h) k-cycles of h, and within each k-cycle of g we have k choices
for the image of a. In conclusion, for given g ∈ G, h ∈ H we get

|{f : h ◦ f = f ◦ g}| =
n∏
k=1

kck(g)
(
ck(g)

)
!

(
ck(h)
ck(g)

)
, (10)

and thus the following result.

Corollary 6.17. For G ≤ S(N), H ≤ S(R), we have

|MInj| = 1
|G||H|

∑
g∈G,h∈H

n∏
k=1

kck(g)
(
ck(g)

)
!

(
ck(h)
ck(g)

)
. (11)

Formula (11) can be conveniently described by the so-called cap
product of Redfield. Let za1

1 z
a2
2 · · ·zann be a monomial appearing in

the cycle index Z(G), and zb1
1 z

b2
2 · · ·zbrr one of Z(H). Set
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za1
1 · · ·zann ∩ zb1

1 · · ·zbrr =
n∏
k=1

kak(ak!)
(
bk
ak

)
, (12)

and extend the product linearly to Z(G) and Z(H). Then

|MInj| = Z(G)∩ Z(H) .

Example. Suppose G = C3, H = C6; then Z(G) = 1
3(z

3
1 + 2z3),

Z(H) = 1
6(z

6
1 + z3

2 + 2z2
3 + 2z6). The only cap products that do not

vanish are

z3
1 ∩ z6

1 = 3!

(
6
3

)
= 120, z3 ∩ z2

3 = 3

(
2
1

)
= 6 ,

and we get

|MInj| = 1
18
(120 + 4 · 6) = 8 .

A particularly interesting case arises when |N| = |R|, that is, for
bijective mappings. It follows immediately from (12) that the cap
product vanishes unless ak = bk for all k. Now suppose G = H;
then

|MBij| = Z(G)∩ Z(G) .

Example. Consider a graph G = (V, E) with edge–group SG. We
may interpret the bijective mappings E → E as superpositions of
the graph G onto itself. Then MBij is the set of patterns of these
superpositions under the edge group. Take as example the 5-circuit.
The edge group is clearly the dihedral group D5. By Exercise 6.29,

Z(D5) = 1
10
(z5

1 + 4z5 + 5z1z2
2) ,

and thus

|MBij| = 1
100

(5! + 16 · 5 + 25 · 4 · 2) = 4 .

The figure shows the four different superpositions:
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Exercises

6.50 Suppose we color the faces of the cube with 6 colors F1, . . . , F6 . The
colorings are considered equal if they are transformed into each other

by the permutation
(
F1 F2 F3 F4 F5 F6
F2 F1 F4 F3 F6 F5

)
. How many colorings are there? How

many that use all 6 colors?

� 6.51 Let G = S(n), H ≤ S(r) arbitrary, and denote by m
(
S(n),H

)
the

number of S(n),H-patterns. Prove that

∑
n≥0

m(S(n),H)zn = Z
(
H;

1
1 − z ,

1
1 − z2

, . . . ,
1

1 − zr
)
.

Specialize to H = {id}, and compare the resulting generating function to
previous results.

6.52 Let G = S(n), H = S(r). Compute
∑
n,r≥0m

(
S(n), S(r)

)
znyr . Com-

pare the result to generating functions of number-partitions.

6.53 Consider mn
(
S(r)

)
as in (9). What do you get for the ordinary gen-

erating function
∑
n≥0mn

(
S(r)

)
zn?

� 6.54 Compute the number of patterns of Inj(N,R) for G = S(n), H arbi-
trary. You will get as answer the coefficient of xr in Z(H; 1+x, . . . ,1+xr).
Can you see this directly?

6.55 Determine the number of G,H-patterns of Map(N,R) when |N| =
|R| = p, p a prime, and G = H = Cp .

* * *

� 6.56 Show that the total number of G,H-patterns of Map(N,R) is ob-
tained by evaluating

Z
(
G;

∂
∂z1

, . . . ,
∂
∂zn

)
Z
(
H; ez1+z2+···, e2(z2+z4+··· ), e3(z3+z6+··· ), . . .

)
at z1 = z2 = · · · = zr = 0. The expression Z

(
G; ∂

∂z1
, ∂
∂z2
, . . .

)
is the

differential operator obtained from the substitution zi � ∂
∂zi . Example:

G = H = {id}. Then Z(G) = zn1 , Z(H) = zr1 , and hence(
d
dz1

)n
er(z1+z2+...)

∣∣∣
zi=0

= rner(z1+z2+··· )
∣∣∣
zi=0

= rn .

6.57 In analogy to the previous exercise show that |MInj| is obtained by
evaluating

Z
(
G;

∂
∂z1

, . . . ,
∂
∂zn

)
Z(H; 1 + z1,1 + 2z2, . . . ,1 + rzr )
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at z1 = · · · = zr = 0 . Show that for r = n this can be simplified to

|MBij| = Z
(
G;

∂
∂z1

, . . . ,
∂
∂zn

)
Z(H;z1,2z2, . . . , nzn)

at z1 = · · · = zn = 0 .

6.58 Generalizing (11) show that

w
(
Inj(N,R);G,H

) = 1
|G||H|

∑
h∈H

⎛⎝∑
g∈G

μ1(g) · · ·μn(g)
⎞⎠ ,

where

μk(g) = kck(g)
(
ck(g)!

) ∑
(r1 ,...,rm)∑
ri=ck(g)

(
ck(h1)
r1

)
. . .
(
ck(hm)
rm

)
xr1k

1 · · ·xrmkm ,

and h = h1 · · ·hm is the decomposition of h into the H-orbits of R.

� 6.59 Compute the cap product Z(Dp)∩ Z(Dp), where Dp is the dihedral
group, p ≥ 3 a prime. Deduce that 4p | (p − 1)! + (p − 1)2 for p > 3.

6.60 Determine the number of superpositions of the 6-circuit, and draw
them.

6.61 Find the number of injective patterns when |N| = n, |R| = n + 1,
and G = Cn, H = Cn+1. Can you see the result directly?
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Highlight: Patterns of Polyominoes

A polyomino is, as the name suggests, a generalization of a 1 × 2-
domino. It consists of a set of 1 × 1-cells glued together along their
edges. A cell has four possible neighbors, and we call the polyomino
P connected if one can pass from any cell to any other along neigh-
boring cells. The figure shows the five types of connected polyomi-
noes with four cells:

What we are interested in is to enumerate the types of polyominoes
P satisfying the following two conditions:

A. P fits into an n × n-square and touches all four sides of the
square.

B. P is connected and has the minimal number of cells under con-
dition A.

Clearly, this minimum number is 2n− 1, since there must be n− 1
neighbor relations from left to right, and also from top to bottom.
The figure shows the six types for n = 3:

Our task is to find a formula for general n.

Lattice Configurations.
It is convenient to rephrase the problem in terms of lattice config-
urations, which are easier to handle. Replace each cell by a lattice
point, and join two points if the corresponding cells have an edge in
common. The polyominoes above correspond then to the following
lattice configurations:
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We regard the configurations as embedded in the grid, where (0,0)
is the lower left corner and (n,n) the upper right corner. Let L(n)
be the set of all these configurations. Conditions A and B then say
that L ∈ L(n) if L is connected and contains exactly one step
(x,y) � (x + 1, y) to the right for x = 0,1, . . . , n − 1, and one
step (x,y) � (x,y + 1) up for y = 0,1, . . . , n − 1. Thus L has n
horizontal and n vertical steps.

Our goal is to compute the number pn of patterns in L(n) under
the dihedral group D4. The original question of patterns of poly-
ominoes fitting in the n×n-square refers then to pn−1.

The following facts are easy to see. They all follow from the unique-
ness property of the steps.

1. If L contains two points P,Q on a boundary, then it contains
all points between P and Q and at least one corner point of the
boundary:

P Q

2. If L contains a boundary point P and all its neighbors, then it con-
tains the whole boundary and the line orthogonal to the boundary
at P :

P

or

P

3. If L contains an interior point P and three neighbors of P , then it
contains two straight lines emanating from P to the boundaries:

P

4. If L contains an interior point P together with all its four neigh-
bors, then it contains all four lines to the boundaries, and is thus
uniquely determined:
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P

The Total Number of Lattice Configurations.
Let A(n) = |L(n)|. It is convenient to partition L(n) into the fol-
lowing classes: L1(n),L2(n),L3(n), and L4(n), where

L1(n) = {L : L contains two opposite corners} ,

L2(n) = {L : L contains two corners, but no opposite corners} ,

L3(n) = {L : L contains precisely one corner}

L4(n) = {L : L contains no corner} .

The first two classes are immediately enumerated:

A1(n) = |L1(n)| = 2

(
2n
n

)
, (1)

since the configurations in L1(n) correspond to lattice paths from
(0,0) to (n,n) and from (n,0) to (0, n), respectively.

Fact 1 above clearly implies

A2(n) = |L2(n)| = 4(n− 1) . (2)

Suppose L ∈ L3(n) with (0,0) ∈ L. Then there must be an interior
point P ∈ L with three neighbors in L. Hence by fact 3, L must look
as follows:

P

i

(0,0)

j

Suppose P has coordinates (i, j). Then L consists of an ordinary
lattice path from (0,0) to (i, j) together with the two straight lines
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emanating from P . It follows that the total number of L ∈ L3(n)
with (0,0) ∈ L is given by

∑n−1
i=1

∑n−1
j=1

(
i+j
j

)
. Now recall the binomial

identity
n∑
j=0

(
m+ j
j

)
=
(
m+n+ 1

n

)
,

which will be used several times in the sequel.

This gives

n−1∑
i=1

n−1∑
j=1

(
i+ j
j

)
=
n−1∑
i=1

[(
n+ i
n− 1

)
− 1

]
=
n−1∑
i=1

(
n+ i
i+ 1

)
− (n− 1)

=
n∑
i=2

(
n− 1 + i

i

)
− (n− 1)

=
(

2n
n

)
− 1 −n− (n− 1)

=
(

2n
n

)
− 2n ,

and so

A3(n) = |L3(n)| = 4

[(
2n
n

)
− 2n

]
. (3)

Now to the set L4(n). A configuration L ∈ L4(n) is by the facts
given above of the form

	

i

k

j
or

where i ≤ k and j ≤ 	. The configurations of the first type are thus
enumerated by

n−1∑
i=1

n−1∑
j=1

n−1∑
k=i

n−1∑
	=j

(
k+ 	 − i− j

	− j

)
,
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which is easily computed to(
2n
n

)
−n2 − 1 .

The total number is therefore twice this number minus the number
of configurations with i = k, j = 	, which were counted twice. These
are the (n − 1)2 configurations that have an interior point with all
its four neighbors. Hence

A4(n) = |L4(n)| = 2

(
2n
n

)
− 3n2 + 2n− 3 . (4)

The total number of lattice configurations is therefore

A(n) = 8

(
2n
n

)
− 3n2 − 2n− 7 . (5)

The Number of Patterns.
Since any two configurations in different classes Li(n) are clearly
inequivalent under the group D4, we may compute the number of
patterns pi(n) separately. The number p1(n) of patterns in L1(n)
was already the subject of Exercise 6.5 with the result

p1(n) =

⎧⎪⎨⎪⎩
1
4

(
2n
n

)
+ 2n−2 + 1

4

(
n
n/2

)
n even,

1
4

(
2n
n

)
+ 2n−2 n odd.

(1′)

Obviously, p2(n) is given by

p2(n) =
⎧⎨⎩

n
2 n even,

n−1
2 n odd.

(2′)

Let us look at p3(n). According to the lemma of Burnside–Frobenius
we must determine the fixed-point sets Xg for g ∈ D4, where
X = L3(n). Nontrivial rotations clearly have no fixed configura-
tions, since the corner is moved. Similarly, no reflection leaves the
configuration fixed, and so

p3(n) = 1
8
A3(n) = 1

2

(
2n
n

)
−n . (3′)
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Finally, we consider the set L4(n). A rotation of ±90◦ forces a fixed
configuration to satisfy i = j = k = 	 (see the figure above). Hence
n must be even, and only the cross configuration

is left fixed. A rotation about 180◦ implies k = n− i, 	 = n− j, and
a fixed configuration must contain the center (n2 ,

n
2 ). Hence n must

be even, and the number of fixed configurations is

n/2∑
i=1

n/2∑
j=1

(
n− i− j
n
2 − j

)
=
n/2∑
i=1

n/2−1∑
j=0

(n
2 − i+ j

j

)
=
n/2∑
i=1

(
n− i
n
2 − 1

)

=
n/2∑
i=1

(
n− i

n
2 + 1 − i

)
=
n/2∑
i=1

(n
2 − 1 + i

i

)
=
(
n
n
2

)
− 1 .

The total number left fixed under a rotation of 180◦ is there-
fore twice this number minus 1, since the cross configuration was
counted twice. Hence this gives 2

(
n
n/2

)
− 3 fixed configurations.

Now to the reflections. The horizontal or vertical reflections leave
precisely the configurations

j

n/2

and n/2

i

fixed. Thus we obtain 2(n− 1) fixed configurations for n even, and
none for odd n. Finally, it is easily seen that each diagonal reflection
leaves 2n−n−1 configurations fixed. The contribution is therefore
2(2n −n− 1), and we obtain by the lemma of Burnside–Frobenius

p4(n) = 1
8

[
2

(
2n
n

)
− 3n2 + 2n− 3 + 2(2n −n− 1)

+
(

2

(
n
n/2

)
+ 2n− 3

)
[n even]

]
. (4′)
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Summing the expressions for pi(n) yields the exact result for the
total number of patterns:

pn =
(

2n
n

)
+ 2n−1 +

⎧⎨⎩ 1
2

(
n
n/2

)
− 1

8(3n
2 + 2n+ 8) n even,

−1
8(3n

2 + 4n+ 9) n odd.

As small examples, we obtain

p(1) = 1, p(2) = 6, p(3) = 18, p(4) = 73, p(5) = 255,
p(6) = 950, p(7) = 3473, and p(8) = 13006 .
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Notes and References

The main Lemma 6.2 is in the English literature usually called Burn-
side’s lemma. This is one of many examples of a theorem being
attributed to the wrong person. It was first proved by Frobenius
and earlier in a special case by Cauchy. The pioneering work in this
area was the paper by Pólya, although again he was preceded by
Redfield. The book of Pólya and Read contains the English trans-
lation of Pólya’s paper along with an account of the history since
then. Another very readable introduction is the article by de Bruijn.
For further reading, the book by Kerber is recommended. The stan-
dard reference for graphical enumeration is the book by Harary and
Palmer. The result of the highlight is due to Knuth.
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Part III: Topics





7 The Catalan Connection

We begin with a six-fold description of the Catalan numbers Cn.

A. Recurrence. We have

Cn+1 =
n∑
k=0

CkCn−k (n ≥ 0), C0 = 1 .

This is the combinatorial definition given in Section 3.1.

B. Integral Representation.

Cn = 22n+1

π

1∫
−1

x2n(1 − x2)1/2dx ,

which is easily evaluated to Cn = 1
n+1

(
2n
n

)
. We will see how this

description via an integral arises quite naturally.

C. Continued Fraction. Let C(z) = ∑
n≥0 Cnzn be the Catalan se-

ries. Then C(z) can be expressed as the continued fraction

C(z) = 1

1 − z

1 − z
1 − . . .

Looking at this expression we see that C(z) = 1
1−zC(z) holds, from

which the defining equation C(z) = 1 + zC2(z) results, derived in
Section 3.1. How such a continued fraction is declared formally will
be explained later.

D. Lattice Path. Cn is the number of Catalan paths of length 2n
discussed in Section 5.3. We will take up this idea, considering more
general paths.

E. Hankel Matrix. We have seen in Section 5.4 that Cn is the
unique sequence such that the determinants of the Hankel matri-
ces Hn and H(1)n are all equal to 1.
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F. Catalan Matrix. This last description is our starting point. Con-
sider the following infinite lower triangular matrix A = (an,k) given
by the recurrence

a0,0 = 1, a0,k = 0 (k > 0) ,
an,k = an−1,k−1 + an−1,k+1 (n ≥ 1).

The first rows and columns look as follows:

n k 0 1 2 3 4 5 6 7 8

0 1
1 0 1
2 1 0 1
3 0 2 0 1
4 2 0 3 0 1
5 0 5 0 4 0 1
6 5 0 9 0 5 0 1
7 0 14 0 14 0 6 0 1
8 14 0 28 0 20 0 7 0 1

It appears that Cn = a2n,0 holds for all n. In fact, this is just another
way to represent the Catalan paths in matrix form.

7.1 Catalan Matrices and Orthogonal Polynomials

Our algebraic object are infinite lower triangular matrices indexed
by N0, with the ordinary matrix sum and product as operations. We
know from Section 2.4 that any such matrix is invertible if and only
if the main diagonal consists of nonzero elements.

Catalan Matrices.
Let σ = (s0, s1, s2, . . .), τ = (t1, t2, t3, . . .) be two sequences of com-
plex numbers (or in any field of characteristic 0), with tk ≠ 0 for all
k. We define the matrix A = Aσ,τ by the recurrence⎧⎨⎩a0,0 = 1, a0,k = 0 (k > 0) ,

an,k = an−1,k−1 + skan−1,k + tk+1an−1,k+1 (n ≥ 1) .
(1)
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Definition. A matrix A is called Catalan matrix if A = Aσ,τ holds
for a pair of sequences σ and τ . The numbers Bn = Bσ,τn = an,0
are called the Catalan numbers associated with σ,τ . A sequence
(B0, B1, B2, . . .) is called a Catalan sequence if Bn = Bσ,τn for some σ
and τ .

Example. Our starting example in F is thus the case σ ≡ 0, τ ≡ 1.
To avoid confusion, we will henceforth call Cn the ordinary Catalan
numbers.

It follows from (1) that any Catalan matrix is lower triangular with
main diagonal equal to 1, and thus invertible. With induction it is
immediate that

an+1,n = s0 + s1 + · · · + sn (n ≥ 0) . (2)

For τ = (t1, t2, t3, . . .) with tk ≠ 0 for all k, we set

Tn = t1t2 · · · tn, T0 = 1 . (3)

The following result is the fundamental lemma for Catalan matri-
ces.

Lemma 7.1. Let A = Aσ,τ = (an,k), then we have for all m,n ≥ 0,∑
k≥0

am,kan,kTk = Bm+n (= am+n,0) . (4)

Proof. We use induction on m. For m = 0,∑
k≥0

a0,kan,kTk = a0,0an,0 = Bn .

Assume that (4) holds for m− 1 and all n. By (1),∑
k
am,kan,kTk =

∑
k≥0

(am−1,k−1 + skam−1,k + tk+1am−1,k+1)an,kTk

=
∑
j≥0

(an,j+1Tj+1 + sjan,jTj + an,j−1Tj)am−1,j

=
∑
j≥0

am−1,jTj(tj+1an,j+1 + sjan,j + an,j−1)

=
∑
j≥0

am−1,jan+1,jTj = am+n,0 = Bm+n ,

by induction. �
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We may write formula (4) in compact form. Let

T =

⎛⎜⎜⎜⎜⎝
T0

T1 0
T2

0
. . .

⎞⎟⎟⎟⎟⎠ , H =

⎛⎜⎜⎜⎝
B0 B1 B2 . . .
B1 B2 B3 . . .
B2 B3 B4 . . .

. . .

⎞⎟⎟⎟⎠ .

The matrix H is again called the (infinite) Hankel matrix of the Cata-
lan numbers Bn. Thus

T = (Tiδi,j), H = (Bi+j) ,

and (4) takes on the form

ATAT = H , (5)

where AT is the transpose of A. The next result characterizes Cata-
lan matrices.

Proposition 7.2. A lower triangular matrix A with main diagonal
1 is a Catalan matrix if and only if ATAT = H for some diagonal
matrix T = (Tiδi,j) with T0 = 1, Tk ≠ 0 for all k, and some Hankel
matrix H = (Bi+j). If ATAT = H, then we have A = Aσ,τ with

sk = ak+1,k − ak,k−1, tk =
Tk
Tk−1

.

Proof. We have already seen one direction, so assume ATAT = H,
that is, ∑

k≥0

am,kan,kTk = Bm+n for all m,n . (6)

First we note thatm = 0 in (6) implies an,0 = Bn. Next we claim that
ATAT = H uniquely determines A. Since Aσ,τ with sk = ak+1,k −
ak,k−1, tk = Tk

Tk−1
is such a matrix, this will imply A = Aσ,τ .

We construct A row by row. Row 0 is given by a0,0 = 1, and we
know that all an,0 = Bn. Assume inductively that rows 0,1, . . . , n
are uniquely determined. From

an+1+i,0 = Bn+1+i =
i∑

k=0

an+1,kai,kTk (i = 1, . . . , n)
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we compute step by step an+1,1, an+1,2, . . . , an+1,n. Thus row n+ 1
is uniquely determined (with an+1,0 = Bn+1, an+1,n+1 = 1), and the
result follows. �

Suppose A = Aσ,τ is a Catalan matrix. Since A is invertible with
main diagonal equal to 1, the inverse matrix U = A−1 = (un,k) is
again lower triangular with diagonal 1. You are asked in the exer-
cises to prove that U satisfies the following recurrence,⎧⎨⎩u0,0 = 1, u0,k = 0 (k > 0) ,

un+1,k= un,k−1 − snun,k − tnun−1,k (n ≥ 0),
(7)

and that conversely, (7) implies recurrence (1) for A = U−1 = (an,k) .

Now we define the polynomials pn(x) =
∑n
k=0un,kxk correspond-

ing to the rows of U ; pn(x) has degree n with leading coefficient 1,
and (7) means that⎧⎨⎩p0(x) = 1 ,

pn+1(x) = (x − sn)pn(x)− tnpn−1(x) (n ≥ 0).
(8)

Proposition 7.2 can thus be summarized in the following diagram:

A = Aσ,τ��

��

�� �� ATAT = H��

��(
pn(x)

)
satisfies (8) UHUT = T

(9)

Orthogonal Polynomials.
The following famous theorem of Favard characterizes all polyno-
mial sequences

(
pn(x)

)
that satisfy a recurrence (8) in an unex-

pected way. As usual, by a polynomial sequence
(
pn(x)

)
we mean

that degpn(x) = n and the leading coefficient is 1.

Definition. A polynomial sequence
(
pn(x)

)
over C is called an or-

thogonal polynomial system (OPS) if there exists a linear operator
L : C[x] �→ C with

L
(
pm(x)pn(x)

) = {λn ≠ 0 for m = n (λ0 = 1),
0 for m ≠ n . (10)
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Lemma 7.3. The sequence
(
pn(x)

)
is an OPS with L and λn as in

(10) if and only if

L
(
xkpn(x)

) = {λn k = n (λ0 = 1),
0 k < n . (11)

Proof. Since
(
pn(x)

)
constitutes a basis of C[x], we have

xk =∑ki=0 ck,ipi(x) with ck,k = 1, and hence

L
(
xkpn(x)

) = k∑
i=0

ck,iL
(
pi(x)pn(x)

) = k∑
i=0

ck,iδi,nλn

=
{
λn k = n ,
0 k < n .

If, conversely, (11) holds, and m ≤ n, pm(x) = ∑m
k=0um,kxk, we

obtain with um,m = 1,

L
(
pm(x)pn(x)

) = m∑
k=0

um,kL
(
xkpn(x)

) = {λn m = n ,
0 m ≠ n . �

Theorem 7.4 (Favard). A polynomial sequence
(
pn(x)

)
is an OPS

if and only if
(
pn(x)

)
satisfies recurrence (8) for some pair of se-

quences σ = (sk), τ = (tk).

Proof. Suppose
(
pn(x)

)
satisfies (8), where A = Aσ,τ , U = A−1 =

(un,k), pn(x) =
∑n
k=0un,kxk, and where T = (Tiδi,j), H = (Bi+j)

are declared as before. We define the operator L : C[x] �→ C by
Lxn = Bn and linear extension. Because of UHUT = T we have for
all m and n, ∑

i,k
um,iun,kBi+k = δm,nTn ,

that is,

L
(
pm(x)pn(x)

) = L(∑um,ixi ·
∑
un,kxk

)
=
∑
i,k
um,iun,kBi+k = δm,nTn .

It follows that
(
pn(x)

)
is an OPS for L with λn = Tn.
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Now suppose
(
pn(x)

)
is an OPS with pn(x) = ∑n

k=0un,kxk and
Lxn = Bn. We perform our reasoning backward and obtain from
(10)

L
(∑

um,ixi ·
∑
un,kxk

)
= δm,nλn ,

and thus ∑
i,k
um,iun,kBi+k = δm,nλn for all m and n .

But this means precisely that UHUT = T with Tn = λn. Hence(
pn(x)

)
satisfies recurrence (8) for some sequences σ and τ by

(9). �

Example. Let us look again at our starting example σ ≡ 0, τ ≡ 1,
with B2m = Cm, B2m+1 = 0. The corresponding OPS satisfies the
recurrence

pn+1(x) = xpn(x)− pn−1(x), p0(x) = 1 .

These are the Chebyshev polynomials cn(x) considered in Section
3.1. One calculates the operator L (see Exercise 7.10) as

L
(
q(x)

) = 2
π

1∫
−1

q(2x)(1 − x2)1/2dx .

With q(x) = xn, this gives the expression

Lxn = 22m+1

π

1∫
−1

x2m(1 − x2)1/2dx =
{

1
m+1

(
2m
m

)
n = 2m,

0 n = 2m+ 1 ,

announced in B above.

The Chebyshev polynomials thus satisfy the orthogonality relation

1∫
−1

cm(2x)cn(2x)(1 − x2)1/2dx =
{ π

2 m = n ,
0 m ≠ n .
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Catalan Sequences.
Finally, we give a characterization of Catalan sequences (Bn). Let
A = Aσ,τ , H = (Bi+j) as before, and consider the principal subma-
trices with rows 0 to n, An = (ai,j)ni,j=0, Hn = (Bi+j)ni,j=0. Since An
has main diagonal 1, we infer from (5) that

detHn = T0T1 · · ·Tn ≠ 0 . (12)

Theorem 7.5. A sequence (Bn) is a Catalan sequence if and only if
detHn ≠ 0 for all n, where Hn = (Bi+j)ni,j=0 is the Hankel matrix.

Proof. We have already seen one half. Suppose then detHn ≠ 0
for all n. We define the sequence

(
pn(x)

)
by p0(x) = 1, and for

n ≥ 1 ,

pn(x) =

det

⎛⎜⎜⎜⎜⎜⎜⎝
B0 B1 . . . Bn
B1 B2 . . . Bn+1

. . .
Bn−1 Bn . . . B2n−1

1 x . . . xn

⎞⎟⎟⎟⎟⎟⎟⎠
detHn−1

. (13)

Let L be the linear operator defined by Lxn = Bn.

Claim.
(
pn(x)

)
is OPS for L.

We note first that pn(x) has degree n and leading coefficient 1.
Consider k ≤ n; then

L
(
xkpn(x)

) =
det

⎛⎜⎜⎝
B0 B1 . . . Bn

. . .
Bn−1 Bn . . . B2n−1

Bk Bk+1 . . . Bk+n

⎞⎟⎟⎠
detHn−1

.

For k < n, the matrix in the numerator has two equal rows, and
hence det = 0, while for k = n we obtain

L
(
xnpn(x)

) = detHn
detHn−1

≠ 0

by assumption. The claim follows from Lemma 7.3, and shows that
(Bn) is a Catalan sequence. �
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It is easy to see that every OPS possesses a unique operator L,
and our results show that precisely those operators L belong to an
OPS for which the images Lxn = Bn constitute a Catalan sequence.
The study of orthogonal systems over R goes back to Stieltjes and
Chebyshev; we will encounter several classical OPS later on. The
central question was how these operators L (or equivalently the or-
thogonality relations) can be described analytically. That is, what
can we say about Lq(x), where q(x) is an arbitrary polynomial,
given that Lxn = Bn? Stieltjes proved the following: Let Hn = (Bi+j)
and H(1)n = (Bi+j+1) be the Hankel matrices as before. Then

detHn > 0 (∀n) �⇒ Lq(x) =
∞∫

−∞
q(x)dψ(x) ,

detHn > 0,detH(1)n > 0 (∀n) �⇒ Lq(x) =
∞∫
0

q(x)dψ(x) ,

where ψ(x) is a certain function of bounded variation.

Exercises

7.1 Why are the descriptions D and F of the ordinary Catalan numbers
equivalent?

7.2 Verify the recurrence (7) for U = A−1 = (un,k), and show that (7)
implies (1) for A = U−1.

� 7.3 Prove that if
(
pn(x)

)
is an OPS, then the operator L (and the num-

bers λn) are uniquely determined. Show, conversely, that if L has an OPS,
then it is uniquely determined.

7.4 Consider σ ≡ 0, τ = (tk) arbitrary, tk ≠ 0 for all k. Show first
that the odd-indexed Catalan numbers B2n+1 are 0. Now define the new
sequences σ̂ = (ŝk), τ̂ = (t̂k) by ŝ0 = t1, ŝk = t2k + t2k+1 (k ≥ 1), and
t̂k = t2k−1t2k (k ≥ 1). Prove that for the Catalan number B̂n associated
with σ̂ , τ̂ , B̂n = B2n. What do you get for our starting example σ ≡ 0,
τ ≡ 1?

� 7.5 The central trinomial numbers are defined as follows: Every num-
ber is the sum of the three numbers above it (left, above, right), and
the central trinomial numbers Trn are the numbers in the middle col-
umn: (Trn) = (1,1,3,7,19, . . .) . Show that Trn = Bσ,τn with σ ≡ 1,
τ = (2,1,1,1, . . .).
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1
1 1 1

1 2 3 2 1
1 3 6 7 6 3 1

1 4 10 16 19 16 10 4 1

Show further that Trn equals the central coefficient in the expansion of
(1 + x + x2)n.

7.6 Given σ ≡ 0, τ = (tk) arbitrary, consider the new sequences σ̂ ≡ 0,
τ̂ = (ctk), 0 ≠ c ∈ C. How are the Catalan numbers Bn and B̂n related?

7.7 What are the Catalan numbers for σ ≡ 2, τ ≡ 1?

* * *

7.8 Suppose the sequence (Bn) is given by the recurrences B0 = 1,
B2n+2 = cnB2n, c ∈ C, B2n+1 = 0. Show that (Bn) is a Catalan sequence if
and only if c ≠ 0, and c is not a root of unity, that is, cn ≠ 1 for all n ∈ N.

7.9 Consider the sequences a. σ = (1,0,0,0, . . .), τ ≡ 1, b. σ =
(3,2,2,2, . . .), τ ≡ 1. Calculate the first rows of the Catalan matrices. Can
you formulate conjectures as to what the Catalan numbers might be? Try
to prove your conjecture.

7.10 The Chebyshev polynomials Un(x) were originally defined as Un(x)
= sin(n+1)ϑ

sinϑ , x = cosϑ . Derive the recurrence U0(x) = 1, Un+1(x) =
2xUn(x)−Un−1(x), and conclude that Un(x) = cn(2x), where cn(x) are
the Chebyshev polynomials used in the text. Use the definition of Un(x)
to derive the orthogonality relation

∫ 1
−1Um(x)Un(x)(1 − x2)1/2dx = 0

(m ≠ n), thus proving B in the beginning of the section.

� 7.11 In analogy to the definition of the Chebyshev polynomials as a de-
terminant, consider the polynomial sequence

Un(x,α) = det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

x 1
α x 2
α− 1 x 3

0

0

. . .
. . .

n− 1
α−n+ 2 x

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, U0(x,α) = 1,

where α �∈ N0. Derive the recurrence Un+1(x,α) = xUn(x,α) − n(α −
n + 1)Un−1(x,α). Un(x,α) is called a Cayley continuant. Consider the
exponential generating function Û(x,α;z) = ∑n≥0 Un(x,α)

zn
n! and prove

that

Û(x,α;z) = (1 + z)x+α2

(1 − z)x−α2
.
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Deduce from this the convolution formula

Un(x1 + x2, α1 +α2) =
n∑
k=0

(
n
k

)
Uk(x1, α1)Un−k(x2, α2) ,

and the reciprocity law

Un(−x,α) = (−1)nUn(x,α).

Hint: Convert the recurrence into a differential equation for Û(x,α;z).

7.12 Let Un(x,α) be as in the previous exercise. Show that

Un(x,α) =
n∑
k=0

(
n
k

)(
x +α

2

)k (x −α
2

)n−k
.

7.13 Define the polynomial sn(α,β) =
∑
ci,jαiβj , where ci,j is the num-

ber of permutations σ ∈ S(n) with i even cycles and j odd cycles.
Generalize Exercise 3.53 to find the exponential generating function
Ŝ(z) of sn(α,β), and compare the resulting expression for sn(α,β) with
Un(x,α).

� 7.14 Consider the following recurrence: b0,0 = 1, b0,k = 0 (k > 0), bn,k =
bn−1,k−1 + bn−1,k + · · · + bn−1,n−1 (n ≥ 1) . The numbers bn,k are called
ballot numbers. Prove bn,0 = Cn (ordinary Catalan number). Hint: Look
at the generating function of the k-th column Bk(z), and set Bk(z) =
B0(z)F(z)k, F(0) = 0.

7.15 Use the Lagrange inversion formula to derive the formula bn,k =
k+1
n+1

(
2n−k
n

)
for the numbers bn,k of the previous exercise. Consult Exer-

cise 5.50 to justify the name ballot numbers.

7.16 Continuing the exercise, show that bn,i = bn−1,i−1 + bn,i+1 for i ≥
1, and deduce bn+k,2k = an,k, where A = (an,k) is the Catalan matrix
corresponding to σ = (1,2,2, . . .), τ ≡ 1.

� 7.17 Let Bk(z) be the ordinary generating function of the k-th column of
the ballot table (bn,k) as in Exercise 7.14. Prove that Bk(z) = qk(z)C(z)−
rk(z), where C(z) is the ordinary Catalan series, and qk(z), rk(z) are
polynomials of degrees at most k

2 and k−1
2 , respectively. Deduce that

qk(z) =
∑
i≥0(−1)i

(
k−i
i

)
zi, and from this the formula

bn,k =
∑
i≥0(−1)i

(
k−i
i

)
Cn−i .
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7.2 Catalan Numbers and Lattice Paths

Let A = Aσ,τ = (an,k) be a Catalan matrix as before, hence

an,k = an−1,k−1 + skan−1,k + tk+1an−1,k+1 (n ≥ 1). (1)

Now turn the matrix A by 90◦, and let an,k correspond to the lattice
point (n,k):

a3,3 . . .
a2,2 a3,2 . . .

a1,1 a2,1 a3,1 . . .
a0,0 a1,0 a2,0 a3,0 . . .

Our recurrence thus reads pictorially

an−1,k+1

tk+1

����������

an−1,k
sk an,k

an−1,k−1

1

����������

Definition. A Motzkin path P of length n is a lattice path from
(0,0) to (n,0) with all steps horizontally or diagonally up or down
to the right that never falls below the axis y = 0. The Motzkin num-
ber Mn is the number of Motzkin paths of length n. The figure
shows the Motzkin paths up to length 3; thus M0 = M1 = 1, M2 = 2,
M3 = 4:

Now we associate weights to the individual steps:

1 sk
y = k

y = k+ 1
tk+1

y = k

and define the weight w(P) of a path as in Section 5.4:

w(P) =
∏
w(steps).
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Given sequences σ and τ , we thus have the Catalan matrix Aσ,τ and
the Motzkin paths Pn weighted according to σ and τ .

Recurrence (1) clearly translates into

Bn =
∑
P∈Pn

w(P) , (2)

and more generally,
an,k =

∑
P
w(P) ,

where P runs through all paths that start at (0,0) and terminate in
(n,k).

Our starting example leads because of σ ≡ 0 to all Motzkin paths
without horizontal steps, that is, to ordinary Catalan paths.

Determinants of Hankel matrices.
To compute the determinants of the Hankel matrices

Hn = (Bi+j)ni,j=0, H(1)n = (Bi+j+1)ni,j=0 ,

we use the lemma of Gessel–Viennot of Section 5.4. Set as before
Tn = t1t2 · · · tn, T0 = 1, and consider the following graph:

�
� �

(0, n)
tn
tn−1

t1

A′
n = (n,0)(−n,0) = An A2 A1A0 = A′

0A
′
1 A

′
2

t2
t1t1

with Ai = (−i,0), A′
j = (j,0). Let A = {A0, . . . ,An}, A′ = {A′

0, . . . ,
A′
n}. The path matrix M = (mij) from A to A′ is then mij = Bi+j

according to (2), that is, M = Hn. The only vertex-disjoint path sys-
tem P : Ai → A′

i (i = 0. . . . , n) is the one depicted in the figure with
w(P) = T1T2 · · ·Tn, and the lemma of Gessel–Viennot implies

detHn = T1T2 · · ·Tn . (3)
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To compute detH(1)n we consider the same lattice graph, this time
with Ai = (−i,0), A′

j = (j + 1,0):

An A1A2 A0 A′
0 A′

1 A′
2 A′

n

The path matrix is now M = H(1)n = (Bi+j+1). The vertex-disjoint
path systems are again of the form P : Ai → A′

i, and they are
uniquely determined outside the strip 0 ≤ x ≤ 1. The weight out-
side the strip is again T1T2 · · ·Tn; hence

detH(1)n = rn detHn .

To compute rn let us classify the path systems P according to the
top step:

tn
sn(0, n) (1, n)

rn−1

A0 A′
0 A0 A′

0

rn−2

(0, n) (1, n)

+

This gives the recurrence

rn = snrn−1 − tnrn−2, r−1 = 1, r0 = s0 .
Note the minus sign, because of the transposition (n − 1, n) in the
second case.

In sum, we have proved the following result.
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Theorem 7.6. Let A = Aσ,τ , and Hn, H(1)n the Hankel matrices of the
Catalan numbers Bn. Then

detHn = T0T1 · · ·Tn, detH(1)n = rn detHn ,

with r−1 = 1, r0 = s0, and

rn = snrn−1 − tnrn−2 (n ≥ 1) . (4)

Example. For σ ≡ 0, τ ≡ 1, detHn = 1, and detH(1)n = rn, where
rn = −rn−2 by (4). Hence with the starting values r−1 = 1, r0 = 0 we
get r2n = 0, r2n+1 = (−1)n+1. As an example,

detH(1)3 = det

⎛⎜⎜⎜⎝
0 1 0 2
1 0 2 0
0 2 0 5
2 0 5 0

⎞⎟⎟⎟⎠ = 1 .

Given any sequence (Bn), generalizing Hn and H(1)n , we may con-
sider the Hankel matrix H(k)n = (Bi+j+k)ni,j=0 of k-th order, thus

Hn = H(0)n . Let d(k)n be the determinants. There is an interesting
recurrence relating the numbers d(k)n that follows from a classical
matrix theorem due to Jacobi.

Recall the following theorem of linear algebra. Suppose M is an n×
n-matrix. By Mi,j we denote the submatrix where the i-th row and
j-th column have been deleted. Now consider the cofactor matrix
M = (mij), where mij = (−1)i+j detMj,i. Then we have

MM =

⎛⎜⎜⎜⎜⎝
detM

detM 0

0
. . .

detM

⎞⎟⎟⎟⎟⎠ . (5)

Lemma 7.7 (Jacobi). Let M be an n×n-matrix, n ≥ 2. Then

detM · detM1,n;1,n = detM1,1 · detMn,n − detM1,n · detMn,1 , (6)

where M1,n;1,n is the submatrix with rows 1, n and columns 1, n
deleted, where we set detM1,n;1,n = 1 if n = 2.
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Proof. We regard the entries of M as variables. To shorten the
notation, let us set |M| = detM . Consider the matrix

M∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|M1,1| 0 0 . . .0 (−1)n+1|Mn,1|
−|M1,2| 1 0 . . .0 (−1)n|Mn,2|
|M1,3| 0 1 . . .0 (−1)n−1|Mn,3|

... · · · · · ·
(−1)n|M1,n−1| 0 0 . . .1 −|Mn,n−1|
(−1)n+1|M1,n| 0 0 . . .0 |Mn,n|

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Multiplying M by M∗, we get by (5),

MM∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

|M| m12 m13 . . . 0
0 m22 m23 . . . 0
0 m32 m33 . . . 0
... · · ·
0 mn2 mn3 . . . |M|

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

Now |MM∗| = |M|2|M1,n;1,n|, |M∗| = |M1,1||Mn,n| − |M1,n||Mn,1|,
and |MM∗| = |M||M∗| imply (6). �

Let us apply the lemma to the Hankel matrices H(k)n of a sequence
(Bn). For M = H(k)n we clearly have M1,1 = H(k+2)

n−1 , Mn,n = H(k)n−1,

M1,n = Mn,1 = H(k+1)
n−1 , and M1,n;1,n = H(k+2)

n−2 . We thus get the fol-
lowing result.

Corollary 7.8. Let (Bn) be a sequence, and d(k)n = detH(k)n . Then

d(k)n d(k+2)
n−2 = d(k)n−1d

(k+2)
n−1 − (d(k+1)

n−1 )2 (n ≥ 1, k ≥ 0) , (7)

with d(k)−1 = 1, or shifting the index,

d(k−2)
n d(k)n = d(k−2)

n+1 d(k)n−1 + (d(k−1)
n )2 (n ≥ 0, k ≥ 2) . (8)

Example. We know for the ordinary Catalan numbers Cn that
d(0)n = d(1)n = 1. Hence (8) yields for k = 2,

d(2)n = d(2)n−1 + 1 ,

and thus d(2)n = detH(2)n = n + 2, since d(2)0 = detH(2)0 = C2 = 2.
Similarly, for k = 3 we get
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d(3)n = d(3)n−1 + (n+ 2)2 = (n+ 2)2 + (n+ 1)2 + · · · + 32 + d(3)0 ,

which gives d(3)n = detH(3)n = ∑n+2
i=1 i2, since d(3)0 = detH(3)0 = C3 =

5 = 22 + 12. As an example,

detH(3)2 = det

⎛⎜⎝ 5 14 42
14 42 132
42 132 429

⎞⎟⎠ = 30 = 12 + 22 + 32 + 42 .

Exercise 7.25 will show that the recurrence (8) implies, in fact, a
nice general formula for detH(k)n when (Bn) = (Cn) is the ordinary
Catalan sequence.

Exercises

7.18 Compute detHn, and detH(1)n for σ = (1,2,2, . . .), τ ≡ 1. What fol-
lows for the Catalan numbers Bn? Compare the result to Exercise 7.4.

7.19 Compute detHn, detH(1)n for σ ≡ 2, τ ≡ 1 (see Exercise 7.7).

� 7.20 The Catalan numbers for σ ≡ 1, τ ≡ 1 are the Motzkin numbersMn.
Calculate detHn and detH(1)n .

7.21 Consider the trinomial numbers of Exercise 7.5, and compute detHn,
detH(1)n .

7.22 Determine detH(2)n for the sequence of Motzkin numbers.

* * *

� 7.23 Let A = Aσ,τ with Catalan sequence (Bn). Use the lemma of Gessel–

Viennot to prove detH(2)n = (T0T1 · · ·Tn+1)
∑n
j=−1

r2
j

Tj+1
, where Tj+1 =

t1 · · · tj+1 as before, and rj defined as in (4). Verify the result also with
(8).

7.24 Use the previous exercise to compute detH(2)n for σ ≡ 0, τ ≡ 1, and
σ = (1,2,2, . . .), τ ≡ 1.

� 7.25 Let Cn be the ordinary Catalan number. Show that

detH(k)n =
∏

1≤i≤j≤k−1

i+ j + 2n+ 2
i+ j

for k ≥ 0, and derive from this a formula for Ck. Hint: Show that the
expression satisfies the recurrence (8).
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7.26 Consider the sequence
(
Bn =

(
2n+1
n

))
. You were asked in Exercise 7.9

to prove that this is the Catalan sequence for σ = (3,2,2, . . .), τ ≡ 1.
Now prove an analogous statement to the previous exercise: detH(k)n =∏

1≤i≤j≤k
i+j+2n+1
i+j−1 (n, k ≥ 0).

7.27 Compare the general formula in Exercise 7.23 with the two preceed-
ing exercises for k = 2; what do you get?

� 7.28 Consider the sequences σ ≡ 0, τ = (α,β,α,β, . . .), that is, t2k−1 = α,
t2k = β. Interpret B2n as a sum of weighted Catalan paths of length 2n,
and prove B2n = ∑n−1

k=0 N(n,k)αn−kβk with N(n,k) = 1
n

(
n
k

)(
n
k+1

)
. Show

also that N(n,k) counts the Catalan paths with exactly k+1 peaks .
The numbers N(n,k) are called Narayana numbers. Hint: Interpret the
Catalan paths as ballot lists as in Exercise 3.9. A peak is then a subse-
quence AB.

7.3 Generating Functions and Operator Calculus

Let us now take a closer look at Catalan numbers, using generating
functions. We begin as usual with A = Aσ,τ = (an,k), σ = (sk),
τ = (tk), and the recurrence⎧⎨⎩a0,0 = 1, a0,k = 0 (k > 0) ,

an,k = an−1,k−1 + skan−1,k + tk+1an−1,k+1 .
(1)

Now set tn = qnun (n≥1),Qn = q1 · · ·qn,Q0 = 1, and considerQ-
generating functions as in Section 2.2 with our three calculi: qn =
1 (ordinary generating functions), qn = n (exponential generating
functions), qn = 1−qn

1−q (q-generating functions).

Let Ak(z) be the Q-generating function of the k-th column of A,
that is,

Ak(z) =
∑
n≥0

an,k
zn

Qn
, (2)

where in particular,

B(z) = A0(z) =
∑
n≥0

Bn
zn

Qn
(3)

is the generating function of the Catalan numbers Bn. With the
derivative Δ of Section 2.2, recurrence (1) translates into the sys-
tem
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ΔAk = Ak−1 + skAk + tk+1Ak+1, Ak(0) = 0 (k ≥ 1) ,
ΔA0 = aA0 + bA1, A(0) = 1, (4)

with a = s0, b = t1 (a and b will play a special role).

Note that (4) implies degAk(z) = k (in the sense of Section 2.3) with
ak,k = 1. Hence we can say that if A0(z),A1(z), . . . is a sequence
of functions that satisfy (4), then B(z) = A0(z) is the generating
function of the Catalan numbers corresponding to σ = (sk), τ =
(tk).

Continued Fractions.
For ordinary generating functions there is another way to describe
the system (4) by means of continued fractions. Suppose

(
Ak(z)

)
is a sequence of ordinary generating functions with degAk(z) = k,
[zk]Ak(z) = 1. Then Ak(z)

zk is invertible. Now set

Ck(z) = Ak(z)
zk

/ Ak−1(z)
zk−1

(k ≥ 1) ,

C0(z) = A0(z) .

Then Ck(0) = 1 and Ak(z) = zAk−1(z)Ck(z); thus

Ak(z) = zk
k∏
i=0

Ci(z) . (5)

Lemma 7.9. Suppose
(
Ak(z)

)
and

(
Ck(z)

)
with Ck(0) = 1 are con-

nected as in (5). Then
(
Ak(z)

)
satisfies (4) if and only if

Ck(z) = 1
1 − skz − tk+1z2Ck+1(z)

(k ≥ 0). (6)

Proof. Suppose (4) holds for
(
Ak(z)

)
. Then⎧⎪⎪⎨⎪⎪⎩

A0 − 1
z

= s0A0 + t1A1 ,

Ak
z

= Ak−1 + skAk + tk+1Ak+1 (k ≥ 1).

Hence by (5),

C0 = A0 = 1 + s0zA0 + t1zA1 = 1 + s0zC0 + t1z2C0C1 ,

that is,
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C0(z) = 1
1 − s0z − t1z2C1(z)

.

For k ≥ 1 we get

Ak−1Ck = Ak
z

= Ak−1 + skAk + tk+1Ak+1

= Ak−1 + skzAk−1Ck + tk+1z2Ak−1CkCk+1 ,

which gives

Ck(z) =
1

1 − skz − tk+1z2Ck+1(z)
.

The converse is just as easily seen, using (5) again. �

In sum, we can say that if
(
Ck(z)

)
is a sequence of ordinary gen-

erating functions with Ck(0) = 1 for all k, satisfying (6), then
B(z) = C0(z) is the generating function of the Catalan numbers
associated with σ = (sk), τ = (tk). Iterating (6), we obtain the con-
tinued fraction expansion

B(z) = C0(z) =
1

1 − s0z −
t1z2

1 − s1z −
t2z2

1 − s2z − . . .

(7)

Such an expression is then to be understood as a sequence of func-
tions Ck(z) satisfying equation (6).

Example. Our starting example σ ≡ 0, τ ≡ 1 leads to

B(z) = C0(z) =
1

1 − z2

1 − z2

1 −
. . .

Replacing z2 by z we obtain from (6),

C0(z) = 1
1 − zC0(z)

or C0(z) = 1 + zC2
0(z) ,

and we get precisely the ordinary Catalan series.
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Sheffer Matrices.
Let us return to Q-generating functions Ak(z). Solving system (4)
presents, in general, great difficulties. Here is the key idea. We re-
strict ourselves to Catalan matrices A = Aσ,τ whose Q-generating
functions Ak(z) of the k-th column have the following form: Let
B(z) = A0(z). Then there exists a function F(z) = ∑n≥0 Fn

zn
Qn with

F(0) = 0 such that

Ak(z) = B(z)F(z)
k

Qk
for all k. (8)

Matrices A = Aσ,τ with this property are called Sheffer matrices.
Note that (8) implies F1 = 1 because of q1 = 1. Plugging (8) into the
system (4), we get{

Δ(BFk) = qkBFk−1 + skBFk +uk+1BFk+1 (k ≥ 1) ,
ΔB = aB + bBF . (9)

Our goal is to compute B(z) from (9), and to determine the associ-
ated OPS

(
pn(x)

)
. In the following we concentrate on qn = 1 (or-

dinary generating functions) and qn = n (exponential generating
functions), leaving the case qn = 1−qn

1−q to the exercises.

Ordinary Generating Functions.
Here we have Δ = D0, D0A(z) = A(z)−A(0)

z , and we know from Exer-
cise 2.14 that

D0(BFk) = B(D0Fk) = BFk−1(D0F) .

Substituting this into (9) and canceling gives the system{
D0F = 1 + skF +uk+1F2 (k ≥ 1) ,
D0B = aB + bBF . (10)

For (10) to be solvable we must therefore have sk = s, uk+1 = u for
k ≥ 1. In other words, we obtain as the only possible sequences in
the Sheffer case σ = (a, s, s, s, . . .), τ = (b,u,u,u, . . .), and hence
the system {

D0F = 1 + sF +uF2 ,
D0B = aB + bBF . (11)

Comparison of the coefficients of zn translates (11) into the convo-
lution recurrences
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Fn+1 = sFn +u

n−1∑
k=1

FkFn−k (n ≥ 1), F1 = 1 ,

Bn+1 = aBn + b
n−1∑
k=0

BkFn−k (n ≥ 0), B0 = 1 .
(12)

In Section 7.4 we will interpret these coefficients combinatorially
for various choices of the parameters a,b, s, and u.

Exponential Generating Functions.
Here Δ is the usual derivative DA(z) = A′(z) with (BFk)′ = B′Fk +
kBFk−1F ′. Canceling Fk−1, (9) takes on the form{

B′F + kBF ′ = kB + skBF +uk+1BF2,
B′ = aB + bBF .

Substituting B′ into the first equation and canceling, we get

F ′ = 1 + sk − a
k

F + uk+1 − b
k

F2 (k ≥ 1) .

Hence sk = a + ks, uk+1 = b + ku for fixed s and u, which means
that in the Sheffer case, the only possible sequences are σ = (sk =
a+ ks), τ = (tk = k(b + (k− 1)u)) . The resulting system is{

F ′ = 1 + sF +uF2,
B′ = aB + bBF , (13)

or in terms of coefficients,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Fn+1 = sFn +u

n−1∑
k=1

(
n
k

)
FkFn−k (n ≥ 1), F1 = 1 ,

Bn+1 = aBn + b
n−1∑
k=0

BkFn−k (n ≥ 0), B0 = 1 .
(14)

Again we will interpret (14) in combinatorial terms in Section 7.4.

The Associated OPS.
Now we turn to the orthogonal polynomial system

(
pn(x)

)
corre-

sponding to A = Aσ,τ in the Sheffer case. Let A = Aσ,τ , U = A−1 =
(un,k), and pn(x) =

∑n
k=0un,kxk the orthogonal system. As before,

Ak(z) =
∑
n≥0 an,k

zn
Qn , Uk(z) =

∑
n≥0un,k

zn
Qn . Let us abbreviate the

Sheffer relation Ak = B F
k

Qk
by

A↔ (B, F) .
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Lemma 7.10. If A↔ (B, F), then we have

U ↔
(

1
B(F〈−1〉)

, F〈−1〉
)
,

where F〈−1〉 is the compositional inverse of F .

Proof. We have to show that

Uk(z) =
1

B
(
F〈−1〉(z)

) (F〈−1〉(z)
)k

Qk
.

From AU = I follows

u0,kA0(z)+u1,kA1(z)+ · · · = zk

Qk
(k ≥ 0),

and hence ∑
n≥0

un,kB(z)
F(z)n

Qn
= zk

Qk
.

The substitution z � F〈−1〉(z) therefore gives

∑
n≥0

un,kB
(
F〈−1〉(z)

) zn
Qn

=
(
F〈−1〉(z)

)k
Qk

,

and thus

Uk(z) =
∑
n≥0

un,k
zn

Qn
= 1
B
(
F〈−1〉(z)

) (F〈−1〉(z)
)k

Qk
. �

With this lemma it is an easy matter to compute the generating
function of the sequence

(
pn(x)

)
.

Proposition 7.11. Let A ↔ (B, F), and
(
pn(x)

)
the corresponding

OPS. Then we have

∑
n≥0

pn(x)
zn

Qn
= 1
B
(
F〈−1〉(z)

) ∑
k≥0

(
xF〈−1〉(z)

)k
Qk

. (15)

Proof. Let us define the infinite column-vectors Z =
(
zn
Qn

)
and

X = (xn). We obtain



312 7 The Catalan Connection

ZT(UX) =
(

1,
z
Q1
,
z2

Q2
, . . .

)⎛⎜⎜⎝
p0(x)
p1(x)

...

⎞⎟⎟⎠ =
∑
n≥0

pn(x)
zn

Qn
,

and on the other hand,

(ZTU)X = (U0(z),U1(z), . . .)

⎛⎜⎜⎜⎜⎝
1
x
x2

...

⎞⎟⎟⎟⎟⎠

=
(

1
B
(
F〈−1〉(z)

) , 1
B
(
F〈−1〉(z)

) F〈−1〉(z)
Q1

, . . .
)⎛⎜⎜⎜⎜⎝

1
x
x2

...

⎞⎟⎟⎟⎟⎠

= 1
B
(
F〈−1〉(z)

) ∑
k≥0

(
xF〈−1〉(z)

)k
Qk

,

and the result follows. �

Example. Let us once more look at our starting example σ ≡ 0,
τ ≡ 1 . Using ordinary generating functions we have to solve the
system (11),

⎧⎪⎨⎪⎩
D0F = F

z = 1 + F2 ,

D0B = B−1
z = BF .

(16)

Hence F(z) = z + zF2(z). From y = z + zy2 follows z = y
1+y2 , that

is, F〈−1〉(z) = z
1+z2 . We already know B(z), and it can, of course, be

easily computed from (16), B(z) = 1−
√

1−4z2

2z2 . This implies

B
(
F〈−1〉(z)

) = 1 −
√

1 − 4z2

(1+z2)2

2 z2

(1+z2)2
= 1 − 1−z2

1+z2

2 z2

(1+z2)2
= 1 + z2 ,

and thus by (15) for the Chebyshev polynomials cn(x),∑
n≥0

cn(x)zn = 1
1 + z2

1

1 − xz
1+z2

= 1
1 − xz + z2

,
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a result that we already obtained from the recurrence cn+1(x) =
xcn(x)− cn−1(x) in Section 3.2 (see Exercise 3.37).

Operator Calculus.
Now we study the q-calculus of generating functions in greater
depth, thereby providing easy proofs of some classical results about
orthogonal polynomial systems. We start with three easy lemmas.
As before, we use Q-generating functions H(z) = ∑

n≥0hn
zn
Qn . Let

Δ be the derivative. Then H(Δ) denotes the operator

H(Δ) =
∑
n≥0

hn
Δn

Qn
.

Lemma 7.12. Let H(z) =∑n≥0 hn
zn
Qn .

(i) We have hn = H(Δ)xn∣∣x=0 for all n.

(ii) If p(x) =∑k
i=0 pixi, then H(Δ)p(x)

∣∣
x=0 =∑ki=0 pihi .

Proof. Recall the notation
[
n
m

]
= Qn

QmQn−m . Now Δxn = qnxn−1,

and thus Δmxn = qnqn−1 · · ·qn−m+1xn−m, or

Δmxn

Qm
=
[ n
m

]
xn−m . (17)

It follows that

H(Δ)xn
∣∣
x=0 =

∑
m≥0

hm
Δmxn

Qm

∣∣
x=0 =

n∑
m=0

hm
[
n
m

]
xn−m

∣∣
x=0

= hn .

For (ii) we obtain

H(Δ)
k∑
i=0

pixi
∣∣
x=0 =

k∑
i=0

piH(Δ)xi
∣∣
x=0 =

k∑
i=0

pihi . �

Lemma 7.13. LetA = (an,k) be invertible, andAk(z) =
∑
n≥0 an,k

zn
Qn .

If for two polynomials p(x), q(x), we have Ak(Δ)p(x)
∣∣
x=0 =

Ak(Δ)q(x)
∣∣
x=0 for all k ≥ 0, then p(x) = q(x).
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Proof. The previous lemma shows that

Ak(Δ)p(x)
∣∣
x=0 =

∑
i
piai,k, Ak(Δ)q(x)

∣∣
x=0 =

∑
i
qiai,k .

In other words, pTA = qTA holds for the coefficient vectors pT =
(p0, p1, p2, . . .), qT = (q0, q1, q2, . . .). Since A is invertible, p(x) =
q(x) follows. �

Lemma 7.14. Let A be invertible, and
(
pn(x)

)
the polynomial se-

quence corresponding to U = A−1, pn(x) =
∑n
i=0un,ixi. Then we

have

Ak(Δ)pn(x)
∣∣
x=0 =

{
1 n = k ,
0 n ≠ k . (18)

In particular, the sequence
(
pn(x)

)
is uniquely determined by (18).

Proof. By Lemma 7.12 and U = A−1,

Ak(Δ)pn(x)
∣∣
x=0 =

∑
i
ai,kun,i = δn,k. �

With these preliminary results it is an easy matter to state the fol-
lowing expansion theorem (see Exercise 7.34).

Proposition 7.15. Let A be invertible, and
(
pn(x)

)
the polynomial

sequence corresponding to U = A−1. For an arbitrary generating
function H(z) =∑n≥0 hn

zn
Qn ,

H(z) =
∑
k≥0

(H(Δ)pk(x)
∣∣
x=0)Ak(z) .

So far, the results hold for arbitrary invertible matrices. Now we
turn to the Sheffer case A = Aσ,τ , A ↔ (B, F), that is, Ak(z) =
B(z)F(z)

k

Qk
, Qn = q1q2 · · ·qn.

Proposition 7.16. Let A ↔ (B, F), and
(
pn(x)

)
the corresponding

orthogonal polynomial system. Then we have

F(Δ)pn(x) = qnpn−1(x) . (19)
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Proof. By (18),

Ak(Δ)
(
F(Δ)pn(x)

)∣∣
x=0 = B(Δ)F(Δ)

k+1

Qk
pn(x)

∣∣
x=0

= qk+1Ak+1(Δ)pn(x)
∣∣
x=0

= qk+1δn,k+1 = qnδn,k+1 .

On the other hand, again by (18),

Ak(Δ)qnpn−1(x)
∣∣
x=0 = qnδn−1,k = qnδn,k+1 ,

and the uniqueness result of Lemma 7.13 finishes the proof. �

Suppose A ↔ (B, F); then we define the matrix Ã by Ã ↔ (1, F).
In other words, Ãk(z) = F(z)k

Qk
. Because of F0 = 0, F1 = 1, Ã is

again lower triangular with main diagonal 1. Set Ũ = Ã−1 = (ũn,k),
and define the polynomials p̃n(X) =

∑n
k=0 ũn,kxk as before. Lemma

7.14 holds then for Ã and p̃n(x) as well.

Proposition 7.17. Suppose A↔ (B, F). Then

p̃n(x) = B(Δ)pn(x) for all n . (20)

Proof. From (18) we get F(Δ)
k

Qk
p̃n(x)

∣∣
x=0 = δn,k, and on the other

hand, again by (18),

F(Δ)k

Qk

(
B(Δ)pn(x)

)∣∣
x=0 = Ak(Δ)pn(x)

∣∣
x=0 = δn,k .

The uniqueness result of Lemma 7.13 implies p̃n(x) = B(Δ)pn(x) .
�

A particularly beautiful “binomial” property is the so-called Shef-
fer identity for exponential generating functions, which is qn = n,
Qn = n! . Let us first note the following property of the exponential
function ez. Let a ∈ C and D the usual derivative. Then using (17),

eaDxn =
∑
k≥0

ak
Dk

k!
xn =

n∑
k=0

(
n
k

)
akxn−k = (x + a)n ,

and hence by linearity,

eaDp(x) = p(x + a) for any p(x) ∈ C[x] . (21)
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This, in turn, implies

eaDp(x)
∣∣
x=0 = p(a) , (22)

the evaluation of p(x) at x = a.

Proposition 7.18. Let A ↔ (B, F), Ã ↔ (1, F) in the exponential
calculus, with the associated polynomial sequences

(
pn(x)

)
and(

p̃n(x)
)
. Then we have

pn(x +y) =
n∑
k=0

(
n
k

)
pk(x)p̃n−k(y) . (23)

Proof. By the expansion theorem applied to Ã and H(z) = eyz

and (22) we obtain

eyz =
∑
k≥0

eyDp̃k(x)
∣∣
x=0

F(z)k

k!
=
∑
k≥0

p̃k(y)
F(z)k

k!
.

Now we apply eyD to pn(x). According to (21), we have eyDpn(x) =
pn(x +y), and on the other hand, by (19),

eyDpn(x) =
⎛⎝∑
k≥0

p̃k(y)
F(D)k

k!

⎞⎠pn(x) = n∑
k=0

p̃k(y)
(
n
k

)
pn−k(x) ,

and the result follows. �

Some Classical Examples.
Now it is time for some examples; they are all in the exponential
calculus.

Example 1. Charlier Polynomials. Consider σ = (sk = a + k),
τ = (tk = ak). In our previous notation we have s = 1, a = b, u = 0,
which means that we have to solve the system⎧⎨⎩F

′ = 1 + F ,
B′ = aB(1 + F) .

Clearly F(z) = ez − 1, and B′
B = a(1 + F) = aez implies B(z) =

ea(ez−1), since B(0) = 1. We have already seen this function in Sec-
tion 3.3; it is the exponential generating function of
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Bn =
n∑
k=0

Sn,kak (Stirling polynomial of the second kind).

In particular, for a = 1, the Bell numbers Bell(n) result. The Bell
numbers are therefore the Catalan numbers corresponding to σ =
(sk = k+ 1), τ = (tk = k). Let us check the first rows of A = Aσ,τ :

τ 1 2 3 4
σ 1 2 3 4 5

1
1 1
2 3 1
5 10 6 1

15 37 31 10 1
52

Let us next compute the determinants of the Hankel matrices for
the Bell numbers. We have Tn = n!, and hence detHn = n!! :=
1!2! · · ·n!. For H(1)n , the recurrence is rn = (n+1)rn−1−nrn−2 with
starting values r−1 = 1, r0 = 1, which gives rn = 1 by induction, and
thus detH(1)n = n!!. The Bell numbers are thus the unique sequence
with detHn = detH(1)n = n!! for all n.

The corresponding orthogonal polynomials are the Charlier polyno-
mials C(a)n (x). From F(z) = ez−1 results F〈−1〉(z) = log(1+z), and
thus B

(
F〈−1〉(z)

) = eaz. According to (15) the generating function
is given by

∑
n≥0

C(a)n (x)
zn

n!
= e−az

∑
k≥0

(
x log(1 + z))k

k!
= e−az(1 + z)x

= e−az
∑
k≥0

xk
zk

k!
.

With convolution we get the final expression

C(a)n (x) =
n∑
k=0

(
n
k

)
(−a)n−kxk.

The matrix Ã ↔ (1, F = ez − 1) corresponds to the case a = 0 in
B(z); hence p̃n(x) = C(0)n (x) = xn and the Sheffer formula yields
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C(a)n (x +y) =
n∑
k=0

(
n
k

)
C(a)k (x)yn−k.

We can also apply (19). With F(z) = ez−1 we get F(D) = eD− I and
thus by (21),

F(D)C(a)n (x) = C(a)n (x + 1)− C(a)n (x) .

Proposition 7.16 therefore yields

C(a)n (x + 1)− C(a)n (x) = nC(a)n−1(x) .

Example 2. Laguerre Polynomials. Consider σ = (sk = a + 2k),
τ = (tk = k(a+ k− 1)), that is, s = 2, u = 1, a = b. The differential
equations (13) are{

F ′ = 1 + 2F + F2 = (1 + F)2,
B′ = aB(1 + F) .

