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Preface

This book presents the basic tools of modern analysis within the context of
what might be called the fundamental problem of cperator. theory: to cal-
cialate spectra of specific operators on infinite-dimensional spaces, especially
operators on: Hilbert spaces. The: tools are diverse, and they provide the
basis for more refined methods that allow one to approach problems that go
well beyond the computation of spectra; the mathematical foundations of
quantum physics, noncommutative J-theory, and the classification of sim-
ple C*-algebras being three areas of curvent research activity that require
mastery of the material presented here.

The notion of spectrum of an operator is based on the more abstract
notion of the spectrum of an element of a complex Banach algebra. Af-
ter working out these fimdamentals we turn to-more concrete problems of
comphting spectra of operators of various types. For normal operators, this
amounts to a treatment-of the spectral theorem. Integral operators require

the ‘developmént of the Riesz theory of compact operators and the ideal £2
of Hilbert-Schmidt operators. Toeplitz operators require several important
todls; in order to calcilate the spectra of Toeplitz operators with continuous
symbolonemeedatoknuwthetheotyoffﬁedholm operators and index, the
structure of the Toeplitz C*-algebra and its connection with'the topology of
curves, and: the. mdex theorem for continuous symbols.

1 have given these lectures several times in a fifteen-week course at
Berkeley (Mathematics 206), which is normally taken by first- or second-
yeax graduate students with a foundation in measure theory and elementary
functional analysis. It is a plaaaure to teach that course because many deep

amportnnt ideas emerge in natwral ways. My lectures have evolved sig-
niﬁcpnt]y over the years, but have always focused an the notion of spectrum

and 'the role of Banach algebras as the appropriate modern foundation for
such consideratiops. For a serious student of modern analysis, this material

is the essential beginning.

Berkeley, California William Arveson
July 2001
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CHAPTER 1
Spectral Theory and Banach Algebras

The spectrum of o bounded operator on & Banach spacc is best studied
within the context of Banach algebras, and most of this chapter is devoted
to the theory of Banach algebras. However, one should keep in mind that
it is the spectral theory of operators that we want to understand. Many
examples are discussed in varying detail. While the general theory is elegant
and concise, it depends on its power to simplify and illuminate important
examplcs such as those that gave it life in the first place.

1.1. Origins of Spectral Theory

The idea of the spectrum of an operator grew out of attempts to understand
concrete problems of lincar algebra involving the solution of linear equations
and their infinite-dimensional generalizations.

The fundamental problem of linear nlgebra over the complex numbers s
the solution of systems of linear equations. One i3 given

(8) an n x n matrix (a;;) of complex numbers,
(b) an n-tuple g = (91, 5a.....9,) of compiex numbers,

and one nttempts to solve the system of linear equations
ayfy +--+ainfn = m.

(1.1) .
Gt Sy + 0 F Ganfn = n

for f = (f},-...Ja) € C*. More prucisely, vne wants to determine if the
system (1.1) bas solutions and to find all solutions when they exist.

Elementary courses on linear algebra emphasize that the left side of (1.1)
defines a linear operator f — Af on the n-dimensional vector space C". The
existence of sclutions of (1.1) for agy chuice of g is vquivalent to surjectivity
of A; uniqueness of solutions is equivaleut to injectivity of .. Thus the
system of equations (1.1) is uniquely salvable for all choices of g if and only
if the lincar operator A is invertible. This ties the ideo of invertibility to the
problem of salving (1.1), and in this finite-dimensions] cuse thore is o siwple
criterign: The operator A is invortible precisely when tho detenniuant of
the watrix (a;) is nonevro.

Howover clegant it tay appear, this criterion is of limited practical value,
since the detesminnuts of large matrices can be prolibitively hard to com-
pute. (o influite dhincusions the difficulty lics decper than that, because fur
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L1. ORIGINS OF SPECTRAL THEORY 3

&.¢class of problems abant integral equations. Rather than attempt
abt:lnﬁ Flsclefnifion of that term let us: simply look at & few examples in
Bt fornbl way, though it would not be very hard to.make the

gwh
E: Ii’:flﬂg disotission: tompletaly’ rigorous. Here are some early examples of

iritogral eqnatmns

ExampLi. 1.1:2: Tlis example is due to-Niels Heénrile Abel (ca.1823),
whose naiie is. attached to.abelian groups,. dbelian fifdtions, abelian von
Namnannoa.lgebras, a,nd* the like. Abel considered: the:fallowing . problem.
Fix a- number o ingthe.open unit interval and-lét: gbe a suitably. smooth
fuitction:of-the Aiiterval'(0, 1) satisfying.gla) =-0. Abel was léd-to scek: a

faniotion. f for which:

3 dy=glz
J: = y)df(w) - g(z)
on the:interval a < 2z < 1; a.nd&he wrote down: the following “sclution”:

.!(}— - (y_g.z.__nr_b;.

EXAMPLE 1.1.3: Given'a function:g'c LX(R), find-a function:/ such: that

(1:2) [ etiway=gte),  zem

D0

The “solution” of this. problem is the folluwmg’
Fy)= % f e Vg(x)dz.

In; fact: »’onehas to be: cmfuh'ahant thermneaningsof t;hese two integrals. But
inan: aggmpﬂate sanse the: solution: f muniqueljg rriinied; it belongs to
E3(R),and.the Fourier l:ra.nsfnx:m operator-definediby theiléft side of (1.2) is
_%mmtlble ogerator on. L% Indeed, it is'a. scalanmtﬂtlplalof an:invertible
isonietry -whose inverse is: exlpbtlzeda above: Thim is‘the essential statement

of th: Pln.noherel I'.hearem [15]

Exmm 1.1.4. nily:of extimiples. goes back to Vita, Volterra {ca
1800). Given a. coutlnugua mmglm -yalued: function: ol.(:r:, y), defined on:the
ttinngle'0 < y <= < 1 and given.g'€ €[0, 1}; Bndra function £ such: that

(1.3) | "': Kz, p)f(wydy=9(z), 0<Lz<£I

m la Oit,ﬂn,cg;l.ggl a Volterra eqnationjofithafirgt-kind, A Volterra equation
of the secand kind lnvnlvea a given/comnplex parameter )-as well as a function
9'€ C[0,1], and: asks whether or not:the equation.

1.4) f' k(z, ) W) dy - Mlz) =glz), O<Lz<1

“an be solved. far f.




D(A) = nii’l’g ¢1ay-.--g,,

(2) L %1.83. ... bea bounded ‘onotone increasiy

& sequence of pogi-
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| 2. THE SPECTRUM OF AN OPERATOR 5

The following exercises relate to.Volterra operators on the Banach
space C[0, 1] of continucus complex-valued functioos f on the unit

ipterval, with sup norm
I/l = sup |f{=)l
0<x<])

Exercise (3) implies that Valterra operators are bounded, and the
result of Exercise (5) implies that they are in fact compact opera-
tors.

(3} Let k(<,y) be a Volterra kernel as in Example (1814}, and let f €
C[0,1). ‘Show that the function g defined' on the unit interval by
equation: (1.3} is continuous, and that the lincar map & : f =+ ¢
defines a bounded-operator on C[0, 1}.

(1) For the kernel k{z,y) = 1for 0 < y £ r <€ 1 consider the corre-
sponding Voltérm operator V : C[0,1] — C[0, 1), naniely

Vi) = /0 faddy, [ eC1).

Given a function g € C[0, 1}, show that the equation. V.f =g has a
solution f € C[0, 1] iff g is continuously differcatiable and g{0) = D.

(8) Let k{z,y), 0 < 2,y < 1, be a continuous function defined on
l.hr unit squere, and. consider the béunded operator K defined on
Cl0, 1] by

"
Kf(z) = /0 k) f)dy, 0<z <L

Let By = {f € C{0,1] : ||£]| € 1} be the closed unit ball in C[0, 1.

Show that K 18 n compuct operator in the sense that the norm

closure of the image &£ 8, of B under K ls u compact subset of

C[0,1). Hint: Show that there I8 a positive constant M such that

ﬁr Treqr glv € KB, and cvery z,y € [0, 1] we have |9(z) — g{y}| S
Jz - gl

1.2. Tha Spoctrum of an Opoarator

Throughout this section, £ will dencte a complex Banach space. By an
operulor on. £ we mean a bounded Boear transformation T : E — E; B(E)
will denote the space of all aperaturs on E. B(E) is iwelf a cowplex Banach
space with raipect 1o the operator nonn. We may culnpost bwo operistons
A, 8 € B(£) to obtain an operator product AB € B(E), and this define
an associntive multiplication sntisfying both distributive laws A{8 + C) =
AB + AC and (A + B)C = AB + BC. We write 1 for the identity operator.

THeOREM 1.2.1. For ciery A € B(E). the follovnng ure equivalent.
(1) For every iy € £ there s a unigue x € £ such that Ax = y.
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2" Therr s an operator B € B(E} such that AB = BA =1.

Provr. We prove the nontrivial implication (1) == (2). The hypothesis
1 umplies that A is fuvertible as a linear transformation of the vector space

8p
E. and we mayv consider its inverse 8 : E — E. As qa subset of £@ £, the
gaph of B is related to the graph of A as follows:

FiB)Y={{xr,Br}:z € E} = {{Ap.») : y € E}.

The space on the right is closed in E® E because A-is-contimuous. Hence the

eraph of B is closed. and the closed graph theorem implies B € B{E}). 0O

(1) A is said to be invertible if there is an operator B € B{E) such:that
AB=BA=1.

i2) The spectrum o(A) of A is the set of all complex numbers A for
which 4 — A1 is not invertible.

(3) The resolvent set p(A) of A is the complement p{A) = C\ o{A).

In Examples (1.1.2){1.1.4) of the prévious section, we were presented
with an operator, and various assertions were made about its spectium. For
example, in order to determine whiether o given-operalor A4 is invertible,
oue has exactly the problem of determining whether or not‘0:€ 6{A4). The
spretrum is the most important invariant attached to an opeiator.

REMARK 1.2.3. Remerks on operalor spectrn. We have 'dﬁ_ﬁn,“_g;_lfthegﬂﬂc‘
trum of an operator T € .B(E), but it is often useful to. have more; precise
information about various points of o(T"). For example, suppose there is a

nonzero vector z € £ for which Tz = Az for some complex number A. In
this case, A is called an eigenvalye (with associated eigenvector ). Obvi-
ausly, T'— A1 is not invertible, so that A-€0(T). The set of all'eigenvalues of
T i a subset of ¢(T') called the poin

Lspectrum-of T (and is written.ap{T)).
When E is finite dimensional o(T) '

__ /(T) = 0,(T), butthat is nat s0-in general.
Ind:ﬁd. many of the natural operators of analysis have no point spéctrum
al all.

Anptl}er type of spectral point

occurs when T — A ig one-to-one but pot
onta. This can happen in two wayH: Ei tclosed.
E,oritisclpaad but not all of £
such behavigr (compression apecirum, residual
use it, sinee it is better to | L a good, example
Operator V ucting on o, :

+ We will see |ater tha ‘s spectruwu is
may casily.check that V is ono-to-oie.
o1 1 implics that {ts range is .ot closed
ubspace of codimension ona in C[o, 1]

My secti
ure ol itd range iy g u
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carcises-
E(T;"Give explicit examples of bounded.operators A, B on £2(N) such

that AB = 1 and BA: is the projéction onto a closed: infinite-
ditaensional stibspacéof infinite codimension.
{2) Let A and B he the dperators definiéd-on #2(N) by
Alzy;z2,...) = (0,21, 22,... ),
Bz, 22,...) = (%2:%3, T4, -+ . ),

for z = (zi,&2,...) € E(N). Show that [|A] = ||B|| = 1, and
compute both BA and AB. Deduce that A.is injective but not
surjective, B is surjective but not injective, and. that o(48) #
o(BA).

(3) Let E-be n Banach:space and let A .and 3 be bounded operators
on E. Show that 1 — AB is invertible if and only if1 ~ BA is
invertible. Hint: Think about how to relate the forma! Neumann
series for (1 — AB)Y™!,

(1—AB)"' =1+ AB+ (AB): + (AB) +...,
to that for (1 — BA)~! and: tumn your Idea inta a rigorous proof.

(4) Use the result of the preceding exercise to show that for apy two
bounded .operators A4, B acting on a Banach space, g(A8) and
a(BA) agree except perhaps for-0: o{A8) \ {0} = o{BA) \ {0}.

1.3, ‘Baiiach Algebras: Examples

We have pointed:out that spectral theory is useful when the:underlying field
of scilars is the ¢omplex numbers, and in the sequel this will always-be the
case,

DeriNiTION 1.3.1 (Complex algebra). By sn algpbra.over C we mean
a complex vector-space A together with ‘s binary operation representing
mﬂt‘iiﬁliﬁgti_r‘gii-zq, ¥ € A oy € A satisfying
(1) Bilinearity: For a,f € C and =z, ¥,z € A we have
(az+8-y)z=a-zz+ 8 pz,
Ha-y+B-2)=a-zp+ 8- 2z
(2) Associativity: z(yz) = (xy)z.

A.complex algebra may or may not-have a multiplicative jdentity. As o
rather extreme exampleiof ohe that does apt, let A be any &oifiplex vector
space and defins myltiplication ingd by zy =0 forall z, y. When.an algebra
dges have anyidentity thep it Is oniquely determined, and we denote it by
1. The-ldeatity is also. called the urnit, and.an algebra with unit is called 4
unital algebra. A commutative algebra is ene in which =y = yx for every
£y U
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DevineTioN 1.3.2 (Normed algebras, Banach algebras). A DOIMmeg g,
pubra ia n pair A, ]| || consisting of an algebra 4 together with 5 nerm
-1l : & = [0, 00) which is related to the multipiication as follows:

e < [zl - fplf,  z.p € A

A Banach algebra is n normed algebra that is a (complete) Banach Space
relative to its given norm.

REMARK 1.3.3. We recall a useflul eriterion for completeness: A normeqd
linear space E iz o Banach space Iff every absolutely convergent series eon-
verges. More explicltly, £ is complete iff for every sequence of elements
I, € E satisfying 3 ||2,]] < 0o, there i an element y € B such that

tim fly (2 4 4 za)f = 0
see Exercise {1) below.,

The fallowing examples of Banach algebras illustrate the diversity of the
csncept.

EXAMPLE 1.34. Let E+be any Banach space and let A be the algebra
B(E) of all bounded -operators on E, z - i denoting the operator product.
This is a unital Banach algebra in which the identity satisfies ||1]] = 1. It is
complete because £ is complete.

ExavPLE 1.35. O(X). Let X be a compact Hausdorff space and
consider the unital algebra G{X) of all complex valued contingous func-
teows defined on X, the multiplication and addition being defined: pointwise,
197y = f(z)g(2), {f+¢)(x) = f(z)}+g{zr). H.elntwe t‘the sup norm, C(X)
YasiAins 3 eaumutative Banach algebra with unit.

Lraume 1.38. The disk algebrg.  Let D = {z € € : |z] < 1} be

ﬁi*;n s warsy unit disk in the complex plane and let A denote the subspace of
743} snemiating, of all complex functions [ whose restrictions to the interior
o & 7 1) e anlytic. A is obviously a unital snbalgebra of C(D), To
# at  m thoers] (anl therefore o coramutative Banach algebra in:its gwn
LG fdu s thud 1 [, 4 any sequence n A that converges to f in the norm
RS, Gan v nriction of § {0 the Interor of D is ?t'ﬁé'-‘&g;l'i‘fditb. limit
A Atmi o 2 et 1 Lhus geat ’ here,

" , _ sicliona f,, and hence is analytic thg:te.‘
Mo mﬂdphf “w the ﬂlﬂlvhmt nontrivial mmple.of a jundtion_ ngcm

ﬁ"\&\# sy .

! ann are anbalgebras of C(X) that sxhib i

,ﬁ::'f-*-,‘”«no, My undeswant splsitad development cij:nng Zi:hci : laﬁé%fe:ndw

4 ”: ;‘ a:m laee tume fnlley sn of faver, due partly to the. déﬁeldﬁm St of
81 bty by tha theury of several Caniplex Vﬂﬁ n.bles,

Vooavviy. | 37 M™MZ). Connlde l
. ] - L . thQ B l_ . .
tHéArasta Mg tam 3] Hinplex numbers r = (3311) “:&gﬁlﬁ (Z) of all doubly

oQ
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e i 4 = £4(Z) Is defined by convolution:
Multiplication .y
(ze Pn= Z TrlYn—k1 T,y € A
k==060
ther example of a cormmutative unital' Banach algebra, one that
Thit 121'&3';&81'&51?.&01111 any, of the previoiis exainples. 1t is cilled the Wiener

th
o dfter Norberl: Wiener), and-plays an;important role in:many ques-

::f:gmmng Founer sefies and-harmoni¢ aitelysis. It is discussed in more

detail in-Section 1. 10.

ExAampLE 1:3.8.. L}(R). Consider the Banach space L'(R) of all inte-
grable functions: rom-the: real line, where as nsusal we identify functions that
agree slmost everywhere The multiplicatiot here is defined: by convolution:

Frgy= | [(g(z—-t)dt, [ig€ L'(R),

-0
and -for this example; it is- somewhat more: delicate to: check that all the
axioms for s comimutative Banach algebra are satisfied. For exarnple, by
Fubini's theoretn we have

f ] (f ol o) dt‘) de = ] I&)llglz — )l dzdt = |11 - figl

and from the Iatter, one readily deduces that [[f» g} <[ fI - llg]]-

Notice that this Ba.nach algebra has no. unit. However, it has a nor-
malized approximate unit-in: the sense that there is a sequence of functions
ey € LI(R) satisfying ||e,|| = 1 for all n with the property

Jim Jlen» f~ /Il = lim Nfeen~Ffll=0  feLY(R).

One. obta.ms such a sequence by taking e, to be any nonnegative function
supported in the interval [—1/n, 1/n] thet has integral 1 (see the exercises
at the end 6f the section).

dH_elson 8 book [18] is an excellent reference for harmonic analysis on R
and Z.

EXAMPLE 1.3.8. An extremely nonunital one. Banach algebras may aot
have-even approximate units.in geperal. More gencrally, o Banach nlgebra A
need not be the closed linear span.of the set A% = {zy : z,y € A} of ull of its
praducts. As: an extreme. exag;ple of tbia misbehavior, let A be any Banach

space and make it into o Banach algebra using the triviel multiplication
zy=0,z,y € A.

EXAMPLE. 1.3.1D. Matriz algebras. The algebra M, = My{C) of all

complex n x n matrices is.a unital algebra, and there are maoy norms that
ma,kﬂ it Into a finite-dimensional Banach algebra. For examiple. with respect

to the gorm

(@)l = Z Jag,

l',j: |
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M, beenmes a Banach algebra in which the identity has norm n, QOthe,
Bannch algebra norms on Af, arise as in Exarmnple 1.3.4, F,y -'renli;ing M, o
B{E) where £ is an n-dimensiona} Banach space. For these norins on M,
the iffentity has norm 1.

EXAMPLE 1.3.11. Noncommutative group nlgebrms. Let G be a locally
campnel group. More precisely, G is a group 8s llféﬂ as'a top‘ologica] space,
ondowed with a locally compact Hansdorfl topology that:is compatible with
the jroup operations in that the maps (z, ) € CxGr rye Gandx rs -t
are continuous,

A simple example is the “az+b" group, the group generated by dilations
and transiations of the real line. This group is isomorphic to the'group of all

2 x 2 matrices of the form '(3 .?,,) where ;b € R, a > (, with flie abvious

topology. A related class of examples consista of the groups SL(n,R) of all
invertible n % 1 matrices of real numbers having determinant 1.

In arder to define Lthe group algebra of G we have to say a few words
about Haar measure. Let ‘B .denote the sigma algebra generated by ithe
tapology of G (sets in.B are called Borel sets). A Radon measure is a Borel
measure g ; B ~ {0, 400} having the following two: additional properties:

(1) (Local finiteness) u{K) is finite for every compact set X.
(2) (Regularity) For every E € B, we have

#(E) = sup{u{K)} : K C E, K is compact}.

A discusslon of Radon measures can be found in [3). The fundamental
result of A. Haar asserts essentially the following:

TREOREM 1.3.12. For gny locally compact group G there iz a nonzerv
Rudon mcasure y on G that ia invariant under left translations in the sense
that y(z - E) = p(E) for every Berel sel E and everyz € G. If v is another

such meagure, then there is q posilive constant c sich that v(E) = ¢ - u{ E)
for cvery Borel sei E.

Sce Hewiut and Ross (18] for the compuitati .
examples or wie computation of Haar inensure for.spe-
3?: Fxutipies such as the o2 +b group.and the groups SL(n, R). A praof of
Row [10) e messce can be found in LeOmis [17] or Hewitt snd

We will write d» for dﬂ(.’:) where
\ ‘ T GHVED W # 18 a lelt Haar measure on a lpegll
compact group G. : -1 1885 measure on a loeglly
funciions f - 2‘ — gb;ﬁ”ﬁgrigebra of G is the space L} (G) of all integrable
e jc \£2)|

aud mulliplication is defined by convalytion:

[ aylz) = fc et eydt,  zer,
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. the group algebra L!(G) are similar to the commuta-
Ti.::b;; f;'c(t;)mtb'(kgawz have already encountered:
| (1) For /g€ LY(G), f+9 € L}(C) and we have ||f =gl < [|f1} - l|gli
(2) L'(C) is » Baiiach algebra. - .
(3) L}(G) is commutative 1ﬂ' C is a commutative group.
(4) L}(G) hes a anit iff G is a discrete group.
Many significant properties-of groups are reflected in their group algebra, (3)
and (1) being the simplest examples of this-phenomenon. Group aigebras are
the subject of continuing research today, and are of fundamental importance
in many fields of mathematics.

Exercises.
(1) Let E be a normed linear space. Show that £ is a Banach space

iff for every seqiienice of eleménts z,, € X satisfying }__ ||za| < oo,
there is"an element y € X such that

Um |y —(z1+-- +za)l| = 0.

n—oo

(2) Prove that the convolution algebra L (R) does not have an identity.
(3) For every n = 1,2,... let ¢, be a nonnegative function in L!(R)
such that ¢, vanishes outside the interval {~1/n,1/n] and

| @a(t)dt =1.

Show that ¢y, ¢, ... is an approximate identity for the convolution
algebra L'(R) in the sense that

im |f s ¢y - fl1 =0

n—oc

for every f € L!(R).
(4) Let f € L'(R). The Fourier transform of f is defined as follows:

flo=[ etrwa,  eer
-0
Show that f belongs to the algebra Co(R) of al} continuous func-
tions on R that vanish at co.
(5) Show that the Fourier transforin is a homamorphisin-of the couvo-
lution algehra L!(R) onto a subalgebra A of Co(R) which is closed
under complex conjugation and sepnrates points of R.

1.4. The Regular Representation

Let A be a Banach algebru. Notice first that multiplication is jointly con-
linuous In the sense that for any xp, yo € A,

litm Yy — 2o = 0.
gy 1Y~ ol
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trideed, thia is rather obvious from the estimate

=y - zumll = iz = 20)y + 2oly — vo}l} < llz — =ofilwll + H=ofllly ~ o).

WWe now show how more general structures lead to Banach algebras, afioy
they are renormed with an equivalent norm. Let A be a compiex algebry,
which is also a Banach spnce relative to some given norm, in siich a way
that muitiplication is aeparutely continuous in the sense that for each x5 € A
thiere §s o constant M (deperiding on ) such that for every z € A we have

(1.6) lzzoll < M- flzll and ({jzoz{| < M - [j}].

LEMMA 1.4.1. Under the condilions {1.6), there is a constant ¢ > O such
that

Nrgll < e-fizifilell, =y € A

Piroor. For every = € A define a linear transformation Ly : A — A
by Ls(z) = zz. By the second inequality of {1.6), {{Lz|| must be bounded.
Consider the family of | operators {L; : |[xf] < }}. This is is & set of
bounded operatars on A which, by the first inequality of (1.6), is pointwise
bounded:

sup |[Lz(2)]| < oo, for all z € A.
Rzii<)

The Banach-Steinhaus theorem implies that this family of operators is uni-
fortoly bounded in norm, and the existende of ¢ follows. O

Notice that the firoof uses the completeness of A in an essential way.
We now show that if A also.containg a uhit e, it can bé renormed with.an

equivalent norm o as to make it into a Banach algebra in which the unit
has the “correct” narm |lej| = 1.

THEOREM 1.4.2, Let A e a complex glgelre with unit e that iz algo o
Banach apace with respect to which mulliplicalion is separately continuogua.

Then the mup x € Avy Ly € B{A) defines an isomorphism of the algebraic
structure of A anto a closed subalgebra of B(A) such thal
U) "Le = 1.

(2) Foreveryz € A, we have
el ™ izl < WLl < eflelifi,
ukere ¢ is a posilive conatent.

In particular, ||zlly = |L,}| defines an oqui g
algebra norm for which ﬁ;lh {—- L. " equialent norm on A that  e.Banach

PHOOP. The map z +» L. .y

Wierl] = kel < ¢ | \
wud benex |, < cfe). Witing lellial

ILel 2 WLate/llely)) = %?-}}
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e|l, establishing the inequality of (2).
we seo that £ 2 Iz[/le] Izl = | Lz|| is equivalent to the norm on A

rator nOTm .

Sl::; t;;ei: p;mplete, it follows that {L. : £ € A} is a complete, and
:;:tore closed, subalgebrs of B(A). The remaining assertions follow. O
The mapz € A Lz € B(A) is called the left regular representation, or
simply the regular representation of A. We emphasize that if A is a nonunital
algebra, then the regular representation need not be one-to-one.

Indeed, for the Banach algebras of Example 1.3:9; the regular representation
is the zero map.

Exercises. Let £ and F be normed linear spaces and let B(E, F') denote

the normed vector space of all bounded linear operators from E to F, with
0O
[All = sup{[|Az|| : z € E, |=]] <1}
We write B(E) for the algebra B(E, E) of all bounded 'operators on a normed
linear space E. An operator A € B(E) is called compact if the norm-closure
of {Az : ||z]| < 1}, the image of the unit ball under A, is a compact subset
of £. Since compact subsets of £ must be norm-bounded; it follows that
compact operators are bounded.

(1) Let E and F be normed linear spaces with E # {0}, Show that
B(E, F) is a Banach space iff F' is a Banach space.

(2) The rank of an operator A € B(E) is the dimension of the vector
space AE. Let A € B(E) be an operator with the property that
there is a sequence of finite-rank operstors Aj, Az.... such that
A — As|l = 0 as n > 0o. Show that A is a compact operator.

(3) Let ay,a3,... be a bounded sequence of complex numbers and let
2 beﬂt:xa) corresponding diagonal operator on the Hilbert space

= N :

Af(n) = anf(n), n=12...,.fe &

Show that A is compact iff lim,_,e 8, = 0.

Let & be a continuous complex-valued function defined on the
unit square [0,1] x [0,1]. A simple ergument shows that for every
I € C[0, 1) the function Af defined on [0, 1] by

1
(1.7) Af(z) = / Kz9)/()dy, 0<z<I,
0
is continuous (you may assume this in the following Lwo exercises}.

(4) Show that the aperator A of (1.7} is bounded and its norm satislics
|4l < likllcos || - lloo denoting the sup norm in C([0, 1] x [0, 1}).

(6) Show that for the operator A of (1.7), there is a sequence of finite-
rank operators A, n = 1,2,..., such that [|[A—Ax)l =+ 0usn — 20
and deduce that A Is compact. Hint: Start by looking at the ease
k{x,y) = u{z)u(y) with u, v € C|0, 1].
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1.5. The General Linear:Group of A

Lot A be o Banach-algebra with-unit 1, which; by bhe results of the prevmus
section, we may assume satisfes [[1] = 1 a&m' Tenorming A apprépriately.
An eloment x € A is said to be invertible if there is ari élément ¥ € A such

that zy=yz = 1.

REMARK 1.5.1. If z is an element-of A that is both left and.right in.
vertible in the sense that there are clements y1,1n € A with Zih-= e =1,
then T is invertible. Indéed, that is apparent from the string of ideritities

=t l=nzth =1y =i

We will write A™! (and occasionally GL(A)J for the set of- all:invert-
{ble elemonts of A ‘It is quite obvicus that A~ is & group;ithis g:oup is
sometifoes called the general linear group-of- t;he unital Bahath-algebra A.

TreEOREM 1.5.2. {fT is an element-of A salisfying Izl <1, thenl—z
is invertible, and its inverse is given by the absolutely canvergent Newmann
series (1—z)~! = 14-z+a?+.... Moreover, we have the following estimates:

1
(1.8) 2 ==l < e
{l.g} ~1 ll I
N e
Proor. Since [z} < [lz|{* for every n = 1,2,..., we can define an

clement z € A as the sum of the absulntely convergenj: 5Cries

z-zz

We have

N
1-2)={} - ziz = ) ‘
-y =@ -2)z= Bim (1~ x)gz" = Jim (1M = 1

benee 1 — ¢ iy invertible and its inverse is z. The inequality (1.8) follows

fromw
s et s 3 e
Since =) n=Q 1 - “ "
o
1-2z2= "‘zl‘" = ~x2,
we have

L~ 24 < i - 1z, thos (1 9] follows from (1.8).

ColoLLany 1. A

0
wap of A (g faglf ' an open st n A and 7 vy 2t

68 a continuous
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—1 i h invertible element zp and an
seo that A ! is open, choose an mverl_:_lb ‘ 0
arbitﬂ‘-l'Yt bedemﬁ - V:di,ng theorem Zo + h is invertible. In particular, if ||A] <
ﬂ"’_“l ,r_’,', then this condition is satisfied, proving that zg + h is invertible
b of ’ AR M
b o ) in suFiciently small .
Supposing that h hias been 50 chasen, we can. write

o+ B — 5t =zl 435 W) — gt = [k zg ) - 1] 25

Thus for [|All < lizg'II~! we bave

g y— - z M - 2!
lzo+h)" =25l < M1+ 23Ry =1 - llzg 'l < Izq Al _!'," I
1 —||=g Al

and the lust term obviously tends to zero as ||h|| — 0. D

CoROLLARY 2. A~! is a topological group in-its relative norm topology;
that is,
(1) (z,y) € A~ x A~! = zy € A™! is continuous, and
(2) z€ A1+ z7! € A~! is continuous.

Exercises. Let A be a Banach algebra with unit- 1 satisfying [|1]| = 1,
and let G be the topological group A~!.

(1) Show that for every element z € A satisfying ||z|| < 1, there is a

t(:ontiuuo:m function f : [0,1] — G such that f(0) =1 and f(1) =
1-x)".

(2) Show that for every element x € G there is an € > 0 with the
following property: For every element y € G satisfying ||y — zj| < ¢
there is an arc in G conpecting y to x.

(3) Let Gy be the sct of-all finite products of elements of G of the form
1-zor (1-zx)"}, where r € A satisfies ||z|| < 1. Show that Gy
is the connected component of 1:in G. Hint: An open subgroup of
G must also be closed.

(4) Deduce that Gy is a normal subgroup of G and that the quotient
topology-on G/Gg makes it-into n discrete group.

The group T = G/Gp is sometimes called the abstract index group of
A. It is frequently (but not always) commutative even when G is not, and
it is closely related to. the K -theoretic group Ky(A). In fact, K (A)isin a
certain sense an “abelianized” version of [,

We have not yet discussed the exponentiol wwap £ € A — c™ € A-lofu
Banach algebra A (sec equation (2.2) below), but we should point out bere
that-the connected component of the identity Gy is also characterized as the
sct of ol Anite products of exponentials e*'e*? .- e, x1,22,...,Fn € 4,
n=12,.... When A is o conunutative Banach algabra, this hoplies that
Co = {e* : £ € A} Is the rauge of the exponential map.
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1.8. Spectrum of ‘an Element.of a Banach Algebra

Thyouglon this scion, 4 wil dnote a uaitl Basads slgsbra for whie
i1{f = 1. One ghould keep mmﬁ:d the ;ppéi“t{t?iféhhgq{"e_;iq setting, iy wiildh
A 48 the nigebra B(E) of bounded operators:-on & cortplex Batiach spacs &

Given nn clement 7 € A and a complex mafitber X, it is cviivéiient g
abuse notatlon soméwhat by writing = — A for = — Al.

DermNiToN 1.6.1. For every clement z € A, the'spectrum of z is defined
as the set

e{z)={reC:z-A¢g A7}

We will develop-the basic properties of the spectrum, the first baing that
it Is always compact.

.....

{z€C: e < 2l

PROOF. The complement of the spectrum-is given-by
C\olz)={reC:z-re A}

Since A~? is open and the map' A € C =3 z —~ A € A is continuous, the
complement of ¢{z} must be open.

To prove the secord assertion, we will.show that no complex tumber A
with jA| > ||z|} can belong to o(z). Indeed, for such a A the formiiila

x— A= {-A)1- bt x),

logether with 4he fact that [[A~'z|| < 1, implies that z — ) is invertible. O

We now prove a fundamental result of Gelfand.

THEOREM 1.6.3. G(IB) # ﬁ-:for every T € A.

PROOF. The ides is to-show that if a(x) = @, the A-valued function
JA) = {z— A7) ' '

| . i?‘f% -lzonnded':en;ire function that tendsto zerc as A —~ oo;
::nea:}pf:lm;mhmm 5 theorem yields the desired conclusion. The details
B8R ws,

For every Xy ¢ o(z), (z-a)

hecause o{x) is i8 defined for all A sufficiently close to Ag

closed, and we elaim that
1, ; 1l _
O S TRIE N - -0 = a - )

in the norm topology of A, Indeed
(e =27 = (z - 2g)

» We can write
=& =AM - 30) ~ (= - A)j(z ~ 2g)"!

= (X~ Xz — M)~ e — 3 1~1
Diﬁd.zby}..hl M)(z 4\) (z Au] .

und Lthe -
o abaiy {1,10). use the fact that (z - A)-1 (T —20)" us X = Ay
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§.6.

assume that o(z) is empty, and choose an arbitrary
onal p-on A. The scalar-valued function

f(A) = pllz = N7

here in C, and it is clear from (1.10} that / has a complex

is defined Where satisfying f'(X) = pl{z — A)~?). Thus f is an entire

derivative everyw
function. . . N A}
Notice that f is bounded. To sec this we need to estimate |[(z — A)™}||
for large A. Indeed, if |A] > [|z{], then
1
a1 = — i1 = AL R
Iz = 27 = gl = A7)~
The estimates of Theorem 1.5.2 therefore imply that
1 1
z—A)"} < = '
Iz =27 S W= T=in = D= =

and the right side clearly tends to zero as |A] — oco. Thus the function
A= [l(x — A)~!| vanishes at infinity. It-follows that f is a bounded’entire
function, which, by Liouville's theorem, must be constant. The constant
value is 0, because f vanishes at infinity.

We conglide that p((z — A)~!) = 0 for every A € C and every bounded
lincar functional p. The Hahn-Banach theorem-implies that (z ~ A 1=0
for every A € C. But this is absurd because (x — \)~! is invertible (and
1#0in A). o

The following application illustrates the power of this result.

DEFINITION 1.6.4. A division algebra (over C) is a complex associative
algebra A with unit 1 such that every nonzero element in A is invertible.

. DerinimiON 1.6.5. An isomorphism of Banach algebras A and B is an
‘somorphiam § : A — B of the underlying algebraic structures that is also a
topological isomorphism; thus there are positive constants a, b such that

a||z|| < ||8(z)|l < bilz||
for every element z € A.

COROLLARY 1. Any Banach division algebra is isowmorphic to the one-
dimensional algebra C.