One easily computes F(z) = z
1−z and F〈−1〉(z) = z

1+z . Furthermore,

(logB)′ = B′
B = a(1 + F) = a

1−z , and thus

B(z) = 1
(1 − z)a =

∑
n≥0

an
zn

n!
,

according to our list of functions in Section 2.1. The Catalan se-
quence is therefore

Bn = an =
n∑
k=0

sn,kak (Stirling polynomial of the first kind).

In particular, for a = 1, Bn = n! results. The factorials n! are thus
the Catalan numbers for σ = (sk = 2k+ 1), τ = (tk = k2).

The corresponding OPS are the Laguerre polynomials L(a)n (x). From

B
(
F〈−1〉(z)

) = 1

(1 − z
1+z )a

= (1 + z)a

follows for the generating function according to (15),

∑
n≥0

L(a)n (x)
zn

n!
= (1 + z)−a

∑
k≥0

(x z
1+z )

k

k!
= (1 + z)−aex z

1+z .
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A simple computation (see Exercise 7.44) yields the expression

L(a)n (x) = (−1)nn!
n∑
k=0

(
a+n− 1
n− k

)
(−x)k
k!

.

The matrix Ã ↔ (1, F(z) = z
1−z ) corresponds again to the case a =

0, and we obtain the Sheffer identity

L(a)n (x +y) =
n∑
k=0

(
n
k

)
L(a)k (x)L(0)n−k(y) ,

with

L(0)n (x) = (−1)nn!
n∑
k=1

(
n− 1
k− 1

)
(−x)k
k!

.

Finally, F(z) = z
1−z =∑n≥1 zn and (19) yield the recurrence

L(a)n (x)′ + L(a)n (x)′′ + · · · + L(a)n (x)(n) = nL(a)n−1(x) .

Example 3. Hermite Polynomials. Our final example is σ ≡ a,
τ = (tk = bk). Here s = u = 0, and system (13) reads

F ′ = 1, B′ = B(a+ bF) .

We obtain F(z) = z, and (logB)′ = B′
B = a+bz; thus B(z) = eaz+bz2

2 .
In particular, for a = b = 1 we obtain the exponential generating
function of the involution numbers in considered in Section 3.3.
The numbers in are thus the Catalan numbers with respect to the
sequences σ ≡ 1, τ = (tk = k).
The associated OPS are the Hermite polynomials Ha,bn (x). Since
F(z) = z, we have F〈−1〉(z) = z , and thus the generating function

∑
n≥0

Ha,bn (x)
zn

n!
= e−az−bz2

2 +xz = e(x−a)z−bz2

2 .

To compute Ha,bn (x) we use Proposition 7.17. From Ã ↔ (1, z) fol-
lows Ã = Ũ = I, and thus H̃a,bn (x) = xn. Let D be the derivative;

then Ha,bn (x) = B(D)−1xn = e−aD−bD2

2 xn. With (21) this gives
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Ha,bn (x) = e−bD
2

2 e−aDxn = e−b
2D

2
(x − a)n

=
∑
k≥0

n2k

k!

(
−b

2

)k
(x − a)n−2k

=
∑
k

n2k

k!

(
−b

2

)k n−2k∑
j=0

(
n− 2k
j

)
(−a)jxn−2k−j

=
∑
k

n2k

k!

(
−b

2

)k n∑
j=2k

(
n− 2k
j − 2k

)
(−a)j−2kxn−j ,

and thus

Ha,bn (x) =
n∑
j=0

⎛⎝∑
k≥0

(−1)j−kaj−2kbk

(j − 2k)!2kk!

⎞⎠njxn−j .
In particular, a = 0 gives

H(b)n := H0,b
n (x) =

�n/2	∑
k=0

(
−b

2

)k n2k

k!
xn−2k .

The Sheffer formula reads

Ha,bn (x +y) =
n∑
k=0

(
n
k

)
Ha,bk (x)yn−k ,

and F(D) = D yields

Ha,bn (x)′ = nHa,bn−1(x) .

Example. Suppose a = 0, b = 1. Then H(1)n (x) = ∑�n/2	
k=0 (−1

2)
k n2k

k!

xn−2k with the first polynomials H(1)0 (x) = 1, H(1)1 (x) = x, H(1)2 (x)
= x2 − 1, H(1)3 (x) = x3 − 3x, H(1)4 (x) = x4 − 6x2 + 3 .

Exercises

7.29 Suppose A↔ (B, z), that is, F(z) = z. Show that there is no solution
of (11) for ordinary generating functions, and that for exponential gener-
ating functions the only solutions for (13) have s = u = 0. Thus we obtain
σ ≡ a, τ = (tk = bk) considered in example 3 above.
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� 7.30 Consider the q-calculus, qn = 1−qn
1−q , for A ↔ (B, z). Show that the

sequences σ,τ for which (9) is solvable are σ = (sk = aqk), τ = (tk =
1−qk
1−q bq

k−1).

7.31 Consider the Motzkin numbers Mn, that is, σ ≡ 1, τ ≡ 1, and deter-
mine the generating function

∑
n≥0Mnzn using continued fractions.

7.32 Suppose A↔ (B, F) is a Sheffer matrix for ordinary generating func-
tions. Show that for the functions Ck(z) used in the continued fraction
expansion, Ck(z) = F(z)

z for k ≥ 1.

7.33 We know that the ordinary Catalan numbers Cn form the Catalan
sequence belonging to σ = (1,2,2, . . .), τ ≡ 1 (see Exercise 7.4). Use the
previous exercise to show that the ordinary generating function Ak(z) of
the k-th column equals zkC(z)2k+1, where C(z) is the ordinary Catalan
series. Make use of Exercise 3.59 to find a formula for an,k.

� 7.34 Prove the Expansion Theorem 7.15.

7.35 LetD be the differential operatorDp(x) = p′(x). Prove the operator
identity (I−D)n = (−1)nexDne−x , meaning that both sides give the same
result when applied to any polynomial. Here I is the identity operator.

7.36 Show that x−m(I −D)nxn+m = (I −D)m+nxn (m ∈ N0).

7.37 Prove for the Hermite polynomial H(1)n (x) that

H(1)n (0) = (−1)n/2(n− 1)(n− 3) · · ·3 · 1

if n is even, and = 0 if n is odd.

� 7.38 Let A ↔ (B, F) be a Sheffer matrix in the ordinary calculus, A =
(an,k), and let H(z) =∑n≥0 hnzn be arbitrary. Prove that

[zn]B(z)H
(
F(z)

) = n∑
k=0

an,khk .

Define H̃(z) = H
(
F 〈−1〉(z)

) = ∑
n≥0 h̃nzn and show that [zn]B(z)H(z)

=∑n
k=0 an,kh̃k.

7.39 Continuing the exercise suppose that αn,k and βn,k are numbers
related by

∑
k αn,kak,j = βn,j for all n, j ≥ 0. Prove that

n∑
k=0

αn,k[zk]B(z)H
(
F(z)

) = ∑
j≥0

hjβn,j ,

and
∑n
k=0αn,k[zk]B(z)H(z) =

∑
j≥0 h̃jβn,j .
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� 7.40 Continuing the exercise let B(z) = 1
1−z , F(z) = z

1−z . Show that
an,k =

(
n
k

)
for all n,k ≥ 0. Now consider αn,k = 1 for all n,k, and de-

rive identities when H(z) = 1
1−z or H(z) = zm

(1−z)(1−2z)···(1−mz) . Consider
also αn,k = Hk (harmonic number), and derive identities when H(z) is as
above.

* * *

7.41 Suppose σ = (a, s, s, . . .), τ ≡ 1. Determine the ordinary generating
function of the Catalan numbers Bn using continued fractions.

7.42 Let A = Aσ,τ , and suppose that U = A−1 is also a Catalan matrix
U = Uσ ′,τ′ . Prove that σ ′ ≡ −σ , that is, s′k = −sk for all k.

� 7.43 Continuing the exercise, suppose that A = Aσ,τ is a Sheffer matrix
in the exponential calculus, and U = A−1 with U = Uσ ′,τ′ . Consider the
cases τ′ ≡ −τ and τ′ ≡ τ . Show that a. τ′ ≡ −τ implies σ ≡ a, τ = (tk =
bk), which gives the Hermite polynomials. b. τ′ ≡ τ implies σ = (sk =
a + 2mk), τ = (tk = k

(
am +m2(k − 1)

)
for some m. This yields the

generalized Laguerre polynomials L(a,m)n (x).

7.44 Prove the formula for the Laguerre polynomials L(a)n (x) in the text.

7.45 Show that L(a)n (x) = (I−D)a+n−1xn (a ∈ N0), and further L(a+b)n (x)
= (I −D)bL(a)n (x) (b ∈ N0) .

� 7.46 Let C(a)n (x) be the Charlier polynomials and L(a)n (x) the Laguerre
polynomials. Prove the identity C(x)n (a + n− 1) = (−1)nL(a)n (x), and de-

duce C(a+b)n (x +n) = ∑n
k=0

(
n
k

)
C(a)k (x + k)C(b)n−k(n− k− 1) .

7.47 Prove for the Hermite polynomials the binomial theorem H(a+b)n (x+
y) =∑n

k=0

(
n
k

)
H(a)k (x)H(b)n−k(y) .

7.48 Prove the so-called Rodriguez formula for the Hermite polynomials:

H(b)n (x) = (−1)ne
x2

2b bnDne−
x2

2b . Hint: Use the recurrence for H(b)n (x) to
show first that H(b)n (x) = (x − bD)H(b)n−1(x).

� 7.49 Consider the sequence σ ≡ 0, τ =
(
tk = k2

(2k−1)(2k+1)

)
in the ordi-

nary calculus, with associated OPS
(
pn(x)

)
. The polynomials Pn(x) =

1
2n

(
2n
n

)
pn(x) are called the Legendre polynomials. Derive the recurrence

(n + 1)Pn+1(x) = (2n + 1)xPn(x) − nPn−1(x), P0(x) = 1, and compute
from this the generating function

∑
n≥0 Pn(x)zn.

7.50 Continuing the exercise, prove the following orthogonality relation
for the Legendre polynomials:

∫ 1
−1 Pm(x)Pn(x)dx = 2

2n+1δm,n .
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� 7.51 Given the sequences σ = (sk = aqk), τ = (tk = 1−qk
1−q bq

k−1) as in
Exercise 7.30 in the q-calculus, use (9) to show that the Catalan numbers
satisfy the recurrence

Bn+1 = aBn + b1 − qn
1 − q Bn−1 .

Now set a = λ+ 1, b = λ(q − 1), and show that Bn =∑n
k=0[

n
k ]qλ

k (Galois
polynomial). Hence for a = 2, b = q − 1, we obtain Bn = Gn (Galois
number). Hint: Consider the Gauss polynomials gn(x), and the operator
L defined by L : gn(x)→ λn.

7.4 Combinatorial Interpretation of Catalan Numbers

Let us ask what combinatorial coefficients are in fact Catalan num-
bers. We have already seen several examples such as the ordinary
Catalan numbers, the Stirling polynomials, number of involutions,
and the Galois numbers. There are two methods at hand. First we
may compute the generating function

∑
n≥0 Bnzn and compare it to

known series. Or we interpret the recurrence for Bn in a combina-
torial setting.

Ordinary Generating Functions.
Let A = Aσ,τ be a Sheffer matrix A ↔ (B, F) as in the previous sec-
tion. We know that the possible sequences are σ = (a, s, s, . . .), τ =
(b,u,u, . . .); we abbreviate this to σ = (a, s), τ = (b,u). To com-
pute B(z) we use continued fractions. According to Exercise 7.32
we have B(z) = C0(z), C1(z) = C2(z) = · · · = F(z)

z =: G(z), and
hence by Lemma 7.9 of the previous section,

B(z) = 1
1 − az − bz2G(z)

, G(z) = 1
1 − sz −uz2G(z)

. (1)

Solving the quadratic equation for G(z), we obtain

G(z) = 1 − sz −
√

1 − 2sz + (s2 − 4u)z2

2uz2
. (2)

Plugging this into the first equation, one easily computes B(z) as

B(z) = (2u− b)+ (bs − 2au)z − b
√

1 − 2sz + (s2 − 4u)z2

2(u− b)+ 2(bs − 2au+ ab)z + 2(a2u− abs + b2)z2 .

(3)
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From formula (3) we can now extract a convolution recurrence for
the Catalan numbers Bn. Write B(z) in the form

B(z) = α− √β
2γ

;

thus

α = (2u− b)+ (bs − 2au)z ,

β = b2(1 − 2sz + (s2 − 4u)z2) , (4)

γ = (u− b)+ (bs − 2au+ ab)z + (a2u− abs + b2)z2 .

Therefore B(z) satisfies the quadratic equation

B2 − α
γ
B + α2 − β

4γ2
= 0 .

Looking at (4) we immediately get α
2−β
4γ = u, and thus the equation

γB2 −αB +u = 0 .

A short computation (check it!) yields the recurrence

bBn+1 = abBn+(u−b)
n−1∑
k=0

Bk+1Bn−k+(bs−2au+ab)
n−1∑
k=0

BkBn−k

+ (a2u− abs + b2)
n−1∑
k=0

BkBn−1−k (n ≥ 0). (5)

Examples.
1. Suppose b = u = 1, that is, τ ≡ 1. Then

B(z) = 1 + (s − 2a)z −
√

1 − 2sz + (s2 − 4)z2

2(s − a)z + 2(a2 − as + 1)z2

with recurrence

Bn+1 = aBn+(s−a)
n−1∑
k=0

BkBn−k+(a2−as+1)
n−1∑
k=0

BkBn−1−k (n ≥ 0).

For a = s = 0 we get B(z) = 1−
√

1−4z2

2z2 = C(z2), which is, of
course, the example we started out with. The case a = s = 1 gives
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the Motzkin numbers Mn with generating function
∑
n≥0Mnzn =

1−z−
√

1−2z−3z2

2z2 and the recurrence

Mn+1 =Mn +
n−1∑
k=0

MkMn−1−k .

The choice a = s = 2 yields B(z) = 1−2z−√1−4z
2z2 =

(
1−√1−4z

2z − 1
)

1
z ,

and we obtain the shifted ordinary Catalan numbers (C1, C2, C3, . . .)
as the sequence.

2. Another interesting case arises for a = s + 1, b = u = 1. Here

B(z) = 1 − (s + 2)z −
√

1 − 2sz + (s2 − 4)z2

−2z + 2(s + 2)z2
.

For s = 0 we get

B(z) = 1 − 2z −
√

1 − 4z2

−2z + 4z2
,

which is the generating function of Bn =
(

n
�n/2	

)
according to Exer-

cise 2.8. The case s = 2 results in

B(z) = 1 − 4z −√
1 − 4z

−2z + 8z2
,

which was again treated in Exercise 2.8 with Bn =
(

2n+1
n

)
.

3. Suppose b = 2u, and a = s. Then

B(z) = −b
√

1 − 2sz + (s2 − 2b)z2

−b + 2bsz + (2b2 − bs2)z2 = 1√
1 − 2sz + (s2 − 2b)z2

.

For b = s = 2, we have B(z) = 1√
1−4z with Catalan number Bn =(

2n
n

)
, and for b = 4, s = 3, B(z) = 1√

1−6z+z2
results, with the central

Delannoy numbers Dn,n appearing as Catalan numbers.

4. Instead of comparing
∑
n≥0 Bnzn to known generating functions

we may also look directly at the recurrence (5). We know that the
ordinary Catalan number Cn counts the lattice paths from (0,0) to
(n,n) with steps (1,0) and (0,1) that never go above the diagonal
y = x. The Schröder number Schn counts the paths that, in addi-
tion, also use diagonal steps (1,1) and do not cross the diagonal.
You are asked in the exercises to prove the recurrence
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Schn+1 = Schn +
n∑
k=0

SchkSchn−k (n ≥ 0)

with Sch0 = 1. As next values we get Sch1 = 2, Sch2 = 6, Sch3 = 22 .

Looking at (5) it is easily seen that the Schröder recurrence corre-
sponds to the case a = 2, s = 3, b = u = 2. Hence (Schn) is the
Catalan sequence for σ = (2,3), τ = (2,2). The following table
verifies the first values:

2 2 2 2
2 3 3 3 3
1
2 1
6 5 1
22 23 8 1
90 107 49 11 1

From the Catalan matrix it follows that the Schröder numbers Schn
are all congruent to 2 (mod 4) for n ≥ 1 (why?).

To summarize our findings so far let us make a table of some im-
portant Catalan sequences:

τ ≡ 1 (b = u = 1) :

a s
0 0 (C0,0, C1,0, C2,0, C3, . . .) Catalan

1 1 Mn = (1,1,2,4,9,21,51, . . .) Motzkin

2 2 Cn+1 = (1,2,5,14,42,132, . . .) shifted Catalan

1 0
(

n
�n/2	

)
= (1,1,2,3,6,10,20, . . .) middle binomials

3 2
(

2n+1
n

)
= (1,3,10,35,126, . . .) central binomials

1 2 Cn = (1,1,2,5,14,42,132, . . .) Catalan
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b = 2, u = 1 :

a = s = 1 : Trn = (1,1,3,7,19,51, . . .) central trinomials

a = s = 2 :
(

2n
n

)
= (1,2,6,20,70, . . .) central binomials

b = 2, u = 2
a = 2, s = 3

}
Schn = (1,2,6,22,90,394, . . .) Schröder

b = 4, u = 2
a = s = 3

}
Dn,n = (1,3,13,63,321, . . .) central Delannoy

Two further cases give very interesting numbers:

τ ≡ 1 :

a = 0, s = 1 Rn = (1,0,1,1,3,6,15, . . .) Riordan

a = 0, s = 2 Fin = (1,0,1,2,6,18,57, . . .) Fine

Binomial Formulas.
Catalan numbers are connected by binomial relations, as we now
show. Let A = Aσ,τ , and P =

((
n
k

))
the Pascal matrix. The (easy)

proof of the following lemma is left to the excercises.

Lemma 7.19. Suppose A = Aσ,τ = (an,k).

(i) Ã = PA is the Catalan matrix corresponding to the sequences
σ̃ ≡ σ + 1 = (s0 + 1, s1 + 1, s2 + 1, . . .), τ̃ = τ .

(ii) A = (an,k) with an,k = (−1)n−kan,k is the Catalan matrix with
respect to σ = −σ = (−s0,−s1,−s2, . . .), τ = τ .

We know that the 	-th power of P has as (n,k)-entry
(
n
k

)
	n−k, 	 ∈

Z (see Exercise 2.38). Thus if Ã = Ãσ+	,τ , then Ã = P	A, that is,
ãn,k = ∑

i

(
n
i

)
	n−iai,k. Setting k = 0, we thus obtain the following

result.

Proposition 7.20. Let A = Aσ,τ with Catalan numbers Bn.

(i) If Ã = Ãσ+	,τ with Catalan numbers B̃n, then

B̃n =
n∑
k=0

(
n
k

)
	n−kBk .
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(ii) If A = A−σ,τ with Catalan numbers Bn, then

Bn = (−1)nBn .

Examples. Looking at our table above, we can deduce a plethora
of binomial formulas.

1. σ ≡ 0, τ ≡ 1, 	 = 1 and 2 give

Mn =
n∑
k=0

(
n
2k

)
Ck, Cn+1 =

∑
k≥0

(
n
2k

)
2n−2k Ck =

n∑
k=0

(
n
k

)
Mk .

2. The choice σ ≡ −1, τ ≡ 1, and 	 = 2 and 3 yields

Mn =
n∑
k=0

(−1)k
(
n
k

)
2n−kMk, Cn+1 =

n∑
k=0

(−1)k
(
n
k

)
3n−kMk ,

and σ ≡ −2, τ ≡ 1, 	 = 4 gives

Cn+1 =
n∑
k=0

(−1)k
(
n
k

)
4n−kCk+1 .

3. σ = (−1,0), τ ≡ 1, 	 = 2 yields

Cn =
n∑
k=0

(−1)k
(
n
k

)
2n−k

(
k

�k/2	

)
,

and σ = (−1,−2,−2, . . .), τ ≡ 1, 	 = 4,(
2n+ 1
n

)
=

n∑
k=0

(−1)k
(
n
k

)
4n−kCk .

Exponential Generating Functions.
We turn to the second method, interpreting the system (14) of the
last section in combinatorial terms. We are given the sequences σ =
(sk = a+ks), τ = (tk = k(b+(k−1)u)

)
in the exponential calculus,

and want to solve the recurrences⎧⎨⎩Fn+1 = sFn +u∑n−1
k=1

(
n
k

)
FkFn−k (n ≥ 1), F0 = 0, F1 = 1 ,

Bn+1 = aBn + b∑n−1
k=0

(
n
k

)
BkFn−k (n ≥ 0), B0 = 1 .

(6)
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Here is the idea: We choose a combinatorial structure whose ele-
ments depend on a parameter n, choose a proper weighting for the
elements, and show that (6) is satisfied. Specialization of the pa-
rameters involved will then lead to various counting coefficients as
Catalan numbers.

Case A. u = 0. Here we have σ = (sk = a + ks), τ = (tk = bk),
and the first equation clearly yields Fn = sn−1 (n ≥ 1). Our com-
binatorial structure is the set Π(n) of set-partitions of {1,2, . . . , n}.
For P ∈ Π(n) we define the weight

W(P) = an1bn2sn−n1−2n2 , (7)

where n1 is the number of singleton blocks and n2 the number of
blocks of P with size greater than or equal to 2. Thus b(P) = n1+n2,
b(P) = # blocks of P .

Proposition 7.21. We have

Bn =
∑

P∈Π(n)
W(P) . (8)

Proof. We have to check the recurrence

∑
P∈Π(n+1)

W(P) = a
∑

P∈Π(n)
W(P)+b

n−1∑
k=0

(
n
k

)
sn−k−1

∑
P∈Π(k)

W(P) . (9)

Let us classify Π(n + 1) according to the element n + 1. If {n + 1}
is a singleton block, then it may be combined with any P ∈ Π(n),
resulting in the first summand a ·∑P∈Π(n) W(P). Suppose n + 1 is
contained in a block of size n+ 1− k ≥ 2; hence 0 ≤ k ≤ n− 1. The
remaining k elements (outside the block of n+1) may be chosen in(
n
k

)
ways. If P ′ ∈ Π(k) is the corresponding partition with W(P ′) =

ak1bk2sk−k1−2k2 , then

W(P) = ak1bk2+1sn+1−k1−2(k2+1) ,

and thus
W(P) = bsn−k−1W(P ′) .

Summing this expression over all
(
n
k

)
partitions P ′ ∈ Π(k), the sec-

ond summand results, and the proposition follows. �
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Examples.
1. a = b, s = 1. In this caseW(P) = ab(P), implying Bn =∑nk=0 Sn,kak

(Stirling polynomial), which we have already seen in Section 7.3.

2. a = b = 1, s = 0. The definition ofW(P) in (7) shows that W(P) =
1 for n = n1+2n2, and = 0 otherwise. Hence we count all partitions
whose blocks have size 1 or 2, that is, all involutions, giving Bn = in.
Similarly, for a = 0, only fixed-point-free involutions are counted,
resulting in B2n = (2n− 1)(2n− 3) · · ·3 · 1, B2n+1 = 0.

Case B. u ≠ 0. Our combinatorial object is the set of permutations
of {1,2, . . . , n}. Consider a permutation π = π1π2 . . . πn in word
form, and set π0 = πn+1 = n+ 1. The weight w(π) is defined as

w(π) = s	um , (10)

where 	 = #{i : πi−1 < πi < πi+1} is the number of double rises,
andm = #{i : πi−1 < πi > πi+1} is the number of local maxima. Let
S(n) be the subset of S(n) that have no double falls πi−1 > πi >
πi+1 (including π0 > π1 > π2).

Claim. Fn =∑π∈S(n) w(π). (11)

Consider π ∈ S(n + 1). Then if πn+1 = n + 1, the contribution is
sFn (recall that πn+2 = n+ 2). On the other hand, if πn+1 ≠ n + 1,
then we get u

∑n−1
k=1

(
n
k

)
FkFn−k as seen from the picture (you should

fill in the details!):

︸ ︷︷ ︸
k

︸ ︷︷ ︸
n− k

n+ 1

Hence we obtain precisely the first recurrence in (6), and Fn =∑
π∈S(n) w(π) follows.

To compute Bn we use the following refined weight for π ∈ S(n),

W(π) = aibjshuk , (12)

with π0 = 0, πn+1 = n+1. The exponents i, j,h, k count the follow-
ing instances:
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i

πm

j πm h

πm

k πm

π	 < πm(∀	 < m)
π	 < πm(∀	 < m)

∃	 < m : π	 > πm
∃	 < m : π	 > πm

Proposition 7.22. We have

Bn =
∑

π∈S(n)
W(π) . (13)

The proof of recurrence (6) for
∑
π∈S(n) W(π) is analogous, by con-

sidering separately the cases πn+1 = n + 1 and πn+1 ≠ n + 1, and
is left to the exercises.

Specialization leads again to interesting coefficients appearing as
Catalan numbers.

Examples.
1. a = s = 0, b = u = 1. Looking at the definition (12) of W(π),
this gives all permutations in S(n) without double rises, that is, all
alternating permutations, starting with a descent (because of π0 =
0) and ending with a descent (πn+1 = n+ 1)

hence B2n+1 = 0. The associated sequences are σ ≡ 0, τ = (tk =
k2), and the Catalan numbers Bn = (1,0,1,0,5,0,61,0, . . .) are
called the secant numbers Bn = secn for the following reason.

Look at the differential equation in (13) of the last section:

F ′ = 1 + F2, B′ = BF .

One easily computes F(z) = tan z, B(z)
′

B(z) = tan z, and hence B(z) =
sec z = 1

cosz . We thus get the famous result that in the expansion

1
cosz

=
∑
n≥0

secn
zn

n!
,

the coefficients secn count precisely the alternating permutations
of even length starting with a descent. For n = 4 we have sec4 = 5
with the permutations
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2143, 3142, 3241, 4132, 4231 .

2. For s = 2, u = 1, the differential equation for F(z) is F ′ =
1+2F+F2. We have solved this equation already in the last section,
F(z) = z

1−z = ∑
n≥0 zn+1 = ∑

n≥1n!z
n

n! ; hence Fn = n! for n ≥ 1.
Recurrence (6) therefore reads

Bn+1 = aBn + b
n−1∑
k=0

(
n
k

)
Bk(n− k)! .

Now define the new weight W(π) for π ∈ S(n) by

W(π) = a	bm ,

where 	 = # fixed points, m = # cycles of length greater than or
equal to 2. Then it is an easy matter to show that (see Exercise 7.58)

Bn =
∑

π∈S(n)
W(π) . (14)

From this we deduce the following examples:

s = 2, u = 1:

a = b = 1 σ = (2k+ 1) Bn = n! all permutations,
τ = (k2)

a = 0, b = 1 σ = (2k) Bn = Dn derangements,
τ = (k2)

a = b σ = (a+ 2k) Bn =∑ sn,kak Stirling polynomial.
τ = (k(a+ k− 1))

3. Suppose a = s, b = 2u. The differential equations are

F ′ = 1 + sF +uF2 ,
B′ = sB + 2uBF .

Differentiating the first equation, we get F ′′ = sF ′ + 2uFF ′, from
which B = F ′ results because of F1 = B0 = 1, and this means that
Bn = Fn+1. In particular, for a = s = 0, u = 1, we get F ′ = 1 + F2,
F(z) = tanz, and thus B(z) = (tanz)′ = 1

cos2 z . Looking at (12), we
find that Bn = Fn+1 counts all alternating permutations in S(n+ 1)
starting with a rise (π0 = n + 1) and ending with a fall (πn+2 =
n+ 2):
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The numbers Fn appearing in the expansion of tanz are called
the tangent numbers tann, with small values (0,1,0,2,0,16,0,272,
0, . . .), and we have

B(z) = 1
cos2 z

=
∑
n≥0

tann+1
zn

n!
.

For n = 2 we obtain the two permutations 132,231, and for n = 4
the 16 alternating permutations

13254
23154
34152
45132

14253
24153
34251
45231 .

14352
24351
35142

15243
25143
35241

15341
25341

Exercises

7.52 Verify formula (3) for B(z).

7.53 Compute the ordinary generating function B(z) corresponding to
a = s − 1, b = u. Specialize to the Schröder and Riordan numbers.

� 7.54 Prove the recurrence for the Schröder numbers in the text, and the
identity Schn = ∑

k≥0

(
2n−k
k

)
Cn−k, Ck = Catalan. Show Schn ≡ 2 (mod 4)

for n ≥ 1.

7.55 Prove Lemma 7.19.

7.56 Establish for the central trinomial numbers the formula Trn =∑n
k=0

(
2k
k

)(
n
2k

)
.

7.57 Show the equality Bn =∑π∈S(n) W(π) in (13).

� 7.58 Check the equality Bn = ∑π∈S(n) W(π) in (14).

7.59 Suppose B(z) = ∑n≥0 Bnzn for the sequences σ = (0, s), τ ≡ 1, and
B̃(z) = ∑n≥0 B̃nzn for σ = (s, s), τ ≡ 1. Prove that B̃n = Bn + sBn+1, and
deduce Mn = Rn + Rn+1, Cn = Fin−1 + 2Fin (n ≥ 1).

� 7.60 Consider the ballot numbers bn,k of Exercises 7.14 ff. We have
proved Bk(z) = zkC(z)k+1. Use this and the previous exercise to show
that Fin+1 =∑k odd bn,k.

* * *
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7.61 Let τ ≡ 1, and consider the sequences σ = (s, s), σ = (s + 1, s),
σ = (s − 1, s). Prove the recurrences

B(s,s)n+1 = sB(s,s)n +
n−1∑
k=0

B(s,s)k B(s,s)n−1−k ,

B(s+1,s)
n+1 = (s + 2)n+1 −

n∑
k=0

B(s+1,s)
k B(s+1,s)

n−k ,

B(s−1,s)
n+1 = (s − 2)n+1 +

n∑
k=0

B(s−1,s)
k B(s−1,s)

n−k .

Apply these recurrences to known sequences.

� 7.62 Let B(s,s)(z), B(s+1,s)(z), and B(s−1,s)(z) be the series as in the previ-
ous exercise, and show that

B(s+1,s)(z) = 1
1 − (s + 2)z

(
1 − zB(s,s)(z)) ,

B(s−1,s)(z) = 1
1 − (s − 2)z

(
1 + zB(s,s)(z)) .

Verify the examples:
(

n
�n/2	

)
= 2n − ∑�(n−1)/2	

k=0 2n−1−2kCk, Rn = Mn−1 −
Mn−2 ± · · · + (−1)nM1, Rn = Riordan, Mn = Motzkin .

7.63 Use the previous exercise to deduce an identity relating the Catalan

and Motzkin numbers:
∑n
k=1

(
(−1)k

(
n
k

)
Ck +Mk−1

)
3n−k = 0 (n ≥ 1) .

7.64 Consider the case σ = (a, s), τ = (b,u) with a = s, b = 2u,
treated in the text, with the trinomials,

(
2n
n

)
, and the Delannoy num-

bers as special instances. Prove the general recurrence (n + 1)Bn+1 =
s(2n + 1)Bn + n(2b − s2)Bn−1 for the corresponding Catalan numbers,

and deduce the formula Bn = 1
2n
∑
k≥0

(
2k
k

)(
k
n−k

)
s2k−n(2b − s2)n−k .

Hint: Proceed as for the Delannoy numbers in Section 3.2.

� 7.65 Consider σ ≡ s, τ ≡ u, and prove the following recurrence for the
Catalan numbers: (n+2)Bn = s(2n+1)Bn−1+(4u−s2)(n−1)Bn−2 (n ≥ 1).
Deduce that the sequence (Mn) of Motzkin numbers is logarithmically
convex, that is, M2

n ≤ Mn−1Mn+1 (n ≥ 1). What is limn→∞
Mn
Mn−1

? Hint:

Consider
(
zB(z)

)′
.

7.66 Let σ = (α,α + β), τ = (αβ,αβ) for α,β ≠ 0. Using Exercises
7.28 and 7.4 show that Bn+1 = αBn + β∑n−1

k=0 BkBn−k, and derive Bn =∑n
k=0N(n,k)αn−kβk, N(n,k) = Narayana number.

7.67 Let σ = (sk), τ ≡ 1, and A = A(σ) the Catalan matrix. The sum
matrix S(σ) = (tn,k) is defined by tn,k = ∑

i≥k an,i, thus S(σ) = A(σ)J
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where J is the lower triangular matrix of all 1’s. Prove that S(σ+1) = PS(σ),
where P is the Pascal matrix.

7.68 Continuing the exercise, consider the case σ = (a, s). Prove for tn,k
the recurrence

tn,k = tn−1,k−1 + stn−1,k + tn−1,k+1 (n ≥ 1) ,
tn,0 = (a+ 1)tn−1,0 + (s − a+ 1)tn−1,1 .

Derive from this the following formulas in the ordinary calculus:

S(s,s)(z) = B(s+1,s)(z), S(s+1,s)(z) = 1
1 − (s + 2)z

,

S(s−1,s)(z) = 1√
1 − 2sz + (s2 − 4)z2

.

Use these formulas to prove S(−1,0)
n =

(
n
n/2

)
[n even], S(0,1)n = ∑k

(
n
k

)(
n−k
k

)
= Trn, S(1,2)n =

(
2n
n

)
, S(2,3)n =∑k

(
n
k

)(
2k
k

)
.

7.69 Continuing the exercise prove S(−s−1,−s)(z) = S(s−1,s)(−z), and de-

duce S(s−1,s)
n = ∑

k(−1)k
(
n
k

)
(2s)n−kS(s−1,s)

k . Use this to establish the

identities
(

2n
n

)
= ∑

k(−1)k
(
n
k

)
4n−k

(
2k
k

)
,
∑n
k=0

(
n
k

)(
2k
k

)
= ∑

k(−1)k
(
n
k

)
6n−k∑

i

(
k
i

)(
2i
i

)
, and also Dn,n = ∑

k(−1)k
(
n
k

)
6n−kDk,k, Dn,n = central Delan-

noy.

� 7.70 A lattice walk in (d+1)-dimensional space Zd+1 is a path that starts

at the origin (0, . . . ,0), uses steps (0, . . . ,±
↓i
1 ,0, . . . ,0), i = 1, . . . , d + 1,

and satisfies xd+1 ≥ 0. Prove that the number of these walks of length

n is Sn = ∑n
k=0

(
n
k

)
(2d− 2)n−k

(
2k+1
k

)
= ∑n

k=0

(
n
k

)
(2d)n−k

(
k

�k/2	
)
. Hint: Let

an,k be the number of walks of length n that end in a point with xd+1 = k.
Prove a recurrence for an,k and note that Sn = ∑

k an,k. What do you get
for d = 2?

7.71 Give the following interpretation of the Catalan numbers Bn corre-
sponding to σ = (a, s), τ = (b,u). A Motzkin tree is a rooted plane tree,
in which every vertex has out-degree less than or equal to 2. Thus for
n = 4 we have the following four trees:

Let Tn be the set of Motzkin trees with n vertices. For T ∈ Tn let W(T) =
aibjshuk, where i = #{vertices of out-degree 1 on the leftmost branch},
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j = #{vertices of out-degree 2 on the leftmost branch}, h = #{vertices of
out-degree 1 not on the leftmost branch}, k = #{vertices of out-degree 2
not on the leftmost branch}. Prove Bn = ∑

T∈Tn W(T). Consider σ ≡ 0,
τ ≡ 1.

7.72 Consider the exponential case with equations (13), (14) of the last
section. Suppose s = 2m, u = m2. Prove that Fn = n!mn−1, Bn+1 =
(mn+a)Bn+(b−am)nBn−1. Consider the casem = 1, and in particular
a = b = 2, reestablishing results from the text.

� 7.73 Consider again exponential series with a = b = u, s = u + 1. Show
that Bn = uFn (n ≥ 1), and deduce Bn = ∑n

k=0An,kuk, where An,k are
the Eulerian numbers (see Exercise 1.48). Hint: Look at the differential
equations and use a proper weighting.
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Highlight: Chord Diagrams

An old problem asks for the number of ways in which 2n points on
a circle can be joined in pairs such that the corresponding chords do
not intersect. The easy answer is the (ordinary) Catalan number Cn;
we will see that in a moment. But consider now the following more
general and much more difficult question: How many of these chord
diagrams on 2n points have exactly k pairs of crossing chords?
Let us denote this number by tn,k, and by Tn(q) =

∑
k≥0 tn,kqk the

generating polynomial.

This problem has been studied under various names, e.g., “the fold-
ing stamp problem.” The solution we present goes essentially back
to Jacques Touchard and John Riordan and combines in a clever
way several ideas from this and earlier chapters.

The result cited above says that Tn(0) = tn,0 = Cn, and it is clear

that there is a unique diagram with the maximum number
(
n
2

)
of

crossing pairs; thus tn,(n2) = 1.

Furthermore, the total number Tn(1) of chord diagrams on 2n
points is clearly (2n − 1)(2n − 3) · · ·3 · 1 . As small examples we
have

T0(q) = T1(q) = 1, T2(q) = 2 + q, T3(q) = 5 + 6q + 3q2 + q3 .

The figure shows the 15 chord diagrams for n = 3:

t3,0 = 5

t3,1 = 6

t3,2 = 3

t3,3 = 1
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Linearizing the Problem.
For our purposes it is convenient to consider the equivalent prob-
lem, when the points are arranged on a line, and the chords corre-
spond to arcs above the line. The figure shows this linearization:

1 2 3 4 5 6 7 8 9 10

1
2

3

4

5
6

7

8

9

10

From now on we will consider this latter version. A cut in the dia-
gram is a vertical line between points 2k and 2k+1 that meets none
of the arcs. In other words, the first k arcs occupy the points 1 to
2k, and the remaining n−k arcs the right-hand part, as in the figure
for n = 10, k = 3:

Let Sn(q) be the generating polynomial of diagrams without cuts.
Thus

S0(q) = S1(q) = 1, S2(q) = 1 + q, S3(q) = 2 + 4q + 3q2 + q3 .

As an example for n = 2 we have two diagrams without cuts, one
with 0 crossings, and one with 1 crossing:

while the third diagram

has a cut.

Classifying the diagrams according to the first cut gives

Tn(q) = S1(q)Tn−1(q)+S2(q)Tn−2(q)+· · ·+Sn(q)T0(q)+[n = 0] ,



7.4 Combinatorial Interpretation of Catalan Numbers 339

and thus

2Tn(q) =
n∑
i=0

Si(q)Tn−i(q)+ [n = 0] .

For the generating functions T(q, z) = ∑
n≥0 Tn(q)zn, S(q, z) =∑

n≥0 Sn(q)zn this means

2T(q, z) = T(q, z)S(q, z)+ 1 ,

or

T(q, z) = 1
2 − S(q, z) . (1)

Equation (1) reduces the problem to diagrams without cuts, and
these are much easier to handle.

A Coding for Diagrams.
Let D be an arbitrary diagram, and suppose that the k-th arc starts
at position pk; thus k ≤ pk ≤ 2k−1. Set wk = 2k−pk; then w1 = 1,
1 ≤ wk ≤ k, and pk = 2k − wk < pk+1 = 2k + 2 − wk+1 implies
wk+1 ≤ wk + 1 (1 ≤ k ≤ n− 1).

Consider k ≥ 2. If D has a cut between 2k − 2 and 2k − 1, then
pk = 2k− 1 and thus wk = 1. Conversely, if wk = 1 for k ≥ 2, then
pk = 2k − 1, which implies that there is a cut between 2k − 2 and
2k − 1. In sum, diagrams without cuts correspond to code words
w1w2 . . .wn with

w1 = 1, 2 ≤ wk+1 ≤ wk + 1 (k ≥ 1) . (2)

Call words observing (2) admissible codewords, and denote by Wn
the set of admissible code words. It is easily verified that |Wn| =
Cn−1, Catalan number.

Example. The set W4 consists of the words

1222, 1223, 1232, 1233, 1234 .

The coding w1w2 . . .wn is the crucial step toward a description of
the polynomial Sn(q). Consider the q-integer [n]q = 1 + q + · · · +
qn−1. For ease of notation we set ai = 1 + q + · · · + qi−1 (i ≥ 1).
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Claim 1. Sn(q) =
∑
w∈Wn aw1aw2 · · ·awn .

For the proof consider all diagrams without cuts belonging to the
wordw1w2 . . .wn. We want to show that their contribution to Sn(q)
is precisely aw1aw2 · · ·awn . Look at the n-th arc starting at pn =
2n−wn:

pn ︸ ︷︷ ︸
wn

2n

The n-th arc crosses 0,1,2, . . ., or wn − 1 other arcs, yielding the
contribution 1+q+q2+· · ·+qwn−1 = awn . The result follows then
by induction.

The coding gives us even more. Let

S(2)n (q) =
∑

w∈Wn

aw1+1aw2+1 · · ·awn+1 ,

that is, all indices are increased by 1. As examples, we have S1(q) =
a1, S2(q) = a1a2, and thus S(2)1 (q) = a2, S(2)2 (q) = a2a3.

Claim 2. Sn(q) = Sn−1(q)S
(2)
1 (q) + Sn−2(q)S

(2)
2 (q) + · · · + S1(q)

S(2)n−1(q) for n ≥ 2.

We classify the words w ∈ Wn according to the last occurrence of
2. Suppose 2 appears last in position k+1 (1 ≤ k ≤ n−1). Then we
have the following situation:

k︷ ︸︸ ︷
1 . . . . . .

Sk(q)

n−k︷ ︸︸ ︷
2 . . . . . .

S(2)n−k(q)

The first part accounts for Sk(q), and the second part for S(2)n−k(q),
since condition (2) on the admissible words remains the same.

By the same argument we have the following general result. For
k ≥ 1, let

S(k)n (q) =
∑

w∈Wn

aw1+k−1aw2+k−1 · · ·awn+k−1 ,
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where S(1)n (q) = Sn(q). Then⎧⎨⎩S(k)n (q) =∑n−1
i=1 S

(k)
i (q)S(k+1)

n−i (q)(n ≥ 2) ,
S(k)1 (q) = ak .

(3)

Continued Fractions.
With (3) in hand we are all set for the continued fractions approach
of Section 7.3. For k ≥ 1 set

Fk(q, z) =
∑
n≥0

S(k)n+1(q)z
n ,

so in particular,

F1(q, z) =
∑
n≥0

Sn+1(q)zn = S(q, z)− 1
z

.

This implies 1 − zF1(q, z) = 2 − S(q, z), and we obtain by (1),

T(q, z) = 1
1 − zF1(q, z)

. (4)

Furthermore, by (3),

Fk(q, z) = zFk(q, z)Fk+1(q, z)+ ak . (5)

Finally, with C0(q, z) = T(q, z), Ck(q, z) = Fk(q,z)
ak

(k≥1), (4) and (5)
translate into

Ck(q, z) =
1

1 − ak+1zCk+1(q, z)
(k ≥ 0) . (6)

Now if we make the substitution z � z2, then Lemma 7.9 yields the
beautiful result that Tn(q) is the Catalan number B2n correspond-
ing to the sequences σ ≡ 0, τ = (tn = 1 + q + · · · + qn−1).

Example. If we set q = 0, then Tn(0) = tn,0 is the Catalan number
B2n belonging to σ ≡ 0, τ ≡ 1. But this was our starting example
B2n = Cn, which proves tn,0 = Cn, as promised. For q = 1, the
sequences σ ≡ 0, τ = (tn = n) result, with B2n = Tn(1) = (2n −
1)(2n− 3) · · ·3 · 1 (see the examples in Section 7.4).

The Final Step.
Now that we know that the polynomials Tn(q) are Catalan numbers,
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we may use recurrence (4) in Section 7.3 to compute them. This is
no easy task, but a simple trick will help.

Instead of σ ≡ 0, τ = (tn = an), consider the sequences σ̂ ≡ 0,
τ̂ = (t̂n = (1−q)an = 1−qn). Exercise 7.6 shows that the associated
Catalan numbers are then B̂2n = Tn(q)(1 − q)n, B̂2n+1 = 0. The
recurrence (4) in Section 7.3 now reads{

Ak = zAk−1 + z(1 − qk+1)Ak+1 (k ≥ 1) ,
B̂ = A0 = 1 + z(1 − q)A1 ,

(7)

where Ak = Ak(q, z) is as usual the generating function of the k-th
column. Setting Uk(q, z) = Ak(q,z)

zk , (7) transforms into{
Uk = Uk−1 + (1 − qk+1)z2Uk+1 (k ≥ 1) ,
B̂ = U0 = 1 + (1 − q)z2U1 .

(8)

Every function Uk is even, since σ̂ ≡ 0. Setting Vk(q, z2) = Uk(q, z),
the system (8) becomes{

Vk = Vk−1 + (1 − qk+1)zVk+1 ,
V0 = 1 + (1 − q)zV1 ,

(9)

and this is the system we want to solve, where [zn]V0(q, z) =
Tn(q)(1 − q)n.

Set Vk(q, z) =
∑
n≥0 gk,nzn, then (9) reads{

gk,n = gk−1,n + (1 − qk+1)gk+1,n−1,
g0,n = [n = 0]+ (1 − q)g1,n−1 .

(10)

We are going to express gk,n in terms of the ballot numbers bn,i
considered in Exercises 7.14 ff, and the numbers φn,i = q(

i+1
2 )[ni ]q.

First we recall
bn,i = bn−1,i−1 + bn,i+1 , (11)

and Exercise 1.75 with the recurrence

φk+i,i = φk+i−1,i−1 +φk+i−1,i + (qk+1 − 1)φk+i,i−1 . (12)

Using (11) and (12) it is an easy matter to verify the formula

gk,n =
n∑
i=0

(−1)ibk+n+i,k+2iφk+i,i .
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For k = 0 this gives

Tn(q)(1 − q)n =
n∑
i=0

(−1)ibn+i,2iφi,i .

Now, we know from Exercise 7.15 that

bn+i,2i = 2i+ 1
n+ i+ 1

(
2n
n− i

)
=
(

2n
n− i

)
−
(

2n
n− i− 1

)
. (13)

Since φi,i = q(
i+1

2 ), we have thus found a compact expression for
Tn(q):

Tn(q)(1 − q)n =
n∑
i=0

(−1)i
[(

2n
n− i

)
−
(

2n
n− i− 1

)]
q(

i+1
2 ) . (14)

Example. Formula (14) shows the surprising fact that
n∑
k=0

(−1)k
(
n
k

)
tn,m−k = 0 for m ≠

(
i+ 1

2

)
,

while for m =
(
i+1

2

)
,

n∑
k=0

(−1)k
(
n
k

)
tn,(i+1

2 )−k
= (−1)i

[(
2n
n− i

)
−
(

2n
n− i− 1

)]
(15)

results. For m = 1 this gives

tn,1 −ntn,0 =
(

2n
n− 2

)
−
(

2n
n− 1

)
,

and hence with tn,0 = Cn = 1
n+1

(
2n
n

)
,

tn,1 =
(

2n
n− 2

)
.

Similarly, (15) yields for m = 2 ,

tn,2 = n+ 3
2

(
2n
n− 3

)
.

Finally, moving (1−q)n in (14) to the right-hand side, a summation
formula for tn,k results,

tn,k =
n∑
i=0

(−1)i
2i+ 1
n+ i+ 1

(
2n
n− i

)(
n+ k−

(
i+1

2

)
− 1

n− 1

)
,

and this is the most explicit expression one could hope for.
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Notes and References

The subject of orthogonal polynomials is a classical topic in anal-
ysis that attracted some of the greatest names from Legendre to
Chebyshev and Jacobi. The standard references are the books by
Szegő and Chihara. Our presentation of the combinatorial part of
the theory follows the seminal papers by Viennot, emphasizing lat-
tice paths, and by Flajolet, who takes a continued fractions point
of view; see also the survey by Aigner. The important Theorem 7.4
is contained in the paper of Favard. A rigorous treatment from an
operator standpoint was advanced in the 1970s by Rota under the
name “umbral calculus.” The book of Roman gives a nice overview
for this approach. Yet another equivalent setup, called the Riordan
group, was suggested by Shapiro et al.
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8 Symmetric Functions

The theory of symmetric functions provides an elegant algebraic
framework for many enumeration problems, in particular, as we
shall see, for plane partitions. As with generating functions they
encode a great deal of information, and algebraic manipulations of-
ten provide stupendously simple proofs of seemingly difficult prob-
lems.

8.1 Symmetric Polynomials and Functions

Let us start with symmetric polynomials f in n variables.

Definition. A polynomial f(x1, . . . , xn) over C (or any field of char-
acteristic 0) is called symmetric if

f(xσ(1), . . . , xσ(n)) = f(x1, . . . , xn)

holds for all permutations σ ∈ S(n). A polynomial f(x1, . . . , xn)
is said to be alternating if f(xσ(1), . . . , xσ(n)) = −f(x1, . . . , xn) for
all transpositions σ ∈ S(n). The polynomial f has degree d if d
is the highest degree of the monomials cxi11 · · ·xinn , d = ∑n

j=1 ij ,
appearing in f . We call f homogeneous of degree d if all monomials
have degree d.

Since any σ ∈ S(n) is a product of transpositions, an equivalent for-
mulation for alternating is that f(xσ(1), . . . , xσ(n)) = −f(x1, . . . , xn)
for all odd permutations.

Example. The classical example is the elementary symmetric poly-
nomials, which we have already encountered in Chapter 6. Let
f(x) = ∑n

k=0 akxn−k be a polynomial with roots x1, . . . , xn, and
leading coefficient 1. We have f(x) = (x−x1)(x−x2) · · · (x−xn),
and thus for the coefficients
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a1 = −(x1 + · · · + xn) ,
a2 = x1x2 + x1x3 + · · · + xn−1xn ,

· · ·
ak = (−1)k

∑
i1<···<ik

xi1 · · ·xik ,

· · ·
an = (−1)nx1x2 · · ·xn .

Definition. Let X = {x1, x2, . . . , xn}. The k-th elementary symmet-
ric polynomial over X is

ek(x1, x2, . . . , xn) =
∑

i1<···<ik
xi1xi2 · · ·xik (k ≥ 1) ,

(1)
e0(x1, x2, . . . , xn) = 1 .

The polynomial ek is clearly a homogeneous symmetric polynomial
of degree k. Note that ek(x1, . . . , xn) = 0 for k > n.

The best-known alternating function is the determinant of a ma-
trix, for example, over the columns. An example is the product∏

1≤i<j≤n(xi − xj), which appeared as the determinant of the Van-

dermonde matrix (xn−ij )ni,j=1.

Proposition 8.1. Let f(x1, . . . , xn) be an alternating polynomial of
degree d. Then

f(x1, . . . , xn)∏
1≤i<j≤n

(xi − xj)
(2)

is a symmetric polynomial of degree d−
(
n
2

)
.

Proof. Since both numerator and denominator are alternating, the
quotient is symmetric, and the degree is clearly d −

(
n
2

)
. So all we

have to show is that the quotient in (2) is a polynomial.

Consider f(x1, . . . , xn) as a polynomial in x1 with polynomial coef-
ficients in x2, . . . , xn, f(x1, . . . , xn) =

∑
k≥0 fk(x2, . . . , xn)xk1 . Since

exchange of the first two variables switches the sign, we obtain

f(x2, x2, x3, . . . , xn) = −f(x2, x2, x3, . . . , xn) ,
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that is, f(x2, x2, . . . , xn) = 0. This means that x2 is a root of the
polynomial f in the variable x1. Similarly, x3, . . . , xn are roots, and
we obtain

f(x1, . . . , xn) = g(x1, . . . , xn)
n∏
j=2

(x1 − xj) , (3)

where g(x1, . . . , xn) is a polynomial. For n = 2, this gives

g(x1, x2) = f(x1, x2)
x1 − x2

,

and the quotient is thus a polynomial. Now we use induction on
n. Regard the polynomial g(x1, . . . , xn) in (3) as a polynomial in
x2, . . . , xn with polynomial coefficients in x1. The equality in (3) im-
plies that g is alternating in the variables x2, . . . , xn, and so by in-
duction

g(x1, . . . , xn)∏
2≤i<j≤n

(xi − xj)
= f(x1, . . . , xn)∏

1≤i<j≤n
(xi − xj)

is a symmetric polynomial. �

Example. We can now quickly compute the determinant of the
Vandermonde matrix

D = det

⎛⎜⎜⎜⎜⎝
xn−1

1 . . . xn−1
n

xn−2
1 . . . xn−2

n
. . .

1 . . . 1

⎞⎟⎟⎟⎟⎠ .

Since D is an alternating polynomial in x1, . . . , xn of degree 0+ 1 +
· · · + (n− 1) =

(
n
2

)
, we have that

D∏
1≤i<j≤n

(xi − xj)

is a symmetric polynomial of degree 0, that is, a constant c. Com-
parison of the coefficients for xn−1

1 xn−2
2 · · ·x0

n yields c = 1, and
we conclude that D =∏1≤i<j≤n(xi − xj) .

When we pass from a finite set of variables to a possibly countable
set we arrive at the general definition of a symmetric function. Let
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X = {x1, x2, . . .} be a finite or countable set. A monomial over X
is any expression cαxα = cαx

α1
1 xα2

2 · · · , where cα is a constant,
αi ≥ 0 for all i, and all but finitely many αi are 0. The degree of the
monomial cαxα is

∑
i≥1αi .

Definition. Let X = {x1, x2, . . .} be a finite or countable set of vari-
ables. The function f(x1, x2, . . .) =

∑
α cαxα is a symmetric function

over x if

a. f(xσ(1), xσ(2), . . .) = f(x1, x2, . . .) over all permutations of the
index set,

b. the monomials appearing in f (that is, cα ≠ 0) have bounded
degree.

The largest degree that appears is called the degree of f .

As with generating functions, we regard symmetric functions in a
formal way, meaning that f = g if and only if corresponding coef-
ficients for α agree. The following is clear from the definition: Con-
sider α = (α1, α2, . . .). Then cα = cβ where β runs through all dis-
tinct permutations of α. For example, α = (1,3,1,0,0,0, . . .) gives
rise to (3,1,0,1,0, . . .), (1,1,0,0,3, . . .), etc., and the corresponding
coefficients must be the same.

As before, we call f homogeneous of degree d, if all nonzero mono-
mials of f have degree d. Let us denote by Λ(X) the set of symmet-
ric functions over X, and by Λm(X) the set of homogeneous sym-
metric functions of degree m. Thus Λ0(X) are just the constants.
Clearly, Λ(X) and Λm(X) are vector spaces, and the definition im-
plies that any f ∈ Λ(X) of degree m can be uniquely written as

f = f0 + f1 + · · · + fm, fi ∈ Λi(X) .

In other words, Λ(X) is the direct sum of the vector spaces Λm(X).

Furthermore, it is clear that for f ∈ Λm(X), g ∈ Λn(X) the product
fg is in Λm+n(X). Hence we are mostly interested in homogeneous
symmetric functions, and to those we turn in the next section.
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Exercises

8.1 Let x1, x2, . . . , xn be variables. Show that

det
(
x
n−j
i

)n
i,j=1

=
∏

1≤i<j≤n
(xi − xj) ,

that is, equal to the Vandermonde determinant. What about det
(
xn−ji

)
?

8.2 Compute the determinant of the following matrices:
a. (xn−ij −x2n−i

j )ni,j=1, b. (xn−ij −x2n+1−i
j )ni,j=1, c. (xn−ij +x2n−1−i

j )ni,j=1 .

� 8.3 Find the determinant of the matrix
((
xi+j
j

))n
i,j=1

,
(
xi+j
j

)
= binomial

coefficient. What do you get for xi = i (i = 1, . . . , n) ?

8.4 Show that
∑
k≥0 ek(x1, . . . , xn)zk = ∏n

i=1(1 + xiz), where the ek are
the elementary symmetric polynomials.

* * *

� 8.5 Prove that

det

(
1

1 − xiyj

)n
i,j=1

=
∏

1≤i<j≤n
(xi − xj)(yi −yj)

n∏
i,j=1

1
1− xiyj

.

8.6 Prove the following extension of the Vandermonde formula due to
Krattenthaler. Let x1, . . . , xn, a2, . . . , an, b2, . . . , bn be variables. Then

det
(
(xi + an) · · · (xi + aj+1)(xi + bj) · · · (xi + b2)

)n
i,j=1

=
∏

1≤i<j≤n
(xi − xj)

∏
2≤i≤j≤n

(bi − aj) .

Hint: The determinant is alternating in the xi’s.

8.7 Represent the symmetric polynomial
∏n
i=1(1+xi+x2

i ) as a polyno-
mial in the elementary symmetric polynomials ek . Hint: Write 1+xi+x2

i =
(1 −ωxi)(1 −ω2xi), ω a third root of unity.

� 8.8 Prove

det

(
1 − qi+j−1

1 − ti+j−1

)n
i,j=1

= tn3/3−n2/2+n/6 ∏
1≤i<j≤n

(1− tj−i)2 ·
n∏

i,j=1

1 − qtj−i
1 − ti+j−1

.

Hint: Interpret the determinant as polynomial P(q) in q of degree ≤ n2,
and prove the that tk, t−k are roots of P(q) of multiplicity n − k, k =
0,1, . . . , n − 1. Hence P(q) = (1 − q)n∏n

k=1(tk − q)n−k(t−k − q)n−kP(0).
For P(0) use Exercise 8.5.
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8.2 Homogeneous Symmetric Functions

Let X = {x1, x2, . . .} be a countable set of variables. We are going
to construct three natural bases for Λm(X). A fourth basis, which
from a combinatorial point of view is the most interesting, will be
discussed in the next section. We write f(x) = f(x1, x2, . . .), and
often f and Λm when there is no danger of confusion.

Monomial Symmetric Functions.
The most obvious basis for Λm(X) is obtained by looking at the
monomials. Suppose xα = xα1

1 xα2
2 · · · appears in f(x) ∈ Λm. Then

we know that every xβ = xβ1
1 x

β2
2 · · · must also appear, where β is

a permutation of α. Normalizing the vector α = (α1, α2, . . .) in non-
increasing fashion, we obtain a number partition λ = λ1λ2 . . . λr of
m, and arrive at the following definition:

Let λ = λ1λ2 . . . λr ∈ Par(m). Then the monomial function mλ(x) is
defined by

mλ(x) =
∑
α
xα ,

where α runs through all distinct permutations of λ = (λ1, λ2, . . . ,
λr ,0,0, . . .); mλ(x) is a homogeneous symmetric function of de-
gree m.

Example. We have

m� = 1 ,
m1 = ∑

i xi ,
m11 = ∑

i<j xixj ,
m21 = ∑

i≠j x2
i xj ,

. . .
m11...1︸ ︷︷ ︸

n

= ∑
i1<···<in xi1 · · ·xin .

Every f ∈ Λm(X) is a linear combination of the mλ’s, where λ ex-
tends over all partitions of m. Since the functions mλ are clearly
linearly independent, the set {mλ(x) : λ ∈ Par(m)} is a basis for
Λm(X), and we conclude that dimΛm(X) = p(m) .

Elementary Symmetric Functions.
These we already know, extending X to a countable set:
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ek(x) =
∑

i1<···<ik
xi1 · · ·xik (k ≥ 1) ,

e0(x) = 1 .

Note that en =m11...1︸ ︷︷ ︸
n

. By expanding the right-hand side we obtain

for the generating function∑
k≥0

ek(x1, x2, . . .)zk =
∏
i≥1

(1 + xiz) . (1)

For λ = λ1λ2 . . . λr ∈ Par(m) set

eλ = eλ1eλ2 · · · eλr .

Then eλ(x) ∈ Λm(x), since the degrees add to m .

Example. We have

e211(x1, x2, . . .) = (x1x2 + x1x3 + · · · )(x1 + x2 + · · · )2 .

Since {mμ : μ ∈ Par(m)} forms a basis of Λm, the elementary sym-
metric functions eλ

(
λ ∈ Par(m)

)
are linear combinations of mono-

mial functions mμ . The following proposition demonstrates a first
combinatorial significance. We write a partition μ = μ1 . . . μr as the
vector (μ1, μ2, . . . , μr ,0,0, . . .). For a matrix A = (aij)i,j≥1 with only
finitely nonzero elements, we denote by row(A) = (r1, r2, . . .) the
row-sum vector , that is, ri =

∑
j≥1 aij , and similarly by col(A) the

column-sum vector .

Proposition 8.2. Let λ = λ1λ2 . . . λr ∈ Par(m). Then

eλ =
∑

μ∈Par(m)
Mλμmμ , (2)

whereMλμ is the number of 0,1-matrices A = (aij)i,j≥1 with row (A)
= λ, col (A) = μ .

Proof. We have

eλ = eλ1eλ2 · · · =
∑

i1<···<iλ1

xi1 · · ·xiλ1

∑
j1<···<jλ2

xj1 · · ·xjλ2
· · · .
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We may represent any product xi1 · · ·xiλ1
xj1 · · ·xjλ2

· · · that ap-
pears in the sum as a 0,1-matrix by writing 1’s in columns i1, . . . , iλ1

of row 1, in columns j1, . . . , jλ2 of row 2, and so on (filling A up with
0’s). Hence row (A) = λ. This product is a monomial xμ1

1 x
μ2
2 · · · if

xi appears μi times, that is, if col (A) = μ. The result follows. �

Example. Consider λ = 311 ∈ Par(5). The 0,1-matrices A with
row (A) = λ, col (A) = μ ∈ Par(5) are the following, where we write
down only the part that contains nonzero entries.

1 1 1
1 0 0
1 0 0

μ = 311

1 1 1 1 1 1
1 0 0 0 1 0
0 1 0 1 0 0︸ ︷︷ ︸

μ = 221

1 1 1 0 by exchange 0 1 1 1
1 0 0 0 2 · 3 = 6 1 0 0 0
0 0 0 1 possibilities 1 0 0 0︸ ︷︷ ︸

μ = 2111

1 1 1 0 0

0 0 0 1 0 by exchange 2 ·
(

5
3

)
= 20 possibilities.

0 0 0 0 1

μ = 11111

Hence e311 = μ311+2μ221+7μ2111+20μ11111 . Looking at the trans-
pose, we immediately infer the following corollary.

Corollary 8.3. We have Mλμ =Mμλ for any λ,μ ∈ Par(m).

The following basic result is sometimes called the fundamental the-
orem of symmetric functions.

Theorem 8.4. The set {eλ(x) : λ ∈ Par(m)} is a basis for Λm(X).

Proof. We have to show that any monomial function mμ is in the
span 〈eλ : λ ∈ Par(m)〉. To accomplish this we first define a total
ordering on the set Par(m). Set

λ < μ :⇐⇒ λi < μi , where i is the first index with λi ≠ μi .

With this order, called the lexicographic order , Par(m) becomes a
totally ordered set with the partition 11 . . .1 as minimal element.

Example. For m = 5 we get

11111 < 2111 < 221 < 311 < 32 < 41 < 5 .
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Claim. a. If Mλμ > 0, then μ ≤ λ∗, where λ∗ is the conjugate
partition, b. Mλλ∗ = 1 .

If Mλμ > 0, then there exists a 0,1-matrix A with row (A) = λ,
col (A) = μ. According to the definition of lexicographic order, we
obtain the maximal possible μ with Mλμ > 0 by pushing all 1’s in
each row to the left. But this gives precisely the Ferrers diagram of
λ (with the 1’s as rows). Hence μ = λ∗ is the maximal possible μ,
and in this case we clearly have Mλλ∗ = 1 .

Now we use induction on the lexicographic order. For the minimal
partition 11 . . .1︸ ︷︷ ︸

m

we know that m11...1 = ∑
xi1 · · ·xim = em; hence

m11...1 ∈ 〈eλ : λ ∈ Par(m)〉. Assume inductively mν ∈ 〈eλ : λ ∈
Par(m)〉 for ν < μ. From eμ∗ = mμ +

∑
ν<μ Mμ∗νmν follows mμ =

eμ∗ −
∑
ν<μ Mμ∗νmν ∈ 〈eλ : λ ∈ Par(m)〉, and we are through. �

Remark. Recall the example at the beginning of the chapter: The
coefficients of a polynomial are (apart from the sign) the elementary
symmetric functions in the roots. The fundamental theorem there-
fore shows that any symmetric function in the roots is a polynomial
in the coefficients.

Complete Symmetric Functions.
The natural analogue to the elementary symmetric functions ek(x)
arises when we allow repetitions of the indices. We define the com-
plete symmetric functions hk as

hk(x1, x2, . . .) =
∑

i1≤···≤ik
xi1xi2 · · ·xik (k ≥ 1) ,

h0(x1, x2, . . .) = 1 .

Note that hk(x) =
∑
μ∈Par(k)mμ(x), and hk(x) ∈ Λk(X) .

By expanding the right-hand side we get the following generating
function analogous to (1):∑

k≥0

hk(x1, x2, . . .)zk =
∏
i≥1

1
1 − xiz

. (3)

Let λ = λ1λ2 . . . λr ∈ Par(m). As for the functions eλ, we set

hλ = hλ1 · · ·hλr ∈ Λm(X) .
The analogue to Proposition 8.2 is the following result, whose proof
is left to the exercises.
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Proposition 8.5. Let λ = λ1λ2 . . . λr ∈ Par(m). Then

hλ =
∑

μ∈Par(m)
Nλμmμ , (4)

where Nλμ is the number of matrices A = (aij)i,j≥1 over N0 with
row (A) = λ, col (A) = μ. Furthermore, Nλμ = Nμλ .

Now let us show that the complete symmetric functions hλ (λ ∈
Par(m)) also form a basis for Λm(X) .

Theorem 8.6. The set {hλ(x) : λ ∈ Par(m)} is a basis for Λm(X).

Proof. Since {eλ : λ ∈ Par(m)} is a basis, it suffices to show that
any eλ is in the span 〈hμ : μ ∈ Par(m)〉. First we note from (1) and
(3) that ⎛⎝∑

k≥0

ekzk
⎞⎠ ·

⎛⎝∑
k≥0

hk(−z)k
⎞⎠ = 1 ,

or by convolution,

n∑
k=0

ek(−1)n−khn−k = 0 for n ≥ 1 . (5)

Now, e0 = h0 = 1, e1 = h1, so assume n ≥ 2. Then by (5) and
induction,

en = −
n−1∑
k=0

ek(−1)n−khn−k ∈
〈
hj1 · · ·hjt :

∑
ji = n

〉
.

We thus conclude for λ = λ1 . . . λr ∈ Par(m) that

eλ = eλ1 · · · eλr ∈
〈
hj1 · · ·hj	 :

∑
ji =m

〉
= 〈hμ : μ ∈ Par(m)〉 .

�

Example. Consider λ = 311. We have e1 = h1, e2 = e1h1 − e0h2 =
h2

1 − h2, e3 = e2h1 − e1h2 + e0h3 = (h2
1 − h2)h1 − h1h2 + h3 =

h3
1 − 2h1h2 + h3, and thus e311 = e3e2

1 = (h3
1 − 2h1h2 + h3)h2

1 =
h5

1 − 2h3
1h2 +h2

1h3 . Hence e311 = h11111 − 2h2111 +h311 .

The close relation between the functions en and hn can be captured
by the following mapping. Defineω : Λ→ Λ byω : en � hn (n ≥ 0),
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and extend it to an algebra homomorphism. Thus ω(eλ) = hλ for
any partition λ. It follows from (5) that for n ≥ 1,

0 =
n∑
k=0

hk(−1)n−kω(hn−k) =
n∑
k=0

ω(hk) · (−1)n−khn−k .

But this implies again by (5) that ω(hk) = ek for all k. Hence ω is
an involution, ω2 = id. We will make use of this fact later on.

A final remark: When X = {x1, . . . , xn} is finite, we may regard this
as the special case in which we set xi = 0 for i ≥ n + 1. So for
example, ek(x1, . . . , xn) =

∑
i1<···<ik xi1 · · ·xik becomes 0 for k >

n, as we have noted before. The structure of the various bases and
the dimension of Λm(X) are treated in the exercises. Whenever X
is finite, then we will specify the variables explicitly; otherwise, X is
assumed to be countable.

Exercises

� 8.9 Find an expression for the five monomial functionsmλ
(
λ ∈ Par(4)

)
in terms of the eμ

(
μ ∈ Par(4)

)
.

8.10 Prove Proposition 8.5.

8.11 Determine Nλμ for λ = λ1 . . . λr ∈ Par(m), μ = 11 . . .1︸ ︷︷ ︸
m

.

8.12 Show that e11...1︸ ︷︷ ︸
m

= h11...1︸ ︷︷ ︸
m

= ∑μ∈Par(m)

(
m

μ1...μm

)
mμ .

� 8.13 Let X = {x1, x2, . . .}, Y = {y1, y2, . . .}. Show that∏
i,j
(1 + xiyj) =

∑
λ,μ∈Par

Mλμmλ(x)mμ(y) =
∑
λ∈Par

mλ(x)eλ(y) .

8.14 Prove analogously

∏
i,j

1
1 − xiyj

=
∑

λ,μ∈Par

Nλμmλ(x)mμ(y) =
∑
λ∈Par

mλ(x)hλ(y) .

8.15 Suppose X = {x1, . . . , xn}. Prove dimΛm(X) = p(m;≤ n) (parti-
tions of m with at most n parts), and find the bases in terms of mλ, eλ,
and hλ, by placing various restrictions on the partitions λ .

* * *
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8.16 We had as an example in the text that e311 = h11111 − 2h2111 + h311.
Verify this equality, using the numbers Mλμ and Nλμ .

� 8.17 When you express eλ
(
λ ∈ Par(m)

)
in terms of hμ

(
μ ∈ Par(m)

)
,

what can you say about the partitions μ with nonzero coefficients in re-
lation to λ ?

8.18 Compute ω(mλ) for λ ∈ Par(4) in terms of mμ , where ω is the
involution ω : eλ � hλ in Λ4(X).

� 8.19 Prove that hm(1, q, q2, . . . , qn) =
[
m+n
m

]
q

(Gaussian coefficient), and

em(1, q, q2, . . . , qn−1) = q(m2)
[
n
m

]
q

.

8.20 The power sums pk(x1, x2, . . .) =
∑
i≥1 xki are clearly homogeneous

symmetric functions of degree k. As before set pλ = pλ1 · · ·pλr for λ =
λ1 . . . λr ∈ Par(m); thus pλ(x) ∈ Λm(X) . Set pλ = ∑

μ∈Par(m) Rλμmμ ;
what does Rλμ count? Hint: Rλμ enumerates some set of ordered set-
partitions.

� 8.21 Prove that {pλ : λ ∈ Par(m)} is a basis for Λm(X) . Hint: Prove that
Rλμ = 0 unless λ ≤ μ, and proceed as usual by considering this ordering
on Par(m) . Alternatively, you may use Waring’s formula of Exercise 6.34.

8.22 When X = {x1, . . . , xn} is finite, what partitions λ ∈ Par(m) give a
basis {pλ} for Λm(X) ?

8.3 Schur Functions

In this section we consider a finite set X = {x1, . . . , xn} of variables,
and partitions λ with at most n summands. The following functions
will provide the most interesting basis.

Definition. Let λ = λ1 . . . λn ∈ Par with possible 0’s at the end. The
function

sλ(x1, . . . , xn) =
det(xn−i+λij )ni,j=1∏
1≤i<j≤n

(xi − xj)

is called a Schur function.

Since the numerator is an alternating polynomial, Proposition 8.1
says that sλ(x) is a homogeneous symmetric function of degree

n∑
i=1

(n− i+ λi)−
(
n
2

)
=

n∑
i=1

λi = |λ| .
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The following basic result shows the connection of the Schur func-
tions with the complete symmetric functions. It is called the Jacobi–
Trudi identity.

Theorem 8.7. Let λ = λ1 . . . λn ∈ Par with possible 0’s at the end.
Then

sλ(x1, . . . , xn) = det(hλi−i+j)
n
i,j=1 , (1)

where we set hk = 0 for k < 0.

Proof. Let e(	)j be the j-th elementary symmetric function on X =
{x1, . . . , xn}�x	. By (1) and (3) of the previous section,

∑
k≥0

hkzk ·
n−1∑
j=0

e(	)j (−z)j =
n∏
i=1

1
1 − xiz

n∏
m=1
m≠	

(1 − xmz) = 1
1 − x	z

= 1 + x	z + x2
	z

2 + · · · .

Comparing coefficients for zαi we get

n−1∑
j=0

hαi−j(−1)je(	)j =
n∑
k=1

hαi−n+k(−1)n−ke(	)n−k = x
αi
	 . (2)

For α = (α1, . . . , αn) define matrices

Aα = (xαij ), Hα = (hαi−n+j), E = ((−1)n−ie(j)n−i
)
.

Equation (2) then translates into the matrix equation

HαE = Aα . (3)

Now look at the special vector α = (n − 1, n − 2, . . . ,1,0). In this
case Hα is an upper triangular matrix with diagonal 1, and so

detE = detAα = det(xn−ij ) =
∏

1≤i<j≤n
(xi − xj) .

For arbitrary vectors α we therefore obtain

detHα = detAα∏
1≤i<j≤n

(xi − xj)
. (4)

The theorem follows by taking the vector α = (λ1 +n− 1, λ2 +n−
2, . . . , λn). In this case αi = λi +n− i; hence detAα = det(xn−i+λij ),
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which is equal to the numerator of the Schur function, and detHα =
det(hλi−i+j) . �

Semistandard Tableaux.
The Jacobi–Trudi identity leads to an unexpected and beautiful
combinatorial definition of the Schur functions, with the help of
the Lemma of Gessel–Viennot.

Definition. Let λ = λ1 . . . λr ∈ Par with r ≤ n. A semistandard
tableau (SST) T over {1,2, . . . , n} of shape λ is a scheme

T11 T12 . . . T1λ1

T = T21 T22 . . . T2λ2 Tij ∈ {1,2, . . . , n}
· · ·
Tr1 . . . Trλr

with Ti1 ≤ Ti2 ≤ · · · ≤ Tiλi for the rows, and T1j < T2j < · · · for
the columns. Set μk = #{Tij = k}; then μ = (μ1, μ2, . . . , μn) is called
the type of T .

Example. Let n = 6; then

T =

11334
234
355
46
5
6

is an SST of shape 533211 and type (2,1,4,3,3,2) .

To an SST T of type μ we associate the monomial xT = xμ1
1 · · ·xμnn .

We shall let T (n,λ) denote the set of all SSTs over {1, . . . , n} of
shape λ.

Example. Consider n = 3, λ = 21. The tableaux are as follows:

11
2

11
3

12
2

12
3

13
2

13
3

22
3

23
3

x2
1x2 x2

1x3 x1x2
2 x1x2x3 x1x2x3 x1x2

3 x2
2x3 x2x2

3

Now by an easy computation we obtain for the Schur function
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s21(x1, x2, x3) =

det

⎛⎜⎝x
4
1 x

4
2 x

4
3

x2
1 x

2
2 x

2
3

1 1 1

⎞⎟⎠
(x1 − x2)(x1 − x3)(x2 − x3)

= x2
1x2 + x2

1x3 + x2
2x3 + x1x2

2 + x1x2
3 + x2x2

3

+ 2x1x2x3 ,

and this is precisely
∑
T∈T (3,λ) xT .

That this is no coincidence is the content of the following funda-
mental result.

Theorem 8.8. Let λ = λ1 . . . λr ∈ Par, r ≤ n . Then

sλ(x1, . . . , xn) =
∑

T∈T (n,λ)
xT . (5)

Proof. Consider the usual lattice graph with steps up and to
the right. All horizontal steps have weight 1, and a vertical step
along x = k has weight xk, k = 1, . . . , n . Now we apply the
lemma of Gessel–Viennot to the vertex sets A = {A1, . . . ,An},
B = {B1, . . . , Bn}, with Ai = (1, n− i), Bj = (n,n+ λj − j) .

Example. Consider n = 4, λ = 211:

B1 = (4,5)

B2

B3

B4 = (4,0)

(1,3) = A1

A2

A3

(1,0) = A4

We find for the path matrix M = (mij),

mij =
∑

(i1,...,in)∑
ik=λj−j+i

xi11 · · ·xinn = hλj−j+i(x1, . . . , xn) ,

and so by Jacobi–Trudi,

detM = det(hλj−j+i) = det(hλi−i+j) = sλ(x1, . . . , xn) .



360 8 Symmetric Functions

It is plain that only the identity permutation allows vertex-disjoint
path systems from A to B. Thus it remains to show that

∑
P∈VD

w(P) =
∑

T∈T (n,λ)
xT . (6)

Consider any system P : Ai → Bi . We associate to Pi : Ai → Bi the
i-th row of a tableau TP with the x-coordinates of the vertical steps
as entries, as they appear in Pi. For the path system in the example
above we get the tableau

22
3
4

This correspondence P → TP is clearly a bijection. Note that TP
has shape λ, and is weakly increasing in the rows. By the definition
of the weighting, w(P) = xμ1

1 · · ·xμnn , where μk is the number of
vertical steps along x = k. Now, (μ1, . . . , μn) is by construction also
the type of TP , that is, w(P) = xT .

It thus remains to verify that the system P : Ai → Bi is vertex-
disjoint if and only if the associated tableau TP is an SST. Suppose
the paths Pi and Pj (i < j) cross with (a,b) being the first common
point:

× (a,b)

(1, n− i) = Ai

(1, n− j) = Aj

For the tableau TP , we have Tj,b−n+j = a ≤ Ti,b−n+i+1 . Set 	 =
b−n+ j, k = b−n+ i+1; then 	 ≥ k (because of j > i), thus Tj,	 ≤
Ti,k ≤ Ti,	, contradicting the strict monotonicity on the columns.
The converse is similarly shown. �
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Example. For λ = 11 . . .1 there is only one SST of shape λ, namely
1
2...
n

, and we get s11...1(x1, . . . , xn) = x1x2 · · ·xn.

Note that the theorem implies the astonishing result that given μ =
μ1 . . . μn there are equally many SSTs of the same shape and type
equal to any permutation of μ.

Corollary 8.9. Let λ ∈ Par(n), λ = λ1 . . . λn, with possible 0’s at the
end. Then

sλ(x1, . . . , xn) =
∑

μ∈Par(n)
Kλμmμ , (7)

where Kλμ is the number of SSTs T ∈ T (n,λ) of type μ = (μ1 ≥
· · · ≥ μn) . The Kλμ’s are called Kostka numbers.

Proof. A monomial xT = xμ1
1 · · ·xμnn appears as often as there

are SSTs of type μ . �

Example. For n = 4, λ = 31 we get

111 112 112 113 123 124 134
2 2 3 2 4 3 2︸ ︷︷ ︸ ︸ ︷︷ ︸
m31 m22 m211 m1111

Hence s31(x1, x2, x3, x4) =m31 +m22 + 2m211 + 3m1111 .

With (7) we can now easily show that the Schur functions sλ
(
λ ∈

Par(n)
)

give another basis for Λn(X), X = {x1, . . . , xn} .

Theorem 8.10. The set {sλ : λ ∈ Par(n)} is a basis for Λn(X), X =
{x1, . . . , xn} .

Proof. We proceed as in the proof of Theorem 8.4. This time we
choose the so-called dominance order on Par(n). Let λ = λ1 . . . λn,
μ = μ1 . . . μn in Par(n) with possible 0’s at the end. Then we define

λ " μ :⇐⇒
k∑
i=1

λi ≤
k∑
i=1

μi for k = 1, . . . , n .

With the dominance ordering, Par(n) becomes a poset, which, in
general, is not a linear order.
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Example. For n = 6 we get

111111 ≺ 21111 ≺ 2211 ≺ 222
3111

≺ 321 ≺ 33
411

≺ 42 ≺ 51 ≺ 6 .

The partitions 222 and 3111 are unrelated, as are 33 and 411.

Claim. If Kλμ > 0 then μ " λ, and furthermore, Kλλ = 1.

Suppose T ∈ T (n,λ) has type μ = (μ1 ≥ μ2 ≥ · · · ≥ μn). If Tij = k
with i > k, then by strict monotonicity of the columns,

1 ≤ T1j < T2j < · · · < Tkj < · · · < Tij = k ,

which contradicts i > k. This means that all numbers 1,2, . . . , k
must appear in the first k rows. But this implies μ1 + · · · + μk ≤
λ1 + · · · + λk for all k, and so μ " λ . If λ = μ, then T contains λ1

1’s in the first row, λ2 2’s in the second row, and so on. Hence T is
uniquely determined, and we get Kλλ = 1 .

Now we use induction on the dominance order. The minimal ele-
ment is 11 . . .1 with s11...1 = x1x2 · · ·xn =m11...1 ; hence m11...1 ∈
〈sλ : λ ∈ Par(n)〉. Assume inductively mν ∈ 〈sλ : λ ∈ Par(n)〉
for ν ≺ μ. Then by the claim, sμ = mμ + ∑ν≺μ Kμνmν , and thus
mμ = sμ −

∑
ν≺μ Kμνmν ∈ 〈sλ : λ ∈ Par(n)〉 . �

Remark. We may use the combinatorial interpretation of the Schur
functions to extend X = {x1, x2, . . . , xn} to the countable case.
Set sλ(x1, x2, . . .) = ∑

T xT over all SSTs T of shape λ. Then sλ
is a homogeneous symmetric function of degree |λ|. Note that
sλ(x1, . . . , xn) = 0 when λ has more than n parts, since in this case
no SST on {1, . . . , n} can exist.

Plane Partitions.
One of the striking successes of the theory of Schur functions con-
cerns the enumeration of plane partitions. Recall from Section 5.4
that a plane partition of n is an array of integers λij ≥ 1 with∑
λij = n such that any row and column is non-increasing. We de-

noted by pp(n; r , s, t) the number of plane partitions of n with at
most r rows, at most s columns, and max = λ11 ≤ t.
Our goal is to prove the following remarkable formula for their gen-
erating function.
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Theorem 8.11. We have

∑
n≥0

pp(n; r , s, t)qn =
r∏
i=1

s∏
j=1

t∏
k=1

1 − qi+j+k−1

1 − qi+j+k−2 . (8)

Proof. We work with the partition λ = ss . . . s︸ ︷︷ ︸
r

00 . . .0︸ ︷︷ ︸
t

. Theorem

8.8 then gives

sλ(x1, x2, . . . , xt+r ) =
∑

T∈T (t+r ,λ)
xT on {1,2, . . . , t + r} . (9)

In a semistandard tableau T the rows and columns are increasing,
while in a plane partition they are decreasing. Suppose T = (Tij) is
an SST of shape λ. The map

Tij � λij = t + r + 1 − Tij (10)

turns T into a plane partition ϕT with exactly r rows, exactly
s columns, and max ≤ t + r , where in addition the columns are
strictly decreasing. Let us call these plane partitions column-strict.
Conversely, any such strict plane partition corresponds via (10) to
an SST of shape λ on {1,2, . . . , t + r}. So these numbers are the
same.

Example. r = 4, s = 5, t = 3 ,

T =
1 1 1 2 2
2 3 3 4 4
3 4 4 5 6
6 6 7 7 7

�→ ϕT =
7 7 7 6 6
6 5 5 4 4
5 4 4 3 2
2 2 1 1 1

.

Here is the crucial observation. In (9), set x1 = qt+r , x2 = qt+r−1,
. . . , xi = qt+r+1−i, . . . , xt+r = q, and suppose T ∈ T (t + r , λ) has
type (μ1, . . . , μt+r ). Then xT = qn, where n =∑t+rk=1 μk(t+r +1−k).
Looking at (10) we conclude that n equals

∑
λij for the associated

strict plane partition ϕT . Hence we have proved

sλ(qt+r , . . . , q) =
∑
n≥0

spp(n;= r ,= s, t + r)qn , (11)

where spp(n;= r ;= s; t + r) denotes the number of strict plane
partitions of n with r rows, s columns, and max ≤ t + r .
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To pass from strict to ordinary plane partitions we proceed as fol-
lows. Subtract 1 from all elements in row r , 2 from all elements in
row r − 1, and so on, and finally r from all elements in row 1. This
gives an ordinary plane partition ψT with at most r rows, at most s
columns, and max ≤ t, and the correspondence is clearly bijective.

Example. Our partition above gives

ϕT =
7 7 7 6 6
6 5 5 4 4
5 4 4 3 2
2 2 1 1 1

�→ ψT =
3 3 3 2 2
3 2 2 1 1
3 2 2 1
1 1

.

The total number subtracted is s
(
r+1

2

)
, and we obtain

∑
n≥0

pp(n; r , s, t)qn = q−s(r+1
2 )sλ(qt+r , . . . , q) . (12)

It remains to compute the right-hand side, and for this we use the
original definition of the Schur function sλ,

sλ(qt+r , . . . , q) =
det

(
(qt+r−j+1)t+r−i+λi

)t+r
i,j=1

det
(
(qt+r−j+1)t+r−i

)t+r
i,j=1

. (13)

Let X be the numerator and Y the denominator on the right-hand
side of (13). Factoring qt+r−i+λi out of the i-th row in X, we obtain
with λ1 = · · · = λr = s, λr+1 = · · · = λt+r = 0,

X = qrs+(t+r2 ) det(q(t+r−j)(t+r−i+λi))t+ri,j=1 .

With ai = t + r − i+ λi we see that the inner matrix
(
(qai)t+r−j

)
is

a Vandermonde matrix, and so

X = qrs+(t+r2 )
∏

1≤i<j≤t+r
(qt+r−i+λi − qt+r−j+λj ) . (14)

Similarly, in Y we factor out qt+r−i from the i-th row, and get by
Vandermonde

Y = q(t+r2 )
∏

1≤i<j≤t+r
(qt+r−i − qt+r−j) . (15)

Altogether we obtain for the right-hand side of (12),
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q−s(
r
2)

∏
1≤i<j≤t+r

(qt+r−i+λi − qt+r−j+λj )
(qt+r−i − qt+r−j) . (16)

To finish the proof we distinguish three cases:

Case 1: i < j ≤ r : Here λi = λj = s. The quotient in (16) is then

qs . With the
(
r
2

)
pairs i < j ≤ r we get qs(

r
2), so that the factor in

front is canceled out.

Case 2: r < i < j: Then λi = λj = 0, and we get 1 as contribution.

Case 3: i ≤ r < j: Here λi = s, λj = 0, resulting in

r∏
i=1

r+t∏
j=r+1

qt+r−i+s − qt+r−j
qt+r−i − qt+r−j .

Multiplying the inner quotient by qj−t−r
qj−t−r yields

r∏
i=1

t+r∏
j=r+1

1 − qj−i+s
1 − qj−i ,

and with index transformation i� r + 1 − i, j � k+ r ,

r∏
i=1

t∏
k=1

1 − qi+k+s−1

1 − qi+k−1
. (17)

Writing

1 − qi+k−1+s

1 − qi+k−1 = 1 − qi+k−1+s

1 − qi+k−1+(s−1) ·
1 − qi+k−1+(s−1)

1 − qi+k−1+(s−2) · · ·
1 − qi+k−1+1

1 − qi+k−1 ,

we see that (17) becomes the product

r∏
i=1

s∏
j=1

t∏
k=1

1 − qi+j+k−1

1 − qi+j+k−2 ,

and we are done. �

With this generating function in hand it is only a small step to prove
the following magnificent formula of MacMahon.

Corollary 8.12 (MacMahon). We have∑
n≥0

pp(n)qn =
∏
i≥1

1
(1 − qi)i .
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Proof. All we have to do is to let r , s, and t go to infinity in (8). Let
n = i+j+k−1 or n+1 = i+j+k, that is, n+1 is an ordered partition
into three parts. We know from Section 1.5 that there are precisely(
n
2

)
such ordered partitions. Letting r , s, t go to ∞, the expression

(8) thus becomes

∏
n≥2

(
1−qn

1−qn−1

)(n2) = 1−q2

1−q ·
(

1−q3

1−q2

)3

· · ·
(

1−qn
1−qn−1

)(n2) (1−qn+1

1−qn
)(n+1

2 ) · · ·

= 1
1−q · 1

(1−q2)2 · · ·
1

(1−qn)n · · · ,

and this is MacMahon’s formula. �

Exercises

8.23 Derive s11...1(x1, . . . , xn) = x1 · · ·xn = en(x1, . . . , xn) directly from
the definition.

8.24 Show that sn(x1, . . . , xn) =
∑
μ∈Par(n) mμ = hn(x1, . . . , xn) by look-

ing at the coefficients Kλμ when λ = n ∈ Par(n).

� 8.25 Let λ,μ ∈ Par(n). Show that λ ≺ μ ⇐⇒ μ∗ ≺ λ∗ (conjugate parti-
tions). Show further that λ ≺ μ implies λ < μ in the lexicographic order-
ing.

8.26 Let λ = a1 . . .1︸ ︷︷ ︸
b

∈ Par(n), sλ = ∑
μ Kλμmμ . Compute Kλμ for μ =

c 1 . . .1 ∈ Par(n), c ≤ a.

8.27 Find all semistandard tableaux over {1, . . . ,12} of shape λ = 4431
and type (4,2,2,2,2).

8.28 What is the coefficient of x4
1x

3
2x

3
3x

2
4x5 in the Schur function s5431(x1,

. . . , x5)?

� 8.29 We know that Kλμ > 0 implies μ " λ, λ,μ ∈ Par(n). Consider λ =
λ1λ2 ∈ Par(n) with two summands, and show conversely that Kλμ > 0
whenever μ " λ. Note: The converse holds in general.

* * *

8.30 Prove en = det(h1−i+j)ni,j=1, and hn = det(e1−i+j)ni,j=1 .

� 8.31 Construct a suitable lattice graph to show that sλ∗(x1, . . . , xn) =
det(eλi−i+j), λ = λ1 . . . λn, λ∗ = conjugate partition.
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8.32 Let ω : Λn → Λn be the involution ω : eλ � hλ. Use the previous
exercise to show that ω(sλ) = sλ∗ , λ ∈ Par(n).

8.33 We have expressed sλ(qt+r , . . . , q) in (12) as the generating function
of plane partitions (apart from the factor in front), where λ = ss . . . s.
Consider now λ = λ1 . . . λr arbitrary. For which set of plane partitions is
sλ(qm,qm−1, . . . , q) the generating function ?

� 8.34 Let λ,μ be partitions with at most n parts. Show that

sλ(qμ1+n−1, qμ2+n−2, . . . , qμn) = sμ(qλ1+n−1, . . . , qλn) · sλ(1, q, . . . , q
n−1)

sμ(1, q, . . . , qn−1)
.

8.35 Find the Schur expansion of
∑
μ∈Par(n) qb(μ)−1mμ , where b(μ) is the

number of parts of μ. Hint: The answer is
∑n−1
k=0 (q − 1)ksn−k1...1︸︷︷︸

k

.

8.36 Let λ = λ1 . . . λr ∈ Par, r ≤ n, λ1 ≤ t, and define the partition λ̃ = t−
λn, t−λn−1, . . . , t−λ1 . Use the definition of Schur functions and also the
combinatorial description to show that (x1x2 · · ·xn)tsλ(x−1

1 , . . . , x−1
n ) =

sλ̃(x1, . . . , xn).

� 8.37 A plane partition λ is symmetric if λij = λji for all i, j. Show that
the number of symmetric plane partitions of n with at most r rows (and
columns) and max ≤ t equals the number of column-strict plane parti-
tions of n with at most r rows, at most t columns, max ≤ 2r − 1, and
for which all λij are odd. Hint: Find a clever decomposition of a symmet-
ric plane partition reminiscent of the decomposition of a self-conjugate
partition λ = λ∗ into odd parts (see Exercise 1.53).

8.4 The RSK Algorithm

We come to a remarkable combinatorial correspondence between
integer matrices and pairs of semistandard tableaux, named af-
ter Robinson, Schensted, and Knuth. This correspondence, which
is achieved through a simple algorithmic procedure, certainly ranks
among the finest discoveries in all of combinatorics.

The elementary operation is the insertion of an element k into a
given semistandard tableau T . It goes as follows:

(1) Replace in row 1 of T the smallest element a that is larger than k
by the new element k. If all elements in row 1 are less than or equal
to k, set k at the end of row 1, and stop.
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(2) If a has been “bumped” by k, insert a into row 2 according to
rule (1), and continue.

Example. Suppose we are given the SST T , and the element 3 is
to be inserted. The insertion of 3 results in the tableau T ← 3 on
the right, where the inserted elements in each row are drawn in
boldface.

T =

1 2 2 4 5 6 6
2 3 3 6 7
4 4 7 7 8
6 7
7 8

T ← 3 =

1 1 2 3 5 6 6
2 3 3 4 7
4 4 6 7 8
6 7 7
7 8

Let us call the path of the bold elements the insertion path. Observe
that the strict monotonicity on the columns of T implies that the
insertion path goes down and to the left, but never to the right.

Lemma 8.13. If T is an SST, then so is T ← k .

Proof. The rows in T ← k are obviously monotone, and rule (1)
implies that the columns are strictly increasing. �

Note that the insertion path always stops at the end of a row and
column. The following result, whose easy proof is left to the exer-
cises, shows the effect of two insertions.

Lemma 8.14. Suppose we perform T ← k, and then (T ← k) ← 	
with 	 ≥ k. Then the insertion path of 	 runs strictly to the right of
the insertion of k.

Example. For (T ← 3)← 3 in the example above we get

(T ← 3)← 3 :

1 2 2 3 3 6 6
2 3 3 4 5
4 4 6 7 7
6 7 7 8
7 8

By means of this insertion procedure we now construct from a given
integer matrix a pair of SSTs of the same shape, and this is the RSK
algorithm.
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Let A = (aij)i,j≥1 be a matrix over N0 with only finitely many
nonzero elements,

∑
i,j aij = n. We associate to A a 2 × n-scheme

as follows: (
1 . . .1 2 . . .2 3 . . .3 . . .
1 . . . 1 . . . 1 . . .

)
,

where column
(
i
j

)
appears aij times. The first row is increasing

i1 ≤ i2 ≤ · · · ≤ im, and below each i the indices j are arranged in
increasing fashion.

Example.

A =

⎛⎜⎝1 0 2 1
0 2 0 0
1 0 1 0

⎞⎟⎠ �→
(

1 1 1 1 2 2 3 3
1 3 3 4 2 2 1 3

)
.

It is clear that we may uniquely recover A from the 2 × n-scheme.
Note that in the 2 ×n-scheme

i appears
∑
j≥1 aij times in the 1st row,

j appears
∑
i≥1 aij times in the 2nd row .

(1)

Let us identify from now on the matrix A with its associated 2 ×n-
scheme

A =
(
i1 i2 . . . in
j1 j2 . . . jn

)
.

The Algorithm.
The RSK algorithm associates to a given matrix A a pair (P,Q) of
SSTs by inserting elements step by step. At the beginning P(0) =
Q(0) = � . Suppose

(
P(t),Q(t)

)
has been constructed. Then

(A) P(t + 1) = P(t)← jt+1 ,
(B) Q(t + 1) arises from Q(t) by putting it+1 in that position such

thatQ(t+1) has the same shape as P(t+1) . The other elements
of Q(t) remain unchanged.

Example. With A =
(

1 1 1 1 2 2 3 3
1 3 3 4 2 2 1 3

)
we get
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P(t): 1 13 133 1334 1234
3

1224
33

1124
23
3

1123
234
3

Q(t): 1 11 111 1111 1111
2

1111
22

1111
22
3

1111
223
3

Theorem 8.15. The RSK algorithm gives a bijection between the ma-
trices A over N0 (with finitely many nonzero elements) and the or-
dered pairs (P,Q) of semistandard tableaux of the same shape. Fur-
thermore, type (P) = col (A), type (Q) = row (A) .

Proof. Suppose A RSK
�→ (P,Q). By Lemma 8.13, P is an SST, and Q

has by construction the same shape as P . So we have to show thatQ
is also an SST. Since in the 2 ×n-scheme the first row i1 ≤ · · · ≤ in
is increasing, Q is certainly monotone in the rows and columns,
since the new element is always placed at the end of a row and
column. To prove strict monotonicity of the columns we have to
verify that ik = i	 (k < 	) never appear in the same column of Q.
Suppose ik = ik+1; then jk ≤ jk+1 by the setup of the 2×n-scheme.
According to Lemma 8.14, the insertion path of jk+1 is strictly to
the right of the insertion path of jk. But this means that ik+1 must
land in a position to the right of ik (not necessarily in the same row),
and so Q is an SST.

This last property is the basis for the inverse construction (P,Q)→
A. Equal elements ik = ik+1 = · · · = i	 appear in Q strictly from
left to right. Suppose we are given a pair (P,Q) of the same shape,
P = P(n), Q = Q(n). Let Qrs be the rightmost entry of the largest
element in Q. Then we know that this is the position where the last
insertion path in P = P(n) ended. We can now uniquely recover this
insertion path. Indeed, Prs was bumped by the rightmost entry in
row r − 1, which is smaller than Prs (or r = 1, in which case we
are finished). From row r − 1 we go back to row r − 2 until we find
the element a that was inserted in P(n − 1). Now set Q(n − 1) =
Q(n)�Qrs , and continue. The last assertion is clear from (1). �

Example. Consider P = P(7) =
1 1 2 2
2 2
3

, Q = Q(7) =
1 1 1 2
2 2
3
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InQ, 3 was placed last. Hence in P , 3 was bumped by P22 = 2, 2 was
bumped by P12 = 1 in row 1, and thus

P(6) = 1 2 2 2
2 3

, Q(6) = 1 1 1 2
2 2

, i7 = 3, j7 = 1 .

The other backward steps are

P(5) = 1 2 2
2 3

, Q(5) = 1 1 1
2 2

, i6 = 2, j6 = 2 ,

P(4) = 1 2 3
2

, Q(4) = 1 1 1
2

, i5 = 2, j5 = 2 ,

P(3) = 2 2 3 , Q(3) = 1 1 1 , i4 = 2, j4 = 1 ,

P(2) = 2 2 , Q(2) = 1 1 , i3 = 1, j3 = 3 ,

P(1) = 2 , Q(1) = 1 , i2 = 1, j2 = 2 ,

P(0) = � , Q(0) = � , i1 = 1, j1 = 2 .

This gives the scheme
(

1 1 1 2 2 2 3
2 2 3 1 2 2 1

)
, or the matrix A =

(
0 2 1
1 2 0
1 0 0

)
.

Applications to Symmetric Functions.
The RSK algorithm can be used to give quick proofs of some classi-
cal theorems about symmetric functions.

Corollary 8.16 (Cauchy). Let X = {x1, x2, . . .}, Y = {y1, y2, . . .} .
Then ∏

i,j

1
1 − xiyj

=
∑
λ∈Par

sλ(x)sλ(y) . (2)

Proof. We write

∏
i,j

1
1 − xiyj

=
∏
i,j

⎛⎜⎝ ∑
aji≥0

(xiyj)aji

⎞⎟⎠ . (3)

Expanding the right-hand side of (3), we see that a monomial
xαyβ = (xα1

1 xα2
2 · · · )(yβ1

1 yβ2
2 · · · ) corresponds to a matrix A =

(aij) with col (A) = α and row (A) = β. In other words, the coeffi-
cient of xαyβ in (3) is precisely the number of these matrices. On
the other hand, Theorem 8.8 says that the coefficient of xαyβ in∑
λ sλ(x)sλ(y) is the number of ordered pairs (P,Q) of SSTs of the

same shape, and with type(P) = α and type(Q) = β. The result
follows now from the RSK correspondence. �
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Corollary 8.17. Let μ,ν ∈ Par(n). Then∑
λ∈Par(n)

KλμKλν = Nμν , (4)

where Kλ,μ,Nμν are defined as in the previous sections.

Proof. According to Exercise 8.14,

∏
i,j

1
1 − xiyj

=
∑

μ,ν∈Par

Nμνmμ(x)mν(y) .

So for μ,ν ∈ Par(n) the coefficient of xμyν is Nμν . On the other
hand, by the result just proved this is also the coefficient of xμyν in∑
λ sλ(x)sλ(y) =

∑
λ

(∑
μ Kλμmμ ·

∑
ν Kλνmν

)
, that is,

∑
λ KλμKλν .

�

Symmetry of the RSK Algorithm.
The RSK algorithm enjoys a remarkable symmetry property, which,
in turn, leads to elegant proofs of some theorems about symmetric
functions. Our goal is to show that

A RSK
�→ (P,Q) implies AT RSK

�→ (Q,P) , (5)

where AT is the transpose of A .

In order to prove this we proceed in several steps. First we show
that it suffices to verify (5) when A is an n×n permutation matrix.
That is, A contains precisely one entry 1 in each row and column,
and 0’s elsewhere.

Let us note the following invariance property of the insertion algo-
rithm. Suppose we are given a sequence α = a1a2 . . . an of positive
integers. We denote by Pα the SST obtained by successively insert-
ing a1, a2, . . . , an . We linearly order the ai’s according to magnitude
from left to right. That is, ai ≺ aj if ai < aj or if ai = aj and i < j,
and we denote by r(ai) the rank of ai in this ordering. Thus, the
smallest element gets rank 1, the second smallest rank 2, and so on.
The resulting permutation πα = r(a1) . . . r (an) ∈ S(n) is called the
order permutation of α.

Example. For α = 351126533 we obtain πα = 471239856.
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Lemma 8.18. Suppose α = a1 . . . an and β = b1 . . . bn have asso-
ciated tableaux Pα and Pβ. If the order permutations are identical,
πα = πβ, then Pβ arises from Pα by replacing each ai in Pα by bi,
and conversely, Pα arises from Pβ by replacing each bi in Pβ by ai .

Proof. All we have to notice is that at every stage of the algorithm
the insertion path of at+1 in Pα(t) to produce Pα(t + 1) is identical
to the insertion path of bt+1 in Pβ(t) . But this is clear by rule (1) of
the algorithm. �

Suppose now we are given A = (aij) over N0 with 2 × n scheme

S =
(
i1 i2 ... in
j1 j2 ... jn

)
. We associate to S a new scheme S̃ =

(
1 2 ... n
j̃1 j̃2 ... j̃n

)
,

where j̃1j̃2 . . . j̃n is the order permutation of j1j2 . . . jn . The matrix
Ã belonging to S̃ is thus an n×n permutation matrix.

Example. S =
(

112223566
231156144

)
�→ S̃ =

(
123456789
451289367

)
.

Since j1j2 . . . jn and j̃1j̃2 . . . j̃n have by construction the same order
permutation (namely j̃1j̃2 . . . j̃n), the preceding lemma immediately
yields the following result.

Lemma 8.19. Suppose A RSK
�→ (P,Q) and Ã RSK

�→ (P̃ , Q̃) . Then we get P
from P̃ by replacing each j̃k in P̃ by jk, and similarly Q arises from
Q̃ by replacing each ĩk = k in Q̃ by ik .

We can express the content of the lemma compactly as a “commut-
ing” diagram:

A ∼ ��

RSK

����
��

��
��

� Ã
RSK �� (P̃ , Q̃)

∼−1		���������

(P,Q)

(6)

It is straightforward (see Exercise 8.40) that

A ∼
�→ Ã implies AT ∼

�→ ÃT , (7)

and this leads to the first step of the proof of (5) .

Lemma 8.20. If the RSK algorithm observes the symmetry property
(5) for all permutation matrices, then it holds in general.
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Proof. Suppose A RSK
�→ (P,Q), Ã �→ (P̃ , Q̃). Then by (6) and (7),

AT
∼ ��

RSK

����
��

��
��

� ÃT
RSK �� (Q̃, P̃ )

∼−1		���������

(Q,P)

and we are done. �

Let us therefore look at permutation matrices A with 2 ×n scheme(
1 ... n
π1 ... πn

)
, π = π1 . . . πn ∈ S(n). We then write A = A(π) with(

P(π),Q(π)
)

as associated pair. Now, A(π)T = A(π−1), since
π(i) = j implies π−1(j) = i. Hence we have to show that

A(π) RSK
�→ (P,Q) implies A(π−1) RSK

�→ (Q,P) . (8)

From now on we identify A(π) with π , and write π RSK
�→ (

P(π),
Q(π)

)
. The semistandard tableaux P(π) and Q(π) contain the

numbers 1,2, . . . , n exactly once each, that is, they have type (1,1,
. . . ,1). This suggests the following definition.

Definition. A semistandard tableau T over {1,2, . . . , n} is called a
standard tableau ST if every k ∈ {1, . . . , n} appears exactly once
in T .

The following idea is the key to the proof of (8). Consider π =
π1 . . . πn ∈ S(n). A subword of π is a sequence πi1 , . . . , πik with
i1 < · · · < ik . The subword is increasing if πi1 < · · · < πik , and
decreasing if πi1 > · · · > πik . Denote by is(πj) the length of a
longest increasing subword ending in πj .

Consider now the pair of STs (P,Q) associated to π by the RSK
algorithm. We wish to determine the first rows of P and Q. Call
the sequence πi1 , . . . , πik successively inserted into the j-th box of
the first row of P the j-th fundamental sequence. The rules of the
algorithm clearly imply the following properties:

(i) Every number is in exactly one fundamental sequence.
(ii) Every fundamental sequence is a decreasing subword πi1 >

· · · > πik .
(iii) When a is inserted into the j-th box of row 1 of π , then the

number in the adjacent box j − 1 of row 1 is smaller than a
and comes before a in π .
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It helps to write the j-th fundamental sequence as 2 × k scheme.
According to property (ii),(

i1 < i2 < · · · < ik
πi1 > πi2 > · · · > πik

)
, (9)

and we infer that P1j = πik and Q1j = i1 .

The main idea toward the proof that π−1 RSK
�→ (Q,P) is the follow-

ing description of the fundamental sequences. Denote by fs(a) the
index of the fundamental sequence which contains a.

Lemma 8.21. Given π ∈ S(n), then fs(a) = is(a) for all a ∈
{1, . . . , n} .

Proof. Property (iii) immediately implies fs(a) ≤ is(a). Now let
b1 < b2 < · · · < bis(a) = a be a longest increasing subword ending
in a. We clearly have is(bk) = k, 1 ≤ k ≤ is(a), and therefore
fs(bk) ≤ k. On the other hand, we infer from property (ii) that
the bk’s must appear in different fundamental sequences. But this
means fs(b1) = 1, f s(b2) = 2, . . . , f s(a) = is(a) . �

Example. Consider π = 72483615 . The tableaux are

P =
135
26
48
7

, Q =
134
26
58
7

,

with fundamental sequences

FS1 =
(

127
721

)
, FS2 =

(
35
43

)
, FS3 =

(
468
865

)
.

The next observation relates π to π−1. Look at the diagram of π as
in Section 1.4:

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

It is immediate that is(πh) = j, where j is the maximum number
of nonintersecting edges to the left and including the edge (h,πh).
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But the same diagram read from bottom up gives π−1 . Accordingly,
is(h,πh) = j in π if and only if is(πh,h) = j in π−1. By the lemma
this means that

If

(
i1 < · · · < ik
πi1 > · · · > πik

)
is the j-th fundamental sequence of π

then

(
πik < · · · < πi1
ik > · · · > i1

)
is the j-th fundamental sequence of π−1.

(10)

With these preparations we can now prove the desired result.

Proposition 8.22. Let π ∈ S(n) . If π RSK
�→ (P,Q), then π−1 RSK

�→
(Q,P) .

Proof. Let π = π1 . . . πn, and π−1 RKS
�→ (P̂ , Q̂). We use induction on

the number of rows in P . We know the first rows of P and Q, P1j =
πik , Q1j = i1 from (9), and similarly P̂1j = i1, Q̂1j = πik . Hence P̂ ,Q
agree in the first row, as do Q̂ and P . Now look at the tableaux
P ′,Q′ of P andQ below row 1. The elements of P ′ are those that get
bumped down from row 1. So this is the set {1, . . . , n} minus the last
elements πik of each fundamental sequence. Let b1, . . . , bs be the
order in which they are bumped. Similarly, the available elements
for Q′ comprise the set {1, . . . , n} minus the first elements i1 in
each fundamental sequence, with ordering a1 < · · · < as . Thus for

π ′ =
( a1a2...as
b1b2...bs

)
we have π ′ RSK

�→ (P ′,Q′) .

Example. In the example above we obtain

π ′ =
(

25678
74826

)
with π ′ RSK

�→

⎛⎜⎝26 26
48 , 58
7 7

⎞⎟⎠ .

If we can show that
(
ai
bi

)
∈ π ′ if and only if

(
bi
ai

)
∈ π ′−1, then

induction will finish the proof. But this is easy. Look at the j-th
fundamental sequence of π :(

i1 < i2 < · · · < ik
πi1 > πi2 > · · · > πik

)
.
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Since πi2 bumps πi1 , πi3 bumps πi2 , and so on, we see that the
bumped elements of the j-th fundamental sequence appear in the
order πi1 > πi2 > · · · > πik−1 in π ′, and similarly the available
elements in Q′ appear in the order i2 < · · · < ik . Thus π ′ contains
the pairs (

i2 < · · · < ik
πi1 > · · · > πik−1

)
.

By the same argument, π ′−1 contains the pair(
πik−1 < · · · < πi1
ik > · · · > i2

)
.

Since by property (i) of fundamental sequences all elements in π ′

and π ′−1 are captured in this way, the proof is complete. �

With this result we have proved the main theorem.

Theorem 8.23. If A RSK
�→ (P,Q), then AT RSK

�→ (Q,P) .

Corollary 8.24. A matrix A is symmetric if and only if A RSK
�→ (P, P)

for some semistandard tableau P . Furthermore, row(A) = col(A) =
type(P) . The insertion algorithm thus furnishes a bijection between
all symmetric matrices A with row(A) = α and all semistandard
tableaux P of type α .

Example. Consider the symmetric matricesAwith row(A) = (2,2).
There are three such matrices with the correspondence A→ P :(

2 0
0 2

)
�→ 1122,

(
0 2
2 0

)
�→ 11

22
,
(

1 1
1 1

)
�→ 112

2
.

To finish we derive another famous identity involving Schur func-
tions, which will prove useful in the enumeration of plane partitions
(see Exercises 8.50 ff) .

Corollary 8.25. We have

1∏
i≥1
(1 − xi)

∏
1≤i<j

(1 − xixj)
=

∑
λ∈Par

sλ(x) . (11)



378 8 Symmetric Functions

Proof. The product on the left is⎛⎝∑
k≥0

xk1

⎞⎠⎛⎝∑
k≥0

xk2

⎞⎠ · · ·
⎛⎝∑
k≥0

(x1x2)k
⎞⎠ · · · .

It follows that the coefficient of xα = xα1
1 xα2

2 · · · is equal to the
number of symmetric matrices A with row(A) = α . On the other
hand, by Theorem 8.8, ∑

λ
sλ(x) =

∑
λ

∑
T
xT ,

where the inner sum extends over all SSTs T of shape λ . The co-
efficient of a monomial xα is therefore the number of all SSTs T
with type (T) = α. The correspondence A = AT → T ∈ SST (RSK
algorithm) finishes the proof. �

Exercises

8.38 Prove Lemma 8.14.

8.39 Find the associated tableaux (P,Q) for A =

⎛⎜⎝2 1 0 3
1 0 0 1
0 2 1 2

⎞⎟⎠ .
8.40 Prove (7).

� 8.41 Show that the number of SSTs with type (r , r) equals r + 1, and of
those with type (r , r , r), that is, r 1’s, 2’s, and 3’s, is given by 1

16[4r
3 +

18r 2 + 28r + 15 + (−1)r ] .

8.42 Give the bijection A → P ∈ SST for all symmetric matrices A with
row (A) = (3,1,2).

� 8.43 Show that hμ =
∑
λ Kλμsλ, eμ =

∑
λ Kλ∗μsλ, λ∗ = conjugate partition,

hμ = complete symmetric function, eμ = elementary symmetric function.
Use either the RSK algorithm or Corollary 8.16.

* * *

8.44 Let A be a matrix with entries 0,1, and S =
(
i1...in
j1...jn

)
the 2×n-scheme.

The dual RSK algorithm, denoted by RSKd, proceeds as before, except that
a new element k bumps the leftmost element greater than or equal to k
(rather than the leftmost element greater than k). Show that we get a pair
(P,Q), where each row of P is strictly increasing. Show further that RSK
and RSKd agree when A is a permutation matrix.
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8.45 Prove that the dual RSK algorithm gives a bijection between 0,1-
matrices and pairs (P,Q) such that P∗ (conjugate of P ) andQ are SSTs of
the same shape. Show further that col(A) = type(P), row(A) = type(Q) .

8.46 Use the RSKd algorithm to derive the analogue to Corollary 8.16:∏
i,j(1 + xiyj) =

∑
λ sλ(x)sλ∗(y), λ∗ = conjugate partition.

� 8.47 Use the previous exercise to re-prove ωsλ = sλ∗ , where ω is the
involution defined in Section 8.2.

8.48 Let A be a symmetric matrix, and suppose A RSK
�→ (P, P). Show that

the trace of A (=∑aii) equals the number of columns of P of odd length.
Hint: tr(A) = tr(Ã).

� 8.49 Use the previous exercise to prove

∏
i≥1

1
1 − qxi

∏
1≤i<j

1
1 − xixj

=
∑
λ∈Par

qo(λ
∗)sλ(x) ,

where o(λ∗) denotes the number of odd parts of λ∗.

8.50 Recall the definition of column-strict plane partitions, and let
spp(n) be the number of these partitions of n. Prove that the generating
function is given by

∑
n≥0

spp(n)qn =
∏
i≥1

1
1 − qi

∏
1≤i<j

1
1 − qi+j =

∏
k≥1

1
(1 − qk)�k/2� .

Hint: Use Corollary 8.25.

8.51 Use Corollary 8.25 to prove that the generating function for column-
strict plane partitions for which every entry is odd is given by

∏
i≥1

1
1 − q2i−1

∏
1≤i<j

1
1 − q2i+2j−2

=
∏
k≥1

1
(1 − qk)ρ(k) ,

where ρ(k) = 1 if k is odd, and ρ(k) = � k4	 if k is even.

� 8.52 Combine Exercises 8.37 and 8.51 to prove that the generating func-
tion of symmetric plane partitions with at most r rows and max ≤ t is
given by ∑

λ
sλ(q2r−1, q2r−3, . . . , q3, q) ,

where the summation extends over all λ ∈ Par(;≤ r ;≤ t) .
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8.5 Standard Tableaux

We know from the previous section that any permutation π =
π1 . . . πn ∈ S(n) corresponds to a pair (P,Q) of standard tableaux
of the same shape, and conversely that to every such pair there is a
unique permutation. Let f(λ) be the number of standard tableaux
of shape λ .

Example. The standard tableaux for n = 4 are

1234 123 124 134 12 13 12 13 14 1
4 3 2 34 24 3 2 2 2

4 4 3 3
4

It is clear that the conjugate tableau T∗ of a standard tableau is also
a standard tableau; hence f(λ) = f(λ∗) .

Now there are n! permutation matrices A(π), and A(π)T = A(π−1)
implies that A(π) is symmetric if and only if π is an involution.
The main theorems of the last section imply therefore the following
result.

Theorem 8.26. We have

a.
∑
λ∈Par(n) f (λ)2 = n!,

b.
∑
λ∈Par(n) f (λ) = in (number of involutions).

Looking at the example above we obtain f(4) = 1, f(31) = 3,
f(22) = 2, f(211) = 3, f(1111) = 1, which agrees with 12 + 32 +
22+32+12 = 24 and 1+3+2+3+1 = 10 = i4. Note also that f(λ)
is the Kostka number Kλμ, where μ = 11 . . .1 .

Since permutations π correspond via the insertion algorithm to
standard tableaux P(π), we will expect that some combinatorial
properties of π are reflected in P(π) . Let us write π ins

�→ P(π). We
already know one such example proved by means of fundamental
sequences. For π = π1 . . . πn ∈ S(n) let is(π) be the length of a
longest increasing subword of π ; thus is(π) = max1≤a≤n is(a). Ap-
pealing to Lemma 8.21 we have the following result.

Proposition 8.27. Let π ins
�→ P , and λ = λ1 . . . λr the shape of P . Then

a. is(π) = λ1 ,
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b. #{π ∈ S(n) : is(π) = t} =∑λ∈Par(n;;t) f (λ)2 .

It is natural to look at decreasing subwords as well. Let ds(π) be
the length of a longest decreasing subword of π . We suspect that
ds(π) = λ∗1 = number of rows of λ, and this is indeed the case.

If π = π1 . . . πn, then π∗ = πn . . . π1 is called the reversed permu-

tation. We are going to show that if π ins
�→ P , then π∗ ins

�→ P∗, which
will clearly imply the assertion. For the proof we need the following
basic lemma, whose (elementary) proof is only sketched. Recall that
T ← k denotes row insertion. Dually, we may insert 	 → T colum-
nwise, observing the usual rules of the insertion algorithm. Thus
	 → T = (T∗ ← 	)∗.

Lemma 8.28. Let T be an SST with distinct entries, and k ≠ 	 two
numbers not contained in T . Then

	 → (T ← k) = (	 → T)← k . (1)

In other words, the operations ← and → commute.

Proof. Let W1 : k < x1 < · · · < xr be the insertion path when k
is inserted in T . Thus x1 is bumped by k, x2 is bumped by x1, and
so on. The element xi is therefore in row i of T , and in row i + 1
of T ← k. Similarly, W2 : 	 < y1 < · · · < ys is the insertion path in
	 → (T ← k), where yj is in column j of T ← k, and in column j+1
of 	 → (T ← k). If W1 and W2 never meet, then (1) plainly holds.

Suppose x = xi is the first position where W2 hits {k,x1, . . . , xr} in
T ← k. Set w = xi−1, z = xi+1, and let y = yj be the element in W2

that bumps x.

Case 1. z is to the left of x in T . Then we have the following
situation:

�
�

�
�

j + 1

i+ 1

i

z

T

x
�

�

j + 1

i+ 1

z

x a

w

T ← k
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Since w < x, x is bumped by y in 	 → (T ← k) to the right, and so
on, and then a starts an insertion path that may also go up. But note
that W2 never touches W1 again, since y = yj < x = yj+1 < yj+2 <
· · · is an increasing sequence, whereas x = xi > w = xi−1 > · · · is
decreasing. The picture in 	 → (T ← k) looks therefore as follows:

�

�

� �i
i+ 1

i+ 2

j + 1

y

W ′
2

x
. . .

w

W ′′
2

z
�

�

Now we interchange the insertions. Up to yj−1 the path W2 is the
same. Since z > x > y , y = yj bumps z in 	 → T (in column j+1), z
moves to the right, and so on, and a is bumped along W ′′

2 as before.
The situation is therefore

�

� �i
i+ 1

j + 1

y

W ′
2

z
. . .

x

W ′′
2

�

�

Now we insert k in 	 → T . Up to x the path W1 proceeds as before
(since it does not touch W ′′

2 ), x bumps z because of y < x < z, and
z continues the insertion path W1 below row i+ 1 as before.

Case 2. x is above z. This is settled in an analogous fashion. �

Lemma 8.29. Let w = w1 . . .wn be a sequence of distinct num-
bers,w∗ = wn . . .w1 the reversed sequence. Denote by T(w1 . . .wn)
the tableau obtained by rowwise insertion of w1,w2, . . . ,wn, and
by T ′(w1 . . .wn) the tableau obtained by columnwise insertion of
wn,wn−1, . . . ,w1. Then T(w1 . . .wn) = T ′(w1 . . .wn) .

Proof. For n = 1 there is nothing to prove, and for n = 2 the
assertion is easily checked. We proceed by induction on n. By the
previous lemma and induction,
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T(w1 . . .wn) = T(w1 . . .wn−1)← wn = T ′(w1 . . .wn−1)← wn
= (w1 → T ′(w2 . . .wn−1)

)← wn
= w1 → (

T ′(w2 . . .wn−1)← wn
)

= w1 → (
T(w2 . . .wn−1)← wn

)
= w1 → T(w2 . . .wn−1wn) = w1 → T ′(w2 . . .wn)
= T ′(w1 . . .wn) ,

and we are done. �

Proposition 8.30. Let π = π1 . . . πn ∈ S(n) with π ins
�→ P . Then

π∗ ins
�→ P∗ for the reversed permutation π∗ = πn . . . π1 .

Proof. By the lemma, P = T(π1 . . . πn) = T ′(π1 . . . πn), where

π∗ = πn . . . π1 is inserted columnwise. Hence π∗ ins
�→ P∗ when π∗

is inserted rowwise. �

Since increasing subwords in π∗ corresponds to decreasing sub-
words in π , we obtain the following companion result to Proposi-
tion 8.27:

Corollary 8.31. Let π ins
�→ P with shape λ = λ1 . . . λr . Then

a. ds(π) = r = λ∗1 ,
b. #{π ∈ S(n) : ds(π) = s} =∑λ∈Par(n;s;) f (λ)2 ,
c. #{π ∈ S(n) : ds(π) = s, is(π) = t} =∑λ∈Par(n;s;t) f (λ)2 .

Example. For n = 4 we have noted that f(λ) = 3 for λ = 31, and
λ = 31 is the only partition with λ1 = 3, λ∗1 = 2. Hence there are 9
permutations π ∈ S(4) with is(π) = 3, ds(π)=2:

1243, 1324, 1342, 1423, 2134, 2314, 2341, 3124, 4123 .

Exercises

8.53 Let π = π1 . . . πn ∈ S(n). Show that is(π) = k if and only if π can
be decomposed into k decreasing subwords.

8.54 Let π ∈ S(n) with π ins
�→ P . For a ∈ {1, . . . , n} let r(a) be the index

of the row in P that contains a, and similarly c(a) the column index.
Show that c(a) ≤ is(a), r(a) ≤ ds(a), where is(a) is the length of a
longest increasing subword ending in a, and ds(a) the length of a longest
decreasing subword starting in a .
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8.55 Compute f(λ) for λ = 22 . . .2︸ ︷︷ ︸
n

by a direct combinatorial argument.

� 8.56 Let π be any permutation of {1,2, . . . ,mn+1}. Show that π contains
an increasing subword of length m+1 or a decreasing subword of length
n+ 1 (or both). Does the conclusion still hold for mn?

8.57 How many STs of shape λ = nn . . . n︸ ︷︷ ︸
n

have main diagonal (1,4,9, . . . ,
n2)?

* * *

8.58 Show that the number of π ∈ S(n) with is(π) ≤ 2 is Cn (Catalan).
Hint: Show more generally that the ballot number bn,k equals the number
of π ∈ S(n+ 1) with is(π) ≤ 2, and where n+ 1 = πk+1 (0 ≤ k ≤ n).

� 8.59 For λ = λ1 . . . λr ∈ Par(n) and for 1 ≤ i ≤ r denote by f(λ,−i) the
number of STs with shape λ1 . . . λi−1λi − 1λi+1 . . . λr . If the monotonicity
condition is violated, that is, λi − 1 < λi+1, set f(λ,−i) = 0. Similarly,
f(λ,+i) is the number of STs with shape λ1 . . . λi−1λi + 1λi+1 . . . λr or
λ1 . . . λr1 for i = r + 1 . Again, f(λ,+i) = 0 if λi−1 < λi + 1. Re-prove
Theorem 8.26 (a) using the following steps: a. f(λ) = ∑r

i=1 f(λ,−i), b.
(n+1)f (λ) =∑r+1

i=1 f(λ,+i), c.
∑
λ∈Par(n) f (λ)2 = n! . Hint: Use f(λ,−i) =

0 ⇐⇒ f(λ,+(i+ 1)) = 0 .

8.60 Let O(n) be the number of λ ∈ Par(n) such that f(λ) is odd.
Write n = a0 + a12 + a222 + · · · in binary expansion, and denote by
P(z) = ∏

i≥1
1

1−zi the partition function. Prove O(n) = ∏
j≥0[zaj ]P(z)2

j
.

Example: n = 3 = 1+2, a0 = a1 = 1,O(3) = [z]P(z)·[z]P(z)2 = 1·2 = 2,
with f(3) = 1, f(21) = 2, f(111) = 1 .

� 8.61 Show that the number of STs over {1, . . . , n} with at most two rows
is
(

n
�n/2	

)
, and with at most three rows is the Motzkin number Mn (see

Section 7.4).

8.62 Complete the details of Lemma 8.28.

8.63 Give a direct proof for
∑
λ∈Par(n) f (λ) = in (involution number) by

showing that the recurrence in+1 = in + nin−1 also holds for
∑
λ∈Par(n)

f (λ) .

� 8.64 Take λ ∈ Par and consider the Ferrers diagram with the hook lengths
inscribed in the cells. Show that the number of odd hook lengths minus

the number of even hook lengths is always equal to
(
m+1

2

)
for some m.
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Highlight: Hook-Length Formulas

Perhaps the most beautiful formula expressing the number f(λ) of
standard tableaux of shape λ is the hook-length formula of Frame,
Thrall, and Robinson.

The Number of Standard Tableaux.
Let λ = λ1 . . . λr ∈ Par(n), and let (i, j) be a cell in the Ferrers di-
agram of λ, i = row number, j = column number. The hook length
hij in (i, j) is the number of cells below and to the right of (i, j),
including (i, j) itself. Hence if λ∗ = λ∗1 . . . λ∗t is the conjugate parti-
tion, then

hij = (λi − j)+ (λ∗j − i)+ 1 . (1)

Example. Consider λ = 644211 ∈ Par(18). The hook lengths are
written in the cells:

11 8 6 5 2 1

8 5 3 2

7 4 2 1

4 1

2

1

We set μi = hi1 = λi + r − i (i = 1, . . . , r ) . The following result is
the key to the proof.

Lemma. Let λ = λ1 . . . λr ∈ Par(n) . Then for all i, the sequence of
the μi = λi + r − i numbers

μi = hi1, hi2, . . . , hiλi , μi − μi+1, μi − μi+2, . . . , μi − μr (2)

is a permutation of {1,2, . . . , μi} .

Proof. First it is clear that the hook lengths decrease strictly in
every row and column. Hence

μi = hi1 > hi2 > · · · > hiλi ≥ 1 .

Next we note that

1 ≤ μi − μi+1 < μi − μi+2 < · · · < μi − μr < μi .
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All numbers in (2) are therefore between 1 and μi , and it remains
to show that no two numbers hij and μi − μk (k > i) are equal.

Case 1. j ≤ λk . Then λ∗j ≥ k , and by (1),

hij ≥ (λi − λk)+ (k− i)+ 1 > (λi − λk)+ (k− i) = μi − μk .

Case 2. j > λk . Then λ∗j ≤ k− 1, and hence

hij ≤ (λi − λk − 1)+ (k− 1 − i)+ 1 < (λi − λk)+ (k− i) = μi − μk .

The result follows. �

We conclude that for fixed i,

λi∏
j=1

hij =
μi!∏

i<j
(μi − μj)

holds, and therefore

∏
i,j
hij =

r∏
i=1
(μi!)∏

1≤i<j≤r
(μi − μj)

. (3)

There are many proofs for the following “hook-length formula.” We
look at one that uses the results on symmetric functions discussed
in Section 8.3.

Theorem. Let λ = λ1 . . . λr ∈ Par(n). Then the number of standard
tableaux of shape λ is given by

f(λ) = n!∏
i,j
hij

,

where hij are the hook lengths.

Proof. Set X = {x1, . . . , xn}. We know from Corollary 8.9 in Sec-
tion 8.3 that

sλ(x1, . . . , xn) =
∑

μ∈Par(n)
Kλμmμ , (4)

where Kλμ is the number of SSTs of shape λ and type μ. In par-
ticular, as noted before, f(λ) = Kλμ is the coefficient of mμ,
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μ = 11 . . .1 . Define the ring homomorphism φ : Λn(X) �→ Q by
φm11...1 = 1, and φmμ = 0 for μ ≠ μ. Then by (4),

φsλ = f(λ) .

Now by the Jacobi–Trudi identity,

sλ = det(hλi−i+j)
n
i,j=1 , (5)

where as usual λr+1 = · · · = λn = 0, and hj = 0 for j < 0. This
means for i > r that hλi = 1 and hλi−k = 0 for k > 0. The matrix in
(5) has thus the form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

hλ1 hλ1+1 . . . hλ1+r−1

hλ2−1 hλ2 . . . hλ2+r−2

. . .
hλr−(r−1) . . . hλr

∗

0
1

. . .
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and we obtain

sλ = det

⎛⎜⎝hλ1 . . . hλ1+r−1

. . .
hλr−(r−1) . . . hλr

⎞⎟⎠ . (6)

Every term of the determinant in (6) is therefore of the form
±hρ1hρ2 · · ·hρr = ±hρ, ρ = ρ1 . . . ρr ∈ Par(n). Now we apply the
map φ to equation (6). According to Exercise 8.11, the coefficient of
m11...1 in hρ is

(
n

ρ1...ρr

)
= n!
ρ1!···ρr ! , and we conclude that

f(λ) = φsλ = n! det

⎛⎜⎜⎜⎜⎜⎝
1
λ1!

1
(λ1+1)! . . .

1
(λ1+r−1)!

1
(λ2−1)!

1
λ2! . . . 1

(λ2+r−2)!
. . .

1
(λr−(r−1))! . . . 1

λr !

⎞⎟⎟⎟⎟⎟⎠ ,

where we set 1
k! = 0 for k < 0. But this last determinant is easily

computed. First we note that the last column contains precisely
1
μ1! ,

1
μ2! , . . . ,

1
μr ! , with μi defined as in the lemma. Factoring these

numbers out, we get
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f(λ) = n!
r∏
i=1
(μi)!

det

⎛⎜⎜⎜⎜⎜⎜⎝
μr−1

1 μr−2
1 . . . μ0

1

μr−1
2 μr−2

2 . . . μ0
2

. . .
μr−1
r μr−2

r . . . μ0
r

⎞⎟⎟⎟⎟⎟⎟⎠ ,

and this latter determinant is equal to
∏

1≤i<j≤r (μi − μj) , as was
proven in Exercise 8.1. So we finally arrive at

f(λ) = n!

∏
1≤i<j≤r

(μi − μj)
r∏
i=1
(μi)!

,

and the result follows from (3). �

Example. Consider λ = 3221, with the hook lengths inscribed in
the cells:

6 4 1
4 2
3 1
1

Thus f(λ) = 8!
6 · 4 · 4 · 3 · 2

= 70 .

Remark. Writing f(λ)
n! = ∏

i,j
1
hij

we see that 1∏
i,j
hij

is the probabil-

ity for obtaining a standard tableau when we fill the n cells of the
Ferrers diagram of λ randomly with 1 to n. Using ideas from prob-
ability theory such a proof for the hook-length formula has indeed
been given by Greene, Nijenhuis, and Wilf.