ProoF. Define 8 : C —+ A by 8(A) = Al. @ is clearly an isomorphisin of
C onto the Banach subalgebra C1 of A consisting of all scalur multiples of
the identity, and it suffices to show that & Is onto A. But for any element
z € A Gelfand's theorem imnplies that there is a complex number A € a(x).
Thus z — A is not invertible. Since A is a division algebra, .z — A must be 0,
hence = = #(\), us asserted. @]
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There are many division algebras in mathematics, especially commy.
1ative ones. For cxample, there is the algebra of all: rational 'funcfiéns
r(z) = p(2)/q{z) of ono complex variable, -where_ P gnd' g Qg‘ff’.'.‘?“]ﬁ’ﬁffﬁinls
with g # 0, or the algebra df-a_.ll'formal Laurant series a{ .!’;hg form 3.2 a,2",
where (8,) is n doubly Infinite sequence of complex ‘fnumbers with a,; =< 0
for sulficiently large negative n. It is significant that examples such es these
cannot be endowed with & norm’ that makes them into a Banach algebra.

Exerclsaos.

(1) ‘Give an example of a ong-dimensiona! Banach algebra that is not
isomorphic to the algebra of coifiplex numbers.

{2) Let X be a compact Hausdorfl space and let A = C(X) be the
Banach-algehra of all complex-valied -continuous functions‘on X.
Show that far every f €. G(X), o(f) = J(X).

(3) Liet T be the operatar defined on Lo, 1) by Tf(z) ==zf{z). z €
{0, 1). What is the spectrum of 77 Does T have point spectrium?

For the remalning exercises, let (eq : » = 1,2,...) be a bounded
sequence of complex numbers and let & be a complex Hilbert space
baving an orthonormasl basis €y, e, .. ..

(4) Show that there'ls a (necessarily unique) bounded operatgr:A4.€
B(H) satisfying Aen = aneqqy for every n =1,2,.... Suchaniop-
cra!ior A is called n unilaleral weighied shift (with weight sequence
(an)).

A unitary operator-on a Hilbert space H is an invertible isometry
U € B(H).

(5) Let A ¢ B(H)bea weighted -ghift as above. Show that for every
complex number A with |[A| = 1 there is a unitary operator U =
Us € B(H) such that 7 AV~ = A\A,
{6) Deduce that the spectrum of o weighted shift must be the union of
- tﬁ?&f:gencmﬁe] con¢entric circles about 2 = 0.
- pe'the weighted shift associated with £,
(a) Calculate A} in terms of (d). o sequenes [on) € €7
(b) Assuming that 2, ~ 0 28 n — o0, show- that

lim At =g

1.7. Spectral Radius

Throughout, 1hj ; .
We ?:;gzmi:ﬁew;ﬂfx&mts muﬁdlim Bapach algebra with [1]] = 1.
fortauls due 1o Gelfuad, Masur, aid Bourlng, | |- © ) Y ROtic

Der '
VEFINITION 1.7.1. For every z € 4 the apectsal radius of  js defined

rig) = sup{lAl: A e o(x)}.
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, i ined: | disk

_ Since the apectrim of z is Fontamed in the centra

ml l':?olliws that r(z) < ||z||. Notice too that for every A € C
“‘ ) = A Z).

we bove r(Az) thIe .l‘zi(lal:ing rudimentary form of the spectral mapping the-

m,;,v guriq:ir:n eleiient of A and f is 8 polynomial, then
1) f(a(z)) € o/ (z)).

this is 80, fix A € ofz)). Since z —+ J(z) — J(}) is a polynomial
— ), there a polynomial g such that

J(2) = F(A) = (z — A)g(2).

To see why tl
h;yingazetd'at'z

[(z) = F(A)1 = (z — A)g(z) = g(z)(x — A)
cannot be invertible: -A right {respectively left) inverse of f(z) — f(A)I gives
rise to & right (respectively left): inverse of z — A. Hence f(A) € o(f(z)).
As a final observation, we note that for every z € A one has

| - n{l/n
112) r(z) < ik 2"

Indeed, for every A € o(z) (1.11) implies that A" € o(z"); hence
(A = |A% < r(z") < [I=7],
and (1.12) follows after one takes nth roots.

The following formule is normally attributed to-Gelfand and. Mazur,
although special cases were discovered'independently by Beurling.

THEOREM 1.7.3. For every x € A we have

: ni/n _ ¢
Tim [}2"]"/* = #(z).

ge assertion here is that the limit exists in general, and has r(z) as its
ue.

PROOF. From (1.12) we have r(z) < liminf, [|z"[}/", so it suffices to
prove that
(1.13) limsup [z"[['/" < r(z).

We need only consider the case z # 0, To prove (1.13) choose A € C
satislying |A| < 1/r(z) (when r(z) = 0, A may be chosen arbitrarily). We
claim that the sequence ({Az)" :n=1,2,...} is bounded.

Indeed, by the Banach-Steinbays theorem it suffices to show that for
every bounded ' linear functionul p on A we have

[A(Z™)A"| = lp({Az)"} < M, < oo, n=1,2...,

where M, perhaps.depends.on p. To, that. end, consider the complex-valued
function f-defined on the {perhaps infinite) disk {z € C: |3] < 1/r(z)} by

J(z) =p((1 - :2)7%).
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Note it that £ is analytic. Indeed, for lzln%’. /)=l we may expand (1
2x)~) Into & convergent enries 1+ 2z +(2%)" + -+ to obtain a power serje

representation for f:
(1.14) Jz) =3 a(z")=".
n=0

On the other hand, in the targer region R = {2 : 0 < |z| < 1/r{z)} we can
write

It = Zp("1—2)Y),

and from formula (1.10) it is clear that f is analytic on A, Thaken with
{1.14), thiis implies that J is analytic on thedisk {z: z) < 1/r(x}}.

On the smaller disk {z : |z] < 1/||z{l}, (1.14) glves a power series repre-
sentation for f; but since [ is analyticon the larger disk {2 : |2| < 1/r(z)}, it
follows thal the aame series {1.14) must converge to f(z) for all 2| < 1/r(z).
Thus we are free to'take z = A in {1.14), and the resulting series converges.
It follows that p(z")A" is a ‘bouniled sequence, proving the claim.

Now choose any complex dtimber A satiafying 0 < |A| < 1/r(z). By the
claim, there is a constant M = M, such that [A|"}z{" = |jAz||® < M for
every n=1,2,.... after taking nth foots, we find that

M 1
lim nil/n & Kmsup = —.
maup "Il < bmsup o =

By allowing |\ to increase Lo 1/r(x} we obtain (1.13). O

DerNiTION 1.74. An élement > of a Banach sigebra A (with or without
unit} is called quasinilpotent if
lim J<™/" =0.
=

, Significautly, quasindlpotence is characterized quite slmply in spectral
erms,

CoroLLany 1. An element £ of & unital Banach b 1
tend iff o) = {0}. | mischrm A1s quasiale-

PROOF. z is quasinilpotent <« r(z) =0 <= o(z) = {0}. 0
Exercises,

(1) Let a, Uz,... be a sequence of complex
(U2, ‘ence ol complex numbers such that a,, — 0
UK 1 = 0o, Show tbat Lhe assaciate welghted ahl&c:{"mﬁw?on' e
(see t.hu Excrcines of Section:1.6) hiag spectrum {0}. |
{2) Consider the simplex A, [0,1]" defined by

Bn = {(z5,....20) €[0,1)" : 2, < T3 £ -+ € 24}
Show vhat the valume of A, j ot
aly Bq 18 1/l Give a.decent proof hera: Fo
“xumple, you might consider the natura)action of mef;;m.;ma;
§50Up S, on the cube [0, 1" and think abiout how bt e oK

on Q,’_ how permutations act
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be a Volterra kernel as in Example 1.1.4, and let K be it.s
(3) Let k(z, g‘):uns integral aperator on the Banach space C0, 1]. Esti-

mate ll::e porms || K"}l by ghowing that there is a positive constant

M such that for every f€Cf0,1] and everyn=1,2,...,

M
KA < I

(4) Let K be a Volterra operator as in the preceding exercise. Show
that for every complex number A # 0 and every g € C[0,1], the
Volterra equation of the second kind Kf — Af = g has a unique

solution J € C[0,1].

1.8. Ideals and Quotients

The purpose-of this section is to collect some basic information about ideals
in Banach nlgebras and their quotient algebras. We begin with a complex
algebra A.

DEFINTTION 1.8.1. An idealin A is linear subspace / C A that is invari-
ant under both left and right multiplication, AT + IA C [.

There are two trivial ideals, namely / = {0} and / = A, and A is called
simple if these are the only ideals. An ideal is proper if it is not all of A.

Suppose now that / is.a proper ideal of A. Forming the quotient vector
space A/J, we have a natural linear map r € A= & =z + 1 € A/I of
A onto A/I. Since I is a two-sided ideal, one can unambiguously define a
multiplication in A/F by

(z+1)-y+1)=zy+1, =zy€A

This multiplication makes A/7 into a complex algebra, and the natural map
Z — % becomes a surjective homomorphism of complex algebras having the
given ideal / as its kernel.

This information is conveniently summarized in the short exact sequence
of complex algebras

(1.15) 0— 1 — A— A/l —0,

the map-of 7 to A being the inclusion map, and the map of A anto A4/ be-
ing r =~ %. A basic philosophical principle of matbematics is to determine
what information about A can be extracted: fram corresponding infortmation
about both the ideal  and its quotient A/f. For example, suppose that .}
8 finite-dimensionnl as a vector space over C. Then both / and A/J are
fnite-dimensional vector spaces, and from the observation that (1.15) is an
exact sequence of vector spaces and linear naps one finds that the dimen-
sion of A is determined by the dimensions of the ideal and its gquotient by
way of dun A = dim 7 + dim A/[ (see Exercise (1) below). The methods of
homological algebra provide refinements of this observation that allow the
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eomputation of more subtle invnriants of algebras {such as K-theorotic "
varianta), which hnve appropriate generalizations to the category of By ach
nlgehras,

ProrosiTioN 1.8.2. Let A be o Banach algebra with normalized unijs ¢
and et T be a proper ideal in A. Then Jor every 2z € 1 we have L+ =) 21,
in particular, the closure of o proper ideal is a proper ideal.

Proor. If there is an element z € F with ||1 4+ 2}] < 1, then by Theorem
(.5.2 : ymust. he invertible in A; bence 1 = 27z € 7, which implies that 7
cunnol. be n proper ideal. The second assertion follows from the continyjty
of the norm; i |2 + 2] 2 1 for all z € 1, then |1 4+ 2| > 1 persists lor all ;
it the closure of 1. 0

Remank 1.8.3. If I is n proper closed ideal in a Banach algebra A with
normalized unit 1, then the unit of A/f satisfies

0 = inf 1 + 24 = 1

hence the unit of A/7 is also normalized, More significantly, it follows that
a unital Banach algebra A with normalized unit is simple Iff it is topolog-
tetbly aimple {i.e., A has no nontrivial closed ideals; sce the coroflary of
Theorem 1.8.5 below). That assertion is [alse for nonunital Bahach alge-
brag. For exmnple, in the Banach algebrs K of all caﬁnpgct operators on
the Hilbert space £, the sct ‘of finite-rank operators is a proper ideal that is
dense in K. Indecd, K contalns many proper ideals, such as the ideal £2 of
Hitbert-Sclunidt operators that we will encounter later on. Nevertheless, X
is topolugieally simple (for exatple, see (2], Carellary 1 of Thegrem, 1.4.2).
More generally, let 7 be a closéd ideal in an arbitrary Banach algebra A
(with or withont unit). Then A/l ia a Banach épace; it ig also a'épq;pléx

wigebra felutive to the multiplication defined above, and:in fact it is.a Banach
wigebmn since for any z,y € A,

b0l = inllfay + 2l < _inl Now +22 4 20y + 2122 )

—-
= ol l(r+ 210z + 2)] < 2| ig).

Notiee, tuo, that (1.15) becamnes : .
cuminuuus homoisorphi 1 exact sequence of Banach algebrns and

howorworphism. the sms. f w2 A~ A/J denotes the patural surjective

we obvigusl aral, anc =1
when A s uuital with norey m::ve iwll <1 in general, and |Jxfj = 1

The sequence (1.15) giv : izati
DS 2 Tollony, Lo )As'i ;bﬁ;: a natural {actorization of homomor-

‘ ach nlgabras ang let w: :

‘r:lu'l;:ut;hla‘tjn of Dunach algebras {a bounded houinmat;msi-;; g:ﬁ:
8 e sructures). Then korw is u closcd-ideal tn A, wrd thaey
bave u(i?L=‘:??1w:uil:? I".I“:Jl A kﬁr“f —~ 8 ““A"'l‘. that. for nllt:z: € A we
sunAriZIN e followa. - he properties of this promotion of w. Lo w are
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N 1.8.4. Every hounded homomorphism of Banach algebras

PﬂoPO;”;::’ s unique [actoﬁ'mﬁaﬂ W = woT, where w iv an injec-
R fo‘:mol‘ﬂm’m of Alkerw to B and 7w : A — A/ kerw is the natural
. m g
ojection. One has |l = lwl

¢. The assertions in the first sentence are straightforward, and we
| = llw||. From the factorization w = worr and the fact that ||| <1
+ have [jw]| < [lwll; the opposite inequality follows from

(@i = @)l = llwlz + 2 < llwlliiz+2ll, 2 € kerw,

nftertheinﬁmumistakenoverallekerw.

Before introducing maximal ideals, we review some basic principles of
set theory. A partially ordered set is a pair (S, <) consisting of a set § and a
bivary relation < that is transitive (z <y, y <z = z < z) and satisfies
r<y<z => z=1y. Anelement z € § is said to be mazimal if there
is no element y € § satisfying z < y and y # z. A linearly ordered subset
of S is a subset L C S for which any two elements z,y € L are related by
either z < y or y € z. The set £ of all linearly ordered subsets of S is itself
partially ordered by set inclusion.

The Hausdorff mazimality principle makes the assertion that every par-
tially ordered set has a maximal linearly ordered subset; that is, the partially
ordered set £ has 8 maximal element. Zorn's lemma makes the assertion
that every partially ordered set S that is inductive, in the sense that every
linearly ordered:subset of S has an upper bound in S, must contain a maxi-
mal element. While the maximality principle appears to be rather different
from Zorn's lemma, they are actually equivalent in any model of set theory
that is appropriate [or functional analysis. Indeed, both: Zorn's lemma and
the maximality principle are equivalent to the axiom of choice. Our experi-
ence has been that most proofs in functional analysis that require the axiom
of choice, or some reformulation of it in terms.of transfinite induction, usu-
ally run more smoothly (and are simpler) when they are formulated so as
to.make use of Zorn's lemma. That will be the way such things are handled
throughout this book.
~ An ideal M in o complex algebra A is said to be a mazimal ideal if it
5 a maximal element In the partially ordered set ol all proper ideals of .
Thus a maximal ideal is a proper ideal A7 C A with the property that for

any ideal N C A,

O

MCN = N=M o N=A

Maximapl ideals are particularly useful objects when one is working with
nnital Banach algebras.

THEOREM 1.8.5. Let A be a unital Banach algebra. Then every mianimal
ideal of A is clpsed, and every proper ideal of A is contained in some manmul
ideal,
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ProoF. For the first assertion, let M be a maxima! ideal of 4. ark
1.8.3 implies that the.unit 1 cannat belong to the clasure AF of pf + henes
A 1s a proper idedl of A. Since M C M, maximality of M impliea that
M= HJS C]tﬂﬂj.

Suppose now that [ .is some proper ideal of A, and consider the set P

Lo ~

of all'proper ideals 6f A that contain .. The family of sets 7'ig Partially

e
-

ordered in the natwural - way by set in';_:'li’isiér_i_,. and we claim. that it i indisctive
in tho sense that every linearly ordered sithset £ = {J, :'a € .5*} of P-hag
an upper bound.in P. Indeed, the uuion Uy J, is an ideal in A because it is
the union of a linearly ordered family of ideals. It cannot contain, the ynit
1 of A because 1. ¢ J, for every a € §. Hénce U, J, is an elemient of P g
well us an upper bound for L.

Zorn's lemma implies that P has s maximal element M, and A is a
proper ideal that contains J. It is a maximal ideal becaime if IV is any ideal
containing Af, then N must contain -/ and hence N € P. Since M is a
maximal element of P, we conclude that M = N, 0

CoROLLARY 1. A unital Banach algebra is simple iff it is topologically
simple.

Exercises.

(1) Review of linear algebra. Let V and W be finite-dimensional vector
spaces over C and let T : V — W be a linear map satisfying
TV = W, and having keroel K = {z € V : Tz = 0}. Then we have
a short exact sequence of vector spaces

0— K-V —W-—o.

Show that dimV = dim K + dimW. Your, proof should proceed
from the definition of the dimension of a Rnite:dimensional vector
Space as the eardinality of any ‘basis for it.

(2) More lineur algebro, Forn =1,2,..., let Vi, Va,...,V, be fnite-
difnensional vector spaces and set Vj = Vitt = 0 {the trivial vector
space). Suppose that for each k =0,1,...,n we have a linear thap
of V& 10 V441 such that the sssociated sequence of vector apaces

0——§V1 —~V—... 5 Ve — 0
_ls exat, Show that 2=y (=) digs ¥, = 0.

(3) Show that every normed linear space £ has a busis 5 C E consisting
of unit vectors, and deduce that every infivite-dimensianal normed
linear npuce has a discontinuous lnear functional f : £ — C. Re-
call thel u bagis for 8 vegtor Bpuce V is o set of vectors 8 with

the [uélﬁrring L:'O Propertics: every finite subset of 8 1s linearly lu-

| dcpcglumwit;[? svery veclor in V is a finite linear combination of

{4) tﬁt‘Aj’t?.e h.coumplux algetrn and et J be » proper ideal of A, Show
718 o maximonl idead iff the quolicat nlgelsrn A/I is stinple
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:+al Banach algebra, let n be a positive integer, and

(5) Let A Tj u;;:,nll:e n homamogrphism-ol' complex algebras such that
" :; — M,, M, denoting the algebra of all n x . matrices over C.
;Jl{ww that w is continuous (where M,, is topolagized in the natural
way by C*'). Deduce that every linear functional [ : A — C

satistying J(zy) = J(z}/ (v}, z,y € A, is continuous.
1.9. Commutative Banach Algebras

e now work out Gelfand’s generalization of the Fourier transform. Let
A be » commntative Banach algebra with unit-1 satisfying 1| = 1. We
consider the set hom(A, C) of all homomorphisms w : A = C. An element
w € hom(A,C) is a complex linear functional satisfying w(zry) = w(z)w(y)
for all z,y € A; notice that we do not assume that w is continuous, but as
e will sce momentarily, that will be the case. The Gelfand spectrum of A

is defined as the set
sp(A) = {w € hom(A,C) : w # 0}

of all nontrivial complex homomorphisms of A. It is also called the mazrimal
ideal space of A, since there is a natural bijection of sp(A) onto the set of

all maximal ideals of A (sce Exercise (2) below).

REMARK 1.9.1. Every elecment w € sp{A) satisfies w(1) = 1. Indeed,
for fixed w the complex number A = w(1) satisfies Aw(z) = w(l - x) = w(z)
lor every £ € A. Since the set of complex numbers w{/l) must cootain
something other than 0, it follows that A = 1.

REMARK 1.9.2. Every clement w € sp(A) is continuous. This is an
immediate consequence of the case n = I of Exercise (5) of the preceding
section, but perhaps it is better to supply. more detail. Indeed. we claim
that [lwl = 1. For the proof, noto that kerw is an ideal in A with the
Property that the quotient algebro s/ kerw is isomorphic to the field of
complex pumbers. Hence kerw is a maximal ideal in A. By Theorem 1.8.5,
it is closed. Because of the decomposition w = & o 7 where = is the natural
hOWPhism of A onto A/ kerw and w is the linear map between the two
one-dimensional Banach spaces A/ kerw and € given by w(A1) = Aw(1) = A,
we have [jwlf = 1. Hence |jw]| < |lw]lliz)] € 1. The oppasite inequality is
clear from ||w]| 2 [w(1)| = 1.

With theso observations in hand, one can introduce a topology on sp(-)
as follows. We have seen that sp{A) is o subsct of the unit ball of the dual A
of A, and by Alaoglu's theorem the lutter is o compact Hausdorff space lu its
relutive weak"-topology. Thus sp(A) inberits n natural Hausdor(F topology
as a subspace of a compact Hausdorif space.

PRrROPOSITION 1.0.3. In its relnlive weak” -topology, sp(A} s a compact
Hausdorff space.
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Proof. It suffices to show that sp(A) is a WEﬂk'—t:lq;ed: subset of ¢,
unit ball of the duat of A. Natice that 4 linear functional J:4 - C'béiﬁhgs
to sp{A) {1 < 1, (1) = 1, and F(yz) = f(p)S(2) for:dll g,z € A. Thpm,
conditions obviously define a weak®-closed subset of thie unit ball ¢f 4%, [

REMARK 1.9.4. The Gelfand map. Every clenient x € 4 gives rige to n
function & : sp(A) — C by way of #{(w) = w(x}, w € sp(A); £ Is called the
Gelfand transform of z, and r — & is called '-f;he-G:ifand,_mnp. Thefunctiong
i are continuous by definition of the weak®-topelogy on sp(A). For z,y € 4
we have

FHw)ilw) = wz)(y) = wlzy) = TH{w).
Moreover, since every element wof sp(.A) satisfies w(1) = 1, it-follows that
1 is the copstant function 1 in-C(sp(A)). 1t follows that the Celfand map is
¢ hemomarphism of A .onle v unilal subdlyebra of C(Sp(A)) that separates
points of sp{A). The previous remarks also imply that ||£] < 2], 2 € A.

Most significantly, the Gelfand map exhibits spectral information about
¢lements of A in an explicit way.

THEOREM 1.9.5. Let A be a comwutative Banach algebra with unit, For
every element z € A, we have

o(z) = {@(p) : p € sp(A4)}.

PROOF. Since forasy z € Aand A€ C, 2~ A =& ~ A andig(z —A) =
g{z) — A, it suffices to establish the following assertion: An element z € A
i invertible if £ never vanishes,

Indeed, if » is invertible, then there is 2 € A such that zy = 1; hence
E(w)iw) = Tj{w) = 1, w € sp(A), 66 that = has ng zeros.

Conversely, suppose that z is a nopinvertible elenient of A. We must
show that there is an clement w € sp{A) such that w(z) = 0. PFor thst,
mns:r!etuthe 5et 3A = {zu: g € A} C A This set is an .igcal-thah-dw not
contain 1, By Theorem 1.8.5, xA ia contained in some maximialideal M C A,
lﬁcmsarﬂy closed. ‘We will ghow that.there is an ¢jeinent w € ﬂﬁ(A}‘ancb‘ that
M = kerw. Indeed, A/M is a simple Banach algebra with ainit; therefore
i 1A s e e e e

E 8 {lor an “erg . “AM i
wonaezo Meal, mhicy ey Lﬁﬂ refmi gwo elemoent ¢ € A/M, (- AfM iz a
1 of Thearem 1.6.3, A/M 1s iso;
«: AfM ~5 €, we obtain a complex homemorphism.w : A — C by wqy of

WiT) = ilz + M). It is clear that kg S s A
becauae:rezAéﬂ;f-mdwmukmw=M’Mdﬁmuywvunishmatg

identifics the Clolfong oo “CMauLative Banuch olgobrn 4. One first

i coucrele terms a8 o Lopological
these caleulatipns
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the spectrum of an element z € A is exhibited as

out
have becd carried o, following scction we discuss two important

of values of £. In the
;";;:S shat illustrate the
Exercises. (n the first foiir exercises, A denotes a commmtative Banach

nlgebﬂ th lmit. )
(1) Show that if A is nontrivia! in the sense that A # {0} (equivalently,

1 # 0), onie has sp(A4) # 0. : .

(2) Show that the mapping w € sp(A) — kerw is a bijection of the
Gelfand spectrum onto the set of all maximal ideals'in A. For this
reason, sp(A) Is often called the mazimel ideal space of A.

(3) Shiow that the Gelfand map is an isometry iff (|z%|f = |]|? for every
z€ A

(4) The rudical of A is defined as the set rad(A) of all quasinilpotent

elements of A,
rad(A) = {:: €A: lim [l =0}

Show that rad(A) is a closed ideal in A with the property that
A/rad{ A) has no nonzero quasinilpotents (such a commutative Ba-
nach algebra is called semisimple).

(5) Let A and B be commutative unital Banach algebras and let § :
A =+ B be a8 homomorphism of the complex algebra structures such
that 8(1,4) = 15. Do not assume that 8 is continuous.

(a) Show that @ induces a continuous map 9 : sp(B) — sp(A) by
way of (w) = wo d.

(b) Assuming that B is semisimple, show that # is necessarily
bounded. Hint: Use the closed graph theorem.

(c) Deduce that every automorphism of a commutative unital
scmisimple Banach algebra is a topological automorphism.

1.10. Examples: C(X) and the Wiener Algebra

We now look more closely at two important examples of commutative Ba-
nach algebrns. Following the program described above, we calculate their
maximal ideal spaces, their Gefand maps, and describe an application of
the method to prove a classical theorem of Wiener on absolutely convergent
Fourier series.

ExAMPLE 1.10.1. C(X). The Gelfand spectrum of the Banach algebra
A = C(X) of all continuous functions on a cowpact Hausdorff space X can
bo identified with X in the following way. Every point p € X determines o
complex homomorphism wp € s8p{C'(.X')) by evaluution:

w(J)=fp), [ €CIX)

The mup p — w, 18 obviously onc-lo-ang, and it is continuous by delinition
of the wenk*-topology on the duni space of C(X). The work amounts to
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showing that cvery w € sp{C(X)) arises in this way @gm S0me pojy, o
X. The moithod we use is based on a characternza_ion.'Qf‘rp'oa‘itiwe‘"uh@-,;
functionals on C(X) in terms of an extremal property of !‘.h‘eir,-:-;'afm-(hmmn
1:10.3). This is a usefu! technique for other purposes, and we will see it ggpj,
in Chapter 4.

REMARK 1.10.2. Every compact convex set X' € Cis the inters
ull closed hall-spaces that contain‘it. It is alsa trtie.that K is the interseition
of all closod disks that.coutain it. Equivalently, if zp € C is any poiat ot
in the closed convex hull.of K, then there is a disk D = {B‘,m ={zeC.
[2 ~ a] € R} such that K C Dand 2 # D. The reader is encotiraged {o
draw a picture illustrating this gegsietric fact.

ection-qf

Lemma 1.10.3. Let p be a lirear furictional on C{X) satisfying ipf) =
(1) = L. Then, for every f € C{X),

p{Sf) € Tomv [ (X),

conv{{X) denoling the closed convex hull ‘of ‘!.hf:'.mngg of f.
In particular, if f* deénotes the complex confugate of F € C(X), then we
have p(f*} = p(f).

Proor. Fix f € C{X). In view .of Remnrk 1.10:2, to prove the first
asseriion it suffices t0.show that every disk ) = {2 € C: |z — a| < R} that
contains J{ X} wust also contain p(f); equivalently,

P} ~e|<R, VYpeX == Jp(f}—a] < R.

But il /(p)—a| < R for evary p, then ||f —a-1) < A. Since g}l = s(1) =1,
this implies |o(f) ~ o} = |o(f — ¢ - 1)] < R, a5 required.

Far vhe second aseertion, let f = g+ih-€ Q(X) with g and A real-valued

continuous functions. By the preceding paragraph, slg) and p(h} are real
numbers; hence p(1*) = plg — ih) = plg) ~ ip(h) is the complex cobjugnte
of a(f) = plg) + ip{h).

)

THEOREM 1.104. The mapp € X 1y wp € 8p(C(X)) iz a homeomor-

phism of X onto the Gelfand apectrurm of C (X). This-map identifies X with

5(CAX)) in such a way thet the Gelfand 'map becomes the identity map.of
C(X) to.0(X).

In pyrlicular, the spectrumn of [ € C(X) is JF(X).
PROOF. In view of the preliminary remarks above the.proof reduces to
dhiowing that every comry imitary req oove, the.proof

y.€ Aomomarphism w is assaciated with some point
PeEXiw=u, F hang w, we have Lo show that

N wex:sip)=wiy 20

1eCiX)

of X; so il #t 8 empty,
finlte sei of funictions
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IhE G(x) such: that

h )
M{re X : fulp) =w(f)} = 0.
k=1

pefine g € C(X) by
olp) = Y Ihlp) - wlie)?.  peX.
k=1

Then g is obvipusly nonnegative, and:by. the:choice of fi, it has no zeroson
X. Hence there is an e > 0 auc.h tha.tg(p) >¢ peE X.
Since jlw] = w{1) = 1 and g'— €l 2 0, Lemma:1.10.3 also implies that
wig — €1) > 0;bence
wig). 2 e-wfl) =€ > 0.

On the other hand, Lemma 1.10.3 also implies that for each £,
wllfic ~ wlfel1P) =wltfi ~ 0l 1) U ~w(i)1))
=lw(fe — w(fi)1)]* = Jo)* =1,

and after summing-on k we obtain w(g) = 0, contradicting the preceding
inequality. O

EXAMPLE 1.10.5.: The Wiener algebra. Counsider the space WV of all con-
tinuous funetions on the uiiit ‘circle whose Fourier seriesconverges absolutely,
that is, all'firrictions f : T — € whose Fourier series have the form

(= ]
(1.16) f(e€) ~ Z ane™,
n=—og

whete 3 {ﬂ-n] < oa. One.may verify directly. that W is-« subalgebra:of C(T)
(because £4Z) is nl.mear spacé closed under convolution), which-cbviously
containg the constant functions. The algebra &f fimetions W is called: the
Wiener algebira,

1a connection with his study of Tauberinn theorems in the 1930s, Norbert
Wiener cariied-out a deep analysis of the translation-invariagt subspaces
of the Bandch spaces £/(Z) and L'(R); notice that since both Z and R
are additive groups, they act naburally as groups of isometric translation
operntors. on- their respective ' spaces. For exampie, the kth translate
of a sequence (Gn)nez in€4{Z) is tho sequence (en—x)nez. Among other
things, Wiener pioved.thut:the translutes of o soquence (an) € £'(Z) have
all of #2(Z) as thielr closed’ linear span iff-the fusction f defined in (1.16)
never vanishes, He did-this by cstoblishing the following key property of the
algebra W.

THEOREM 1.10.6. ' If f € W and: [ has no zervs on T, theqn the recipiueal
1/ S belongs to W.
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Wiener's original proof of Theorem 1.10.8 was g remarkable oy
hard classical analysis. Subsequently, Gelfand gave an elegant Crelso iy
proof using the elementary theory of Banach-algebras, basitig the ori
step an Theorem 1.9.5. We now describe Gelfand’s proof. Heal

Consider the Banach algebra 4 = £1{Z), with multiplication defined
convolution ». The unit of A is the sequence 2 = (en), whitc ¢g = \ mﬁ
eq = 0 for n # 0. We show first that sp(A) can be identified with the unit
circle T.

Indeed, for every A € T we can define a bounded linear functiong Wy on

A by

oo

wale) = Y and®,  a=(a,) € (Z).
n=-—0o

Obwiously, wy(1) = 1, and one verifies directly that wy(a + b) = wy{a)us(d).

Hence w), € sp(A4). .
We claim that every w € sp{A}.has the form w) for a unique point A € T.
To see that, fix w € sp(A) and define a complex number A by A = w((),
where { = ((;,) is the sequence G, =1 ifn=1,and (, = O-EOEW. 'I.?yen
¢ has unit norm in A, and hence {A} = [w({)] < fiK) = 1. .A_‘not:her du'ect
computation shows that ¢ is invertible in A, .am__i‘—_-j,ts inverse is tﬁﬁ sequence
¢ = (Gn), where {, =1 Tor n = —1, and {; = 0 otherwise. Since (i¢[j = 1
and [1/] = |1/w(Q) = (&)} < §]| = 1, we find that |A] = 1. Notice that
w = wy. Indeed, we must have w((") = A" = wy(¢") for every n €Z, ¢
being the unit sequence with a single:nonzero component i thenthpﬂ?ﬁﬂn
Since the set {C™ < n € Z) obviously hias £'(Z) as its closed: linear span, it
follows that w = w,. Then X = w(() is obviously uniquely detm‘m;gﬂ,d“_b_)( w.
These vemarks shaw that the map A ~+ w,, is & bijection of T on SP[A)
The inverse of whis map (given by w € sp(A). =+ w(() € T) in ohviously
continuous, 8o by.compactness of sp(A) it must be a homeo norphism, 1hus
we have identified gp(A) with the unit circle T and the Gelfand map, with

tbe Fourier transform, which carries a sequence a € £4{Z) to the function
@ € C(T) given by

o
&(eﬂ?)= Z a“emod

n=—po
Having computed sp(4) and the Gelfund map. in concrete terms, we
observe that the

range of the Gelfand map {& : o € A} is exactly the Wiener
ulgebrs W. The proof of Theorem 1.10.0. «

8. can mow:proceed as follows. T.et
J be a functiop iIn W hayving 1o zeros on T and let a be the element of
A = £Z) having Gelfand Lransform f. By Theorem 1.9.5, there j8 ap
elewont b € A such that ¢ e b = 1: henee a(A)b(A) = 1, A € T. It follows
that 1/f = b e W, us asserted.

Exercises. Lei B be the space of oli conti f ' .
thl} clw‘_,(l UIL}‘I diﬂk A P : nuiguousy ‘Llnl:tionﬁ j ‘&ﬁw on.

= {z € C |z| £ 1}, which ean be represcated there
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by a convergent power series of the form

f(z) = }:anz". z €4,
n=0

for some scquence ag, 81,42, ... in C s_atisfying En ta.,,[ < 00,

(1). Prove the following analogue of Wiener’s theorem, Theorem 1.10.6.
If f € B satisfies f(2) # 0 lor every z € A, then g = 1/f belongs
to B.

'gghe following exercise, Z,. denotes the additive semigroup of

all fionnegative integers.

(2) Let T be the isometric shift operator that acts on £'(Z,.) by

T(IQ.ZI,ZQ, "') = (01109311321' . )i

and let @ = (ag;01;02,...) € £Y(Z.). Show that the set of trans-
lates {a,Ta,T3a,...} spans £!(Z,) if and only if the power series

o0
J(z)=) anz", (2] <],
n=0
has no zeros in the closed unit disk. Hint: Use the previous exercise.

1.11, Spectral' Permanence Theorem

Let A be a Banach algebra with (normalized) unit; A is not necessarily
commutative. Suppose we also. have a Banach subalgebra:B C A of A that
contains the unit of A. Then for every element r € B it makes sense to
speak of the spectrum og(z) of z relative to B as well as the spectrum
o a(z) of x relative to A. There can be significant differences between these
two versions of the spectrum of z, and we row discuss this’ phenomenon.

PRopPoSITION 1.11.1. Let B be a Banach subalgebra of A that contains
the unit of A. For every element z € B we have va(x) C op(z).

ProoP. This is an immediate consequence of the fact that invertible
elements of B are invertible elements-of A. O

EXAMPLE 1.11.2. Consider the Banach algebra A = C{(T) of continuous
functions on. the unit circle, and let B be the Banach subalgebra generated
by-the current vatiable ¢(z) = z, z € T. ‘Thus B is the closure {in the sup
norm of T) of the algebra of polynominls

plz) =ag+arz+---+an2".
Let us compute the two-spectra a(¢) and oa(()- The discussion of C(X)
in the previous section implies that
azl(() = ((T) =T.