The Number of Semistandard Tableaux.
In the same spirit we can also give a hook-length formula for the
number of semistandard tableaux of shape λ. Again let λ = λ1 . . . λr
be a partition of n. We know from Theorem 8.8 that

#SSTλ = sλ(1,1, . . . ,1) ,

where sλ is the Schur function. The computation proceeds in two
steps: First we determine sλ(qn−1, . . . , q,1) and then we set q = 1.

By the definition of the Schur function,
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sλ(qn−1, . . . , q,1) =
det(q(n−j)(n−i+λi))ni,j=1∏
1≤i<j≤n

(qn−i − qn−j) .

Taking the transpose of the matrix in the numerator, we see that it
is again a Vandermonde matrix, which gives

sλ(qn−1, . . . , q,1) =
∏

1≤i<j≤n

(qn−i+λi − qn−j+λj )
qn−i − qn−j .

For brevity let us set vi = n− i+ λi, where clearly v1 ≥ v2 ≥ · · · ≥
vn. For each pair i < j we factor out qvj in the numerator, and qn−j

in the denominator. This gives for some exponent K,

sλ(qn−1, . . . , q,1) = qK
∏
i<j
(1 − qvi−vj )∏

i<j
(1 − qj−i) .

Now divide numerator and denominator by (1−q)(n2), and set q = 1
to obtain

#SSTλ = sλ(1,1, . . . ,1) =

∏
i<j
(vi − vj)∏

i<j
(j − i) . (7)

The denominator in (7) clearly equals
∏n
i=1(n− i)!, so let us look at

the numerator. For j > r we have λj = 0, that is, vj = n− j. On the
other hand, for 1 ≤ i, j ≤ r , vi − vj = μi − μj , where the μi’s are
defined as in the lemma. In summary,

∏
i<j
(vi−vj) =

∏
1≤i<j≤r

(μi−μj)·
r∏
i=1

n∏
j=r+1

(λi−i+j)·
n∏

i=r+1

(n−i)! . (8)

Multiply numerator and denominator in (7) by
∏r
i=1

(
(λi− i+r)!

) =∑r
i=1(μi!) and use (3) to obtain
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#SSTλ =

∏
1≤i<j≤r

(μi − μj)
r∏
i=1

(
(λi − i+n)!

)
r∏
i=1
(μi!)

r∏
i=1
(n− i)!

=

r∏
i=1

(
(λi − i+n)!

)
r∏
i=1
(n− i)!

1∏
i,j
hij

.

Finally,

r∏
i=1

(λi +n− i)!
(n− i)! =

r∏
i=1

(λi+n− i) · · · (n+1− i) =
r∏
i=1

λi∏
j=1

(n+ j− i) ,

and we arrive at the hook-length formula:

Theorem. Let λ ∈ Par(n); then

#SSTλ =
∏
i,j

n+ j − i
hij

.

For the example λ = 3221 above this gives #SSTλ = 14700.



8.5 Standard Tableaux 391

Notes and References

The starting point for the study of symmetric functions was the
problem of finding a formula for the roots of a polynomial, leading
to what is called the fundamental Theorem 8.4. The further devel-
opment of symmetric functions is closely related to the study of
the symmetric group, more precisely to the characters of represen-
tations of S(n). Schur and Frobenius used the functions that to-
day are called Schur functions (but which were known already to
Cauchy) for research on these characters. A nice introduction to
symmetric functions is presented in the book by Bressoud. More
advanced and comprehensive are the books by Macdonald and
Stanley. Plane partitions were invented and intensively studied by
MacMahon. In an important paper Bender and Knuth pointed out
the connection between the theory of symmetric functions and the
enumeration of plane partitions. The references list the contribu-
tions of Robinson, Knuth, and Schensted to the RSK algorithm. The
hook-length formula for standard tableaux appears in a paper by
Frame, Thrall, and Robinson. An elegant probabilistic proof was
given by Greene, Nijenhuis, and Wilf.
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9 Counting Polynomials

So far we have studied polynomials and generating functions whose
coefficients have a combinatorial significance. In this chapter we
take a different view: Given sets S0, S1, S2, . . ., we want to determine
the counting polynomial f(x) that at x = i gives f(i) = |Si|.
The classical example is the chromatic function χ(G;λ) in the vari-
able λ. Let G = (V, E) be a graph, which may have loops and multi-
ple edges. Then

χ(G; i) := #i-colorings of G ,

where as usual an i-coloring is a mapping c : V �→ {1, . . . , i} with
c(u) ≠ c(v) if {u,v} ∈ E. As an example, for the complete graph
Kn we have

χ(Kn; i) = i(i− 1) · · · (i−n+ 1) ,

since any i-coloring corresponds to an n-permutation of the col-
orset. The chromatic function is therefore χ(Kn;λ) = λ(λ − 1) · · ·
(λ−n+ 1).

It is not immediately clear that χ(G;λ) is a polynomial. But we shall
see shortly that this is indeed always the case; accordingly, we will
call χ(G;λ) the chromatic polynomial. Note that the chromatic num-
ber of G, that is, the minimal number of colors needed to color G,
is the smallest positive integer k with χ(G;k) > 0.

9.1 The Tutte Polynomial of Graphs

Let G = (V, E) be a graph. A loop is as usual an edge with equal end-
vertices. A bridge of G is an edge whose removal disconnects the
component that contains it (thus the number k(G) of components
is increased by 1). The graph of the figure has two bridges e, e′:
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e e′

Restriction and Contraction.
There are two operations on G that are basic to all that is to come.

Definition. Let e be an edge. The restriction G�e is the graph ob-
tained by removing e. The contraction G/e is the graph that results
after contracting e to a single vertex. That is, the end-vertices of e
are identified, keeping all other adjacencies.

Example.

G/e

G

G�e

e

It is clear that χ(G;λ) = 0 if G has a loop, and furthermore χ(G1
.∪

G2;λ) = χ(G1;λ)χ(G2;λ), where G1
.∪ G2 is the disjoint union.

The following fundamental recurrence permits in principle the com-
putation of χ(G;λ).

Proposition 9.1. Suppose e = {u,v} is not a loop of G. Then

χ(G;λ) = χ(G�e;λ)− χ(G/e;λ) . (1)

Proof. Look at the λ-colorings of G�e. The colorings c with
c(u) ≠ c(v) correspond bijectively to the colorings of G, and those
with c(u) = c(v) to the colorings of G/e. The result follows. �

Example. We determine χ(G;λ) in the following “graphic” way,
singling out e at each stage:
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e
= − =

e
(λ− 1)

=

⎛⎜⎜⎝ e − e

⎞⎟⎟⎠ (λ− 1)

=

⎛⎜⎜⎝ − − +

⎞⎟⎟⎠ (λ− 1)

=
e

(λ− 2)(λ− 1)+ (λ− 1) (since multiple edges

are irrelevant)

=

⎛⎜⎜⎝ −

⎞⎟⎟⎠ (λ− 2)(λ− 1)+ (λ− 1)

= [(λ− 1)2(λ− 2)+ (λ− 1)]

= λ(λ− 1)(λ− 2)[(λ− 1)2(λ− 2)+ (λ− 1)]
= λ(λ− 1)2(λ− 2)(λ2 − 3λ+ 3) .

Thus G has χ(G; 3) = 36 3-colorings and χ(G; 4) = 504 4-colorings.

Apart from the algorithm we get a bonus out of (1). The recurrence
immediately implies that χ(G;λ) is a polynomial with integral coef-
ficients. Some further properties are discussed in the exercises.

Proposition 9.2. Let G = (V, E) be a loopless graph. Then χ(G;λ) =
a0λn +a1λn−1 + · · · +an is a polynomial in λ with coefficients in Z.
Furthermore,

(i) χ(G;λ) has degree n = |V |,
(ii) the coefficients a0, a1, . . . , an−k(G) are nonzero with alternating

sign, a0 = 1, and ai = 0 for i > n− k(G).
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Proof. We use induction on |E|. If G has no edges, then χ(G;λ) =
λn. Otherwise, pick an edge e ∈ E. Then

χ(G;λ) = χ(G�e;λ)− χ(G/e;λ) ,

and all assertions follow immediately by induction. �

Tutte Polynomial.
The deletion/contraction recurrence spelled out in (1) leads to the
Tutte polynomial T(G;x,y) in two variables as a natural extension
of the chromatic polynomial. However, the Tutte polynomial has a
much richer structure and is arguably the most important counting
polynomial for graphs.

Definition. The Tutte polynomial T(G;x,y) of a graph G = (V, E)
is defined recursively as follows:

(i) If E = �, then T(G;x,y) = 1.

(ii) If e is a bridge, then T(G;x,y) = xT(G�e;x,y); (2)
if e is a loop, then T(G;x,y) = yT(G�e;x,y) .

(iii) If e is not a bridge or loop, then

T(G;x,y) = T(G�e;x,y)+ T(G/e;x,y) .

Thus T(G;x,y) may be calculated by choosing an ordering of the
edges to be removed and repeatedly using the recurrences. At first
sight, the polynomial depends on the order in which we delete the
edges. It was Tutte’s great discovery that in fact, it does not; we al-
ways get the same polynomial! This phenomenon will be a recurrent
theme for the other polynomials we are going to study.

Example. Let us compute the Tutte polynomial of the graph K−
4

(K4 minus an edge), deleting the edges in the order 1, . . . ,5:
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51 2

3 4
= 5 2

3 4
+

2
5

3 4

= x 5

3 4
+ 5

3 4
+

5

3 4

= (x + 1)

⎛⎜⎜⎝ 5

4 +
5

4

⎞⎟⎟⎠+
5

4
+ 5

4

= (x + 1)(x2 + x +y)+ xy +y2

= x3 + 2x2 + x + 2xy +y +y2 .

The uniqueness of T(G;x,y) can be shown by induction on the or-
der, but here is another and more elegant proof that does it in one
stroke. We exhibit a polynomial that observes the defining recur-
rences, and is independent of the order. What’s more, this descrip-
tion of T(G;x,y) is the easiest way to deduce some basic evalua-
tions for x and y .

We need some preparations. Let A be a subset of the edges of
G = (V, E), and identify A with the subgraph GA = (V,A). Thus
all graphs GA are taken to be spanning subgraphs in the sense that
V(GA) = V . We define the rank of A by

r(A) = |V | − k(GA) . (3)

It is easily seen that 0 ≤ r(A) ≤ |A| with

r(A) = 0 ⇐⇒ A = � ,
r(A) = |A| ⇐⇒ GA is a forest.

(4)

Furthermore, we infer from (3) that A ⊆ B implies r(A) ≤ r(B) and

r(A) = r(E)⇐⇒ k(GA) = k(G) . (5)

Finally, let us set r(G) = r(E) = |V | − k(G) .

Definition. The rank-generating function of G = (V, E) is the 2-
variable polynomial
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R(G;u,v) =
∑
A⊆E

ur(G)−r(A)v|A|−r(A). (6)

Theorem 9.3. The Tutte polynomial T(G;x,y) is uniquely defined,
with

T(G;x,y) = R(G;x − 1, y − 1) . (7)

Proof. We have to verify the recurrences in (2) for R(G;u,v) with
x = u+ 1, y = v + 1, that is,

(i) R(G;u,v) = 1 if E = � ,
(ii) R(G;u,v) = (u+ 1)R(G�e;u,v) when e is a bridge,

R(G;u,v) = (v + 1)R(G�e;u,v) when e is a loop,
(iii) R(G;u,v) = R(G�e;u,v)+R(G/e;u,v), when e is not a bridge

or loop.

It will follow by induction that T(G;x,y) is the evaluation of
R(G;u,v) at u = x − 1, v = y − 1, and thus uniquely defined.

Assertion (i) is obvious. For (ii) and (iii) we check how the rank func-
tion changes after deletion and contraction. Suppose e ∈ A, and let
r ′ and r ′′ be the rank functions of A�e in G�e and G/e, respec-
tively.

Clearly,
r ′(A�e) = r(A)− 1 if e is a bridge. (8)

For the contraction check that

r ′′(A�e) = r(A)− 1 if e is not a loop. (9)

Suppose e is a bridge. Then by (8),

R(G;u,v) =
∑

A⊆E�e
ur(G)−r(A)v|A|−r(A) +

∑
A:e∈A

ur(G)−r(A)v|A|−r(A)

= u
∑

A⊆E�e
ur

′(G�e)−r ′(A)v|A|−r ′(A)

+
∑

B=A�e
ur

′(G�e)+1−(r ′(B)+1)v|B|+1−(r ′(B)+1)

= (u+ 1)R(G�e;u,v).

The case of a loop is settled similarly, and for (iii) we get by (8) and
(9),
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R(G;u,v) =
∑

A⊆E�e
ur(G)−r(A)v|A|−r(A) +

∑
A:e∈A

ur(G)−r(A)v|A|−r(A)

=
∑

A⊆E�e
ur

′(G�e)−r ′(A)v|A|−r ′(A)

+
∑

B=A�e
ur

′′(G/e)+1−(r ′′(B)+1)v|B|+1−(r ′′(B)+1)

= R(G�e;u,v)+ R(G/e;u,v). �

Looking at the recursive definition of T(G;x,y) we have the follow-
ing corollary, which is rather surprising when we compare it to the
expansion of R(G;x − 1, y − 1) in terms of x and y .

Corollary 9.4. The Tutte polynomial T(G;x,y) = ∑
i,j tijxiyj has

nonnegative integral coefficients.

Example. The definition of the rank function implies the following
evaluations (see (4),(5)): Let G be connected. Then

T(G; 1,1) = R(G; 0,0) = # spanning trees,
T (G; 2,1) = R(G; 1,0) = # spanning forests,

T(G; 1,2) = R(G; 0,1) = # connected spanning subgraphs,

T(G; 2,2) = R(G; 1,1) = 2|E|.

As illustration, the graph K−
4 considered above contains 8 spanning

trees and 14 spanning connected subgraphs altogether.

The Recipe Theorem.
One of the most pleasing features of the Tutte polynomial is that it
can be regarded as a universal polynomial for all functions observ-
ing the deletion/contraction recurrence.

Definition. A function f that maps any graph into a field of char-
acteristic 0 is called a chromatic invariant (also termed a Tutte–
Grothendieck invariant) if the following hold:

(i) If G has no edges, then f(G) = 1.
(ii) Let f (bridge) = A, f (loop) = B, then

f(G) = Af(G�e), e bridge,

f(G) = Bf(G�e), e loop.
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(iii) There exist constants α ≠ 0, β ≠ 0 such that whenever e is not
a bridge or loop,

f(G) = αf(G�e)+ βf(G/e) .

The following result is sometimes called the recipe theorem.

Theorem 9.5. Let f be a chromatic invariant with A,B,α,β as
above. Then for all graphs G = (V, E),

f(G) = α|E|−|V |+k(G)β|V |−k(G)T
(
G;
A
β
,
B
α

)
. (10)

Proof. Formula (10) is certainly true for edgeless graphs. If G con-
sists only of bridges and loops, say 	 bridges and m loops, then
f(G) = A	Bm by (ii) above. Now, |V |−k(G) = 	, |E|−|V |+k(G) =m,
and T(G; Aβ ,

B
α) = (Aβ )

	( Bα)
m, so (10) is again satisfied. Let e be

an edge that is neither a bridge nor a loop. By induction and
k(G) = k(G�e) = k(G/e), we get

f(G) = αf(G�e)+ βf(G/e)

= α ·α|E|−1−|V |+k(G)β|V |−k(G)T
(
G�e;

A
β
,
B
α

)

+α|E|−|V |+k(G)β · β|V |−1−k(G)T
(
G/e;

A
β
,
B
α

)

= α|E|−|V |+k(G)β|V |−k(G)T
(
G;
A
β
,
B
α

)
. �

Example. Let us look once more at the chromatic polynomial
χ(G;λ). Setting f(G) = χ(G;λ)

λk(G) , it is immediately checked that f(G)
is a chromatic invariant with A = λ − 1, B = 0, α = 1, β = −1. The
recipe theorem yields therefore the following result.

Proposition 9.6. We have

χ(G;λ) = (−1)|V |−k(G)λk(G)T(G; 1 − λ,0) . (11)

For K−
4 we obtain from T(K−

4 ;x,y) = x3 +2x2 +x+2xy +y +y2,

χ(K−
4 ;λ) = −λ[(1 − λ)3 + 2(1 − λ)2 + (1 − λ)] = λ(λ− 1)(λ− 2)2 .



9.1 The Tutte Polynomial of Graphs 401

The Flow Polynomial.
In a sense dual to colorings we have what are called flows. By this
we mean the following. Take a graph G = (V, E) and orient its edges
arbitrarily. If e : u → v we set u = e−, v = e+. Choose any finite
commutative group A (written additively) with |A| ≥ 2. A mapping
φ : E → A�{0} is called an A-flow if Kirchhoff’s law is satisfied at
every vertex v , that is, in-flow equals out-flow:∑

e+=v
φ(e) =

∑
e−=v

φ(e) . (12)

Another way to state (12) is that the net-flow ∂v = ∑
e+=v φ(e) −∑

e−=v φ(e) equals 0 for all v . We note that G has no flow if it con-
tains a bridge e. To see this, look at the figure

e
Y u v X

>

For a flow φ we would have
∑
x∈X ∂x = 0, but on the other hand,

since every edge in X is counted once positively and once negatively
we get

∑
x∈X ∂x = 0 +φ(e), implying φ(e) = 0, which cannot be.

Let F(G;A) be the number of A-flows. When e is a loop, then we
may assign any nonzero value to e; hence

F(G;A) = (|A| − 1)F(G�e;A) .

You are asked in the exercises to provide a proof for the recurrence

F(G;A) = F(G/e;A)− F(G�e;A) , (13)

when e is not a loop or bridge. Thus F(G;A) is a chromatic invariant
with α = −1, β = 1, and the recipe theorem gives the following
result:

Proposition 9.7. Let F(G;A) be the number of A-flows; then

F(G;A) = (−1)|E|−|V |+k(G)T(G; 0,1 − |A|) . (14)

Now this implies the somewhat unexpected result that the number
of flows depends only on the size |A|, but not on the structure of
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the group A, nor on the orientation. We may thus give the following
definition:

Definition. The flow polynomial F(G;λ) is the polynomial such
that F(G;k) is the number of A-flows for any abelian group A with
k elements.

Example. Orient K−
4 as given and assign a flow with λ elements,

where the upper two and lower two edges

� �
�

� �

b b
a

c c

must receive the same flow by Kirchhoff’s condition. For a we may
take any of the λ − 1 nonzero values. The flow condition implies
a + b + c = 0, that is, once we choose a and b, then c is deter-
mined. Given a, the values 0,−a are forbidden for b, and we obtain
F(K−

4 ;λ) = (λ−1)(λ−2), in agreement with (−1)|E|−|V |+k(K
−
4 )T (K−

4 ;
0,1 − λ) = (1 − λ)2 + (1 − λ) = (λ− 1)(λ− 2).

The simplest case arises for A = {0,1} with 1 + 1 = 0. Since −1 = 1
the orientation does not matter. Hence a graph G = (V, E) has a
2–flow if and only if all degrees are even. These graphs are called
Eulerian, since any connected component admits an Eulerian walk,
that is, a closed walk using every edge exactly once. In this case
there is trivially only one 2-flow, and we obtain the “dual” results

G bipartite ⇐⇒ χ(G; 2) = 2k(G) ⇐⇒ T(G;−1,0) = (−1)|V |−k(G),

G Eulerian ⇐⇒ F(G; 2) = 1 ⇐⇒ T(G; 0,−1) = (−1)|E|−|V |+k(G) .
(15)

Colorings and flows are thus connected by a certain duality relation
(interchanging x and y in the Tutte polynomial), but there is an
important difference. For the chromatic polynomial the smallest k
with χ(G;k) > 0 (the chromatic number) may be arbitrarily high, as
witnessed by the complete graphs Kn. But for flows the situation is
entirely different. Every graph without bridges is known to have a
6-flow, and a famous unsolved conjecture of Tutte claims that every
such graph even has a 5-flow, which in view of Exercise 9.16 would
be best possible.
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Two Further Evaluations.
The evaluations we have discussed so far were directly inspired by
the rank-generating function or colorings and flows. We close this
section with two examples that are less obvious.

Example. Suppose we orient the edges of a graph G = (V, E) in
such a way that no directed circuits result. We then call the orienta-
tion O acyclic. A loop has no acyclic orientations, but any loopless
graph does. Just label the vertices 1, . . . , n and direct any edge from
the smaller to the higher number. We want to determine the num-
ber ac(G) of acyclic orientations, where ac(G) = 1 by definition if
E is empty. Clearly,

ac (bridge) = 2, ac (loop) = 0 ,

and furthermore
ac(G) = 2ac(G�e)

if e is a bridge, since both orientations on e are allowed.

Proposition 9.8. We have for G = (V, E),

ac(G) = T(G; 2,0) = (−1)|V |χ(G;−1) = |χ(G;−1)| . (16)

Proof. With (11) the Recipe Theorem 9.5 will imply (16), once we
show that for e not a loop or bridge,

ac(G) = ac(G�e)+ ac(G/e) . (17)

But this is easy. Let e = {u,v}, and consider an arbitrary acyclic
orientation O of G�e. There is always one direction u→ v or v → u
possible such that O can be extended to an acyclic orientation of
G. Indeed, if both directions were forbidden, then we would have
a directed path in G�e from u to v and one from v to u, which
would yield a directed circuit in G�e. Hence those orientations of
G�e that permit exactly one direction of e are bijectively mapped
onto this subset of acyclic orientations of G by assigning the proper
direction to e.

Consider now the acyclic orientations of G�e that allow both direc-
tions on e. These are precisely the orientations that induce acyclic
orientations on the contracted graph G/e, and (17) follows. �
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Example. Our final illustration concerns the evaluation of the
Tutte polynomial T(Kn;x,y) of the complete graphs Kn at x = 1,
y = −1. We begin by calculating the exponential generating func-
tion ∑

n≥1

Tn
zn

n!
, Tn = T(Kn;x,y) .

Since r(Kn) = n− 1, r(A) = n− k(A), we have by (7),

∑
n≥1

Tn
zn

n!
=
∑
n≥1

⎡⎣ ∑
A⊆E

(x − 1)k(A)−1(y − 1)|A|+k(A)−n
⎤⎦ zn
n!

= 1
x − 1

∑
n≥1

⎡⎣ ∑
A⊆E

(y − 1)|A|
(
(x − 1)(y − 1)

)k(A)(y − 1)−n
⎤⎦ zn
n!
.

Since Kn is the complete graph, the expression in the inner sum
refers to all graphs on n vertices specified according to the number
of edges and components, which we considered in Exercise 3.55.
Setting there α = y − 1, β = (x − 1)(y − 1), z = z

y−1 , we obtain

∑
n≥1

Tn
zn

n!
= 1
x − 1

⎡⎢⎣
⎛⎝∑
n≥0

y(
n
2)(y − 1)−n

zn

n!

⎞⎠(x−1)(y−1)

− 1

⎤⎥⎦ .
Let us denote by T(z) the derivative; hence

T(z) =
∑
n≥0

Tn+1
zn

n!
= (y − 1)S(y, z)(x−1)(y−1)−1S′(y, z) ,

where

S(y, z) =
∑
n≥0

y(
n
2)(y − 1)−n

zn

n!
.

Now we consider the case x = 1, y = −1, and set tn = T(Kn; 1,−1).
Hence

t(z) =
∑
n≥0

tn+1
zn

n!
= (−2)

S′(z)
S(z)

(18)

with

S(z) =
∑
n≥0

(−1)(
n
2)(−2)−n

zn

n!
. (19)

From (19) it is easily seen that
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S(−z) = (−2)S′(z) , (20)

and so

t(z) = S(−z)
S(z)

. (21)

Differentiation gives with (21) and (20)

t′(z) = −S′(−z)S(z)− S(−z)S′(z)
S(z)2

= 1
2
+ 1

2

(
S(−z)
S(z)

)2

= 1
2
+ 1

2
t(z)2 .

But we know already this differential equation from Section 7.4. Its
solution is

t(z) = 1
cosz

+ tanz ,

and out comes a beautiful result connecting T(Kn) with the secant
and tangent numbers:

T(K2n+1; 1,−1) = sec2n, T(K2n; 1,−1) = tan2n−1 (n ≥ 1) .

Exercises

9.1 Compute the chromatic polynomial of a tree and the circuit of length
n both directly, and by evaluating the Tutte polynomial.

� 9.2 Determine the chromatic polynomial and the number of acyclic ori-
entations of the complete bipartite graph Km,n.

9.3 Calculate T(Kn;x,y) for n ≤ 6 .

9.4 What is the highest degree of x and y in T(G;x,y) ?

9.5 Show for a connected graph G = (V , E) that a. xT(G; 1 + x,1) =∑
A⊆E forest xk(A), b. yn−1T(G; 1,1 +y) =∑A⊆E,k(A)=1 y |A|.

� 9.6 Let χ(G;λ) = ∑
i≥0 aiλn−i be the chromatic polynomial of a simple

graph G (no loops or multiple edges). Show that a1 = −|E|. Can you find
an interpretation for a2 ?
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9.7 For G = (V , E) and e ∈ E let Te(G) be the result of the operation
spelled out in the recursive definition of the Tutte polynomial. That is,
Te(G) = xT(G�e) if e is a bridge, etc. Prove the uniqueness of T(G;x,y)
by showing that TfTe(G) = TeTf (G) for any two edges e, f .

* * *

9.8 Let G = (V , E) be a connected simple graph on n vertices, and write
the chromatic polynomial as χ(G;λ) =∑n−1

i=0 (−1)iαiλn−i, αi > 0 for all i.
Consider ψ(G;λ) =∑n−1

i=0 αiλn−i, and prove

a. ψ(G;λ) = ψ(G�e;λ)+ψ(G/e;λ) for e not a loop.
b. ψ(G;λ) = λ∑n−1

j=0 tj(λ+ 1)n−1−j with tj ≥ 0.

9.9 Continuing the exercise, show the following for the sequence α0, α1,
. . . , αn−1 (n ≥ 3):

a. αk < α	 for 0 ≤ k < n−1
2 and k < 	 < n− 1− k,

b. αk ≤ αn−1−k for 0 ≤ k < n−1
2

c. α0 < α1 < · · · < α� n2 	−1 ≤ α� n2 	 .

Hint: Prove first αk =
∑k
j=0

(
n−1−j
k−j

)
tj .

� 9.10 Let G = (V , E) be a graph, and denote by bi(λ) the number of
λ-colorings with exactly i bad edges, where bad means that the end-
vertices are colored alike. Thus b0(λ) is the chromatic polynomial. Set
B(G;λ, s) = ∑|E|

i=0 bi(λ)s
i, and prove that B(G;λ,s)

λk(G) is a chromatic invariant

with B(G;λ, s) = λk(G)(s−1)|V |−k(G)T(G; s+λ−1
s−1 , s). The function B(G;λ, s)

is called the monochromial of G.

9.11 Let G be a simple graph with n vertices and m edges, and denote

by k and 	 the unique integers with m =
(
k
2

)
+ 	,0 ≤ 	 < k. Prove that

ac(G) ≥ (	 + 1)(k!), and show that the bound may be attained for any n
and m ≤

(
n
2

)
. Hint: Use induction on n.

9.12 Let r be a positive integer, G = (V , E). Show that rk(G)T(G; r+1,0) =
|χ(G;−r)| equals the number of pairs (g,O), where g : V �→ {1,2, . . . , r}
and O is an acyclic orientation such that u �→

O
v implies g(u) ≤ g(v).

� 9.13 An orientation of a graph G is called strong if there is a directed
path from any vertex to any other. Show that the number of strong ori-
entations of G is given by T(G; 0,2).

9.14 Prove recurrence (13) for the flow polynomial.

� 9.15 Suppose G is a 4-regular graph. Show that the number of 2-in 2-out
orientations of G (at every vertex v two edges point toward v and two
away from v) equals the number of 3-flows, that is, |T(G; 0,−2)|.
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9.16 Show that the Petersen graph of the figure has no 4-flow but a 5-flow:

9.17 Set tn(y) = T(Kn; 1, y) and t(z) = ∑
n≥0 tn+1(y)z

n

n! . Establish

the equation t′(z) = y
y−1 t(yz)t(z) − 1

y−1 t(z)
2, and deduce tn+1(y) =∑n−1

k=0

(
n−1
k

)
tk+1(y)tn−k(y)(1+y +· · ·+yn−k−1). Set y = 1 and re-prove

Cayley’s formula nn−2 for the number of trees (Theorem 3.7). Hint: Mimic
the proof given for y = −1, and for the last assertion use Exercise 3.42.

� 9.18 Take any spanning tree T on {1, . . . , n} and consider T as rooted at
1. We say that (i, j) is an inversion if i < j and j lies on the unique path
from 1 to i (j comes before i). Let inv(T) be the number of inversions;

thus 0 ≤ inv(T) ≤
(
n−1

2

)
.

Example: For n = 3, the trees

1

2 3
and

1

2

3

have no inver-

sion;
1

3

2

has one. Prove that for the Tutte polynomial T(Kn; 1, y) =
∑
T treey inv(T). How many trees have no inversions? Hint: Apply the expo-

nential formula to show that
∑
y inv(T) satisfies the differential equation

of the previous exercise.

9.2 Eulerian Cycles and the Interlace Polynomial

Just as the number of colorings led to the deletion/contraction re-
currence and to the Tutte polynomial, we now consider Eulerian
cycles and show how again a natural recurrence gives rise to a poly-
nomial.

Let G = (V, E) be a directed graph that may have loops and multiple
edges. An Eulerian cycle of G is a walk that starts at some vertex u,
passes along the (directed) edges and returns to u, using every edge
exactly once. A graph G is said to be Eulerian if it possesses an Eu-
lerian cycle. Clearly, when G is Eulerian then it must be connected,
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and every vertex v has equal in- and out-degree, d+(v) = d−(v).
Conversely, it is easily seen that these two conditions are also suffi-
cient.

The first interesting case arises when d+(v) = d−(v) = 2 for all v .
We call such graphs 2-in 2-out graphs.

Example. The 2-in 2-out graph of the figure will serve as illustra-
tion throughout.

6

5

4

3

2

1

Given a 2-in 2-out graph G = (V, E) we ask the following questions:

1. What is the number e(G) of Eulerian cycles?
2. More generally, what is the number ek(G) of decompositions of
G into k cycles, where a cycle is an Eulerian subgraph? Thus
e1(G) = e(G).

3. How large can m be with em(G) > 0?
4. Among all 2-in 2-out graphs on n vertices, what is max e(G) or

min e(G)?

We will answer these questions as we go along.

Eulerian Cycles and Interlace Graphs.
Let us start with a useful representation of the graph G. Pick some
Eulerian cycle C and draw the sequence of edges clockwise around
a circle. In the example above we may choose the following Eulerian
cycle C :
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1
4

2

3

5

46
5

6

1

3

2

C

We may also represent G (or C) as a cyclic 2-word, meaning that
every vertex appears exactly twice:

w = 1 4 2 3 5 4 6 5 6 1 3 2.

Next we associate to C the following (undirected) graph H(C). In
the diagram of C draw a chord between like symbols. The vertices
of H(C) are the chords 1, . . . , n with two chords i, j being adjacent
if they intersect. For the 2-word w this means that i and j are “in-
terlaced” in the sense that w is of the form w = w1iw2jw3iw4j.
The resulting (simple) graph is called the interlace graph H(C) as-
sociated with C .

In the example we get

1
4

5

4
6

5

6

1

3

2

C

3

2
2 3

5

4

1

6

H(C)

Remember that we enumerated the chord diagrams with respect to
the number of crossings (= number of edges in H(C)) as highlight
to Chapter 7.

Any Eulerian cycle Ci of G gives rise in this way to an interlace graph
H(Ci), and these graphs may be quite different, as we shall see in a
moment. A natural question is then what these graphs H(Ci) have
in common. Before we answer this let us look at the following opera-
tion, which allows us to pass from any Eulerian cycle C to any other.
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Suppose a and b are interlaced in the 2-word w corresponding to
the Eulerian cycle C :

w = w1 a w2 b w3 a w4 b .

Interchanging the subwords w2 and w4, we get another Eulerian
cycle Cab with word

wab = w1 a w4 b w3 a w2 b .

We call this operation a transposition of C along {a,b} .

Example. Let us perform the transposition in C along {1,3}:

w2

1
4

5

4
6

5

6

1

3

2

C

3

2

w3

w2
w4

1

6

3

2

C13

2

4

1 5

6

4

5

3

w4

w3

w1

w1

C13 has the interlace graph H(C13) 2 3 1 4 5 6

It is readily seen that any Eulerian cycle can be obtained from any
other by a series of transpositions (see Exercise 9.19).

Now let us check how H(Cab) is related to H(C) under the trans-
position along {a,b}. Denote by A, B, and AB the sets of vertices in
H(C) adjacent to a (but not to b), to b (but not to a), and to both
a and b, respectively. Let N = V�(A ∪ B ∪ AB ∪ {a,b}) denote the
remaining set. The easy proof of the following lemma is left to the
exercises.

Lemma 9.9. H(Cab) arises from H(C) by the following two opera-
tions:

1. Switch along {a,b}: Exchange edges and nonedges between any
two different sets A,B, and AB, keeping the rest unchanged (includ-
ing the edges within A,B,AB, and N).
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2. Swap of labels a,b: This means that a is adjacent to v in H(Cab)
if and only if b is adjacent to v in H(C); similarly for b.

AB
A B

N

ba

In our example we obtain

2 3

4

1

6

2 3

4

1

6

2

4

6

5 5

3

1

swapswitch

along {1,3} 1 ←→ 3 5

in agreement with what we found above.

The Interlace Polynomial.
Interlace graphs, that is, graphs that correspond to a 2-in 2-out
graph, are a small class of graphs; see Exercise 9.21 for a graph
that is not an interlace graph. But the switching operation can, of
course, be performed on any graph.

Definition. Let H = (V, E) be any simple graph. We say that H′ is
switching equivalent to H if H′ is obtained from H by a series of
edge switchings (no swaps). We then write H ≈ H′.

The relation ≈ is an equivalence relation, with the equivalence
classes called switching classes. Note that (Hab)ab = H. Lemma 9.9
implies that for interlace graphs (apart from swapping labels),

H(C)ab = H(Cab) .

Any two interlace graphs belonging to the same 2-in 2-out graph
are therefore switching equivalent.
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Example. Check that the switching class of the interlace graph
H(C) in our example consists of the following graphs:

, , , ·

Now we come to the main idea that will suggest a “Tutte-like” recur-
rence for the number of Eulerian cycles. Look at a vertex a in the
2-in 2-out graph G,

v4 v3

v2v1

a

where the vi’s need not be distinct, and an interlaced vertex b. Sup-
pose the 2-word of C is w = . . . v1av2 . . . b . . . v3av4 . . . b, that is,
vi ∈ wi in the notation above.

There are two possible ways to pass through a in any Eulerian cycle:

v1 v2

v4 v3

v1 v2

v4 v3

I

and

II

and it is clear that

e(G) = e(G�a)I + e(G�a)II , (1)

where (G�a)I , (G�a)II are again 2-in 2-out graphs. The interlace
graphs corresponding to the merged graphs (G�a)I , (G�a)II are
H(C)�a and H(Cab)�a, since we remove the chord a and keep the
rest as before. Hence if we define the function f

(
H(C)

) = e(G),
then it follows from (1) that

f
(
H(C)

) = f (H(C)�a)+ f (H(Cab)�a) ,
or since H(Cab) = H(C)ab (a and b swapped),
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f
(
H(C)

) = f (H(C)�a)+ f (H(C)ab�b) . (2)

Recurrence (2) is the basis for the following polynomial, which is
defined for any simple graph.

Definition. The interlace polynomial Q(H;x) of a simple graph
H = (V, E) is defined recursively as follows:

(i) Q(H;x) = x|V |, if H has no edges,
(ii) Q(H;x) = Q(H�a;x)+Q(Hab�b;x) for {a,b} ∈ E .

(3)

As for the Tutte polynomial, it is not at all clear that Q(H;x) is
independent of the order of edge-switchings. Uniqueness can be
proved (somewhat tediously) by considering directly the effect of
two successive switchings. We use a linear-algebraic approach to
produce a polynomial that is independent of order, reminiscent of
Theorem 9.3.

Fix the vertex set {1, . . . .n} of H, and let A = (aij) be the adjacency
matrix, that is,

aij =
{

1 if {i, j} ∈ E ,
0 if {i, j} �∈ E .

Observe that A is a symmetric matrix and denote by In the n × n-
identity matrix. Henceforth all matrices will be considered as matri-
ces over the field GF(2) = {0,1}.

Next, let L be the n× 2n-matrix

L = (A | In )
1...n 1...n

where we label the rows 1, . . . , n and the columns 1, . . . , n, 1, . . . , n
as indicated. A column set S is admissible if |S ∩ {i, i}| = 1 for all
i; thus |S| = n. Let LS be the n × n-submatrix of L with columns
from S. Let A denote the set of all admissible column sets; thus
|A| = 2n, and rk(M) denote the rank of any matrix M .

Theorem 9.10. The interlace polynomial of a simple graph H =
(V, E) on n vertices is given by

Q(H;x) =
∑
S∈A

(x − 1)n−rk(LS). (4)
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Proof. When H has no edges, we have L = (On|In), where On is
the n×n-zero matrix; hence rk(LS) = |S∩{1, . . . , n}|. It follows that

∑
S
(x − 1)n−rk(LS) =

n∑
k=0

(
n
k

)
(x − 1)k = xn .

Suppose without loss of generality that {n− 1, n} ∈ E(H). We have
to verify recurrence (3) for the right-hand side of (4).

Case 1. n ∈ S. Let S′ = S�n. Then the matrix LS looks as follows:

...

0

S′S′

I
0
1

n ∈ Sn �∈ S
0

...

Clearly, rk(LS) = rk(LS′) + 1, where LS′ , is the submatrix with the
n-th row removed. Hence n − rk(LS) = (n − 1) − rk(LS′), and we
obtain by induction∑

S :n∈S
(x − 1)n−rk(LS) =

∑
S′
(x − 1)n−1−rk(LS′) = Q(H�n;x) .

Case 2. n ∈ S. Write L as

L =

⎛⎜⎜⎜⎜⎝
B c1 c2 In−2 0 0

cT1 0 1 0T 1 0

cT2 1

n− 1

0

n

0T 0

n− 1

1

n

⎞⎟⎟⎟⎟⎠ ,

where c1, c2 are column vectors of length n−2, and cT1 , c
T
2 the trans-

poses.

Now we multiply L from the left by the matrix C :

C =

⎛⎜⎝ In−2 c2 c1

0 1 0
0 0 1

⎞⎟⎠ .



9.2 Eulerian Cycles and the Interlace Polynomial 415

Since C is nonsingular, all ranks are preserved, and we get (note
that ci + ci = 0)

CL =

⎛⎜⎜⎜⎜⎝
B + c1cT2 + c2cT1 0 0 In−2 c2 c1

cT1 0 1 0T 1 0

cT2 1

n− 1

0

n

0T 0

n− 1

1

n

⎞⎟⎟⎟⎟⎠ .

It is easily seen that B+c1cT2 +c2cT1 is precisely the adjacency matrix
of H(n−1,n) on V�{n− 1, n}. (Check it!) Interchanging columns n−
1 ↔ n− 1, n↔ n and rows n− 1 ↔ n yields⎛⎜⎜⎜⎜⎝

B + c1cT2 + c2cT1 c2 c1 In−2 0 0

cT2 0 1 0T 1 0

cT1 1

n− 1

0

n

0T 0

n− 1

1

n

⎞⎟⎟⎟⎟⎠ .

Hence by the same argument as in case 1 we obtain∑
S :n∈S

(x − 1)n−rk(LS) = Q(H(n−1,n)�(n− 1);x),

and the proof is complete. �

Formula (4) can be rewritten in a more convenient way. Suppose S is
admissible with T = S∩{1, . . . , n}, andAT is the submatrix ofAwith
rows and columns in T . In other words, AT is the adjacency matrix
of the induced subgraph of H on T . Since rk(LS) = rk(AT )+n−|T |,
we get

|T | − rk(AT ) = n− rk(LS) ,

and thus the following result.

Corollary 9.11. We have

Q(H;x) =
∑

T⊆{1,...,n}
(x − 1)|T |−rk(AT ), (5)

with rk(A�) = 0 by definition.
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It follows from recurrence (3) that Q(H;x) is a polynomial with
nonnegative integer coefficients, which in view of the expression (4)
is rather surprising. Furthermore, (3) implies

Q(Hab;x) = Q(Hab�b;x)+Q(H�a;x) = Q(H;x) ,

since (Hab)ab = H, and thus the following result.

Corollary 9.12. Switching-equivalent graphs have the same inter-
lace polynomial. In particular, any two interlace graphs belonging to
the same 2-in 2-out graph possess the same interlace polynomial.

Example. For the complete graph Kn, switching does not change
the rest, that is, Kn�a = Kabn �b = Kn−1; thus Q(Kn;x) = 2Q(Kn−1;
x), and so Q(Kn;x) = 2n−1x, since Q(K1;x) = x .

Before we apply the results to Eulerian cycles let us look at some
evaluations of Q(H;x). For x = 2 we get Q(H; 2) = 2n. Now let us
look at x = 1. By (5),

Q(H; 1) = #{T ⊆ {1, . . . , n} : rk(AT) = |T |} ,

or equivalently (remember we work over GF(2)),

Q(H; 1) = #{T : detAT = 1} . (6)

Let G be any graph, and B its adjacency matrix. If we orient the
edges, then B becomes a skew-symmetric matrix (over Z). Now recall
Section 5.3, where we studied these matrices. If n = |V(G)| is odd,
then detB = 0 over Z, and hence also over GF(2), since here 1 = −1.
If n is even, then

detB = (PfB)2 .

Now, |PfB| counts all perfect matchings of G, and passing to GF(2)
we have

PfB = 1 ⇐⇒ G has an odd number of perfect matchings.

Consequently, by (6) we arrive at the following result.

Corollary 9.13. We have

Q(H; 1) =# induced subgraphs of H with an odd number of
perfect matchings (including the empty set).
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Since a forest has at most one perfect matching; this yields in par-
ticular the following:

Corollary 9.14. For a forest H,Q(H; 1) counts the number of match-
ings (disjoint edge sets) in H, including the empty set.

Example. For the complete graph, Q(Kn; 1) = 2n−1, and it is pre-
cisely the complete subgraphs K2h on an even number of vertices
that have an odd number (2h−1)(2h−3) · · ·3·1 of perfect match-
ings.

Counting Eulerian Cycles and Decompositions.
For the interlace polynomial there is a simple recipe theorem. Sup-
pose f is a function on graphs that satisfies

f(H1
.∪ H2) = f(H1)f (H2) for disjoint unions,

f(H) = f(H�a)+ f(Hab�b), {a,b} ∈ E .
(7)

Then (3) implies f(H) = Q(H; s), where s = f(K1).

Proposition 9.15. Let G be a 2-in 2-out graph, and H any of its
interlace graphs. Then for the number e(G) of Eulerian cycles, and
for ek(G), we have

a. e(G) = Q(H; 1),
b. e(G;x) :=∑k≥0 ek+1(G)xk = Q(H; 1 + x). (8)

Proof. For an interlace graph H of G define f(H) = e(G). We
clearly have f(H1

.∪ H2) = f(H1)f (H2), and the recurrence holds
because of (2). It remains to consider H = K1, with

G = ·

Since G has precisely one Eulerian cycle, f(K1) = 1, and (a) follows.
Similarly, using f(H) = ∑

k≥0 ek+1(G)xk, we obtain f(H) = 1 + x
for H = K1, thus proving (b). �

Example. In our running example take the path P6 as interlace
graph. The interlace polynomial is quickly computed,

Q(P6;x) = 2x + 7x2 + 4x3 ,
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and we get

Q(P6; 1 + x) = 13 + 28x + 19x2 + 4x3 .

Therefore G has 13 Eulerian cycles, and further, e2(G) = 28,
e3(G) = 19, e4(G) = 4. Note also that by Corollary 9.14, P6 has pre-
cisely 13 matchings. A moments’s reflection shows that the path Pn
on n vertices possesses Fn+1 matchings (Fibonacci number); hence
Q(Pn; 1) = Fn+1.

The third question raised at the beginning, as to the maximal m
with em(G) > 0, refers to the degree ofQ(H;x), withm = degQ+1.
It is treated in the exercises.

Let us finally look at all 2-in 2-out graphs on n vertices and es-
timate max e(G) and min e(G), or what is the same, max Q(H; 1)
and min Q(H; 1) for a corresponding interlace graph H. An easy
lower bound is provided by Corollary 9.13. Since � and single edges
are induced subgraphs with an odd number of perfect matchings
(namely 1), we obtain

Q(H; 1) ≥ |E(H)| + 1 for all graphs H .

Hence e(G) ≥ |E| + 1 and e(G) = 1 if and only if the chord diagram
has no crossings. We know from the highlight in Chapter 7 that the
number of these diagrams is the Catalan number Cn. Two examples
of 2-in 2-out graphs G with e(G) = 1 are

.,

Another lower bound that depends only on n = |V | is contained in
Exercise 9.33.

As for an upper bound, recurrence (3) implies inductively

Q(H; 1) ≤ 2n−1 ,
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and furthermore, Q(H; 1) = 2n−1 only for H = Kn. Thus e(G) ≤
2n−1, and e(G) = 2n−1 only for the 2-in 2-out graph G with 2-word
1 2 . . . n1 2 . . . n . This graph is unique (up to labeling) and given by

Exercises

9.19 Prove that any Eulerian cycle of a 2-in 2-out graph can be obtained
from any other by a series of transpositions.

9.20 Prove Lemma 9.9.

9.21 Show that the 5-wheel is not an interlace graph. In fact, it
is the smallest such graph.

� 9.22 Compute the interlace polynomial for the graphs Km,n and Pn (path
with n vertices). What is Q(H; 1) for these graphs?

9.23 Show that bipartiteness is preserved by edge-switching. More pre-
cisely, if H is a connected bipartite graph with m and n vertices of each
color, then any equivalent graph has this property.

9.24 Show that the trees and have the same

interlace polynomial but are not switching equivalent. Hint: Previous ex-
ercise.

9.25 Let H have the components H1, . . . ,Hk(H). Show that Q(H;x) =∏k(H)
i=1 Q(Hi;x), and deduce that k(H) is the smallest index i for which

qi > 0 in Q(H;x) = ∑qixi.
9.26 Suppose H is an induced subgraph of a connected graph G. Show
that Q(H;x) ≤ Q(G;x), meaning that for all i, the i-th coefficient of
Q(H;x) is less than or equal to that of Q(G;x).

� 9.27 Show that the linear coefficient of Q(Cn;x) is n+ 1 if n is odd, and
n−2 if n is even, and deduce that H is connected and bipartite ifQ(H;x)
has linear coefficient q1 = 2.

* * *

9.28 Distribute n colored balls around a circle where ni ≥ 1 balls are
colored with color i, i = 1, . . . ,m. A distribution is admissible if no two
colors interlace. Prove the surprising result that the number of admissible
distributions is always nm−1 regardless of the frequencies ni.
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� 9.29 The independence number α(G) of a simple (undirected) graph is
the maximal size of a set of pairwise nonadjacent vertices. Show that
degQ(G;x) = maxα(H), where the maximum is taken over all graphs
H ≈ G.

9.30 In continuation of the exercise, show that degQ(G;x) = α(G) when
G is a forest. Give an example with degQ(G;x) > α(G).

9.31 Prove Q(H;−1) = (−1)n(−2)n−rk(A+In) with the notation as in The-
orem 9.10. Hint: Use a similar argument as in the proof of Theorem 9.10,
considering B + In−2.

9.32 Let G be a 2-in 2-out graph and ek = ek(G) as before, with m =
max k, ek > 0. Deduce from Proposition 9.15:

a. em < em−1 < · · · < e�m2 � ,

b. ei < em−i+1 for i > m+1
2 .

Hint: This proceeds along the lines of Exercise 9.9.

� 9.33 Let H be a graph without isolated vertices. Show that Q(H; 1) ≥
n = |V |, with Q(H; 1) = n if and only if H = K1,n−1, with one exception,
which? What do the associated 2-word to K1,n−1 and the 2-in 2-out graph
look like?

9.34 Let H = (V , E) be a simple graph. We know that Q(H; 1) ≥ |E| + 1.
Show that for a graph without isolated vertices, equality holds if and only
if H = Kh,i,j , where one of the indices may be 0.

� 9.35 Consider all (2n− 1)(2n− 3) · · ·3 · 1 diagrams with n chords. Any
diagram gives rise to a 2-in 2-out graph G. Let fk(n) be the number
of diagrams whose associated graph has exactly k Eulerian cycles, thus∑(n2)
k=0 fk(n) = (2n − 1) · · ·3 · 1. Compute fk(n) for k ≤ 3. Hint: Use the

bounds for Q(H; 1), where H is an interlace graph of G.

9.3 Plane Graphs and Transition Polynomials

Plane Graphs.
You are probably familiar with plane graphs and the 4-color theo-
rem. Let us recall the basic definitions. A graph G = (V, E) is plane
if the vertices are points of R2 and the edges Jordan (non-self-
intersecting) curves between the points that intersect only in the
endpoints. The complement R2�(V ∪E) splits into disjoint regions,
called the faces F of G. Incidences between vertices, edges, and
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faces are declared in the natural way. We then write G = (V, E, F).
A graph is planar if it admits a plane embedding.

Example. The plane graph

has 6 vertices, 12 edges, and 8 faces (including the outer face).

Here are three fundamental facts which can be found in any graph
theory book.

A. The Jordan curve theorem. Any closed simple curve in R2 divides
the plane into precisely two regions, one of which is unbounded.

For a plane graph this means that any circuit partitions the graph
into the circuit, the interior, and the exterior.

B. Euler formula. For a connected plane graph G = (V, E, F),
|V | − |E| + |F| = 2 . (1)

C. To every plane graph G = (V, E, F) there is a dual plane graph
G∗ = (V∗, E∗, F∗) constructed as follows. Place a point in the in-
terior of every face and join two such points if the corresponding
faces in G share an edge e on the boundary, by drawing an edge
across e. If the faces have several common boundary edges, then
draw a new edge across every such boundary edge. Clearly, this can
be done in such a way that the new graph G∗ is again plane.

Note that G∗ is always connected, and that G ↔ G∗ is an involution
among connected plane graphs. We may thus identify V∗ = F , E∗ =
E, and F∗ = V .

Example.

G ←→ G∗
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The following facts should be clear: The degree d(v∗) in the dual
graph G∗ equals the number of boundary edges of the face f in G
with f = v∗, and dually the degree d(v) of a vertex v in G equals
the number of boundary edges of the face f∗ in G∗ where f∗ = v .

Next we note that bridges and loops are dual concepts in the sense
that e is a bridge (loop) in G if and only if e∗ is a loop (bridge) in
G∗. Just note that by the Jordan curve theorem, e is a bridge of G
if and only if the two incident faces are the same. Furthermore, we
have (see Exercise 9.37) that if e is not a loop or bridge of G, then

(G�e)∗ = G∗/e, (G/e)∗ = G∗�e . (2)

Hence we obtain the following important result.

Proposition 9.16. Let G be a plane graph. Then for the Tutte poly-
nomial,

T(G∗;x,y) = T(G;y,x) . (3)

Example. For graphs that admit a self-dual embedding, that is,
G � G∗, like the two examples of the figure

the Tutte polynomial must be invariant under x ↔ y . Indeed, we
have for K4 and the 4-wheel W4,

T(K4;x,y) = x3 + 3x2 + 2x + 4xy + 2y + 3y2 +y3 ,

T (W4;x,y) = x4 + 4x3 + 6x2 + 3x + 4x2y + 9xy + 4xy2 + 3y

+ 6y2 + 4y3 +y4 .

Next we look at colorings. Let G be connected. Vertex-colorings of
G∗ correspond to face-colorings of G (adjacent faces receive differ-
ent colors), so by (3) and Proposition 9.6,

χ(G∗;λ) = (−1)|F|−1λT(G; 0,1 − λ). (4)

Proposition 9.7 and Euler’s formula thus imply

χ(G∗;λ) = λF(G;λ), (5)
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where F(G;λ) is the flow polynomial of G.

In particular, (5) gives another pair of dual concepts: The plane
graph G is Eulerian if and only if G∗ is bipartite. Indeed,

G∗ bipartite ⇐⇒ χ(G∗; 2) ≠ 0 ⇐⇒ F(G; 2) ≠ 0 ⇐⇒ G Eulerian.

In other words, a plane graph G has a 2-face-coloring if and only if
G is Eulerian. Continuing, we see that a plane graph G has a 4-face-
coloring if and only if G has a 4-flow. The 4-color theorem (4-CT)
thus takes on two equivalent forms:

4-CT ⇐⇒ every planar graph has a 4-vertex-coloring
⇐⇒ every planar graph has a 4-flow.

The Medial Graph.

We come to the main definition that will allow us to define counting
polynomials on plane graphs G. Let G = (V, E, F) be a plane graph.
Every edge e appears on the boundary of two faces (which may be
identical if e is a bridge), and we call the four incident edges along
these faces the neighbors of e as in the figure:

e

e

Put a vertex on every edge and join it by a small curve inside the
face to each of its four neighbors. The resulting graph G̃ = (Ṽ , Ẽ, F̃)
is again plane, and 4-regular; G̃ is called the medial graph of G. The
graph G̃ is connected if and only if G is. Since G̃ is Eulerian, its faces
can be 2-colored black and white. We color the outer face white; the
rest is then determined by connectivity.
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Example. The 4-wheel G and its medial graph G̃:

G̃G

←→

The following facts are immediate from the definition:

1. The black faces of G̃ correspond to the vertices of G, and the
number of boundary edges equals the degree of the correspond-
ing vertex.

2. The white faces of G̃ correspond to the faces of G, with the same
boundary length.

3. Every edge of G̃ is incident to a black and a white face.
4. Two vertices of G are adjacent if and only if the corresponding

black faces of G̃ share a common vertex, and dually for the faces
of G and the white faces of G̃.

In sum, a plane graph G determines a 2-colored medial graph that
is 4-regular. Conversely, if G̃ is a 2-colored 4-regular plane graph,
then we may uniquely reconstruct the underlying plane graph G.
We then call G the Tait graph of G̃.

Example. Suppose we are given G̃ as in the figure, with the black
faces numbered 1 to 4.

4
Tait graph G

1

2

3 4

3

1

2

G̃

Transition Polynomials.
Consider a connected plane graph G = (V, E, F) and its medial
graph G̃ = (Ṽ , Ẽ, F̃). We may identify E = Ṽ . Take a vertex e ∈ Ṽ .
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There are three possibilities to decompose the incident edges at e
into two vertices of degree 2:

e

black white crossing

We speak of a transition p(e) at e of black, white, or crossing
type. If a transition p(e) is chosen at every vertex e of G̃, then
p = {p(e) : e ∈ Ṽ} is called a transition system. Hence there are 3|E|

different transition systems. Every transition system decomposes
the medial graph G̃ into a number c(p) of edge-disjoint cycles (Eu-
lerian subgraphs).

Now assign to every transition type p(e) a weight (variable),

W(p(e)) =

⎧⎪⎨⎪⎩
α black,
β if p(e) is white,
γ crossing,

(6)

and set
W(p) =

∏
e∈E

W
(
p(e)

)
.

Definition. The transition polynomial S(G̃,W ;λ) with respect to W
is

S(G̃,W ;λ) =
∑
p
W(p)λc(p) . (7)

Example. Let us look at the two smallest examples with |E| = 1.

crossing

bridge medial

black white

Hence S = αλ2 + (β+ γ)λ . Similarly, for the loop
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crossingblack whiteloop medial

thus S = βλ2 + (α+ γ)λ .

Our method consists in taking special values for the variables
α,β,γ, and then interpreting the properties of the transition poly-
nomial in terms of the underlying Tait graph G. For example, when
α = β = γ = 1, then S(G̃,W1,1,1;λ) = ∑

p λc(p) =
∑
k≥1 ekλk, where

ek is the number of decompositions of G̃ into k Eulerian cycles.

Penrose Polynomial.
A very interesting transition polynomial suggested by Penrose
comes from the evaluation α = 0 (no black transitions), β = 1,
γ = −1.

Definition. The Penrose polynomial of a connected plane graph
G = (V, E, F) is

P(G;λ) = S(G̃,W0,1,−1;λ) =
∑
p
(−1)x(p)λc(p),

where x(p) is the number of crossing vertices in p .

First we note that P(G;λ) = 0 if G contains a bridge. Indeed, a
bridge e turns into a cut vertex of G̃, and we obtain pictorially

crossingG̃1

e

G̃2

=

white

−

where G̃1, G̃2 are the two components of G̃�e.

Any transition system p of G̃ corresponds to a pair (p1, p2) of G̃1

and G̃2, respectively, and we get

S(G̃) = S(G̃1)S(G̃2)− S(G̃1)S(G̃2) = 0.

In Exercise 9.42 you are asked to prove that conversely, every
bridgeless connected plane graph G has nonzero Penrose polyno-
mial of degree |F|, the number of faces in G.
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The first question we want to tackle is whether P(G;λ) counts some-
thing for positive integers k. Call a map g : Ẽ �→ {1,2, . . . , k} a k-
valuation if at every vertex e every integer appears an even number
(possibly zero) of times. Hence either the same integer appears at
all four edges, or two integers i ≠ j appear twice. We therefore have
four possibilities for the type (g, e):

ii

ii

total
ij jj

i i i j

ji

i j

black white crossing

A k-valuation is admissible if only the white and crossing types oc-
cur.

Proposition 9.17. Let k be a positive integer, then

P(G;k) = # admissible k-valuations.

Proof. The following reasoning is essentially an inclusion–exclu-
sion argument. For a valuation g and a vertex e ∈ Ṽ set

W(g, e) =

⎧⎪⎨⎪⎩
0 if (g, e) is total or black,
1 if (g, e) is white,

−1 if (g, e) is crossing,

and

W(g) =
∏
e
W(g, e) .

If g is not admissible, then W(g) = 0 by definition. Suppose g is
admissible, and let x(g) be the number of crossing types (g, e);
thus W(g) = (−1)x(g). Denote by Ci = {y ∈ Ẽ : g(y) = i} the pre-
image of i, i = 1, . . . , k. The Ci’s form a set of disjoint circuits in
G̃, and the Jordan curve theorem implies that any two Ci,Cj cross
an even number of times. This implies that x(g) is even, and so
W(g) = 1. We conclude therefore that∑

g
W(g) = # admissible k-valuations.



428 9 Counting Polynomials

It remains to show that∑
g
W(g) =

∑
p
(−1)x(p)kc(p). (8)

Let g be an arbitrary k-valuation, and p a transition system. We
write p(e) ≺ (g, e) if the transition p(e) has equal numbers in g
at e. When (g, e) is of total type, then there are three transitions
that are compatible with g; otherwise, there is precisely one. In any
case, we find by the definition of W(g, e) and W

(
p(e)

)
, where W =

W0,1,−1 , that
W(g, e) =

∑
p(e)≺(g,e)

W
(
p(e)

)
.

Set p ≺ g if p(e) ≺ (g, e) holds for all e. Then we get∑
g
W(g) =

∑
g

∏
e
W(g, e) =

∑
g

∏
e

∑
p(e)≺(g,e)

W
(
p(e)

)
=
∑
g

∑
p≺g

∏
e
W
(
p(e)

) =∑
g

∑
p≺g

(−1)x(p)

=
∑
p
(−1)x(p)|{g : p ≺ g}| .

For fixed p, we have p ≺ g if and only if g is constant on the c(p)
cycles induced by p, and we conclude that |{g : p ≺ g}| = kc(p) .
This proves (8), and thus the proposition. �

Clearly, P(G; 0) = 0, and since there are no admissible 1-valuations
we also have P(G; 1) = 0.

Corollary 9.18. We have

P(G; 2) =
{

2|V | if G is Eulerian,
0 otherwise.

Proof. An admissible 2-valuation must assume alternate numbers
around a black face of G̃. Hence every black face must have an
even number of boundary edges, or equivalently G must be Eule-
rian. Since there are two possibilities for each black face, the result
follows. �

We come to one of the main discoveries of Penrose. An edge-
coloring of any graph is a coloring that assigns different colors to
incident edges.
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Theorem 9.19. Suppose G is a connected plane 3-regular graph;
then

P(G; 3) = # 3-edge-colorings.

Proof. The following picture shows the whole proof. Relate a 3-
edge-coloring g of G to a 3-valuation g of G̃ as in the figure:

g

a

b c

g

bc

a

It is easily seen that g is an admissible 3-valuation, and that g � g
is a bijection. �

One of the first results on the 4-color problem was Tait’s theo-
rem stating that the 4-color theorem holds if and only if every 3-
regular connected plane graph without loops and bridges has a 3-
edge-coloring. Hence another equivalent formulation of 4-CT is that
P(G; 3) > 0 for all 3-regular connected plane graphs without loops
or bridges.

The Case of No Crossings.
Another interesting situation is given by the evaluation γ = 0. Let
us denote the weight function by Wα,β. For example, for a bridge or
loop we get

S(@bridge,Wα,β;λ) = αλ2 + βλ ,
S(Aloop,Wα,β;λ) = βλ2 +αλ .

The following figure shows what happens when we delete or con-
tract e in G where e is neither a bridge nor a loop.
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AG�e

gf

kh

gf

G̃

h k

gf

AG/e

kh

G�e

k
h

g
f

kh

g

f

G
G/e

k
h

g
f

e

eee

We see that the restriction G�e corresponds to the black transition
at e, and the contraction to the white transition. Hence

S(G̃,Wα,β;λ) = αS(AG�e,Wα,β;λ)+ βS(AG/e,Wα,β;λ).

From this one readily obtains that
S(G̃,Wα,β;λ)

λ is a chromatic invariant
of the Tait graph G, with A = αλ+ β, B = βλ+α in the notation of
Theorem 9.5. Together with Euler’s formula |E| − |V | + 1 = |F| − 1
we have proved the following result.

Theorem 9.20. Let G = (V, E, F) be a connected plane graph, α ≠ 0,
β ≠ 0. Then

S(G̃,Wα,β;λ) = α|F|−1β|V |−1λTG; 1 + α
β
λ ,1 + β

α
λ) . (9)

Different weightings yield, of course, different transition polynomi-
als. But there is one remarkable case in which we can assert equality.
The proof is left to the exercises.

Lemma 9.21. Suppose the weightings W and W ′ differ by an addi-
tive constant, that is, α′ = α +m, β′ = β +m, γ′ = γ +m. Then
S(G̃,W ′;−2) = S(G̃,W ;−2).

Example. Take W = W0,1,−1 and W ′ = W1,2,0. The first weighting
gives the Penrose polynomial, while the second is covered by the
previous theorem. The lemma implies
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P(G;−2) = S(G̃,W0,1,−1;−2) = S(G̃,W1,2,0;−2) = −2|V |T(G; 0,−3) .

Now we know from (3) and Proposition 9.6 that

(−1)|F|−14T(G; 0,−3)

counts the number of 4-face-colorings of G, which gives another
amazing property of the Penrose polynomial.

Corollary 9.22. We have

P(G;−2) = (−1)|F|2|V |−2 · (#4-face-colorings of G).

In particular, the 4-color theorem is equivalent to P(G;−2) ≠ 0 for
all connected plane graphs without bridges.

Next we discuss an interesting connection to 2-in 2-out graphs that
will prove useful in the next section. Consider a connected plane
graph G = (V, E, F) and the medial graph G̃, and orient the edges of
G̃ such that the black face is always on the right, as in the figure:

G̃G

We call this the canonical orientation of G̃, and denote by G̃c the re-
sulting 2-in 2-out graph. It follows from the definition of the canon-
ical orientation that with the weighting α = β = 1, γ = 0, the tran-
sition systems of G̃ correspond bijectively to the Eulerian decom-
positions of G̃c . In other words, S(G̃,W1,1,0;λ) = ∑

k≥1 ek(G̃c)λk.
Considering (9) we also have

S(G̃,W1,1,0;λ) = λT(G; 1 + λ,1 + λ),

and thus ∑
k≥0

ek+1(G̃c)λk = T(G; 1 + λ,1 + λ). (10)

In view of Proposition 9.15 this also gives
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T(G;λ,λ) = Q(H;λ), (11)

where H is any interlace graph of G̃c . Now we know that T(G; 1,1)
counts the number of spanning trees in G, whence (10) gives the
following result:

Corollary 9.23. The number of Eulerian cycles in the 2-in 2-out
graph G̃c equals the number of spanning trees of G.

Consider, finally, the evaluation α = β = 0, γ = 1. That is, we take
the unique transition system q consisting only of crossing transi-
tions. Subtracting 1, we get the weightingα = β = −1, γ = 0. Lemma
9.21 and (9) imply

S(G̃,W0,0,1;−2) = (−2)c(q) = S(G̃,W−1,−1,0;−2)

= (−2)(−1)|E|T(G;−1,−1) ,

and thus the following result:

Corollary 9.24. Let G = (V, E, F) be a connected plane graph, and
G̃ its medial graph. Then

T(G;−1,−1) = (−1)|E|(−2)c(q)−1, (12)

where q is the all-crossing transition system of G̃. In particular,
c(q) = 1 if and only if |T(G;−1,−1)| = 1.

Example. We have computed the Tutte polynomial for the graph
K−

4 in Section 9.1, obtaining T(K−
4 ;−1,−1) = 2. Thus c(q) = 2, and

the figure shows the corresponding decomposition into two cycles.

K̃−
4K−

4

Exercises

� 9.36 Verify Euler’s formula by induction on the number of edges, starting
with a tree.

9.37 Prove the equalities in (2).
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9.38 Compute the transition polynomial S(G̃,Wα,β,γ ;λ) for G = K3, and

verify that S(G̃,W1,1,1;λ) = ∑
ekλk, ek = number of decompositions into

k cycles.

9.39 Show that if G = G1
.∪ G2 is a disjoint union of plane graphs, then

S(G̃) = S(G̃1)S(G̃2).

� 9.40 Suppose e is a bridge of the connected plane graph G. We have seen
that e is then a cut vertex of G̃; let G̃1, G̃2 be the components of G̃�e.
Show for Wα,β,γ that S(G̃) = αS(G̃1)S(G̃2)+ β+γ

λ S(G̃1)S(G̃2).

9.41 Use the definition of an admissible valuation to deduce
a. P(G;k) ≤ P(G;k+ 1), b. P(G;k) ≥ χ(G∗;k).

� 9.42 Prove that if G has no bridges, then P(G;λ) is a polynomial of degree
|F|.
9.43 Prove Lemma 9.21 by induction on |E|.

* * *

� 9.44 Let G be a connected plane Eulerian graph, P(G;λ) = ∑|F|
i=1 aiλ

i.
Show that all coefficients ai are nonzero and have alternating sign. Prove
further: a.

∑ |ai| = 2|E|, b. (−1)|F|P(G;−1) = 2|E|, c. |P(G;−1)| < 2|E| if G
is not Eulerian.

9.45 Suppose G = (V , E, F) (without bridges) has two faces with common
boundary edges e, e′. Show that P(G;λ) = 2P(G/e;λ). Use this to com-
pute the Penrose polynomial of the circuit of length n.

9.46 In continuation of the exercise, suppose G = (V , E, F) has no dif-
ferent faces with two common boundary edges. Prove that the highest
coefficient of P(G;λ) is 1.

� 9.47 Compute the Penrose polynomial of the prism .

9.48 Suppose the Penrose polynomial P(G;λ) =∑|F|
i=1 aiλ

i has alternating
nonzero coefficients. Show that this implies that G is 4-face colorable.
Hint: Corollary 9.22.

9.49 Show that an arbitrary graph G has a 2k-flow if and only if E(G) is
the union of k Eulerian subgraphs. Hint: Use the group A = Z2 + · · · +
Z2 with componentwise addition. What is the dual statement when G is
plane?

9.50 Consider a connected plane graph G = (V , E, F), and set N(A) = 1
if G∗

A = (V∗, A) contains an odd number of spanning trees of G∗, and
0 otherwise. Show that the linear coefficient a1 of P(G;λ) is given by
a1 = ∑

A⊆E(−1)|A|N(A), and deduce that a1 is even for |V | ≥ 2. Hint:
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N(A) ≡ N(A�e) + N(A/e) (mod 2). Incidentally, it is an open question
whether a1 is always nonzero.

9.51 Show that T(G;−1,−1) equals ±2m for any graph G.

9.52 Consider the set Vk of all k-valuations of G̃ (connected) which have
no crossing type, and for g ∈ Vk let t(g) be the number of total types
(g, e). Prove that

∑
g∈Vk 2t(g) = kT(G;k + 1, k + 1), where G is the Tait

graph of G̃. Hint: Argue as in the proof of Proposition 9.17.

� 9.53 Let G be a connected plane graph, and let O be the set of all Eulerian
orientations of G̃, that is, those that make G̃ into a 2-in 2-out graph. For
O ∈ O let s(O) be the number of saddle points e, meaning that at e
the edges are oriented alternately in and out. Show that

∑
O∈O 2s(O) =

2 · T(G; 3,3).

9.4 Knot Polynomials

The counting polynomials considered in the previous sections lead
directly to a beautiful field that has been particularly active in re-
cent years—polynomial invariants of knots. A knot is a subset of
R3 that is homeomorphic to a circle. A link consists of several dis-
joint knots. In this general setting knots can behave quite strangely.
Without going into the topological details we restrict ourselves to
so-called tame knots, which are ambient isotopic to simple closed
polygons.

Knots, Links, and Diagrams.
A knot is usually pictured by means of a regular projection onto
a plane, where regular means that the projection contains only
finitely many multiple points and that these points are all double
points v , with the projected pieces crossing at v .

Example. The figure shows the (right-handed) trefoil Tr and a link
L1 consisting of two components.

L1Tr
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We call such a plane projection a diagram D of the knot or link.
At a crossing point we speak of an underpass or overpass with the
obvious meaning.

The connection to the last section is immediate. If we regard the
crossing points of a diagram D as vertices, and the strings between
crossing points as edges, then D becomes a plane 4-regular graph,
which can clearly be assumed to be connected. The faces of D are
colored black and white as before. Every vertex (crossing point) is
thus incident to four faces, alternately colored black and white.

To specify which edge goes over we use the convention “left over
right” as seen from the black face. Notice that it makes no difference
from which black face the crossing is viewed.

−+

With this convention, the diagram becomes a connected plane 4-
regular graph D̃ with a signing of the vertices. For example, the
graphs D̃ of the links above are

+ + −

+ −

Now we know that D̃ corresponds to a unique underlying plane
graph G, its Tait graph, such that D̃ = G̃ is the medial graph of G,
with the edges of G corresponding to the vertices of D̃. In sum, we
have proved the following:

Proposition 9.25. There is a bijection between edge-signed con-
nected plane graphs G and link diagrams D.

Example. Consider two different edge-signings of K−
4 with the as-

sociated diagrams and projections:
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+

+

+ +

+ +

+

+

+

−
−

G̃G D

L2

L3

+ +

+ −
−

+

+ +

+

A subclass of diagrams is of particular interest. A link is called al-
ternating if it has a diagram in which the crossings are alternating
over–under, as we run through the knots. The trefoil Tr and the
link L3 of the last example have alternating diagrams. It is easy to
see that an alternating link has a signed Tait graph representation
in which all edges have the same sign (Exercise 9.55).

Equivalence of Links and Reidemeister Moves.
Look at the link L2 of the example. It is immediately seen (by twist-
ing the upper half of the figure eight) that L2 is topologically equiv-
alent to the link L1 considered before. Topological equivalence of
links is reduced to purely combinatorial conditions by the follow-
ing famous theorem of Reidemeister, whose proof can be found in
any advanced book on knot theory.

Theorem 9.26. Two links L,L′ are equivalent, written L � L′, if and
only if any diagram of L can be transformed into any diagram of L′

by a finite sequence of so-called Reidemeister moves:

(I) ↔
D D′′

↔
D′

(II) ↔↔

(III) ↔
These moves are understood to change only the local configuration
depicted; the rest remains unchanged.
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The great problem of knot theory is, of course, to decide whether
two given knots or links are equivalent, and in particular, when a
knot K is equivalent to the “unknot” L◦ = © (K can be unknotted).
The traditional approach is to find link invariants. A function f
defined on links is called an invariant if L � L′ implies f(L) =
f(L′). Or turned around: Whenever we can prove f(L) ≠ f(L′),
then L and L′ are topologically different links.

A trivial example is the number of component knots of L. Other
invariants are known from topology (e.g., the fundamental group),
but the complexity status of the equivalence problem is very un-
clear. Certainly no good algorithm is known.

The great importance of Theorem 9.26 rests on the fact that in order
to test whether a function f is an invariant we have only to check
that f remains unchanged under the Reidemeister moves. In the
sequel we discuss several interesting polynomial invariants that tie
in naturally with the previous counting polynomials.

Kauffman Bracket and Jones Polynomial.
The bracket polynomial 〈D〉 of a link diagram is obtained by the
following rules. There are constants A,B, and d such that

(K1) 〈©〉 = 1, ©= unknot,

(K2) 〈D ∪©〉 = d〈D〉, D ∪© disjoint union,

(K3) 〈 〉 = A〈 〉 + B〈 〉 .

Condition (K3) means that we resolve a crossing by going to the
right (seen from the underpass), or to the left. The rest is left un-
changed. If we apply (K3) to every one of the n crossing points, we
see that 〈D〉 decomposes into 2n summands (weighted by A or B),
where each summand corresponds to a particular resolution system.

This looks very much like the transition systems of the last section.
Let r be a particular resolution system, which goes right at i(r)
crossing points and left at j(r) points, and suppose r decomposes
the diagram into c(r) trivial knots. Rules (K1) and (K2) show then
that the bracket polynomial is a polynomial in the variables A,B,d,
given by

〈D〉 =
∑
r
Ai(r)Bj(r)dc(r)−1 . (1)
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Before we tackle the problem whether 〈D〉 is a link invariant, let us
look at the smallest examples in which the Tait graph is a bridge or
loop. Since the edges are signed we have two cases each. Look at a
bridge:

D+
b D−

b

+ ↔ − ↔

By the bracket rules, we get

〈D+
b 〉 = A〈©〉 + B〈©©〉 = A+ dB,

(2)
〈D−

b 〉 = A〈©©〉+ B〈©〉 = dA+ B.

For the loop we obtain analogously

〈D+
	 〉 = dA+ B ,

(3)
〈D−

	 〉 = A+ dB.

Let us study the Reidemeister moves. For a move of type (II) we find
by resolving the two crossing points that

〈 〉 = A 〈 〉 + B〈 〉
= A2〈 〉 +AB〈 〉 +AB〈 〉 + B2〈 〉
= (A2 + B2 + dAB)〈 〉 +AB〈 〉 .

For 〈 〉 = 〈 〉 to hold we must therefore require AB = 1, A2 +
B2 + dAB = 0, that is, B = A−1, d = −(A2 +A−2).

It is easy to see (Exercise 9.56) that with this choice of variables
the bracket polynomial is also invariant under the second case in
(II), and under Reidemeister (III). We refer henceforth to the bracket
polynomial with this choice of variables B = A−1, d = −(A2 +A−2).
The bracket polynomial 〈D〉 is a so-called Laurent polynomial in the
variable A. Let us summarize our findings so far:

Proposition 9.27. The bracket polynomial 〈D〉 is invariant under
Reidemeister moves (II) and (III).
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Example. For the bridge and loop we get from (2) and (3),

〈D+
b 〉 = −A−3, 〈D−

b 〉 = −A3, 〈D+
	 〉 = −A3, 〈D−

	 〉 = −A−3. (4)

Let us study next moves of type (I). With the notation there we ob-
tain

〈D′〉 = 〈 〉 = A〈 〉 +A−1〈 〉 = −A−3〈D〉 ,
(5)〈D′′〉 = 〈 〉 = A〈 〉 +A−1〈 〉 = −A3〈D〉 ;

hence 〈D〉 is not invariant under (I).

To make 〈D〉 into an invariant we consider oriented knots and links.
For every component knot we choose one of the two possible ori-
entations as we run through the knot, and say that a crossing has
weight 1 or −1 according to the convention left over right:

−1+1

A word of caution: If K is a knot, then the definition is independent
of the orientation. Indeed, with the other orientation both arrows
point down, and the sign of the weight stays the same. But for links
we must fix the orientation, since the sign may change if the arrows
belong to different knots.

The writhe w(D) is the sum of the weights taken over all crossings.

Theorem 9.28. The Kauffman polynomial fD(A) = (−A3)−w(D)〈D〉
is an invariant of oriented diagrams. We can therefore uniquely de-
fine fL(A) for an oriented link, by setting fL(A) = fD(A) for any
diagram D of L. Clearly, f◦(A) = 1 for the unknot.

Proof. It is readily checked that the writhe is unchanged under
the moves (II) and (III), hence fD(A) is invariant under (II) and (III)
by Proposition 9.27. As to Reidemeister (I), the figure shows that
whatever way the curve in D′ is oriented we get a negative weight,
whereas for D′′ it is always positive.

+1+1−1 −1
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Hence using (5),

fD′(A) = (−A3)−w(D
′)〈D′〉 = (−A3)−w(D)+1〈D′〉

= (−A3)−w(D)(−A3)(−A−3)〈D〉 = fD(A) ,

and similarly fD′′(A) = fD(A). �

The celebrated Jones polynomial VL(t), which was originally defined
by an entirely different approach, results from fL(A) by the substi-
tution A� t−1/4, where L is an oriented link. Hence

VL(t) = (−1)w(D)t
3w(D)

4 〈D〉A=t−1/4 , (6)

for any diagram D of L.

Remark. The mirror imageD of a diagramD is obtained by replac-
ing each underpass by an overpass, and conversely. For example,
the mirror image of the right-handed trefoil Tr is the left-handed
trefoil T	:

T	Tr

Looking at the recursive definition of the bracket polynomial one
sees that 〈D〉 arises from 〈D〉 by the substitution A � A−1, that is,
〈D〉 = 〈D〉A�A−1 . Choosing the same orientation for all component
knots, the weights in the mirror image are also exchanged; thus
w(D) = −w(D), which implies (−A3)−w(D) = (−A−3)−w(D). This
proves the following result.

Corollary 9.29. Let L be the mirror image of an oriented link L. Then

fL(A) = fL(A−1), VL(t) = VL(t−1). (7)

Alternating Knots and Links.
We have already remarked that the resolution of crossing points in
the recursive definition of 〈D〉 is really the same as using transition
systems. We restrict ourselves now to alternating diagrams, where
the sign is always positive or always negative. Some general results
are contained in the exercises.
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Suppose L is an alternating link, and D a diagram with all crossings
positive. The mirror image L is then again alternating with all signs
negative. For example, the diagram of Tr above is positive, and that
of T	 is negative. Let G be the Tait graph of D̃, which may be as-
sumed to be unsigned since all signs are positive. Recurrence (K3)
in the definition of 〈D〉 says that

〈 e 〉 = A〈 〉 +A−1〈 〉 ,

which for G means formally

〈G〉 = A−1〈G�e〉 +A〈G/e〉 . (8)

Setting h(G) = 〈D〉, the equality (8) readily implies that h(G) is a
chromatic invariant with h(bridge) = −A−3, h(loop) = −A3, and
α = A−1, β = A. With Theorem 9.5 we arrive at the following result:

Proposition 9.30. Let D be a positive alternating diagram with Tait
graph G = (V, E, F). Then

〈D〉 = A2|V |−|E|−2T(G;−A−4,−A4), (9)

where T(G) is the Tutte polynomial. The mirror image is given by

〈D〉 = A−2|V |+|E|+2T(G;−A4,−A−4).

Note that because of 2|V | − |E| − 2 = |V | − |F| (by Euler’s formula),
we may also write

〈D〉 = A|V |−|F|T(G;−A−4,−A4), 〈D〉 = A|V∗|−|F∗|T(G∗;−A−4,−A4),
(10)

where G∗ is the dual graph. In other words, mirror images corre-
spond to the duality G ↔ G∗ of plane connected graphs.

Example. The right-handed trefoil Tr has positive alternating dia-
gram D with G = K3. From T(K3;x,y) = x2 + x + y we obtain by
(9),

〈D〉 = A(A−8 −A−4 −A4) = A−7 −A−3 −A5 .

The writhe of D is 3, which gives

fTr (A) = −A−16 +A−12 +A−4, VTr (t) = −t4 + t3 + t .
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For T	 we have by (7),

fT	(A) = −A16 +A12 +A4, VT	(t) = −t−4 + t−3 + t−1 .

In particular, Tr and T	 are not equivalent, and neither is equivalent
to the unknot.

We can now apply all we know about the Tutte polynomial to the
polynomials fL(A) and VL(t). Let D be a positive alternating dia-
gram, and G = (V, E, F) its Tait graph. The crossing points of D
correspond to the edges E. Let E+ and E− be the points with posi-
tive and negative weight, respectively. Hence

|E| = |E+| + |E−| , w(D) = |E+| − |E−| ,

which implies |E| −w(D) ≡ 0 (mod 2), that is, (−1)w(D) = (−1)|E|.
Using (10) and (6), this gives the following result.

Corollary 9.31. Let L be an alternating link, D a positive alternating
diagram, and G = (V, E, F) the Tait graph. Then

fL(A) = (−1)|E|A|V |−|F|−3w(D)T(G;−A−4,−A4) ,

VL(t) = (−1)|E|t
|F|−|V |

4 + 3w(D)
4 T(G;−t,−t−1).

(11)

Take A = t = 1. We know from Corollary 9.24 that T(G;−1,−1) =
(−1)|E|(−2)c(q)−1, where c(q) is the number of Eulerian cycles in
the all-crossing transition system. But this is just the number c(L)
of component knots of L. The formulas in (11) therefore give

fL(1) = VL(1) = (−2)c(L)−1 , (12)

and in particular, fK(1) = VK(1) = 1 for a knot K.

As a final evaluation let us look at t = −1 in the Jones polynomial of
a positive alternating knot K. The factor in front of (11) is by Euler’s
formula

(−1)|E|+
|F|−|V |

4 + 3w(D)
4 = (−1)

5|E|
4 + 3w(D)

4 −|V |−1
2 .

Using E+, E− as before, the exponent is

2|E+| + |E−| − |V | + 1
2

.

It is readily seen that |E−| − |V | + 1 is always an even number. With
(11) we thus arrive at
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VK(−1) = (−1)
|E−|−|V |+1

2 T(G; 1,1) ,

which in turn yields

|VK(−1)| = #spanning trees of G . (13)

Of course, we could also make use of Corollary 9.23 relating
|VK(−1)| to the number of Eulerian cycles in the canonically ori-
ented 2-in 2-out graph D̃c .

Exercises

9.54 Show that the Tait graph

+
+ +−
+

+
+ represents the left-handed

trefoil by looking at the diagram and performing some Reidemeister
moves.

9.55 Verify that an alternating link has a diagram with constant sign on
the crossings.

9.56 Show that the bracket polynomial 〈D〉 is invariant under Reide-
meister (III).

� 9.57 Verify that the writhew(D) stays the same under moves (II) and (III).

9.58 Establish as a necessary condition for a knot K to be equivalent to
the unknot that 〈D〉 be ± a power of A.

9.59 Consider the link L1 of the text, and compute the Jones polynomial
for the four possible orientations of the link.

� 9.60 Consider G = C2n+1 (circuit), and calculate the Jones polynomial of
the corresponding link, where all signs are positive.

9.61 Take G = K4 with all signs positive. The corresponding diagram
D decomposes into three knots. Choose orientations of the knots with
w(D) = 0, and calculate the Jones polynomial. Is w(D) ≠ 0 possible?

* * *

� 9.62 Prove fL(1) = VL(1) = (−2)c(L)−1 for any oriented link L. Hint: Use
(1) with B = A−1, d = −(A2 +A−2).

9.63 Suppose L is a link with alternating diagram D, Tait graph G, and
all signs negative. Show that the dual graph G∗ with all signs positive
gives rise to D as well. Hence for an alternating link we can always find a
positive alternating diagram.
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� 9.64 A nugatory crossing e decomposes the diagram D into two parts:
e

. Suppose K is an alternating knot without nugatory crossings.
Prove |VK(−1)| ≥ n = # crossings. Settle the case in which equality holds.
Hint: Answer first what nugatory crossing means for the Tait graph, and
use then (13) or Exercise 9.33.

9.65 Show that |VK(−1)| is always an odd integer when K is an alternat-
ing knot. Note that this holds for arbitrary knots.

� 9.66 We know that Q(H; 1) ≤ 2n−1 for the interlace polynomial of any
graph H on n vertices. Use this to show that |VK(−1)| ≤ 2n−1, where
n = # crossings, K alternating knot. Can there be equality for n ≥ 2? Can
you find a better bound? Discuss the maximum possible for n ≤ 4.

9.67 Draw all inequivalent knots with four crossings in the diagram.

9.68 Let D be a link diagram, and G = (V , E, F) its Tait graph. For X ⊆ E
let X+, X− be the positive and negative edges, respectively. Generalize
Proposition 9.30 to

〈D〉 = A|E−|−|E+|+2|V |−2
∑
X⊆E

A4(|X+|−r(X))(−A−4 − 1)r(G)+|X|−2r(X),

with the notation r(X) as in Theorem 9.3. Hint: Consider the deletion/
contraction recurrence in the positive and negative case.
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Highlight: The BEST Theorem

We have seen in Corollary 9.23 a somewhat unexpected connection
between the number of spanning trees of a plane graph and the
number of Eulerian cycles of the associated medial graph, endowed
with the canonical orientation.

The following wonderful result generalizes this to arbitrary directed
Eulerian graphs. It is called the BEST theorem after its authors de
Bruijn, van Ardenne-Ehrenfest, Smith, and Tutte.

Suppose G = (V, E) is a connected directed Eulerian graph, and de-
note by e(G) the number of Eulerian cycles, and by d−(v) as usual
the out-degree of v . Now recall the highlight to Chapter 5, where
we introduced arborescences converging to a vertex s, counted by
t−(G, s).

Theorem. We have

e(G) =
⎛⎝∏
v∈V

(d−(v)− 1)!

⎞⎠ · t−(G, s) .

In particular, e(G) = t−(G, s) when G is a 2-in 2-out graph.

Note that this implies the result already proved in Chapter 5 that
t−(G, s) is the same number for all s ∈ V .

Instead of cycle we use in the following the more expressive term
Eulerian walk, since we will proceed in the cycle step by step.

Choose an arbitrary directed edge e1 = (s, s̃) as starting edge for
all Eulerian walks. We are going to find a bijection between arbores-
cences T converging to s and sets W(T) of Eulerian walks (starting
with e1). Each set W(T) will have size d :=∏v∈V (d−(v)− 1)!.

Construction of an Arborescence from an Eulerian Walk.
The walk W gives a numbering e1, e2, . . . , e|E| of the edges, and W
touches every vertex at least once. For |V | = 1, the theorem is obvi-
ously true, so assume |V | ≥ 2.

For v ≠ s, let e(v) be the last edge leaving v in the walkW . Consider
the subgraph T(W) = (V, F), where F = {e(v) : v ≠ s}; T(W) con-
tains |V | − 1 edges. Suppose v0 ≠ s with last edge e(v0) = (v0, v1).
Note that v1 ≠ v0, since the last edge leaving v0 must come after
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every loop at v0. Furthermore, if v1 ≠ s, then e(v1) = (v1, v2) has
higher number than e(v0), and thus v2 ≠ v0. Continuing in this way
we see that the edges e(v0), e(v1), . . . form a directed path from v0

to s, and so T(W) is an arborescence converging to s.

Construction of d Eulerian Walks from an Arborescence.
Suppose T is an arborescence converging to s. For every vertex u
we number the d−(u) edges leaving u, observing the following two
conditions:

A. Among all edges (s, v) leaving s, the edge (s, s̃) receives the num-
ber 1.

B. For all v ≠ s, the tree-edge (v,v′) ∈ E(G) receives the highest
number (= d−(v)).
Otherwise, the numbering is arbitrary.

Clearly, there are d =∏v∈V (d−(v)− 1)! possible numberings. Now
we take a fixed numbering that satisfies A and B, and construct the
Eulerian walk W as follows:

Start with (s, s̃). Given Wi = (s, s̃, . . . , vi) choose, among all edges
that leave vi and have not been used, the edge with the smallest
number. In other words, we leave any vertex in the succession given
by the numbering. Continue this process as long as possible and
denote by W the resulting walk.

We note the following facts:

1. W terminates at s.
Indeed, G is Eulerian, which means that whenever we enter a vertex,
we can also leave it.

2. W contains all edges.
Suppose to the contrary that there is an edge e = (v0, v′

1) that does
not appear in W . Then by condition B the tree-edge (v0, v1) ∈ E(T)
has also not been used. This, in turn, implies that some outgoing
edge from v1 has not been used, and therefore neither the tree-
edge (v1, v2) ∈ E(T). Continuing in this way we obtain a directed
path of unused edges (all in E(T)) from v0 to s. But this implies that
we could continue the walk at s, contradiction.
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The Final Step.
Collect all Eulerian walks constructed from T in this way in the set
W(T). The following three assertions will finish the proof.

1. |W(T)| = d.
Just note that different numberings lead to different Eulerian walks.

2. If T1, T2 are different arborescences, then W(T1)∩W(T2) = �.
Clearly, different arborescences yield different numberings (condi-
tion B).

3. Every Eulerian walk W is in one of the classes W(T).
By the construction rule, W ∈W(T(W)).

In sum,

e(G) =
∑
T→s

|W(T)| = d · t−(G, s) ,

and the theorem follows.

The Alexander Polynomial.
One of the earliest invariants for oriented knots and links was the
Alexander polynomial. Take a diagram D of a link L, and consider
the set of all strands, where a strand is the portion of the diagram
from one underpass to the next (in the given orientation). Clearly,
the number of strands equals the number of crossing points.

Example. In the diagram of the link there are four strands:

4

1

32

Number the strands 1, . . . , n. At any crossing we have the following
situation:

i

	k

We capture the information in the n × n-matrix MD(t) = (mij),
where t is a variable:
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mij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 − t j = i ,
t j = k ,
−1 j = 	 ,
0 otherwise .

In the example above we get the matrix

MD(t) =

⎛⎜⎜⎜⎝
1 − t −1 0 t
−1 1 − t t 0
t 0 1 − t −1
0 t −1 1 − t

⎞⎟⎟⎟⎠ .
The Alexander polynomial ΔD(t) is defined as the cofactor

ΔD(t) = detMD(t)i,i ,

where as usual MD(t)i,i is the matrix with the i-th row and i-th
column deleted.

A classical result says that ΔD(t) is well defined up to a power ±tm.
In other words, factoring out the highest power of t, any two cofac-
tors agree (apart from possibly the sign). In particular, |ΔD(−1)| is
well defined. Furthermore, ΔD(t) is an invariant of oriented links;
we can thus write ΔL(t). The invariant |ΔL(−1)| is usually called the
determinant of L.

In our example we compute

ΔL(t) = −t3 + 2t2 − 2t ,
ΔL(−1) = 5 .

To show the connection to the BEST theorem we consider alternat-
ing diagrams. Let G̃ = (Ṽ , Ẽ) be the directed graph on the strands
Ṽ = {1, . . . , n}, where i → k, i → 	 according to the figure above.
Since D is alternating, G̃ is a 2-in 2-out graph, with MD(−1) = L(G̃),
where L(G̃) is the Laplace matrix defined in Chapter 5.

Tutte’s matrix-tree theorem and the BEST theorem imply

ΔL(−1) = det(MD(−1))s,s = t−(G̃, s) = e(G̃) ,

and ΔL(−1) is indeed well defined.

The Alexander polynomial is well understood. For example, the co-
efficients form a palindromic sequence, that is, Δ(t) = tdegΔΔ(t−1),
and |Δ(−1)| is always an odd integer.
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Notes and References

Chromatic polynomials were invented by Birkhoff (1912) in his at-
tempt to prove the 4-color theorem, that is, finding algebraic rea-
sons that the chromatic polynomial of a planar graph never has 4
as a root. The theory presented in this chapter begins with the work
of Whitney and Tutte. For a detailed account of the Tutte polyno-
mial see the article by Brylawski and Oxley, and the book by Tutte.
The first evaluation at negative integers (Proposition 9.8) is due to
Stanley. The 6–flow theorem was proved by Seymour. The material
in Section 9.2 follows in large part the papers by Aigner–van der
Holst, and Arratia, Bollobás, and Sorkin. A more general setup in
the context of isotropic systems was proposed by Bouchet. Tran-
sition polynomials were studied in detail by Jaeger. The Penrose
polynomial was introduced in the paper by Penrose. A very read-
able account of knot polynomials is the lecture notes by Welsh. The
references give also the original sources of the Jones polynomial
and the Kauffman bracket. For the BEST theorem see Chapter 6 of
Tutte’s book.
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10 Models from Statistical Physics

Certain questions from statistical physics give rise to fascinating
problems in enumerative combinatorics. The basic setup is as fol-
lows. One considers a set of sites (occupied by atoms, say), and a set
of bonds connecting certain pairs of sites that carry an interaction
between the corresponding atoms.

Thus we have a (simple) graph, with the sites as vertices, and edges
weighted with their interaction. The classical examples are certain
lattice graphs, such as the rectangular 2-dimensional grid, which
we will consider in detail. A state is now an arrangement under the
conditions posed by the model at hand. The goal is to compute the
so-called partition function, which is the generating function of the
states and which carries the most important informations about the
physical model.

10.1 The Dimer Problem and Perfect Matchings

A dimer is a diatomic molecule that occupies two adjacent sites.
The dimer problem is to determine the number of ways to cover
all sites with dimers such that every site is occupied by exactly one
dimer.

In graph-theoretic terms a dimer configuration is a perfect match-
ing of the given graph G = (V, E), that is, a set of disjoint edges
covering all of V , and the goal is to compute the number M(G) of
perfect matchings of G.

Example. An old and famous problem calls for the number
M(n,n) of ways to cover an n × n-chessboard with dominoes.
Thus M(n,n) = M(Ln,n), where Ln,n is the usual n × n-lattice
graph with n2 vertices. We will derive a formula later which will
yield, in particular, the precise answer for the ordinary 8× 8-board:
M(8,8) = 12,988,816.
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The Pfaffian Approach.
Let G = (V, E) be a simple graph with N vertices, where N is even,
since otherwise a perfect matching cannot exist. Now we make use
of the Pfaffian discussed in Section 5.3. Let V = {1,2, . . . ,N}, and
orient G in any way. The (oriented) adjacency matrix A = (aij) is a
skew-symmetric matrix defined as

aij =

⎧⎪⎨⎪⎩
1 if i→ j ,

−1 if j → i ,
0 if {i, j} �∈ E .

Consider now the Pfaffian Pf(A) = ∑
μ(sign μ)aμ over all match-

ings of V , where the perfect graph matchings are those for which
aμ = ai1j1 · · ·aiN/2jN/2 = ±1. If we can find an orientation such that
(sign μ)aμ is always +1 or always −1, then |Pf(A)| = M(G), and so
M(G)2 = Pf(A)2 = detA, or

M(G) =
√

det A , (1)

by Theorem 5.6.

The significance of (1) lies in the fact that we have an arsenal of
methods at hand to compute a determinant, while in general, the
computation of M(G) is an intractable problem.

The proof of Theorem 5.6 rested on the bijection (μ1, μ2) �→ σ ∈
Se(N) with

(sign μ1)aμ1 · (sign μ2)aμ2 = (sign σ)aσ , (2)

where σ runs through the set Se of permutations all of whose cycles
have even length. Looking at (2) we have to find an orientation such
that (sign σ)aσ ∈ {0,1} for all σ ∈ Se. Suppose σ = σ1σ2 · · ·σt is
the cycle decomposition with aσ ≠ 0; then signσ = (−1)t . Hence
we require aσ = aσ1 · · ·aσt = (−1)t , and this certainly holds if
aσi = −1 for all i.

In sum, we are led to the following definition. An orientation of G is
Pfaffian if for any σ = σ1 · · ·σt ∈ Se, aσ = aσ1 · · ·aσt ≠ 0 implies
aσi = −1 for all i. Our task is then to find a Pfaffian orientation. This
poses grave difficulties in general, and a characterization of graphs
that admit a Pfaffian orientation is not known. But for planar graphs
such an orientation always exists as we now show.
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Let G = (V, E, F) be a simple connected plane graph in the notation
of Section 9.3, with an orientation on the edges. We know that any
non-bridge lies on the boundary of two different faces. Consider a
face f , and denote by Bf the set of its boundary edges that are not
bridges. We say that e ∈ Bf is oriented clockwise if the face f lies
on the right of e as we move along e in the direction given by the
orientation. In the figure

f ′ fe∧

e is oriented clockwise in Bf , and counterclockwise in Bf ′ . Bridges
are not taken into account.

Lemma 10.1. Let G = (V, E, F) be a simple connected plane graph.
Then there exists an orientation such that for any face f (except
possibly the outer face) the number of clockwise oriented edges is
odd.

Proof. We use induction on the number of faces. If |F| = 1, then all
edges are bridges, and the assertion is vacuously satisfied. Suppose
|F| > 1. Then there exists a non-bridge e on the boundary of the
outer face. Let f be the other face incident with e. In the graph G�e,
the face f merges with the outer face. By induction there exists an
orientation of G�e that meets the requirement of the lemma, and
we can now orient e in such a way that the condition also holds for
f . The bridges are then oriented arbitrarily. �

Example. The following graph has a required orientation:

Lemma 10.2. Let G = (V, E, F) be a simple connected plane graph
without bridges, oriented according to the previous lemma, and let
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C be a circuit. Then the number of edges oriented clockwise in C has
opposite parity to the number of vertices in the interior of C .

Proof. Let H = (V ′, E′, F ′) be the subgraph of G consisting of the
interior of C , together with C . By Euler’s formula (disregarding the
outer face),

|V ′| − |E′| + |F ′| = 1. (3)

Suppose there are p vertices, q edges, and r faces in the interior,
and let C have length 	. Then

|V ′| = p + 	, |E′| = q + 	, |F ′| = r ,

which gives by (3),
p − q + r = 1 . (4)

Suppose that the i-th face has ci edges oriented clockwise, where ci
is odd by assumption, and that c0 edges of C are oriented clockwise.
Since any edge in the interior appears once in clockwise fashion,
and the edges on C have the same orientation character on C and
on the incident face in the interior, we obtain

r∑
i=1

ci = q + c0 ,

and thus (since all ci are odd)

r ≡ q + c0 (mod 2).

Appealing to (4), this gives p+ c0 ≡ 1 (mod 2), which means that p
and c0 have opposite parity. �

Theorem 10.3. Let G = (V, E, F) be a simple connected plane graph
without bridges. Then the orientation given in Lemma 10.1 is Pfaf-
fian.

Proof. Let A = (aij) be the oriented adjacency matrix of G, and
σ = σ1 · · ·σt ∈ Se with aσ ≠ 0. The cycles σi induce a partition
of V into circuits Ci of even length and edges (if σi has length
2). We want to show that aσi = −1 for i = 1, . . . , t. If σi = (b, c)
has length 2, then aσi = abcacb = −1 holds trivially. Suppose
σi = (j1, j2, . . . , j	) has length 	 ≥ 4. Running around the circuit
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Ci in the direction j1, j2, . . . , j	, we see that aσi = (−1)k, where k
is the number of edges oriented in the opposite way. For example,
if σi = (j1, . . . , j6) with orientation as in the figure, then k = 3 and
therefore aσi = −1.

j5

j4

j3

j1

j2j6

Note that it makes no difference whether we run in clockwise or
counterclockwise fashion, since 	 is even. Hence

aσi = (−1)k, k = # edges oriented clockwise,

and it remains to show that k is odd. But this is easy. Since C1, . . . , Ct
is a partition of V , the number of vertices in the interior of Ci must
be even (Jordan curve theorem), and so k is odd by Lemma 10.2.
�

Corollary 10.4. Let G be a simple connected plane graph without
bridges and A its oriented adjacency matrix according to a Pfaffian
orientation. Then

M(G) =
√

detA . (5)

Example. Consider the prism P embedded in the plane with the
Pfaffian orientation given in the figure.

2

65

1

3 4 A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 −1 0
−1 0 0 1 0 1
−1 0 0 −1 1 0

0 −1 1 0 0 1
1 0 −1 0 0 1
0 −1 0 −1 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
One computes detA = 16, and thus M(P) = 4.

Domino Tilings.
For the remainder of this section we look at the lattice graph Lm,n,
and compute the number M(m,n) = M(Lm,n) of domino tilings of
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the m × n-chessboard, where m is the number of rows and n the
number of columns. Since |V | =mn must be even, we assume that
n is even. The following figure shows a Pfaffian orientation of Lm,n,
which by our theorem must exist.

Example. m = 5, n = 6

1 2 3 4 5 6

12

25 26 27 28 29 30

7

In general, we number the vertices row by row from left to right,
orient all vertical edges downward, and the horizontal edges alter-
nately as shown, beginning from left to right. Any interior face has
1 or 3 clockwise oriented edges; hence the orientation is Pfaffian as
required.

Let B be the oriented adjacency matrix of the first row; thus B is the
n×n-matrix

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
−1 0 1

−1 0 1
. . . 1

0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

Denoting by I the n×n-identity matrix, we obtain the full adjacency
matrix of Lm,n in the following m×m-block form:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

B I
−I −B I 0

−I B

0
. . . I
−I ±B

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

By suitably multiplying rows and columns by −1 it is readily seen
that
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detA = det

⎛⎜⎜⎜⎜⎜⎜⎜⎝

B −I
−I B −I 0

−I B −I
0

. . . −I
−I B

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (6)

Check this, using the fact that n is even!

Now we can go to work. Let L be the m×m-matrix

L =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

λ −1
−1 λ −1 0

−1 λ

0
. . . −1
−1 λ

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

Performing the same row and column operations in L and the block
matrix in (6), one obtains

detL = det

⎛⎜⎜⎜⎜⎝
λ− λ1

λ− λ2 0

0
. . .

λ− λm

⎞⎟⎟⎟⎟⎠ ,

detA = det

⎛⎜⎜⎜⎜⎝
B − λ1I

B − λ2I 0

0
. . .

B − λmI

⎞⎟⎟⎟⎟⎠ ,
and hence

detA =
m∏
k=1

det(B − λkI) .

Now detL = pm(λ) =
∏m
k=1(λ−λk) is the characteristic polynomial

of the m×m-matrix C ,

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
1 0 1 0

1 0

0
. . .

1
1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Thus

detA =
m∏
k=1

det(B − λkI) ,

where the λk’s are the eigenvalues of C .

Finally, let qn(λ) be the characteristic polynomial of the matrix B
with eigenvalues μ1, . . . , μn, that is,

qn(λ) = det(λI − B) = (λ− μ1) · · · (λ− μn) .

This gives (remember that n is even)

detA =
m∏
k=1

det(B − λkI) =
m∏
k=1

det(λkI − B)

=
m∏
k=1

qn(λk) =
m∏
k=1

n∏
	=1

(λk − μ	) ,

and we obtain as our first result

M(m,n)2 = detA =
m∏
k=1

n∏
	=1

(λk − μ	) , (7)

where the λk’s are the eigenvalues of C , and the μ	’s those of B .

It remains to compute these eigenvalues. Those of C we already
know from Section 3.1:

λk = 2 cos
kπ
m+ 1

(k = 1, . . . ,m) ,

and the eigenvalues of B are similarly computed as

μ	 = 2i cos
	π
n+ 1

(	 = 1, . . . , n) ,

where i = √−1.

By (7), this gives

detA =
m∏
k=1

n∏
	=1

(
2 cos

kπ
m+ 1

− 2i cos
	π
n+ 1

)
.

Since n is even, we have cos (n+1−	)π
n+1 = − cos 	π

n+1 for 	 = 1, . . . , n2 ;
hence by grouping the factors into pairs,
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(detA)2 =
m∏
k=1

n∏
	=1

(
4 cos2 kπ

m+ 1
+ 4 cos2 	π

n+ 1

)
. (8)

Then M(m,n) is the fourth root of this expression, so we want to
simplify further.

Case A. m even.
Observing that cos (m+1−k)π

m+1 = − cos kπ
m+1 , cos (n+1−	)π

n+1 = − cos 	π
n+1

for k = 1, . . . m2 , 	 = 1, . . . , n2 as before, we get

(detA)2 = 4mn
m/2∏
k=1

n/2∏
	=1

(
cos2 kπ

m+ 1
+ cos2 	π

n+ 1

)4

,

and thus

M(m,n) = 4
mn

4

m/2∏
k=1

n/2∏
	=1

(
cos2 kπ

m+ 1
+ cos2 	π

n+ 1

)
. (9)

Case B. m odd.

Here we have cos
m+1

2 π
m+1 = cos π2 = 0, and you are asked in the exer-

cises to verify the analogous result

M(m,n) = 4
(m−1)n

4

(m−1)/2∏
k=1

n/2∏
	=1

(
cos2 kπ

m+ 1
+ cos2 	π

n+ 1

)
. (10)

In summary we have proved the following astounding formula.

Theorem 10.5 (Fisher–Kasteleyn–Temperley). For the lattice graph
Lm,n, n even,

M(m,n) = 4�m2 	n2
�m/2	∏
k=1

n/2∏
	=1

(
cos2 kπ

m+ 1
+ cos2 	π

n+ 1

)
. (11)

It is hard to believe at first sight that the transcendental expression
on the right-hand side is a positive integer, let alone that it should
be the number of domino tilings. For example, we know from Exer-
cise 3.5 that M(m,2) = Fm+1, Fibonacci number. Formula (11) thus
states with cos π3 = 1

2 ,
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Fm+1 = 4�m2 	
�m/2	∏
k=1

(
cos2 kπ

m+ 1
+ 1

4

)
.

A Determinant Formula.
As beautiful as the expresssion of Theorem 10.5 is, it is unwieldy to
actually compute M(m,n). A closer look at the polynomials pm(λ)
and qn(λ) suggests another approach. The polynomials pm(λ) are
the Chebyshev polynomials treated in Exercise 3.1,

pm(λ) = λm −
(
m− 1

1

)
λm−2 +

(
m− 2

2

)
λm−4 ∓ · · · .

Similarly, it is readily seen that

qn(λ) = λn +
(
n− 1

1

)
λn−2 +

(
n− 2

2

)
λn−4 + · · · .

Case A. m even.
Consider the associated polynomials

p̃m(λ) = λ
m
2 −

(
m− 1

1

)
λ
m
2 −1 +

(
m− 2

2

)
λ
m
2 −2 ∓ · · · ,

q̃n(λ) = λ
n
2 +

(
n− 1

1

)
λ
n
2 −1 +

(
n− 2

2

)
λ
n
2 −2 + · · · .

It follows that α is a root of pm(λ) if and only if α2 is a root of
p̃m(λ), and analogously β is a root of qn(λ) if and only if β2 is a
root of q̃n(λ). The roots are therefore

p̃m(λ) : 4 cos2 kπ
m+ 1

, k = 1, . . . ,
m
2
,

q̃n(λ) : −4 cos2 	π
n+ 1

, 	 = 1, . . . ,
n
2
.

Looking at (9) we have

M(m,n) =
m/2∏
k=1

n/2∏
	=1

(
4 cos2 kπ

m+ 1
−
(
−4 cos2 	π

n+ 1

))
.

Hence if we denote by α1, . . . , αm/2 the roots of p̃m(λ) and by
β1, . . . , βn/2 those of q̃n(λ), then
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M(m,n) =
m/2∏
k=1

n/2∏
	=1

(αk − β	) . (12)

Case B. m odd.
It is readily seen that

M(m,n) =
(m−1)/2∏
k=1

n/2∏
	=1

(αk − β	) , (13)

where α1, . . . , αm−1
2

are the roots of the polynomial p̃m(λ) = λ
m−1

2 −(
m−1

1

)
λ
m−3

2 ± · · · , and q̃n(λ) as before.

Now we quote an important result from linear algebra, the so-called
resultant theorem.

Fact. Let p(x) = xs + a1xs−1 + · · · + as , q(x) = xt + b1xt−1 +
· · ·+bt be polynomials with roots α1, . . . , αs, β1, . . . , βt , respectively.
Then

s∏
k=1

t∏
	=1

(αk − β	) = det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 a1 . . . as 0 . . . 0
0 1 a1 . . . as . . . 0

. . .
0 . . . 1 a1 . . . as
. . . . . . . . . . . . . . . . . . . . . . . .
1 b1 . . . bt 0 . . . 0

. . .
0 . . . 1 b1 . . . bt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
t

⎫⎪⎪⎬⎪⎪⎭ s
.

The matrix has s + t rows and columns, where in the top half the
coefficients of p(x) are shifted to the right, and in the lower half
those of q(x).

Example. s = 2, t = 3. The resultant matrix is⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 a1 a2 0 0
0 1 a1 a2 0
0 0 1 a1 a2
. . . . . . . . . . . . . . . . . . . . . . . . .
1 b1 b2 b3 0
0 1 b1 b2 b3

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

In our situation this gives a new formula for M(m,n).
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Theorem 10.6. For n even,

M(m,n) = det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
m
0

)
−
(
m−1

1

) (
m−2

2

)
. . .

0
(
m
0

)
−
(
m−1

1

)
. . .

. . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . .(
n
0

) (
n−1

1

) (
n−2

2

)
. . .

0
(
n
0

) (
n−1

1

)
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
n
2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ �m2 	

. (14)

This looks promising (there are lots of zeros), and the result is now
certainly an integer.

The Square Lattice.
Let us finally look at the case m = n. The resultant matrix in (14) is
an n×n-matrix. We perform three operations: First add row n

2 +i to
row i (i = 1, . . . , n2 ), secondly factor out the 2’s, and thirdly subtract
row i from row n

2 +i. The matrices should make clear what happens:

⎛⎜⎜⎜⎜⎜⎝

(
n
0

)
−
(
n−1

1

) (
n−2

2

)
. . .

. . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .(
n
0

) (
n−1

1

) (
n−2

2

)
. . .

. . .

⎞⎟⎟⎟⎟⎟⎠ �→

⎛⎜⎜⎜⎜⎜⎝
2
(
n
0

)
0 2

(
n−2

2

)
. . .

. . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .(
n
0

) (
n−1

1

) (
n−2

2

)
. . .

. . .

⎞⎟⎟⎟⎟⎟⎠ �→

2
n
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
n
0

)
0

(
n−2

2

)
. . .

0
(
n
0

)
0

(
n−2

2

)
. . .

. . . . . . . . . . . . . . . . . . . . . . .(
n
0

) (
n−1

1

) (
n−2

2

)
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�→ 2

n
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
n
0

)
0

(
n−2

2

)
0 . . .

0
(
n
0

)
0

(
n−2

2

)
. . .

. . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0
(
n−1

1

)
0

(
n−3

3

)
0 0

(
n−1

1

)
0

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
n
2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
n
2

.

Case A. n ≡ 2 (mod 4).
The last column consists of zeros except the lower right-hand cor-
ner

(
n/2
n/2

)
. Hence developing the determinant of the matrix accord-

ing to the first and last columns, we get
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M(n,n) = 2
n
2 det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
n
0

)
0

(
n−2

2

)
0 . . .

0
(
n
0

)
0

(
n−2

2

)
. . .

. . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(
n−1

1

)
0

(
n−3

3

)
0 . . .

0
(
n−1

1

)
0

(
n−3

3

)
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
n
2 − 1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
n
2 − 1

. (15)

Case B. n ≡ 0 (mod 4) .
One similarly obtains

M(n,n) = 2
n
2 det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
n
0

)
0
(
n−2

2

)
0 . . .

0
(
n
0

)
0

(
n−2

2

)
. . .

. . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(
n−1

1

)
0
(
n−3

3

)
0 . . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
n
2 − 2

⎫⎪⎬⎪⎭ n
2

. (16)

These matrices have a very regular form. The rows of the two halves
are shifted to the right, and every other element is 0. It is an easy
exercise to show that in general, the following formula holds:

det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 0 a2 0 . . . as . . .
0 a1 0 a2 . . .

. . .
. . . . . . . . . . . . . . . . . . . . . . . . .
b1 0 b2 0 . . . bt . . .
0 b1 0 b2 . . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭2t − 2

⎫⎪⎪⎪⎬⎪⎪⎪⎭2s − 2

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 . . . as 0 . . . 0
0 a1 . . . as . . .

. . .
. . . . . . . . . . . . . . . . . . . .
b1 . . . bt 0 . . . 0
0 b1 . . . bt . . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2
⎫⎪⎪⎪⎬⎪⎪⎪⎭ t − 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭ s − 1

. (17)
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As an example for s = t = 2 we have

det

⎛⎜⎜⎜⎝
a1 0 a2 0
0 a1 0 a2

b1 0 b2 0
0 b1 0 b2

⎞⎟⎟⎟⎠ =
[

det

(
a1 a2

b1 b2

)]2

.

Summarizing our findings in (15), (16), (17) we can state the final
result.

Theorem 10.7. Let n be even. Then for n ≡ 0 (mod 4),

M(n,n) = 2
n
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
n
0

) (
n−2

2

)
. . . . . .

0
(
n
0

) (
n−2

2

)
. . .

. . .
. . . . . . . . . . . . . . . . . . . . . . . . .(
n−1

1

) (
n−3

3

)
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2 ⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
n
4 − 1

⎫⎪⎬⎪⎭ n
4

,

and for n ≡ 2 (mod 4),

M(n,n) = 2
n
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
n
0

) (
n−2

2

)
. . . . . .

0
(
n
0

) (
n−2

2

)
. . .

. . .
. . . . . . . . . . . . . . . . . . . . . . . . .(
n−1

1

) (
n−3

3

)
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2 ⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
n−2

4

⎫⎪⎬⎪⎭ n−2
4

.

Examples. For small n we get

M(2,2) = 2, M(4,4) = 22[det(3)]2 = 4 · 9 = 36,

M(6,6) = 23

[
det

(
1 6
5 1

)]2

= 8 · 292 = 6728,

M(8,8) = 24

⎡⎢⎣det

⎛⎜⎝1 15 1
7 10 0
0 7 10

⎞⎟⎠
⎤⎥⎦

2

= 16 · 9012 = 12,988,816 .

Note that M(n,n) is always a square or twice a square. A direct
combinatorial argument for this remarkable fact was found only
recently.
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Asymptotic Growth.
For physical considerations it is important to estimate the growth
of M(m,n) as m and n go to infinity. Our discussion suggests that
M(m,n) grows exponentially in mn, so we look at

c = lim
m,n→∞

logM(m,n)
mn

.

By (11),

logM(m,n)
mn

= 1
mn

�m/2	∑
k=1

n/2∑
	=1

log

(
4 cos2 kπ

m+ 1
+ 4 cos2 	π

n+ 1

)
.

The right-hand side is a discrete mean value, which tends to the
continuous mean value, since the functions are continuous. More
precisely, setting x = kπ

m+1 , y = 	π
n+1 , the variables x and y range

from 0 (since 1
m+1 ,

1
n+1 → 0) to π

2 (since �m/2	
m+1 π,

n/2
n+1π → π

2 ). Finally,
dx = π

m+1 , dy = π
n+1 , where the denominators can be replaced by

m and n in the limiting process. Altogether we obtain

c = 1
π2

π/2∫
0

π/2∫
0

log(4 cos2 x + 4 cos2y)dx dy .

The last integral is evaluated to

c = G
π
, where G = 1 − 1

32 + 1
52 − 1

72 ± · · ·

is called the Catalan constant. This gives c = 0.29156, and therefore

M(m,n) ≈ e0.29156mn ≈ 1.34mn .

Exercises

10.1 Let B be ann×n-matrix, A =
(

0 B
−BT 0

)
. Prove Pf(A) = (−1)(

n
2) detB.

10.2 Show that the graph K3,3 has no Pfaffian orientation, which proves
again that K3,3 is not planar.

� 10.3 Let G be a connected bipartite plane graph without bridges such
that all faces have boundary length congruent to 2 (mod 4). Suppose that
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V1, V2 are the two color classes of G. Show that directing every edge from
V1 to V2 gives a Pfaffian orientation.

10.4 Prove assertion (16) of the text.

10.5 Use Theorem 10.6 to re-prove Fm+1 = ∑k≥0

(
m−k
k

)
.

� 10.6 Show that M(3, n) = ∑
k≥0 2

n
2 −k

(
n−k
k

)
for even n, and compare it

to the result obtained in Exercise 3.15.

10.7 Prove the result (17) mentioned in the text.

* * *

10.8 Let μ be a fixed perfect matching of G. A circuit C is called alter-
nating if the edges of C alternate between μ and another matching μ′.
Suppose that G is oriented in such a way that all alternating circuits with
respect to μ have an odd number of clockwise oriented edges. Prove that
the orientation is Pfaffian.

� 10.9 Verify formula (10) for M(m,n), when m is odd.

Hint: Show that
∏n/2
	=1 cos 	π

n+1 = 2−n/2, using the addition theorem for the
cosine.

� 10.10 Let G be any simple graph with q edges. For an orientation ε let
Aε be the oriented adjacency matrix. Prove that M(G) = 2−q∑

ε detAε,
where ε runs through all 2q orientations. Hint: Show that permutations
with a fixed point or cycles of length greater than 2 cancel out, similar to
the argument used in Section 5.3.

10.11 Let L2,2,n be the 2×2×n-lattice graph. Compute M(2,2, n) =
M(L2,2,n) with the recurrence method of Section 3.1. Derive from this and
Exercise 10.6 the curious identity M(3,2n) =M(2,2, n)+M(2,2, n− 1).

10.12 For a graph G denote bym(G, r) the number of r -matchings in G,
that is, of r disjoint edges. Suppose G is plane with a Pfaffian orientation,
A the oriented adjacency matrix. Show that the coefficient of λn−2r in
det(λI − A) is equal to

∑
H m(H, r)2 over all subgraphs H of G with 2r

vertices.

10.13 Let G = (V , E) be any graph. The matchings polynomial μ(G;x) is
given by

∑
k≥0(−1)km(G,k)xn−2k withm(G,k) defined as in the previous

exercise. Prove: a. μ(G ∪ H;x) = μ(G;x)μ(H;x) for disjoint unions, b.
μ(G;x) = μ(G�e;x) − μ(G�{u,v};x), e = {u,v} ∈ E, c. μ(G;x)′ =∑
u∈V μ(G�u;x).

� 10.14 Compute the matchings polynomial for the paths Pn, complete
graphs Kn, and complete bipartite graphs Kn,n. They are related to clas-
sical polynomials; which?
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10.2 The Ising Problem and Eulerian Subgraphs

In the general Ising problem we are given a graph G = (V, E), where
each vertex i is assigned a spin σi, which can be either +1 or −1. An
assignment of spins σ = (σi)i∈V is called a state. In addition, each
edge e = {i, j} has an interaction Jij that is constant on the edge,
but may vary from edge to edge. For each state σ the Hamiltonian
H(σ) is defined as

H(σ) = −
∑

{i,j}∈E
Jijσiσj −

∑
i
Mσi , (1)

whereM represents the energy from the external field. The partition
function Z(G;β, J,M) is then

Z(G) =
∑
σ
e−βH(σ), (2)

where the sum is over all 2|V | states, and β = 1
kT is a parameter as-

sociated with the temperature T , and where k is Boltzmann’s con-
stant.

The main problem of the Ising model is to find a closed expression
for Z(G), and in particular, to determine

lim
n→∞

logZ(Ln,n)
n2

for the infinite square lattice.

Eulerian Subgraphs and Bipartitions.
Recall that an Eulerian subgraph GU = (V,U), U ⊆ E, is a subgraph
in which all vertices have even degree. Note that the vertex set is
always assumed to be V , so we may identify GU with its set U of
edges. A bipartition (or cut set) B ⊆ E ofG corresponds to a partition
V = V1

.∪ V2 such that B consists precisely of the edges between V1

and V2. The empty set � is a bipartition by definition.

Let E(G) ⊆ 2E , B(G) ⊆ 2E be the sets of Eulerian subgraphs and
bipartitions, respectively. We are interested in the generating func-
tions E(G;z) =∑U∈E(G) z|U|, B(G;z) =∑B∈B(G) z|B|.
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Example. For K3 and K4 we find by inspection

E(K3;z) = 1 + z3, B(K3;z) = 1 + 3z2, E(K4;z) = B(K4;z) = 1 +
4z3 + 3z4.

Proposition 10.8. For G = (V, E) we have

a. E(G;z) = (1 − z)|E|−|V |+k(G)z|V |−k(G)T(G; 1
z ,

1+z
1−z ) ,

b. B(G;z) = z|E|−|V |+k(G)(1 − z)|V |−k(G)T(G; 1+z
1−z ,

1
z ) , (3)

c. B(G;z) = (1+z)|E|
2|E|−|V |+k(G)E(G; 1−z

1+z ),

where T(G) is the Tutte polynomial.

Proof. We show that E(z) is a chromatic invariant and use the
Recipe Theorem 9.5. For a bridge or loop we have

E(bridge;z) = 1, E(loop;z) = 1 + z .

If e is a bridge of G, then no Eulerian subgraph contains e (clear?);
hence E(G;z) = E(G�e;z). Similarly, if e is a loop, then e may
be added to any Eulerian subgraph of G�e; thus E(G;z) = (1 +
z)E(G�e;z). Suppose e is not a bridge or loop; then we claim that

E(G;z) = (1 − z)E(G�e;z)+ zE(G/e;z) . (4)

Let e = {u,v} and Eu the edges emanating from u (apart from e),
and Ev those of v (without e):

e
u v

Eu Ev

The Eulerian subgraphs of G that do not contain e are in one-to-
one correspondence with the Eulerian subgraphs of G�e, which ac-
counts for E(G�e;z) in (4). Suppose e ∈ U ∈ E(G); then U�e ∈
E(G/e), since the degree of the contracted vertex is d(uv) =
(d(u) − 1) + (d(v) − 1) ≡ 0 (mod 2). Conversely, if U ⊆ E(G/e),
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then U ∪ e ∈ E(G) precisely when |Eu| and |Ev| are both odd in U .
Thus we have to subtract from E(G/e) those Eulerian subgraphs U
for which |Eu| and |Ev| are even. But these are in one-to-one cor-
respondence with E(G�e). Taking the edge e into account, we get
(4) and thus assertion (a) from Theorem 9.5 with A = 1, B = 1 + z,
α = 1 − z, β = z.

Formula (b) is proved in analogous fashion, and (c) follows by con-
sidering E(G; 1−z

1+z ) in (a). �

Example. For z = 2 we obtain new evaluations of the Tutte poly-
nomial: ∑

U∈E(G)
2|U| = (−1)|E|−|V |+k(G)|2|V |−k(G)T

(
G;

1
2
,−3

)
∑

B∈B(G)
2|B| = (−1)|V |−k(G)2|E|−|V |+k(G)T

(
G;−3,

1
2

)
.

Let us return to the Ising problem. We make the assumption M = 0
(no external field) and Jij = J for all edges. Setting K = βJ, the
expression (2) for the partition function becomes

Z(G;K) =
∑
σ
eK

∑
{i,j}∈E σiσj . (5)

For a state σ let V+ = {i ∈ V : σi = 1}, V− = {i ∈ V : σi = −1}, and
let E+, E− be the edges with both ends in V+ and in V−, respectively.
Denote by Bσ ⊆ E the bipartition induced by the partition V+ ∪ V−;
then (1) can be written as

H(σ) = −J(|E+| + |E−|)+ J|Bσ | = −J|E| + 2J|Bσ | .

Each bipartition corresponds to exactly 2k(G) spin configurations
(two for each component by exchanging +1 and −1), which all have
the same Hamiltonian. Hence we obtain

Z(G;K) =
∑
σ
e−βH(σ) = 2k(G)

∑
B∈B(G)

eβJ|E|−2βJ|B|

= 2k(G)eK|E|
∑

B∈B(G)
e−2K|B|

= 2k(G)eK|E|B(G; e−2K) , (6)

and with Proposition 10.8b,
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Z = 2k(G)eK|E|(e−2K)|E|−|V |+k(G)

× (1 − e−2K)|V |−k(G)T
(
G;

1 + e−2K

1 − e−2K , e
2K
)
. (7)

We can further simplify this expression, using the hyperbolic func-
tions

coshx = ex + e−x
2

, sinhx = ex − e−x
2

,

tanhx = sinhx
coshx

, cothx = coshx
sinhx

.

Writing (eK)|E| = (eK)|E|−|V+k(G) · (eK)|V |−k|G|, and combining the
parts with the third and fourth factors above, we obtain the factors

(e−K)|E|−|V |+k(G), (eK − e−K)|V |−k(G) = 2|V |−k(G) sinh(K)|V |−k(G) .
(8)

Finally, in the Tutte polynomial,

1 + e−2K

1 − e−2K = eK + e−K
eK − e−K = coth(K) . (9)

Using Proposition 10.8 and (7) we may express Z also in terms of
E(G;z); see Exercise 10.19. Thus with (8) and (9) we obtain three
expressions for the partition function.

Theorem 10.9. Let G = (V, E), T(G) the Tutte polynomial, and
Z(G;K) the partition function of the Ising model with constant in-
teraction J, K = βJ, and no outside field. Then

a. Z(G;K) = 2|V |(e−K)|E|−|V |+k(G)

×( sinh(K)
)|V |−k(G)T(G; coth(K), e2K),

b. Z(G;K) = 2k(G)eK|E|B(G; e−2K) , (10)

c. Z(G;K) = 2|V |( cosh(K)
)|E|E(G; tanh(K)

)
.

Reduction to a Dimer Problem.
The last result shows that we can compute the partition function
if we succeed in finding a closed formula for any of the three ex-
pressions on the right. Easiest is the Eulerian generating function
E(G;z), and to be specific we look at the usual lattice graph Lm,n,
but the procedure can obviously be generalized.
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Set G = Lm,n. We construct a new graph Gt , called the terminal
graph, as follows. First, replace each vertex by a complete graph
K4, and join these K4’s as indicated in the figure for m = 3, n = 4:

G Gt

�

The edges within the K4’s are called internal edges, the others ex-
ternal edges. The external edges correspond therefore precisely to
the original edges of G.

We show next how the Eulerian subgraphs of G are related to per-
fect matchings in Gt . Let U ∈ E(G). The corresponding edges Ut in
Gt are disjoint; thus they form a (partial) matching. If they touch a
K4 in Gt with two or four edges, then there exists a unique internal
edge that extends the matching (or none). However, when a vertex
u has degree 0 in U , then there are three possibilities to complete
the matching. The following figure should make the situation clear.
The edges of U and Ut are drawn in bold type, and the added in-
ternal edges dashed. For the lower left-hand corner there are three
possibilities.

G Gt

�

In summary, we see that:
A. To every perfect matching M of Gt there exists a unique Eulerian
subgraph U of G, by taking the external edges.
B. To U ∈ E(G), there are three possibilities to complete the perfect
matching for Ut , for every isolated vertex in U .
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Since we want to compute E(G;z) = ∑
U∈E(G) z|U|, and relate

E(G;z) to the Pfaffian of Gt , we have to assign weights to the edges
of Gt , and try to get rid of the ambiguity in B. This is accomplished
by orienting Gt as in the figure:

��

� � �

� �

� �

� �

� �

� ��

	

� �

� �

	
�

�

�

�
�

	

�

� �

�
�

	

�

�

Now we assign the weight ±1 to the internal edges, and ±z to the
external edges according to the orientation, and obtain thus a skew-
symmetric matrix A of Gt .

Theorem 10.10. Let G = Lm,n and Gt the terminal graph with adja-
cency matrix A according to the orientation above. Then

E(G;z) = |Pf(A)| . (11)

Proof. We number any K4 by

2

1 3

4

� �

�

	

��

and obtain for the Pfaffian

a12a34 − a13a24 + a14a23 = 1 − 1 + 1 = 1 . (12)

For an Eulerian subgraph U of G, denote by μ → U the fact that μ is
a perfect matching of Gt belonging to U . Hence we may write

Pf(A) =
∑
μ
(signμ)aμ =

∑
U∈E(G)

∑
μ→U

(signμ)aμ .
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Suppose u is an isolated vertex of U , and μ1, μ2, μ3 the three local
matchings of the associated K4 in Gt . Then by (12),

∑
μ→U

(signμ)aμ =
3∑
i=1

(signμi)aμi · (signν)aν = (signν)aν ,

where ν is the remaining matching of Gt . Now we take the next
isolated vertex, and so on, and arrive at

∑
μ→U

(signμ)aμ = (signνU)aνU = ±z|U| , (13)

where νU is the set of external matching edges (corresponding to
U ), all of which have weight ±z.

It remains to prove that all expressions ±z|U| in (13) have the same
sign. For U ∈ E(G) extend νU to the unique perfect matching μU
of Gt , by always choosing the local matching μ1 : 12,34 for every
K4 belonging to an isolated vertex in U . Since (signμ1)aμ1 = 1, we
have

Pf(A) =
∑

U∈E(G)
(signμU)aμU . (14)

To prove that all signs in (14) (and thus in (13)) are the same we
proceed as in the plane case treated in the last section. Combining
two such perfect matchings B,B′ to a permutation σ ∈ Se

(
V(Gt)

)
with even cycles, it suffices to show that aσ = −z	, where σ corre-
sponds to a circuit C in Gt with edges alternating between B and B′,
and where 	 is the number of external edges of C .

Case A. C contains no crossing edges in a K4 .
In this case we note that every face of the “bathroom tiling” contains
an odd number of clockwise oriented edges, and this remains true
if one of the diagonals is inserted; see the figure. Hence Lemma 10.2
applies, and aσ = −z	.
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�

�

� �

� �

�
�
	

� �

�
�

� �

� �

� �

� �
�

Case B. C contains internal crossing edges.
We proceed by induction on the number c of crossing diagonals,
where the induction start c = 0 is just case A. By our assumption
on the matchings μU the diagonals belong to different matchings B
and B′, whence we have the following situation:

D2

B
4

31

B

B
2

D1

B′B′

or

4

D1

3

D2

2

B
1 B′

We treat the first case (the other being analogous). Run through
C in the given direction, C = (2,D1,1,3,D2,4). We have to show
that there is an odd number of edges oriented in this direction,
and an odd number oriented oppositely. Insert the edges {1,4}, re-
spectively {2,3}, to produce the circuits C1 and C2, which again are
made up of two matchings:

1B′

D1
B
2

B′
4 B

4

B′

2
3

C1 C2

C1 and C2 have fewer crossings than C , and so by induction, they
agree in an odd number of edges with the given direction. Looking
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at the picture,D1 andD2 also have an odd number in each direction,
thus D1 ∪D2 an even number. Taking the edge 3 → 1 into account
we conclude that C has an odd number, and the proof is complete.
�

Theorem 10.9 and the last result E(G;z) = √
detA give the parti-

tion function Z of the lattice graph Lm,n, provided we can compute
detA. Unfortunately, no one has succeeded in doing that, and the
determination of detA remains one of the great open problems.
To overcome this difficulty, we expand Lm,n to the toroidal lattice
graph L̃m,n by wrapping the horizontal and vertical edges around.
That is, {i, j} and {k, 	} are adjacent if |i− k| = 1 (mod m), j = 	,
or i = k, |j − 	| = 1 (mod n). The picture shows L̃3,3:

L̃3,3

In physics one speaks of a lattice with periodic boundary.