We uow show that og(¢) is the closed unit disk A € C. Indeed, the
goneral principles we have developed-for computing spoctra in commutative
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Banach algebras imply that, in order to compute.gg(¢), we sh

pute the Gelfend spectrum sp(B). We will identify ap (B) 1'1‘;:"413 ﬁr;t Com.
for every z € A the maximum modulus-prificiple implies they o0,
{1.17)

Ip(2)t < sup plA)).
A=

It follows that the linear functional w; on B defined  on. polynomials
w,(p) = p(z) satisfies fju,}| < 1, and hence éxtends ibiquely to a fingy,
functional on B, which we denote by the same letter w,. Obviously, 1
belongs to #p(B). The map z € A - w, ‘€ 5p(B) is chiitinuous and one.tg
one. It is onto hecause for every w € sp(B), thé comiplex number 2 = (g
sntisfies |z} = |w(()] < ICll = 1, dnd i 'has the ‘property that that w(z) ~
nlz) = w:(p) for every polynomialp. Heélice w = w, o5 B.

Having identified sp({B) with A and observing that-( is identified with

the ciirrent va.nnblc (:'(z) = 2, z € A, we can ‘appea! to Theorem 1.9.5 to
conclude that og({) = A.

The following result is sometimes ‘calied the spect.ral permancnce Lheo-
rem, since it implies that:points in:the boundary of # g(x) cannot be removed
by replacing 'Bwith a larger dlgebra.

TueoreM 1.11.3.: Let B be a Banach subaigebre of a unilal Banach
algcbra A which contains the unit of A. Then for every T € B we have

dog(z) C aa(z).

Proor. It suffices to show that 0.€ Ggg(z) => 0 € g4(z). Contro-
positively, sssume that 0 # o4(x) and 0 € d5p(z). Then 2z is invertible in A
and there is a sequence of complex mumibers Ay ~» Osuch that Aa ¢ 75(2)
Thus (z~ Aq)~! is & sequence of elements of B with-the property that, since
inversion is.continuous in A~*, cofverges to ! as n =3 oo. It follows that
=t =ty (z ~ M) € B = B, contrudicting the fact that 0 € ag{z). O

One can reformulate the preceding resuls into. a more precise description
of the relation:between o g(z) and ga(z) us follows. Given a compact set .K
of complex numbers, o Jiole of K s defined as o bounded component, of its
complement C \ K. Let us decompose © \ g4(2) inlo its connected compo-

heuts, obtaining an unbounded component N together with a sequence of
holes Q.j ,n.g, aen

4

C\O'A{I) =ﬂ.—n=Uf11 URu--..
Of course, there

may be only o finike number of holes or none at all,
We require an elementary topological fact:

LEMMA 1114, Let Q be o

nected to
closcd subact of £} such thut 9 X

pological space, und let X be a
£ X ¢ 0. Then 8X £ §.
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pnooF. f 0X = @, then = int(X) U (2\ X) is & decomposition
( into disjoint open sets; hence either int(X) = @ or X = , and hence
;:t( X)=0. But this implies that X = int(X)U8X = 0, a contradiction. O

COROLLARY 1. Let 1, € BC A.beas above,let z€ A, and let Q be a
bounded component of C\oa(z). Then either QNag(z) = 8 or N C ag(x).

Proor. Let § be a holeof 0 4(z). Consider X = QNog(z) as a closed

subspace of the topological space ). Since §} is an open set in C, the
boundary 8n X of X relative to ) is contained in

Sog(z) Coalz) CC\N.
Hence nX = 0. Lemma 1.11.4 implies that either X =@ or X = (), as
asserted. 0
We deduce the following description of og(z) in terms of o 4(z).

COROLLARY 2. Let x € B C A be as in the previous theorem. Then
op(z) is obtained from o4(z) by adjoining to it some (and perhaps none)
of its holes.

For example, if o4(z) is the unit circle, then the only possibilitics for
og(z) are the unit circle and the closed unit disk.

Exercises.

(1) Let A be o unital Banach algebrn, let £ € A, and let ), be the
unbounded:component of C\ o,4(x). Show that far every A € 1
there is u sequence of polynomials py, p2,... such tha.

lim ||z - )‘l)-l —pa(z)]| = 0.

n—&o

(2) Let A be a unital Banach algebra that is generated by {1,z} for
some r € /. Show that o4(z) has no holes.

(3) Deduce the following thearem of Runge. Lot X' € C be a compact
sct whose complement is connected. Show that tf f(z) = p(=)/4(z)
is a rational funclion (p, ¢ being polynomials) with g{z) # 0 for
every : € X, then there is a sequence of polynaminls fy, fa, ...
such that

sup |f(2) — fu(z)] 2 0, as n — oo
s€X

1.12. Brief on the Analytic Functional Calculus

The analytic funetional calculus provides an cffective way of forming new

operators having specified propesties out of given oues, lu a very gunernd
context. We will oot have to make use of the snalytic functiosal calculus

in this book. In this section wu describe this calculus in some detail, but
refer the reador to other sousces (such s {12)) for o treatment that includes

prools we buve omitted.
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Lot C be a simple closed ‘oriented curve in the complex plane C tha
is placewise contihuously differentidble. We refer to such objects strp
as orlented curves. Thus, an oriénted curve C can ‘be ‘parameterized hyl
different ways by coritinuous functicns ¥ : (0,1} = € that are pie
continuously differentinble, one-to-one on [0,1), and periodic 1(0) = A1),
Every contiouous function J ob C can be integrated arolifid C by elther
forming a limit of appropriate Riemain'suros that respect the or entation of
C, or aliernatively by choosing a parameterization « : [0, 1] < I* consistent
with the crieritation and setting

]
j-f(A>dA=—- f FEO)Y @) .
c 0

The notion of integral over :-C' generalizes in a straightforward way to
vector-valued funtions, namely to continuous:fimetions f défined:on C that
take values in-aBanachspace E. Fixitg stich »-finction f, ‘one considers
finite oriented partitiohs P = {79,71,..., 7} of thecurve C (that is, parti-
tions-of C that are consistent with its orientation). With every such partition
there is a corresponding Riemann sum

R(f?p} = ZJ(Tk)('?k - 7&-1)1
k=1

and the techniques of elementary caleulus can be adapted.in a straightior-
wardway to show that the limit of these Rismann sums exists (s the norm
NP = maxy |45 ~ 7x-1| of the partition P tends to 0) relative to the norm

topology of E. See Exercise (1) below. Thus one can define
."' AYdA = im - t '
fc fdr= Lm R(f,P)

and aone has the estimate

(118) “ [ rna < Lisontan < sup | /()IEC),

flC) denoting the leagth of C. 1t follows that for every bounded linear
funictional 2 on £ we have

o( [ 1on 0) = Lotsona

Bﬂmﬂ'mg the orientation of C' has the effoct
: | » . of replac ,
s negative — J‘c SN dA. Th } replacing fc f(z\) dA with

v te - . L ]
in Ervz.l uc;:: continucus {unction f: C — £ ag an element of £,
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bounded component of the complement of C then one
IfA beg'f)’ ::o Ith :w,n C is oriented counterclockwise and n(C,A) = -1
has n(C\ On the other hand, n(C,A) = 0 if A belongs to the unbounded
mt- of C \ C, regardless of orientation. .
com element of the abelian group generated by oriented curves,

is an
A cycle 1 tion C + C* = 0, where C* denotes the curve obtained by

to the rela -
subject the orientation of C. To review terminology, let S be a set that

is eudofed with an involutory map 5 — s°, s € 5, and let G(S) be the
free abelinn group generated by S modulo the subgroup generated by s+ s°,
4 € 5. In more concrete terms, the:free abelian group generated by S can be
realized as the abelian group Z(S) of integer-valued functions n : § — Z that
satisfy n{s) = 0 off some finite subset of 8, with the pointwise operations

{(m + n)(s) = m(s) + n(s), J€ES.

There i3 o natural notion ol linear combinations of elements of Z(S); for
p.q € Z and m,n € Z(S), p-m-+q-n denotes the function s — pm(s)+qn(s).
If we identify clements of S with their image in Z(S) by way of s € § — xy,},
then the elements of Z(S) are linear combimations of elements of S,

m- 814+ pPp- 8, pr €Z, s €8.

The subgroup H C Z(S) generated by elements of the form s+s° iy identified
with the subgroup of all functions n € Z(S) satisfying n{(s) € 2Z il s° = s
and n(s") = n(s) if 5*° # s (note that for the example in: which S consists
of oriented curves, the cuse s° = 3 never occurs). Letting s denote the coset
s+ H € G(S), then i* = —3, and the most general clement of G(S) is a
linear combination .

PL-8)+ -+ Pn8n.

The universal property that follows from this construction usserts that
every function ¢ from § to an abelian group G that satisfics ¢(s*) = —¢(9)
for all 4 can be extended uniquely to a group homomorphism é : G(S) — G,
which acts on elements of G(S) as follows:

¢ (E:Pk wik) = Zpk - (8}
s k=1

A cycle cun be visualized ns a conglomerate of several oriented curves,
traversed one by one, perbaps scveral Litnes. Every nonzero cycle T can
be written as & linear combinatijon I = p,(’,‘, + « + paC,, with nouzero
integer coelficients pg, where the Ci are arlented curves with the property
Ci ¢ {C,,C;}} for k # j. This cxpression for I' is not unique, but the lack
of uniqueness is characterized by the simple fact thot p- 35 = —p - §°, p € Z.
8 € S§. Thus the union of suts O, U- - -UC, (point sets without orieutation) is
uniquely determined, and we think of this set as the underlying poiat set of I'.
The amupty sct is the uuderlying point set of the zoro cycle. Fixing A € C, the
st of all cycles thot do ot contain A Is a subgroup of the group of ull cycles
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(it. in the universal gronp of cycles generated by al} orienteqd

nnt contain A); henee for every such I there isn well-defined wf:gr that d,
n{l. A) € Z definesd by general principles ns above by taking #(C) : ‘::llgber
on otiented curves €. The mep T — n(, A) (€.

i85 & homomorphigy
gronp of all cycles that do not contain \ into Z. 7 of the
It ia important that cycles, like curves, have well-defined interiors.

DErNITION 1.12.1. Let T be a cycle. The interiorof T

is defined as the
st of all po'mt.s Aef \ I’ such that r’:(T‘. }c) # g, and it is

written int([").
It Is n worthwhile exercise to experiment with this definition. For cx.
ample, consider a cycle T' consisting of two cancentric citeles of differin
radil about the origin. If the outer circle and inner circie have the same
orientation, then that cycle has interior consisting of all paoints within the
outer circle that do not belong to the inner circle. If the two circles have

oppostie orientations, then the Interior of the cycle cousists of the snnular
region lying between the two circles.

If we: are given an open set U € C, n Banach space E, and a continuous
function f: L/ = F, then we have seen how to define the integral of f over
nny oriented curve C C U. The sei of all cycles whose underlying point sets
are contained in U is also a group with a similar universal property, namely

the universal group generated by the oriented curves contained tn U. Thus
by general principles we have a definition of

Lf(A) d\e E

for oll cycles ' C U, and this integral satisfies

f fA)ydA = / faydr+ | Fa)da.
T 4 Y I Ia

Finally, we introduce the algebra of locally analytic functions on a com-
pact subset of C. Let X € C be compact. By a locally analytic function:.on
X we menn aa analytic fusetion f defined on some open set ¥ 2 X. Two
wuch functions f (defined ou U 2 X} and g (defined on. V D X) are said-to
be equivalent if there is an open set W such that X C W c U NV andthe

rmlt;:ic?ium of f and g to W agree. The set of equivalence clasges of locally
analytic

functions on X {ormns a complex algebra, whose vait is the class of
mf’x‘)‘?;m“- function f(z) = 1, z € C. This commutntive algebra is denoted
W t;uw have an effective notion of ¢ ‘ :
| n effec ycle, a nption of the, integral of a
vector-valued funetion over o eycle contained in the iuterior of ity domain,
1:1::‘ the notion of wn algebra of locally analytic functions A{X) associated
1 & cotipact set X C €. These are the basl unt D

functional calouhes, wiid we e 1 ¢ constitueats of the analytic

.:L;L .:i.bu o Bauach algebra with hotwalized unit 1 and fx an alement
u = A with spuectrum X = ala). Glven f e A{X) we want to define f {a)



1.12. BRIEP ON THE ANALYTIC FUNCTIONAL CALCULUS 37

. o manner consistent with I:I:ui: Cauchy i:}tegral theorem. To do this we
:;lm a cycle [ with the following properties:

o [ is analytic on rvint(l).

e 'NX = 0.

e n(l',z)=1lor all z € X.
The first and third conditions together imply that there is a representative
in the class of £ whose domain contains not only X and T', but also all points
interior to I'. The third condition asserts that the cycle winds around every
point of X exactly once in the positive direction, allowing for cancellations
as one moves along the various components of T'.

For example, if X is the unit circle and' f is an analytic fimction defined
on somé ainular region U = {2 €C:r < |z] < R} where0<r <1< R<
0, one mmay take ' to be the union of two circles Ty = {|z| = ri}, k = 1,2,
wherer < 1) < 1 < 2 < R, where I'» is oriented in the counterclockwise
direction, and T'; is oriented clockwise.

Consider the resolvent function (A1 — a)~}. This is certainly defined for
all A in‘an open set containing I, and it is a continuous function with values
in A. Thus we can define

(1.19) fla) = 5 /r F(A)AL - @)=L dA.

The fact is that f(a) depends on neither the particular choice of I’ nor
!:he chowa?f represcntative of f (this is an exercise in the use of the Cauchy
integral theorem of complex analysis). Moreover, f € A(X) — f(a) is a
WMWWM of complex algebras that has the following property:
For every power series

f)=cg+ciz+ 2" +---
converging on some open disk {|z| < R} containing .X, the corresponding
series cpl'+ cya + cpa® + - - - is absolutely convergent relative to the norm of
A, and we have

oS
fla) =)_ cqa”™
a=1
The reader is referred to pp. 566-577 of [12] for further detail.

Exercises.
(1) Let C be an oriented curve in C, let f be a continuous function
definéd on C takiog values In a Banach space £, and consider the
set, of all ‘Gnite oriented partitians P of C.
(a) Show that for every ¢ > 0 there is a 6 > @ with the prop-
erty that for every puir of oriented partitions Py, P, sutisfying
IPil| < 6 for k= 1,2, one has [R(f, P1) — R(/. P2} < ¢

(b) Verify tha estimate (1.18).
Let T be a bounded operator on a Banach space £.
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(2) Let D= {z € €: |2| < R} be en open disk coritaining «ra
£ D - C be axanalytic finction défned sn D, with oo - b

h ‘D R
o0 Power Beries
flz) =) 2", i€D.
n=0
Show that the infinite series of .operators

oo
> o™

converges absolutely in the sense that ), calllT™]| < oo,
(3) ‘Give a definition of sin? and cogT+ising poiver series,
(4) ‘Use your definitions in the precedirig exercige to show that
(86 T)? + {cos T)? = 1.




CHAPTER 2
Operators- on Hilbert Space

We now take up the theory of operators on-Hilbert space. It is appropri-
ate to-develop this subject within the context of C*-algebras, and the: most
basic properties of C*-algebras, their ideals, quotients, and morphisms, are
worked out in this chapter. We discuss commutative C*-algebras in detail,
including the cheracterization of C(.Y), the functional calculus for normal
operators, and the spectral theorem.. Unfortunately, the literature of op-
erator theory contains at least three dissimilar statements that are called
the spectral theorem. The assertions are that normal operators are associ-
ated with multiplication operators, that they are associated with spectral
measyres, and that they admit a Borel functional calculus. While these
statements are all in some sense equivalent, only the first of them is a clear
generallzation of the idea of diagonalizing a matrix, and that is the one we
offer as the proper up-to-date formulation of the spectral theorem.
Throughout this chapter, Hilbert spaces will be assumed separable or

finitc dimensional. This is an  unnecessary restriction, since all the results
we discuss have approprinte generalizations to the inseparable cases. But

the formuliation of the spectral theorem that we use becomnes somewhat
esoteric for inseparable spaces, and in dealing with traces or Hilbert-Schmidt
operatars, the fact that orthonormal bases {e, : @ € /} are uncountable
while the corresponding sums of numbers Y°_ [|A¢e,||* have only countably
many nonzero terms can distract attention from the fundamentul igsues of
annlysis. In some cases we offer comments to assist the generalizers in

carrying out their work.

2.1. Operators and Their C"-Algebras

Iu this section, we discuss Lhe operator-theoretic veraion of the Riesa lewma,
we introduce some commonly used terwinology, and we discuss the wmulti-
plication algebra of a measure space. Throughout, H will denote & Hilburt

space with inner product (£, ), linear in § and nutillnear In 1.
‘The Ricuz lemma asserts that every bounded linear functional f on H

cau be represented uniquely as the inner product with a vector 7 € H,
J&) =& L€ H,

mmoreover, vue has || f]] = lin)]. The Hlesz leuma implics that the mapping
J = n I8 an antilincar isometry of the dual of H vuto H.
(1"
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Fvery operator A € B(H) glves rlse ton complex-
vartnbles (€ 9] = (AL, ), §&.1 € H. Notlee that this form g linea
antilinese in g; och bilioear forma are culled sesquilinear, The
form aswecintedd with A ia also hounded in the sense that there
canstant C such that {[€.m)} < CliEllinl for all €,n € A, and the smaltog
sich conatant is the operator norm C' = [[A}l. Fraquently, the easies) whY to
define a bownded operator is to specify its sesquilinear form. The followin

. . . 8
result guarantees Lhe existence of & unique operator in such definitions, png
is mdxor ealled the Riesz lemma.

valued function of two

rin € ang
.quuilinum
'8 8 Positive

PuorosiTion 2.1, For every bounded compler-valued sesquilinear Jorm
|-v:} on H there s @ unique bounded operator A on H such that

l€.a) = {AE.y), & ne€H.

Proof. Fix a vector £ € H and consider the linear functionsl f defined
un H by f{n) = {€.1], the bar denoting complex conjugation. ?‘»mc.e fisa
honnded linear fuuctional, the Riesz lemyma in its above form tmplies that

vhere is n unigue vector A€ € H aatisfying f(n) = (n, AE); and after taking

the complex conjugate we find that the function A :  — A that we have
tefined must sotisfy

l£.9l = (AL}, E.neH.

it I8 struightforward to verify that this formuls implies that A is a linear
transformation. It is bounded because

sup |AEl =  wup  |[€. 9] < oo.
Hei< (El< LIl

The vaiqueness of the operator A is evident from the uniquencss assertion
of the Riewz teawnsn for linear functionals. S

Similarly, thers is o characterization of bounded operators A € B(H, X)
from one Hitbert space o another in Lerms of bounded sesquilinenr [orms
ol s B » K — € by way of the identification €, = (AL, ), E € H, e K.
Nute that the juner product on the right is that of K, oot H.

We imuniediately deduce the existence of adjoints of bounded aperaiors
from one Hilliert space to another. When more than one Hilbert apace is
Wvilved there might, be confusion nbout thie meaﬁlng of inner products;
when we wuit to be explicit about which jnner product is involved we will
wribe (L, )y Tor i iuner product of two vectors £, € /.

. mt‘-&l'm;n.l..\m* l.[rl..el H,K be Hilbert spuces und Jot A € B(H, 'K) be a
hded oparitor from H w IS, Thare | ' . :
calinfyto 0 Wi 18 8 unique aperator 4° € B, H)

(AL, i = (€, A", e H, ne kK.
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¢. One simply applies the above results to the bounded sesquilin-

mﬁ | defined on K x H by [n, €] = (n, AE) to deduce the existence of
eaf ique operator A° € B(K, H) satislying (A*n.&)n = (n, ALk, and then
® \os the complex conjugate of both sides. D

The cnse H =K isof pﬂﬂiﬂllﬂl‘ importance, since we may deduce
thut for every A € B(H) there is a unique operator A* € B(H) such that
(AE,7) = (€, A°7). The basic properties of the mapping A — A" are sum-

marized as follows:

(1) At = A. _

(2) (A + pB)* = AA° + iB".

(3) (AB)" =B°A".

(4) A Al = | AlI%.
Properties (1), (2), (3) together define an involution in a complex algebra
Property (4) is the critical relation between the norm in 8() to the invo-

lution. It is the characteristic property of a C*-algebra (see Definition 2.2.1
below). To verify property (4), note that ||A* 4[| is given by

A*AE. )| = ' a2
b, (A AE = aup KAE AT < sup AEIAD] = 141

while on the other hand,

IAI* = sup (A€, AE) = sup (4° A€, €) < ||A°A).
€Nl <1 liEl<1

We will also. make use of standard terminology for various types of op-
erators A € B(H). An operator A is called normal if it commutes with its
adjoint, A°A = AA". An operator A on H is un-isometry iff (A€, AE) = (£, £)
for every ¢ € A and in turn this is equivalent to the equation A*A = 1. An
invertible isometry A is characterized by A°A = AA* = 1 and is called
2 unilary operator. A self-adjoint operator with nonnegative spectrum is
called a positive oparator. It is a nontrivial fact that positivity is charac-
terized by the condition (AL, &) > 0 for every § € H, ay we will see. More
generally, for two self-adjoint operators A and 8 one writes 4 < B if B — A
i8 positive. Finally, a projection is a self-adjoint idempotent: 42 = 4 = A"
The following clementary facts about the gcometry of Hilbert spaces will

be used Freely below:

(1) Every nonewmnpty closed convex set C iu a Hilbert space # has a
unique element of amallest norm; that is, there is a unique element
z € C such that ||z} = inf{[ly]l : ¥ € C}.

(2) Let Af bo a closed linear subspace of . Then every vector £ € H
has o upique decompaosition £ = & + & where § € M and & €
ML ={neH:(qM)={0}}. _

(3) Let P be any projection in B(#H). Then M = (€ H: PE=§} is
a closed subspace of #. Couversely, every closed subspace of A is
wssocinted in this way with n unique projection P € B(H).
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DerINITION 2.1:2. A-C" -algebm of operatorsis a normeclogeq: ‘Bubalgebia

A C B{H ) Df thB algebra of all: hounded Opbnatorg ons fgome Hdbeﬁ*space
which is Alao "GIMEd under the ad‘]oin% ope'rahon A" = A

There dre many examples of stich- C’-algebras For exampla, let 8§ €
B{H) he any norlempt} set of operators, ‘The interseetion of. a.ll (o] -a,lgebm
in B{H)that contein & is-calied the G*- ﬂlgabragenerated by 8;: dfben ‘Written
C(S). It con.be realized ‘in somewhat stiore concrete - t:erms 2§ “follows,
Consider the set P of ‘all“fnite products Ty - Tpym = 1,2,..., wher
T € S US". The sét of allfinite’linear combmatmns ot’ elements of Pis
obviously the smiillest sélf-adjsint dlgebra contaitiing S, and henek its’s Torm-
closure is the C™-algebra generated by S. Whiile this canshrucfidﬁ" ’ﬁ'p:ﬁem
to-exkibit the elements-of C* (8)-in’a systemstic way, it is et very usefiil
for.obtaiing: structural information about:C*(iS), sifice: Ehe naturé of the
limiits of such linear cnmhinatinns'ha.s not’ been made’ exphcit

A ‘substantial -amoint: of ‘cirrent: wur'k in ngncommutative analysis has
gane into Hetermiining the properties a.n& structiire of the C*-algebra gener-
ated by a-finite sét of operatorgtliat: ﬂ&hﬁfy certdin relations.

The rmrm topolugy on’ B(H) is mapprepnate for t’ogolaglca.l issues that

that are weaker Lha.n,thn nqmz tophlog:,r. ?We vnll hnve to m”hke iise of’ only
two of them. In geneial, a- Tocallyconvex topoley ca.r;, 5y ﬂeﬁned on: &
coiplex vector space:V by speclfmg a ffamﬂy Siof seminorims on: W that
separates the points-of V. ‘Givenia finite: subset £ = {}- |1,...,)- [z} €S
-and 4 positive ¢, one associates: & correspondifig -Bibset of V:

Ure = {z€Viizli<e,... fajn <€),

The set of all such U, is-a basic gystem of nexghbarhoods of ‘the ofigin for
2 unigue locall_y convex Hausdnr& l.opnIogy on V.

For ‘exaple, the norm. tepolo is deﬁmiby the somewhat; degenerate
fawnily. 8 = {|| - ||}, where || - || is. thé aperator nptin; “Tho weak ‘gperilor
topology ia defined by the family of serifigrms. JA|.= l(ﬂi, s E;ﬂr s:an" Zing
over.all yectots i H. The aifong operalor-topology is definéd ‘by. the: fam.llﬁf'
of seminorms ]A{ - AL}, where £ € B, For. example, a gt of operators
An € B(H) converges strongly 4¢°0-if and. only if for every & € °H,

hm "AnE" =

A won Neumann algebra is. & aelf-a.djomh 8
y8ubalgebra:of:B{H tha -
tains vhe identily:operator and ig closed Reicmiondd L o

in the weak operator tg,polog)'
While it ig truc that vog ‘Naumann a.'lgebms are C"-a]gebras of opm‘nﬁorﬁ.

from that of the geuzral nhm:;e dwébpmm' m""b h"‘?‘:ﬁ .diﬂemm"ﬂ.ﬁwr
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.Neumann algebras as a noncommut'ative generalization of
the thml;nd to view the theory of C*-algebras a8 a noncommutative
mese o of the theory of topological spaces (8].
goner e ¢ BH) be a set of operators: The comimutant of S is the set of
opaaw vors T € B(H) satisfying ST = TS for every § € §; it is denoted
“"j &' The-cottmmutant of any set of operdtors is an algebra containing the
ibdy«:ntlt? operator, andione'may easily. check that S is a weakljj closed unital
subalgebra of B(H). I S = S is closed under the involution‘of B(H), then
&' is 8 von Neétimann algebra. ' ‘ S
We concludé’the section. with-a discussion of multiplication operators on

Hilbert spaces associated with measure spaces. Let (X, B, u) be a o-finite
measure space;  we-suppress explicit, reference to the o-algebra of sets 8
unless there is cause for confusion:- L?(X, 4s) is a Hilbert space, which may
ot may tiot be separable; the-measure space (X, p) is called separiible when
L(X, ) is a separable Hilbert space. Every function f € b°(X, p) gives
rise to in operator M that acts as follows:

(Mf)(p) = f(p)e(p), PEX, E€L¥X,p).
L>(X,u) is a commitative C*-algebra with unit relative to its pointwise
operations and its essential norm
[£llo = esssup{|f(m)] : p € X}.

In more detail, the involution in £°°(X, x) is defined by f*(p) = f(p), p € X;
the norm is

Mo = sup{t > 0: pipe X : |f(p) > t} > O);
and the involution is related-to the‘norm by ||/* flleo = |/ )iZ..

THEOREM 2,1.3. For every f € L™(X,u) M; is a bounded operator on
LYX,u).. The map f v> My is.an isometric s-isemorphism of L(X,p)
onto a commulative C*-algebra of operators M C B(H).

PROOF. The key assertion here is [|A;]| = [[f|lco. Indeed, the inequality
< i8 clear:from the fact that |f(p)] < |[fllw for almost every p € X, since
this entails |f - £ < [|f]loo|€| pointwise almost everywhere for & € L*(X, u),
hence |f - €lfz < [|flloc||€ll2- For the.oppasite inequality, assume f 7# 0 and
choose a number ¢, 0 < ¢ < || flloa. The set {p € X : |/(p)] > c} hag positive
measure, go by a-finiteness we can find a subset £ C {p€ X : [f(p)l > ¢}
having finite positive measure. Thus xg € L(.X, 4). and from

/(@) - xel@)| 2 cxelp), pPEX
we obtain |Myxglls > cllxells after squaring and integrating. Since yg is
not the zero element of L2(X, s}, ||My|| = c. The inequality {|Af;jf 2 (i /llw
follows after ope takes the supremum over such c. ._

Obvigusly, f = Af; is a hompmorphism of algebros that carries the
unit of L%(X, u} to 1, and one may verify M; = My. directly. The set of
operators {M, : f € L) is nornr-closed because L™ is a Banach space. [
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The set of operators M = {My : [ € L=(X, n)} in called the muyjip;
aoton algebra of the measure space (X, ). It is an abelian: vor. Nﬂum:fn:
algebra. since it is closed in the weak-operator topology, thougli that is y0
obvious from what has been said. We will look more closely at, multiplicatiag
algebras in Chapter 4.

Let us now compute the spectra of multiplication operators. Since ag
element of L(X, ) is not a function but an equivalence class of Fanitions
that agree almost everywhere, the notion of thé range of f € L®(X, 1) must
be approached with some care. Choose.a representative in the class of 1,
which we will call f. We can use [ to défine a measure my on the o-algebra
of Borel sets in C:

myS)=p{pe X: f(p)eS}, ScC.

It is a etraightforward exercise to-show that cvery function g that agrees
almest everywhere with f gives rise to the same measure, m, = my; hence
thie measure depends only on the eguivalence class of f as an element of
L=(X.p). ¥ p is a finite measure, then so'is my. But if u is only o-fnite,
then m; nred not be o-finite; indeed, in such. cases points of C can have
infinite mg-measure (consider the case of a constant function f). In all
cases. however, my is a countably additive measure defined on the Borel
o-algebra of the complex plane. As such it has a uniquely defined clased
suppon, defined as follows. By the Lindel5f property, the union G of all
open subsets of C having ny-measure zero -can be reduced to the union
of a countable subfamily of open sets of measure zero; hence & satisfies
ms(G) = 0. Obviously, G is the largest ‘apen set of my-measure zero, [t
fullows that the complement F = €\ G is a closed set with the following

property: A complex number A belongs to F if and only if for every ¢ > 0
we have

(2.1} s{p€ X:|flp) - N < e} >0

Mureover, every point of the complement of F has a nelghborhood of my-
InCaRute zrte.

The ser F is called the essential range of f. To reiterate: X helongs to

the vesential range of f if 'and only if every neighborhood of A has paositive
:rl:t,;:m:asme. Yhe easential range of f is a catppact set £ with the property

1 llee = sup{ii: A € 7Y,

THEGREM 2.1.4. For every f € L=(X

_ &), the apecirum of the mudtipli-
lion pprrator M 1 4 Uic eazentiol range d 7

of f.

PROOF. If A does not balong to
nuv:>l)uunhthnl.{pex'.|](p]—-
vverywhere (dy), It follows Lhat

Lhe cascntial rauge of f, then chere is

Al < e} =0, i, |flp) ~ Al 2 ¢ almost
the function

_ 1
QLP}—-}T;)—:-X, pe X,
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L=(X,8) and its multiplication aperator M) is a left and right

inverse ' A is B point in the essential range of f. We will
pversaly, Supposc ' i
G eauence of unit vectars £1,€2, . € L2(X, ) with: the property

uli—g:lo | M gén — AEnll =0,

showing that A € a(My). Indeed, {p € X : |f(p) — A| < 1/n} i8 a set of
positive measure for every 7 = 1,2,..., and using o-finiteness of p we find

a subset
E.c{pe X:|f(p)— Al <1/n}

satisfying 0 < p(En) < co. Letting £, be the unit vector u(E,)~'/?xg, one
has

[(f(p) — Néa(p)| S 5~ [6alp), pEX.
and hence [[(f — A)&allza € 1/7n tends to 0 as n — oc. O

Exercises.

(1) Let {-,:] : H x H — C be a sesquilincar form defined on a- Hilbert
space fI. Show that |-, -] satisfies the polarizalion formula

3
alen) =Y i [e+i*me+itn] .
k=0

(2) Let A € B(H) be a Hilbert space operator. The quadralic form
of A is the function ¢4 : H — C defined by ¢4(€) = (A€,£). The
nnmerical range and numerical radius of A ure defined, respectively,

by
W(A) = {gal) : 1€l = 1} € C,
w(A) = sup{|ga(€)i : €] = 1}.

(a) Show that A is sell-adjoint iff ¢, is real-vulued.
{b) Show that w(A) < [|All € 2u(A)} nand deduce thot g4 = qu
only when A = H. Hint: Polarize.

(3) Show that the adjoint apuration A — A° in B(/) is weukly con-
tinuous but not strongly continuous. Hint: Cousider the sequence
of powers of the unilatcral shift S, 59,87, ....

(4) Show that the only operators that commute with all operators iu
B(H) are the scalar multiples of the identity.

(5) Lot C be the closure in the strong operator topology of the sel of
all unitary operators in B(M). Show that € couslsts of isometries.

(6) Show thnt the unilateral shift § belongs o € by exhibiting o se-
quence of unltary operators L7y, Uy, ... that cuuvergss to S in the
strong operolor topology. Hiut: Consider the muirix of 5 relative
to the obvious Lusls, and louk for unitary mutrices that struvgly
approxhinuste lnrge o x n blocks of it
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(7) Let {X,pe} be a o-finite measure space and lev § . x _, C
hounded complex-valued Bore! function. Show that the be a
range of [ can be characterized as the interseetion cesentlal

(Yo(X): 9~ J}

of the elosed ranges of all bounded Baore! finctions 9: X - that
agree with f almost everywhere (dp).

2.2, Commutative C*-Algebras

DeRNITION 2.2.1. A C*-algebra is a Banach algebra A that is endowed
with an involution z ~» z* eatisfyitg ||lz°z]| = ||lz||* for every z € A.

More explicitly, the involution « is an antilinear mapping of A into itself
that satisfies {(zy)* = y°z°, 2*° = z, and is related to the norm-.of A by
the asserted formuln, C”-algebras need not contatn a unit. Any norm-
closud solf-adjoint subalgebra A of B(H) is a C*-algebra, ns we have scen
in the previous section. On the other ‘hand, abstract C*-algebras are not
necessarlly associnted with operators on any specific Hilbert space.

We now show that every committative C*-algebra with unit is-isomet-
rically «-isomorphic to the algebra C{X) of all complex-valued continuous
[unctions on a compact Hausdorff space X. A similar result holds for doniini-
tal commutative C*-algebras, provided that one is willing to replace X with
o locally compact Hausdorff spuce and C(X) with the algebra of continidus
functions vanishing ot infinity. We-will confine attention to:thewunital case

here: the uonunital generalization can'be found in {2], for example.

This C*-algebraic charscterization of spaces has led analysts to.think
of noncominutative C*-algebras as noncommaitative generalizations of topo-
logical spaces, and of problems concerning the clussification of these alge-

Lras up 1o s-lsomorphism as n noncommutative generalization-of (algebratc)
\opology. For example, the K-theory of spaces developed by Grothendieck,

Atlyah, Botl, and others during the.period 1955-1965 has now béen general-

bzed m“C'.'-algvfbras in o way that provides effective tools for.the compiitation
of these luvariants {8]. Indeed, contemporary work ‘on the classification.of
lmlple. C*-algebras has led to the expectation that the -mm.-'hptift@-.ﬂt m’
ple C*-algebras are completely determined by their K-theory! Since very
t‘i‘\ﬂﬂﬂ!ul topological spaces can have the same IC-theory, this is an aspect of
sloncommulative wopology™ thot is entirely new and has no counterpa-l't in
the t}\fmll;?li theary of wpojogical spaces. | |
¢ begin j.wiun 8 briel discusslon of the ounent) in.: :
uuucomm.uumve]‘ unityl Bunach algebra A.a?l:i‘r‘ evisr:l f:l.:l?eiﬁ.:: {g Eihiﬁz
wxpunentiol of r i defined by |

(2.2) g i \
£ =) ......z”_
aperALL
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Notice shat this series CONVCTEEs absolutely, since
o

ot oo

2| ;:-!z“ll <Y liz*/nt = el < oo,
- n=0

n=0

and we have the estimate le*|t < el=t. Obviously, ? = 1.