Now the state of affairs changes. Owing to the “cyclic” structure
of the matrix Ã of the corresponding terminal graph L̃tm,n, we will

be able to compute the determinant. Of course, L̃tm,n is no longer
planar, even without crossing diagonals, but the result of Theorem
10.10 can still be used in the limit on the rationale that the contri-
bution of the wrap-around edges is negligible as m and n tend to
infinity.

Cyclic Matrices.
Let M = (mk	) be a n×n-block matrix whose entries mk	 are t× t-
matrices. We call M cyclic if there are t × t-matrices a(0),a(1), . . . ,
a(n− 1) such that mk	 = a(	− k), where 	− k is taken modulo n.

A cyclic 3 × 3-matrix looks therefore as follows:

M =

⎛⎜⎝a(0) a(1) a(2)
a(2) a(0) a(1)
a(1) a(2) a(0)

⎞⎟⎠ .
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Cyclic matrices can be easily diagonalized, as we now show. From
now on, i is not an index but

√−1. Consider the n×n-block matrix
P = (pk	) whose entries are

pk	 =
1√
n

exp
(
k	

2πi
n

)
It , (15)

where It is the t× t-identity matrix. Then P is a unitary matrix, that

is, P−1 = PT , where x is the conjugation over C. Just note that

n∑
j=1

pkjp	j = It
1
n

n∑
j=1

exp
(
j(k− 	)2πi

n

)
= Itδk	 ,

since
∑n
j=1 exp(jb 2πi

n ) = 0 for any integer b ≠ 0 .

Lemma 10.11. Let M be a cyclic n × n matrix, with a(k) and P as
defined above. Then M̃ = P−1MP is a diagonal block matrix, with

m̃kk = λ
(

2πk
n

)
, k = 1, . . . , n , (16)

where λ is the t × t-matrix given by

λ(ϕ) =
n−1∑
j=0

a(j) exp(jiϕ) . (17)

In particular,

detM = det M̃ =
n∏
k=1

detλ
(

2πk
n

)
.

Proof. We compute

m̃k	 =
n∑

r ,s=1

pkrmrsps	

= 1
n
It

n∑
r=1

exp
(
−kr πi

n

) n∑
s=1

a(s − r) exp
(
s	

2πi
n

)

= 1
n

n∑
r=1

exp
(
(	 − k)r 2πi

n

)
·
n∑
s=1

a(s − r) exp
(
(s − r)	2πi

n

)

= δk,	 ·
n−1∑
j=0

a(j) exp
(
j	

2πi
n

)
= δk,	 · λ

(
2π	
n

)
. �
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Now, if the matrices a(k) are themselves cyclic block matrices, then
we repeat this process. In general, we have the following result,
whose proof is identical to the one just given.

Definition. The matrixM = (mαβ) whose entries are t×t-matrices
is called a general cyclic matrix if the rows and columns can be
indexed by vectors α = (α1, . . . , αd), αi = 1,2, . . . , ni, such that
mαβ = a(β − α), where βk − αk is taken componentwise mod nk,
k = 1, . . . , d, 0 ≤ βk −αk ≤ nk − 1.

Proposition 10.12. Let M = (mαβ) be a general cyclic matrix. Then

detM =
∏
α

detλ
(

2πα1

n1
, . . . ,

2παd
nd

)
, (18)

where λ is the t × t-matrix given by

λ(ϕ1, . . . ,ϕd) =
∑
α
a(α) exp(iα ·ϕ) , (19)

and iα ·ϕ = i∑d
j=1αjϕj .

Solution of the Ising Problem.
Now let us go to work to compute det Ã for the square terminal
graph L̃tn,n with the orientation and weighting given as in Theorem

10.10. Let us verify that Ã is a generalized cyclic matrix with t = 4,
d = 2. We number the K4’s from bottom up, and from left to right.
Choosing the suggestive notation R (right), L (left), U (up),D (down),

D

L R

U

� �

�
��

	

�

�

� �

we have

a(0,0) =
R
L
U
D

⎛⎜⎜⎜⎝
R
0

L
1

U
−1

D
−1

−1 0 1 −1
1 −1 0 1
1 1 −1 0

⎞⎟⎟⎟⎠ .



478 10 Models from Statistical Physics

Passing to the right or left, we see from the figure (since R is joined
to L, and nothing else) that

a(1,0) =
R
L
U
D

⎛⎜⎜⎜⎝
R
0
L
z
U
0
D
0

0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠ , a(−1,0) =
R
L
U
D

⎛⎜⎜⎜⎝
R
0
L
0
U
0
D
0

−z 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠ .

Similarly, moving in vertical direction we obtain

a(0,1) =
R
L
U
D

⎛⎜⎜⎜⎝
R
0
L
0
U
0
D
0

0 0 0 0
0 0 0 z
0 0 0 0

⎞⎟⎟⎟⎠ , a(0,−1) =
R
L
U
D

⎛⎜⎜⎜⎝
R
0
L
0

U
0
D
0

0 0 0 0
0 0 0 0
0 0 −z 0

⎞⎟⎟⎟⎠ .

All other local 4×4-matrices are zero. Since L̃tn,n is wrapped around

at the ends it is easily seen that Ã is indeed cyclic. We conclude that
λ(ϕ1,ϕ2) = a(0,0) + a(1,0)eiϕ1 + a(−1,0)e−iϕ1 + a(0,1)eiϕ2 +
a(0,−1)e−iϕ2 =

⎛⎜⎜⎜⎝
0 1 + zeiϕ1 −1 −1

−(1 + ze−iϕ1) 0 1 −1
1 −1 0 1 + zeiϕ2

1 1 −(1 + ze−iϕ2) 0

⎞⎟⎟⎟⎠ .

The determinant is readily evaluated to

detλ(ϕ1,ϕ2) = (1 + z2)2 − 2z(1 − z2)(cosϕ1 + cosϕ2) , (20)

and we obtain from (18) the expression

det Ã =
n∏
k=1

n∏
	=1

[
(1 + z2)2 − 2z(1 − z2)

(
cos

2πk
n

+ cos
2π	
n

)]
.

(21)
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Combining Theorems 10.9, 10.10 and (21), and noting that |Ẽ| =
2n2 (since L̃n,n is 4-regular), we thus obtain for large n,

Z(L̃n,n;K) ≈ 2n
2

⎡⎣ n∏
k=1

n∏
	=1

cosh(K)4

×
(
(1 + z2)2 − 2z(1 − z2)(cos

2πk
n

+ cos
2π	
n
)
)⎤⎦ 1

2

(22)

evaluated for z = tanh(K). It is easily seen that

(
1 + tanh2(K)

)2 = cosh(2K)2

cosh(K)4
,

2 tanh(K)
(
1 − tanh2(K)

) = 2
sinh(K)

cosh3(K)
.

Multiplying by cosh(K)4, this gives cosh(2K)2,2 sinh(K) cosh(K) =
sinh(2K), and therefore

Z(L̃n,n;K) ≈

2n
2

⎡⎣ n∏
k=1

n∏
	=1

(
cosh(2K)2 − sinh(2K)

(
cos

2πk
n

+ cos
2π	
n

))⎤⎦ 1
2

.

Now we consider logZ
n2 and let n go to infinity. As in the dimer prob-

lem, the right-hand side becomes a double integral with bounds 0
and 2π , and we have finally proved the celebrated solution of the
2-dimensional Ising problem, first derived by Onsager.

Theorem 10.13 (Onsager). We have

lim
n→∞

log(Z(L̃n,n;K)
n2

= log 2 + 1
2(2π)2

2π∫
0

2π∫
0

Q(K,ϕ1,ϕ2)dϕ1 dϕ2 ,

where

Q = log[cosh(2K)2 − sinh(2K)(cosϕ1 + cosϕ2)] .
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Exercises

10.15 For a graph G = (V , E) prove: a. |B(G)| = 2|V |−k(G), b. |E(G)| =
2|E|−|V |+k(G).

� 10.16 Prove directly that B(G;−1) = |B(G)| if G is Eulerian, and 0 oth-
erwise, and similarly E(G;−1) = |E(G)| if G is bipartite, and 0 otherwise.

10.17 Deduce from the previous exercises that T(G;−1,0) = (−1)|V |−k(G)
if G is bipartite, T(G; 0,−1) = (−1)|E|−|V |+k(G) if G is Eulerian.

10.18 Verify assertions (b) and (c) in Proposition 10.8.

10.19 Express Z(G;K) in terms of E(G;z) (Theorem 10.9c).

� 10.20 Compute the partition function Z(Cn;K) for the circuit Cn, K > 0.
What do you get for logZ

n as n→∞?

* * *

� 10.21 Consider the ladder graph L2,n. All Eulerian subgraphs are unions
of circuits, and hence have even size. Let Fn(z) = E(L2,n;

√
z) =∑

k≥0 akzk, F0(z) = 1. Show that the generating function H(x) =∑
n≥0 Fn(z)xn is given by 1−xz

1−(1+z)x+(z−z2)x2 . Deduce Fn(1) = 2n−1,

Fn(−1) = 2� n2 	, Fn(−2) = 1
5(2

n+2 +(−3)n). Show further that a2 = n−1,
a3 = n− 2, and an = Fn−1 (Fibonacci).

10.22 In the Potts model on G = (V , E) every vertex can assume q ≥ 2
spins, and the partition function is ZP(G;K) =∑σ eK

∑
{i,j}∈E δ(σi,σj) over all

q|V | states, δ(σi, σj) = Kronecker delta. Let B(G;λ, s) be the monochro-
mial introduced in Exercise 9.10. Prove ZP(G;K) = B(G;q, eK).

10.23 Show that ZP(G;K) = qk(G)(eK − 1)|V |−k(G)T
(
G; e

K+q−1
eK−1 , eK

)
, T(G)

Tutte polynomial.

10.24 Set K = −∞ in the Potts model. What do you get for Z(G;−∞)?
� 10.25 Show that ZP(G; 2K) = eK|E|ZIsing(G;K) for q = 2.

10.26 Express the Tutte polynomial in terms of the monochromial
B(G;λ, s).

� 10.27 Suppose G = (V , E, F) is a plane connected graph, G̃ the medial
graph, and S(G̃;Wα,β, λ) the crossing-free transition polynomial as in Sec-

tion 9.3. Prove ZP(G;K) = q1− |F|
2 S(G̃,W√q,eK−1;

√q).
Hint: Express x,y in the Tutte polynomial of Exercise 10.23 in the form
1 + α

βλ, 1 + β
αλ.

10.28 Generalize Theorem 10.13 as follows. Assign weight z1 to the
horizontal edges of L̃n,n, and z2 to the vertical edges, with K1, K2 the
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corresponding parameters replacing K. Prove that limn→∞
logZ
n2 = log 2 +

1
2(2π)2

∫ 2π
0

∫ 2π
0 Qdϕ1 dϕ2, whereQ = log[cosh(2K1) cosh(2K2)−sinh(2K1)

· cos ϕ1 − sinh(2K2) cosϕ2] .

10.3 Hard Models

In statistical physics hard models describe a collection of particles
on a lattice with the restriction that particles must not be on ad-
jacent sites. Interpreted in terms of graphs we have the following
problem: Given the simple graph G = (V, E), determine the gen-
erating function U(G;z) = ∑

k≥0ukzk, where uk is the number of
independent sets of size k (including the empty set). Physicists usu-
ally call the variable z the activity.

Of particular interest are the cases z = 1 and z = −1, enumerating
the total number of independent sets, and the difference between
the number of even-sized and odd-sized sets. Given G = (V, E) and
a vertex v we may partition the independent sets U according to
whether U does or does not contain v . Denoting by N(v) the neigh-
borhood of v (including v), we thus have the following recurrence.

Lemma 10.14. Consider G = (V, E) and v ∈ V . Then

U(G;z) = U(G�v ;z)+ zU(G�N(v);z) . (1)

Example. For the path Pn with n vertices the independent sets
correspond to subsets of {1, . . . , n} without consecutive entries. We
have computed these numbers in Exercise 1.8 and obtain

U(Pn;z) =
∑
k≥0

(
n− k+ 1

k

)
zk , (2)

and in particular,

U(Pn; 1) = Fn+2 (Fibonacci number). (3)

Picking v as an end vertex of Pn, Lemma 10.14 implies

U(Pn;−1) = U(Pn−1;−1)−U(Pn−2;−1) = −U(Pn−3;−1) .
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With U(P0;−1) = 1 (by definition), U(P1;−1) = 0, U(P2;−1) = −1,
this gives

U(Pn;−1) =

⎧⎪⎨⎪⎩
1 n ≡ 0,5 (mod 6),
0 n ≡ 1,4 (mod 6),

−1 n ≡ 2,3 (mod 6).

Application of (1) to the circuit Cn yields

U(Cn;z) = U(Pn−1;z)+ zU(Pn−3;z)

=
∑
k≥0

[(
n− k
k

)
+
(
n− k− 1
k− 1

)]
zk ,

and in particular,

U(Cn; 1) = Fn+1 + Fn−1 = Ln . (4)

The number Ln is called the n-th Lucas number . The first Lucas
numbers are (L0 = 1,1,3,4,7,11,18, . . .).

The Lattice Graph.
As before, we concentrate on the rectangular lattice graph Lm,n. It is
too much to expect that a closed formula for U(Lm,n;z) can be ob-
tained, or even an expression for the total number U(Lm,n; 1) of in-
dependent sets. Some exact results for small fixed m are contained
in the exercises. But we can say something about the asymptotic
growth.

Since Lm,n is a bipartite graph, any subset of either color class is
independent, which gives

2
mn

2 ≤ U(Lm,n; 1) ≤ 2mn ,

or

√
2 ≤ lim

m,n→∞inf U(Lm,n; 1)
1
mn ≤ lim

m,n→∞sup U(Lm,n; 1)
1
mn ≤ 2 .

The main question we want to tackle is therefore whether

limm,n→∞U(Lm,n; 1)
1
mn exists, and what its value ξ is, where

√
2 ≤

ξ ≤ 2.

For notational reasons it is convenient to consider the function

f(m,n) = U(Lm+1,n+1; 1) ,
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where, of course, limm,n→∞ f(m,n)
1
mn = ξ if it exists. Note that

f(m,n) = f(n,m).
Example. For m = 2, n = 1, f(2,1) = 17 is easily computed:

L3,2 =

Let us fix m. Then clearly

f(m,n1 +n2) ≤ f(m,n1)f (m,n2) , (5)

since any independent set in Lm+1,n1+n2+1 gives rise to a pair of
such sets on Lm+1,n1+1 and Lm+1,n2+1 , as in the figure:

m edges

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ ︸ ︷︷ ︸
n1

︸ ︷︷ ︸
n2

The following result, called the lemma of Fekete, comes in handy.

Lemma 10.15. Suppose the function g : N → R satisfies g(r + s) ≤
g(r)g(s) for all r and s. Then limn→∞ g(n)

1
n exists, and it is, in fact,

equal to infg(n)
1
n .

Proof. Fix r and 	 with 	 ≤ r . The inequality implies by induction
g(	 + kr) ≤ g(	)g(r)k, and thus

lim
k→∞

supg(	 + kr) 1
	+kr ≤ g(r) 1

r .

Since any n can be written in the form 	 + kr , this gives

lim
n→∞ supg(n)

1
n ≤ g(r) 1

r for all r . (6)

Letting r go to infinity, we obtain

lim
n→∞ supg(n)

1
n ≤ lim

r→∞ infg(r)
1
r ,
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and so limn→∞ g(n)
1
n exists. The last assertion follows now imme-

diately from (6). �

If we set g(n) = f(m,n), then the lemma and (5) imply the follow-
ing:

Corollary 10.16. The limit Θm = limn→∞ f(m,n)
1
n exists for every

fixed m.

Example. For m = 0, L1,n+1 = Pn+1 and f(0, n) = Fn+3 according

to (3), which gives Θ0 = limn→∞ F
1
n
n+3 = τ = 1+√5

2 , the golden ratio.

The Transfer Matrix.
The following idea, well known to physicists, provides an alternative
method to compute Θm. We make use of the symmetric structure
of the lattice graph. Number the vertices of Pm+1 in each column
1,2, . . . ,m + 1 from top to bottom. Suppose we are given an inde-
pendent set of Lm+1,n+1. In any vertical line x = i we get an inde-
pendent set Ui of Pm+1, where two consecutive sets Ui,Ui+1 must
be disjoint. In the example for m = 3, n = 4, the sets from left to
right are {1,3}, {2}, {4}, {1,3}, {2,4}:

1

2

3

4

Now we associate to Lm+1,n+1 the following graph Gm = (Vm,Em).
The vertices are the Fm+3 independent sets of Pm+1, and we join
two such sets Ui,Uj if and only if they are disjoint. A moment’s
thought shows that the independent sets of Lm+1,n+1 correspond
bijectively to walks of length n in Gm, where a walk from u to v
of length n in any graph is a sequence u = v0, v1, . . . , vn = v with
{vi,vi+1} ∈ E, for all i.

An easy result of graph theory (see Exercise 10.34) states that for
any graph G with adjacency matrix A, we have

An(u,v) = # walks of length n from u to v .
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Accordingly, we consider the adjacency matrix Tm = (tij) of Gm,
called the transfer matrix. Number the Fm+3 independent sets of
Pm+1 in any way U1, . . . , UFm+3 ; then

tij =
{

1 if Ui ∩Uj = � ,
0 if Ui ∩Uj ≠ � .

In our case this means that f(m,n) is the sum of all entries of Tnm,
that is,

f(m,n) = 1TTnm1 , (7)

where 1 is the all ones vector of length Fm+3.

Example. For m = 2, P3 =
3
2
1

; let U1 = �, U2 = {1}, U3 = {2},
U4 = {3}, U5 = {1,3}. Then

T2 =

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 1 1 1
1 0 1 1 0
1 1 0 1 1
1 1 1 0 0
1 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

and 1TT21 = 17, agreeing with f(2,1) = 17 as noted above.

Now we turn to linear algebra. The matrix Tm is real and symmetric
and thus diagonizable. Note that the diagonal consists of a 1 (cor-
responding to �), and 0’s otherwise; hence the trace is tr(Tm) = 1.
Denote by Λm the largest eigenvalue of Tm, Λm = λ1 ≥ λ2 ≥ · · · ≥
λFm+3. Because of tr(Tm) =

∑
i≥1 λi = 1, we have Λm > 0, and the

theorem of Perron–Frobenius states further that |λi| ≤ Λm for all i.

Let us finally quote two other easy theorems from linear algebra.
Suppose A is a real symmetric matrix with eigenvalues Λ = λ1 ≥
λ2 ≥ · · · ≥ λt . Then the eigenvalues of An are λn1 , λ

n
2 , . . . , λ

n
t . Fur-

thermore,
xTAx ≤ Λ(xTx) for all vectors x . (8)

With these preparations we can prove the following result.

Proposition 10.17. For all m,

Θm = lim
n→∞f(m,n)

1
n = Λm . (9)
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Proof. Since |λ| ≤ Λm for any eigenvalue λ of Tm, Λnm > 0 is the
largest eigenvalue of Tnm. Now by (8),

f(m,n) = 1TTnm1 ≤ Λnm(1T1) = ΛnmFm+3 ,

and hence

f(m,n)
1
n ≤ ΛmF

1
n
m+3 .

Letting n→∞, this implies Θm ≤ Λm .

In the other direction we obtain for p ≥ 0,

Λ2p
m ≤ tr(T 2p

m ) ≤ 1TT 2p
m 1 = f(m,2p) , (10)

since tr(T 2p
m ) =∑λ2p

i , and λ2p
i ≥ 0 for all i. We conclude that Λm ≤

f(m,2p)
1

2p , and thus with p →∞, Λm ≤ Θm. �

Remark. Lemma 10.15 implies Λm = inff(m,n)
1
n and Λm ≤

f(m,n)
1
n for all n.

Example. Let us again look at the smallest case m = 0. Here T0 =(
1 1
1 0

)
, det(xI−T0) = x2−x−1 with roots 1±√5

2 . Hence Θ0 = Λ0 = τ
as noted above.

The proposition immediately implies

lim
m→∞ infΛ

1
m
m = lim

m,n→∞ inff(m,n)
1
mn ≤ lim

m,n→∞ supf(m,n)
1
mn

= lim
m→∞ supΛ

1
m
m . (11)

Theorem 10.18. The limit lim
m,n→∞f(m,n)

1
mn exists, and we have

ξ = lim
m,n→∞f(m,n)

1
mn = lim

m→∞Λ
1
m
m . (12)

Moreover, ξ = inf
m→∞Λ

1
m
m .

Proof. According to (11) it remains to show that limm→∞Λ
1
m
m ex-

ists, but this follows immediately from the lemma of Fekete. Indeed,
f(r + s,n) ≤ f(r ,n)f (s,n) implies

f(r + s,n) 1
n ≤ f(r ,n) 1

n f (s,n)
1
n ,
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and with n→∞,
Λr+s ≤ ΛrΛs .

Lemma 10.15 finishes the proof. �

Bounds for the Limit.

We know that ξ = infΛ
1
m
m , but the behavior of the sequence (Λ

1
m
m)

is not clear. It may be monotonically decreasing, but it could also
have a minimum. The exercises contain a few results.

We already know the trivial lower bound ξ ≥ √
2 = 1.414. Using (8)

this can be improved in the following way. Let p,q ∈ N. Then (recall
f(m,n) = f(n,m) )

Λpm(T
q
m1)T (Tqm1) ≥ (Tqm1)TTpm(T

q
m1) ,

or

Λpm(1TT
2q
m 1) = Λpmf(2q,m) ≥ 1TTp+2q

m 1 = f(p + 2q,m) .

Taking the m-th root and letting m →∞ yields

ξpΛ2q ≥ Λp+2q ,

that is,

ξ ≥
(
Λp+2q

Λ2q

) 1
p

for p,q ∈ N . (13)

In particular, for p = 1 we get

ξ ≥ Λ2q+1

Λ2q
. (14)

Example. For p = 1, q = 0 we find that Λ1 is the largest root
of x3 − x2 − 3x − 1 = 0 with 2.41 < Λ1 < 2.42. We know that
Λ0 = τ = 1+√5

2 , and so

ξ ≥ Λ1

Λ0
= 1.492066 .

Of course, we expect that larger values of q might give better
bounds. For q = 4 one computes

ξ ≥ Λ9

Λ8
= 1.50304808 , (15)
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and it may be that
Λ2q+1

Λ2q
is an increasing subsequence yielding suc-

cessively better bounds. You are asked in the exercises to show

that
Λ2q+1

Λ2q
≤ Λ2q+2

Λ2q+1
, and it is conjectured that ξ ≤ Λ2q+2

λ2q+1
for all

q ≥ 0. If this is true, then ξ = 1.50304808 up to 8 decimals since
Λ8
Λ7

= 1.50304808.

For an upper bound we look at (10),

Λ2p
m ≤ tr(T 2p

m ) .

The trace of T 2p
m counts the number of all closed walks of length 2p

in Gm from left to right. The figure shows the situation for m = 3,
2p = 6:

But we can also look from top to bottom. The rows give indepen-
dent sets of the circuit C2p, with consecutive sets being disjoint. We
therefore define the graph H2p whose vertices are the independent
sets of C2p, and edges corresponding to disjoint pairs. Note that
|V(H2p)| is the Lucas number L2p.

We conclude that the number of closed walks of length 2p in Gm
equals the number of walks of length m in H2p. Denoting by S2p
the adjacency matrix of H2p we thus have

tr(T 2p
m ) = 1TSm2p1 . (16)

By the same argument as before,

lim
m→∞(1

TSm2p1)
1
m = Γ2p ,

where Γ2p is the largest eigenvalue of S2p . By (10) and (16),

Λm ≤ (1TSm2p1)
1

2p ,
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and taking the m-th root and letting m→ ∞,

ξ ≤ Γ
1

2p
2p . (17)

Example. For p = 1, the graph H2 is a 2-circuit and thus has the
same independent sets as G1 = K2, that is, Γ2 = Λ1 < 2.42, which
gives

ξ <
√

2.42 < 1.556 .

Again we expect that larger values of p will give better bounds. For
example, for p = 3 one obtains

ξ < 1.503514809 ,

which agrees with the lower bound in (15) in the first three decimals.

Exercises

� 10.29 Show for the Fibonacci numbers that Fm+k = Fk+1Fm+FkFm−1 for
m,k ≥ 0. Deduce for the Lucas numbers that LnFn = F2n, and derive
Ln = τn + τ̂n (n ≥ 1).

10.30 Let G and H be disjoint graphs, and denote by G ∗ H the graph
with V(G ∗ H) = V(G) ∪ V(H), E(G ∗ H) = E(G) ∪ E(H) ∪ {{u,v} :
u ∈ V(G), v ∈ V(H)}. An example is the wheel Wn = K1 ∗ Cn. Prove
U(G ∗H;z) = U(G;z)+U(H;z)− 1.

10.31 Use the previous exercise to compute U(Kn;z), U(Kn1,...,nt ;z), and
U(Wn;z).

10.32 Compute U(Kn1,...,nt ;−1) and U(Cn;−1).

� 10.33 Let T be a tree on n vertices. Prove the bounds Fn+2 ≤ U(T ; 1) ≤
2n−1 + 1, and determine the trees that achieve equality in the bounds.

10.34 Let A be the adjacency matrix of the graph G. Show that An(i, j)
equals the number of walks of length n from i to j in G.

10.35 Then-dimensional cubeQn has {0,1}n as vertex set with u = (ui)
and v = (vi) adjacent if they differ in only one coordinate. Compute
U(Q3;z) and U(Q4;z).

* * *
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10.36 Let G be a graph and I = {U1, . . . , Ut} the family of independent
sets. Define the transfer matrix TG = (tij) as usual, tij = 1 if Ui ∩ Uj = �,
tij = 0 otherwise. Prove detTG = (−1)	, 	 = # odd-sized sets in I . Hint:
Exercise 5.47.

� 10.37 Consider Lm,n, I the family of independent sets of Pm, |I| = Fm+2.
Let Dm(z) be the diagonal matrix with Dm(z)U,U = z|U|, and Tm(z)
the matrix with Tm(z)U,V = z|V | for U ∩ V = �, = 0 otherwise. Prove
U(Lm,n;z) = 1TDm(z)Tm(z)n−11.

10.38 Calculate the generating function of U(L2,n;z) using the approach
of Section 3.1 and evaluate U(L2,n; 1) and U(L2,n;−1).

10.39 Consider the matrix Tm(−1) as in Exercise 10.37. Show that
detTm(−1) = 1, and that 1 is an eigenvalue of Tm(−1) for m ≥ 2.

� 10.40 Let the eigenvalues Λk be defined as in the text. Prove Λ2
k+	 ≤

Λ2kΛ2	 for k, 	 ≥ 0, and deduce Λ2n+1
Λ2n

≤ Λ2n+2
Λ2n+1

, Λ2n
Λ2n−2

≤ Λ2n+2
Λ2n

. Hint: Use the
Cauchy–Schwarz inequality from linear algebra.

10.41 Prove Λ
1
k
k ≤ Λ

1
2q
2q for k > 2q.

� 10.42 Consider the periodic lattice L̃m,n as in the section on the Ising
problem, and let T̃m be the transfer matrix of Cm. Show that U(L̃m,n; 1) =
tr(T̃nm) and compute the generating function of U(L̃2,n;z). Evaluate
U (̧L̃2,n; 1) and U(L̃2,n;−1).

10.43 We have considered the half-periodic case in the text. Let g(m,n)
be the number of independent sets in L′m,n where the columns are peri-

odic (that is, Cm). Does limm,n→∞ g(m,n)
1
mn exist? Is it equal to ξ ?

10.44 Now let h(m,n) = U(L̃m,n; 1), and answer the same questions for

limm,n→∞ h(m,n)
1
mn .

10.4 Square Ice

We close this chapter and the book with one of the most spectacular
successes of enumerative combinatorics, the exact solution of the
square ice model due to Zeilberger and Kuperberg. In the general
case, an ice model concerns the number of ways of orienting a 4-
regular graph G such that G becomes a 2-in 2-out graph. As before,
we consider the n × n-lattice graph, which is 4-regular if we add
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periodic boundary conditions as we did before. For the usual graph
Ln,n we thus have to proceed a little differently.

The Problem.
Square ice consists of an n×n-lattice arrangement of oxygen atoms.
Between any two adjacent O-atoms lies one hydrogen atom, and
there are also H-atoms at the left and right boundaries. The task
is to count all possible configurations in which every O-atom is at-
tached to exactly two of its surrounding H-atoms, forming H2O. The
figure shows a possible configuration for n = 5, where ◦ refers to
the O-atoms and simple dots to H-atoms.

Example.

Let An be the number of all n×n-square ice configurations. As first
values we have A1 = 1, A2 = 2 as shown in the figure:

The table shows the next values:

n 1 2 3 4 5 6 7
An 1 2 7 42 429 7436 218348

The determination of An for arbitrary n combines several beautiful
ideas into a glorious finish, masterly explained by David Bressoud
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in his book Proofs and Confirmations, whose exposition we follow
closely.

Connection to 2-in 2-out Graphs and 3-Colorings.
There is an obvious bijection between n×n-ice configurations and
2-in 2-out graphs on the lattice graph of the O-atoms, with boundary
conditions. Let C be a configuration, and u,v be two adjacent O-
atoms. Orient the edge u → v if the H-atom between u and v is
attached to v . The figure explains the correspondence:

�⇒

� �
� � � �

���

�

�

�

� � � �

�

�

�

�

�

�

�

�

�

0 1 2 0 1

1

2

0

1 0 2 1 0

1

2

0�
�2 1 2

� � �
� �

� � �
1 2 0

�
�2 0 2

� � �

In this way we get a 2-in 2-out orientation of the n×n-lattice graph
with the (hanging) boundary edges as shown. Thus An equals the
number of these 2-in 2-out orientations with boundary conditions.

The graph gives rise to an (n+1)×(n+1)-array of cells, where each
O-vertex is surrounded by four cells. Next we color the cells with the
additive group Z3 = {0,1,2} in the following way. We color the cell
in the upper left-hand corner with 0, and proceed by the following
rule. Suppose a,b are neighboring cells, and c(a), c(b) their colors:

If a,b are horizontal neighbors, then c(b) = c(a) + 1 (mod 3) if
a ↑ b, and c(b) = c(a) − 1 if a ↓ b. Similarly, if a,b are vertical
neighbors, then c(b) = c(a) + 1 if

a
�→
b

, and c(b) = c(a) − 1 if
a←�
b

.

Observing this rule, we get the 3-coloring of the cells in the above
example.

From the setup of the 2-in 2-out graph we see that the boundary
cells on top are colored 0,1,2,0, . . . from left to right, and similarly
for the other boundaries. Note that the cell in the lower right-hand
corner is again colored 0. Altogether we obtain in this way a proper
3-coloring of the (n+ 1)× (n+ 1)-array of cells with adjacent cells
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receiving different colors, observing the boundary conditions. The
(easy) proofs of this and the following lemma are left to the exer-
cises.

Lemma 10.19. The coloring rule gives a bijection between the n×n-
ice configurations and the proper 3-colorings of the (n+1)×(n+1)-
array of cells, observing the boundary conditions.

Example. For n = 3 we have the outer array as shown,

0 1 2 0

1

2

0 2 1 0

2

1

,

which can be extended as follows:

01 01 20 20 21 21 21
10 12 02 12 02 10 12

.

Thus A3 = 7.

Classification of the O-Atoms.
As a first step toward determining An let us classify the O-atoms
according to the way they are connected to the H-atoms. There are
six possibilities, which we denote by H = horizontal, V = vertical,
and so on, as shown. It is easily seen that the colors of the four sur-
rounding cells observe the relations as shown in the figure (always
mod 3):

H
i

i+ 1

��
i+ 1

i

NW
i

i− 1

�
�

i+ 1

i
NE

i

i+ 1 �
�

i+ 1

i− 1

V
i

i− 1

�

�

i− 1

i

SE
i

i+ 1

� �i− 1

i
SW

i

i− 1

��
i− 1

i+ 1

(1)

Suppose we are given an ice configuration C . Then we observe the
following two facts:
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A. In every row, the number of H-vertices is one more than the
number of V -vertices. Thus altogether,

#H = #V +n . (2)

For the proof look at a row of the lattice graph, and consider the
difference c(a)−c(b) of the colors of the cells a above and b below.
From (1) we find that the difference changes from −1 to +1 when
we pass an H-vertex, from +1 to −1 at a V -vertex, and stays the
same otherwise. Since it is −1 at the left boundary and +1 at the
right boundary, we must have #H = #V + 1 .

B. We have

#NE = #SW and #NW = #SE . (3)

The 2-in 2-out representation implies that the total number of edges
directed to the right equals the total number of edges directed to
the left. Looking at (1), this means that #NW + #SW = #NE + #SE.
Considering the vertical edges, it follows similarly that #NE +
#NW = #SE + #SW . Subtracting we get #NE − #SW = #SW − #NE;
hence #NE = #SW , and analogously #NW = #SE.

Finding the Right Weights.
Now we assign weights w(t) to every type H,V, . . . , SW , and set as
usual w(C) = ∏

t∈C w(t) for an ice configuration C . The partition
function is then given by

Zn(w) =
∑
C
w(C) .

It was Baxter’s great discovery that the following weights will do the

job. Let a be a number ≠ 0,1,−1, and set for any s ≠ 0, [s] = s−s−1

a−a−1 .
We define the weights as follows:

w(H) = z, w(V) = z−1,

w(NW) = w(SE) = [z] = z − z−1

a− a−1 , (4)

w(NE) = w(SW) = [az] = az − (az)−1

a− a−1
.

For the corresponding partition function we write Zn(z;a).
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Let us first try z = a. Here w(H) = z, w(V) = z−1, w(NW) =
w(SE) = 1, w(NE) = w(SW) = z2−z−2

z−z−1 = z + z−1, and we conclude
by (2) and (3) that

Zn(z;z) =
∑
C
z#H(z−1)#V (z + z−1)#NE+#SW

=
∑
C
zn(z + z−1)m ,

where m is an even integer. In order to make the second factor
equal to 1, we consider z + z−1 = −1, that is, z2 + z + 1 = 0. A

solution is the third root of unity ω = −1+√−3
2 . In sum, we obtain

for z = a =ω,

An = 1
ωnZn(ω;ω), (5)

and the problem reduces to finding an expression for Zn(ω;ω).

The Triangle-to-Triangle Relation.
The key to determining Zn(z;a) lies in specifying the weights even
further. Assign to the O-atom in the i-th row and j-th column the
variable z � xi

yj
. Hence (4) becomes

w(H) = xi
yj
, w(V) = yj

xi
,

w(NW/SE) =
[
xi
yj

]
, w(NE/SW) =

[
axi
yj

]
.

(6)

Theorem 10.20 (Baxter). The partition function Zn(x1, . . . , xn,
y1, . . . , yn;a) is symmetric in the variables xi and the yj .

Proof. Consider rows i and i + 1 of the n × n-grid of O-atoms.
We insert an additional triangle at the left boundary as in the figure
and color the cells appropriately. By the boundary condition the
only possible color for the new cell is i.

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
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������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

xi

i

i− 1 a

b

c

i

i+ 1

xi+1

y1
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The triangle gets weight z = xi+1
xi

, and its type is determined by
rotating it counterclockwise by 45◦,

i

i− 1

i

i+ 1

i− 1 i

i i+ 1

Looking at (4), the weight is
[
axi+1
xi

]
.

Let W0 be the partition function of this enlarged lattice; thus

W0 =
[
axi+1

xi

]
Zn .

Here is the crucial step, which we shall justify in a moment. Push
the triangle across column 1 to the right. Then we claim that

bw i

xi
y1

xi+1
y1

i+ 1

i− 1 a

b
xi+1
y1

= w
xi
y1

c

xixi+1
xi

i

i− 1 a

i+ 1 c

xi+1
xi

where the right-hand side is summed over all possible colors x.
Note that in the regular cells xi and xi+1 are interchanged. Thus
if W1 is the partition function with the triangle in the first column,
then

W0 = W1(xi
y1←→ xi+1) ,

meaning that in all expressions involving regular cells and y1, the
variables xi and xi+1 are interchanged. Next we push the triangle

into the second column, and obtain W1 = W2(xi
y2←→ xi+1), that is,

W0 = W2(xi
y1←→ xi+1, xi

y2←→ xi+1) ,

and finally,

W0 = Wn(xi y←→ xi+1) .

But in Wn we have again only one possibility, considering the
boundary conditions on the right;
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j + 1

j

j − 1

b

a

c

jxi+1
xi

and we obtain Wn =
[
axi+1
xi

]
Zn. But this gives

W0 = Wn = W0(xi
y←→ xi+1) ,

and therefore Zn = Zn(xi ←→ xi+1). Thus Zn is invariant under
all transpositions xi ←→ xi+1, and therefore symmetric in the vari-
ables xi. The proof for the yj ’s proceeds analogously, pushing the
triangle down.

It remains to prove the following lemma. Set z0 = xi+1
xi

, z1 = xi
yj

,

z2 = xi+1
yj

; thus z0z1 = z2.

Lemma 10.21. Let z0z1 = z2, and suppose a0, a1, . . . , a5 is an ad-
missible 3-coloring. Then

z1

a1 a2

w a0 z0

z2

a5 a4

a3 = w
z2

a2

x
z1

a4

y z0 a3a0

a5

a1

, (7)

where we sum over all admissible colorings x and y .

Proof. Let us collect a few facts about the ai’s. Go around clock-
wise from a0, and write + if ai+1 − ai = 1, and − if ai+1 − ai = −1.
Either we have three+ and three−, or all signs are the same, but
the second case cannot happen (why?). Next we observe that we
may add a fixed m to all ai (mod 3), and the situation remains the
same, since the possible colorings and the types do not change.
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Hence we may assume a0 = 0, and there are
(

6
3

)
= 20 possibilities

corresponding to the placement of + and −. We reduce this number
further by making the following two observations:
A. Equality (7) holds if and only if it holds when the configurations
are turned 180◦ (Exercise 10.49).
B. If we keep all 0’s, and interchange 1 ↔ 2, then the types H ↔ V
are interchanged, and the other types remain the same (according
to (1)). Hence making the replacements zi � z−1

i , a � a−1, we get
z−1

0 z−1
1 = z−1

2 , and the weights stay the same. In other words, (7)
holds if and only if it holds for the configuration with 1 and 2 inter-
changed.

We may thus assume a0 = 0, a1 = 1, with 10 cases remaining.
Using a combination of (A) and (B) and another symmetry (see Exer-
cise 10.51), we finally arrive at the following five cases:

(1)

2

0

1

0

0

1

0

z0
z1

z2

=

2

0

1 0

1

0

1/2z0
z1

z2

(2)

2

0

1

0

0

2

0

=

2

0

1 0

2

0

1/2

(3)

2

0

1

0

0

2

1

=

2

0

1 0

2

1

2

(4)

2

0

1

0

2

1

0

=

2

0

1 2

1

0

1
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(5)

1

0

1

0/2

0

1

0

=

1

0

1 0

1

0

1/2

Looking at the types, we have to verify the following five equalities:

1. [az0]z−1
1 [z2] = z0[z1]z−1

2 + [z0]z−1
1 [az2];

2. [az0][az1]z−1
2 = [z0][z1]z−1

2 + z−1
0 z−

1

1 [az2];
3. [az0][az1][az2] = [az0][az1][az2];
4. [az0][z1][z2] = [az0][z1][z2];
5. z−1

0 z−1
1 z2 + [z0][z1][az2] = z0z1z−1

2 + [z0][z1][az2].

Equalities (3), (4), and (5) are obviously true (recall that z0z1 = z2).
Multiplying (1) by z1 and (2) by z2, we get

[az0][z2] = [z1]+ [z0][az2], [az0][az1] = [z0][z1]+ [az2] ,

and both equalities are immediately verified. �

The Determinant Formula.
We know that Zn(x1, . . . , xn,y1, . . . , yn;a) is symmetric in the xi’s
and yj ’s. So we expect that Zn might be expressible via a deter-
minant, and this is indeed the case, as the following result due to
Izergin shows.

Theorem 10.22 (Izergin). We have

Zn(x,y ;a) =

n∏
i=1

xi
yi

n∏
i,j=1

[ xiyj ][
axi
yj
]∏

1≤i<j≤n
[xixj ][

yj
yi
]

det

⎛⎝ 1

[ xiyj ][
axi
yj
]

⎞⎠n
i,j=1

. (8)

Proof. Let Fn(x,y ;a) be the right-hand side. Using the defini-

tion [ xiyj ] = xi/yj−yj/xi
a−a−1 = (x2

i −y2
j )a

xiyj(a2−1) , and similarly for the other

[ ]-expressions, we obtain (check it!)
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Fn(x,y ;a) =

1
(a2 − 1)n(n−1)

n∏
i=1
x2−n
i y−n

i
∏
i,j
(x2
i −y2

j )(a
2x2

i −y2
j )∏

1≤i<j≤n
(x2
i − x2

j )(y
2
j −y2

i )

× det

⎛⎝ 1

(x2
i −y2

j )(a2x2
i −y2

j )

⎞⎠n
i,j=1

.

The product

∏
i,j
(x2
i −y2

j )(a
2x2

i −y2
j )det

⎛⎝ 1

(x2
i −y2

j )(a2x2
i −y2

j )

⎞⎠
is an alternating polynomial in the x2

i and also the y2
j . Hence divid-

ing this product by
∏

1≤i<j≤n(x2
i − x2

j )(y
2
j −y2

i ) gives a symmetric

polynomial in x2
i and y2

j . To get rid of the factor x2−n
1 we multiply

Fn by xn−2
1 , and conclude that

Qn = xn−2
1 Fn(x,y ;a) (9)

is a polynomial of degree n− 1 in x2
1 that is symmetric in the yj ’s.

Now consider Zn(x,y ;a). The first row contains exactly one O-
vertex of typeH with weight x1

yj0
for some j0. The other n−1 vertices

are of type NW or NE, that is,[
x1

yj

]
= a
x1yj

x2
1 −y2

j

a2 − 1
,

[
ax1

yj

]
=

a2x2
1 −y2

j

x1yj(a2 − 1)
.

Multiplying the weights, we see that x1 appears as x2−n
1 , and x2

1 to
the power n− 1. Hence

Pn = xn−2
1 Zn(x,y ;a) (10)

is a polynomial in x2
1 of degree n−1, which is symmetric in the yj ’s

according to Theorem 10.20.

Since Pn,Qn are polynomials of degree n − 1 in x2
1, it remains to

show that they agree at n points. We claim that

Pn
(
x1 = yk

a

)
= Qn

(
x1 = yk

a

)
for k = 1, . . . , n ,
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which will prove the theorem. Let us check this for k = 1, that is, for
x1 = y1

a . The remaining cases follow then easily by the symmetry of
the yj ’s.

Let x1 = y1
a . If the vertex in the upper left-hand corner has type NE,

then the weight is [ax1
y1
] = [1] = 1−1

a−a−1 = 0. So we may assume it

has type H with weight x1
y1

= 1
a . In this case, the other vertices in the

top row are of type NW , and the vertices in column 1 of type SE as
shown in the figure:

. . .

. . .

. . .

. . .

The remaining array is then counted by Zn−1(x,y ;a), and we ob-
tain from (10), with x1 = y1

a ,

Pn(
y1

a
) = yn−2

1

an−1

∏
j≠1

[
y1

ayj

][
xj
y1

]
Zn−1(x2, . . . , xn,y2, . . . , yn;a) .

You are asked in the exercises to check that similarly,

Qn(
y1

a
) = yn−2

1

an−1

∏
j≠1

[
y1

ayj

][
xj
y1

]
Fn−1(x2, . . . , xn,y2, . . . , yn;a) ,

(11)
and the theorem follows by induction. �

Recall that An = 1
ωnZn(ω;ω). The simplest idea would be to try

xi = ω, yj = 1, a = ω, which gives xi
yj

= ω for all i, j, and use

Theorem 10.22. Unfortunately, this will not work, since in the ex-
pression (8) we have [ xixj ] = [1] = 0 in the denominator. But the

following wonderful idea due to Kuperberg will indeed succeed. Let
q be a variable, and set

xi =ωq
i−1

2 , yj = q−
j
2 , a =ω, (12)
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and denote by Zn,q the corresponding partition function. Then

An = 1
ωn lim

q→1
Zn,q , (13)

and we are faced with the task to determine Zn,q.

Computing Zn,q .
According to Theorem 10.22,

Zn,q =

n∏
i=1

xi
yi

∏
i,j
[ xiyj ][

axi
yj
]∏

1≤i<j≤n
[xixj ][

yj
yi
]

det

⎛⎝ 1

[ xiyj ][
axi
yj
]

⎞⎠ .
Let us compute the factors with the new weights (12):

1.
n∏
i=1

xi
yi

=ωn
n∏
i=1
qi−

1
2 =ωnq(

n+1
2 )−n

2 �→
q→1

ωn .

2.
∏
i,j
[ xiyj ][

axi
yj
] = ∏

i,j
[ωq

i+j−1
2 ][ω2q

i+j−1
2 ]. Using ω +ω2 = −1, you

can easily check that as q → 1 this goes to

∏
i,j
(1 + qi+j−1 + q2(i+j−1))

ω2n2

(ω2 − 1)2n2 �→
q→1

ω2n2

(ω2 − 1)2n2 · 3n
2
.

3. A similar computation for the denominator gives

∏
1≤i<j≤n

[
xi
xj
][
yj
yi
]

=
∏

1≤i<j≤n
[q

i−j
2 ][q

i−j
2 ] �→

q→1

∏
i<j
(1 − qj−i)2 ωn(n−1)

(ω2 − 1)n(n−1) .

4. For the determinant we get

det

⎛⎝ 1

[ xiyj ][
axi
yj
]

⎞⎠ �→
q→1

det

(
1

1 + qi+j−1 + q2(i+j−1)

)
· (ω

2 − 1)2n

ω2n .

Next we get rid of the ω-factor. Collecting all factors in (1) to (4) we
obtain, using ω2 =ω−1,

ωn 1

(1 + 2ω)n2−n =ωn 1

(−3)(
n
2)
,
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since ω = −1+√−3
2 , and hence 1 + 2ω = √−3 .

Altogether we have arrived at the following expression (note that
the ωn-factor cancels out),

An = (−1)(
n
2)3n

2−(n2) lim
q→1

det( 1−qi+j−1

1−q3(i+j−1) )∏
1≤i<j≤n

(1 − qj−i)2 , (14)

and we turn to the determinant.

Evaluation of the Determinant.
To compute the determinant in (14), Exercise 8.8 comes to our help.
With t = q3 we obtain

qn
3− 3

2n
2+n

2
∏

1≤i<j≤n
(1 − q3(j−i))2

n∏
i,j=1

1 − q3(j−i)+1

1 − q3(i+j−1) . (15)

Look at the numerator of the second product in (15). For i = j we
get 1 − q, and for i > j we multiply 1 − q3(j−i)+1 by −q3(i−j)−1/
− q3(i−j)−1, which gives −1−q3(i−j)−1

q3(i−j)−1 . As q → 1 the expression (15)

therefore goes to

(−1)(
n
2)(1 − q)n

∏
i<j
(1 − q3(j−i)+1)(1 − q3(j−i))2(1 − q3(j−i)−1)∏

i,j
(1 − q3(i+j−1))

.

Together with (14) this gives for An,

3n
2−(n2) lim

q→1
(1−q)n

∏
i<j

(1 − q3(j−i)+1)(1 − q3(j−i))2(1 − q3(j−i)−1)
(1 − qj−i)2

×
n∏

i,j=1

1
1 − q3(i+j−1) . (16)

Finale.
To go with q → 1 we use, of course,

1 − qm
1 − q = 1 + q + · · · + qm−1 �→

q→1
m.
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Hence, when we multiply numerator and denominator in (16) by
(1 − q)2n(n−1) we get

An = 3n
2−(n2)

∏
1≤i<j≤n

(
3(j − i)+ 1

)(
3(j − i))2(

3(j − i)− 1
)

(j − i)2

×
n∏

i,j=1

1
3(i+ j − 1)

=
∏

1≤i<j≤n

(
3(j − i)+ 1

)(
3(j − i))(3(j − i)− 1

)
j − i

n∏
i,j=1

1
i+ j − 1

=
n−1∏
k=1

[
(3k+ 1)3k(3k− 1)

k
]n−k

n−1∏
k=1

1
kk

2n−1∏
k=n

1
k2n−k

= [(3n− 2)(3n− 3)(3n− 4)][(3n− 5)(3n− 6)(3n− 7)]2 · · · [4.3.2]n−1

[(n− 1)n(n− 2)n · · ·1n][(2n− 1)(2n− 2)2 · · ·nn] ,

and out comes the following astounding formula for the number of
n×n-ice configurations:

An = (3n− 2)!(3n− 5)! · · ·4!1!
(2n− 1)!(2n− 2)! · · · (n+ 1)!n!

.

Exercises

10.45 For a 4-regular graph G let ice(G) be the number of 2-in 2-out
orientations of G. Compute ice(G) for G = K5, G = Q4 and G = Oct,
where Q4 is the 4-dimensional cube graph and Oct the octahedral graph,
which is K6 minus a perfect matching.

10.46 Let Cn be the n-circuit with all edges doubled. Compute ice(Cn).

� 10.47 Denote by L̃2,n the periodic 2 × n-lattice graph considered in the
last section. Show that ice(L̃2,n) = 3n + 2n+1 + 1, n ≥ 1.

10.48 Prove Lemma 10.19.

� 10.49 Verify assertion (A) in Lemma 10.21.

10.50 Check the points (2) to (4) in the computation of Zn,q, including
the ω-factor.

* * *
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10.51 Find another symmetry to complete the proof of Lemma 10.21.

10.52 Verify the equality (11) in the proof of Theorem 10.22.

� 10.53 Let G be a 4-regular graph on n vertices. Show that ice(G) ≥ (3
2)
n.

Hint: Look at the transitions at a vertex and proceed by induction.

10.54 What is the growth of An? Hint: Use the formula for An to get an
expression for An/An−1.

� 10.55 Consider the periodic n × n-lattice graph L̃n,n. Construct the fol-
lowing 2n × 2n-transfer matrix Tn = (tij). The rows and columns of Tn
correspond to the 2n ±1-vectors vi of length n. Now set tij = 2 if vi = vj ,
tij = 1 if vi ≠ vj , and the coordinates k with vik ≠ vjk alternate, mean-
ing that vik = 1, vjk = −1 is followed by vi	 = −1, vj	 = 1, and tij = 0

otherwise. Prove that ice(L̃n,n) = tr(Tnn ).
Hint: Look at the arrows between the first and second columns from top
to bottom, and choose +1 if the arrow points right, and −1 if it points
left. Now consider two adjacent such collections of horizontal arrows.

10.56 Let Λn be the maximal eigenvalue of Tn. Deduce as in the pre-

vious section that limn→∞ ice(L̃n,n)
1
n2 exists and equals limn→∞Λ

1
n
n . Re-

mark: The limit is known to be (4
3)

3/2 = 1.5396007, compare this to Exer-
cise 10.53.
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Highlight: The Rogers–Ramanujan Identities

Of the many beautiful formulas due to Ramanujan, the Rogers–
Ramanujan identities are probably the most famous. What’s more,
they have the touch of the extraordinary because of the mysterious
appearance of the number 5. Here they are:

∑
k≥0

qk2

(1 − q) · · · (1 − qk) =
∏
i≥1

1
(1 − q5i−1)(1 − q5i−4)

, (1)

∑
k≥0

qk2+k

(1 − q) · · · (1 − qk) =
∏
i≥1

1
(1 − q5i−2)(1 − q5i−3)

. (1′)

We noted in Exercise 3.76 that the left-hand side of (1) is the gener-
ating function of the partitions of n whose parts differ by at least 2,
while the right-hand side counts, of course, the partitions of n with
all summands congruent to 1 or 4 (mod 5). Similarly, the left-hand
side of (1′) is the generating function of partitions of n whose parts
differ at least by 2, and where, in addition, 1 is not a summand,
while the right-hand side counts all partitions with all parts congru-
ent to 2 or 3 (mod 5). So, surprisingly, these numbers are equal for
all n.

Example. For n = 11, we have in (1) the partitions

11,10 1,92,83,74,731,641,

respectively

11,911,641,611111,44111,41111111,11111111111,

and in (1′)

11,92,83,74 respectively 83,722,3332,32222 .

Some of the greatest names have contributed after Rogers (1894)
and Ramanujan (1917). Issai Schur (1917) proved a finite version
of the identities that we will see later, Garsia and Milne (1981) pro-
vided an ingenious bijection proof of the corresponding sets of par-
titions.

Perhaps the most unexpected route was taken by Rodney Baxter
in 1980 when he discovered and re-proved the Rogers–Ramanujan
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identities in his work on the hard hexagon model. We follow his
beautiful argument with some refinements due to J. Cigler.

Hard Hexagon Model.
Consider the usual lattice graph Ln,n with diagonals; the figure
shows the graph for n = 5:

As in Section 10.3 we are interested in the independent sets. The
term “hexagon” refers to the fact that the neighborhood of a site
forms a hexagon, that is, independent sets are equivalent to non-
overlapping hexagons.

On his way to determining the behavior of the generating func-
tion for n → ∞, Baxter reduced the 2-dimensional situation to a
1-dimensional problem on lattice paths, and this is the setup we
are going to study.

Lattice Paths.
Consider the independent sets U of the (graph) path on {1, . . . , n−
1}. We may code U by setting yi = 1 for i ∈ U , and yi = 0 when
i �∈ U . In addition, we have the boundary conditions y0 = yn = 0.
Every independent set corresponds in this way to a sequence (y0 =
0, y1, . . . , yn−1, yn = 0) with no two adjacent 1’s. The number of
these sequences is, of course, Fn+1 as noted in Section 10.3.

To every sequence (y0, . . . , yn) corresponds a lattice path by join-
ing (i,yi) to (i + 1, yi+1) by a straight line. As an example for
(0,0,1,0,1,0,0,1,0,0) we get the path

0 1 2 3 4 5 6 7 8 9
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Let Pn be the set of these lattice paths from (0,0) to (n,0). The
points with yi = 1 are called extremal points.

Next, we assign to every path P = (y0, y1, . . . , yn) the weight

w(P) = q
∑n
i=0 iyi . (2)

The exponent is thus the sum of the x-coordinates of the extremal
points. In the example above, w(P) = q2+4+7 = q13. What we are
interested in is the generating function

w(Pn) =
∑
P∈Pn

w(P) , (3)

and our goal is to find two explicit expressions for w(Pn), which
will correspond to the two sides of the Rogers–Ramanujan identi-
ties.

First Evaluation.
Let Pn,k be the set of paths in Pn with exactly k extremal points.
Clearly, the minimum exponent qm arises for the unique path P0

with the extremal points at x = 1,3, . . . ,2k − 1; thus w(P0) = qk2
.

All other paths in Pn,k are obtained by moving the extremal points
to the right. Suppose the i-th extremal point is moved λi steps to
the right. Notice that

0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λk ≤ n− 1 − (2k− 1) = n− 2k .

We conclude that the paths P ∈ Pn,k correspond bijectively to the
number partitions λ with at most k parts and largest summand less
than or equal to n − 2k. Furthermore, if P corresponds to λ, then
w(P) = w(P0)q|λ| = qk2+|λ|. Invoking Proposition 1.1, this gives

w(Pn,k) =
∑

P∈Pn,k
w(P) = qk2

[
n− k
k

]
q
.

Summing over k, we arrive at the first evaluation:

w(Pn) =
∑
k≥0

qk
2
[
n− k
k

]
q
, (4)

which will lead to the left-hand side of (1). To obtain the analogous
result related to (1′) we consider the set P′

n of paths that start at
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(0,1), terminate at (n,0), and otherwise observe the same rules.
The extremal points are defined as before, except that the starting
point is not considered an extremal point. Consider again the set
P′
n,k. The unique path P ′0 ∈ Pn,k of minimal weight has the extremal

points at x = 2,4, . . . ,2k with w(P′
0) = qk2+k, and an analogous

argument leads to

w(P′
n) =

∑
k≥0

qk
2+k

[
n− 1 − k

k

]
q
. (4′)

Second Evaluation.
To obtain a second expression we first give a new interpretation of
the paths in Pn. Consider the set Qn of all lattice paths starting at
(0,0) with �n2 	 diagonal up-steps and �n+1

2 	 diagonal down-steps,
and which stay within the strip −2 ≤ y ≤ 1. Thus every Q ∈ Qn
terminates in (n,0) or (n,−1) depending on whether n is even or
odd.

The following correspondence maps Qn bijectively onto Pn. Re-
place every diagonal step of Q between y = 0 and y = −1 by

a horizontal step (y = 0), and every peak
y = 1

or valley

y = −2 by an up–down step
y = 1

. In this way, we
obtain a path P ∈ Pn, and the mapping is easily seen to be bijec-
tive.

Example. The path P ∈ P9 above corresponds to Q ∈ Q9;

0

y = 1

y = −2

From now on we regard Pn as the set of these paths with diagonal
steps staying within the strip −2 ≤ y ≤ 1. The extremal points are
then the peaks and valleys as defined above, and the weight of P
retains its meaning.

In order to apply induction we consider a more general class of
paths. Let P(k, 	) be the set of lattice paths that start at (0,0)
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and have k diagonal up-steps and 	 diagonal down-steps. Any
P ∈ P(k, 	) ends in the point (k + 	, k − 	), and |P(k, 	)| =

(
k+	
k

)
.

An extremal point of P ∈ P(k, 	) is a peak with y ≥ 1 or a valley
with y ≤ −2, where the weight w(P) is defined as before.

Let P1
−2(k, 	) ⊆ P(k, 	) be the subset of paths that stay within the

strip −2 ≤ y ≤ 1. In this notation, Pn = P1
−2(�n2 	, �n+1

2 	). Our goal
is to find an explicit expression for w

(P1
−2(k, 	)

)
, and the method

we are going to use is inclusion–exclusion. Consider P(k, 	), and let
r1r2 . . . ri be one of the two possible sequences of length i, alternat-
ing between 2 and 3. Thus for i = 5, we get the sequences 2 3 2 3 2
and 3 2 3 2 3.

Denote by c(k, 	; r1, . . . , ri) the number of paths P in P(k, 	) that
touch (or cross) alternately the bounds y = 2 or y = −3 as given by
r1 . . . ri. Note that P may touch or cross more often; what is required
is a sequence of i alternating times, prescribed by r1, . . . , ri. Hence
for i = 0, c(k, 	) = |P(k, 	)| =

(
k+	
k

)
.

Example. k = 10, 	 = 8

y = 2

y = −3

This path is counted in c(10,8; 2), c(10,8; 3), c(10,8; 2,3), c(10,8;
3,2), and c(10,8; 2,3,2).

Claim 1. We have

∣∣∣P1
−2(k, 	)

∣∣∣ = (k+ 	
k

)
+
∑
i≥1

(−1)i[c(k, 	; r1, . . . , ri = 2)+ c(k, 	; r1, . . . , ri = 3)] . (5)
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If P is in P1
−2(k, 	), then P is counted once on either side. Now

suppose P has a maximal sequence of m ≥ 1 alternate touches (or
crossings).

If m = 2j, then P is counted on the right-hand side

1 − 2
i=1

+ 2
i=2

∓ · · · − 2
i=2j−1

+ 1 = 0

times, and if m = 2j + 1, then it is counted

1 − 2
i=1

+ 2
i=2

∓ · · · + 2
i=2j

− 1 = 0

times, and the claim follows.

If instead of the cardinalities we use the weights of the sets in-
volved, the inclusion–exclusion formula (5) carries over. Thus if
w(k, 	; r1, . . . , ri) denotes the weight of the paths counted by c(k, 	;
r1, . . . , ri), then

w
(P1

−2(k, 	)
) = w(P(k, 	))

+
∑
i≥1

(−1)i[w(k, 	; r1, . . . , ri = 2)+w(k, 	; r1, . . . , ri = 3)] , (6)

and it remains to compute w(k, 	; r1, . . . , ri) for i ≥ 0.

Claim 2. Set ai =
∑i
j=1 rj , bi = ri+ 3ri−1 + 5ri−2 + · · · + (2i− 1)r1.

Then the following holds:

a. If k− 	 ≤ 1, then w(k, 	; r1, . . . , ri = 2) = qbi
[
k+	
k−ai

]
q
.

b. If k− 	 ≥ −2, then w(k, 	; r1, . . . , ri = 3) = qbi
[
k+	
k+ai

]
q
.

(7)

The definitions of ai and bi readily imply

ai = ai−1 + ri, bi = bi−1 + ai−1 + ai, a0 = b0 = 0 . (8)

Next we recall the recurrences for the Gaussian coefficients (leaving
out the suffix q for ease of notation):
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n
m

]
=
[
n− 1
m− 1

]
+ qm

[
n− 1
m

]
,[

n
m

]
=
[
n− 1
m

]
+ qn−m

[
n− 1
m− 1

]
.

(9)

We prove (a) and (b) simultaneously by induction on i, and within i
by induction on k+	. Note first thatw(k, 	; r1, . . . , ri) = 1 for k+	 ≤
1 and any i, since in this case there is only one path (of weight 1).
Furthermore, w(k, 	; r1, . . . , ri = 2) > 0 implies k ≥ ai, since we
need at least k up-steps to reach the line y = 2 as prescribed by
r1, . . . , ri = 2. Similarly, w(k, 	; r1, . . . , ri = 3) > 0 implies 	 ≥ ai.
Let us prove (a) (the proof of (b) being analogous). The proof con-
sists of two parts. First we derive a recurrence forw(k, 	; r1, . . . , ri =
2) by looking at the last step, and second we verify that qbi[ k+	k−ai ]
satisfies the recurrence.

To start the induction we look at i = 0, that is, we want to show
that w(P(k, 	)) = w(k, 	) = [k+	k ], where we may assume k+ 	 ≥ 2
as noted above.

Suppose k − 	 ≥ 0. Look at the last step. If it goes up, then we
obtain w(k − 1, 	). If it goes down, then we have the following two
possibilities:

y = k− 	 y = k− 	
In the first case there is an extremal point at position k + 	 − 1
accounting for qk+	−1w(k − 1, 	 − 1). In the second case the con-
tribution is w(k, 	 − 1) − w(k − 1, 	 − 1). In sum, we obtain the
recurrence

w(k, 	) = w(k− 1, 	)+ qk+	−1w(k− 1, 	 − 1)
+w(k, 	 − 1)−w(k− 1, 	 − 1) .

Using induction on k+ 	 and repeatedly (9), it is easily shown that[
k+ 	 − 1
k− 1

]
+ qk+	−1

[
k+ 	 − 2
k− 1

]
+
[
k+ 	 − 1

k

]
−
[
k+ 	 − 2
k− 1

]

equals [k+	k ].

When k − 	 ≤ 1, we get the analogous recurrence with k and 	
interchanged, so (a) holds for i = 0.
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Now assume i ≥ 1. Here we have three cases. We just give the recur-
rences and consider in detail only the most interesting third case.

Case 1. k− 	 ≤ −1. Looking at the last step we obtain

w(k, 	; r1, . . . , ri = 2) =w(k, 	 − 1; r1, . . . , ri = 2)

+ qk+	−1w(k− 1, 	 − 1; r1, . . . , ri = 2)
+w(k− 1, 	; r1, . . . ri = 2)
−w(k− 1, 	 − 1; r1, . . . , ri = 2)

with solution qbi[ k+	k−ai ].

Case 2. k − 	 = 0. We get the same recurrence as in case 1 with
k and 	 interchanged, and thus again the solution qbi[ k+	k−ai ], since

k = 	.

Case 3. k−	 = 1. If the last step is up, thenw(k−1, 	; r1, . . . , ri =
2) results. On the other hand, if it goes down, then the path hits
the line y = 2 at k+ 	 − 1, which means that these paths are in the
class counted by w(k, 	 − 1; r1, . . . , ri−1 = 3). Taking the possible
extremal point into account we arrive at

w(k, 	; r1, . . . , ri = 2) =w(k− 1, 	; r1, . . . , ri = 2)

+ qk+	−1w(k− 1, 	 − 1; r1, . . . , ri−1 = 3)
+w(k, 	 − 1; r1, . . . , ri−1 = 3)
−w(k− 1, 	 − 1; r1, . . . , ri−1 = 3) .