REMARK 2.2.2. Rearranging products of series. Let ag,a,a2,... and
bo, 43, b2, . .- be two sequences of elements of 4 such that ) lle,| < oo,

5* Jball < oo, and let £ = Y . 2n ¥ = Ynabn. Then the product zy is
given by the seriea Ty = Y_, tn, Where
(2.3) Cp=0gbn +01bn—y +---t+agy, =n=012,...,

the series 3, ¢, being absolutely convergent in the sense that 3 Jleall < oc.
The proof is an instructive exercise in making estimates, and is left [or the

reader i Exercise (1) below.
PROPOSITION 2.2.3. Let x,y be elements of o unitel Banach algebra A
salisfying zy = yz. Then &1V = eV,

PROOF. Using formula (2.3), we have

= 1 _1 - 1
e"'"= —z’— — . — 1.

Since xy = yz, the proof of the binomial theorem applies here to give

(z+y)" = Z (:) zFy"—* = nl Z: #z’y";
pt=n

k=0
hence the right side of the preceding formula becornes

Y Szt =,

n=0

0

Much of the terminology introduced in the. preceding sectipn can be
applied to abstract C-algebras as well ss C*-nlgebras of operatars. For
example, a normal element of a O°-algebra is an element that commutes
with its adjoint, and a unitary clement of a unital. C*-algebra is an element
u satisfying uu = uu® = 1. A unitary element has norm 1, since fjul]? =
futu|l = 1)} = 1.

THEOREM 2.2.4. Let A be u commulative. C*-algebra unth unit, and let
X = 6p{A) be the Gelfand spectrum of A. Then the Gelfand mup. 1s un
isomeiric s-itsomorphism of A onto C(X).
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Proor. We shiow first that every w € sp(A) preserves the adjoint in

— ] the
senae that w(r®) = w(z), r € A. Since avery x € A can be written uniquely
in the form > = 1y + ixg whers ry and 23 are self-adjoint,

it suffices ¢q
show that w(r) is renl for any self-adjoint element x € A, To prove this, fix

g=3"€ A, fix t € R, and consider the exponential

Nutiee Vhat

(2.4) W) = Z (_it}"u(:r“) = z .(_?l'.):w(z)n = eltl=)
n= n=i}

Nuole, too, that u, is unitary. Indeed, by inspection of the exponential series
(poting that ¢" is real and r" is self-adjoint for every n > 0), we have
up = ¢, nnd hence wfuy = et = 0 = 1 by Proposition 2.2.3.
Similarly, ueny = 1. 1t follows that {ju,]] = 1, and thus jw(m)] < |lw|| = 1 for

every § € R. Using formula {2.4) and the foct that R{itw(z)}) = —(Qw(x),
wi fid that

c-m.-m - L,R(c’h.s[.z)] - 'clw{:}' - IW('“z)I <1, teR.
Since ¢ € R is arbitrary, this implies that the imaginary part of w(z) must
vatiish, proving that w{z) is real.

This shows that the Gelfand map of A to C(X) is self-adjoint in the sense
thit the Gelfand transform of z* is the complex conjugate of the fanctien
z, for every 7 € A. It follows that { : x € A} is a self-adjoint subslgebra
of C(X) that separates points and conteins the constant functions. The
Stone-Weierstrass theorein iniplics that {# : z € A) is norm:dense in. C(X):

We complete the proof by shewing that the Gelfand maep is isometric.

We claim firet that for = € A, 22| = lzi?. Indeed, using the formuls
ll=* 2}l = Yz} and the fuct that z* commutes with = we have

I = Re?y )2 = etz a2 = (2222 = famz)) = fzf.
Replacing  with o gives |23 = [jx||f, and aRer further iteration
=l =10*. n=1y2....

The Gelfund-Mazyr formula fur the spectral radius {Theorem 1.7.3) implies
el = %" =t 22§12 = p(a),

n~yog

white Bum Theorerm 1.8.9, we have

i) = sup{iAl: A € a(z)} = sup{|Z(w}] : w € 5p(A)} = ||E]o,
anrd hence the asserved formuls Izl = ). |

ConaLiany 1,
Thep e

U

Lt Abe (perhnps noncominutative) upital € -
i Nom uaital C*-alge]
tpectrusn of any self-ndjolnt clement = of 4 iﬂ')reai. Igelra,
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oose an element 7 = r° of A, and let B be Lhe nornm-closure
«ot of all polynOmia.lﬂ in x. Then B is a commutative C*-subalgebrn

¢, coptains the unit of A, hence a4(z) C ag(z). On the other hand,

of 4 :::::1 994 implics that w(z) is real for every w € sp(B), and hence
T C ap(a) = fu(x) :w € p(B)} S R- 0
The following result strengthens the spectral permanence theorem for

(e catogory of C"-algebras:

COROLLARY 2. Let A be a unital C*-algebra and let B € A be a C°-
subalgebra of A that contains the unit of A. Then for every z € B we have
= a4(z). In particular, for every sell-adjoint T € A,

ll=ll = r(z).

PROOF -

oa(r)

ProoF. We know that o4(z) C og(z) in general, and to prove the
opposite inclusion it suffices to show that for any element £ € B which is

invertible in A one has z~! € B.
Fix such an z. Then z°z is a self-adjoint element of B that is also

invertible in A. By the preceding corollary, 5(z"z) is real. In particular,
every point of og(z*z) is a boundary point. By Theorem 1.11.3, ag(z°z) =
Bop(z°z) C oa(z"z). Since 0 ¢ oa(3°z), 0 ¢ oa(z°z), and hence z°r is
invertible in B, equivalently, (z°z)~! € B. Obviously, (z°z)~'z" is a left
inverse of z; hence z=! = (z*z)~'z" must belong to B.

The assertion. that ||z]] = r(x) [ollows after an application of Theorem
2.2.4 to the C*-subalgebra of A generated by z and 1 O

Thus we may compute the spectrum of a Hilbert space aperator- T rel-
alive to. any C*-algebra that contains 7 and the identity. In particular,
we may restrict attention to the unital C°-algebra generated by 7. This
is particularly useful in dealing with normal operators, since in those cases
the generated C*-algebra is commutative. We will pursue applications to
normal operators in the lollowing section.

Exercises.
(1) Prove the assertions made in Remark 2.2.2.

(2) Let A be a C"-nlgebra.
(a) Show that the involution in A satisfies {jz*|| = {[z(l-

(b) Show that if A contains a unit 1, thea [[1] = 1.

In the following exercises, X and Y denote campact Hausdorff
spaces, aud 8 : C(X) — C(Y) denotes an isomorphism of com-
plex algebras. We do not assume continuity of &:

(3) Let p € Y. Show thal there is a unique point ¢ € X such that

8f(p) = f(q), [ € C(X)

(1) Show that there is b homeomorphism ¢ : Y — X such that 0f =
fo@. Hint: Think in terms of the Gelfand spectru.
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(6) Canclude that @ is pecessarily a self-adjoint linear map in th
that 8(f°) = 8(])*, [ € C(X), © Rense
(6) Formulate and prove a theorem that characterizes unigg algebra
homomorphisms # : C{X) — C{Y) in termsof certain maps ¢ :
Y — X. Which maps ¢ give rise to isomorphismas? ‘

In the remoaining exercises, let H be a Hilbert spece and 1o
T € B(H)™! be an invertible operator. Define 8 : B(H) — B[
by
8(A) =TAT™, A€ B(H).

{7) Show that # is nn automorphism of the Banach algebra structure
of B{H).

(8) Show that the map # : B(H) — B(H) of the preceding exercise
satisfies 0{A°) = 8{A)* for all A € B(H) If and onlyif T is 4 scalar
multiple of 8 unitary operator.

2.8. Continuocus Faunctions of Normal! Operators

One can reinterpret Theoram 2.2.4 so as to provide a powerful functional
calctlus for normnl operators. Sometimes this functional calculus s referred
ta ns o weak form of the spectral thedrem, or even as thie spectral theorem
itsell; but that is a half-truth et best. The spectral theorem proper will'be
laket: up o Section 2.4.

Throughout this section 7" will-denote a normal operator :on a Hilbert
space Ff. The spectrum of T' is a compact subset X of the:complex plane,
aud by the Stone-Weierstrass theorem polynomials in z and Z of the form

N
(25) Hz)= )] ema2™3,  z€X,

m,={

form & unital seli-adjoint subalgebra of C(X) that is norm-dense in C(X).
({}wen Su:h # function f -(or more properly, given the set of coefficients
Cinn 1V E M, .

n < N1}, one can write down a corresponding operator
2.0) IT)= Y cumaT™r,

l\lm.b::‘.;1 t'm‘sl tbis much could have been done even if the operator T wete not
nonnal, since we have been explicit aboyt the order of the factors 7™ and

1" on the right side of (2.6). However, fo '
. 0} However, lor nounorinal opoecat
1% uot 8 well-defued map of functions op X t0:B{H), cven :?za ors J -+ J(T)

for ho hic
T T o o,
C¥). & Lhe case of nllpotent 2 x'2 matrices ueting as operitors on

But fur norina) upetutors, we have:
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agM 231, Let T € B(H) be a normal operalor with spectrum
THEOREY ke mop thal carries polynomials J of the form (2.5 to
c - the form J(T) in (2.6) extends uniquely to on isometlric »-

C(X) onto the C*- lgebra generated by T and 1.

23. CO

X rtors of
oo )
gmaqihi’m of

prooF. Let A be the C*-algebra generated by T and 1. We apply

Theorem 2.2.4 to A as follows.
first that the map w € sp(A) — w(T) € C is a homeomorphism

We claim
of the Gelfand spectrum of A onto X = o{T). Indeed, this:map.is abvicusly
3 continuoiis- map of sp(A) into C, and it is injective because if w; and w;
are two elements of sp(A) with wy(T) = wy(T), then by Theorem 2.2.4

wWi(T*) = wi(T) = waT) = wa(T"),

and hence wy and wq agree on the linear span of all products T"T°", a dense
subspace of A. By compactness of sp{A), this map is a homeomorphism of
sp(A) onto the spectrum of T relative to A which; by Corollary 2 of Theorem
224, is X = o(T).

These remarks identify sp(A) with X in such a way that the Gelfand
map carries an operator of the form f(T) in (2.6) to a polynomial f € C(X)

of the form f(z) in (2.5).
We conclude from Theorem 2.2.4 that the inverse of the Gelfand map

defines an isometric s-isomorphism of C(X) onto A that uniquely extends
the map f =~ f(T') described above. O

Exercises.
(1) Show that the spectrum of a normal operator T € B(H) is cobn-
nected if and only if the C*-algebra generated by T and 1 contains
uo projections. other than G:and 1.
Consider the algebra C of all continuous functions f : C — C.
There is no-natural norm on C, but for every compact subset X € C
there is a seaminorm

Ifllx = sup|f(2)I.
3€X

C is a cammutative s-algebra with unit.

(2) Givea a normal operator T € B(H), show that there is a natural
extension of the functional calculus to a s-homomorphism f € C —
J(T).€ B(H) that antisfies || J (T = | flla(r)-

function [ € C and let

(3) Continuily. of the functional calculus. Fix n
T1,7T5, ... be a sequence of normal aperators thut converges in norii
to an. operator T, lim, §75, — T = 0. Show that (T ) converges

in norm to f(T).
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2.4. The Spectral Theorem and Disgonalization

The spoctral theorem is a generalization of the familiar theoreti'frog, linege
algebra nsserting that o self-adjoint n x n-matrix A mh@d]&génanm
more precisely, there is a diagonal matrix D-and a unitary matii 77 ick
that A= UDU~'. The dingonal coiponents of D aie the cigenvaluss of
A listed in some order, repeagted'facﬂﬁrdlﬁg to their miiltiplicity. A simtla,
diaganalization result is valid for normsl n x n compléx matrices,

In reading this section one should keep.in mind not only the fnite.
dimcnsional case, or the infinite-dimensional case of self-adjoint opeiators
having pure point spectrum, butalso the case of operators liaving continuous
spectrum and no-eigenvalues at all, such as the operator X acting on-£2 of
the unit interval {0, 1] by

(2.7) Xf{t)=tf{t), 0<t<l,

We assume that we are given o normal .operator A acting on a separn-
ble infinite-dimensional Hilbert space H. There is an appropriate version
of the spectral theorem ‘for>operators acting on inseparable spgces, which
we desoribe briefly at the end of the section. However, we point’.out ‘that
operators acting on inseparable Hilbert spaces (in particular, normal ones)
rarcly arise in practice.

1n order to piroperly formulate the spectral theorem we must general-
iz¢ the notion of an orthanormal basis 8o as to.accomincdate . “continuous”
bases, und we must introduce a precise notion of “diagonalizable” operator
relative to this generalized notion of basis.

Consider first the classical notion of orthonormal basis for A This is
a sequence £ = {e,ez,...} of mutually orthogonal unit vectom in A that

have H as thoir closed linear span, Fixing such an '€ we can define a unitary
aperalor W : £ — H as followa:

(2.8) H’}.=$1E1+A282+"', Ae 2,

It is clea;. thul every unitory operator W : 2 — K arises in this way
from & unique orthonormal bagis £ for &, We conclude that specifying o
particular orthonormal basis f, tict

. or H 1is the same as specifying o particular
urislary operelor from € to Y. pecifying o p

Continuing in this vein
A € B(H) that bus each of

(2:9)

» BUppose we are also given a normal operator
the Blven ba.siu vectlors 45 an c]genmhm:

Aeg =apex, k=1,2,....

I follows that the sec : ‘e {,

. Wence of eigenvalues (g4} belongs 1o £°. and o the
ey operstor W : 2 — I of (2.8) we find that the transformed oparate
(U~ ML C0 x ¢ tranafo - ,

B =W-AW € B() is a multiplication Sperator: rmed operator

(BA) = aghg, Ael, k=)12,....
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A acting on H is diagonalized by a given orthonormal
~".p and only if the unilary operator associated with the bosis implements
bosie 'f, yalence between A and a mulliplication operator acling on £2.

ion of diagonalization is inadequate as it stands, since it involves

Tl eritors having pure poiiit spectrum. However, it can be
only norm tural way so as to include the possibility of continuous

mcm-

DerINITION 2.4.1. An operator A acting an a scparable Hilbert space
§f is said to be diagonalizable if there is a (necessarily separable) o-finite
mensure space (X,p), a fanction f € L*(X,u), and o unitary operator
W : LY X, p) = H such that WM, = AW, M, denoting multiplication by

Thus. a" opernlor

(M/€)(z) = f(z)€(x), <z €X, E€L*X,up).

Notice that a diagonalizable operator is necessarily normal, simply be-
couse multiplication operators are-normal. Note, too, that the operator X
of (2.7) is diagonalizable, since it is already a multiplication operator. Some
more subtle examples are described in the exercises. The spectral theorem
asserts that conversely, every normal operator is disgonalizahle. We have
broken the proof into u sequence of three simpler assertions.

LEMMA 2.4.2. Let A}, Ag,... be a finite or infinite sequence of diago-
nalizable operalors acling on respective Hilbert spaces Hy, Ho, . .., satisfying
sup, [|[An)] < oo. Then the direct sum Ay B Ax ® --- is a diagonalizable
operaloron H1 ® A& - - -.

PROOF. This assertion follows from the fact that the countable. direct
sum of o-finite measure spaces is a o-finite mensure space. In. mare detail,
by bypothesis, we tmay find o-finite measure spaces {X., 5, ), functions f, €
L™(Xw,pn), and unitary operators W, : L3(X,.pn) = H.on = 1,2,...
such that

WaM,, = AW, n=12,....
Since A, Is unitarily equivalent to Afj,, our previous work with muiti-
plication operntors implies that the norm of f, € L*(X,, p.) satisfies
“fn “oc = "A,.", hence

sup I fnllee = sup l4all < oo.

Let ¥ = X; U X2U--- be the digjoint union of sets with the obvious
o-nlgebra of subsets and consider the measure u defined on X by

p(E)=m(ENX )+ pa(ENXy) + -

for Borel sets £ € X. The measure j is q-ﬁnilc because caFlu Hn IS
Moreover, there is a uatural identificution of L*(.Y, s} with the direct sum

of L2:-spaces L2(X), ) & L3(Xaz.p2) @ ---. Thus the direct sum of uni-
lary operators W = W) & Wy @ -- - gives rise to & unitury operutor ﬁ'.um
L2(X.,pn) to H), ® Ha @ ---. The unique function f : XN — T satislying
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f 1x.= Ju belongs to L¥(X, p), it determines n bounded m
operator My € B(L¥(X,u)), and the unitary operator W int
and 4y B Ag B ---. Hence Ay & As @ - - - is dingonalizable,

ultiplication
ertwineg M-!

0

LeMMa 2.4.3. Let A be n bounded operator on a sepamble Hilbers tpace
fl and et A be the compler algebra gencrated by A, A®, and the identity,
Then there (v a (finite or infinite) sequerice of nonzerv A-invariant subspaces
Hy, Ha, ... such that:

{iWH=HiaHidd---.
(2} Earh H,, contuins a cyclic vector €, for A: Hyp, = Al 1 = L32,....

Proor. This is a standard exhaustion argnment. By Zorn's lemma we
can find a fnmily of mutually orthogonal nonzero subspaces (Hy, : @ € T} of
H, each of which is A-invariant, each containing a vector £, such that H,
is spanned by AEL,, and that is maximal with respect to.these properties,
Since H is separable, the index set J must be finite or countable, and we
can replace it with o subset of the positive integers if we wish.

It remains only to show that the speces H,; span f. But if they did
not then the orthocomplement K of 3~ H, would be a nonzero A-invarinnt
subspace of H (note that since A is a self-adjoint set of operators, the
orthocumplement of an A-invariant subspace is A-invariant). Picking any
nonzero vector € in K we obtain a nonzero cyclic subspace Kg = AL C K
that can be ndjoined to the family {H,} to contradict maximality. 0

The key step follows:

LEMMA 24.4. Let A be a normal apenitor on ¢ Hilbert space H .and

sssume that ie «-algebro generdted by A and the identily has o cyelic vector.
Then A i3 diagonalizable.

Pnoor. The cyelic vector hypothesis means that.there isa veator £ € H
such that the st of vectoss A€ is dense in H, where A is the s-algebra
generated by A and 1. Fix guch a vector € and let X C C be the spectrumiof
A. .We v’vill flhow that there is a finite mensure u on X with the property that
A is unitarily equivalent to the multiplication operator M € B(L*(X 1)),
({2} = z {2 € X) being the current variable functjon in C(X) C L*(X, ).
Recalling I'.h.u.L the functional caleulus for normal ‘operators provides a »-
homrzm?rphmm J € ClX) » f{A) € B(F), we defiue a linear functional o
on CIX) by p(f) = (f(A)E,€). Since
1Y = a(7 £) = LAY LAY = If (AN > 0,
p 18 u positive linesr funct,

lonal; hence the Riesz-Markov theorem: provi
& unique Galte pusitive Borel measure ppon' X suchlf:iht rem provides

fx =)dita) = (F(A)E,€6),  fe C(X).
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oasider C{X) as 8 subspace of LY(X, u), then C(X) is dense, and for
If we

C(X) we bave
1€ A oA = (G AY AN = (@)

=./.-wf(z)§(z)dﬂ(3)=(f&g).b’(x,p)'

Thus the map f € C(X) J(A)E € H is an isometry of the dense subspace
¢(X) € L3(X,u) onto the subspace {f(A){ : [ € C(X)} C H, which is
dense in H because § is cyclic for the «-algebra generated by A and 1. The
closure of this operator is a unitary operator W : L*(X,u) - H.

It remains to verify that for every f € C(X) we have WA, = f(A)W
(the sssertion-of Lemma 2.4.4 being that this formula holds for f(z) = =,
z € X). Forthat, ix f € C(X). Since C(X) is dense in L2(X,p) it is
enough to check that

WMg = [(A)Wg, g€ C(X).
But for fixed g, WMrg = W(fg) = (f9)(A)E = [(A)g(A)E = f(A)WWg. O

SPECTRAL THEOREM 2.4.5. Every normal operator acling on a separable
Hilbert space is diagonalizable.

PROOF. Let A be the s-algebra generated by A and the identity. By
Lemma 2.4.3 we can decompose H into a finite or countably infinite direct
sum of nonzero subspaces Hy @ H; ® --- such that AH; C H; and the
restriction of A to Hy-hns a cyclic vector, £ = 1,2,.... By Lemma 2.4.4,
the restriction A, of 4 to- Hj is disgonalizable. Since the-decompasition

A _— Al e A2 e P
thibits A as a uniformly bounded orthogonal direct sum of disgonalizable
Operators, Lemma 2.4.2 above implies that A is diagonalizable. O

) RBMABK 2.4.6. Commentls on inacparability. If one insists on general-
hms this form of the spectral theorem so as to, include normal operators
mmﬂ;m'%‘ibﬂrﬂble Hilbert spaces, then it is possible to do so but some
technical changes are necessary.

The definition of disgonalizable operator must be gencralized so as to
allow inseparable measure spaces that are not o-finite. Thus. one says that
an operator A € B(H) is disgonalizable if there is a positive measure space
(X,4), o fupction f € L%(X, i), and a-unitary operator W : L3( X, pu) = H
such that,WAf; = AW. One must replace Lemma 2.4.2 with the assertion
that the direct sum of n uniformly bounded family {A, : a € /} of ding-
onalizable operators is diagonalizable, where / is an index set of arbitrary
cardinality. The proof of that result is similar to the one given, except that
one has to copstruct sincountable direct sums of measure spaces. This re-
qQuires some care but poses no substantial difficuities. No change is required
for the key Lemms 2.4.4, but one must replace Lemma 2.4.3 with the as-
sertion that every normal opecator is a perhaps uncountable direct sum of



88 2. OPERATORS ON HILBERT SPACE

normnl operators having cyclic vectors, Once these preparatings ar

. ¢ made,
the proof of the spectral theorem can be pushed through it general ®

Exercises.

(1) Let X be a Borel space, let f be a bounded compiex-valyed: Barel

function defined on X, and let i dnd v be two.g-finite measittes on

X . The multiplication aperator My defines bounded operators 4 op
L*(X, ) and B on L3(X,v). Assuming that u and v are mutually
absolutely continuous, show that thére is a unitary operator W .
L3 X, ) = L3(X,v) such that WA = BW. Hint: Use the Radon-
Nikodym theorem.

(2) Show that every dingonalizable operator on a separable Hilbert
space is unitarily equivalent to a multiplication operator A{; acting
on LY(X, 1) where {X, ) is a probability space, that is, 8 measure
space for which u(X)= 1.

The following exercises concern the self-adjoint operator A de-
fined on the Hilbert space of bilateral sequences H = £(Z) by

Abn=Ens1+Enn1, nEZ, E€f(Z)

(3) Show that A is disgonalizable by exhibiting an explicit unitary
aperatar W : LX(T,d8/27) = H for which WM; = AW, where f
T — R is the function f{e'’).= 2c088. Deduce that the spectrum
of A is the interval [--2,2] and that the péint spectrum of A is
enipty.

(4) Let U be the operator defined on Z3(T, d8/2r) by

UFe®) = fle™™®), o0<o<onm

Show that U is & unitary operator on L3(T,d9/2n) that satisfies
U? =1, and which commutes with A.

(3} Let B the the sct of all aperators an L*(T,d8/2m) thet have the
form My + Mgl where f,9 € L%(T,d8/2x) and U is the unitary
operator of the preceding exercise. Show that B is s-ingmugiphic to
the C*-algebrs of all 2 x 2 matrices of functions. M3(Bg), wheie. By
is the abelian C*-algebra L%(X, 1), X being the upper halfof the
unit crcle X = TN{z ==z +iy € C: y > 0} dnd s belng the
restriction of the measwe do = df/2r to X.

The l'ollntwin_g exercises ask you to.compare the .operator A to.a

tt:.-elrwdmog:mm B that acts on the Hilbert space L3({-2,2),0), v
g Bue measure on the interval (-2, 2. Th or :

e oy 1 {~2,2]. The operator B is
Bi(z)=zfz), ze[-2,2, fe¢ L£3({-2,92),v).

(8} Show that 8 has epecirum [-2,2],

that it has no point, _
4ud deduce Lhad for every f € el Lo powmt gpectrum,

=2,2} we have {|f{A)}}| = ||f &l
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and B are nol unitarily equivalent. Hint: What is the

mmmutant Of B? .
(8) Show that A is un

2.5 Representations of Banach «-Algebras
\Ve now. discuss some basic facts of representation theory that are best for-
mulated [ very gencral terms.

peFINITION 2.5.1. A Banach +-algebra is a Banach algebra A that is
cudowed with an-involution z — z° satisfying ||z°]| = ||z||, z € A.

Every C*-algebra is, of course, a Banach s-algebra; but we will see many
examples of Banach s-algebras for which the C*-condition ||z°z|| = |iz||*

DEFINITION 2.5.2. A representation of a Banach »-algebra is a homo-
morphism 7 : A —+ B(H) of A into‘the +-algebra of bounded operators on
some Hilbert space satisfying n(z°) = n(z)* for all z € A.

Notice that we have not postulated that representations r are bounded,
but-merely that they are homomorphisms of the complex s-algebra structure.
The set of all representations of A on a fixed Hilbert space H is denoted
rep(A, H). The image #(A) of A under a s-representation is a self-adjoint
subalgebra of B(H) that may or may not be closed in the operator norm. A
representation 7 : A — B(H) is said to be nondegenerule if for every § € H,

#(z)§ =0, YVze A = £=0.

REMARK 2.5.3. A representation @ € rep{A, H) is nondegenerote iff
H = [x(A)H)] is the closed linear span of the set of vectors
r(A)H = {n(z)€:z € A, E€ H).

More generally, letting N, = {€ € H : n(A)f = {0}} be the aull space of
the operator algebra x(A), H decompases into an orthogonal direct sum of
7(A)-Invariant subspaces:

H = N, o [a(A)H)].
See Exercise (1) below. The closed subspace [r(A)H] is called the essential
space of x.

Given two representations m € rep{A, Hy), k = 1,2, there is a natural
notion of the direct sum of representations ) & nz € rep(A, 1 © H2).

m @ m(z) = m(z) & m2(z), € € A.

A subrepresentation of a representation 7 € rep(A, H) is a represcotation
%o € rep(A, Hy) obtaited from # by restricting to a #(A)-invariant subspace
Hg C H as follows:

ro(z) = n(x) fu,€ B(Ho). r€ A

tarily equivalent to B & B.
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Finally, two representations wy € rep(A, He), k = 1,2, are saig. 0 be
unitarily cquivalent {or simply equivalent} if there is & unitary Operatar
W : Hy — Hy'such that Wm(z)W° = ma(x) for-every z ¢ A. 1t 18 cloay
that cquivalent representstions are indistinguishable from each obher,

Thus we may paraphrase Remark 2.5.3 as follows: Every répresentation
r of o Banach s-algebra on a Hilbert space is equivalént Lo the direct gy,
7. & my of & nondegenerate representation 7, with the 2ero fépresentation 0
on some Hitbert space. Thus, the representation theory 6f Banach «aigebras
reduces to the theory of néndegenerate representations.

PropPosITION 2.5.4. Pvery nonunital Banaeh »-algebru. can be embedded
ns a marimal tdeal of codimension 1 in a unital Banack »-algebra for which
1l = 1.

ProoF. Let A be s nonunital Banach »-algebra. The veotorspace AGC
can be made-into a e-algebra A by introduéing the operatiohs

(a,4) - (b, p) = (ab + Ab + 'ﬂa-t Aﬂ)s '_(G,'t\). = (a®, ;)

The element 1 = (0,1) is a unit for A,.and we have (a,)) = a+ Al. Ob-
viously, A iz o maximal ideal of codithension 1 in° A. A Becomes a Banach
-algobra by way of the.norm ||(a, A))| = Jlal|+ X, with respect to-which the
inclusion map of A in A is an isometric s-homoemorphism. n}

The following irplies that representations of Bapach s-algebras are nec-
csgarily bounded. There are many applications of this remarkable result.

THEOREM 2:5.5. Let 7 € rep(A, H) be o representalion of o Bonach
«-algebra A on a Hilber! space H. Then ||n}} < 1.

PROOF. By the preceding remarks, it suffices to-consider the case in
which 7 is nondegenerate,

We deal first with the case in which A bas a unit 1., Because of nonde-
generacy we have (1) = 1 (see Exercise (2), balow). Notice that; for every
a € A, a{x(a)) € o(a). Indeed, i A € C\o(a), then (a—A)~? € A, and since
7(1) =1, w{(a ~ A)~!) is the inverse of w(a) - A. Hence A € C\ g{n(a)).

We show next that ||w(a)l| € (ja|| for every a € A. To see that, we use
the C*-property of the norm in B(H) to write

e(a}? = ir{a)* n(a)]| = llr(a"a)}.

Stuce m{u‘a) is 8 self-ndjoint element

. of B(H), it8 norm agrees with its
spectral radius,

80 that by the preceding paragraph,
irla®al)| = r{n{a"a)) € r{a’a) < le*all < fa"{illal} = [ieif?.
Henee jm(e))) < lall.
Suppose now that A kos 0o unit, and

: let A be its . |
discised in Prapositivn 2.54. The nat upital. extension

ural extansion of x to A is
(e + A1) = n(a) + A1,
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es that w8 0 representation of Aon H. By what was

and since A is isometrically included in A, it
O

ceadily verif

oo proved we have 1) < 1
follows that lix)f < 1.

Exercises.
(1) Let A = A° C B(H) be a self-adjoint algebra of operators on a
Hilbert space, and let
N = (€€ H: A= {0}}

be the null spece of A. Show that the orthogonal complement of
N is the closed linear span of AH = {T€:T € A,£ € H} and' that
both NV and [AH) are A-invariant subspaces.

(2) Let A be a Banach «-algebra with-unit 1, and let r & rep(A, H) be
a representation of A. Show that 7 is nondegenerate iff m(1) = 14.

(3) Let A be a Banach s-algebra. A representation 7 € rep(A4, H) is
said to be cyclic if there is a vector £ € H withi the property that
the set of vectors x(A)¢ is dense in H. Show that a representation
T € rep(A, H) is nondegenerate iff it can be decomposed into a
direct sum of cyclic subrepresentations in the following sense: There
is a family H; C H, i € I, of nonzero subspaces of 7 that are
mutually orthogonal, m(A)-invariant, that sum to A, and such that
for each s € I there is a vector §; € H; with 7(A)§; = H;.

(4) Let A be a Banach «-algebra. A representation * € rep(4, H) is
said to be irreducible if the only closed 7(A)-invariant subspaces of
H are the trivial ones {0} and H. Show that 7 is irreducible iff
the commutant of #(A) consists of scalar multiples of the identity
operator.

(5) Let X be a compact Hausdorff space and let 7 be an irreducible
representation ‘'of the C*-algebra C(X) on a Hilbert space H. Show
I:ll:at. H is one-dimensional and there is a unique point p € X such
that

wf)=f@)1,  feCX).

2.6. Borel Functions of Normal Operators

ut”bﬂﬂwmqlqperntoracﬁpgonnﬂﬂbBrtspmH with spectrum
X C C. We have discussec: how to form continupus functions of V of the
form f{N), f € C(X). We now. show how this functional calculus can be
extended, in n more or less ultimate way, to bounded Borel functions.

Let X be a compact metrizable space. A complex-valued function de-
fined on X is called a Borel function if it is measurnble with respect to

the Borel g-algebra 8 of X, the o-algebra of subsets of X geserated by its
topalogy. The space of all bounded complex-valued: Borel functious on X
is denoted B(X); it is closed in the sup norm aad is a unitul commutative
C*-algebra relative to the paintwise operations and the oatural invelution
f*(p) = f(p). p € X. Cleasly C(X) C B(X). but the diffesenco between
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is saparable, B{X) is typically inseparable; while' C(X) has nontii ﬂaﬂ; ﬁ
jections‘only when X fails to be confected, B{X) Is always generat ed by 1t
projections.

We will ‘show that every representation n € rep{C{.X), H) can be ey
tended in ‘@ particular way to s representation # € rep(B(X), H).

these two C*-algebras is significant. Notice, for example, that while

DEFINITION 2.6.1. A representation m € rep(B(X), H) is called a g.
representation il':fit;hfs the following property: ‘For ‘every unifo rmiy Baunded
sequence i, f2,... EB(X) which converges pointwise to Zero-in 'that

lim fn(?) =0, PpEX,

n—o

the sequence of operators #(f,,) converges strongly to 0,
lim {|x(f-)€l =0. E€H.

n—0o

REMARK2.6.2. It is significant.that because 7 is a representation, we can
replace strong «convergence in the defnition above with weak cosvergence.
To see that the two definitions are equivalent, sippose n € rep(B(X), H)
has the property that for every unifdnmly ‘bounded Séquence f), f2,... that
converges pointwise t0:0, #{f,) couverges weakly to 0. We claim that ris a
o-representation. :Indeed, for fixed £ € H we have

(210) =W = (r()E #(1)E) = (= (f) 7). E) = (w(/" )IE.E).

If f1, f2,... is a bounded sequence converging:pointwise to.0, then f; f(p) =
[/n(p}?, p € X, is also a bounded sequenice converging pointwise to 0, and
bence w{4; fu) =+ O weakly by hypothesis. The identity (2.10) impliés that
w(Jn) — O'strongly, as required.

_THROREM 2.6.3. Let X be o compact metrizable space and let H be a
Hilberl space. Every mondegencrate representation n € rep(C(X). H) ezx-
tends uniquely Lo a o-representation & € rep(B(X), H).

Proor. We deal firgt with uniqueriess, and for that some notation will
be useful, Let, B be the o-algebra of all Bore! sets in X aad let A(X) be the
Banach space of all ¢o

_ mplex-valued Borel measures 1 : B ~ C. An element
of M{X) is 8 funetion g : | # H

#: B — C salisfying u{®) = 0, and for eve uence
of mutually disjoint Barel sels ELE,,..., ’ i

o0
HMEIWEB U ) =Y u(E,),
n=1

where the right side is interpreted as a convergent nibers
For every mneasuyre 1ne M( i Rive Bonn oo

satisfying X) there 1s a smallest positive Borel measure Il

‘ iSH < lul(S), ses,
aud the norm is given by Hull = 1nl(X) < oo
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Given 8 g-representation # that extends 7, fix &, € H and consider the
nen(S) = (F(xs)E, . S €B.
ia a fnitely additive measure because 7 preserves the
I is clear tha" B of muiltiplication-and addition. We'claini: that, in fact,

m?:mmtably additive. To see this, let E), E;,... be a sequence of
Hen disjoint Borel sets with union F = U, E,. We have to show that

mutually
n
peq(F) = h_{gcg He.n(Be).

Letting Fo = By U---U By, we have

[ /]
tealF) = 3 penlBi) = penlF\ Fn) = (#(xm\r, )6 1)-
k=1
Since the sequence of functions f» = xf\f, is.uniformly bounded and tends
to zero pointwise, the right side of the preceding formula must tend to zero
as n — oo because T is o-representation.
We claim next that for every f € B(X) we have

(2.11) FUE ) = L f dpie..

Indeed, (2.11) is true when f = x & is a characteristic function by definition
of y¢,. By taking linear combinations it follows for simple functions f; it
follows in general by an obvious limiting argument, since every function in
B(X) can be uniform!y approximated by a sequence of simple functions (sce
Exercise (1) below).

To prove uniqueness, let # and 7 be two o-represvotations that exteud
the same representation  of C(.X). It suffices to show that for every f €
B(X) and €,7€ H,

(2.12) (#F(1)E n) = (# (€. ).

Notice that (2.12) holds for all f € C(.X) because #(f) = #(f) = ([} in
that case. Consider the measure pg,, and its counterparct ug . for 7. Tking
] € C(X), formulas (2.11) and (2.12) together imply that

d .t=/ df“n
[x! Hén .\.I {n

and hence sig,, = pg, by Lhe uniquencss wscrtion of the Riesz-Markov

theorem on the representation of bounded linesr functionuls ou C(X) in
terms of measures. Applying (2.11) we conclude that for all g € B(X),

(r{g)E, ) = _L gdpgy = f‘. gdpg ., = (T (4)€ u),

and uniquencss is proved.
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Turning now 0. cxistence one simply reverses the Argument as follgmwy
Starting with @ € rep{C(X), H), fix s pair of vectors £, € ¥ and consider
the linenr functional

/€ C(X) m {m(1)En)-

This is a bounded linear functional of norm at most |i€|ljinll. By the Ries,-
Markov theoreni thiere is a unique gg, € M(X) such that

(213) w6 = [ Fdugn, €O,
and moreover, fjueqll < [I€Hlinll. Notice, too, that the map £, v ug, €
M{X) islinéar in § and antiliear in 7.

Fix ‘a fiiiction § € B(X). We dsfine s aperator #(f) € B(H) by
ppealing to the Riesz lemmia far sesquiilinear forms as follows: Since

s [ e

is a bounded sesquilingar form of norm-at most || f{li€ljlin|l, there is a unique
operstor #(f) € B(H) such that

(2.10) FNE) = fx fdpen  EmeH.

Obviously, the operator mapping 7 : C{X) — B(H) is linear and satisfies
IFCIM < Wl for F € B(X). Ttis also clear from the definition (2.13) of the
eASNIEs j1e, and the defining formuln (2.14) for 7 that #(f) = #(f) when
J € C(X). Astraightforward argiiment {which we omit) shows that 7 carries
real-valued ‘functions to self-adjoint *operators, and hence #(f°) = #(f)",
f € B(X).

Thus it remains to.show that # is multiplicative, #{fg) = #{f)#{g), for
J,g € B(X) and that it satiafies the contimiity property of Definition 2.6.1.

To prove the multiplication property, note frat that for every €,n € H

and g € O(X) we have g+ p¢ , = jiyo1e . Indeed, this follows from the fact
that for every f € O(X),

] Toduea = wti0)e.nh = trmtore,m = [, # desara

We claim next that for F ¢ B(X), F

. . ‘Bem = Mg stien- This is a similar
string of identitics, where we note that g it

for 7 € C(X) we have

jxﬂdlf‘ “He) = jx gF disg = fx Fd”‘b‘)(dr = (ii-(F')n(gJe )

= {r(g)€, F#{F)'n) = /x 288¢ 5(ry -



2.8. BOREL FUNCTIONS OF NORMAL OPERATORS 63

‘ X = #{F)*(G), for F,;G € B(X). Indeed
we claim that #(FG) #(F)®(G) '
anuy'd ¢ and chioosing §,1 € H we have

fixiog £ A0
(#FG)E.n) = _/x FGdpen = Ladﬂc.itﬂ-n
= (#(G)E, #(F)’n) = (#(F)*(G), n).

The proof that 7% is a o-representation is a straightforward application of

the bounded convergence theorem. Let Fy, Fa,... be a uniformly bounded
sequence in B(X) éonverging pointwise to 0. For every £, 7 in /{ we have,

I(ﬁ(l“u)f.n)l=l jx Fodptgn] < L |Fol dipsg.

and the right side tends to 0 as n — oo by the bounded convergence theorem,
since |p¢ o] i8 o finite positive measure on X and.|Fy| is a uniformly bounded
sequence of functions tending pointwise to zero. In view of Remark 2.6.2, #
is n o representation of B(X). ]

Applying these results to a normal operator N € B(H) we consider the
continuous functional calculus f € C{o(N)) — f(N). By Theorem 2.6.3
there is a unique o-representation of the algebra B(o(NV)) that extends the
original. This map is also written as if we were applying bounded Borel
functions f € B(o(N)) to the operator to obtain f(N). The properties of
this Borel functional caleulus will' be exploited in the following section.

Exercises.

(1) Show that for every f € B(X) and every ¢ > 0, there is a finite
linear combination of characteristic functions in B(X) (i.e.. a simple

function)

g=C1Xg taxe,t - Feaxe,

such that ||f - gll < . Hint: Cover the range f(.X) € C with a
finely meahed grid and “pull back.”

(2) Let (X, B) be a Borel space. For every o-finite measure u on X let
m, be the representation of B(X) ou L3( X, ;1) defined by

m{N)E(P) = F(P)E(R). € € LI(X, p).

(a) Show that x, I8 a o-representation of B(.X) on L}(X, ). (Ne-
tice that the definition of o-representation mukes good scense

in this more goneral coutext.)

(b) Glven two a-Aanile mewsures 4, v unt (X, B), show that =, and
7, are unltarily equivalent iff ;s and v wre wutually ubsolutely
coltinuous.

(c) Deduce thot n multiplication operater ucting vu tho L2 upncy

of a o-Anite measure is unitarily equivalent to o wultiplication
operator acting on the L? spuce of a finite messure spac.
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2.7. Spectral Measures

We have formulated the spectral theorem in terms of dia
In this section we present an equivalent formulation of the gpectral theoreiy
in trrms of apectral mensures. While this is the more classical form of gy,
spectral theorem, it suffers from certain defects (mostly acsthetic) that aye
associnted with the somewhat peculiar technology of spectral measuses, In
thee dofesise of spectral measures we point ot that they cafn-Provide a very
effoctive tool for dealing with bronder issues, such s the multiplicity theory
of narmal operntors. And there are important reésitlts that aré most cleaily
formulated in terms of spectral mensures. Exampie: Stone's theorem, that
makes the elegant assertion that a strongly contintous one-parameter group
of unitary operators Is the Fourier transform of a spectral measiire on the
real line.

Let us first revisit the idea of diogonalizing a pormal matrix. Let N be
o nortoal operntor acting on a Hilbert space H of finite dimension n. There
i an orthopnnrmal basis ey, ..., ¢, for H consisting of eigenvalues of NV,

Nc;,.=.\ge;,. k=1,....ﬂ.,

gonalizing opetratory,

where Ay, ..., A, are complex pumbers. There may be repetitions among
the Ay, but the set {Ay,...,An} is exactly the spectrum of N.

This decomposition of H into eigenspaces can be reformulated in a basis-
{ree way as follows. For every A € C let H), be the eigenspace

H, = {E E,HiNf‘-:‘-Af}..

The subspaces {H) : A € C} are mutually orthogonal, they sum to #,
encl is invariant under both A und N°, and ) .is nonzevo.iff A €:o(N).
These ebservations can be converted into a structurs) statement .about N
as follows. Let ) be the projection opto Hy. The Ej form a system-of

mutually orthogoual projections in B(H), they sum to 1, By #0 < A€
o(N), and we have

(2.15) N = -}j M- Ey.

Functions of N ean be expressed in a similar way:

INY="%" f(N)-E,.
Aca(N)

What is peculinr here is that these sums have a multiplicative property that
Tulls counter to the inuition of numerical suns,

(Agmfm.z,\) ( Y ata\).m) = T 1NN B

AEo{N) Aea{N}
# cosequence of Lhe fact that the £ ; i ' =
for A g he &, ore projcctions satisfylng £,F, = 0
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formula (2.15) expresses the operator N as a “spectral

lo 'f'y ca::;ch the right side represents the integral of the complex-
" = 2, 2 € o(N), against the projection-valued measure

m function J(z)
E(S)=)Y_E» ScC
AES
ts somewhat awkward appearance, the projection-valued function

Despite } E, (o the projection-valued measure associated with it) contains

Cw

:rlflud information about the operator N. For example, ‘o(N) is the set of
points A for which E) # 0. More significantly, the multiplicity m(\) of an
eigenvalue A € o(IV) is given by

(2.16) m(A) = rankE) = dim H,.

The function m : ¢(N) — N is called the mulliplicity function of the normal
operator N. Tt has these properties: m(A) > 0-for every A € o(N), and

Y m()) =dimH.
AEa({N)

Once one knows the spectrum and the multiplicity function of a normal
operator N on a finite-dimensional Hilbert space, one knows NV up to unitary
equivalence (see Exercise (1) below). There is a natural generalization of
this classification of normal operators to the infinite-dimensional case (see
[2]), but we are not concerned with that here.

Our goal in this section is to point out how the formula (2.15) can be
generalized to normal operators acting on infinite-dimensional Hilbert spaces
by simply, reformnilating the results of the preceding section. Let B denote
the o-algebra of all Borel sets in C. By a spectral measure (on C) we mean
a function £ € B — P(E) € B(H) taking projections as values, such that
P(8) = 0, P(C) = 1, and for every sequence E}, Ea, ... of mutually disjoint
sets, we have

o5
(2.17) P(E\UEU---) =) P(E.)

=l
Tl_ie sum on the right of (2.17) is interpreted as the limit in the strong
opeérator topology of the sequence of:partial sums P(E;)+ -+ P(En). The
fact that this limiy exists is o consequence of the following observations.

PROPOSITION 2.7.1. A spectrul measure P has the following properties:

(1) B, € By = P(E)) £ P(£).
(2) EnF =0 = P(E) L P(F).
(3) For every E, F € B, P(EN F) = P(E)P(F).

Proor. Thg first asscrtion follows from finite additivity of P, together

with the-decompésition F = £ U (F \ E) and the fact that P(F\ £) 2 0.

For (2), wu can write
1 = P{EU(C\ E)) = P(E) + P(C\ E).
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Henee by (1), P(F) € P(C\ E) = 1 - P(E), the latter being the pro
oo PLEYVH2. & F¢ projection

To deduce (3) from (2), one can-write P(E) = P(E N F) + P(E\ F)
P(F} = P(EnF) + P(F\ E), and observe that becrise of (2), P(E N F)-'
ME\F), and P(F\ E} nre mutunily orthogonal projections. 0

Thess: ohacrvations imply that the projections P(E ), (L), ... appear-
ing an the right of {2.17) dre mutually orthogonal, so that the infinite suIn
hins & clear meaning,

Starting now with n spectral-measure P : B — B(H) and a bounded
Borel function f: C — C, we waat to give meaning to the spectral Integral
[ JdP. This is done as follows. For every -pifr of vectors €,1 € H we
can define n complex-valued -measure pug, on C by ue (B} = (P(E)E,n).
Then jig, 18 8 countably additive complex-valued measure on B whose total
varintion is estimated as follows:

Hueall < HEHN,  &me &

Morcover, the map of K x # into the space of measures on C defined by
£.11 —+ gy s linear {n § and antilinear In'y. Thus we can-défine a boundad
sesquilinear form [+, -] on H x # by simiple integration,

[€.9] = /cf dpig 0.
und n straightiorward estimate shows that
€ )l < sup |7l Inll = WAtlollER -

By the Riesz lemma, there Is a unique operator #({f} € B(H) satisfying
e = [ fdugn,  Eme A,

and one has [[r(f)}} < ||fllce. ‘This defines the:operator #({f) as a weak
integral, and we can now interpret it as [ fdP.

More precisely, for every spectral :measure P defined op € and takipg
mm in the set of projections of -B{H} and avery botunded Borel function
J: €~ C there Is a unigue operator: | f -dP"dzﬁned_’"hy

((f “P) E.n> = j;f(z) (Pldz),,m), ¢&neH.

We leave it for the reader to verify
the C*-plgebra B{(C) of all bounde
of the preceding section.

reuired for the dissuasion of oy cussed thew ase more genoral”than

n of bounded normal operalors. However, if o
t;;;m:;ql ;:'n?agm P hox compuet support in the sense i;hﬂb'lhcm ia"n..cm;i.anct
= L with PAC\ K) = 0, then P s sssocisted with o bounded

thut f = [ [ dPis o g-represcntation;of
d Borel funciions an C, using the methods
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_ Gince P is concentrated on K, the function fz)=zis
operatof us follows here with respect to P, and hence

hounded almost everyw
N=/zdP(z)=/ zdP(2)
C K

dofines & bounded normal operator with the property that
218) [1a1dp) = 1), S € B)
Thus, spectral integrals are simply another way of looking at the finctional
calculus for Borel functions.
Indeed, if we turn this around by starting with a bounded normal oper-

stor N € B(H) and asking how to construct its spectral measure P, then
the reply is simply to apply the characteristic functions of Borel sets to N

according to the calciilus of the preceding section:
P(E) = xg(N), E eB.

Because f € B{o(N)) —+ J(N) is a o-representation extending the continu-
ous functional calculus for N, P can be regarded as a spectral measure that
is supported on.o(/N). Again, the preceding formula (2.18) simply provides
a reinterpretation of the extended functional calculus as a spectral integral.

Exercises.

(1) Let Ny € B(H,) and N3 € B(H7) be two. normal operators acting
on finite-dimensional Hilbert spaces Hy, H3. Show that there is a
unitary operator W : 4y — Hj such that WMW ! = Ny if N)
and N3 have the same spectrum and the same multiplicity function.

(2) Calculate the spectra! measure of the multiplication operator X
defined on L3[0, 1] by (X€)(t) = t€(t), 0 < ¢ < 1.

(3) A resolution of the identily is a function A € R — P, € B(H)
from R to the projections on a Hilbert space with the following

properties:
¢ Relative to the strang operator topology,
lijn P& = 0, ﬁm P,\ - 1.

A= —00 A=$+00
o (Right continuity) For evury A € R,
lim P, = P.

p=rAd
Early formulntions of the spectral theorem nude extensive use of
resolutions of the identity. It was gradunlly realized that these ob-
jects are equivalent to spectral mepsures, in much the same way
that Sticltjes iniegrals are equivalent to integrals with respect to
o measure. This exercise is related to the bijective carrespoudence
that exists botween resolutions of the ideutity and spectrul meo-

sures on the real line.
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(8) Consider the Borel space (R,B) of the real-lipe. Gi
spectral measure £ : B — B(H), show that the ﬁmv::; °
Py=E{{~00,\]), \€R,is8 réstﬂ_utiﬁﬂ-‘-ﬁﬁ.thﬁ.'Idehtity o

(b) Given two.spectral measures £, F : B —+ B{H) that give il
to the same resolution of the identity, show that & < . =

2.8. :Gompact ‘Qperators

An operator A on a Hilbert space H' is compact if the image of the unit

ball {A£ : [l€]] < 1} is totally bounded. There is an enormous literatyre
concerning classes of compact operators acting on -Hilbert spaces. In this
section. we sgratch the surface by discussing normal compact operators and
Hilbert-Sehmidt operators.

Compact norinal operators can be diagonalized in the classical sense, in
that there is an orthonormal basis consistinig of eigenvectors. We base this
on the following assertion about “approximate” eigenvectors.

PROPOSITION 2.8B.1. Let N be a nornial operatpr acling on an infinile-
dimensional Hilberi space H. For every eccumulation point A € o(N) there
is en orthonormal sequence £5,&z,... in H such that

nlﬂlga "NE:! - '\Eu" ={.

PROOF. By the Spectral Theorem we may assume that H = L3(X, p)
has been coordinatized by a o-finite measure space and that N = M is
multiplieation by an L function. By Theorem 2.1.4 the spectrum of N is
the essential range A of 7.

Stnce A s an accumulation point of A, we can find & sequence of distinct
poiats An € ‘A that converges to A, For each n choose ¢, > 0 small enough
that €y — 0 nad the digks B, = {z eC: ‘z — ,\,n‘ < 51‘3}1 n=12...,
are mutually disjoint. For cath n the set {p € X : f(p) € D,} bas positive
easure because A, belangs (o the essential range of f; and by o-fniteness
there is a 'subset £, C {p € X : I(p) € D,} of finite positive measure,

n = 1.2,.... Cousidered ns elements of L3(X,u), the characterisiic func-
tions XEJ ’ XEn bee

are mutually orthogonal because the scts Ey, By, ... are
mutually disjoint. Moreover,

= M- xe € 0 = M+ 1An = Axen < (60 + A — M)Xe,.
1t Iollows thay

“(N = }‘}XE:; “ 5. (ﬂn + ‘J‘_;p - A-““XE., “2 - (f.u + ,}.‘u -~ AI)F(E“)IIQ'
und the orthonotmal

1,2,.... Fequence can be taken ss §, = p(En)"Yixg,, n 0
We obtsin the foltowin it
A s g description of compact normal ' '
ul infinite-dimensional separable Hill L 6o pm: mal aperuveTs acting
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N € B(H) be n compact normal operator. Then
4 o(N) is cither finite or has the Jorm {0, A1, Xg, ...}, where

ce of diatinct comipler numbers converging o 0. For each
Hy = (€ € H : N§ = A} is nonzerv and finile-

TﬂBOnEM 2.8-2. L‘c‘
(K3 U(N}! an
(\n) 15 @ SEAUET

o in 7(N) the space

A#
Tl
d'"'::‘;'g: be the projection onto H, . The E\ are mutually orthogonal and

e hove oo
N = ZA*E&.
k=1

the partial sums of the series converging in the operator norm to N. In par-
ticular, there is an orthonormal basis ey, e3,... for H consisting of eigen-
vectors of N.

PROOF. A compact operator on H cannot be invertible; for if it were,
then some open ball about 0 would be totally bounded, a clear absurdity as
ote sees by considering an orthogonal sequence of vectors having the same

norm r > 0. Hence 0 € a(N).
We claim that o(V) \ {0} consists of isolated points. Indeed, for every

accumulation point A € o(N), Proposition 2.8.1 implies that there is an

orthonormal sequence ey, e3,... satisfying ||Ne, — de,|| =@ 0 as n = oo
Since N is compact, ||Nel] = 0 as & — oo (see Exercise (1) below); hence

A= lim [[Aeal| = lim [|Neq = Aeq)) = 0.

It follows that o{N') \ {0} cannol contain accumulation points of o(NV).
Thus a(N) is cither finite or it consists of 0 together with u sequence

AL, Ay, ... of distinct isolated points converging to 0. Cousider Lhe cnso where
o(N} = [0,\, Aq,.. .} is infinite. For cach n = 1,2,..., the characteristic
function u,, = X{.} belongs to C(a(N)), aud we can express the current

variable {(:) = z, : € g(N), as an infinite series
oD
(= ZA§U§
kb

converging uniforvnly in the norm of C(e(V)): indeed, we have
ks V

IC— 3" Mnallow = Il 3 Aemall = sup (Al
k=1 -

k=an+l

which tends to 0 as n —+ 0o. By the properties of the couliuuons functionnl
caleulus it follows that

litny ”N - i.\gﬁ}” = h'inuup [Ag] = U,

-t -+ 30
| Py |
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wheee £, is the projection Ej

= (). Once one has such 5 gor:
. a g
sentation e

oo
N = z A By
k=1

of N, onc easily identifies the range of E; as {£
completes the proof in the case where g{N) is i
spoctrum will be left for the reader.

nfinite. The case of ﬁmt:

|

Turning away from normal operators, let us fix an orthonormal bagig

ej ey,... for H. A Hilbert-Schmid! operator is an operator A on '/ with
the property that

Q0

(2.19) Y AAeq|? < co.

n=I]

As we will sce, Hilbert-Schmidt operators;are not.only bounded,.but. com-
pact. They form an ideal £2 in the C*-algebra K of all compact operators,
and £3? is a Hilbert space in-its own right.

Most (but not all) of the integral operators that we have encountered:are
Hilbert-Schmidt operators, and that is why the theory of Hilbert-Schriidt
operators is important for approaching classical problems involving integzal
equations. While in this hook we have concentrated on the idea of solv-
ing such equations, Hilbert~Schmidt operatgrs enter into many aspects of
operator theory and: functionsl analysis, including the theory of Ganssian
stochastic processes, represcntations:of the carionical commutation and:an-
ticommutation relations of matliematical physics, and the theory:of unitary
representations of locally compact groups.

We firat rephrase the definition of Hilbert-Schmidt -operator so as to
emphasize the role of the trace. R,ecallt,hat an operator A.on H is said to be
pusitive if A is self-adjoint and has nonregative spectrium. This is equivalent
1o the pasertion (A€, €) > 0dor every £ & H, as one capsee i concrete terms

by appealing to'the spectral theorem and Exercise (5) belaw. It follows that
the set B{H)* of all positive operators on H is a cone, being closed ungder
sums and multiplication by aonnegative scalars. For every positive.operator
A we can define un extended real pumber trace A € [0, +00] as follows:

oo
trace A = z‘(Aek.ck),
k=1

':henl . belng an orthunormal basis for & , which for the moment we hold
‘l.X-Ed ]

A varies. It is clear that
(2.90) trace {A + B} = trace A + trace B,
\race (A4) = ) - trace A

lor A, B € B(H)* and -positive

handling sums and products of S e " With the obviows conventious for

extended numbers in (0, +ool.
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pROPOSITION 2.8.3. The trace has the foupwing properties:
(1) trace A°A = trace AA®, Jor any A € B{H).

(2) For B2 0 and U unitary, trace /BU* = trace B.

(3) The trace does nol depend on the choice of basis {e;}.

proor. For (1), consider the double sequence of nonnegative terms
(Aepelt = llep A%eall®, P = 1.2, Summing first on ¢-and then
mp'w o o0 a0
YN HAep e =) lidey|?,
p=1 =1 p=1
while summing in the opposite order gives

o — =
2.2 Hep Aleg)? = 1A%,
=1 p=1 =1
Since the sum of a nonnegative double sequence is independent of the order
of summation, this-proves (1). Assertion (2) follows from it by setting 4 =
UB'? in (1), noting that B = A°A and UBU" = AA".

To prove (3) let [}, fa, ... be another orthonormal basis and let U be the
unique unitary operator-on: H- satisfying Uey = fi for k = 1,2,.... Then
Ji = U’e,, and for every positive operator B, (2) implies

o0 o0
Y (Bfe Ji) = Y _(BU"ei,U*ey) = trace UBU® = trace B,
k=1 k=1

as asserted. a
By (2:20), the set of all positive operators with finite trace is a cone. By
analogy with integration theory, we défine £! to be the linear space spanned
by the positive operators having finite trace. Operators in £' are called
trace class operators. Every trace class operator can be written in the form
A=P -PB+i(A~F),
where P, is positive and has Buite trace. This decomposition is not unigue,

RirE Tl

but the basic properties (2.20) imply that there is a unique linear functional

defined ion £! by
teace A = trace P, — trace P + i{trace P; — trace Py).
Obviously, for every A € £} nnd every orthonarmal basis ;,€z,... We have

o0
traco A = Z(Aeme..).
n=l]

where the series on the right is absolutely convergent. The value trace A of

the sum does, pot depend on the choice of basis.
There is a natural porm on £V that makes It into a Banoch space ( nmn_ﬁb'
heorelic propertics,

Allgr = l:m_ce_lA,'I'),.‘ having many hwportant operator-t c P
[19] for u Fuller development. What is important

und we refer the reader to
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for us here is the rolation between £! and Hilbert~ e
we now describe. e SChIHidt-opemuom'
According to (2.19), A is a Hilbert-Schmidt aperator
trace A*A < oo, equivalently, when A°A € £). The set of g Hilh
Schmidt operators on H is denoted by £2. 1t is clear that 2 is closed- ‘e:i.'t-
multiplication by scalars, and note that it is closed inder addition munwe‘_e]r
Indeed, for any two operators A, B we have the “parallelogram law" '

(2.21) (A+B)'(A+B)+(A-B)(A- B)=2A"A+25B,

from which it follows that 0 < (A + B)*(4+ B) < 24°A+ 288 If b oth
A and B belong to £2, then

trace (A + 8)(A + B) < 2trace A*A 4+ 2trace B* B < oo
hence A+ B € £2.

Thus £? is n complex vector space, which by Proposition 2.8.3 (1) is
closed under the adjoint operntion. That it is a Jeft ideal is an:obvicus
consequence of the defining property (2.19); and since £2 is self-adjoin, it
must be a two-sided ideal.

The operator space £2 has a natural:inner product, defined. as follows.
Corresponding to the polarization formila for sesquilinear forms on a com-

plex vector spuce there is a polarization formula for bounded' operators
A B e B(H):

which

Precisely whep

a
(2.22) 4B"A =Y _i*(A+i*B)" (A +i*B).
k=0
The proof is a similsr computation (see Exercise. (2) below). If both A.and
B belong to £2, then each of the four terins on the right of (2:22) bélongs
to £} hence 50 does B° A, and we have

3
Atrace B*A = Y i* trace (A +#*B)"(A +i*B).

k=0
W follows that one can define an-inner product on £? as follows:
(2'23) (AIB)Q = er B. As A.t B e -Ez-

It te signbficant tha) {his joner e e [
| , inner product space is complete (see Exercise (3)
helow). £2 is therefgre 4 Hilbert space. ’ g (

PUOvOsITION 2.8 4 > . , .
P ' ThTeTR- VEr .- . . d
salisfies JAW? < vrpce A A.EW Hilbert--Schmidt operntor A is compact, an

Puoor
overy unit vy T3 Prave the inequality LI < brace A°A. Indeed, for
1 = . Hence | Aot ~ 2 un orthionoral busis ey, gz, .. slartiig with
vbiain 2 L le,|f? = trace A* 4, and since - s arbitrary we

WA® = “ml?pl“}lc“z < trace A° .
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. every Hilbert-Schmidt operator A is compact, fix an or-
To sec thas SE d for cvery n > 1 let @, be the projection onto

basis €1,€2,. .- N . .
thoﬂomn'l |]nEd by en+l_reﬂ+2'”” ObVlOUSl)'; FII = A(l - Ql'l) 18 a

bspace _
;-i!;:t:_umnk.gwator, and by the preceding paragraph we have
oD
1A = Fall? = |AQqll < trace(QuAAQn) = ) || Aei|*.
k=n+1

The right side tends to 0 as » — oo because Z,, "4‘“!&;"2 < no. Hence
A = limp, F,, is the norm limit of a sequence of finite-rank operators, and is

therefore compact. O

ExAMPLE 2.8.5. Hilbert~Schmidl integral operators. Let (X,u) be a
(separable) o-finite measure space and let £ € L2(X x X, u x 1) be a square-
integrable function of two variables on X. We want to define an integral
operator A on L?(X, ) by way of

(2.24) Af(z) = /x k(z.v)E(y)duly). €€ B*(X.p)

but there are several things that have to be checked.
In the first place, since

j k(z. )2 dua(z)dply) < oo,
XxX

the Fubini theorem implies that for almost every = € X. (du) the section
k(z,-) belongs to L2(X,dy), and for such z the function y - k(z, 4)E(y)
belongs to L'(X, ). This implies that the integral in (2.24) is well defined
for almost every z, and writing its value as A£(z), we have the estimate

A£(z)) < L Ik (z, w)lI€(w)] duty).

Moreover, another application of Fubini's theorem implies that for every
n € L3(X, u) we have

[ 1@ dutzy < [ Ik la@IE) du(z)duto).
X X xX

which by the Schwarz inequality is dominated by

1/2
&l ( fx N |n(=)|=|em|’dp{r)du(y)) = IklENlllz

where {jk|| denotes the uormn of & as an clement of LAX x X, px ).
It follows that formyln (2.24) defines a linear operator A ou L*(.X, pu)

satisfying [(A€.n)| < NkIENlinliz for every E.n € L3(X,u). und heuce
IA]L < Yk,
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Lot us now ealculate trace A*A. Chinose an ort
for LM X, dp). For every m,n = 1,2,..., we have

(Aten . ) = ]‘, At {2)én(z) dptz)

honormal bagjs €l ey,

- ﬂ Mz 0enelem(y) dus(u)date),

Writiog tmn{r, ¥) = ea(r)Bn(y), we find that {upm, : m,n = L2,...} isan
arthonorianl basia for L%(X x X, 4 x g1}, and the preceding formula becomes

‘Aem,ﬂn) = (ks umn)n

the inner product on the right being that of L3(X =< X, u x #). It follows
that trace A A {5 given by

i lAem(l* = f: f‘,l(ﬂcm.e,.n’ =3 3 1tk uma)? = JIkIf2,

m=D m=0 n=0 rn=0 n={0
We anmmnarize the results of this discussion as follows:

ProrosiTION 2.8.8. Lel (X,pn) be a separable o-finite measure space.
For euery function k € LA X x X, p x ji) there is a unique bounded operaior
Ay on LA X, ) satisfying

Autlz) = fx Kz, e dul), €€ LHX, ).

The map k — Ay is au isomeiric isomorphism of the Hilbert space L3 X x
X.p x p} unto the Hilbert space L2 of all Hilbert-Schmidt ‘operators on
L3 X, ).

Exearcises

(1} Let Abon compact operaior on 8 Hilbert space #. Show that l‘or
every sequence of mutually orthogonal unit vectors £,8,... €' H

we have
lim f|AL,|| = 0.

R~

Hiut: Consider the decrensing sequence of projections: £, -defined
by the decreasing sequence of closed subspaces [€n &gt Enzr - Ji
n=1,2,....

(2) Lt e4,e9,... be oy orthonorma) besis for a Hilbert space / and
let A € B(H). Show that A is compact 1

i (1 - E.A(L - E M|l =0,

h=—tos

' whure £, denotes the projection onto epun{ey, ..., e,}.
(3) Verify the pulurization formula for hounded operators-on o Hilbert
spnce ff-
3
1B°A= %" (A +~s’*B) (A.-t- a‘"B.)‘.
k=0
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7 = (A, A);/? for every Hilbert-Schrnidt operator A.
1, Az, ... be a sequence in L2 that satisfies

fim ||Am — Anli2 = 0.
r13,A=00

) Let [|Al
(1) AP

Show that there is an operator A € B(H) such that {4, —

Al = 0 as n — oo.
(b) Show that L£? is a Hilbert space relative to the inner product

(2.23).
(5) Show that a multiplication operator M is self-adjoint and has non-
negative spectrum iff (M£,£) > 0 for every £ € L*(X, ).

2.9. Adjoining a Unit to a C°-Algebra

We have discussed the procedure of adjoining a unit to a nonunital Banach
algebrn so a8 to obtain a unital one. Proposition 2.5.4 describes the corre-
sponding procedure for the category of Banach s-algebras. If ane applies the
latter to a nonunital C*-algebra such as the compact operators X C B(H),
the result is a unital Banach s-algebra, but its norm fails to satisfy the C*
condition ||z°z|| = ||z||2. Fortunately, one can always renorm this unital-
ization so that it becomes a C"-algebra, without changing the norm on the
:":I:Iw representing the original algebra, in a unique way. The details are as
5.

Let A be a C*-algebra without unit and let L : A — B(A) be the left
regular representation of A, in which L; represents left multiplication by
Z, Z € A. For any Banach algebra, L is a homomorphism of the algebra
structure of A such that |[L || < ||z|| for every z € A. Let A® denote the set
of operators on A4 given by

A={L,+Al:a€ A, A€C}.

Then A€ is a complex algebra with unit, and we may define an involution in
A* by (L, +A1)* = L, +Al, a € A, A € C. The.operator norm determines
& norm on A€, which makes it into a normed algebra. Moreover, the natural
map 7 : A — A® defined by n(a) = L. is a +-homomorphism satisfying
ma) =0 =» a=0, a € A. We will show that (a) thete is a C*-algebra
norm on A° and (b) with respect to that norm, ® is an isometry.

REMARK 2.9.1. Suppose one is given a Bansch algebra A that is also
endowed with an involution » satisfying [lz°z|] > {j=||? for all z € A. '1_'heu
A is a C*-plgebra: |jzf|? = |lz°z), = € A. To see this, note that the given
inequality implies that [z))? < llz°zll < l=* - llzl, so that [z < |l=*]] for
all z € A. By replacing z with z° wo obtaln the opposite inequality; hence
lizll = z*]|. 1t follows that Jlx°z|| < |l=*)| - ll=ll = llz||?, providing the athor
half of the asserted equality.

PROPOSITION 2.9.2. The involution in A® satisfies | XX = (IX I? for
every X € A€, and A? is closed in the operator norm of B(A). hence 1 13
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a unital C"-aigebra. Moreover, the requlnr representation is an tsometyip
+ -ispmorphisin- of A onto e marimal ideal of codimension one in Az,

Proor: Notice first that [|Lall = fla]] for every a € A. Indeed, < is trye
for aiy Banach algebra, and the epposite inequality folltws for an eletmen
¢ of norin 1 bécause

IZall 2 liLala*) = Jaa®]| = lle*|? = Jja]j® = 1.

The set {L, : a € A} Is obviously an ideal in A® of cadimension at most
one. If the codimension were zero, then the identity dperator would have
theformn L} for some clement f € A; that witld -im_ply’ J wos a urnit for A,
covitrary 3o bypothesis. Hence {L, : a € A} bas codimension one. Since £
is Ao isometry, this jdeal must be closed in the operator norm-of B(A}; and
since -A* is obtaitied from this Jdeal by adjdtiing the one-dimensional space
spannedtby.1, it follows that A% must alsp be.norm closed.

It remains to show that the Involution in. A® satisfies [ XX = | X]2.
By Remark 2:8.1, it is enough.to verify the inequality |X)|2 < [[X°X) for
X =L,4 Al in A% For such an X, we have

IX1? = sup [[(La + MBI = sup llab + AbjJ2

flsfi <1 i<

= sup ||{ab+ Ab)*{ob+ Ab)J) = sup [b(X°X(b)})
Bhj<1 o)<

< sup {X°X{b)| < XX
i<

O

The Iollowing result asserts that C*-algebray have a remackable property
of rigidity that is not shared by other types of Banach s-algebras.

PROPOSITION 2.8.3. Every s-homoinorphism w : A — B of C* -algeliras
has norn at mast \. If % has trivied kernel, then it is an tyomelry.

ProoF. Suppose first that 4 has a unit 1. By passing from B to the
closure of the »subalgebra w(A) i tiecessury, we may assume that w{A) is
dense in 8. In this case, 7(1,4) i8 the unit 1g of B. Thus we may argue
a8 wc did for nondegenerate representations. For example, since 7 must
wep wvertible elements of A o invertible elements of ‘B, it follows that
a{x(c)) C o(z} lor every clement » € A. Corollary 2 of Theorem 2.2.4

unplies that for self-adioint elements 7 € A we have
w2 = r(n(z)) < r(z) = ).
60 that for genern) olemnents » € A we have

Wot)® =l )l = flmie2p) < fovep = [l
¥, n addition, has irivinl keruel, th i
. amn L% * _ ’ LI we Clﬂlln trh!.ll L -
’;:;‘_ '{Vutb‘ T € A. As ubove, this reduca to khe case whure :!:l T-—Erj:y ks Jifff-!
joun; aud by Corollary 2 of Theorem 224 t iy enough to show thut
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ame spectrum when z = z*. We have already seen

. the opposite inclusion; suppose that A is a point
that a(ﬂ(g g g'nﬁx;zotf:;laﬂs tgpﬁ(-ar(z)). There is 8: conﬁinum!s fum:t.iop
o olz) thot 408 Wt 1 vanishes on-o{n(z)) and J(A) # 0. Since f = 0
f:9t2) 1}, we st have f(w(z)) = 0. Notice that f(w(zx})) = (f(z)) (this
aalnl) e polynomisl, sad it follows for general contimtous f by
s abvi? the Weiorstrass approximation theorem and the previously

i #lz) bove Lae ¢

tion of . | . '
m::l;l:l?s[:f;i fact that 7 is a bounded linesr map:of A to B). Bata{f{z)) =0
- 0 because v has trivial kernel; in turn, f(z) = 0 implies

. anlies that f{z) = | .
:glapt f=0 on oz), contradicting !;hg_fant that f(A)+# D.
hat A kies no unit and-let A% be the unital extension of A,

Now nssume LD ‘ . Lt
identifying A with its image in A%. By adjoining » unit to B if necessary,

ae mny assume that -B'has a unit 1g. One may verify directly that the map
#: At = B defined by
#{a+ A1) = m{a) + Alg

is 0 e-homomorphismn carrying the unit of A® to 1g. The argument above
implies that [|n]] < ||7]] € 1. Finally, assuming that = is one-to-one, we
claim that i is one-to-one. For if ¢ € A and A # 0 is a scalar for which
rfa) 4 Alg = w{a+ Al) = 0, set f = ~A"ta & A. Since x{f) = 1g, #{/)
is a unit for n{A), and since 7 has trivial kernel, [ must: be s unit for A,
contrary to hypothesis, Thus n{a) + Mg =0 = A=0and ¢ =0, and
thus ¥ is one-to-one as psserted. The preceding paragraphs imply that # is
tsowetric; hence 7 is isometric. 0

COROLLARY 1. Let A be a complex algebra. with involution, If there i
" norm on A that makes it into a C*-algebra, then that norm is uaique.