With induction on i and k+ 	, the right-hand side is equal to

qbi
[
k+ 	 − 1
k− 1 − ai

]
+ qk+	−1qbi−1

[
k+ 	 − 2
k− 1 + ai−1

]

+ qbi−1

([
k+ 	− 1
k+ ai−1

]
−
[
k+ 	 − 2
k− 1 + ai−1

])
.

According to (8), bi = bi−1 + ai + ai−1, ai = ai−1 + 2. Factoring out
qbi and using 	 = k− 1, this gives
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qbi
([

k+ 	 − 1
k− 1 − ai

]
+ qk+	+1−2ai

[
k+ 	 − 2
k− ai

]
+ qk−ai

[
k+ 	 − 2
k− 1 − ai

])

= qbi
([

k+ 	 − 1
k− 1 − ai

]
+ qk−ai

([
k+ 	 − 2
k− 1 − ai

]
+ qk−ai

[
k+ 	 − 2
k− ai

]))

= qbi
([

k+ 	 − 1
k− 1 − ai

]
+ qk−ai

[
k+ 	 − 1
k− ai

])
= qbi

[
k+ 	
k− ai

]
,

as claimed.

Schur’s Identity.
Now we set k = �n2 	, 	 = �n+1

2 	 and make use of (6) and (7). It is an
easy matter to compute ai and bi. We have

ri = 2 : ai =
{ 5i

2
5i−1

2

, bi =
{ i(5i+1)

2 i even
i(5i−1)

2 i odd
,

ri = 3 : ai =
{ 5i

2
5i+1

2

, bi =
{ i(5i−1)

2 i even
i(5i+1)

2 i odd
.

Hence for even i we get

w
(⌊
n
2

⌋
,
⌊
n+ 1

2

⌋
; r1, . . . , ri = 2

)
+w

(⌊
n
2

⌋
,
⌊
n+ 1

2

⌋
; r1, . . . , ri = 3

)
= q i(5i+1)

2

[
n

�n−5i
2 	

]
+ q i(5i−1)

2

[
n

�n+5i
2 	

]
,

and replacing i by −i in the second summand we obtain q
i(5i+1)

2[
n

� n−5i
2 	

]
again. For odd i the same expression results.

Summing over all i ∈ Z we thus obtain the identity first established
by Schur, by equating the two expressions for w(Pn):

∑
k≥0

qk
2
[
n− k
k

]
q
=
∑
i∈Z
(−i)iq i(5i+1)

2

[
n

�n−5i
2 	

]
q
. (10)

Entirely analogous reasoning for the set P′
n leads to the second

identity

∑
k≥0

qk
2+k

[n− 1 − k
k

]
q
=
∑
i∈Z
(−1)iq

i(5i+3)
2

[
n

�n−1−5i
2 	

]
q

(10′)
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Going to Infinity.
The rest proceeds on familiar ground. From Section 1.6 we know
that [

n− k
k

]
=
∑
j≥0

p(j;≤ k;≤ n− 2k)qj .

Letting n go to ∞, we have no restriction on the summands, and so[n− k
k

]
�→

∑
j≥0

p(j;≤ k)qj = 1
(1 − q) · · · (1 − qk) ,

and similarly [
n− 1 − k

k

]
�→ 1
(1 − q) · · · (1 − qk) .

The left-hand sides of (10) and (10′) therefore go to

∑
k≥0

qk2

(1 − q) · · · (1 − qk) respectively
∑
k≥0

qk2+k

(1 − q) · · · (1 − qk) ,

which are precisely the left-hand sides of the Rogers–Ramanujan
identities.

Similarly,[
n

�n−5i
2 	

]
=
∑
j≥0

p
(
j;≤

⌊
n− 5i

2

⌋
;≤
⌈
n+ 5i

2

⌉)
qj �→

∑
j≥0

p(j)qj

= 1∏
i≥1
(1 − qi) ,

and also [
n

�n−5i−1
2 	

]
�→ 1∏

i≥1
(1 − qi) .

The right-hand sides of (10) and (10′) therefore go to

1∏
i≥1
(1 − qi)

∑
i∈Z
(−1)iq

i(5i+1)
2 respectively

1∏
i≥1
(1 − qi)

∑
i∈Z
(−1)iq

i(5i+3)
2 .

(11)
The coup de grâce is now delivered by Jacobi’s triple product theo-
rem:
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∏
k≥1

(1 + zqk)(1 + z−1qk−1)(1 − qk) =
∑
i∈Z
q
i(i+1)

2 zi .

With the substitutions z � −q−2, q � q5 respectively z � −q−1,
q � q5, we obtain∏

k≥1

(1 − q5k−2)(1 − q5k−3)(1 − q5k) =
∑
i∈Z
(−1)iq

i(5i+1)
2 ,

respectively (12)

∏
k≥1

(1 − q5k−1)(1 − q5k−4)(1 − q5k) =
∑
i∈Z
(−1)iq

i(5i+3)
2 .

Comparing (11) and (12), we have to divide (12) by
∏
k≥1(1 − qk),

which shows that the right-hand sides of (10) and (10′) go to

∏
i≥1

1
(1 − q5i−1)(1 − q5i−4)

respecively
∏
i≥1

1
(1 − q5i−2)(1 − q5i−3)

,

and we are done.

And the mystery of the number 5? Well, 5 equals 2 + 3 after all . . .
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Notes and References

There exist several excellent texts on physical models, in particu-
lar lattice statistics, such as the survey article by Kasteleyn and the
book by Percus. For an advanced treatment see the book by Baxter.
The solution of the dimer problem via Pfaffians was accomplished
independently (and at the same time) by Kasteleyn and Fisher–
Temperley. The combinatorial argument that M(n,n) is always a
square or twice a square is due to Jockusch. Welsh is a good source
for the connection of the Ising problem to Eulerian subgraphs (orig-
inally observed by van der Waerden), and to the Tutte polynomial.
The solution of the Ising model by means of the terminal graph is
due to Kasteleyn. The references list also the famous paper of On-
sager. The presentation of hard models follows in part the paper
by Calkin and Wilf. The square ice problem is intimately connected
to the alternating sign matrix conjecture. For the fascinating story
of this conjecture and its solution the book of Bressoud is highly
recommended. The references contain the papers of Izergin, and of
the proofs due to Kuperberg and Zeilberger. The highlight follows
the ideas of Baxter and the recent paper of Cigler.
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Solutions to Selected Exercises

Chapter 1

1.2 The conditions 1 ≤ i ≤ 75, 76 − i ≤ j ≤ 75 give as number
∑75
i=1 i =

2850.

1.5 Classify the triples in {1, . . . , n+1} according to the middle element
respectively the last element.

1.8 Classify the sets according to whether 1 is in the set or not. This
gives the recurrence f(n, k) = f(n−1, k)+f(n−2, k−1). Now use induc-
tion and Pascal’s recurrence. The sum satisfies the Fibonacci recurrence.

1.11 Suppose this is false. Look at the incidence system (A,N�A) with
iIj if |i−j| = 9. For a ∈ A, d(a) = 2 for 10 ≤ a ≤ 91; otherwise d(a) = 1;
hence

∑
a∈A d(a) ≥ 18 + 2 · 37 = 92. On the other hand,

∑
b∈N�A d(b)

≤ 2·45 = 90, contradiction. For |A| = 54, take six blocks of 9 consecutive
numbers, the blocks 9 apart.

1.13 We have
(

2n
2k

)(
2n−2k
n−k

)(
2k
k

)
=
(

2n
2n−2k

)(
2n−2k
n−k

)(
2k
k

)
=
(

2n
n+k

)(
n+k
n−k

)(
2k
k

)
=(

2n
n+k

)(
n+k
2k

)(
2k
k

)
=
(

2n
n+k

)(
n+k
n

)(
n
k

)
=
(

2n
n

)(
n
k

)2
.

1.17 Suppose n1 ≥ n2 + 2; then (n1 − 1)!(n2 + 1)! < n1!n2!; hence(
n

n1···nk
)
<
(

n
n1−1n2+1···nk

)
. For the last assertion use induction.

1.19 Let k ≥ 4 be even; then the element in position (k2 , k) is 1, which is
not circled. Suppose k is odd, not a prime, and p a prime divisor. Then

p | k−p
2 , and for n = k−p

2 , n �
(

n
k−2n

)
=
(
(k−p)/2

p

)
. For k = p it is easily

verified that n |
(

n
p−2n

)
for all n.

1.21 The runs can be placed in
(
n+1
k

)
ways (Exercise 1.8), and the runs

can be filled in
(
m−1
k−1

)
ways. The answer is therefore

(
n+1
k

)(
m−1
k−1

)
.

1.24 If there are k diagonal steps, then there are m + n − k steps al-
together. Contracting the diagonal steps gives m + n − 2k (1,0)- and

(0,1)-steps. Hence Dm,n = ∑
k

(
m+n−k

k

)(
m+n−2k
n−k

)
= ∑

k

(
m+n−k
n−k

)(
m
m−k

)
=∑

k

(
m+n−k
m

)(
m
m−k

)
= ∑k

(
n+k
m

)(
m
k

)
by the index shift k�m− k.

1.27 From (x+1)n+1 = ∑k Sn+1.k+1(x+1)k+1 = (x+1)
∑
k Sn+1,k+1xk fol-

lows (x+1)n =∑k Sn+1,k+1xk. On the other hand, (x+1)n = ∑i

(
n
i

)
xi =
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∑
i

(
n
i

)∑
k Si,kxk = ∑

k(
∑
i

(
n
i

)
Si,k)xk, hence Sn+1,k+1 = ∑

i

(
n
i

)
Si,k. For a

combinatorial proof classify the partitions according to the size of the
block containing n + 1. Summation over k yields the recurrence for the
Bell numbers.

1.32 Both sides count the pairs (P1, P2), where P1 is a (k + r)-partition
of {1, . . . , n} and P2 is a subfamily of k blocks of P1.

1.35 Given P ∈ Π(n − 1) construct φP ∈ Π(n) as follows. If A =
{i1 < · · · < ik} is a block of P , then the pairs {i1, i2 + 1}, {i2, i3 +
1}, . . . {ik−1, ik + 1} are in blocks of φP . Now merge intersecting blocks,
and add remaining elements as singletons. This is a bijection. Example:
13|246|5 → 147|25|36.

1.40 Classify the permutations in S(n + 1) according to the length n +
1−k of the cycle containing 1, where 1 ≤ n+1−k ≤ r , that is, n+1−r ≤
k ≤ n.

1.42 Part (a) is clear, and (b) follows by looking at the reverse permuta-
tion σ∗ = an . . . a1 of σ = a1 . . . an. c. The number of σ = a1 . . . an with
inv(σ) = k, an = n is In−1,k. Suppose n = ai (i < n). Then interchanging
ai, ai+1 gives σ ′ ∈ S(n) with inv(σ ′) = k − 1. Hence we get In,k−1, since
no σ ′ ∈ S(n) with inv(σ ′) = k − 1 can have n in first place (because of
n > k). The example I3,3 = 1, I3,2 = 2 shows that n = k no longer works. d.
Interchange of the first two elements produces a bijection between even
and odd permutations.

1.46 Looking at the cycles of σ as directed graph circuits, one readily
finds that πσ = σπ holds if and only if any k-cycle (i1, . . . , ik) of σ is
mapped under π onto a k-cycle of σ . Since we may choose the image of
i1 in k ways, the result follows.

1.48 A permutation σ ∈ S(n) with k runs is created either by insert-
ing n into σ ′ ∈ S(n − 1) with k runs at the end of a run, resulting
in kAn−1,k, or into σ ′′ ∈ S(n − 1) with k − 1 runs not at the end of
a run, which gives (n − k + 1)An−1,k−1. For the second assertion write∑
k An,k

(
x+n−k
n

)
= ∑k An−1,k

[
k
(
x+n−k
n

)
+ (n− k)

(
x+n−1−k

n

)]
. The expres-

sion in parentheses is easily seen to be x
(
x+n−1−k
n−1

)
, and we obtain

x · xn−1 = xn by induction. For the last assertion we have (k − i)n =∑k−i
j=0An,j

(
n+k−i−j
k−i−j

)
= ∑k−i

j=0An,j(−1)k−i−j
(−n−1
k−i−j

)
for i = 0, . . . , k. Multiply

both sides by (−1)i
(
n+1
i

)
and sum over i.

1.51 The expected value is 1
n!

∑
k ksn,k. Differentiation of xn =∑k sn,kxk

gives
∑
k ksn,kxk−1 = ∑n−1

i=0
xn
x+i , and with x = 1,

∑
k ksn,k = n!Hn. The

expected value is thus the harmonic number Hn.



Solutions to Selected Exercises 521

1.53 Decompose a self-conjugate partition into hooks.

Example: 53211 → 93. This is a bijection.

1.59 Every positive solution of x1 + · · · + xk = m corresponds to an
ordered partition of m. The number of positive solutions of x1 + · · · +
xk ≤ n is therefore

∑n
m=k

(
m−1
k−1

)
= ∑n−1

m=k−1

(
m
k−1

)
=
(
n
k

)
. For nonnegative

solutions use multisets to obtain
(
n+k
k

)
.

1.62 Deleting m from λ, we get the recurrence
∑

|λ|=n fm(λ) =
∑

|λ|=n−m
fm(λ)+p(n−m), and so

∑
|λ|=n fm(λ) = p(n−m)+p(n− 2m)+ · · · .

Suppose λ contains t distinct parts k that appear at leastm times. Delete
m occurences of each k to obtain t partitions. This results in the same
expression

∑
|λ|=n gm(λ) = p(n−m)+ p(n− 2m)+ · · · .

1.64 Let λ be a perfect partition, and suppose 1 appears a1 times. The
next part must be a1 + 1. Suppose it appears a2 times. Then the next
part is a2(a1 + 1) + a1 + 1 = (a1 + 1)(a2 + 1). Altogether we obtain
n + 1 = (a1 + 1)(a2 + 1) · · · (at + 1), where t is the number of distinct
parts. For a given factorization reverse the procedure.

1.66 Use [nk ] = [ n
n−k] and apply recurrence (1) to [ n

n−k] .

1.70 Classify the paths in the (k+1)×(n−k)-grid according to the height
y = i − k when the path first hits the line x = k+ 1. The contribution is
[ ik]q

(k+1)(n−i) to the sum [n+1
k+1 ].

1.73 We have Gn+1 = ∑
k[
n+1
k ] = ∑

k[
n
k−1] +

∑
k qk[

n
k ] = 2Gn −∑k(1 −

qk)[nk ] = 2Gn − (1 − qn)Gn−1, since (1 − qk)[nk ] = (1 − qn)[n−1
k−1 ] .

1.75 Use repeatedly the recurrence in (1) and Exercise 1.66.

Chapter 2

2.2 We have A(z)2 = 1
1−z ; hence A(z) = (1 − z)−1/2 with an =

(
2n
n

)
/4n

by Exercise 1.16.

2.6 Convolution gives F(z) = (1 + z)r (1 + z2)r = (1 + z + z2 + z3)r .

2.8 Write
(

2n+1
n

)
= 2

(
2n
n

)
− 1

n+1

(
2n
n

)
and use the same approach as for(

2n
n

)
to compute

∑
n

(
2n+1
n

)
zn = 1−4z−√1−4z

−2z+8z2 . For
(

n
�n/2	

)
distinguish the

casesn even or odd, and deduce
∑( n

�n/2	
)
zn = ∑(2n

n

)
z2n+z∑(2n+1

n

)
z2n.

Plugging in the generating functions for
(

2n
n

)
,
(

2n+1
n

)
, you obtain∑

n

(
n

�n/2	
)
zn = 1−2z−

√
1−4z2

−2z+4z2 .
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2.11 Set F(z) = 1 + G(z), then logF = ∑ (−1)n−1Gn
n . From this we get

(logF)′ =∑(−1)n−1Gn−1G′ = G′
1+G , thus (logF)′ = F ′

F .

2.16 DqF(cz) = F(cz)−F(qcz)
(1−q)z , and (DqF)(cz) = F(cz)−F(qcz)

(1−q)cz .

2.18 We have

DqHn(x) =
∑
[nk ]

1−qk
1−q x

k−1 =∑[n−1
k−1 ]

1−qn
1−q x

k−1 = 1−qn
1−q Hn−1(x) .

The recurrence follows from (1) in Section 1.6.

2.21 We have∏m
k=1

1
1−zqk =

∑
	1
q	1z	1 ·∑	2

q2	2z	2 · · ·∑	m q
m	mz	m

=∑n

(∑
i p(i;n;≤m)qi

)
zn = ∑n

(
[m+n

n ]− [m+n−1
n−1 ]

)
zn

=∑n[
m+n−1

n ](qz)n .

Now substitute qz � z. Alternatively,

Dq
∑
n[

m+n−1
n ]zn = 1−qm

1−q
∑
[m+n

n ]zn .

Hence, setting F(z,m) for the sum we obtain DqF(z,m) = 1−qm
1−q F(z,m+

1). Now prove the same recurrence for the right-hand side using (7).

2.24 Using (7), Dqfn(x) = q 1−qn
1−q (1 + xq2) · · · (1 + xqn) ; hence

D(k)q fn(x)
∣∣
x=0 = q(k+1

2 ) (1−qn)···(1−qn−k+1)
(1−q)k .

On the other hand,

D(k)q
∑n
k=0 q(

k+1
2 )an,kxk

∣∣
x=0 = q(k+1

2 )an,k
(1−qk)···(1−q)

(1−q)k .

Comparison of coefficients gives the result an,k = [nk ] .

2.28 We have

deg
(∏k

i=1Ai −
∏k−1
i=1 Ai

)
= deg

(
(Ak − 1)

∏k−1
i=1 Ai

)
= deg(Ak − 1) ,

since degAi = 0 .

2.31 From F ′ = limk→∞
(∏k

i=1 Fi
)′ = limk→∞

∑k
i=1

(∏
j≠i Fj

)
F ′i =

limk→∞
∑k
i=1(

F ′i
Fi )
∏k
j=1 Fj =

(∑
i≥1

F ′i
Fi

)
F follows F ′

F = ∑
i≥1

F ′i
Fi . For F(z) =∏

i≥1
1

1−zi this gives F ′
F =∑i≥1

izi−1

1−zi =
∑
i≥1 izi−1

∑
k≥0 zki . Hence [zn]F

′
F =∑

i≥1 i over all i such that i(k + 1) = n + 1 for some k; that is [zn]F
′
F =

σ(n+ 1), where σ(n+ 1) is the sum of divisors of n+ 1.
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2.32 Since zk
(1−z)k =

∑
i

(
k+i−1
i

)
zk+i we have

ez/1−z = 1 +∑k≥1
∑
i≥0

(
k+i−1
i

)
zk+i
k! = 1 +∑n≥1

∑n
k=1

(
n−1
n−k

)
zn
k!

= 1 +∑n≥1

(∑
k≥1

n!
k!

(
n−1
k−1

))
zn
n! .

On the other hand, [z
n

n! ]
∏
i≥1 ez

i
is
∑ n!

k1!···kn! over all (k1, . . . , kn) with
k1 +2k2 +· · ·+nkn = n, which clearly counts the partitions in question.

2.34 We have

log
∏
n
(1 − zn)−μ(n)/n =∑n−μ(n)

n log(1 − zn) =∑n
μ(n)
n
∑
k
znk
k

=∑m
∑
d|m

μ(d)
m zm = z .

Hence F(z) = ez .

2.40 Vandermonde gives
(
x+n−1
n

)
=∑k

(
n−1
k−1

)(
x
k

)
.

Thus xn =∑n
k=0

n!
k!

(
n−1
k−1

)
xk, and so Ln,k = n!

k!

(
n−1
k−1

)
.

2.43 Binomial inversion turns n! = ∑
k

(
n
k

)
akk! into the equality n!an =∑

k(−1)n−k
(
n
k

)
k! . Hence an = ∑n

k=0
(−1)n−k
(n−k)! = Dn

n! , Dn derangement num-
ber.

2.47 Substitute in the q-binomial formula of Corollary 1.2 x by − x
qn

and multiply by q(
n
2). This gives (qn−1 − x)(qn−2 − x) · · · (1 − x) =∑n

k=0[
n
k ]q(

n−k
2 )(−1)kxk; thus gn(x) =

∑n
k=0(−1)n−kq(

n−k
2 )[nk ]x

k . The in-
version formula follows.

2.49 Set A(z) = ∑
anzn, B(z) = ∑

bnzn. Then A(z) = B(z)
(1−z)m+1 , B(z) =

(1 − z)m+1A(z), and therefore bn =∑n
k=0(−1)k

(
m+1
k

)
an−k .

2.51 The result is PX(z) = 1
n

1−zn
1−z .

2.54 We have Prob(X = k) =
(
k−1
n−1

)
/2k, since there must be n − 1

heads among the first k−1 throws. Hence PX(z) = z
2

∑
k≥1

(
k−1
n−1

)
(z2)

k−1 =
(z2)

n 1
(1−z/2)n = zn

(2−z)n . Using (2) and (3), this gives EX = VarX = 2n .

2.58 When k numbers have been seen, the probability of rolling a new
one is equivalent to tossing a coin with success probability 6−k

6 . From this

follows easily that PX(z) =
∏5
k=0

(6−k)z
6−kz , thus EX = P ′

X(1) =
∑5
k=0

6
6−k =

6H6 = 147
10 , H6 = harmonic number.

2.61 The distance between the particles during the process is 0, 1, or 2,
initially 1. Let PX(z) = A0(z), and A1(z),A2(z) the probability generat-
ing functions of the particles being at distance 1 respectively 2 after n
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moves. Then A0(z) = 1
4zA2(z), A1(z) = 1+ 3

4zA1(z)+ 1
4zA2(z), A2(z) =

1
4zA1(z)+ 1

2zA2(z). Solving for A0(z) we obtain A0(z) = z2

16−20z+5z2 , and
from this E = 12, Var = 100. For initially two apart the result is E = 8,
Var = 88.

Chapter 3

3.4 We have f(0) = 1, f(1) = 2. Suppose A ⊆ {1, . . . , n} is fat. If n �∈ A,
then A is fat in {1, . . . , n − 1}; if n ∈ A, then {i − 1 : i ∈ A�n} is fat
in {1, . . . , n − 2} or �. It follows that f(n) = f(n − 1) + f(n − 2); thus
f(n) = Fn+2. The fat k-sets in {1, . . . , n−1} are precisely the k-subsets of
{k, . . . , n − 1}. which proves (b). Assertion (c) is by (a) equivalent to (n +
1)+∑n−1

k=1

(
n+1
n−k

)
f(k−1) = f(2n). Let X = {1, . . . , n−1}, Y = {n, . . . ,2n};

then (c) follows by classifying the fat sets A ⊆ {1, . . . ,2n} according to
|A∩ Y | = n− k.

3.6 Considering the first entry we get the recurrence f(n) = 2
(
f(n −

1) + f(n − 2)
)
, n ≥ 2, with f(0) = 1. For the generating function this

means F(z) = 2zF(z)+2z2F(z)+1+z; hence F(z) = 1+z
1−2z−2z2 . The usual

method gives f(n) = ∑i≥0

[(
n+1
2i+1

)
+
(

n
2i+1

)]
3i.

3.11 The Catalan recurrence C = zC2 + 1 implies C′ = C2 + 2zCC′, thus

C′ = C2

1−2zC = C2√
1−4z . Since 1√

1−4z = ∑
n

(
2n
n

)
zn we obtain with C2 = C−1

z ,

(n+ 1)Cn+1 = ∑n
k=0

(
2k
k

)
Cn−k+1.

3.15 Following the hint we get the recurrences An = 2Bn−1 + An−2 +
[n = 0], Bn = An−1 + Bn−2. Elimination of B gives A(z) = 1−z2

1−4z2+z4 . It

follows that A2n+1 = 0, which is clear, and A2n = (2+√3)n
3−√3

+ (2−√3)n
3+√3

by
our four steps. Using the binomial theorem we may also write this as

A2n =∑n
k=0

(
n
k

)
2n−k3�k/2	 .

3.18 The conditions yield the recurrences an = bn + an−2, bn = an−1 +
an−2 + 1 (n ≥ 1) with a0 = b0 = 0. The usual method gives an =
2n+2−3+(−1)n+1

6 , bn = 2n−1 (n ≥ 1).

3.20 We have∑
n

(∑
k

(
n
k

)(
2k
k

)
xk
)
zn =∑k

(
2k
k

)
xk
∑
n

(
n
k

)
zn =∑k

(
2k
k

)
xk zk

(1−z)k+1

= 1
1−z

∑
k

(
2k
k

)(
xz

1−z
)k = 1

1−z
1√

1−4xz/(1−z)
= [(1 − z)(1 − z − 4xz)]−1/2.
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For x = −1
2 we get (1−z2)−1/2, thus pn(−1

2) = 1
4n/2

(
n
n/2

)
[n even], and for

x = −1
4 , (1 − z)−1/2 results, hence pn(−1

4) = p2n(−1
2).

3.24 Set qm = p−m (m ≥ 1). Then qm = 1
2(qm+1 +qm−2), q0 = 1, q1 = a,

q2 = b, where 2a = b + (τ − 1), since p1 = τ − 1. This gives for Q(z) =∑
m≥0 qmzm = 1+(a−2)z+(b−2a)z2

1−2z+z3 = 1+(a−2)z+(b−2a)z2

(1−z)(1−τz)(1−τ̂z) , with qm = α+βτm+
γτ̂m for constants α,β, γ. It follows that β = 0, since otherwise qm → ∞,
which cannot be. With the initial conditions one obtains qm = 3τ−4+(5−
3τ)τ̂m, and τ̂m = Fm+1 − Fmτ by induction. Thus limm→∞ qm = 3τ − 4 ∼
0.83.

3.25 We have

z
∑
n

(
2n+k+1

n

)
zn = ∑n

(
2n+k−1
n−1

)
zn = ∑n

(
2n+k
n

)
zn −∑n

(
2n+k−1

n

)
zn ,

and hence by induction on k,

z
∑
n≥0

(
2n+k+1

n

)
zn = Ck√

1−4z −
Ck−1√
1−4z = Ck−1√

1−4z (C − 1) = z Ck+1√
1−4z .

3.27 The recurrence implies D(y, z) = yD + zD + yzD + 1, and so

Dm,n = ∑k 2k
(
m
k

)(
n
k

)
by the previous exercise with a = 2.

3.31 Pascal gives for the sum sn+1 = 2sn, hence sn = 2n. Now use snake

oil to get
∑
k

(
n+k
k

)
2−k = 2n+1, and thus

∑
k>n

(
n+k
k

)
2−k = 2n.

3.35 Show first that
∑
k(−1)k

(
n
k

)
Fk = −Fn by induction. With F̂(z) =∑

Fn z
n

n! the wanted sum corresponds to (zF̂ − F̂)D̂ = (z − 1)F̂ e−z
1−z =

(−F̂)e−z. The result follows from above.

3.40 We have∑
n
∑
k

(
m
k

)(
n+k
m

)
xm−kzn =∑k

(
m
k

)
xm−kz−k

∑
n

(
n+k
m

)
zn+k

=∑k

(
m
k

)
xm−kz−k zm

(1−z)m+1

= (xz)m
(1−z)m+1

∑
k

(
m
k

)
1

(xz)k =
(1+xz)m
(1−z)m+1 .

Now check that the right-hand sum has the same generating function.

3.41 Fix x; then

F(z)x = exp
(
x log(1 +∑k≥1 akzk)

)
= exp

(
x
∑
	≥1

(−1)	+1

	 (
∑
k≥1 akzk)	

)
=∑m≥0

xm
m!

(∑
	≥1

(−1)	+1

	 (
∑
k≥1 akzk)	

)m .
Hence [zn]F(z)x is a polynomial pn(x) of degree n with pn(0) = [n =
0]. The first convolution follows from F(z)xF(z)y = F(z)x+y , and the
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second by comparing the coefficients [zn−1] in F ′Fx−1Fy = F ′Fx+y−1,
since F ′Fx−1 = x−1(Fx)′ = x−1

∑
n npn(x)zn−1.

3.43 Following the hint,
∑n−1
k=0 km = ∑n−1

k=0

∑
j Sm,jkj =

∑
j Sm,j

∑n−1
k=0 k

j =∑
j Sm,j

nj+1

j+1 = ∑
j
Sm,j
j+1

∑
k sj+1,k(−1)j+1−knk. Now compare this with for-

mula (6) of the text. For k = 1 we obtain Bm = ∑j Sm,j
(−1)jj!
j+1 .

3.46 Here Ĝ(z) = 1
1−z , F̂(z) = z

1−z , hence Ĥ(z) = 1−z
1−2z , and so kn =

n!2n−1. For a direct proof, take a permutation and insert up to n−1 bars
to create the blocks.

3.48 Set H(z) = ez − 1 = z e
z−1
z . Then [zn] log(1 + z) = (−1)n−1

n =
1
n[z

n−1]( z
ez−1)

n. It follows that (−1)n−1 = ∑
(k1,...,kn)

Bk1 ···Bkn
k1!···kn! , where the

sum is taken over all (k1, . . . , kn) with k1 + · · · + kn = n− 1.

3.53 We have Â(z) = exp
(∑ z2n+1

2n+1

)
= exp

(
1
2

(−log(1−z)+log(1+z))) =√
1+z
1−z ; similarly B̂(z) = 1√

1−z2 . It follows that Â(z) = (1 + z)B̂(z), that is,
an = bn + nbn−1. Since clearly bn = 0 for n odd, we obtain an = bn (n
even) and an = nbn−1 (n odd).

3.55 For n ≥ 1, set f(n) = ∑
i cn,iαi, where cn,i is the number of con-

nected graphs on n vertices and i edges. Set g(k) = βk; then Ĥ(z) =
Ĝ
(
F̂(z)

)
is the desired exponential generating function. Now Ĝ(z) = eβz,

thus Ĥ(z) = (eF̂(z))β. Observe, finally, that eF̂(z) is the generating func-
tion of all graphs, enumerated according to the number of vertices and

edges. Thus eF̂(z) = ∑n(1 +α)(n2) znn! , and the result follows.

3.58 By the composition formula the desired function is T̂ (z)k
k! . By Ex-

ercise 3.56, [zn]T̂ (z)k = k
n[z

n−k]enz = k
n
nn−k
(n−k)! . The number of rooted

forests is therefore (n−1)!nn−k
(k−1)!(n−k)! =

(
n−1
k−1

)
nn−k.

3.61 Considering alternating forests, one easily obtains Ĥ = e
z
2 (Ĥ+1).

Set A(z) = z(Ĥ(z) + 1) = 2z + ∑
n≥1 hn

zn+1

n! . Then A
z − 1 = e

A
2 , A =

z(1 + e
A
2 ), and thus A〈−1〉 = z

1+ez/2 . By Lagrange [zn+1]A = hn
n! =

1
n+1[z

n](1+e z2 )n+1 = 1
n+1[z

n]
∑
k

(
n+1
k

)
e
kz
2 = 1

n+1[z
n]
∑
k

(
n+1
k

)∑
i
ki
2i
zi
i! =

1
n+1

1
2nn!

∑n+1
k=1

(
n+1
k

)
kn = 1

2nn!

∑n
k=0

(
n
k

)
(k + 1)n−1. Thus we obtain hn =

1
2n
∑n
k=0

(
n
k

)
(k+ 1)n−1.

3.63 With y = T̂ , F̂ = ey , y = zey as in the text, we get (ey)′ = eyy ′,
hence fn+1 = ∑

k

(
n
k

)
fktn−k+1. Using fn = Tn+1, this gives (n + 2)n =∑

k

(
n
k

)
(k+ 1)k−1(n− k+ 1)n−k.
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3.65 The parts arising from a fixed λi are clearly distinct. Now if 2kλi =
2	λj , then k = 	 and λi = λj , since the λi’s are odd. For the converse,
write a part μi as μi = 2	νi where 2	 is the highest power of 2, and
collect the powers (2	1 + · · · + 2	t )νi, creating 2	1 + · · · + 2	t summands
equal to νi.

3.68 The generating function for the first set of partitions is∏
i≥1

(1−z6i−2)(1−z6i−4)
(1−z3i−1)(1−z3i−2) =

∏
i≥1(1 + z3i−1)(1 + z3i−2) ,

which also counts the second set of partitions.

3.71 We have
∏
i≥1(1 + qzi) =∑n,k pd(n;k)qkzn. Now set q = −1.

3.75 By the same idea as in Exercise 3.71 we have
∑
n
(
e(n)− o(n))zn =∏

i≥1
1

1−z2i−1 ·∏i≥1
1

1+z2i . Now we know that
∏
i≥1(1 + zi) = ∏

i≥1
1

1−z2i−1 ;

thus
∏
i≥1(1+z2i) =∏i≥1

1
1−z4i−2 . It follows that

∑
n≥0

(
e(n)−o(n))zn =∏

i≥1
1−z4i−2

1−z2i−1 =∏i≥1(1 + z2i−1) =∑n≥0 sc(n)zn.

3.77 We know that P ′
P = ∑

n≥0 σ(n + 1)zn from Exercise 2.31, that is,
P ′ =∑σ(n+1)zn·P . Convolution gives for the coefficient [zn−1], p(n) =
1
n
∑n
i=1 σ(i)p(n− i).

3.81 Write the triple product theorem in the form
∏
k≥1(1 + zqk)(1 +

z−1qk)(1 − qk) = z
z+1

∑
n∈Z q

n(n+1)
2 zn. The substitution z � y − 1 gives∏

k≥1(1+ (y − 1)qk)(1+ 1
y−1q

k)(1− qk) = y−1
y
∑
n∈Z q

n(n+1)
2 (y − 1)n. For

y = 0 we obtain
∏
k≥1(1 − qk)3 on the left. Since q

(−n−1)(−n)
2 = q

(n+1)n
2

for n ≥ 0, the sum on the right has constant coefficient 0; hence

[y0] = (−1)(
∑
n∈Z q

n(n+1)
2 (y − 1)n)′

∣∣
y=0 = ∑

n∈Z(−1)nnq
n(n+1)

2 . By the

observation q
(−n−1)(−n)

2 = q
(n+1)n

2 above, this finally gives
∏
k≥1(1 − qk)3 =∑

n≥0(−1)n(2n+ 1)q
n(n+1)

2 .

3.82 The substitution x � q−Nz in the q-binomial formula for 2N gives

(1 + q−(N−1)z) · · · (1 + q−1z)(1 + z)(1 + qz) · · · (1 + qNz)
= ∑2N

k=0[
2N
k ]q

(k+1)k
2 −kNzk =∑N

i=−N[
2N
N+i ]q

(N+i)(−N+i+1)
2 zN+i .

Now multiply both sides by q1+2+···+(N−1)z−N . Then we obtain

(1 + qN−1z−1) · · · (1 + qz−1)(1 + z−1)(1 + qz) · · · (1 + qNz)
=∑N

i=−N[
2N
N+i ]q

i(i+1)
2 zi .

With N →∞ the left-hand side goes to
∏
k≥1(1+zqk)(1+z−1qk−1). Since

[ 2N
N+i ] =

∑
j p(j;≤ N+ i;≤ N− i)qj N→∞

�→ ∑
j p(j)qj = 1∏

k≥1(1−qk) , the right-

hand side goes to 1∏
k≥1(1−qk)

∑
n∈Z q

n(n+1)
2 zn, and this is Jacobi’s theorem.
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Chapter 4

4.3 Write P = NK−g(n)K−f(n) as P = (K−I)(N−g(n))+N−f(n)−
g(n). Hence S(N,n) = N − f(n) − g(n) is a recurrence operator for the
sum s(n), that is, s(n+ 1) = (f(n)+ g(n))s(n).
4.5 Cross-multiplication gives the recurrence s(n) = n

n+ms(n − 1) for

the sum, hence s(n) = 1
m

(
m+n
n

)−1
as s(0) = 1

m .

4.8 Set n = m = p in Dixon’s identity; then
∑n
i=−n(−1)i

(
2n
n+i
)3 = (3n)!

(n!)3

and with k = n+ i, ∑2n
k=0(−1)k

(
2n
k

)3 = (−1)n (3n)!(n!)3 .

4.12 We have a(n)
a(n−1) = n(n−2)

(n−1)(n+1) , p(n) = n, q(n) = n− 2, r(n) = n+ 1.
The equation is (n− 1)f (n)− (n+ 1)f (n− 1) = n with solution f(n) =
−n − 1

2 . Hence S(n + 1) = n−1
(n2−1)n(−n − 1

2) = − 2n+1
2n(n+1) , and

∑n
i=2

1
i2−1 =

S(n+ 1)− S(3)+ a(2) = 3n2−n−2
4n(n+1) . The second sum is not a closed form.

4.15 Here a(n,k)
a(n,k−1) = (nk)

( n
k−1)

= n−k+1
k , q(n) = n − k + 1, r(k) = k, and

(n−k)f(k)−kf(k−1) = 1 has no solution. For a(n+1, k)−a(n, k) one

obtains S(n+ 1) = −
(
n
k

)
/2n+1.

4.18 We have a(n)
a(n−1) = (4n−2)

n a, p(n) = 1, q(n) = a(4n − 2), r(n) =
n, a(4n + 1)f (n) − nf(n − 1) = 1. For this to be solvable, the highest
coefficients must cancel, which forces a = 1

4 . For a = 1
4 we obtain f(n) =

2 as solution, and thus S(n + 1) = 2n+1
4n

(
2n
n

)
. Since S(1) = a(0) = 1,∑n

k=0

(
2n
k

)
(1

4)
k = 2n+1

4n

(
2n
n

)
.

4.20 The result is 2n

n2 − 2.

4.23 The value is n+ 1.

4.25 Using the approach of the last example we obtain t0 = z, t1 = z−1,

S(N,n) = z+ (z−1)N , H(n,k) = S(N,n)
(
k
n

)
zk =

(
k
n

)
zk+1 +

(
k
n+1

)
zk(z−

1) = G(n,k + 1) − G(n,k). Proceeding as usual, one gets G(n,k + 1) =(
k+1
n+1

)
zk+1. Now sum H(n,k) = G(n,k + 1) − G(n,k) from k = 0 to k =

2n+2. This gives zsn(z)+
(

2n+1
n

)
z2n+2 +

(
2n+2
n

)
z2n+3 + (z−1)sn+1(z) =(

2n+3
n+1

)
z2n+3, or sn(z) = z

1−z [sn−1(z)+ (1− 2z)z2n−1
(

2n−1
n

)
]. Unwrap the

recurrence to get the result, which also proves the assertion for z = 1
2 .

4.28 For the combinatorial argument classify the mappings according to
the largest k such that {1, . . . , k+1} is mapped bijectively, k = 0, . . . , n−1.

This gives
∑n+1
k=0

(
n
k+1

)
(k+ 1)!(k+ 1)nn−2−k = nn. Now divide by nn−1.
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4.33 With index shift
∑n−1
k=0 (k+1)

(
m−1−k
m−n

)
, t0 =

(
m−1
m−n

)
, tk+1
tk = k+2

k+1
n−k−1
m−k−1 .

Hence the sum equals
(
m−1
m−n

)
F
(

2,−(n−1)
1−m ; 1

)
=
(
m−1
m−n

)
· (m+1)n−1

(m−1)n−1 =
(
m−1
m−n

)
·

(m+1)m
(m−n+2)(m−n+1) =

(
m+1
m−n+2

)
=
(
m+1
n−1

)
.

4.35 We have tk+1
tk = − m−k

n+k+1
p−k

m+k+1
n−k
p+k+1 , t0 =

(
n+m
n

)(
m+p
m

)(
n+p
p

)
. Hence

F
( −m,−n,−p,1
m+1,n+1,p+1 ; 1

)
= (m+n+p)!m!n!p!

(n+m)!(m+p)!(n+p)! .

4.37 Proceeding as usual, tk+1
tk = − r−k

k+1
n−k
r+n−k

s+n−k
s+n−k−1 , t0 =

(
r+n
n

)
s
s+n .

The sum is therefore
(
r+n
n

)
s
s+nF

( −r ,−(s+n),−n
−(r+n),−(s+n−1) ; 1

)
, which by Saalschütz

equals (s−r)n
(s+1)n .

4.41 With index shift the sum becomes
∑
k≥0

(
2n+1+k
n+1+k

)
2−k = 22n+1.

Evaluating the sum as before, we obtain F
(

2n+2,1
n+2 ; 1

2

)
= 22n+1/

(
2n+1
n

)
.

Now apply the preceding exercise with a = n + 1, b = 1
2 to obtain

F
(
n+1, 12
n+2 ; 1

)
= 22n+1/

(
2n+1
n

)
.

4.43 The identity follows by differentiating the equation of the previous
exercise n times. With the index shift k�m−n−k and the usual method
the left-hand side becomes

(
m+r
m−n

)
F
(
n+1,−(m−n)

r+n+1 ;−x
)
, and the right-hand

side (−1)m−n
( −r
m−n

)
F
(
n+1,−(m−n)
−r−m+n+1 ; 1 + x

)
. Now set z = 1 + x, a = n + 1,

c = r +n+ 1, and m−n � n to obtain the formula.

4.45 a. One of N+1
2 , N2 is an integer; suppose N

2 =m. Then by (3),

F = (n+m+1)m

(n+ 1
2 )m

= (n+m+1)···(n+2m)2m
(2n+1)(2n+3)···(2n+2m−1) .

Multiply numerator and denominator by (2n + 2) · · · (2n + 2m). This
gives

F = 2N (n+m+1)···(n+2m)(n+1)···(n+m)
(2n+1)···(2n+2m) = 2N (n+N)!(2n)!n!(2n+N)! .

A similar argument settles the case in which N is odd, and the other
assertions are proved analogously.

Chapter 5

5.3 The number of permutations with k (or more) cycles of length

	 is Sk = ∑
T :|T |=k N⊇T =

(
n
	

)(
n−	
	

)
· · ·

(
n−(k−1)	

	

)
(	 − 1)!k(n − k	)! 1

k! =
n!
	kk! . Hence N=� = n!

∑
k≤n/	

(−1)k
	kk! . To use the composition formula set

f(	) = 0, f(i) = 1 for i ≠ 	; then the exponential generating func-

tion is exp(
∑
f(n)z

n

n ) = exp(− log(1 − z) − z	
	 ) =

1
1−ze

−z	/	 with [zn] =
n!
∑
k≤n/	

(−1)k
	kk! .
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5.6 Let en and on denote the number of permutations in S(n) with an
even respectively odd number of fixed points. Set f(1) = −1, f(n) = 1 for
n > 1 and apply Theorem 3.5. Then h(n) = en−on, and Ĥ(z) = exp(−z+
z2

2 + z3

3 +· · · ) = exp(− log(1−z)−2z) = e−2z

1−z . Hence h(n) = n!
∑n
k=0

(−2)k
k! ,

and this is easily seen to be greater than 0 for n ≥ 4.

5.9 We have∑n
p=0Npxp =∑n

p=0

(∑n
k=p(−1)k−p

(
k
p

)
Sk
)
xp

=∑n
k=0

(∑k
p=0(−1)k−p

(
k
p

)
xp
)
Sk =

∑n
k=0(x − 1)kSk .

5.11 Let ei be the property that i is red and i−1 blue, i = 2, . . . ,2n. Two

red positions must be two places apart; hence
∑

|T |=k N⊇T =
(

2n−k
k

)
22n−2k,

and so N=� =
∑
k(−1)k

(
2n−k
k

)
22n−2k. On the other hand, we clearly have

N=� = 2n+1, since these colorings correspond to a string of red followed
by a string of blue. For the generating function use snake oil. For the last
assertion color the integers 1, . . . , n such that if i is not blue, then i−1 is
also not blue.

5.14 Seat the women first in alternate places (2n! possibilities), and la-
bel the woman at the end 1, the next 2, and so on. The condition for
the men calls for a permutation a1 . . . an with a1 ≠ 1, ai ≠ i − 1, i
(i ≥ 2). Consider properties e1, . . . , e2n−1 where e2i means ai+1 = i,
and e2i+1 means ai+1 = i + 1. Properties e2i, e2i+1 and e2i, e2i−1 are

mutually exclusive. Thus
∑

|T |=k N⊇T =
(

2n−k
k

)
(n − k)!, and # seatings

= 2n!
∑n
k=0(−1k

(
2n−k
k

)
(n− k)!.

5.18 Let x1, x2, . . . , xn−k+1 be the lengths of the runs between the n− k
missing integers. Then 0 ≤ xi < s,

∑
xi = k, and so C(n, k, s) =∑

i(−1)i
(
n−k+1

i

)(
n−is
n−k

)
by (6).

5.21 Let X be the set of all collections of r packages, |X| =
(
sn
r

)
, and ei

the property that coupon i is not in the package. Clearly, N≥k =
(
s(n−k)
r

)
;

hence N=0 = ∑
k(−1)k

(
n
k

)(
s(n−k)
r

)
. The probability of getting a complete

set is N=0/
(
sn
r

)
, S1 = n

(
s(n−1)
r

)
; hence E = n(1 −

(
s(n−1)
r

)
/
(
sn
r

)
).

5.23 Set w(m) = m2 for m ∈ {1, . . . , n}, and let ei be the property
that pi | m. Suppose T = {e1, . . . , ek},

∏ = p1 · · ·pk. Then W⊇T =
Π2(12 + 22 + · · · + (n/Π)2) = n(n+Π)(2n+Π)

6Π = n
6

[
2n2

Π + 3n+Π
]
. The

signed first sum over all T is n2

3

∑
T (−1)k n

p1···pk = n2

3 ϕ(n). The sec-

ond sum is 0, and the third 1
6(−1)tp1 · · ·ptϕ(n). For cubes one obtains

n3

4 ϕ(n)+ (−1)t n4p1 · · ·ptϕ(n).
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5.27 From ζ = δ + η follows μ = ζ−1 = 1
δ+η = ∑

k(−1)kηk. Now

ηk(Cn) =
(
n−1
k−1

)
(ordered number partitions), ηk(B(n)) = k!Sn,k (ordered

set-partitions). Hence
∑
k(−1)k

(
n−1
k−1

)
= −1 for n = 1, = 0 for n ≥ 2, and∑

k(−1)kk!Sn,k = (−1)n.

5.31 We have ϕ(n) = ∑
d|n μ(

n
d )d; hence by Möbius inversion n =∑

d|n ϕ(d).

5.34 We have
∑n

1
Hx

(x+1)(x+2) = ∑n
1 Hxx−2 = −x−1Hx

∣∣n
1 + ∑n

1
1
x+1(x +

1)−1 = − Hx
x+1

∣∣n
1 +∑n

1 x−2 = − Hx
x+1

∣∣n
1 − 1

x+1

∣∣n
1 = 1 − Hn+1

n+1 .

5.36 Since μ = 1
δ+η we have μr = ∑k≥0

(
r+k−1
k

)
(−1)kηk. Now μr = μr−1∗

μ and induction yields μr (Cn) = (−1)n
(
r
n

)
and μr

(
B(n)

) = (−1)nrn. The
identities follow from Exercise 5.27.

5.38 Let g(X) be the number of linear maps h : Vn → Vr with im(h) =
X ⊆ Vr . Then f(A) = ∑

X⊆A g(X) = #{h : im(h) ⊆ A} = q(dimA)n.
For the number of surjective maps we get g(Vr ) = ∑

X f(X)μ(X,Vr ) =∑r
k=0[

r
k ]qq

kn(−1)r−kq(
r−k

2 ) by the previous exercise.

5.40 Following the hint, f(a) = ∑
π≥a g(π) counts all maps h with

ker(h) ≥ a. Hence f(a) = xb(a), where b(a) is the number of blocks. By
Möbius inversion, g(0) = ∑y μ(0, y)f (y) =

∑
y μ(0, y)xb(y). Since g(0)

counts all injective maps, we have g(0) = xn = x(x − 1) · · · (x −n+ 1).
Now, μ(0,1) is the linear coefficient of the polynomial, and so μ(0,1) =
(−1)n−1(n− 1)!.

5.44 We have nQn = n(n − 1) + 2
∑n−1
k=0 Qk (n ≥ 1), (n − 1)Qn−1 =

(n−1)(n−2)+2
∑n−2
k=0 Qk (n ≥ 2). Subtraction gives nQn = (n+1)Qn−1+

2(n − 1) for n ≥ 2, and this holds for n = 1 as well. Unwrapping the
recurrence, we get Qn = 2(n+ 1)

∑n−1
k=0

k
(k+1)(k+2) . Now use the difference

calculus to obtain the result Qn = 2(n+ 1)Hn − 4n.

5.47 Since D is a down-set, it is also a lower semilattice. Set f(�) = 1 and
f(U) = 0 for U ≠ �, then M = (mij) satisfies mij = f(Ui ∩ Uj). Clearly,
f(U) =∑X⊆U g(X) with g(X) = (−1)|X|; hence detM = (−1)	, where 	 is
the number of odd-sized sets in D.

5.51 For odd k, ϕ : {a1, . . . , ak} � {n + 1 − a1, . . . , n + 1 − ak} is an
alternating involution without fixed points; hence |S+| − |S−| = 0. Sup-
pose k is even. We denote the places by 1,1′,2,2′, . . . , k2 ,

k′
2 , and write

A ∈ S as a1, a′1, . . . , ak/2, a
′
k/2. Call a pair (ai, a′i) good if a′i = ai + 1,

ai odd; otherwise, bad. Let aj,a′j be the last bad pair; then ϕA =
{a1, a′1, . . . , aj−1, a′j−1, aj, bj, . . . , ak/2, a

′
k/2}, where bj = a′j − 1 if a′j is
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even, and bj = a′j + 1 if a′j is odd. If there is no bad pair, set ϕA = A.
Check that this involution works.

5.53 Consider S = {(λ, μ) : λ ∈ Par, μ ∈ Pard(;≥ k + 1)} with w(λ,μ) =
x|λ|+|μ|, sign (λ, μ) = (−1)b(μ), where b(μ) is the number of parts in μ.
To define ϕ take the largest part m of λ and μ. If m ∈ μ move it to λ, if
m ∈ λ�μ andm ≥ k+1 move it to μ. Otherwiseϕ(λ,μ) = (λ, μ). Clearly,
FixϕS = {λ, �);λ ∈ Par(;≤ k)}, w(FixϕS) = 1

(1−z)···(1−zk) . Finally, observe

thatw(S+)−w(S−) = w(Par)·∑(pd,e(n;≥ k+1)−pd,o(n;≥ k+1)
)
zn =

1∏
i≥1(1−zi) · (1 − zk+1)(1 − zk+2) · · · , and the result follows.

5.55 For n ≥ 2 define on S(n) the involution σ � σ∗ as in the hint.
It follows that i ∈ D(σ∗) ⇐⇒ n + 1 − σ∗(i) ∈ D(σ); hence |D(σ∗)| =
|D(σ)|. This gives P(σ) + P(σ∗) = 1

|D(σ)|
∑
i∈D∗(σ)

(
i + σ∗(i) + (n+ 1 −

σ∗(i)
)+ (n+ 1− i)) = 2(n+ 1). Summation over the pairs (σ,σ∗) gives

the result.

5.60 If i and i+ 1 are not next to each other in a cycle of σ , then e(σ̂) =
e(σ); otherwise e(σ̂) = e(σ) ± 1. In the first case it is easily seen that
#μ̂1+#μ̂2 = #μ1+#μ2 or #μ1+#μ2±2, and in the second case #μ̂1+#μ̂2 =
#μ1 + #μ2 ± 1.

5.62 Note first that the number of 1’s in λ of a pair λ × μ in the course
of the algorithm has the same parity as the number of 1’s in the starting
pair λ0 × �. Hence when we run the algorithm on 1 . . .1 ∈ Paro(2n) and
1 . . .11 ∈ Paro(2n+1), the steps λ×μ → λ′ ×μ′ and λ1×μ → λ′1×μ′ run
in parallel. It follows that h(2n) = h(2n+ 1). Furthermore, all parts that
appear are powers of 2; hence the mate is 2k1 . . .2kt , where 2k1 +· · ·+2kt

is the binary expansion of n.

5.65 Suppose without loss of generality that the n-th row is linearly de-
pendent on the other rows, An = λ1A1 + · · · + λn−1An−1. Construct a
graph with An on top, arrows with weight λi to Ai, and otherwise mij as
before (1 ≤ i ≤ n− 1,1 ≤ j ≤ n). Then M is the path matrix, but there is
no vertex-disjoint path system. Hence detM = 0.

5.68 Construct the lattice graph as in the Catalan example with diagonal
steps up–down, and horizontal steps all with weight 1. Then Hn is the
path matrix, and there is only one vertex-disjoint path system Pi : Ai → Bi
of weight 1.

5.71 Replace the Ferrers diagram by a lattice graph with vertices in the
cells and all steps up and to the right of weight 1. Furthermore, add
vertices A1, . . . , Ak below the k columns of the Durfee square D, and
B1, . . . , Bk to the right of the k rows of D. Then M is the path matrix,
and there is clearly only one system P : Ai → Bi of weight 1.
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5.73 Consider the lattice graph with diagonal up-steps to the right of
weight 1 and (1,0)-steps with weight ck when y = k. Let Ai = (−i,0),
Bj = (m, j), i, j = 1, . . . , n. The recurrence shows that (am+i,j) is the
path matrix. The only vertex-disjoint path systems are P : Ai → Bi. Clas-
sify these paths according to the number ij of horizontal steps of the
path Aj → Bj at y = j − 1. Since P is vertex-disjoint, we have m ≥
i1 ≥ i2 ≥ · · · ≥ in ≥ 0, and w(P) = ci10 c

m−i1
1 ci21 c

m−i2
2 · · · cinn−1c

m−in
n =

(c1 · · · cn)msi11 · · · sinn . The summation formula follows. For ci = q−i we

get det = q−(n+1
2 )[m+n

n ]q.

5.76 Consider the lattice graph with (1,0)- and (0,1)-steps of weight
1. Let A0 = (0,0), B0 = (r , s), and Ai = Bi = (ai, bi), i = 1, . . . , n. The
vertex-disjoint path systems from A to B correspond precisely to the
paths from (0,0) to (r , s) that avoid S. The path matrix M = (mij) has

entries m00 =
(
r+s
r

)
, m0j =

(
aj+bj
aj

)
, mi0 =

(
r+s−ai−bi
r−ai

)
, mii = 1 (i > 0),

mij =
(
aj+bj−ai−bi

aj−ai
)
(i < j), mij = 0 (i > j). Hence # paths = detM . For

inclusion–exclusion use properties ei, meaning that Ai is hit, i = 1, . . . , n.

Chapter 6

6.3 Let X be the set of colorings. Under C6 we have |Xρ0| = 26 = 64,
|Xρ| = |Xρ5| = 2, |Xρ2| = |Xρ4| = 4, |Xρ3| = 8. Hence by Burnside–

Frobenius |M| = 1
6(64 + 4 + 8 + 8) = 14. For D6 one obtains |M| = 13.

The two patterns are
.

6.5 The lattice paths correspond to sequences of n 0’s and n 1’s,
where 0 represents a (1,0)-step and 1 a (0,1)-step. The group consists
of the identity, the reverse σ : a1 . . . a2n → a2n . . . a1, the exchange
ε : a1 . . . a2n → a1 . . . a2n, where ai ≠ ai, and σε. The fixed-point sets

Xg are easily seen to have sizes |Xid| =
(

2n
n

)
, |Xσ | =

(
n
n/2

)
[n even],

|Xε| = 0, |Xσε| = 2n. Hence |M| = 1
4

((
2n
n

)
+ 2n +

(
n
n/2

)
[n even]

)
.

6.8 The group is C3 with |Xρ0| = 3(
n+1

2 ), |Xρ| = |Xρ2| = 3�n(n+1
6 �, thus

|M| = 1
3

[
3(

n+1
2 ) + 2 · 3�n(n+1)

6 �
]
.

6.11 Clearly, A ∈ Xg if and only if A contains all elements of a cycle
of g or none. It follows that |Xg| = 2c(g), c(g) = # cycles in g. Hence

m = 1
|G|
∑
g∈G 2c(g).

6.13 The group consists of id and g : x → x, where x = 1 ⇐⇒ x = 0. The
multiplication table x ·y is fixed by g iff x ·y = x ·y . Suppose 0 ·0 = a,
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then a = 0 · 0 = 0 · 0 = 1 · 1, and if 0 · 1 = b then b = 0 · 1 = 1 · 0. Hence

the tables fixed by g are of the form
0 1

0 a b
1 b a

, that is, |Xg| = 4. By Burnside–

Frobenius |M2| = 1
2(2

4 + 4) = 10. For three elements one obtains |M3| =
3330.

6.17 Let σ = τ−1πτ , and suppose (1,2, . . . , k) is a cycle of σ . Then
τ−1πτ(i) = i+1 orπτ(i) = τ(i+1), and we conclude that (τ(1), . . . , τ(k))
is a k-cycle of π . Hence σ has the same type as π . Now if C(π) is
the set of permutations conjugate to π , then by the previous exercise
|C(π)| = n!/|S(n)π |, where S(n)π = {ρ ∈ S(n) : ρπ = πρ}. According
to Exercise 1.46, |S(n)π | = 1c1c1!2c2c2! · · ·ncncn!, where 1c1 . . . ncn is the
type of π ; thus |C(π)| = n!/1c1c1! · · ·ncncn!. But this last expression is
precisely the number of permutations of type 1c1 . . . ncn , and the result
follows.

6.20 Consider all mappings f : N → X, |N| = n, |X| = x under

the group S(n). Then |M| =
(
x+n−1
n

)
= xn

n! = 1
n!Z(S(n);x, . . . , x) =

1
n!

∑
σ xc1(σ) · · ·xcn(σ) = 1

n!

∑
σ xc(σ), where c(σ) is the number of cycles

of σ . Thus xn =∑k sn,kxk.

6.24 a. For G = {id} we obtain
∑n
k=0

(
n
k

)
xk = (1 + x)n. b. For G = S(n)

we have mk = 1 for all k. For x = 1 this gives n + 1 = 1
n!

∑
σ 2c(σ),

thus (n + 1)! = ∑σ 2c(σ). c. For the cyclic group Cn we get
∑n
k=0mkxk =

1
n
∑
d|nϕ(d)(1 + xd)n/d. Now set x = 0 to obtain 1 = 1

n
∑
d|nϕ(d).

6.29 Looking at the cycle type of the reflections one easily obtains

Z(Dn) = 1
2
Z(Cn)+

⎧⎨⎩
1
4(z

n/2
2 + z2

1z
n/2−1
2 ) n even,

1
2z1z

(n−1)/2
2 n odd.

The number of self-complementary patterns under Dn is therefore
1
2 |Mc(Cn)| + 2n/2−2[n even].

6.33 The coefficient of zr+1−m on the left is er+1−m(1,2, . . . , r ) =
∑
k1k2

· · ·kr+1−m over all 1 ≤ k1 < k2 < · · · < kr+1−m ≤ r . The right-hand side
is (1+ z)(1+ 2z) · · · (1+ rz) = zr+1 1

z (
1
z + 1) · · · (1

z + r) = zr+1(1
z )
r+1 =

zr+1
∑
k sr+1,kz−k. Hence [zr+1−m] = sr+1,m. Now set n = r + 1.

6.34 We know from (16) that
∑
n≥0 Z

(
S(n);z1,−z2, . . . , (−1)n−1zn

)
yn =

exp(
∑
k≥1(−1)k−1zk

yk
k ). Now set zk = pk(x1, . . . , xr ) = ∑r

i=1 x
k
i . Then∑

k≥1(−1)k−1pk
yk
k = ∑k≥1

(−1)k−1

k
(
(x1y)k+· · ·+(xry)k

) = log(1+x1y)+
· · · + log(1 + xry) = log

∏r
i=1(1 + xiy). It follows that

∑
n≥0 Z(S(n);p1,

−p2, . . . , (−1)n−1pn)yn = ∏r
i=1(1 + xiy). Now compare coefficients for

yn, using the previous exercise.
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6.36 Let the tree T be rooted at e = {a,b}, and define φT as the for-
est rooted at a and b after deletion of e. Then φ is a bijection be-
tween the isomorphism classes of edge-rooted trees on n vertices and
the unordered pairs of isomorphism classes of rooted trees (including
pairs whose trees are isomorphic) whose vertex numbers add to n. Hence
u(2)n = 1

2

∑n
k=0ukun−k for n odd, and u(2)n = 1

2

∑n
k=0ukun−k + 1

2un/2 for

n even. This translates into U(2)(x) = 1
2[U(x)

2 + U(x2)].

6.40 The edge group is the dihedral group Dn; hence the number of
non-isomorphic subgraphs equals Z(Dn; 2, . . . ,2) = 1

2n
∑
d|nϕ(d)2n/d +

2n/2−2 + 2n/2−1 for even n, and 1
2n
∑
d|nϕ(d)2n/d + 2(n−1)/2 for odd n.

6.43 The symmetry group is S(m)[S(n)]. The desired number is there-
fore Z(S(m)[S(n)]; 2, . . . ,2) = 1

m!

∑
σ∈S(m)(n + 1)c(σ) = 1

m!

∑
k sm,k(n +

1)k = 1
m!(n+ 1)m =

(
m+n
m

)
.

6.47 Taking complements we have gn,k = gn,(n2)−k. Now
(
n
2

)
is even for

n ≡ 0,1 (mod 4), and odd for n ≡ 2,3 (mod 4). Hence when
(
n
2

)
is odd,

that is, for n ≡ 2,3, we have en = on. Suppose n ≡ 0,1 (mod 4); then
en − on = ∑

k gn,k(−1)k = Z(S(n); 0,2,0,2, . . .) = # self-complementary
graphs, which is greater than or equal to 0.

6.49 Consider graphs on 4n vertices; then s4n = Z(S(4n); 0,2, . . . ,0,2).
Following the analysis Z

(
S(4n)

) → Z
(
S(4n)

)
in the text one sees that

only those monomials zc1
1 · · ·zc4n

4n in Z
(
S(4n)

)
have to be taken into

account for which ci > 0 implies i ≡ 0 (mod 4). From this it is easy

to derive s4n = ∑
(c1,...,cn)

za(c)
1c1c1!···ncncn! , where

∑
ici = n and a(c) =

2
∑n
k=1 ck(kck−1)+4

∑
i≤i<j≤n gcd(i, j)cicj . Now perform the same anal-

ysis for �s2n to arrive at the same expression.

6.51 We have∑
n≥0m(S(n),H)zn = 1

|H|
∑
h Z
(
S(n);λ1(h), . . . , λn(h)

)
zn

= 1
|H|
∑
h exp(

∑
k≥1 λk(h)

zk
k ) .

Now λk(h) =
∑
j|k jcj(h) and thus

∑
k≥1 λk(h)

zk
k = ∑j≥1 jcj(h)(

zj
j + z2j

2j + · · · ) =∑j≥1 cj(h)
(− log(1 − zj))

= log
r∏
j=1
( 1

1−zj )
cj(h) .

The sum
∑
n≥0m

(
S(n),H

)
zn is therefore equal to

1
|H|
∑
h(

1
1−z )

c1(h)( 1
1−z2 )c2(h) · · · = Z(H; 1

1−z , . . .
1

1−zr ).
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For H = {id} we get
∑
n≥0m(S(n), {id})zn = 1

(1−z)r , confirming our old

result m(S(n), {id}) =
(
r+n−1
n

)
.

6.54 For G = S(n) we have

|MInj| = 1
n!|H|

∑
h
∑
(c1,...,cn)

n!
1c1c1!···ncncn! ·

n∏
k=1

kckck!
(
ck(h)
ck

)
,

where (c1, . . . , cn) runs through all cycle types in S(n). This gives

|MInj| = 1
|H|
∑
h∈H

∑
(i1,...,in)

n∏
k=1

(
ck(h)
ik

)
over all i1 + 2i2 + · · · + nin = n. Hence |MInj| = [xn]Z(H; 1 + x,1 +
x2, . . . ,1 + xr). To see this directly note that |MInj| counts the number
of all n-subset patterns of R under H, which are counted by Z(H,1 +
x, . . . ,1 + xr ) according to Exercise 6.23.

6.56 Take g ∈ G, h ∈ H and set Ah = ∏r
k=1 ekck(h)(zk+z2k+··· ). Then

( ∂
∂z1
)c1(g) . . . ( ∂

∂zn )
cn(g)Ah = c1(h)c1(g)

(
c1(h)+2c2(h)

)c2(g) · · · ·Ah, which

at z = 0 becomes
∏n
k=1 λk(h)ck(g) as in (8). Summing, we obtain the result

1
|H|
∑
h Z
(
G;λ1(h), . . . , λn(h)

) = |M|.

6.59 We have Z(Dp;z1, . . . , zp) = 1
2p (z

p
1 + (p − 1)zp + pz1z

p−1
2

2 ), hence

|MBij| = Z(Dp) ∩ Z(Dp) = 1
4p2

(
p! + (p − 1)2p + p22

p−1
2 (p−1

2 )!
)
. Now 4

divides 2
p−1

2 for p ≥ 5, and so 4p|(p − 1)! + (p − 1)2.

Chapter 7

7.3 An OPS
(
pn(x)

)
is a basis of C[x]; hence L is uniquely determined

by Lpn(x) = δn,0. Assume, conversely, that
(
pn(x)

)
and

(
qn(x)

)
are OPS

for L. Then p0(x) = q0(x) = 1. For n ≥ 1 let qn(x) =
∑n
i=0 cn,ipi(x), then

0 = L
(
qn(x)

) = ∑n
i=0 cn,iL

(
pi(x)

) = cn,0; thus cn,0 = 0. Assume cn,0 =
· · · = cn,k = 0 for k ≤ n− 2. By the same argument 0 = L(xk+1qn(x)

) =∑n
i=k+1 cn,iL

(
xk+1pi(x)

) = cn,k+1λk+1, which implies cn,k+1 = 0. Since
cn,n = 1, qn(x) = pn(x) follows.