Proor. Let || - ||, and || - [z be two (complete) Banach algebta torms
on A satisfying |lz"x|ly = Wo||7 for z € A, nnd let Ay be the algebra A
congidered as a C'"-nlgebra in cach norm respectively, & = L, 2. The identity
map of A cun be regarded as a «-isomorphism of A; ante A;. By Proposition
2.9.3 this mop must be an isgmetry; beuce [|z|) = [[zflz forallz e A O

CorouLaRy 2. Lot A be a nanusital C*-wlgebra, let r: A — A€ be the
natural map of A into its unitallzntion, and endow A% with its (-norm.
Then 7 is an isometric wisomorphism of A onto nn ideal of cadimension |

in A%,

Exercisus.

{1) Lot A be a nonunital C*-algebrn and let 7 : A —» A*® be the natural
wap of A into lts unitalization. Considering /¢ as o C'*-algebrs,
suppose that there 18 ap sometric —homowarphlsm o @ A = B
of A into aupther unitnl C*-algebra B such thut a(A) s an idenl

of codimonsion | in B. Show thnt thers is o unigue isomctiic o
isotuorphism 8 : A — B such that foxw = 0.
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(2) Let X be the C"-algebra of compact operators an a Hilbert space
H. Shaw that the space of operators (A1 + K : A e C, & €K} is
aC*-algebra »-isomorphic ta K*.

(3) Let X be a compact Hausdorff space and let F be a proper-eloseq
subset of X. Let A be the ideal of all functiohs f ¢ C’(}{) that
vanish throughout F, f(p) =0, p'€ F. Note that A is a C*-aigebra
in its own right.

(a) ‘Show that A ‘has a unit il and only if F la both closed ang

opeR.

{b) Assuming that F is not open, identify the unitalization of A
in contcrete terms by exhibiting a coiapact Hausdorfl space ¥
such that A® = C(Y'), déscribing the precise relationship of ¥
té X and F.

2.10. ‘Quotients of C*-Algebras

In order to discuss compact perturbations ‘of operators on: a Hilbert space
oue must bring in-Lbe Calkin algebra {the C*-algebra:B(H)/K obtained by
passing to the quotient modulo compact operators), and that reqiiires some
basic results sbout the formation of-quotients of C*-algeliras. We work out
the relevant material in this section, in a general setting.

Throughout, A will denote a C"-algebra that veed not.contain a unit.
When no unit is present there is an eflective substitute, called an approni-
male unil. More precisely, an approximate unit for A is 8 net {e5 : A € I}
indexed by an increasing directed set J {which peed not be the positive
integers M and which need not even be countable) that has the following
properties:

(1) ey =¢j and o(ey) C 0, 1).

(2) Bmy_ o flzes — 2} = 0, for every x € A
The meaning of the second assertion of (1) requires clarification, since our
discussion of spectra hes so (ar been Limited 10 ‘unital Banach algebras and
vn}tal ‘C"-g.lgebms- The spectinun of an clement z of 8 nonunital C*-algebra
A i defined by embedding A in its unitilization 4% o(z) is then well defined
by “m‘mdﬂmgg £ 1o be an element of A¢. The spectrum of an element of o
lzzwoc -algebra is 2 compact set of complex nunbers which necessarily

Significuntly, approximate units exist in arbi
: _‘ trary C*-algebras (see The-
orem 1.8.2 of (2}, for example); but all we reywire here is the following:
LEMMA 2,101, Lt A . ' ‘
in A, For evens sjurct A bz ¢ C’-algebra and let J be g closed left ideal

ALz € J there i1 q : i
elenents of J such that alen) C 0.1} uudacm:cum £1,€3,... of self-adjoint

ﬂ!_i_'ngo l['rbn -~ 3?“ =1{.
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. . oo unit to. A If necessary, .we can assums[! that. Ais
prooF- BY ;ﬂ?ﬁ% the given element.z i3 self-adjdint, and define

ol Suppwe . ¢
wiah PP (1 4 na?)t = o), M=
f,, being 7152

te R

L) = T
et fn Is continuous and vanishes at the origin, e, belongs to the closed
—— he positive powers of z, hience e, € J. Moreaver, since

; f th .
gﬂ :a;,,g;&; f fir all 2 € R, we have o(ey ) C [0,1).
~ Wriling '

and using the fact that 1 — f,(¢) = 1/{1 + nt?), we find that
A1 - en) = (14127 = ZngP(L +ns)

has norm at most 1/n. Thus §|z2(1 — e,)|| — 0 es n ~» oo, and (2} is proved

for the case ° = L.
In the genersl case, we apply the preceding paragraph to the self-adjoint

element r*x € J to find a sequence of self-adjofnt elements e¢,, € J satisfying
o{ea) € [0.1), for which ||x*z — z"ze,)] —+ 0 a8 n — oo. In this case we have

Iz — zeall® = {1 — en)="2(1 — &n)]| < [fz°=(1 ~ ea)l,
and (2} follows because the right side tends to 0 as n. — oo.
THEOREM 2.10.2. Bvery closed ideal in p C*-ilgebra is self-adjoint.

0

Proor. Lot J be a closed ldeal in a C*-algebra A and choose an-element
r € J. We have to show that z* € J. By Lammn (2.10.1) there is n sequence
of sell-adjaint, clements ey, ey, ... in J such that xe, converges ln poriu to x
a8 n — o0, Taking adjoints we find that e,x" converges to x°; since €42° € J
it follows that z* € J = J. O

Suppose now that we are given a closed ideal J in & C*-algebra 4. W
_form the quoticnt Banach algebra us i Sectlon 1.8. Since J* o= J, wg e
Introduce an antilineur mapping on coseta by

(z+J) =2"+J, £ € A,
and this defines an involution of the quotient algebra A/J.
THEOREM 2.10.3. The involutivn above makea A/J inlo o C*-ulygebru.

ProoF; It suffices to show that for every clemewt & A the coset 2 =
r + J satisfies ([#]]? < Jj#"#). To prave this, consider the follawing sei of

elements of J:
E = {c e J:e* =e,a(e)C ‘01 1”
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We ciaim that for every = € A,
(2.25) Nzl = c!g}:_ [z — zelj.

Indecd, the inequality X is clear from the fact that ze € J for everyeg g
For the apposite ineqiiality, fix an element & € J and choose a sequence of
elements ey ez, . .. satisfying the conditions of Lemma 2.10.1 with keo < b
Then '

(z + k}1 — en) = (z — zen) + (k — ke,).

The second term on the right tends to0 as n — oo, and since |z + k|| >
I(x + 232 — e,)|| for every n, we have N
240 > liminf = - zea]) > inf iz - zel.

If we now take the infimum over all & € J, we obtain

[0 = uf =+ kl| 2 inf = — zel,

and formula (2.25) is proved.
To see that {|z[|* < ||2° %), 6x = and apply (2.25) as follows:
. 2= . - 2 -~ % - » -
217 = g flz ~ ze? = 5af (1~ e)z"z(1 - )}

< Inf = z(1— &)} = fjz"z + J| = l&" 2.

0

THEOREM 2.10.4. Let A and B be C*-algebros and let 7 : A — B be

a s-homomarphism. Then w(A) is a C*-subulgebrm of B, and the nalural
promotion of n,

7:Afkerw — B,

i8 an tsomeiric »-isomorphism of Al kevar onto w(A).

PROOF. The map ¥ : Afkern ~ B is a »homomorphism having ker-
fljel {0} g Since .A{h_:m Is 8 C"-algebra Proposition 2,9.3 implies that & 1s
sometsic. Hence its range #{A) = #(A/kern) is norm-closed in B. 0

Exercises.

(1) Ley ;{Chcz,...} be an
spuce H, and ot E,, ta
Show that an aperator

onhonc_n:mui basis for u separable Hilbert
the projection on Lhe span of {e),....ea}.
T € B{H) is compner iff

Jlun T~ TE,| = o,

and Aeduce . 1 = .
C"-algehr?glm {E.:n e N} is an approximuute unit (or thie
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be a unitary operator on & Hilbert space H. Then o(U) C T,
and hence there is 2 unique representatiaq- pE rep(Q(T), ,f[) satis-
tying (/) = J(U) for f € C(T). [t?qptify ker p as an idenl in C(T),
identify the quotient C(T)/kerp in concrete terms os a commu-
wative C -nlgebra, and similarly describe the natural factorization

p= f;o T, where
7 : C(T) = C(T)/ kerp
is the natural map onto the quotient C*-algebra.

(2) Let U

The remaining exercises relate to the Stone-Coch compactification
of the real line, and of more general locally compact Hausdorff
spaces. Let Cy(R) be the space of all bounded: continuous complex-
valued functions of a real variable.

(3) Show thal there is a compact Hausdorff space SR and an isometric
«-Isomorphism of Cp(R) onto C(AR). (Hint: Cb(R) is n unital C*-
algebra. You must be explicit about this Isomorphism or you will
have trouble later on.)

(4) For every t € R, show that there is a (ruturnily defined) point
! € AR, und that the map ¢t — { is & homeomorphism of R onto a
dense subspace of GR.

The space SR is called the Stone-Cech compactificatiou of the
real line R.

(5) Identifying R with its image in R, the subspace AR \ R is called
the corona of R. Show that the corona is closed (and hence, R is nn
opcen subset of SR). Hint: For which points p € AR does evaluation
at p vanish on the ideal Cp(R) C Cp(R)?

(6) Deduce that the quoticnt C*-algebra Co(R}/Co(R) iy sometrically
isomorphic to C(GR \ R).

A compactification of R I8 u pair (¢, Y) where V is o compact
Hausdorff space and ¢ : R — Y is u contibuous mnp such that
¢(R) isdense in Y.

(7) Show that (¢t — ¢, AR) i5 & universal compactification of R in the
following sense: If (9, Y) is any compactification of R, then there
I5 a unique exteusion of ¢ : R — ¥ to a continuous surjection
& : AR — Y. Hint: The map ¢ induces o -isomorphisn of c({Y)
onlo & unital C*-subalgebra of Cy(R).

Your proof above extends easily to give n more genural thevrein, in
which R is replaced by any lacally compoct npsicorspact Hausdorlf
space X (such us R", Z°, or an open mnnifuld), aud vue obtains o
universal compuctification . called tho Stone-Cuech compactilici-
tiog of X. Furmulate Lhis theorem for yoursell.






CHAPTER 3

gymptotics: Compact Perturbations and

A
Fredholm Theory

modulo compart perturbations should be regarded as a
study of the “asymptotic” properties of operators. After making this vague
potion more precise in the context of Hilbert space operators, we take up
the general theory of compact and Fredholm operators acting on Banach
spaces and discuss a remarkable asymptotic invariaot, the Fredholm index.

3.1. The Calkin Algebra

Let A be a separable Hilbert space and let X be the C*-algebra of all
compact operators on H. We have seen that X is a closed ideal in B{(H).
The quotient C*-algebra C = B(H)/K is called the Calkin algebra. The
Calkin algebra is important because it is the repository of all asymptotic
information about operators on . The purpose of this section is to discuss
this aspect of operator theory in preparation for the more precise results to

follow.
Let us begin in a simpler, commutative, context. A bounded sequence

z = (z1,23,...) of complex numbers is an element of the C*-algebra £,
w!lere addition, scalar multiplication, and multiplication are defined point-
wise, and the norm is the usual one:

lI=ljoe = sUP |2Zn]-
n>]

Operator theory

We want to discuss properties of the sequence r that depend only on the
behavior of the sequence at infinity, for example, the notion of s convergent
sequence. Such properties can be expressed in terms' of certain functions
defined on all of £, such as

lmsup [za| = lm (sup{lzal, |n+1ls|Zaszl, .- D
n=+o0 L

Other examples are the limit inferior and the limit superior. of the sequeuce of
real parts Rz, of the components of r. Ib particular, a8 sequence I COUVErEes

if and only if
limsup Rz, = liminf Rz, and LmsupIz, = IL%! Qz,.
A= Q0

n—o2 100G
One can formalize the ides of ap asywmptotic invariant a8 follows. l..nt us
say that a function ¢ : £€° — C is asymplatic if it ia coptinuous relative to
the norm topology of £%° and has the property tbat for any two sequences

[
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r.yp € ™ lor which imyaos |2n ~ yal = 0, one has bz} = ). N

that. we do not require that ¢ be a linenr functional: in fact, man ?’t.lco
fisportant asymptotic propertles of sequences, sach as the example: :b' the
are nonlinear. Ove,

The proper domain Jor asymptotic functions is the quotient o

-tlgehy
> Jey. More precisely, consider the space cg of all saquences ¢ t;hal:'cun%urg:
tn 2e10.

lim Tp = 0.
=20

Here cy in n closed ideal in £2°, and the quotient £°/cp is a commutative
C'*-algebra, whose Geliand spectrum is identlfied with the corons AN\ N of
thee Cech compactification of N. Notice that by their. definition, esymptotic
functions ¢ : £° — C promote naturnlly to continuous functions

¢:6%cg—C

by way of $(z + cy) = d(z). Conversely, every continuous complex-valued

function defined on £°°/cg is associated with an asymptotic function defined
on £*,

These remarks show that the asymptatic properties of sequences are
ticd to the quotient C*-slgebra /¢, or equivalently, to the f@ﬁfﬁﬁ#ala;qi:e
OGN\ N. The latter is 1 very mysterious object: It is a compact Hausc!orﬂ'
spuce withont isalated points, but whose topoélogy is so large that ﬂg;:g?mt
p of N\ N can be approached with a sequernce py,pz, ... of distinet points
of SNA\N. In particiilar, it is not possible to realize this space as a slibjsﬂtof
nny metric space. Thus one does not appraach. the analysis of asymptotlc
properties by analyzing SM\ M a5 & topological space, but rather by deling
directly with concrete properties of the quotient C*-algebra £ fep.

Turning uow tu operator theory, the noncommitative counterpart. of
35 the algebra B{A) of all bounded operators on a separable Irifinite-
dimensional ‘Hilbert space . Let us introduce coordifates in H-by chooslpg

un orthonormal basis {e(,e3,...}. Let £, be the projection of H-onto the

n-dimensionnl space spaaned by.ey,...,e,. The sequence B, is incrensing
10 the sense that E, < E,4y, and we have

lim E,=1

18y T =)

g operator topology of B(H). Chogse an operator A €
its matrix (g, ;) relative to this basis:

relative to the stron
B and consider

ti; = {Aey,e;), i,j=1,2,....
Notice that the matrix of (1 -
rrtphu.:lr.ng the ﬁiml i ruws and columns. of (ay;) with zeros and:leaving the
retsining eotries - Moreovur, the result arcisn (0% F Qrnps,
tuplies that A is compoct. il wille of Bxerclee (2) of Siction 2.8

Eq)A{l — Eq) is obtained from (6,;) by

Jim (2 - E.)AQ2 ~ E,)|| = 0,
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, operators in B(H} becomes the noncommuta-
den! K of oo cp of all null-convergent sequences in £,

Ths the | the ideal
rive erpart of consider asymptotic invariants of operators. For ex-

Sim“;ﬁy' o ":gau a continuous function ¢ : B(H) — C with the
ample, ¢ that #(A) = ¢(B) whenever A — B is compact. As before, such a
£ ipction promotes naturally to a continuous: function on the Calkin algebra
é: B(H)/K =+ C,

and cvery CONLInUOus complex function defined on the Calkin algebra arises
in this way from an asymptotic function defined on B(H).

The most obvious example of an asymptotic invariant of operators A €
B(A) Is their coset norm it the Calkin algebra,

A+ K:" = nlggo "(’1 - En)A(1 - En)ll,

corresponding to the coset norm of sequences € £,

“z +Co" = nl-.-lﬂo “(In. Tn+l:eTns2s--- )"m-

Another example is the essential spectrum, or more specifically the essential
spectral radius,
re(A) = sup{|)| : A € 0(T)}-

Further examples are described in the Exercises.

Exercises. These exercises concern Banach limits and their noncom-
mutative counterparts. Let £ = {°(N) denote the Bannch space of all
bounded sequences of complex numbers a = (g, : n > 1), with the sup
norin. We regard £° as a commutative C*-algebra with unit 1 = (1,1.1,...)
relative to the pointwise operations. Let T be the linear operator defined on
£ by translating one step to the left and discarding the initial compouoent:

(Ta}ﬂ=aﬂ+ll n=1l'21""
A Banach limit is a linear functionnl A on £ satisfying [Al] = A(1) = 1,
that is translation-invariant in the sense that A{Te) = A(a), o € £=. For
the following exercises, A will denote & Banach limit.
(1) Show that A is a positive lincar functional in the sense that
6, >0, n=12,... = Ala) 2 0.
(2) Show Lhat for every realvalued sequence a € £,
liminfa,, < Ala) < limsupa,,
n>1 n>l

lim,—, oo Un Whenever a is a (complex)

t A =
and deduce that A(a) £° and k € o,

convergent sequence in c; in particular, forevery b €
A(b + &) = A(b).
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(3} For n=1,2,..., let &, be-the linear functional gn g defined

2y + a2+ - +ay by
n J aE >,

Then 5 obviously satisfies |jonll = on(1) = 1. By estimat:

norm, Shaw that imy,_oo [lon 0T — 64| = 0. ng the

(4) (Existence of Bunach.limits) For every n = 1,2,..., let K, be the
closure (inthe weak®-topology of the-dual of £%°) of the set of lineay
functionals {on,0n+1,0n42,...}. Show that N, K, %0, and tha
every linear fiffictional in this intérséction is & Banach limit,

oaq{0) =

In the remaining exercises, you. will-consider “oncommutative”
Banech litnits, as linear functionals on thé noncommutative coan.
terpart.of £, Let ej, €z,... be an orthonoimal basis for a Hilbent
space -H, let S € B(H) be the-unilatersl shift associated with this
orthonormal basis by requiring Se, = €n41, 8 = 1,2,..., and let
A be a Banach limit. Define & bounded linear functional p an
B(H) as follows: p{A) = Afa), where @ = (a,) is the sequence
an = {Aeq.6q), 7 = 1,2,.... It is obvious that p is a positive
linear functicnal in the sense that A >0 = p(A) >0, ond of
conrse p(1) = 1.

(5) Show that p{K) = 0 for every compact operator K.

For the last exercise, it may belp to compare the matrix of ao
operator A (relative to a/fixed arthonormal basis (e,,)) to the matrix
of its kth “translate” S*¥*AS*, noting that the latter is obtained
fromithe matrix (g, ) of 4 by deleting the first k rows and columns

of {¢mn) and repositioning the result. How is the miatrix of S*AS*
related to (amp)?

(6) Show that p(S*AS) = p(A) and p(SAS*) = p(A), for every opern-
tor A€ B{H).

3.2. Riesz Theory of Compact Operators

Lev E be a complex Bansch space. An operator T € B(E) is said to.be

compact if the imuge of the wnit ball {7 : < 1) of £ has com
closure relative 1o the A7¢ - el < 1) of | compact

orm topol : ‘ 11 ¢
o Esls donoed e T pology of E. The set of all compact operators
ince bounderd sets in finite-dimensional Banach
) Lo . SPOCEs are precompoct,
?mﬁriiiwir;: operaor waust be compact. The result of Exercise (3) below
plics K(E) is a norm-cloved two-sided idea] In B(£). In particular,

suy sperator T that can be norg r . - :
OPLralors F,in the seuse that 100 1y L0 BY 0 sequence of finite-rank

Y E is n Hilbert upace, then K(E) 1 o > 088 1 = oo, gust be compact.
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Hilpert spsces. However, the reader should keep-in mind that
gpenator 08 EUEC i mation-property can: fail-for Banach spaces: K(E)
‘hi’:: ':s:ﬂqy,];grgm' then the ndrm closure of the finite-rank operators.
cuf U5 & ‘
peMaRk 3.2:1. K ernels and cokernels: We intraduce some terminology
. will be-useful throughout. the sequel. Suppose that A € B(E)is a
buzmﬂﬂd operator that, for simplicity, we assun‘je-hnsldoBed range. There
ore two natural Banach spaces sseociated withi A; namely, its kernel and
cokerne
kerA={z € E: Az =0}, coker A = E/AE.

The notion of cokernel bears some elaboration. An elementary result from
the theory ‘'of Banach- spaces asserts that there is a natural isomorphism
between the annihilator AE+ C E' of AF-and the dual’space of B/AE. On
the other hand, the annihilator of AE is precisely the kernel of the operator
adjeint A’ € B(E') of A. "Thus we conclude that

dim coker A = dimker A’

at lesst for every operator A € B(FE) whose range is closed and of finite
codimengion in E.

For such operators the two.integers dim ker A and.dim coker A provide
important information about solutions of linear equations of the form

Az =y,

where y is given and z is to be found. The number dimker 4 measures
the degree.of failure of uniquencss of solutions, and the number dim coker A
measures the degree of failure of existerice of solutions. Much of what follows
In this chapter has subtle and impprtant implications for understanding
these numerieal invariants and their relatlon to each other.

The purpose of this section is to establish the following two general
resuits about compact operators and their spectrn.

THEOREM 3.2.2 (Fredholm alternative). Let T € K{(E) and et A be o
nonzero compler number., Then either
(1} A—T7 is invertible, or
(2) ker(d - T) # {0}
Moreaver, the kernel of A — T is finite dimensional, the runge of A —~ T iaa
closed subspace of E of finitc codimenaion, and we have

dian ker{A — T) = dim coker (A — 7).

THEonreM 3.2.3 (Countability of apectru). Let T be o compuct opeiulor
on an infinite-dimensional Banach spoce E. Then 0 € a{T'). and cocry
nunzerp point of a(T) s an isolated point of o(T).
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Remanx 3.2.4. The Fredholin alternative leads to an effective pr
fie solving linear equations of the form Pracedup,

(3.1) Te-Azr =y,

where T s a given rompact operator, A # 0 I8 a complex sumber, apg

s a given veetor in E. One first determines whether or not there n;-e o y
trivial eigenveetars with eigenvalue \, by carrying out an annlygis witlh u]:e
apecific Information one has abott 7. If there are no nonzero elgenvectors
then squation (3.1) is uniquely solvable for every given y € E. Otherwigo
there iy & finite lincarly independent set of vectoms xy,..., x, that 8pan th;;
cigenspace {r € £ : Tz = Ax}. In this case the equation has a solution if
p belongs te (A~ T)YE, morcover, Lhe genoral solution x of (3.1) can be (i

termined from any purticular solution xg as in undergraduate linear algehra
amd differential equations:

I'—"I{;'i'ﬂt.‘r] +"'+a“$n'

where ay. ..., a0, arce arbitrary complex numbers.

This begs the issue of whether or nol y belongs to the range of A - T.
To approach that, one first computes the adjaint 79 € B(E'). Noting that
the annihitstor of (A — T)E is the dual eigenspace {g € £’ : T'g = Mg}, one
sces from Theorem 3.2.2 that there is a set of n linearly independent linear
funciionals fy...., f,, € E' which span the apace {g € E' : T'g'= Ag}. Once

o has computed such a basls fy,..., f, one may conclude that for a given
gy € E, (3.1) hin a solution iff

hiy)=---=fulv) =0

Finully, uotice that Theorem 3.2.3 implies that when £ is infinite di-
mensionad, the spectrum of any compact operator is either just {0} (which
B, by the Gelfund-Mazur theorem, equivalent to the assertion that T is

quasinilputent), or it consists of 0 and a finite number of nopzeto points, or
elsc it has the forns

a(T) = {0} u{A, A .
I8 & sequence of nonzero complex numbers converging to 0.

1:‘9'""““‘ 4.2.5. Note first that by replacing 7" with AT, we may with-
‘,’Sl s of genorality assume that A = 1 in the nsacrtions of Theorem 3.2.2:
1e kernel of 1 ~ 7T is finite diinennionnl, This is an immediate consequence

?: ‘ii’a:m:"wu (1) below, since T is a compnct operator whose restriction. to
T~ T} 1s vhe identity operator of ker(1 - T7).

Stllarly, W 1t denotes the closyre of

odimunsion o (1 ~T)E, then R.oust be of finite
t.;‘zz‘:““b£°lt n E hes&use the annihilslor of R in -t:he dual of £ |s the kerricl
T UPRIRor 1 =77, and T' is compact by the result of Exercise (4) balow.

The proof of the Fredholm lte .
e, which we entoblisl, o L::u:l;l‘t:ﬂrfmlivt (Theorem 3.2.2) involves thiree

“‘lmre xli A)c v
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Let T € K(E), and let M C E be a closed subspace of E.

1A 3.2.6.
T)M is clpaed.

LEMM
Then (1~ | .
We first point out that it suffices to prove the assertion for
PHOOFLm the restriction of 1 — T is one-to-one. Indeed, let F =
e case WBETS S Remark 3.2.5, F is a Bnite-dimensional subspace of A1,
pr e ot have a complement, a closed subspace N C A with the

it woust h
Pmmdpmlhl;'s :hﬂl:.IN NF={0}and N+ F =M (see Exercise (2) below). It
follows that (1 — T)M = (1 — T)N, and the restriction of 1l -T to NV has

irivial kernel. | . _
Thus we may assume that M Oker(1 -T) = {0}. Pick an element y in
e closure of (1 — T)M. We will show that y € (1 - T)M. To see that,

choose 8 sequence Ty e M such that z, — Tz, — y as n = 00. We claim
that [|z.|| is bounded. Indeed, if it is not, then there is a subsequence z, of
z, such that [|Zx|| = co. Set e, = ||zn|| "'z . This defines a sequence of
unit vectors of M for which [|Te,» —e,|| = 0. Since T is a compact operator,
there must be a subsequence e,~» with the property that Te,- converges in
the norm of E. Since {ie,s — Teqe|| — 0, it follows that e,» must converge to
some vector f, which must be a unit vector in Af because each e, bas these
peoperties and M is closed. Finally, we have f = T'f, contradicting the fact
that the restriction of 1 — T to A is injective.

Thus the sequence z;,z3,... is bounded. Again, compactaess of T im-
!:Iies that there is a subsequence x,,» with the property that Tz, converges
in norm to sowe vector. Since z, — Tz, — y, it follows that z,, must itself
tonverge to some vector z € M, and we have

r—Tr= lim z, — Tz, =y,
n’ —+00

and hence y € (1 - T)M.
LEMMA 3.2.7. For every compact operator T on E,
ker(l - T)= {0} < (1 -T)E=E.

Proor. We first prove = . For every n = 0,1,2,..., set
M, =(1-T)E.

We have E = My 2 My 2 My 2 ---, each M, is T-ipvariont in that

TM, C M,, and from Lemma 3.2.6 and an obvious induction it follows that
""!n is closed.

We cinim that if (1 —T)& # £, thes M, # Mayy forevery n=0.1,....

To see this, assume that there is a vector rg € £ that fails to belong Lo

(1 - T)E, and fix n. We will show that (1 — T)"zo ¢ M;.u-T?g?ﬂ

.,

If there were to exist n o € £ such that (1 — T)%zrg = (1 —
then (1 — TY* (a9 — (1L — T} = 0. Since we are asswming that 1 — T

is Injective, (1 — T)" is also injective; bence the previous formula implics
zg = (1 — T)po € (1 — T)E, contrary to assumptiou.
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Thus, assuming _('_I—T)-,E' # F, it follows that the sequence Ay, A,
stricily decréasing. Foreachn =0,1,2,... we ¢hoose a giijt vector en'eﬂ}a
such that n

(3.2) d{en, Mn4y) = inf

-yl 2
ol llen -yl 2

(S

Notice that

(3.3) |Ten — Tenrsll =5, k21,
Indeed, we have

n ='G"1‘ 2. =

(V]

Ten —Tens1 = en ~ [{1—T)en + Tenys)].

The bracketed termon the right belongs to M4y, since Te,, € M, c
Mpay and (1-Te, €(1 — TYM,, C M,1. Henee

lea = (1~ T)en + Tensilll 2 dlen, Mas1) 3,

which proves(3.3). Clearly, (3.3) violates the compactness hypothesis on 7',
and hence (1,=T)E = E.

For the proof of <=, consider the adjoint operator T € 'B-('E‘). The
hypothesis (I-T)E = E implies that ker(1—T) = {0}. Since T* is compact
(see Exercise (4)), the argnment just given implies that (1 — TV)E' = E'.
In turn, this implies that ker(1— 7} = {0}. Indeed, every bounded lincnr
functiondl fon E hes the form f = go (1 — T) by hypothesis; hence for any

vector z € ker{1 —T) we have f{x) = g((1 — T)z) =0, and z = 0 follows
from the Hahn-Banach theorem. O

To suinmarize progress, we have shown that ker(1~T} and coker (1-T)

are both finite dimensional and that 1 — T has closed range; and we have

the assertion of Lemima 3.2.7. We now extend the result of Lomma 327, 08
follows:

LEMMA 3.2.8. For every compuct operator T on E,
dim ker(1 — T’} = dim coker (1-T).

Proof. Choose a basis z,, .. -+ Tn for ker(1 — T} and choose vectors
Vie--. U0 € E whose cosets 3, ..

{ ««Jin are a basls for the cokernel E/(1 ~
T)E. Notice that the linear span {y, ..., yn} Intersccts trivially with (1 —
TE. We have o show that s = n_
ﬁm;filea:ltem;uvcs M <norm 2 ncan be dealt with in turn. Assuming
' M < n, we chaose a cloged y - d
contider the frites apere 4 complement N for kar(l — 7 an

\or F € B(E) define

v--+ 171, Notive thut ker(l — T) Nker £ = {O).
The opc:ﬁlﬂrT=.T_+ . h&hu;;ﬁnlw-, ank r{ T) N ker ( l

T hoa teivid koo perturbation of T, iy compact.
. — + has trivig - tudeed, if Tr = z, then x — Tz =
Fre (lvT)Eﬂlm,...,y,,] = {0}. Hence x &

ker(l — T) N ker £ = {0},
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roving .
:;'thcmmnd‘ E/(I—T)E-':[y.h--uynl'
dem(l__ﬁgg(1-T)'E+FE=(1-—T)E+[y1....,y,.,], we also
while
have (I—T)E/(l-—nEg[ﬂli""y.'ﬂl'

- 1 - f')E' thm mlntionﬂ imply t'hat [ﬁ]?"’!f’ﬂ] (-; ['y.lt"‘ﬂfh'n]l
sice £ = ude that n = m.

' concl

fom which “that m > n, one can construct a fAnite-rank operator G map-
ping (21, -+ Zm] anto (Y1, - -¥n}- By arguing wlth the perturbation 7 + G
i o similar way one shows that 1 — (T + G) is injective, and argues to the
conclusion that m can be no larger than n. The reader is asked to flesh out
this argument in-Exercise (5) below. 0

Pnoof oF THEOREM 3.2.2. We deduce Theorem 3.2.2 from the pre-
ceding discussion as follows. If 1 — T is not invertible, then ker(l - T
must be nontrivial, since if the kernel is trivial, then by Lemma 3.2.7,1-T
is onlo, hence invertible. The finite dimensionality of ker(1 ~ 7'), and the

dosure and finite codimensionality of (1 — T)E, have also been established,
and Lemma 3.2.8 provides the formila relating the dimensions of the kernel

and cokerne), 0

PROOF OF THEOREM 3.2.3. We show first that 0 € o(T). Indeed, if 0
does not belong to o(T'), then T is investible. Since K(E) is an ideal, it
lollows that 1 = 7T is compact. This implies that the unit ball in £ is
cumpact, and hence E is finjte dimensional (Exercise (1) below).

[n order to establish the remaining assertions of Theorem 3.2.3, it suffices
0 prove the following: If Ay, Aa, .. . is & sequence of distinct nonzero complex
mumbers in a(T"), then

(3.4) lim A, = 0.

n—on

.'I‘o prove this, assume that Ay, Ay,... is a sequence of distinct nonzero
Pomits in o(T') that does not converge to 0. By passing to a subsequence if
» We can assume thal there is an ¢ > 0 such that {A,] 2 ¢ for every

h=12,....

Theorem 3.2.2 implies that A, — 7" has nouzero keruel for overy n; beace
“e can find a unit vector ¢, such that Te, = Anen for every n. No-
tice that the sequence ey, ¢g,... Is lincarly independent. lndeed, for fixed
R Aly..., A, ore distinct complex nuobers, so we can find W'Y’fomlﬂﬂ
Piy..., pn such that pi(A,)) = &, for I < i,) € n. If some lincwr combination

Ore.it-c.en miullm.
dyey + - b ape, =0,

then after applying ju(T) to this equation and using pa(7)e,

obtain
apey = aypp(Ther + - -+ + anpa(TIen = m{THayey + -+« + aney) = U

= Jyyer we
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and henee ag = 0 for all &.

Ths suhspucm J\v!hi\*&t, ... defined b}' M, = [81182u- . 'cﬂ] aro gt
inereasing with o hence we can find unit vectors wy, ug,... aych l:h:."ricnl.'ar
My and d{ug, M) 2 % for every &k = 2,3,.... Finally, notice that a'iﬁ
An M, C M-y for every n 2 2, simiply because eachi ;. is an éige“”ﬁﬂto;f
T with cigenvalue Ag. In particular, (T~ An)e, € My forn > 2. °

It follows that for | < & < n we have |

Tuyw — Tugy = Apitn + [(T — An)un — Tuyl.
Siner the bracketed vector on the vight belongs ta M,,_,, it follows that
N Tuy — Turll 2 d{Antin, Mn—3) = [Aafd{un, Moy 2 €/2,
and the Intter inequality contradicts the compactness hypothesison 77, (O

Exercises.

{1) (n) Let r be s real aumber satisfying 0 < r < 1. Show that un
infinite-dimensional Bsnach space £ contains a sequence of
unit vectors &y,ez,... satisfying fley — ez]) 2 r for all j # &.
Hint: Use induction and elementary properties of the quotieat
nann in £/F where F is a finite-dimensional subspace of E.

(b) Deduce that the unit ball of a Banach space F is compact iff
E is fnite dimensional.

(2) (n) Let F be a finite-dimensional subspace of o Banacl:space £,
Show that there is an-operator P € B(E) satisfying P2 = P
aud ‘PE = F. Hint: Pick o basis z,...,z, for & and:find
bounded Jinear functionals f1,..., f, on £ such that fi(x;) =
8;,.

(b} Deduce that cvery finite-dimensional subspace F C £ is com-
plemeuted in the sense that there is a closed subspace G € E
withGNF={0)and G+ F = E.

(c} Slhow that every closed subspace M C £ of finite codimension
o £ is complemented.

{3) Show that for any Banach space £, K(E) is n norm-closed two-sided
ideal in B(£).

(4) Let T be a compact operator on s Banach space . Show that the
adjoint T* € B(E') is compact. Hint: Use Ascoli's theorem.

(6) Supply the missing details to the last parsgreph of the proof of
Letntua 3.2.8.

3.3. Fredholm Opearators
A Luunded aperator T on o B
vrotor if ker T is Rnite dipe
vodinwensioy W B, Muare briefly, one
m and eokernel, Notice that the
one must verify that e range of

anach, space £ 1s said to.be n Fredhplm op-

nsiounal und T'E ie o closed subspace of finite

80ys that T has finite-dimensional ker-
nmf.ertion about colier T is aubtle, in' that
T is closud, and of finfte codimension. In



3.3. FREDHOLM QERATORS 03

osed subspaces of Banach spaces that are of finite
kernels of discontinuous linear functionals. On the
- - - ce R of Anite codimension in E is the range of a
other bond lgg:;:::tor?p; B(E), then R must be closed (see Exercise (1)
bﬂ“"d'd.}.i;:fm one can make a more symmetric linear-algebraic definition
Wmd). hdm',operat.or as a bounded operator on E with the property that
‘:ﬂ"h ker T and coker T = E/TE are finite dimensional as complex vector
ANICCS-

REMARK 3.3.1. Obviously, invertible operators have the Fredholm prop-
erty. A noninvertible example is the unilateral shift acting on ?(N): Its
rnge Is a closed subspace of codimension 1, and its kernel is {0}. In the
preceding section we have seen that any operator A+ T, with T compact and
) a nonzero scalar, is a Fredholm operator. In this section we summarize the
basic properties of Fredholm operators and establish an important criterion,
Atkinson's theorem. These results imply that Fredholmness is un asymptotic
property in the sense that it is stable under compact perturbations.

Throughout the section E denotes an infinite-dimensional'Banach space,
and K( F) denotes the closed ideal of all compact operators in B(E}). The nat-
ural homomorphism of B(E) onto the quotient Banach algebra B(E)/X(E)

is denoted by T T = T + K(E).

THEOREM 3.3.2 (Atkinson's theorem). A bounded operutor T on E is a
Fredholm operator iff T is invertible in B(E)/K(E).

Before giving the proof, we collect some of its immediate consequences.
Let F(E) be the set of all Fredholm operators on £.

ConoLLAny 1. A bounded operator T belongs to F(E) iff Lhere is an
operator § € B(E) such that 1 — ST and 1 — 7'S are both compact.

ProOF oF ConrorLARy 1. If T is invertible in B(£)/X(E), then its in-
verse is an element of the form § for some S € B(E), and the operators
1~ ST and 1 - T'S must be compact because they map to @ in the quotient
algebra. The converse follows immedivtely from Atkinson's theorem. O

COROLLARY 2. The selL F(FE) of Fredholm operators is open in the norm

topology of B(E), it is stable under compact perturbations, it contains all
invertible operntors of B(E), and it is closed under operator multiplication.

PROOF OF COROLLARY 2. Atkiuson'stheorem implics that F(£) is the
inverse image of the general linear group of B(E)/K(E) under thie continuous
bomomorphism T — T hence these assertions all follow [rom the fuct that
the set of invertible elements of o unital Baaach ulgebra A forms a grmg

that is apen in the norm tapology of A.

The cssential specirum o.{T) of an opurutor T € B(£) s defined as the
spectrum of the image 7" of T in B(E)/K(E). a.(T) is u comnpact subset of

e are I]DﬂCl
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a{T). The following result implies that there are points in +

h .
T that cannot be removed by perturbing T with compact @ BRectryy of

peratory,
Conrott.ARY 3. Let T be a bounded aperator on an infinite.d;
m
Bannch space E. Then 0.(T) # 0, and ensiong|

2.(T) C oT + K) : K € K(E)}.

Perbaps it is overkitl to present this Corollary as a consequence of Atkin.

son's theorem, sinee it can be readily deduced from more basie considerations
(se0 Exercise (2) below).

'noor of THEOREM 3.3.2. For the proof of Atkinson's theorem, Bup-
pose first that 7' is invertible, and let § € B(E) be an operator such that

$ = 7T-'. Feom the formulas S7' = 1 and TS = 1, it follows that thera are
coupact operntors Ky, K3 such that

1 ~85T=K;, 1-7T8 =K,

We have: to show that ker T is faite dimensional and that TE is a closed
sibspace of finlte codimension in £.

For the first assertion, we have ST = 1 — K, 50 that kerT C ker ST =
ker(1-—K)), and Theorem 3.2.2 implies that ker{1 -~ K} is finite dimensional.
Consider now the range TE. Since TS = 1 — Ky, we have TE 2 TSE =
(1 — K3)}E, and by Theorem 3.2.2, (1 — J(3)E is a closed subspace of E of
finite codimension. Using elementary linear algebra we can make an obvious
inductive argument to find a Bnite set of vectors vy, ..., v, such that

TE = (1~ K9)E + [u1,..., %),

exhibiting 7F ss o closed subspace of finite codimension in E.

Conversely, supposc thet T is a Fredholm operator on E. Since kerT is
finite dimensional and TE is a closed subspace of finite codimension, there
are buunded operators P, Q on I such that P2 = P, Q% = @, PE = her' T,
sud QE = TE {sec Exercise (2) of the preceding section). Notice that since

P und 1 - Q are finite-rank tdempotents, it suffices to show that there is a
bounded operator S on £ such that

(3.5) ST=1-P, TS=Q=1-(1-Q)

The formulas (3.5) imply that $T = T8 = 1 in B(£)/K(E). The opsrator
5 1s obualued as follows. Let N = (1 - P)E. The restriction Tp of T'ta N-is
u‘u upernior with trivial kernal that tmaps onto TE (sitice T'P = DJ- By the
‘;‘m' gaph theorew Tp i an invertible opesator. Lot Sp € B{(TE,N). be
ll:: h;vem‘z. We bave S,Tr = z for all £ € N, and TSoy =y for all y € TE.
mh\; ::!Ed S be the composition § = ;0 Q. ane finds that formulns {3.5) are

0o

eorem shows somewhat . more
y bounded.operator T on £ the

REMARK 3.33. T
s we Luve

fullowing tha

he proof of Atkinsen's 1h
aaseried, namely that for an
« conditivng are equivalent:
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lm ator.
(l; "i‘.hi;: :ﬁbzpmﬁr S € B(E) such that 1 — ST and 1 - TS are
(2

t.
(3) ffﬂ??ﬁ an operator § € B(E) such that ¥~ ST and 1 - TS are
finite-rank operators.
ular, we have the remarknble conclusion that invertibility modulo

ora is the same as invertibility modulo finite-rank operators.

Exercises.
(1) Let E be a Banoch space and let T be a bounded operator on E

such that the vector space E/TE is finite dimensional. Show that
the range of T is closed.

The Wey! spectrum ow(7T") of a bounded operator T on E is de-
fined as the intersection N{e(T + K) : K € K(E)} of the spectra
of all compact perturbations of 7. 1t is empty when E is finite
dimensional.

(2) Show that when £ is infinite-dimensional the essential spectrum
o.(T) is a nonempty subset of ayw (7). Use elementary properties
of Banach algebras and their quotients, but not Atkinson’'s theorem.

Let S be the unilateral shift, realized on a Hilbert space. H# with
orthonormal basis e}, €2, ... as the unique bounded operator S sat-

isfying Se, =ep4;1, n=1,2,....
(3) Show that the essential spectrum of S is the unit circle
T={AeC:|A|=1)}
(4) Show that the Wey) spectrum of S is the closed unit disk.

3.4. The Fredholn Index

We introduce the Fredholm index, develop its basic properties in general,
dnd end the section with a brief discussion of the index in the more concrete
Setting of operators on a Hilbert space.

Let T be a Fredhalm operator on o Banach space E. Both vector spaces
ket T = {z € £ : Tz = 0} aud coker T = E/TE are fnite-dimensional, and

the index of T is defined os the difference
ind T = dim ker T — dimcoker 7.

The Fredholm alternative (Theorem 3.2.2) becomes the asscrtion that an
operator of the form A + T, with T compnct and A a nonzero scalur, 1S
a. Fredholm operagor of index zero. The uailatersl shift S is a Fredholm
operator with indS = —1 (see Remark 3.3.1). We bave also poiuted out

in the last section that the dimension of coker T is the same as dim ker T,
where T’ € B(E’) is the pdjoint of T, so that
ind T = dimker T" — dim ker 7.
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Thix formulda is perhapye most useful for operators op

one can replacn TV with the Aithert spﬂmpadjoin't 7'!'1 Hilbert Apaces, whep,
Aikinson’s theorem implies that the product ST of two Frelio] |

ators S, T € B(E} s a Fredholm operator. The most important u"?:.t)per.

the Index is ity logarithmic additivity, Property of

{3.6) indST =ind S +ind T,

which will be proved shortly. Onee this formula is established, the tomainin
pruperties of the Fredholm index follow easily. Thus R is significant fha%
formila (3.6) is fundamentally a result in infinite-diniensional linear algebirg,
hnving nothing to do with the topology of -E or B(E). While it s no
operator-theoratic arthodaxy to do so, we have chosen to present the general
algebraic result and deduce {3.6) from it. This proof is not only natural fem
o forinal point of view, it is also quite transparent.

For the moment, we shift attention away from the category of Banach
spaces with bounded linear aperators as maps to the category of complex
vector spuces with linear transformations as ‘maps. Let V' be a complex
vector space. By an operator on V we simply mean & linear transformation
T:V = V, and the sct of all such is denoted by £(V), which is-a complex
algebra with unit. Every operator T € £{V) has two vector spaces associated
with it, numely, its kernel and cokernel

kerT = {z €V :Tx =0}, cokerT = E/TE.

T is s0id 1o be o Fredholm operutor if both of these vector spaces are finite

dimensional. The set of Fredholm operators on V is denoted by F(V'). Every
operator 7€ F(V) has an index, namely,

indT = dinker T — dim coker T..

Notice that if E is a complex Banach space and V is its under-lylfgg,mﬁdf
$pRce Btructure, then, as we have already seen, a bounded aperator belongs
t F(E) iff it defines an algebraic Fredholm operator on V/, that is, F(E) =

F(V)O B(E). Thus the lollowing result tmplies the addition:formula (3:6)
for Fredholm operators on Banach spaces.

THEOHEM 3.4.1 (Addition formuln). Let V be a compler vector apoce
uuz:i (et A, B be Fredliolm operutors on V. Then AB is u Fredholin aperator,
an

ind AB = ind A + ind B.

We will deduce Theorent 3.4.1 from two, more prucise formulas, in which
both defects | Iy

dimker A 4 diinker B ~ dimy ker A B
utsl

disn coker A +-ditn coker B - dim coker AB
e computed explicitly.
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DEM”_& 3.4.2. L‘et V bﬂ 43 Umtar space, Eﬂd ‘et A,B € J:(V) Tflm

PROOP. Noting:that ker B C ker AB we claim
(3.8) dim{ker AB/ ker B} = dim(BV Nker A).
To prove this, it is enopgh to exhibit & linear map L from ker AB onto
BY A ker A whose kernel is exactly ker'B. It is'defined by L : r — Bz,
7€ ker}l.B Gle'a;i'ly,- L(kﬁr ABJ g BV N kE?'AT' and Ez =0ifoeker 3. L
is surjective, since if y has'the form y = Bv. € keér A for some v € V, then
ABy = Ay = 0; Hence v € ker AR and Lv = Bv =y.
" We now add dim ker B+ dimi(ker A/(BV Nker A)) to both sides of (3.8).
Sinco dirii(ker AB/ ker B) + dim ker B = dim ker'A'B, the left sidé becomes

dim ker AB +dim(ker A/{BV i ker A));
for a similar reason, the right side.becomes
dim ker B+ dimker 4,

and we obtain the asserted formula.

LEMMA:3.:4i3. Let V be a vector space, and let A.B € F(V). Then
(3.9)-dim coker A+ dirn caker'B = dimcoker AB +dim({BV +ker A}/ BV).

Proor. We first establish an elementary farmula. If M/ is a subspace of
V of finite codimension, then
(3.10) dimi(V/M) = dim{AV/AM) + dim{{M + ker A)/M).

For the:proof, consider the natural linear map 5 : V/M — AV/AM: defined
by &(v+M) = Av+AM. The range of L is obviously AV/AM, and we claim
that ke L = (M + ke A)/M. Indeed, a coset v+ M belongs to the kernel
of L iff Av+ AN = 0:iff Av € AM iff there is-an element; m € M such that
A(v —m) = 0,.and the Jatter is.equivalent to.y € M +ker 4. Formula.(3.10)
now follows from'a familior identity of finite-dimensions! linear algebra:

ditidomain L = dim ran L + dim ker L.

Tiking M = BV in (310}, we obtain

dim(V/BV) = dim{AV/ABV) + dim{(BV + ker A)/BV).
I we ndd"dim V/AV to both sides, the left side bhecomes

dim coker A + dim coket'B,

while the right side becomes

dim(V/AY) + diim({AV/ABV) + dim((BV + ker A)/BV).
Since ABYV C AV, the frst two terms sum to-dim V/ABV = dim coker A%
completing tho proof.

O
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Proor. Turning to

the proofl of Theorem 3.4.1, Le 40
that mma 3.4.2 Mplicg

dim ker AR < dimker A + dimker 8 < oQ,
while Lemmn 3.4.3 implies

dim coker AB < dim coker A + dim coker B < oo,

Thus A, B € F(V) =» AB € F{V). Now, for-any two subspaces M, N of
a vector pace there is an obvious linear map .of M onto (N + MY/N with
kernel N N Af; hence M/(N N M) = (N + AM}/N. It follows that

ker A/ BV Nker A =2 (BV + ker A)/BYV,
and in particular,
dim(ker A/BV Nker A) = dim{{(BV + ker A)/BV?).
We lofer from Lemmas 3.4.2 and 3.4.3.thit
dim coker A ++ dim coker B — dimcoker AB,

and the required formuls ind AB = ind A +ind B follows after one TEATTADEES
terms in (3.11). 9]

(3.11)

Returning now to the settingin which E is an infinite-dimensional Bo-
uach space, we obtain a fundamental reslt:

COROLLARY 1. For any two Fredholm operators A, B on E, the product
AB is Frodholm, and

ind AB = ind A + ind B.

Proor. Atkingon’s:theorem implies that F(E) is closed, under operator

multiplication. If-we forget the topology of £ and apply Thesiém 3.4.1, we
obtain the ssserted formula. 0

ConoLtAry 2 {Stability of index). For every Frédholm operator A €
B(E) and compact operator I,

ind(A+ K)=ind A.

¥Roor. By Atkinson's theoretn there is a Fredholm ogigratar B € B(
IS Laear dholm:aperatar B € B(E)
?& lh;l_AB = 14+ L with L € K(E). We have (A +-X)B = :HE y
torive v KB € K(E). As we have already pojuted oist, the Fredbicim
ind (A 3 v e that ind (1 + L) = ind (1 + L) = 0; hence ind AB =
ind (A4 KB = 0. Using Corollary 1-opoe has ’ |

Wd{A+K)+md B = nd{A+ K)B.=ind AR = lud A + ind B,
aud Wie formule follows. aftur one cancels the integer ind 3. 0
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4, Given d Fredholm operator A and an integer n, one can

£ finite-rank operators F and F’ such that
dim ker{A+ F) > n, dim coker (A + F') > n

.. .0 ipstructive exercise to carry this out with A the unilateral shift).
(88 % ar, both dimker(A + F) and dimcoker (A + F) fuctuate in an
mmded ‘;ay ag F varies aver the finite-rank operators. It is quite re-
:;rhhie that these Auctuations cancel each other, so that the difference
timker(A + F) — dimcoker (A + F) remains at the constant value ind A.

CoroLLARY 3 (Continuity of index). Given a Fredholm operator A,
let A;,As,... be a sequence of bounded operators that converges to A,
lifnsoo | An — All = 0. There is an ng such-that for n > ng, A, is a

Fredholm operator with ind A, = ind A.

REMAR-“ 3.4.

ProoF. By Atkinson's theorem, F{FE) is open, so that A, € F(E) for
sufficiently large n. We can also find a Fredholm operator- B such that
AB = 1+ K with X compact. Writing Ap, = A+ T, with [|T,]| = 0 as
n — 0o, we canifind ng so that, for n > ng, |T,B|| < 1 and hence-1 + T, B
is invertible, For such n, we have

ind A, +indB = ind (A + T,)B = ind (1 + T, B + K).

The right side vanisliés because 1 + 7}, B-+ K is a compact perturbation of
an invertible operator (see Exercise (1) below). On. tlie other hand,

ind A+ ind B = ind AB = ind (E+ K) = 0

lt:yr;he Fredholm alternative; hence ind A, = —ind' B = ind A for sufficiently
en. 0

Finally, let us consider.the case of Fredholm operators acting on a Hilbert
“pace H. The unique feature of Hilbert space is the existencs of the adjoint
Operation 4 »» A°, carrying B(H) to itself. One caanot identify A® with
the Banach space adjoint A’ € B(H’), as onc sees by considering the fuct
that 4+ A*isan antilinear map, while, for operators 4 on Banach spaces,
A = A is o linear map. That is because the identification of H' with
H given.,by the Riesz lemma is oot a linear map but an antilinear map.
But the difference between A* and A’ is slight; aud when one i5 working
with Hilbert spaces it is customary to use A* rather than A’. Thus for
Fredholm operators A acting on a Hilbert space we have AH+ = ker A
hence dim coker A = dim ker A* and

ind A = dim ker A — dim ker A"

(1) Let £ be an Infinite-dimensional Banach space.
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(8} Show that a Fredholm operator T on £ is
bation of an invertible aperator iff its indoy
vanigh
ind T = 0, show how to'construct a finite-rank: pﬂl'tzbg;m I
T that is one-to-one and onto. on'of

(b) Deduce the following coitcrete deseription. of th
relation A ~ B <= ind A = ind'B: Two. F&edh:l::q:;::ime
A-and B on :E have the same index iff there is gy mm;ﬁ
operator C such that A — BC is compct.
(2) Let S be the unilateral shift acting on a Bilbiert space J (see the
Exercises of the preceding section).

{a) Show that there is no comipact operator K such that S+ K is
invertible.

(b) Let T € F(H) be a Iyedholm operator of positive index n,
Show that ‘there is aninvertible operator C € B{H) and a
compact operator & such:that T = §*°C + K.

{(3) (a} Let N be a normal Fredhblm:operator on a Hilbert apace H.

Show that the index.of N vanishes:

(b) Ded_ul_:g‘thnt the unilateral shift S is not a compact perturba-
tion ‘ol 8 norms]’operatar.

(4} With S as in.the preceding exercises, let S S° € B(AH & H) be
the direct sumiof § with its adjoint: S*. Show that S@® S* ia a
Fredholm operator and calculate its index.

(8) Let U be the bilateral shlft _defined on o Hilbert space H: by its
action on abilaterdl nrthonomn_Lbams {en : n€ Z} for H by Ue, =
€nt1y 1 € Z. Let Pibe the prejéection-onto the: cne—dlmenmonnl
space spanned by ep. Show that &/ — U P is uniterily. efjiiivalent
to the.operator S'@® S* of, thejpraceding exercise, and deduce that
5@ S’ is a compact pﬂrturbation of 4 normal operatoer.

(6) Show that the spectrum of 5 ® 5° is the closed unit:disk, but the
Weyl spectrum of §'® S* is the unit circle.

8 mmPB-GL pen;ur



CHAPTER 4

Methods and Applications

In this chapter, a variety of operator-theoretic methods are developed within
e context of determining the spectra.of Toeplitz operators.

Let Z,, be the additive semigroup of nonnegative integers, and let A be
2 bounded-operator that acts as lollows on the Hilbert space £(Z..):

o
(L.1) (A€)n =Y okl n=0,12,...,
k=0

where (c,) is 8 bilateral sequence of complex numbers. Such-an operator A is
called a Toeplitz aperalor with associated sequence (c,). More invariantly,
a 'lbgglitz operator is a bounded: operator A on a Hilbert space H' with
the property that there is an ortlionormal basis ey, e1,e2, ... for which the
matrix (a;;) of A relative to this basis depends only on i — 7,

C-1 C-2 .y
Cg C) €C-2
& | g C-}

(4.2) (as5;) =
' 2 €] Co

Toeplitz operators arise in diverse applications, and u great deal of effort
has gone into.computing their spectra. The results are definitive for Toeplitz
operajors with “continuous synibol,” and these results are presented in Sec-
h@46 For more general Toeplitz operators the results are incomplete,
and this is an aren of continuing research.

_ The resiilts of Section 4.6 require tools that hove significance extend-
ing well beyond the immediate problem of computing spectra, and wo de-
velop these methods in o general context apprapriate for broader application.
Topics treated in this chapter include o discussion of maximal abelian von
Neumapn algebras, the characterization of bounded Toeplita matrices uud
the notion of symbol, the structure of the Toeplitz C*-algebra including the
identification of its Fredholm operators and their relation to the topology

of curves, the elsmentary theary of the Hardy space M3, and the index the-

orem. We conclude the chapter with a discussion of states of C*-algebras

and thu Gelfand—~Naimark theorem.

109
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4.1. Maximal Abelian von Neumann Algebrag

A von Neumann algebra is an-algebia M of operators on a Hilhert

that cdhtnihﬁ:ff}:e‘;ider'fﬁyy operatar, Is selffl_lgjgjiitiiﬁ’_'ﬁhe séfise that Mﬁyﬂfe H
and-is closed in the weak operator topology GEBIH). We will-tiot, gy o
to say about geperal von Neumansi algebras, biit we will look clﬁselj,' ;tm:;h
commutative ones. The set of all commutative self-adjoint/ ‘ e

UERNIVE DRSS, 1D 501 37 A o i o Ve sel-aqjoinbioperator algebray
acting on H is partially ordered With respect to incluiiion, nd a maximg]
element of this set 15 called & maximal abelian eelf-adjoint algebra, They
are commorly denoted by The-colorless acronyin MASA.

REMARK 4.1.1. Since the closure in the weak operatortopology of any
commutative self-adjoint:subalgebra of B(H) is a comimutative self-adjoint
algebra, 2 MASA is a weakly cloded sibalgebra of B{H). It miust contain
the identity opérator, since otherwise, it could ‘be enlarged néiitrivially by
adjoining the idéntity :to it. Hence a MASA is an abelian vén Neumann
algebra.

Actually, a MASA M coincides with its commutant M’ = {T € B(H)
TA = AT;A € M}. Tt is clearly a subset of Af/-because it is cominutative,
On the other hand, if A € M’, then"writing A = X 4+ iY with X,Y self-
adjéirit elements 6F: M’ (here we use the fact that M is self-adjoint) we
find that X must belong to M because the.algebra generated by M- and
X is a commutative algebra containing M. Similarly, Y € M, and hence
M’ = M. Finally, A straightforward .application of Zorn's lemma shows

that every self-adjoint family of coniiniiting operators is contained in some
MASA.

THEQREM 4.1.2. Let (X, p) be a o-finite measure space. Then the mul-

tiplication algebra M = {M; : [ € L®(X,u)} is a mazimal abelian von
Neumann algebra in B(L2(X, u)).

. PROOF. Let T # 0 be a bounded.gperator on L3{X, 4} that commutes
with every operator in M. We have to show that T € M.
ans:der first the case in which i is a fnite mepsure. The constant
i;lynmon I‘.;}lbg‘,lwongs l!io IAX tl' and we can define a function g in L*(X, )
§ = T1. We will show that g € L, < T}, and T = M,. Note
o o ey o that g € L%, gl < 7Y, aad T = My

#) we have fg = M,/T1 = TM,1 = Tf. Since
T #0, it ollows that g # 0, snd moreover, ! 1 f

Wfellz < UTY - |1 £1ia-

Chooting E< X tobe & Borel set and taking f = xg, we obtain

(4.3) fz o dis = \ixealld < ITIP)xeld = 4T)Y2u(E).

This inequalivy unplies that |g(p)] < als
i — T L] 'qw ‘1 d 1]
¢ 2 0is suy number wych l.-humt)l].’.’ = “{p"e X oy where,  Indeed, I

: lo(P) > c} has pasitive
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1. M

e, then (4.3) implies

2uE) < [ 1o < ITIu(E),

hence € < fTY. Since 19|loc i8 the supremum of all such ¢, we conclude

wd e (X, ) aid lgloo < IT- o

We have shown that M, is a bounded operator. that satisfies M,f =

g7 for all | € L=(X, u); bence My =T because L(X, ) is dense
2 .

L general case where 4 is o-finite, we decompose X into a sequence

In the i
of disjolnt Borel sets of finite measure:

X=X UXaU:--.

Letling pn be the restriction of u to. Xp, pn(E) = p(£ N X,), we find that
[? decomposcs into a direct sum of Hilbert spaces:
LA(X,p) = L3 X1, 1) ® LY X2 p2) © . ...

Since the projection of L?(.X, 1) onto L?(X,, un) belongs to M (it is the op-
erator that multiplies by the characteristic function of X,,), it must commute
with T, and we obtain a corresponding decomposition

T=T1e2®: -,

where T,, is the restriction of T to L?( X, #s). Since T, commutes with the
mulliplication algebra of L?(X,, in), the argument just given implies that
there is o function f, € L%(Xpy, sta) such that- T;, = M, and moreover,
I/alleo < I TH)l < |IT| for every n. Thus the f, are uniformly bounded, and
we cap define a function f € L®(X, u) via f = f, on X, n =1,2,.... The
desired conclusion T = M; follows. O

Every normal operator N geocrates a von Neumann algebra W*(N),
bamely the closure in the weak aperator topalogy of the s-algebra gener-
ated by N and 1. Since N is normal, W*(V) is an abelian von Neumanu
algebra; and in some cases it is & mazimal abelian von Neumann olgebra.
These are the narmal operators that are “multiplicity-free.” A compreben-
sive treatment of multiplicity theory would be insppropriate here, snd we
refer the reader to [2} for more detail. What we do require is the following
sufficient condition for a multiplication operator ta huve this useful property.

THEOREM 4.1.3. Let X be a compuct subset of C, let [ € C(XN) br a
continuous funclion that separales points of X sn the scnoe that [(p) # J{0)
Jor distinct pointsa p # q € X, and let g de a finite measure un X.

Consider the multiplication uperator My € B(L*(X, ). Then we(My)
is the multiplication algebra M of L3(.X, ). and cvery operulor A thal doudly
commutes My,

(1.4) AMy = MyA, AMf =Al;A

belongs to M = W*(M,).

nenst
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Proor. Since f separates points of X, the Stone~Wai
iraplies that C{X) is generated as a C*-algebra and
tion 1. Theoretn 2.1.3ithplies that 4 = {47,
of the miltiplication algebra, axd in fact, it
the two operators My and 1.

We claim mow that the closure of A«in the weak operator topoloe
the multiplication algebra M. Indeed, for every ‘boinded I.":tn'é'll:unu’ti‘?’u:a
h : X — C thére is a uniformily bounded sequence g;, 9., ... 6f_-mumw'.;
functions such that lima Ga(p) = #(p) for alinost every p € X. Chossing
such s sequeiice g,, then for every pair of functions €,5 LA(X, 1) the
function €7 is integrable, so by the doniimated convergence theorem

Jim (.0} = I | on)etNI)d = | BAEGITER)d = (ihen
Hence Mj, € .Ttlm, and we conclude that M is generated 28 a von Nenmang
algebra by My and 1.

Finglly, Jet A be a bounded operator.on L£3(X, p) that commutes with
M; and MJ . ‘Then A comnmutes with the wealdyclqaedalgehm generated
by My, My, and 1; which, by the preceding paragraphs, contains the mul-
tiplication algebra M. By Theorem 4.1.2, 4 € M. 0

o eratrosg eare,
g EC(X Nisa C."mbn.lguht.
i8 the C”-algebrq ECneratey 1::.

REMARK 4.14. 1t is significant that the second hypothesis AA; = M;A
in (4.4) is rédundant. That is a consequence of & théorem.of Bent Fuglede
({18], Proposition 4.4.12), which asserts that any operaigr that commutes
with & normal operator N must slso commiile with its adjoint N°.

We also remark thit the fniteness bypothesis on the measure o can be
relaxed tp o-finiiteness, in view of the fact that for mistually absolutely equiv-
alent ‘o-finite measures », v on X, the multiplication algebras of L(X, )
and L*(X, v} are naturally unitarily equivalent. (Exercise (2) of Section 2.6).

Fiually, we point out that the hypotheseson f can be replaced with the
hypothesis that f is 2 bounded Bore! funciion that separates poiats of X;
but thal generalization requires more-information about Borel structures
than we have at our disposal (see chapter 3 of [2)).

ConorLany 1. Let X be the standard operator on -£2[0, 1),
Xe(t)=1£(t), 0<t<i, £eL30,1)

Far every operator A that coramutes with X, there is o function f € L*{0, 1)
such .lthill A= M’.

COROLLARY 2. Let {e, : 2 € Z} be o bilateral orthopormal basis for o

Hilbert space H ,und let U be the bilateral shift defined an M by Ue, = '
# € Z. Then the von Ne geh n by U 1o mashad

: _ urnann algebra W*{U/) genvrated by U Is maximal
abelian, and consists of al) operators in B(H) that commuic with .
PROOF. We have seen thal U is uniturily equlval i

Sperutas M, ncting oo L’(T) y equivalent Lo the multiplication

by Mc&(2) = ((2)}€6(2). ¢ being the cusrent
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plel{z) =22 € T. Since M, is unitary, any operator commuting with
wosinble &1 ute with its adjoint M¢Z = A~ !, On the other hand, since

) comm
:mm ':h: points of T, it follows from Theorem 4.1.3 that any operator

uting with {Mc, M¢ } mst belong to the multiplication algebra of
L3(T). and that the multiplication algebra coincides with' the von Neumann

ajgebmgenmtcdb)'ff- O

Exercises.

(1) Show that the-unit ball of B(#) is compact in its weak operator
topology. Hint: Stiow that the unit ball of B(A) can be embedded
as a.closed subset of a Cartesian product of copies of the complex
unit disk A = {z € C : |s| £ 1}, and appeal to the Tychonoff
theorem.

In the following exercises, H denotes a separabdle Hilbert space.
(2) (a) Let &,£2,... be a sequence of vectors dense in the unit ball

of H. Show that
= oemen JAfm &) ~ (BEm. &l
d(A’ B) B m§=l 2 1+ I(Aftmfn) - (Bffm fn)’

is a metric on the unit ball of 8(H) that is scparately contin-
uous in the weak operator topology.
(b) Show that, with its weak operator topology, the unit ball of
8(H) is homeomorphic to a compact metric space.
(3) Deduce that every von Neumann algebrn M acting on H contains
a unital C*-subalgebra A that is (1) scparable (i.e., A contains a
countable norm-dense subset) and (2) weakly dense in M.

In the following exercises, you will show that every maximal abellan
von Neumann algebra M ¢ B(H) is unitarily equivalent to the
multiplication algebra of a finite measure space, and deduce the
gpectral theorem from that result.

(4) If an sbelian von Neumann slgebra A C B(f) bus a cyclic vector,
then there is a compact metric space X and a probability measuse
#t on X such that M is unitarlly equivalent to the multiplication
algebra of L3(X, u). Hint: Usc Exercise (3).

(5) Let M C B(H) e 0 MASA. Show that thore is u sequuuce of wu-
tually arthogoual cyclic projestions in A4 thal siun to tho identity.
Hiut: The prujection outo ansy M-luvariaot subspace must beloug
to .

(6) DetJl':w that cvery MASA hus a cyclic vectur, and henee is unitarily
equivalent to a nmitiplication nlgebra as in Exurcise {4).
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(7) Show that every commutalive »-gubalgebra .4 C B_(.H) 18 contng
in & maximal-abelien von Neumann algebra in. B(H), an d‘d;lined
the spectral theorem fromi‘the result of the preceding EXOTilxe ez

4.2. Toeplitz Matrices and ‘Toeplitz Operators

Starting with a “symbol” (s fiingtion in L%}, we intrgduce its associate
Toeplitz aperator acting on the Hardy space H? and develop the basie re.
lations between.the symbol .and the-operator. Then we discuss the more
classical notion of Toeplitz ‘matrix, and relate the two. Historically, Toeplits
mintrices came Brst.

Webiegin by reviewing some notation-and terminology that will be used
thioughtirt the following sectiofis; "L? willdenote tEeHilbert space L3(T, o),
where-o is the normalized length do =~ d8/2% on the unit cirele T of the
conplex plane: Tet ¢ € C(T) be the current variable, {(z) = z, 2 € T. The

set {(" : n:€ Z} of powers of ¢ is an orthonorma! basis for £2, and -H? is
defiried as the closed subspace

H?= [I:thzs--o] -

spanned by the nonnegative powers of (. The orthocomplement of A° is
spantied ‘by the negative powers of (,

BPl={":n<0).
Elements of ‘H? are functions f in L2 whose Fourier series have the form

(4.5) f(e?) ~ 3T ane™.
n=0

Similarly, L* degotes the algebra L%=(T,q). It is a commutative C*-

algebra which, in addition to its norm topology, has a weals? topology defined
g'.; ILB ailatural pairing with £'. The corresponding subace of L is denoted

H™ = [ nH2,
By-'deﬁnitiag, &-bounded messurah
Series hos Lhe form (4.6). Given
wmembership jn H™®
lmoplies that F* ig

le function f belongs to 4™ iff its Fourler
f € L™, the following observation relates
Yo properties of the multiplication- operator M, and
8 weuk*-closed unital subalgebra 6f L.

PROPOSITION 4.2.1. H™ = {#e L= Mu2c HY)

PROOF. let g e [, ¢ e H*®, then for n > 0,

M =€ . 2 C }y3
hem M@ IE.&VS H?

= 11 % 21... 1
Conversdly, (1.6,¢ | invariant.

i[MgH’QH’,then¢=M¢lEH1.
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2
& B(H?) be the compression of My to H?,

ting the projection of L2 onto'H3. The operator Ty is called the
" perator with symbol $.

9. The map ¢ + T is obviously a »-preserving bounded
the commutative C*-algebra L° into B(H?), which-carries
the identity operator and is posilive in the sense that

620 = T.p > 0.

Certainly, it is not o representation, but it has the following restricted mul-
iplieativity property. For f€ H® and g € L™, we have

(4.6) Ty =TTy, Ty, = TyT,.

Indeed, the first formula follows from
Tyg = P Mgy = Py MMy | ya= P My Py My | 1= T, Ty,
::ing M;A? C H?; the second: formula follows from the Erst by talking
joints.

A fundamenta! problem concerning Toeplitz operators is to determine
o(T4) in terms of the properties of ¢. While the answer is known for impor-
tant classes of symbols (e.g., when ¢ is real-valued, or belongs to ‘H™, or
3 continuous), the general problem remnins unsolved. The difficulty stems
from the fact. that the map ¢ — T fails to be multiplicative. We now direct
vur attention to developing tools for calculating o(T,) when ¢ € C(T).

01 A Toeplitz matrix is a matrix of the form (4.2) whose entries ay; i,/ =

+ds-.., depend only on i — j. We first show that Toeplitz matrices corre-
"pond to Taeplitz operators Ty, and we determine their narm in terms of the
Symbol ¢. The unilateral shift is identified in this context as the Toeplitz

PROPOSITION 4.2.3. Let A be a bounded operator un H?. The mairiz of

g.};ati"‘-' to the naturel basis {(" : n=0,1,2,...} is a Toeplitz matrix iff
= A,

p, den
Tocphils

RENJ\RK 4.2.
the unit of L™ to

PROOF. The hypothesis on the matrix entries a;, = (AC, ') of A iy
*quivalent to requiring

Gittg+t = Oqj,

Noting that S¢” = ¢"*! fur n > 0 we find that this is equivalent to the

requirement that
(S"ASC. ¢ = (ASC?, 5¢Y) = (ACHH. ¢ = (A¢2. )

for all i, > 0; hence It is equivalant to the fortnuln 5°AS = .
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Thus, in order to determine which Toeplitz matricey (4.2) co )
hounded operators, we must characterize the boun'gied‘.oper)atd;e;ngggg
that have the property S°AS = A. This is accomplishied ‘ae follows, Not;
first. that any Toeplitz operator Ty with ¢ € L™ satlsfies §*TyS = T, sinzg
by {4.6) we have |

S*TeS = TeTyTe = TgyIg = T = T,
since (C = 1. Conversely:

TucoreM 4.24 {Characterization of Toeplitz operstors). Let A fe 4
bounded operator on H* aatisfying 8*AS = A! There is o unigue function
¢ € L™ such that A= T, and one has |A]l = ||¢llec.