7.5 Looking at the right half of the triangle we infer Trn = Bσ,τn for σ ≡
1, τ = (2,1,1, . . .). The last assertion follows by expanding (1 + x + x2)n
and induction.

7.11 The recurrence follows upon developing the determinant according
to the last column. Translated into exponential generating functions this

gives Û ′ = xÛ−αzÛ+z2Û ′. Hence (log Û)′ = Û ′

Û
= x−αz

1−z2 = 1
2
x−α
1−z + 1

2
x+α
1+z =
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−x−α
2

(
log(1−z))′+ x+α

2

(
log(1+z))′, that is, Û(x,α;z) = (1+z)x+α2 /(1−

z)
x−α

2 . The convolution formula follows from the multiplicativity of the
functions, similarly the reciprocity law.

7.14 Let D0 be the derivative as in Chapter 2. The ballot recurrence
translates into D0Bk = Bk−1 + Bk + · · · , Bk(0) = 0 for k ≥ 1, D0B0 =
B0 + B1 + · · · , B0(0) = 1. Following the hint we set Bk = B0Fk with
F(0) = 0. Then D0Bk = D0(B0F) = B0Fk−1(D0F) = B0Fk−1 1

1−F . Cancel-

ing B0Fk−1 this gives with D0F = F
z the solution F(z) = 1−√1−4z

2 = zC(z),
C(z) ordinary Catalan series. Now D0B0 = B0−1

z = B0
1

1−F = B0F
z yields

B0 = 1
1−F = F

z = C(z), hence bn,0 = Cn.

7.17 We know from Exercise 7.14 that Bk(z) = zkC(z)k+1; hence q0(z) =
1, and B1(z) = zC2(z) = C(z) − 1 implies q1(z) = r1(z) = 1. Using
induction we obtain Bk+1 = zk+1Ck+2 = (zC)Bk = (zC)(qkC − rk) =
zqkC2 − rkzC = qk(C − 1) − rkzC = (qk − zrk)C − qk, which proves the
degree conditions. Furthermore, rk+1 = qk, qk+1 = qk − zrk = qk − zqk−1.
The recurrence for qk(z) is easily seen to have the solution qk(z) =∑
i(−1)i

(
k−i
i

)
zi. This yields [zn]Bk(z) = bn,k = ∑

i≥0(−1)i
(
k−i
i

)
Cn−i,

since qk−1(z) has degree ≤ k−1
2 < n.

7.20 Clearly, detHn = 1. For detH(1)n the recurrence is rn = rn−1 − rn−2,

r−1 = r0 = 1 with solution rn =

⎧⎪⎨⎪⎩
1 n ≡ 0,5
0 n ≡ 1,4 (mod 6)

−1 n ≡ 2,3 .

7.23 To apply the lemma of Gessel–Viennot set A0 and B0 two apart
and consider the strip of width 2. Alternatively, (8) gives d(2)n d(0)n =
d(0)n+1d

(2)
n−1 + (d(1)n )2, that is, d(2)n T0T1 · · ·Tn = T0T1 · · ·Tn+1d

(2)
n−1 + r 2

nT
2
0

· · ·T 2
n. This yields d(2)n /T0 · · ·Tn+1 = d(2)n−1/T0 · · ·Tn+r 2

n/Tn+1 and there-

fore d(2)n /T0 · · ·Tn+1 = ∑n
j=1 r

2
j /Tj+1 + d(2)0 /T1. With d(2)0 = s2

0 + t1 we

obtain d(2)0 /T1 = (s2
0 + t1)/t1 = r 2

0 /T1 + 1, and the formula follows.

7.25 Start the induction with n = 0, k = 1,2, and show that the
product satisfies the recurrence (8). Note that a formula for Ck results:
Ck = detH(k)0 =∏1≤i≤j≤k−1

i+j+2
i+j .

7.28 It is readily seen that B2n satisfies the recurrence B2n+2 = αB2n +
β
∑n−1
k=0 B2kB2n−2k (see, e.g., Exercise 7.66). Now we prove the same re-

currence for the Catalan paths weighted by the number of peaks. If a
Catalan path has k + 1 peaks, then it has k valleys . Give such a
path P of length 2n the weight w(P) = αn−kβk, and let Vn = ∑

w(P).
We classify the paths P of length 2n + 2 according to the first point
(2k,0) when P touches the x-axis, k = 1, . . . , n + 1. If k = n + 1, then
we get αVn as contribution, and for k ≤ n βVk−1Vn+1−k. Thus Vn+1 =
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αVn +β
∑n
k=1 Vk−1Vn+1−k = αVn +β

∑n−1
k=0 VkVn−k. It suffices therefore to

prove the last assertion. Consider all pairs a1+· · ·+ak+1, b1+· · ·+bk+1

of ordered partitions of n+ 1 and n, respectively. Now arrange cyclically
a1 A’s followed by b1 B’ s, then a2 A’s, and so on. We obtain the same
cyclic arrangement by choosing aiai+1 . . ., bibi+1 . . . , i = 1, . . . , k+1. Since
n + 1 and n are relatively prime, any two such pairs are distinct. Hence

the number of these cyclic arrangements is 1
k+1

(
n
k

)(
n−1
k

)
= 1

n

(
n
k

)(
n
k+1

)
.

Now check that for any arrangement there is exactly one way to break it
into a linear word of n A’s and n B’s that begins with A and after deleting
this initial A has always at least as many A’s as B’s. The result follows.

7.30 The recurrence reads Dq(Bzk) = qkBzk−1 + skBzk+uk+1Bzk+1 (k ≥
1), DqB = aB + bBz. We know that Dq(Bzk) = qkzk(DqB) + Bqkzk−1.
Inserting DqB = aB + bBz into the first equation and canceling gives
aqk+bqkz = sk+uk+1z, that is, sk−aqk = (bqk−uk+1)z. It follows that

sk = aqk, tk = 1−qk
1−q uk =

1−qk
1−q bq

k−1 is the only solution.

7.34 Set H(z) =∑k≥0 ckAk, then

H(Δ)pn(x)
∣∣
x=0 =∑k≥0 ckAk(Δ)pn(x)

∣∣
x=0

=∑k≥0 ckδn,k = cn .

7.38 We have B(z)H
(
F(z)

) = B(z)∑k≥0 hkF(z)k =
∑
k≥0 hkAk(z), hence

[zn]B(z)H
(
F(z)

) = ∑
k hkan,k. For H̃(z) we obtain H̃

(
F(z)

) = H(z) and

so [zn]B(z)H(z) =∑k h̃kan,k.

7.40 From Ak(z) = B(z)F(z)k = zk
(1−z)k+1 follows an,k =

(
n
k

)
, and

βn,j = ∑n
k=0

(
k
j

)
=
(
n+1
j+1

)
. Consider H(z) = 1

1−z ; then H(F(z)) = 1−z
1−2z ,

and H̃(z) = H( z
1+z ) = 1 + z. This gives the identities

∑n
k=0[zk]

1
1−2z =∑n

k=0 2k = ∑n
j=0

(
n+1
j+1

)
, and

∑n
k=0[zk]

1
(1−z)2 = ∑n

k=0(k + 1) =
(
n+2

2

)
. For

H(z) = zm/
m∏
i=1
(1 − iz) one obtains

∑n
k=0 Sk+1,m+1 = ∑n

j=0 Sj,m
(
n+1
j+1

)
. The

choice αn,k = Hk leads to the identities
∑n
k=0 2kHk =

∑n
j=0

(
n+1
j+1

)
(Hn+1 −

1
j+1) and

∑n
k=0(k+ 1)Hk =

(
n+2

2

)
Hn+1 −

(
n+2

2

)
+
(
n+1

2

)
1
2 .

7.43 We know that U ↔ (1/B(F 〈−1〉), F 〈−1〉). Let a′, b′, s′, u′ be the pa-
rameters belonging to U , where a′ = −a, s′ = −s by the previous ex-
ercise. The differential equation for F 〈−1〉 reads therefore F 〈−1〉′ = 1 −
sF 〈−1〉 +u′(F 〈−1〉)2. Now F 〈−1〉′ = 1

F ′(F 〈−1〉(z)) =
1

1+sz+uz2 ; hence 1
1+sF+uF2 =

1 − sz + u′z2, that is, (1 + sF + uF2)(1 − sz + u′z2) = 1. With F2 = s
2 it

follows that u + u′ = s2

2 , and similarly, b + b′ = as, au′ = bs
2 . Case 1.

τ′ ≡ −τ . Then b′ = −b, u′ = −u; hence s = 0. If a ≠ 0, then u′ = u = 0,
and we obtain σ ≡ a, τ = (bk). If a = 0, then a short computation yields
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again u = 0. Case 2. τ′ ≡ τ . Here b′ = b, u′ = u; thus u = s2

4 = ( s2)2. Set
s
2 =m; then u =m2. Furthermore, 2b = as = 2am, that is, b = am. The
sequences are therefore σ = (a+ 2mk), τ = (k(am+m2(k− 1)

)
.

7.46 We have C(x)n (a + n − 1) = ∑n
k=0

(
n
k

)
(−x)n−k(a + n − 1)k =∑n

k=0

(
n
k

)
(−x)k(a + n − 1)n−k = n!

∑n
k=0

(
a+n−1
n−k

)
(−x)k
k! = (−1)nL(a)n (x).

For the second assertion apply the Sheffer identity to L(x+1)
n (a+ b).

7.49 The recurrence follows immediately from the recurrence for pn(x).
Translated into generating functions we get P ′ = (x − z)(zP)′ + xzP ′ =
(x − z)(P + zP ′) + xzP ′, hence P ′

P = x−z
1−2xz+z2 . So, (logP)′ = −1

2

(
log(1 −

2xz + z2)
)′

, which gives P(z) =∑n≥0 Pn(x)zn = 1√
1−2xz+z2 .

7.51 The equation DqB = aB + bBz translates into Bn+1 = aBn +
b 1−qn

1−q Bn−1. Define the operator L as in the hint; then we get Lxn =∑n
k=0[

n
k ]Lgk(x) = ∑n

k=0[
n
k ]λ

k. Hence we have to prove the recurrence

Lxn+1 = aLxn+b 1−qn
1−q Lx

n−1. From gn+1(x) = xgn(x)−qngn(x) follows

λn+1 = L
(
xgn(x)

) − qnλn; thus L
(
xgn(x)

) = λn(λ + 1) − (1 − qn)λn =
aλn − (1 − qn)λn. Furthermore, LDqgn(x) = 1−qn

1−q λ
n−1 = −1−qn

b λn, that

is, L
(
xgn(x)

) = aLgn(x)+ bLDqgn(x). By linear extension, L
(
xp(x)

) =
aLp(x) + bLDqp(x) for any polynomial. Now set p(x) = xn to obtain

Lxn+1 = aLxn + b 1−qn
1−q Lx

n−1.

7.54 If the first step is a diagonal step, then the contribution is Schn.
Otherwise, the path starts with a (1,0)-step. Let x = k + 1 be the first
x-coordinate where the path hits the line y = x, 0 ≤ k ≤ n. Then the
contribution is SchkSchn−k, and the recurrence follows. The formula in-
volving Cn−k follows upon classifying the paths according to the number
k of diagonal steps (see the argument in Exercise 1.24). The congruence
is clear from Schn = an,0 = 2an−1,0 + 2an−1,1 and induction.

7.58 If n+1 is a fixed point, then the contribution is aBn. Suppose n+1
is in a cycle of length n− 1 − k ≥ 2, 0 ≤ k ≤ n− 1; then the contribution

is b
(
n
k

)
(n− k)!Bk.

7.60 By the previous exercise, Cn+1 = Fin + 2Fin+1; hence C(z) =
zFi(z)+ 2Fi(z)− 1, that is, Fi(z) = C(z)+1

z+2 = 1
1−z2C(z)2 , since (C + 1)(1−

z2C2) = (C+1)
(
1−z(C−1)

) = C+1−z(C2−1) = C+1−(C−1)+z = z+2.

From Bk(z) = zkC(z)k+1 we obtain
∑
i≥1 B2i−1(z) = zC(z)2

1−z2C(z)2 . Thus
Fi(z) = z∑k odd Bk(z)+ 1, and so Fin+1 =∑k odd bn,k.

7.62 For the two equations use (3). For a = 1, s = 0 this gives
(

n
�n/2	

)
=

2n−∑k≥0 2n−1−2kCk, and for a = 0, s = 1, B(0,1)n (z) = 1
1+z

(
1+zB(1,1)(z)),
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thus Rn = Mn−1−Mn−2±· · ·+(−1)n−2M1+(−1)n−1M0+(−1)n = Mn−1−
Mn−2 ± · · · + (−1)n−2M1.

7.65 Using (4) one obtains B(1 − sz) − uz2B2 = 1, and by a short com-
putation (zB)′ = 2−B(1−sz)

1−2sz+(s2−4u)z2 ; hence (zB)′(1 − 2sz + (s2 − 4u)z2) =
2 − B(1 − sz). Comparing coefficients for zn, this gives (n + 1)Bn −
2snBn−1 + (s2 − 4u)(n − 1)Bn−2 = −Bn + sBn−1 (n ≥ 1); thus (n +
2)Bn = (2n + 1)sBn−1 + (4u − s2)(n − 1)Bn−2. For the Motzkin num-
bers s = u = 1; hence (n + 2)Mn = (2n + 1)Mn−1 + 3(n − 1)Mn−2,
or Mn

Mn−1
= 2n+1

n+2 + 3n−3
n+2

1
Mn−1/Mn−2

. Define the function f : [2,∞] → R by

f(x) = 2x+1
x+2 + 3x−3

x+2
1

f(x−1) , f(2) = 2. Then f is easily seen to be monoton-

ically increasing with f(n) = Mn
Mn−1

, which gives Mn
Mn−1

≤ Mn+1
Mn . Furthermore,

Mn
Mn−1

≤ 2n+1
n+2 + 3n−3

(n+2)2 = 7n−1
2(n+2) ≤ 7

2 . Therefore α = lim Mn
Mn−1

exists with

α = lim 2n+1
n+2 + lim 3n−3

n+2 · 1
α = 2 + 3

α , and so α = 3.

7.70 We have the recurrence an,k = an−1,k−1+(2d)an−1,k+an−1,k+1, an,0
= (2d)an−1,0 + an−1,1. The number of walks is therefore the Catalan
number with σ ≡ 2d, τ ≡ 1, and the desired generating function is

S(2d)(z) = B(2d+1,2d)(z) according to Exercise 7.68. Since B(1,0)n =
(

n
�n/2	

)
,

B(3,2)n =
(

2n+1
n

)
, the binomial formula in Proposition 7.20 yields Sn =∑n

k=0

(
n
k

)
(2d)n−k

(
k

�k/2	
)
=∑n

k=0

(
n
k

)
(2d−2)n−k

(
2k+1
k

)
. For d = 2 this gives

Sn =∑n
k=0

(
n
k

)
2n−k

(
2k+1
k

)
.

7.73 The differential equations F ′ = 1+(u+1)F+uF2, B′ = uB+uBF lead

to B = 1+uF , and hence to the recurrence Bn+1 = uBn+
∑n−1
k=0

(
n
k

)
BkBn−k.

Define the weight w(π) = uρ(π), where ρ(π) is the number of runs, and
classify according to whether n + 1 is in first place or not. This gives
Bn =∑k≥0An,kuk.

Chapter 8

8.3 For every i factor xi + 1 out of the i-th row to obtain det
(
xi+j
j

)
=∏n

i=1(xi+1)·det
(
(xi+j)j−1

j!

)
. As a polynomial this determinant has degree(

n
2

)
, hence det

(
(xi+j)j−1

j!

)
= c∏i<j(xi−xj). Comparing the coefficient of

x0
1x

1
2 · · ·xn−1

n gives 1/1!2! · · ·n! = (−1)(
n
2)c. The desired determinant

is therefore equal to (x1+1)···(xn+1)
1!···n!

∏
i<j(xj − xi). For xi = i this gives

det = n+ 1.
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8.5 The polynomial
∏
i,j(1 − xiyj)det( 1

1−xiyj ) is alternating in the xi
and yj , hence equal to c

∏
i<j(xi−xj)(yi−yj). Since the degree is n−1

in each xi and yj , we infer c = 1.

8.8 Following the hint, P(q) is a polynomial in q of degree less than or
equal to n2. Since 1 − q can be factored out of every row, 1 is a root of
P(q) of multiplicity at least n. For 1 ≤ k < n, show that each row vector
of the matrix

(
(1 − tk(i+j−1))/(1 − ti+j−1)

)
is a linear combination of the

k vectors (1, ti, t2i, . . . , t(n−1)i), 0 ≤ i ≤ k − 1. Therefore the rank of this
matrix is at most k, and thus tk is a root of P(q) with multiplicity at least
n − k. The same reasoning applies for t−k, which gives the expression
for P(q) as in the hint. Finally P(0) = det( 1

1−ti+j−1 ) =
∏
i<j(ti − tj)(ti−1 −

tj−1)
∏
i,j

1
1−ti+j−1 by Exercise 8.5. Now rearrange the terms to obtain the

formula.

8.9 One obtains m1111 = e4, m211 = e31 − 4e4, m22 = e22 − 2e31 + 2e4,
m31 = e211 − 2e22 − e31 + 4e4, m4 = e1111 − 4e211 + 2e22 + 4e31 − 4e4.

8.13 The coefficient of a monomial xλyμ in the product is equal to the
number of 0,1-matrices with row sum λ and column sum μ, that is, Mλμ.

8.17 We have ek ∈ 〈hμ : μ ∈ Par(k)〉. Hence in eλ = eλ1 · · · eλr the
lexicographically largest possible hμ in the expansion is hλ1 · · ·hλr , that
is, μ ≤ λ.

8.19 By (3),
∑
m≥0 hm(1, q, . . . , qn)zm = ∏n

i=0
1

1−qiz . Exercise 2.21 now

yields
∑
m≥0 hm(1, q, . . . , qn)zm =∑m≥0

[
m+n
m

]
zm; thus hm(1, q, . . . , qn)

=
[
m+n
m

]
. For the second assertion by (1),

∑
m≥0 em(1, q, . . . , qn−1)zm =

(1 + z)∏n−1
i=1 (1 + qiz), which is equal to (1 + z)∑n−1

k=0

[
n−1
k

]
q(

k+1
2 )zk by

the q-binomial theorem. The coefficient of zm is therefore[
n−1
m

]
q(

m+1
2 ) +

[
n−1
m−1

]
q(

m
2) = q(m2)

([
n−1
m

]
qm +

[
n−1
m−1

])
= q(m2)

[
n
m

]
.

8.21 Waring’s formula in Exercise 6.34 expresses ek as a linear combina-
tion of terms pc1

1 · · ·pckk with c1 + 2c2 + · · · + kck = k, that is, of terms
pλ1 · · ·pλr , λ ∈ Par(k).

8.25 For the first assertion use induction on k to show that μ∗1 + · · · +
μ∗k ≤ λ∗1 + · · · + λ∗k . Suppose λ ≺ μ, and let i be the smallest index with

λi ≠ μi. Then
∑i
k=1 λk =

∑i−1
k=1 λk + λi ≤

∑i−1
k=1 μk + μi, and so λi < μi.

8.29 If μ " λ then μ1 ≤ λ1. Now fill up the two rows from left to right with
μ1 1’s, μ2 2’s,. . ., to obtain an SST of shape λ and type μ. Thus Kλμ > 0.

8.31 Consider the lattice graph with horizontal steps of weight 1, and di-
agonal (1,1)-steps of weight xk, when the step goes from x = k−1 to x =
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k. Let A= {A1, . . . , An}, B = {B1, . . . , Bn}, where Ai = (0, n− i), Bj = (n−
j + λj). For the path matrix M = (mij), mij =

∑
1≤i1<···<ik≤n xi1 · · ·xik ,

k = λj − j + i. Thus mij = eλj−j+i, and so detM = det(eλi−i+j). The
vertex-disjoint path systems are of the form P : Ai → Bi. To every P
associate bijectively a table TP , where the i-th row corresponds to the
diagonal steps x = k − 1 to x = k. TP has shape λ1λ2 . . . λn with rows
strictly increasing and w(TP) = w(P). The transpose T∗ is therefore an
SST of shape λ∗, and the result follows.

8.34 Dividing sλ(qμ1+n−1, . . . , qμn) by sμ(qλ1+n−1, . . . , qλn) we get

det(q(μj+n−j)(n−i+λi))
det(q(λj+n−j)(n−i+μi))

∏
i<j

qλi+n−i−qλj+n−j
qμi+n−i−qμj+n−j .

The first factor is 1, since the matrix in the denominator is the transpose
of the matrix in the numerator. Now it is easily checked that

sλ(1, q, . . . , qn−1) = (−1)(
n
2)
∏
i<j

qn−i+λi−qn−j+λj
qi−1−qj−1 ,

whence the result.

8.37 Regard the symmetric plane partition λij as a 3-dimensional ar-
rangement with a stack of height λij at (i, j). The blocks at level 1 form
a self-conjugate Ferrers diagram F1, and similarly up to the highest level
less than or equal to t. Now rearrange F1 with self-conjugate partition
λ1 . . . λr into decreasing stacks of odd length corresponding to the hooks
as in Exercise 1.53, and similarly for the other Fi. Arrange the level stacks
vertically and decreasing along columns. This gives the desired bijection,
since the height of a stack is at most 2r − 1, there are less than or equal
to r rows and less than or equal to t columns that are strictly decreasing.
Example:

3221
222
221
1

→ → →
751
33
1

8.41 For type (r , r) the r 1’s must be in the first row, and there may be k
2’s in row 1, k = 0,1, . . . , r . For type (r , r , r)we count first those SSTs that
have at most two rows. Classifying them according to the number k of 2’s

in the second row, we get
∑r/2
k=0(r+1)+∑r

k=r/2+1(2r−2k+1) = 3r2

4 + 3r
2 +1

SSTs for even r , and similarly 3r2

4 + 3r
2 + 3

4 for odd r . If the SST has three

rows, then the first column must be
1
2
3

. Hence we obtain for the total

number the recurrence Ar = Ar−1 + 3r2

4 + 3r
2 +

{
1 r even

3/4 r odd
. Iteration

down gives with A1 = 4 the result.
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8.43 By Exercise 8.14 and Corollary 8.16,
∑
λmλ(x)hλ(y) =

∏
i,j

1
1−xiyj =∑

λ sλ(x)sλ(y). Now compare the coefficients of mμ(x). For eμ apply the
involution ω.

8.47 We haveωx
∏
i,j(1+xiyj) =ωx

∑
λ eλ(x)mλ(y) =

∑
λ hλ(x)mλ(y)

= ∏
i,j

1
1−xiyj = ∑

λ sλ(x)sλ(y) = ∑
λ sλ∗(x)sλ∗(y). By the previous ex-

ercise this is also equal to ωx
∑
λ sλ(x)sλ∗(y) = ∑

λ
(
ωxsλ(x)

)
sλ∗(y),

hence ωxsλ(x) = sλ∗(x).
8.49 We have∏

i≥1
1

1−qxi
∏
i<j

1
1−xixj =

(∏
i≥1

∑
aii≥0(qxi)aii

)
·
(∏

i<j
∑
aij≥0(xixj)aij

)
=∑A symm. qtr(A)xrow(A) .

The correspondence of the previous exercise and Corollary 8.25 show
that the last expression equals

∑
λ qo(λ

∗)sλ(x).

8.52 We know from Exercise 8.37 that symmetric plane partitions corre-
spond to column-strict plane partitions with less than or equal to r rows,
less than or equal to t columns, and max ≤ 2r−1, for which all entries are

odd. Hence the generating function is
r∏
i=1

1
1−q2i−1

∏
1≤i<j≤r

1
1−q2i+2j−2 . Now

apply Exercise 8.49 with the substitutions q � 1, xi � q2i−1.

8.56 Consider π ins
�→ P . If λ1 ≤m, λ∗1 ≤ n, then |λ| ≤mn, contradiction.

For S(mn) take π = nn−1 . . .1 2n2n−1 . . . n+1 . . .mnmn−1 . . . (m−
1)n+ 1; then is(π) =m, ds(π) = n.

8.59 Let T be an ST of shape λ, |λ| = n. If n is in the i-th row,
then clearly f(λ,−i) ≠ 0. Thus after deletion of the box containing n
we obtain an ST ϕT of shape (λ,−i). Conversely, to any T ′ of shape
(λ,−i) we may add n at the end of the i-th row. This proves (a), and
(b) is shown similarly. For (c) we have by induction,

∑
|λ|=n f(λ)2 =∑

|λ|=n f(λ)
∑
j f (λ,−j) =

∑
f(α)f(β), where the sum extends over all

pairs (α,β)with |α| = n, |β| = n−1 and α = (β,+i), β = (α,−j) for some
(i, j). Hence

∑
f(α)f(β) =∑|γ|=n−1 f(γ)

∑
i(γ,+i) =

∑
|γ|=n−1nf 2(γ) =

n(n− 1)! = n!.

8.61 Let A(n) be the number of STs with at most two rows. Classify-
ing the tableaux according to whether n is in the first or second row
we obtain the recurrence A(n) = 2A(n − 1) − [n odd] with solution
A(n) =

(
n

�n/2	
)
. The number of STs with at most three rows equals the

number of involutions π ∈ S(n) with ds(π) ≤ 3. Represent an involu-

tion π by a diagram 1 i j n. . .2 . . . . . . with arcs if (ij) is a 2-cycle.

Clearly, the forbidden configurations are
i j 	k

since then in the
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word representation, π = . . . 	.k.j.i . . . with 	 > k > j > i. Classify these
permutations according to the number k of 2-cycles. It is easy to see
that the number of diagrams with k arcs without the forbidden config-
urations equals the Catalan number Ck. Hence we get as total number∑
k

(
n
2k

)
Ck = Mn according to Section 7.4.

8.64 Suppose there is an even hook length. Then it is easy to see that
there is a hook length equal to 2. Remove the cells containing 2 and a
neighboring cell containing 1. Check that the difference odd minus even
remains unchanged in the new diagram. Continue until all hook lengths
are odd. The resulting partition must be of the form λ̃ =mm− 1 . . .2 1.

Chapter 9

9.2 Classification of the λ-colorings with respect to the number k of

colors used in the left color class yields χ(Km,n;λ) = ∑m
k=0

(
λ
k

)
k!Sm,k(λ−

k)n and ac(Km,n) =
∑m
k=0(−1)m−kk!Sm,k(k+ 1)n.

9.6 Recurrence (1) gives with induction a1 = −|E|. For the next coeffi-

cient one easily obtains a2 =
(|E|

2

)
− # triangles, again by (1).

9.10 We have B(bridge)
λ = λ(λ−1)+λs

λ = λ − 1 + s, B(loop)
λ = λs

λ = s. Let
e = {u,v} be a bridge, and consider bi(G;λ). Suppose u and v are col-
ored alike, then bi(G;λ) = λmi−1, where mi−1 is the number of col-
orings of the rest with i − 1 bad edges. Since bi−1(G�e;λ) = λ2mi−1,
we get λbi(G;λ) = bi−1(G�e;λ). If u and v are colored differently,
then bi(G;λ) = λ(λ − 1)mi and bi(G�e;λ) = λ2mi; hence λbi(G;λ) =
(λ−1)bi(G�e;λ). Altogether, λbi(G;λ) = (λ−1)bi(G�e;λ)+bi−1(G�e;λ),
which gives B(G)

λk(G) =
(λ−1+s)B(G�e)

λk(G)+1 . The other recurrences are proved simi-
larly. Now apply the recipe theorem with A = λ− 1 + s, B = s and α = 1,
β = s − 1.

9.13 Let s(G) be the number of strong orientations of G. We have
s(bridge) = 0, s(loop) = 2, and the recurrence is s(G) = s(G�e)+ s(G/e)
by a similar argument as in the proof of Proposition 9.7. The recipe theo-
rem yields s(G) = T(G; 0,2).

9.15 Take a fixed orientation of G, and let φ be a 3-flow in {1,−1}. Now
turn all edges e with φ(e) = −1 around, and assign them the value 1. The
flow condition remains valid, and since all edges have φ(e) = 1, it must
be a 2-in 2-out orientation. The converse construction is clear.

9.18 Let f(n) =∑T y invT over all rooted trees on n vertices, and t(n) =∑
T y invT when the root is 1. As in the proof of Theorem 3.8 we have

t(n+1) = h(n), t(z) =∑n t(n+1)z
n

n! =
∑
n h(n)

zn
n! = eF(z). Now when we



Solutions to Selected Exercises 545

consider all roots, then f(n+1) = h(n)(1+y +· · ·+yn) = h(n)yn+1−1
y−1 ,

and thus F ′(z) = ∑
n f(n + 1)z

n

n! = ∑
n h(n)

zn
n!
yn+1−1
y−1 = y

y−1 t(yz) −
1

y−1 t(z). Furthermore, t′(z) = eF(z)F ′(z) = t(z)
( y
y−1 t(yz) − 1

y−1 t(z)
)
,

which is precisely the recurrence in Exercise 9.17. The trees with no
inversion correspond to t(z)

∣∣
y=0. With induction we obtain tn+1(0) =∑n−1

k=0

(
n−1
k

)
k!(n − 1 − k)! = n(n − 1)! = n!. The number of n-trees with

invT = 0 is thus (n− 1)!.

9.22 Using recurrence (3) one easily obtains

Q(Pn;x) =∑k≥1

[(
n−k
k−1

)
+
(
n−1−k
k−1

)]
xk

withQ(Pn; 1) = Fn+1, andQ(Km,n;x) = (1+x+· · ·+xm−1)(1+x+· · ·+
xn−1)+ xm + xn − 1 with Q(Km,n; 1) =mn+ 1.

9.27 We have Q(C3;x) = 4x, Q(C4;x) = 3x2 + 2x. For n ≥ 5 the re-
currence gives Q(Cn;x) = Q(Pn−1;x) + Q(Cn−2;x) + xQ(Pn−3;x). The
linear coefficient therefore satisfies q1(Cn) = 2 + q1(Cn−2), which gives
q1(Cn) = n− 2 for n even, and q1(Cn) = n+ 1 for n odd. If Q(H;x) has
q1 = 2, then H is connected and contains no odd induced circuit by the
previous exercise. Hence H is bipartite.

9.29 It suffices to consider connected graphs. Let U be an indepen-
dent set with |U| = α(G), and let {u,v} ∈ E, u �∈ U . Then Q(G) =
Q(G�u) + Q(Guv�v). By induction, degQ(G�u) ≥ α(G�u) = α(G),
and so degQ(G) ≥ deg(Q�u) ≥ α(G). Suppose, conversely, H0 ≈ G
with α(H0) = maxH≈G α(H). Then Q(H0) = Q(H0�u) +Q(Huv0 �v). By
induction, degQ(H0�u) = α(H′) for some H′ ≈ H0�u. Now α(H′) =
α(H′′�u) for some H′′ ≈ H0, and therefore α(H′) ≤ α(H′′) ≤ α(H0),
that is, degQ(H0�u) ≤ α(H0). Similarly, degQ(Huv0 �v) ≤ α(H0), and
we conclude that degQ(H0) ≤ α(H0), and thus degQ(H0) = α(H0).

9.33 Let H1, . . . ,Ht be the connected components of H, with |V(Hi)| =
ni ≥ 2, |E(Hi)| =mi. ThenQ(H; 1) =∏t

i=1Q(Hi; 1) ≥ (m1+1) · · · (mt+
1) ≥ n1 · · ·nt ≥ n. Equality forces t = 1, m + 1 = n, in which case H is
a tree, or t = 2 and H = K2 ∪ K2 with Q(H;x) = 4x2, Q(H; 1) = 4 = n.
Suppose H is a tree with Q(H; 1) = n. Since Q(H; 1) = # matchings,
we conclude that there is no matching with two disjoint edges, and H =
K1,n−1 results. For K1,n−1 we have Q(K1,n−1;x) = xn−1 + xn−2 + · · · +
x2 + 2x, Q(K1,n−1; 1) = n. The 2-word is 12 . . . n1nn − 1 . . .2, and the
associated 2-in 2-out graph is an n-circuit with two edges joining adjacent
vertices in either direction.

9.35 We have fk(n) =
∑
H L(H) over all interlace graphs H with Q(H; 1)

= k, and where L(H) is the number of ways to fit H into the chord dia-
gram. For k = 1 we getH = Kn (n isolated vertices) as the only graph with
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L(H) = Cn (Catalan number). Thus f1(n) = Cn. The results for k = 2,3
are f2(n) =

(
2n
n−2

)
, f3(n) = 3

(
2n
n−3

)
.

9.36 For a tree, |V | = n, |E| = n − 1, |F| = 1; hence |V | − |E| + |F| = 2.
Suppose G is not a tree. Delete a non-bridge and apply induction.

9.40 For the black transition we get αS(G̃1)S(G̃2) with c(p) = c(p1) +
c(p2). For the white or crossing case c(p) = c(p1) + c(p2) − 1; hence
S(G̃) = αS(G̃1)S(G̃2)+ β+γ

λ S(G̃1)S(G̃2).

9.42 If G has no bridge, then G∗ has no loop, and so χ(G∗;k) > 0 for
k large enough. By the previous exercise P(G;k) ≥ χ(G∗;k) > 0; hence
P(G;λ) cannot be the 0 polynomial. The degree condition is easily seen.

9.44 Since G is Eulerian, G∗ is bipartite. Let A and B be the color classes
of the faces with the outer face in B. In G̃ orient the edges around faces
in A clockwise, around faces in B counterclockwise, and the outer face
clockwise. With this orientation the edges around a black face of G̃ receive
alternate directions. Note that the cycles of a transition system p in the
Penrose polynomial correspond precisely to directed Eulerian cycles. Let
X ⊆ E be the set of crossing vertices in p. By induction it is easy to
see that |X| + c(p) ≡ |F| (mod 2). Hence for all p with c(p) = i we
have x(p) ≡ |F| − i (mod 2), that is, (−1)x(p) is constant. It follows that
a|F| > 0 a|F|−1 < 0, . . . , and therefore P(G;−λ) = ∑

p(−1)x(p)(−λ)c(p) =∑
p(−1)|F|λc(p) = (−1)|F|

∑
p λc(p). We conclude that (−1)|F|P(G;−1) =

2|E|,
∑ |ai| = 2|E|. The last assertion is readily seen.

9.47 By the previous results P(G;λ) is a polynomial of degree 5 with
leading coefficient 1, P(G; 0) = P(G; 1) = P(G; 2) = 0, P(G; 3) = # 3-edge-
colorings = 16, P(G;−2) = (−16) · # 4-face-colorings = (−16) · 24. From
these six conditions one computes P(G;λ) = λ(λ− 1)(λ− 2)3.

9.53 Associate to O ∈ O the 2-valuation g : E(G̃)→ {1,2}, where g(f) =
1 if in the orientation the black face is to the right of f , otherwise g(f) =
2. This gives g ∈ V2 as in the previous exercise, where the total types
correspond to saddle points. Exercise 9.52 therefore yields

∑
O 2s(O) =

2T(G; 3,3).

9.57 Check that for move (II) the weights are +1 and −1 no matter how
the curves are oriented, whereas for (III) the weights of the three corners
of the triangle stay the same.

9.60 The Tutte polynomial is T(C2n+1;x,y) = x2n+x2n−1 +· · ·+x+y .
With writhe w(D) = 2n+ 1 this gives V(t) = −tn+1 · (t2n − t2n−1 ± · · · −
t − t−1) = −t3n+1 + t3n ∓ · · · + tn+2 + tn.

9.62 Using (1) we obtain 〈D〉 = ∑
p Ai(p)−j(p)(−A2 − A−2)c(p)−1. With

A = 1 this gives
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〈D〉A=1 =
∑
p
(−2)c(p)−1 = −1

2
S(G̃,W1,1,0;−2) = −1

2
S(G̃,W0,0,−1;−2)

= −1
2(−2)c(L)(−1)|E| = (−1)|E|(−2)c(L)−1 .

Since w(D) ≡ |E| (mod 2), fL(1) = VL(1) = (−2)c(L)−1 results.

9.64 The nugatory crossings inD correspond to bridges in the Tait graph
G. Hence if G has no bridges, then |E| = n ≥ |V(G)|. Since G has at least
n spanning trees, |VK(−1)| = # trees in G ≥ n. Since the number of
spanning trees in G equals the number of Eulerian cycles in G̃c (Corollary
9.22) we find that |VK(−1)| = n if and only if the interlace graph H cor-
responding to G̃c is K1,n−1 or K2 ∪ K2 (Exercise 9.33), but K2 ∪K2 cannot
happen (why?).

9.66 We have |VK(−1)| = T(G; 1,1) = e(G̃c) = Q(H; 1), where H is an
interlace graph to G̃c with the canonical orientation. Hence |VK(−1)| ≤
2n−1, n = |E|, and equality can hold only for H = Kn. Check that for H ≠
Kn, Q(H; 1) ≤ 3

42n−1. Since |VK(−1)| is odd (Exercise 9.61), |VK(−1)| =
2n−1 cannot hold. For n = 2 we get |VK(−1)| ≤ 3

4 · 2; thus |VK(−1)| ≤ 1
with the Tait graph G = P3 achieving equality. For n = 3, |VK(−1)| ≤ 3
with G = K3 as example, and for n = 4, |VK(−1)| ≤ 6. But any connected
graph G with 4 edges has at most 4 spanning trees. Hence |VK(−1)| ≤ 4
with G = C4 achieving the bound.

Chapter 10

10.3 Any face has boundary length 4k+2 for some k. Since G is bipartite,
the directions around a face alternate. So an odd number 2k+ 1 of edges
are directed clockwise.

10.6 We have M(3, n) = detA, where

A =

⎛⎜⎜⎜⎜⎜⎜⎝
1 −2 0 . . .
0 1 −2

. . .
1 −2(

n
0

) (
n−1

1

)
. . .

(
n/2
n/2

)

⎞⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭
n
2
.

Developing the determinant according to the last row yields the result.

Exercise 3.15 gave detA =∑k

(
n/2
k

)
2n/2−k3�k/2	.

10.9 As M(m,n) = 4
mn

4
∏(m−1)/2
k=1

∏n/2
	=1(cos2 kπ

m+1 + cos2 	π
n+1)

∏n/2
	=1

cos	π
n+1

we have to prove
∏n/2
	=1

cos	π
n+1 = 2−n/2. Let ω = e

2iπ
n+1 be (n + 1)-st root

of unity; then ω	 = cos 2	π
n+1 + i sin 2	π

n+1 , and thus cos 2	π
n+1 = ω	+ω−	

2 . By
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the cosine theorem, 2 cos2 	π
n+1 = cos 2	π

n+1 +1; hence cos2 	π
n+1 = ω	+ω−	+2

4 .

This gives
∏n/2
	=1 cos2 	π

n+1 =∏n/2
	=1(ω

	 +ω−	 + 2)4−n/2. Now we claim that∏n/2
	=1(ω

	 +ω−	 +2) = 1, which will finish the proof, taking square roots.

Since ω−	 =ωn+1−	 we have
∏n/2
	=1(ω

	+ω−	+2) =∏n/2
	=1(ω

	+1)(ω−	+
1) =∏n

	=1(ω	+1). Finally, 1+x+· · ·+xn = (x−ω)(x−ω2) · · · (x−ωn),
and setting x = −1 yields 1 = (−1 −ω) · · · (−1 −ωn) = ∏n

	=1(ω	 + 1),
since n is even.

10.10 Write ε(i, j) = 1 if i ε→ j and ε(i, j) = −1 if i ε← j. Then∑
ε detAε =∑ε

∑
σ (signσ)

∏n
i=1 aiσ(i)ε

(
i, σ(i)

)
=∑σ

(
(signσ)

∏n
i=1 aiσ(i)

)∑
ε
∏n
i=1 ε

(
i, σ(i)

)
.

If σ has i as fixed point, then aii = 0. Suppose σ has a cycle of length
greater than 2, say, (i, j, . . .). The number of orientations ε with ε(i, j) = 1
equals those with ε(i, j) = −1; hence the last factor

∑
ε
∏n
i=1 ε

(
i, σ(i)

)
becomes 0. Finally, if σ has n/2 cycles of length 2, then

∏n
i=1 ε

(
i, σ(i)

) =
(−1)n/2, signσ = (−1)n/2, and so

∑
ε detAε = 2qM(G).

10.14 For the path Pn we get μ(Pn;x) = xμ(Pn−1;x) − μ(Pn−2;x);
hence μ(Pn;x) is the n-th Chebyshev polynomial. For Kn one easily com-

putes m(Kn;k) =
(
n
2k

)
(2k − 1)(2k − 3) · · · =

(
n
2k

)
(2k)!
k!2k , and μ(Kn;x) =∑n

k=0(−1
2)
k n2k

k! x
n−2k = H(1)n (x) is a Hermite polynomial. Finally,

m(Kn,n;k) =
(
n
k

)2
k!, which gives μ(Kn,n;x) = ∑n

k=0(−1)k
(
n
k

)2
k!xn−2k,

related to the Laguerre polynomial L(1)n (x) =∑n
k=0(−1)k

(
n
k

)2
k!xn−k.

10.16 Let G be Eulerian, and U ⊆ E a bipartition (V1, V2). Then |U| =∑
u∈V1

d(u) − 2|E(G(V1))| ≡ 0 (mod 2), since d(u) is even for all u. It
follows that B(G;−1) = ∑

U(−1)|U| = |B(G)|. Suppose G is not Eulerian,
andu ∈ V has odd degree. Consider the pairs of bipartitions U = (V1, V2),
u ∈ V1, and U ′ = (V1�u,V2 ∪u). Then |U|+ |U ′| ≡ 1 (mod 2), and hence
(−1)|U| + (−1)|U ′| = 0. Summing over all pairs U,U ′ yields B(G;−1) = 0.
The assertion for E(G;−1) is proved similarly.

10.20 From E(Cn;z) = 1 + zn follows, with Theorem 10.9, Z(Cn;K) =
2n
(

cosh(K)
)n (

1 +
(

sinh(K)
cosh(K)

)n) = 2n
(

coshn(K) + sinhn(K)
) = (eK +

e−K)n + (eK − e−K)n. From Z(Cn;K) ≥ (eK + e−K)n we get logZ
n ≥

log(eK + e−K) ≥ log eK = K. Conversely, log a+b
2 ≤ loga+logb

2 implies
1
n log (eK+e−K)n+(eK−e−K)n

2 ≤ log(eK+e−K)+log(eK−e−K)
2 = log(e2K−e−2K)

2 ≤ log e2K

2 =
K. Hence logZ

n ≤ K + log 2
n , and so limn→∞

logZ
n = K.

10.21 Classify the Eulerian subgraphs according to the leftmost vertical
edge. This gives F0 = F1 = 1, F2 = 1 + z2, Fn = Fn−1 + z2Fn−2 +
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z3Fn−3 +· · ·+znF0. Use the same recurrence for zFn−1 and subtract to
obtain Fn − zFn−1 = Fn−1 + (z2 − z)Fn−2, and thus Fn = (1+ z)Fn−1 +
(z2 − z)Fn−2 + [n = 0] − [n = 1]z. The generating function is therefore
H(x) = 1−zx

1−(1+z)x−(z2−z)x2 . For z = 1 we obtain 1−x
1−2x , hence Fn(1) = 2n−1.

For z = −1 this gives 1+x
1−2x2 = ∑

2nx2n + ∑
2nx2n+1; thus Fn(−1) =

2�n/2	. For z = −2, H(x) = 1+2x
1+x−6x2 , and with the methods of Section 3.1

one computes Fn(−2) = 1
5(2

n+2 + (−3)n). The coefficient a2 equals the
number of 4-circuits which is clearly n−1, and similarly a3 = n−2 is the
number of 6-circuits. Finally, an = Fn−1 is easily seen.

10.25 By Exercise 10.23 we have

ZP(G; 2K) = 2k(G)(e2K − 1)|V |−k(G)T(G; e
2K+1
e2K−1 , e

2K) ,

and a short computation gives

ZP(G; 2K) = 2|V |(eK)|V |−k(G)
(

sinh(K)
)|V |−k(G)T(G; coth(K), e2K) .

This last expression is equal to eK|E|ZIsing(G;K) by Theorem 10.9.

10.27 Set α = √q, β = eK − 1, λ = √q, then S(G̃,Wα,β,0;
√q) = q |F|−1

2 (eK −
1)|V |−1√qT(G; 1+

√q
eK−1

√q, 1+ eK−1√q
√q) = q |F|

2 (eK−1)|V |−1T(G; 1+ q
eK−1 , e

K).

Hence q1− |F|
2 S(G̃,W ;

√q) = q(eK − 1)|V |−1T(G; e
K+q−1
eK−1 , eK) = ZPotts by Ex-

ercise 10.23.

10.29 The formula for the Fibonacci numbers is derived by induction on

k. It follows that LnFn = Fn−1Fn+Fn+1Fn = F2n, and hence Ln = τ2n−τ̂2n

τn−τ̂n =
τn + τ̂n.

10.33 Let v be a leaf of T . Then by (1) and induction U(T ; 1) = U(T�v ; 1)
+U(T�N(v); 1) ≤ 2n−2 +1+2n−2 = 2n−1 +1, and the upper bound is at-
tained by K1,n−1. For the lower bound consider more generally forests F .
If E = �, then U(F ; 1) = 2n, and 2n ≥ Fn+2 holds by induction. If E ≠ �, let
v be a leaf; then U(F ; 1) = U(F�v ; 1)+U(F�N(v); 1) ≥ Fn+1+Fn = Fn+2.
The bound is attained for the path Pn.

10.37 The independent sets correspond to walks of length n− 1 in Gm :
U,V1, . . . , Vn−1 = V with weight z|U|+|V1|+···+|Vn−1|. Hence U(Lm,n;z) =
1TDm(z)Tm(z)n−11.

10.40 We have f(k+	,n) = 1TTnk+	1; hence f(k+	,n)2 = f(n, k+	)2 =
(1TTk+	n 1)2 = (Tkn1 · T	n1)2. By the Cauchy–Schwarz inequality (Tkn1 ·
T	n1)2 ≤ (1TT 2k

n 1)(1TT 2	
n 1) = f(n,2k)f(n,2	) = f(2k,n)f(2	,n). Tak-

ing the n-th root and letting n → ∞, this gives Λ2
k+	 ≤ Λ2kΛ2	. For k = n,

	 = n + 1, Λ2
2n+1 ≤ Λ2nΛ2n+2 results, and k = n − 1, 	 = n + 1 yields

Λ2
2n ≤ Λ2n−2Λ2n+2.
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10.42 Clearly, U(L̃m,n; 1) equals the number of closed walks of length n
in the graph Gm; thus U(L̃m,n; 1) = tr(T̃nm). To compute U(L̃2,n;z), we

have T̃2(z) =
(

1 z z
1 0 z
1 z 0

)
by Exercise 10.37; thus U(L̃2,n;z) = tr

(
T̃2(z)n

)
. The

eigenvalues of T̃2)(z) are −z, z+1
2 ±

√
z2+6z+1

4 ; thus U(L̃2,n;z) = (−z)n +
(z+1

2 +
√
z2+6z+1

4 )n + (z+1
2 −

√
z2+6z+1

4 )n. For z = 1 one easily computes

U(L̃2,n; 1) = (−1)n + ∑i≥0

(
n
2i

)
2i+1. For z = −1,U(L̃2,n;−1) = 1 + in +

(−i)n, i = √−1; hence

U(L̃2,n;−1) =

⎧⎪⎨⎪⎩
1 n odd,
3 n ≡ 0 (mod 4),

−1 n ≡ 2 (mod 4).
.

10.47 We know from Exercise 9.15 that ice(L̃2,n) = |T(L̃2,n; 0,−2)|. Since
L̃2,n is plane, ice(L̃2,n) = 1

3 (# 3-vertex-colorings of the dual graph L̃∗2,n).

L̃∗2,n consists of a path A1B1A2 . . . An−1Bn−1An plus two vertices x,y
joined to all Bi, and an outer vertex z joined to x,y,A1, An. If x and
y are colored differently, then the coloring of z and B1, . . . , Bn−1 is fixed,
and for each Aj we have two choices not equal to c(z). Hence the number
of these 3-colorings is 6 · 2n = 3 · 2n+1. If x and y are colored alike, it is

easy to see that 6 ·∑n
i=0

(
n
2i

)
2n−2i = 6 · 3n+1

2 = 3(3n + 1) colorings result.

Altogether this gives ice(L̃2,n) = 2n+1 + 3n + 1.

10.49 Just note that the types H and V stay the same, while NW ↔ SE
and NE ↔ SW are interchanged.

10.53 For n = 1 the graph G consists of two loops. Hence ice(G) = 4 ≥ 3
2 .

For n > 1 look at a vertex v and denote by A,B, . . . , F the number of 2-in
2-out orientations of G where at v we have the following situation:

���

�

A

�
�

�

�

B

�
�

�
�

C

���

�

D

���
�

E

�
�

�
�

F

Split G into three 4-regular graphs G1, G2, G3 on n−1 vertices by consid-
ering the transitions at v :

G1 G2 G3
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Then ice(G1) ≤ B+C+D+E, ice(G2) ≤ A+C+D+F , ice(G3) ≤ A+B+E+F .
Hence

∑3
i=1 ice(Gi) ≤ 2 · ice(G), and so by induction ice(G) ≥ 3

2(
3
2)
n−1 =

(3
2)
n.

10.55 Consider columns 1, 2, and 3, and a 2-in 2-out orientation. Let
vi ∈ {1,−1}n correspond to the horizontal arrows between columns 1
and 2, and vj to the arrows between columns 2 and 3, as in the hint. If
vi = vj , then all points of column 2 have horizontally out-degree and in-
degree equal to 1. Hence there are two possibilities to orient the vertical
arrows. In the other cases there is one possibility or none. Hence with
this weighting ice(L̃n,n) = tr(Tnn ).





Notation

Numbers

An,k Eulerian
Bn Bernoulli
Bell(n) Bell
Bσ,τn Catalan
bn,k ballot
Cn (ordinary) Catalan
Dn derangement
Dm,n Delannoy
Fn Fibonacci
Fin Fine
Gn Galois
Hn harmonic
In,k inversion
in involution
Kλμ Kostka
Ln,k Lah
Mn Motzkin
M(m,n) domino tilings
N(n,k) Narayana(
n
k

)
binomial

nk falling factorial

nk rising factorial(
n

k1...km

)
multinomial

[n]q q-integer[
n
k

]
q

Gaussian

p(n) partition
p(n;k)
p(n;k;m)
pp(n) plane partition
Rn Riordan
Schn Schröder
Sn,k Stirling 2nd kind
sn,k Stirling 1st kind
secn secant
spp(n) strict plane

partition
Trn central trinomial
tann tangent

Polynomials

B(G;λ, s) monochromial
C(a)n (x) Charlier
cn(x) Chebyshev
〈D〉 bracket
en(x1, . . . , xr ) elementary

symmetric
e(G;x) Eulerian
F(G;λ) flow
fL(A) Kauffman
gn(x) Gaussian

Ha,bn (x) Hermite
L(a)n (x) Laguerre
Pm(n) power sum
Pn(x) Legendre

P(G;λ) Penrose
pn(x1, . . . , xr ) symmetric power
Q(H;x) interlace
R(G;u,v) rank generating
S(G̃,W ;λ) transition
T(G;x,y) Tutte
Z(G;z1, . . . , zn) cycle index
Z(G)∩ Z(H) cap product
VL(t) Jones
xn falling factorial
xn rising factorial
ΔL(t) Alexander
μ(G;x) matchings
χ(G;λ) chromatic
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Functions

detA determinant
eλ(x) elementary

symmetric
F(z) generating
F̂(z) exponential

generating
F 〈−1〉(z) compositional

inverse
F
(
a1...am
b1...bn ;z

)
hypergeometric

H(σ) Hamiltonian
hλ(x) complete symmetric
mλ(x) monomial

symmetric

PfA Pfaffian
perA permanent
sλ(x) Schur
Z(G;K) partition Ising

model
ZP(G;K) Potts model
Zn(z;a) partition square ice
B(G;z) bipartition
E(G;z) Eulerian
U(G;z) hard model
Γ(z) gamma
μ(a,b), μ(n) Möbius
ϕ(n) Euler
ζ(P) zeta

Sets, Posets, Groups, Graphs

Bij(N,R) bijection map
Inj(N,R) injection map
Map(N,R) map
Par, Par(n) number-partition
S(X), S(n) permutation
Surj (N,R) surjective map(
X
k

)
k-subset

Π(X),Π(n) set-partition
T (n, λ) semistandard

tableau (SST)
Λ(X),Λn(X) homogeneous

symmetric
A(P) incidence algebra
B(n) subset lattice
C(n) chain
D divisor lattice
L(n, q) subspace lattice
Cn cyclic group
Dn dihedral group
Gx stabilizer

S(n) symmetric
S(n) pair group
SG edge group
Xg fixed-point set
Cn circuit
G∗ dual graph
G̃ medial graph
Gt terminal graph
G�e,G/e restriction,

contraction
H(C) interlace graph
Kn complete graph
Km,n complete bipartite

graph
Kn1,...,nt complete

multipartite graph
Lm,n lattice graph
L̃m,n periodic lattice

graph
Qn cube
Wn wheel
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Symbols, Operators, Parameters

Aσ,τ Catalan matrix
H(k)n Hankel matrix
L−(G), L+(G) Laplace matrix
M cofactor matrix
N⊇T ,N=T inclusion–exclusion
N≥k,N=k
SST semistandard

tableau
ST standard tableau
Tr , T	 trefoil
w(F ;G) weight enumerator
δm,n Kronecker
π∗ reverse permutation
τ, τ̂ golden section
ΔF(z) derivative
D0F, F ′,DqF
Δf(x) forward difference

operator∑
f(x) forward sum

operator
N,K shift operator

S(n) indefinite sum
S(N,n) sum recurrence

operator
ac(G) acyclic orientations
b(P) number of blocks
c(σ) number of cycles
d(u) degree of vertex
d−(u),d+(u) out-degree,

in-degree
ds(π) decreasing subword
hij hook length
ice(G) 2-in 2-out

orientation
inv(σ) inversion

permutation
inv(s) inversion multiset
invT inversion tree
is(π) increasing subword
M(G) perfect matchings
t(σ) type of permutation
t−(G,u), t+(G,u) arborescences
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action of a group, 241
acyclic graph, 218
acyclic orientation, 403
adjacency matrix, 413
alcohol, 240
Alexander polynomial, 447
alternating circuit, 466
alternating involution, 203
alternating link, 436
alternating permutation, 331
alternating polynomial, 346
arborescence converging to u, 231
arborescence diverging from u, 231
Aztec diamond, 44

ballot number, 299, 333
Bell number, 20
Bernoulli number, 109, 122
BEST theorem, 445
binomial convolution, 63
binomial determinant, 221
binomial inversion, 73
binomial inversion formula, 64
binomial theorem, 14
bipartition, 467
black block, 45
black face, 424
n×n block matrix, 475
Boolean poset, 198
bracket polynomial, 437

canonical orientation, 431
cap product, 274
Catalan constant, 465
Catalan matrix, 291
Catalan number, 101, 222
Catalan path, 203
Catalan sequence, 291
caterpillar, 249
Cauchy–Schwarz inequality, 490
Cayley continuant, 298
Cayley’s formula, 117

central binomial, 326, 327
central Delannoy number, 107, 325
central trinomial number, 297
Charlier polynomial, 316
Chebyshev polynomial, 102
chord diagram, 337, 409
chromatic invariant, 399
chromatic number, 393
chromatic polynomial, 393
Chu–Vandermonde identity, 175
circuit, 466
closed form, 148
closed walk, 488
cofactor matrix, 303
4-color theorem, 423
coloring, 393
column-strict plane partition, 363
column-sum vector, 351
companion identity, 173
complete symmetric function, 353
component knots, 437
composition, 55
composition formula, 113
composition of two permutation

groups, 267
compositional inverse, 55
conjugacy classes, 243
conjugate element, 243
conjugate partition, 32
conjugate tableau, 380
connecting coefficients, 21
continued fraction, 289, 308, 341
contraction of a graph, 394
convergence of series, 67
convolution, 54
crossing at v , 434
crossing type, 425
cut in the diagram, 338
cycle decomposition, 24
cycle index, 252
cyclic group, 240
cyclic matrix, 476
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cyclic permutation, 25

decreasing subword, 374
degree of a series, 67
Delannoy number, 19
Delannoy path, 19
derangement number, 1, 332
derivative, 57
determinant of a link, 448
diagram of a link, 435
difference calculus, 194
difference operator, 195
dihedral group, 244
n-dimensional cube, 489
dimer, 451
dimer problem, 451, 470
divisor lattice, 191
Dixon’s identity, 146
dominance order, 361
domino shuffling, 45
domino tiling, 44, 455
double falls, 330
double rises, 330
down-set, 202
dual plane graph, 421
dual RSK algorithm, 378
Durfee square, 127

edge group, 264
edge-coloring, 428
elementary symmetric function, 261,

350
k-th elementary symmetric

polynomial, 346
Euler formula, 421
Euler pair, 134
Euler’s ϕ-function, 9, 181
Euler’s pentagonal theorem, 128
Eulerian cycle, 407, 417, 426
Eulerian directed graph, 236
Eulerian graph, 402, 407, 428
Eulerian number, 30
Eulerian orientation, 434
Eulerian subgraph, 467
Eulerian walk, 445
expected value, 78
exponential formula, 113
exponential generating function, 60,

310, 328

external edge, 471

face-coloring, 422
faces, 420
falling factorial, 10
Ferrers diagram, 32
Fibonacci number, 2, 93
Fibonacci walk, 82
Fine number, 327
fixed point, 25
fixed-point set, 242
fixed-point-free permutation, 1
A-flow, 401
flow polynomial, 401, 402, 423
formal convergence, 67
formal derivative, 57
formula of Waring, 261
free parameter method, 106
free region, 45
fundamental lemma for Catalan

matrices, 291
fundamental sequence, 374

G,H-pattern, 271
G-closed family, 250
Galois number, 42
gamma function, 174
Gaussian coefficient, 36
Gaussian polynomial, 36
general cyclic matrix, 477
general involution principle, 212
general principle of

inclusion–exclusion, 186
generating function, 53
golden section, 95
Gosper’s algorithm, 149
2-in 2-out graph, 408

Hamiltonian, 467
Hankel matrices, 222, 292, 303
Hankel matrix of k-th order, 303
hard hexagon model, 507
hard model, 481
harmonic number, 8
Hermite polynomial, 319
homogeneous function of degree d,

348
homogeneous polynomial, 345
homogeneous property, 181
hook length, 385
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hook length formulas, 385
hyperbolic functions, 470
hypergeometric sequence, 148
hypergeometric series, 162

identity of Pfaff–Saalschütz, 159
in-degree, 231
2-in 2-out graph, 408
2-in 2-out orientation, 492
incidence algebra, 192
incidence matrix, 7
incidence system, 7
incidence vector, 6
increasing subword, 374
indefinite sum, 149
induced subgraph, 415
infinite product, 68
injective pattern, 274
insertion path, 368
interlace graph, 409
interlace polynomial, 413
internal edge, 471
inversion in a permutation, 27
inversion in a tree, 407
inversion numbers, 28, 29, 40
inversion of Chebyshev type, 77
inversion relations, 121
involution, 29
involution principle, 202
Ising problem, 467

Jacobi’s triple product theorem, 130,
515

Jacobi–Trudi identity, 357
Jones polynomial, 440
Jordan curve theorem, 421

Kirchhoff’s law, 401
knot, 434
knot invariant, 437
Kostka number, 361
Kronecker symbol, 14

Lagrange inversion formula, 117
Laguerre polynomial, 318
Lah number, 76
Laplace matrix, 232
lattice configuration, 278
n×n-lattice graph, 451

lattice paths, 16
lattice walk, 335
lattice with periodic boundary, 475
Laurent polynomial, 438
Laurent series, 131
left-handed trefoil, 440
Legendre polynomial, 322
Leibniz rule, 66
lemma of Burnside–Frobenius, 242
lemma of Fekete, 483
lemma of Gessel–Viennot, 217
lexicographic order, 352
link, 434
link diagram, 435
locally finite poset, 191
logarithmic concavity, 77
logarithmically convex, 334
lower triangular matrix, 71
Lucas number, 482

Möbius function, 71, 193
Möbius inversion, 194
matching, 208
matchings polynomial, 466
medial graph, 423
middle binomial, 326
mirror image, 440
moments, 84
monochromial, 480
monomial, 348
monomial symmetric function, 350
Motzkin number, 229, 300, 326
Motzkin path, 300
Motzkin tree, 335
multinomial coefficient, 16
multinomial theorem, 16
multiset, 15

Narayana number, 306, 334
neighborhood of a vertex, 481
netflow, 401
Newton representation, 73
nugatory crossing, 444
number of involutions, 29, 380
number-partition, 31

order permutation, 372
ordered k-partition, 31
ordinary Catalan number, 291



560 Index

ordinary generating function, 60, 312,
323

oriented adjacency matrix, 452
oriented diagram, 439
oriented knot, 447
oriented link, 439
orthogonal polynomial system, 293
out-degree, 231
overpass, 435

pair group, 262
parking sequence, 123
partial tiling, 45
k-partition, 31
partition function, 451, 467, 494
partition pattern, 274
Pascal matrix, 12
Pascal recurrence, 5
path matrix, 218
path system, 218
pattern, 241
Penrose polynomial, 426
perfect matching, 416, 451
perfect partition, 36
periodic lattice, 490
permanent, 186
k-permutation, 10
permutation induced by g, 241
persistent sequence of polynomials,

75
Petersen graph, 407
Pfaffian, 208, 209, 452
Pfaffian orientation, 452
planar graph, 421
plane graph, 420
plane partition, 225, 362, 367
planted tree, 261
polynomial method, 11
polynomial sequence, 21
polyomino, 278
poset of all subspaces, 201
positive alternating diagram, 441
power function, 261
power sum, 108, 356
Prüfer code, 119
principle of inclusion–exclusion, 180
probability generating function, 78

q-binomial theorem, 39

q-derivative operator, 61
q-falling and q-rising factorial

polynomials, 38
q-Hermite polynomial, 66
q-integer, 37
Q-series, 61
q-Vandermonde, 42
Quicksort, 202

random lattice walk, 79
rank-generating function, 397
recipe theorem, 400
reciprocity law, 12
rectangular lattice graph, 482
recurrence operator, 144
recurrences with constant coefficients,

93
refinement relation, 202
reflected polynomial, 94
Reidemeister moves, 436
resolution system, 437
restriction of a graph, 394
resultant matrix, 461
resultant theorem, 461
reversed permutation, 381
rhombic tiling, 223
right-handed trefoil, 434, 440
Riordan number, 327
rising factorial, 10
Rogers–Ramanujan identities, 506
rooted forest, 116
rooted tree, 116
roots of unity, 138
row-sum vector, 351
RSK algorithm, 367, 369
rule of bijection, 6
rule of counting in two ways, 6
rule of product, 5
rule of sum, 5

saddle point, 434
Schröder number, 325
Schur function, 356
Schur’s identity, 514
secant number, 331
self-complementary graph, 264
self-complementary pattern, 257
self-conjugate partition, 35
semistandard tableau, 358
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n-set, 5
shape of an SST, 358
Sheffer identity, 315
Sheffer matrix, 309
shifted Catalan number, 326
sign of a permutation, 27
sign-reversing involution, 203
signed bijection, 217
simultaneous recurrences, 98
snake oil, 106
spanning subgraph, 397
spin, 467
n×n-square ice configuration, 491
stabilizer, 242
standard tableau, 374
state, 467
Stirling inversion, 74
Stirling matrix, 22, 26
Stirling number, 20, 25, 38, 42
Stirling polynomial of the first kind,

318
Stirling polynomial of the second kind,

317
Stirling series, 63
strand, 447
strong orientation, 406
subword, 374
sum matrix, 334
summation by elimination, 143
superposition, 275
switch along {a,b}, 410
switching equivalent graphs, 411
symmetric function, 348
symmetric group, 24
symmetric plane partition, 367, 379
symmetric polynomial, 345

Tait graph, 424
tangent number, 333
terminal graph, 471
theorem of de Bruijn, 271

theorem of Pólya–Redfield, 251
theorem of Perron–Frobenius, 485
theorem of Reidemeister, 436
tournament, 205
trace, 485
transfer matrix, 485, 505
transition, 425
transition system, 425
transition polynomial, 425
transitive tournament, 206
transposition, 25
transposition of C along {a,b}, 410
triangle-to-triangle relation, 495
Tutte polynomial, 396, 398
type of crossing, 427
type of permutation, 30
type of SST, 358

underpass, 435
unimodal sequence, 18
upper triangular matrix, 71

k-valuation, 427
Vandermonde convolution, 163
Vandermonde determinant, 205
Vandermonde identity, 14
Vandermonde matrix, 347
variance, 78
vertex-disjoint path system, 217

walk of length n, 484
weight enumerator, 250
white face, 424
word, 6
word representation of a permutation,

27
writhe, 439
WZ pair, 171

Zeilberger’s algorithm, 155
zeta-function, 193
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