Proor. For every n = 0,1,2,... let M, be the following subspuce of
L3
Ma =[CT" LML
‘We have H? = My C M; € M; C --- and-the union Up M, is dense in L2,
Let U = M¢ € B(L?). U is s unitary opérator whose restriction’to H? is the
unilateral shift S, and it maps M, into.M,-, for n > 1. Thus U™M, € #?,
and we can define n sequence of operators A, € B(M,,) as follows:

Aﬂ -_ U""ﬂAUﬂ» rﬁ'._fn .

Each 4, is obviously unitarily equivalent to A; hence ||A4]| = || A]]. More-
over, we claim:

s The seguence Aq, Ag, ... is coherent in the sense that
(4.7) (Ansr6.7) = {AnEim), €, € M.
e For every n > 1,
(4.8) PyAn = A
Indeed, since /™€ und Uty hg,lé,ﬁg to H’. we have
(A1) = (U ~ln+i) gy e n) = (ASUPE,; SU™)
=(S*ASU"¢,U™y).

Since §°A§ = A, the right side is (AUE, Unn) = (A€, 7). 83 (4.7) asserts.
For (4.8), note that for &.n € H? Q'(ne hag = (Aatm) e (A1)
Py Adk ) = (UT"AU"E,m) = (AU™E, U™g) = (AS™€, S™n)
= (8™ AS"E,n) = (AE,n).

It follows froro (4.7) that we can use ths Ry le ;
operator A € B(LA) uy o wm Vet esz lemma to define a unique

(AE!H) = JL%(Ane: 7?). 5;'? € Una'le

t;{ttL miLce lt{.,.ly = Al for every n, we have [[Al| < J4|. We dlain. that
1 multiplication operator My, ¢ € £, In view of 'Gnro-ﬁéfy.2 of
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his follows from the fact thot A commutes with U; indeed,
we have

TWﬂm 4.1.3: t
for §. 71 € U"z!Mu

- AUET) = lim (U™ AnUE ) = Um (Ansi€,n) = (A€, n).

We have [l = Mgl = IA)| € All. Formula (4.8) implies that the
mmpr@on'ofﬂ to H? is A; hence A = Ty. The ipequn]ity 1Al = |T|| <
IdHoo 8 obvious, and-iniqueness of ¢ follows from ([Ts]| = [¢]|co- 0

In more concrete terms, Theotem 4.2.4 makes the following assertion:
Let {a;j) be a formal Toeplitz matrix

where ¢, 7 € Z, is a doubly infinite sequence of complex numbers. Then
(ai;) is the matrix of a bounded operator iff there is a function ¢ € L™ with
Fourier series

Qb(e“)'v i ene™?.

==

When such a function ¢ exists, it is unique, [|{ai;)}} = |[¢]lw, and in that
case, the operator-defined on £(Z; ) by the matrix

(Af}n = ch—ksks (= ez(z'i-)!
k=0

is unitarily equivalent to the Toeplitz operator T, € B(H~). The function ¢
i8 called the symbol of the Toeplitz matrix (a:;) or of the operator 7.

COROLLARY 1. Every Toeplita operator T}, ¢ € L™, satisfies
inf{[|7 + K : K € K} = [|To]| = |8l
In-particular, the only compact Toeplitz operator is 0.

PRoOoOF. Let S be-the unjlatern! shift acting on f{’ by S¢C" = ("t a2 0.
It suffices to show that for any operator A € B(H?) salisfying S*AS = 4
and for any compact operator & we have

iA+K] = |4l

The hypothesis S*AS = A implies that, S AS" = A forevery n = L2
noting that P, = S™S*" Is the projection oato [C”, ¢ L] we havo

IA + K|l 2 |P(A + KRl = |S™"(A + K)S"]| = | A + ST KS"|I
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o e A
nKFpl] = (|8 K 8™||, which tends to 0 83 1 =3 og harnue. o 1 BV by
and P, | 0. Thus o because K iy compaet

J4+ Kl 2 lim A+ 5" K8 = |4y,

ns asserted.
|

ises of Sectiog

Aja, for i
be the natural realization of theé uni?ateralrslt'i?;

Exercises. Let A be a Banach limit.on £~ (see the Exerc
3.1). Given n sequence a = (2),az,...) € £° we will write
valueof Aona. Let =T,
on H3.

(1) Show thal lor every operator A € B{H?) there is 8- uDique operator

6(A) € B(H?) satistying
(${A),n) = An(STPASTE\ ), Eme B

(2) Show that ¢(A) is a Toeplitz operator (i.e., has the form T for
some f € L™) for every A € B(H?).

(3) Deduce that ¢ is a projection of fiorm 1-of the Banach space B(H?)
outo the subspace S = {T : f € L™} of all-Toeplitz oparators:on
H?, satisfying ¢(ATy) = ¢(A)Ty for f € H™ and ¢(K) = 0'Tor
every compact operator XK.

4.3. The Toeplitz C"-Algebra

Let H be a Hilbert space having sn:orthoriormal basis eg, £1,¢€3,... and let
S be the unique operator defined by Se, = en41, # 2 0. The operator S
is called the unilatern! shift. The C*-algebra generated:by S is of central
Unporiance in modern analysis; it is called the Toeplitz C°-algebra and is
often denoted by 7. In this section we give a concrete deseription of the
Fredholm ‘operators in 77; and in $he-next we celeulate their index.

This is accomplished by relaking 7 to Toeplitz operators with.continuous
symbal. We have ceen that S can be ‘realized as the Toeplitz Gperator
T; € B(H*), ¢ being the curent varisble, and throughout ‘this section we

take § = T¢. Recall that the map.¢ € L™ — T € B{H?) is a positive linear
map of norm 1, and satisfies Ty = 1.

PROPOSITION 4.3.1, Lel f,g € L™. If one of the functions f, g
conlinuous, then Ty ~TyT; € K.

Proor. Since Ty, = Ty und {T3Tg)" = T3Ty, it sulfices to prove the
following aﬁs:artlon; 1l f € C(T) aud g € L*>, then Ty, — 74T, € K. More-
over, since C(T) s the norm-closed linéar &pan of the monomials (", n € Z,

sud K is a noru-closed linear space, we may reduce to the cose f = ¢" and
ge L™ nel.

Un >0, then (™ € H™, so that

b}' (4.3.1) we have T w = Ty Ten. Thus
Tyy - TyT, = 0 in thiy case. 1« e
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_. —m with-m > 1, then {" is the complex conjugate
g function ™ and another application of (4.3.1) gives Tyen =
T, = 5T Noting that STy 8™ = Ty (by iterating the basic formula
g‘.“n{g = Ty valid for any Toeplitz operator) we can write

TyTen = TyS™™ = S T;8" 8™ = 8Ty — S Ty(1 -~ S™S°™).

"ﬂ<0fﬂay"

Hence
Tyen — TyTen = 8Ty = TyS™ = —§""Ty(1 - §7§™"),

which is 8 finite-rank operntor, since 1 — S™S5°™ is the projection onto

[vatcan"'icm-']‘ D

THEOREM 4.3.2. The Toeplitz C*-algebra T = C*(S) consists af all
operators of the Jorm T+ K, where f € CG(T) and K is compact. Moreover,
this decomponilion is unique: For f,9g € C(T) and K,L e X,

Tr+K=T,+L = [=9 and K=L.
ProoF. We claim-first that the set of operators
A={Ty+K:fe€C(T), Kek}

i: a C"-algebra. To see this, consider the map p : C(T) — B(H?)/K given
y
AN)=T;+K, [feC(T).

This.defines a self-adjoint linear mapping of C(T) to the Calkin algebra. By
Theotem 4.3.1, p is actually a homomorpliism of C*-algebras. By Theorem
2.104, p(C(T)) is a C*-subalgebra of the Calkin algebra; and. the inverse
image of this C*-algebra under the natural projection T € B{H*) = T €
B(H?)/K is exactly A.

Clearly, A contains S = T;, and henco .A 2 7. On the other band. lor
n > 0 we have Ten = 5" € T, and forn < 0 we have T = §*17) € T thus
T¢n € T for-all n € Z. Using Exercise (1) below, we see that 7 contaius all
compact operators, and thus

T(n-i-KET. n €z, Kek

Since C(T) is the norm-closed linenr span of the set of functions {¢" : n € zZ}
it follows that T contains all operators Ty + K with f € C(T). K compact-
Hence AC 7. _ .

the representation of operators as colpuct

Finglly, the uniguepess of ! ‘
perturbasions of Toeplitz operators is an obvious consequence of COIO“MB

1 of Theorem 4.2.4.
REMARK 1.3.3. If we compuse the lincar map f € C(T) Ty € T with

- i hen we obtatn an
the natural homomarphism of 7" to the Calkin algebra, t ey
lhjoclltiva «-homomorphism f — Ty of C(T) into the Culkin algobra. Using
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this map to identify C'(T) with the quatient T/IK, we obt
sequence of C°-ulgebras and s-homomorphisms ‘ ain & ghort exact

(4.0) 0—K—T—C(T) —0,

m being the e-homemorphism of 7 1o C(T) given by #(T} + K) =g
C(T), K € XK. The sequence (4.9) is called the Toeplitz extension of . / bj
C(T). The Toeplitz extension Is semisplit in the sense that there ig & natigr
positive lincar map ¢ : O(T) = 7, such that ¢(1) = 1, with the Property
that = o ¢ Is the identity map of C(T) (namely, #(f) = Ty). Tt is sigriificay
that ¢ Is not a s-homomorphism but rather 8 positive linenr map. Iridged
we will see later that this extenslon is not split; more explicitly, there does
unt exist a s-homomorphism 8 : C(T) — T with the property that 708 i
the identity minp of C(T). The vonexistence of a splitting homomerphism §
hns to do with the Fredholm index {gee Exercise {4) below).

We immedintely obtain the following deseription of the Fredholm oper-
ntors in T

CoroLLary L. The Fredholm operators in 7 are precisely the operators
of the form Ty + K where f is an invertible symbol in C(T)™! and K €X.

Consider a Fredholm-operator in 7, say Ty + K where f € C(T) hasoo
zeros on the circle and K is a compact operator. By the stability results of
Chapter 3 we sce thet T is also a Fredholm operator and

ind (T} + &) = ind (T}).

We know that for / = (, Ty is the ghift; hence ind {T}) = —1. However, we
still Inck tools for computing the index of more general Toeplitz operators
with symbols in C(T)~!. This issue will be taken-up in the following scction.

Exercises. Let eg,#;,... be an ortbonormal ‘basis for a Hilbert space
H', and realize the uniluteral ghift S as the unique operator on H satisfying
Sen = eu41, 1 2 0. Let T = C*(S) be the C"-algebra generated by S.
(1) Show that for every i, n >0,

S5 gmHglaH) - gy _ 55t )8

is & rank-one operator and describe this operator in terms of its
actiou on eg,¢y,.... Deduce that 7" contains the C'°-algebra K-of
all compact aperators on H.

(2) Noting that K is o closed ideal in T, identify the quotient C*-
algebra by showing that thereis & unique +~isomorphism o : T/K -t
C(T) thut satislies (S + X) = ¢, where ¢ is the cisrent varigble
mC(T), {{z)=zfurnll z€ T. fiot: Show that vhe image of S'iny
the Calkin algebra is o unitary operator whose spectrum is T.

{3) Let K be anuther Hilbert spoce, and lat W be a unitary operator in

B{HK). Deduce that there is a unique rencesentati : F (¢
cuch 1t m(8) 30 q preseatation w2 7T — B(K)
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Fredholm operator acting on a Hilbert space.
(4) Lot 7,;:;::11"5 that the index of T is nonzero, show that T cannot
(0) be decampased T = N 4+ K into a compact perturbation of a
normal operator V.
} Deduce that the unilateral shift is not a compact perturbation
of a unitary operator and that the Toeplitz extension (4.9) is

nob split.

In the following exercises, V' denotes an arbitrary isometry acting
on some {scparable) Hilbert space K. The subspaces V" K" decrease
with n, and V is called a pure isometry if N, V" K = {0}. A closed
subspace M € K is said: to be reducing for V if it is invariant
under both V and V*. The (self-adjoint) projections onto reducing
subspaces are the projections in B{X) that commute with V,

{5) Show that for every isometry ¥V € B(K) there is a unique decom-
position: of K into reducing subspaces K = L ® M, where the
restriction of V to L is a pure isometry and: the restriction of V
to M is a unitary operator. Hint: Let N = (V.K)L be the or-
thogona.! complement of the range of V. Show thatt VPN L VIN
Ep#qgand NOVN®VIN @ --- is the orthocomplement of
M=VKnVEnVvViKn..

(6)- Show that the restriction of V to the “pure” subspace L is unitarily
eqtiivalent. to a (finite or infinite) direct sum S @ $&--- of copies
;t" the shift 5, and that the number of copies is- the dimension of

The result, of Exarcises (5) and (B) asserts that every isometry de-
compm uniquely into a direct sum of two operators, ane of which
is & multiple copy. of the unilateral shift, the other being s unitary
aperator. This ig. called the Wold decomposition: of so. isometry V.,

after the statistician. who discovered the result in connection with
the theory of stationary Gaussian processes, The [ollowing result

is due to.Lewis Coburn (1968), and should be compated with the

result. of Exercise (2). It implies that the Toeplitz C-algebra is

universal for all C*-algebras generated by isometrics.

(7} For every isometry V actinig.on a Hilbert-space K there is a unique
rapreser?tahnn :l‘y T —-btg](.g!() such that w(S) = V. Hint: Use the
Wold: decomposition.

The result.of Exercise (7) is sometimes

terms as follows. Let A be a C-algebra wit
of A. Then the following sre equivalent:

o Thers 1s o (necessarly unique) +-homomorphism w : 7 —+ - such
that n{S) = v.

e V°u=1.

(b}

formulated in-purely «-algebraic
 unit and let v be an elemeat
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Tha dllference between Exercise (7) and this mors ahgt i

involves the Gelfand-Naimark theorem, which mu;af:.;"ﬂz“m resyl),
(**-algnbra has a nondegenerate isometric representation as g Cj'ilﬂhgbrm
oprrators on some Hilbert space. The Gelfand-Natmark thwrémgi.‘;n:qf
eatablished in Section 4.8 below. | Be

4.4. Index Theorem for Continuous Symbols

Consider the multiplicative group G = C(T)™! of all complex-valued con.
tinnous functions on the circle that heve no zeros. G is o commutative
topological group relative to its norm topology. We seck a nontrivial he-
momorphism of G into the additive group Z. This homomorphism is g
genernlization of the winding number, about the origin, of piecewise smgath
functions in G. We first describe this generalized winding number in same
detnil. Then we relate tiis topological invariant of functions f € G to the
index of their Toeplitz operators Ty € B{H?). Throughout, C* denotes the
multiplicative group .ol nonzero complex numbers.

We begio with a result about the general linear group of a related C-
slgebra C[0,1]), While onc can base that result on the fact that [0,1) is
u contractible space, or on the properties of covering maps:of dpaces, the
urgument we give uses only elementary methads. The reader shoiild keep
in mind that the range of 8 function § € C[0,1]™! can be very coriplicated,
perhaps having nontrivial interior.

PROPOSITION 4.4.1. For every function F-€ C[0,1) such that F(2) # 0
Jor cvery L € |0,1], there is a funclion G € C[0, 1] such that

Fiy =, pgt<l.

PRroor. Ou the domain {z € C: |z — 1} < 1}, let Jog z be the principal
branch of the logarithin,

oo Y
Iogz:—z(l 2) .
n=1 n

The log function s holomorphic, satisfies log 1 = 0, and: of course £/%8* = 2
for s — 1] <1, Let

A = sup |F(0)]~}.
y<e<i

By uviform continuity of ', we can find & finite partition of the interval
lo.u.ﬂzlﬂ < t'l < P oo (tu = ._'-g ﬂ‘-l-d] thﬂt

sup |F{L) — F{tp—1) < _.1.__

ty .y S0Z0, 2M°
it {um*ﬁ ulilt [Ork = l._ R Md £ = ltkwlgtk]'
(4.10) \1 _ AW IR - Pl 1 1
Flta1) Pty = 2MIF)| ~ 2 <%
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Setting Gilt) = log(FW)/Flta-1)),  la-1 S < b,
continuous, Gi{te—1) = 0, Gelte) = log( F(tx)/ Flg—1)),

o find thot Gy i5
and it satisfies Gult)

F(t) = F(lg-1)e**
the interval [lh—htkl' There is an obvious way to piece the

{hroughout i ’ .
G, together so a3 to obtain a continuous function G : [0,1] — C, namely
clt) = Gi(t) for L € [0,t1) and, for k=2,...,n,

t € [te—1. ).

Gt) = Ci () + -+ + G- (te—1) + Gilt),

It follows that
F(t)= F(0)eM, 0<t<l.

Writing F(0) € C* as an exponential F(0) = ™, we obtain a continuous
function G satisfying F = e by way of G(¢) = G(t) + 2. O

We can now define the winding number (about the origin) of a function
f € G =C(T)!. The function F : [0,1] = C* defined by

F(t) = f(e™)
is contimuous, and. hence by Propasition 4.4.1 there is a continuous functiou
G:[0,1] = C such that
(4‘11) I(Bhﬂ) — 8211’8'0{!)’ 0<t<1.
Note that G(1)~G(0) € Z because e27C(!) = £27C(9). The function G is not
uniquely determined, but if G is another such, then G — G is a continuous
function with
pIF{G(8)-G(t)) _ AE) ) f(cP™) = 1, 0<et<l,

:}dhﬂﬂm G(t) and G(t) differ by a constant. It follows that for any choice

8 continuous fanction G satisfying (4.11),
(4.12) #(f) = G(1) - G(0)
i8 a well-defined integer. This integer is called: the windsug number of f. The
properties of this generalized winding pumber are summarized as [ollows:

PROPOSITION 4.4.2. For fig€ G =C(T)™!,
(1) #(fg) = #()) + #(9)- ngh
(2) #(f) = n € Z iff there is a function h & C(T) such that [ = (¢
1) = C such that

Proor. For (1), pick continuous functions F,G: [0,

f(ez'“) = c'.?wui'(r)’ g(cz'“‘) —_ cﬁliﬂtl}’ = [0, ”‘
Then
](e"“)g(e”"") = EM{F{I}-}-G{UJ' t € zo' l].

and the winding number of fg.ls given by
FQ) +G(1) — (F(0) + G(0)) = #{S)+ #(9).
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For (2), cousider first. the case n = 0. If f =ebis th
function A€ C(T), then we have € exponentinl of

F{p) = 0. '_Gom;s_gly,-.if #(f }.= 0, then there is a function F ¢ Clo, 1) such
that {4.18} is satisfied and_;'.Fi(l) — F{0) = #(f) = 0. Since F is perlodic, we
have J = ¢”, where h'€ O(T).is the function h{e?™) = 2rif(t), 0< ¢ <’: 1
To'desl with the case of arbitrary n € Z note first that #({¢) = l.ﬁlndﬁmé
this is ithinediate from the fact thiit '

(™) =", 01l

From the property (1) it follows that #(¢") = = for every n € Z: heare
#(Ce") = #(C") + #(eh) = n, as ssserted. Conversely, if f € O(T) satisfics
#() = n, consider g =(™"f € C(T)~*. Using (1) again we have #{g) = 0,
and by the 'preceding paragraph there is an‘h € C(T) such that g = €.
Thus f = ("g = ("e” has the asseried form. 0

We now complete the computation of the index of Fredholm operators
in the Toeplitz C*-algebra T

THEOREM 4.4:3. For every f € G = C(T)™},
iﬂﬂTf = —#(f).

Proor. In view of Proposition 4.4.2, it suffices to show that for f = (e’
with n €.Z and g € G(T) we have ind Ty = —n.
We claim first that ind Ts = 0. Indeed,

AA=Tc-‘H$ 0<Agl,

defines a continuous are of Fredholn operators in B(H?) satisfying ind Ap =

nd1 =0-and ind Ay = indTys. By continuity of the index, we must have
ind Ay =ind Ag = 0.

Notice that the map f € G = C(T)~! — ind T} € Z is 8 homomorphism
of abelian groups. For fixed f.g € C Proposition 4.3.1 implies that Ty, =
TyTy + K for some compact opesator i, Hence

indTyy = ind (Ty, + K} = ind (TyTy) = ind Ty + ind T,

by the..smbilit)' and wdditivity properties of the Index. F inally, since Ty Iy
the unilateral shift, its index is —1; henre

iudT; = nd Tcﬂg = lﬂd T.;n + ind T" = 7 -ind T( - -



14, INDEX THEOREM FOR CONTINUOUS SYMBOLS L1y

Exercises. In:Exercises (1} tln'ough (5?, {ar; : € Z} denotes & doubly
 snite sequence of complex tambers that is summable; 57 fa,| < oo, and
;is she continuous function défined on the'unit circle by

0
#zy= ), an2", 2= 0<o<om

=00

As usual, Z denotes the additive group of integers, and Z+ = {0,1,2,.. .}
denotes the additive semigroup of nonnegative integers. '

(1) Consider the Hilbert space £ = £3 (Z). Show that the convolution:

operator A defined by
oa o
{AEJM = Z an..hfk = Z ajfn-—j
k=-an j=~2g

Zbogndet{, and:in fact, {j Aff < Y_nlas|. Labor-saving hint: Realize
o Sh::p:ﬁ?t:;e!y 88 3 T where T is a translation operator.

- is & normal operator by caleulating A°, AA°, and
(3) Detir';nine the spectrum of A in concrete terms. Hint: A is unitarily

eﬁ?m ent go 8 multip_ucation-aperato: on some Hilbert spuce of
) A;z';i:jns LY(X, u): What is the multiplication operator?

i ng that {a, } i8 not a trivia} sequence satisfying a,, = 0 for ull

: # 0, deduce that 4 has no point spectrum (i.e., no vigenvalues),

c:‘;ez:ine when it Is invertible in terms of %, and calculate [[A)

In Exercises (5) and (6)
v You will cousider a refated operator 3,
defined on the subspace K = (Z4) c #H by r i

H

o
f4.M} (BE), = Zan_;,& = Z U3~y
k=0

J=-a0

forn=0,1,2,..., e K.

(5} Show that B*B - o is campact, and show that the cssentinl
spectrum of 8 is the spuctrun of A.

(6) Specialize the operator 3 o {4.14) as follows: (B)y = En-y — £y -2
for n > 2, (BE)) = £a, (BE)o = 0. Sketch the essantinl spectenm
0e(B) of B and calculnte the Fredholm index of 4 — AL for wll
A € C\ o (8). Give u clear akutch with an indication of the vartous
vislues of the index; It inay help o Indicate the points where o.(42)
moots Lhe r-axiy and the g-uxis. Precise sumorfcal computations
are unnecessasy, provided that yon have a clear picture apd good

qualitative suimnmarkas.
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4.5. Some #* Function Theory

in this aection, we present severn! resilts connecling the fup
nnd the operator theory of the Hardy spnce A2, Thie resylrg are tmne.
for many aspects of funrtional analysis, including but eertaf P ortant

nly ‘
to the computations of operator spectra that we will carvy Ouz :lum;l]]lmil&d
seetion, © next

We hegin with o result. characterizing the (closed) subspaces of H? gy
ore invariant under the unilateral shift. This is a famotis result ‘of Arne

Deurling [6): it is remarkable hecause there are very fow -operators whoge
invarinnt subspuces are completely known. Indeed, it is not even known
whether an arbitrary aperator on a (separable) Hilbert space # must have
n closed invarisnl subspace other than the trivial ones {0} and #,

An inner function Is u function f € H™ sutisfying | f(e®)] = 1 almost
everywhere on the unit circle. The term “inner” has classical origins, and
refers to the fact tha i £ is a rational finction of a complex variable whose
restriction to the unit circle has no poles and defines an inner function
as shove, then the zeros of f are all contained In the interior of the unit
disk {z : |z] < 1}. Such rationa! functions are important in linear systems
theory (they correspond to “causal” filters). and in the prediction theory of
stationary Gausslan random processes.

For every function f € H™, the multiplication operator My carries H*
into itself, - H2 € H? by Proposition 4.2.1; and if § is an inner function,

then Af = f - H? s a closed subspace of H2 that is invarjant under the
nnilateral shift Te = M {g9.

Ction th“ﬂn'

THEOREM 4.5.1 (Beurling). For every closed slift-invariant subspace
M C H? there is an inner function v such thet M = v - H2,

A complete proof of Beurling's theorem is outlined in the exercises at.the
vud of the section. The following consequence is a classical ‘theorem. of the
Lrothers Riesz, whose original method was quite different. It has attracted a
gremt deal of stiention aver the years, and far-reaching genemlizatlonsgjhnve
been discovered that celate to diverse areas, including (a) effective general-
izotions of H? theory that can be formulsted whenever one has a Bow acting
un s space |18, (b) the theory of one-parameter groups of automorphisms of
vou Neumann algebras that satisfy a “positive cuergy™ condition (4], and.(€)
the properties of annibilating measures of abstract function algebras [13).

THEOREM 4.6.2 (F. and M. Riesz). The sel Z ={z € T : f{z) =0} of
erus of any nonzere funckion f € H® is o sct of Lebesyue measure 0.

Proov. Fix o fundtion f # 0-in H? and. consider the closed -subspace
M = 1.6, ...] of H2. Then M # {0}, it Is invariant undar the shift
I¢. und every funciion in M vanishes almost everywliezé on the zero set Z.
Bum-uug'b ‘Theorem 4.6.1 implies thot M contains un inner fupction v. Since
leie)] = 1 abimgst everywhore on T, Z must have mensure 0. O
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ARk 4.5.3. Some remarks on H'. We collect some details relating
":f; A ion theory of H1 that will be used in the proof of the following
o™ i is defined as the space of all funclions f € L! whose Fourier

sarics has the form

f(em) ~ Z"ﬂelnﬂ‘
n=0

if g € HY is such that its conjugate § also belongs to H', then g must be a
constant. Indeed, (4.15) implies that all the negative Fourier coefficients of
g are zero, while 7 € H? implics that the positive coefficients of g are zero.
Hence the Foiirier series of g is the Fourier series of a constant function, and
g miust be a constant. Let H} denote the space of all functions f in H® with

ser0 constant term, {f, 1) = 0. We may conclude from these remarks that
H'NnNAT=C-1 and H'NH}={0}

Second, we point out that the product of two functions in H? must
belong; to. H'. Indeed, if f,g € H?, then fg € L', and moreover, (| fgll; <
I/H2igll2- Thus for a fixed negative integer n the Fourier coefficient (fg,(")
defines a boinded bilinear functional on H? x H? that vanishes whenever
f and g are finite sums. of the form ag +a,{ +--- + ap(P. It follows that
{f9.¢") = 0 identically on H2 x H?2. We conclude that the Fourier series of
J9 has the required form (4.15). ,

Finally, let A2 = {f € H?: {f,1) = 0}. Then H = [(,¢* (... ]: hence
the orthocomplement of H? in L2 is related to Hg by

B =Hf={]: S Hj}.

The following resuit of Lewis Coburn {7] implies that when o Toeplitz
operator is a Fredholm operator of index zero, it must be invertible:

. THBOREM 4.5.4 (Coburn). Letl ¢ be any nonzerv symbol in L™. Then
either I(EI'T,;, = {0} orkBIT; = {D}.

(1.15)

PROOF. We show that if both kernels are nontrivial, then ¢ = 0. For
that, choose nouzero functions f,¢ € H? such that Tyf = T8 = 0. Vi_nth
Py € B(H?) denoting the projection onto H?, we have Prof = 0. 1
of € H*! = H3. Thercfore,

(4.16) é&f € Hp.
3. Therelore.

Similarly, ;g = 0 implics that P,dg =0, that Is, by € H

—

(4.17) o < Hj.

Multiplying the term of (4.16) by g9, we obtain
$fg € H3- H* € Hg.
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by Remark 4.5.3. ‘On the other hand, muitiplying the term of (1

gives _ 17) by !
¢fg = daf.€ Hi - H* C H].

Thus ¢/g € Hy N Hi = {0}. Since neither f nor g is the zo

the F. and M. Riesz theoréin imnplies that the produat F(2)g(z

for almost every z € T. Thus ¢5f = 0 implies that #(z) van
everywhere,

o functim

) 15 Iltmzm»o
ishes a!i:uuat

O

Exercises. In these exercises, you will deduce Beurling's thegrem from

the following .more general result, which chinracterizes certain: stibspaces of

L? that are ifivatiant wnder the nnitary multiplication dperator I — M e

B(L?). Notice that for diy such subspace M, the secuence of subspaces
U™ M- decreases with n.

Theorem A: Let M C L” be.a nonzero closed U-invariant subspace
of L? that is pure<in the sense ‘that Nu>ol/™ M = {0}. There is a fumetion

¢ € I™ such that |1(e®)| = 1 alost everywhere on the unit circle and
M=v.H%

For the following exercises, let M C L? be a nonzero closed subspace
satisfying the hypotheses of Theorem A.
(1) Let N = M & UM be the orthocomplement of /M in M. Show
that N # {0} and that it is & wandering subspace in the sense that
for m,n € Z with m # n we have U™N L U"N.
(2) For every operatar A € B{N) define A4 € B(L?) by

a0

A= Y UrAPsU™,
A=—00
APn € B(i?) denoting the composition of A with the projection
onto N. Show that A belongs to the multiplication algebra M =
{M;: f e l>).
(3} Deduce that B(N) is abelian, hence N must be one-dimensionsl.

Choose an element v € N with lv)l ez = 1.

(4) Show that for every m,n € Z with 4 # n one has (v - 2, v - 2") =

0, sad deduce that |u{e’®)| = 1 almost everywhere on the unit circle.

(5) Shagﬁ thut A is spanned by N, UN,U2N. ... and deduce that M =
- .

That completes the proof of Thecrem A,
(6) Deduce Bewling's theorem from Thearem A.

4.8. Spectra of Toeplitz Operators with Continuous Symbol

Givea a continuops symhol

f'EC(T,Wumumwm I ;
leseription of G{T;)- Let ) ) pusition (0 give a

us first copsider the ensentin) spectruil o.(T) €
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exact sequence (4,9) the essential spectrum of T is the
ol1]) Byft}lzs an element of the commutative C*-algebra C(T), pamely,

ec oo(Ty) = J(T).

1.18) |
{ What remains is to determine the other points of the spectrum. Let us
Jocompose C\ f (T) into its conuected components, obtaining an unbounded
component (1, together with a finite, infinite, or possibly empty set of holes

N1 R
-2 C\/(T) =0 uihuUBuU---.

Choase A € C\ f(T). Then f ~A € C(T)~!, and hence Ty — A =T_, isa
Fredholm operator. Counsider the behavior of ind (Ty — A) as A varies over
one of the components £ of C\ f(T). Since A~ Ty ~ X is a continuous
function from fx to the set of Fredholin operators on H2 and since the index
is coutiniuous, it follows that tad (7 — A) is constant over {;. Let ng € Z
be this integer, £ =00, 1,2,....

Obviously, n = 0 because Ty — A is-invertible for sufficiently large A {for
example, when |A] > [|Ty||). When holes exist, ny can take on any integral
wlue for k = 1,2, .... In such cases Theorem 4.4.3 allows us to evaluate 1,

me = ind (Ty - A) = ind (Ty_y) = —#(f - A),

in terms of the generalized winding number of the symbol f about A. Thus
we have calculated ind (Ty — A) throughout the complemont of f(T).

If k is such that ny # 0, then Ty — A 18 o Fredholm operator of nonzero
index for all A € ;. Obviously, such operators cannot be invertible; hence
( C o{Ty}. Ob the other hand, if ny = 0, then Ty_y is a Fredbolm
aperator of index zero for oll A € 0. By Theorem 4.5.4 such operatars
must be invertible; henco (Y is disjoint from o(77). We sssemble these
remarks about Toeplitz operators with continuous symbal lnto the following

description of their spectra.

THEOREM 4.6.1. Let f € C(T), and let C\ f{T) = D LISH UL - de
the decompouition of the complement of J(T) inte its unbounded componeil
Q. and hales 0, k > 1. For cach finite k and A € fl, the winiding uwinber

wy = #(f — A) is a constant independent of A. | '
The specirum of Ty is the union of f(T) ond the holes Q for which

we # Q.
[n particular, the spectrum of a Toeplitz opesator with coutinuons sydi-
bo! contains no isoluted polnts, and Is in fact a mmw::u;l I:ur. l'il‘lm prlez::
ivi Hurly ' oL ¢ 1l spectea of Tovplitz vpe
L iving & Blmily o e 1 goner . a. theurem of Hurold

with symibol in L™ remuing opea in gencral, However, o _ .
o (11]). The

Wi nscorts that o(Ty) v connected for every f € % (e !

|dﬂm tha ( !) s ttt‘:ﬁu’d in tho FExerotses hielow.

cuse of self-adjoint Toeplitz operalors

erclscs., |
o ja nssociatsd multipticaluon opuratos

1) Let ¢ € L™, aud considur . ,
M Alg € B(L3) and Toeplitz operator 7. € B4}
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(n) Given ¢ > 0 such that [T f|| > el f)) forall f €
NMaall 2 ellgll for all ¢ € £2. Hint: The u{;ignﬁ'fl?:ﬁ fhat
("H? n <0, is dense in 13. Spacey

(b) Prove: If 74 is invertible, then M, is invertible,

(c) Deduce the spectral inclusion theorem 6f Hartman-and Wig,
ner: For ¢ € L*, o(T;) contalns:the cssential rasige-of o,

Let ¢ be a real-valued Runctior in £ and let m € M be
casontinl infimum and essential supremnum of ¢,

m=infft eR:o{z € T:¢(z) <t} >0},
M =gup{t € R:o{z € T: ¢(z) > £} > 0},

o deuating normalized Lebeggue measure on T. Thus, [m, M) is
the smallest closed interval J C R with the property that ¢(z) € I
almost everywhere do(z). Equivalently, it is the smallest inter-
val containing the cssential raiige of . In the remaining exercises
you will obtain information about the spectrum of the self-adjoint
‘Toeplitz aperator Ty.

(2) Let A be a real number such that Ty — A is invertible. Show tbat
thete is a nonzero function f € H&b such: that T/ — Af = 1, 1
denoting the constant*function.in {{2

(3) Show that (¢ — A)JfI? = (¢ — A} - f belongs to. H' and deduce
that there is a real number ¢ such that (@(z) — A)|f(2}}2 = ¢ for
o-almost cvery 2 € T. |

(4) Deduce that ¢(z) — A is either positive almost everywhere OmT ar
negative almost ‘cverywhere on ¥. Hint: Use the F. and M. Riesz
theorem.

(5} Deduce the following theorem of Hartman and ‘Wintner (1954): For
every real-valued symbol ¢ € L™,

U(T&') = lm‘l M]*

m snd M being the cssential inf and essential sup of ¢.

the

4:7. States and the GNS:Construction

"Throughout this section, A will denote a Banach s-algebra with normalized
unit 1. A lioear functional p : A — C is said to'be positive if p{z°z) g.,ﬂ
for every £ € A, A state is n positive llnear functional satisfylog p{1) = 1.
This terminology hus its origins in the connections betweep C*-algebras
und quantug physics, an importaut subject that is not touched 99»1.33“’-'
Notive thal we . do not sssume that states are ‘Bonpg]@,d,;;:bﬁi-ffpﬁﬂihéﬂp
4.7.1 below hmplics that this is the cose. It is a fupdomentnl Fesult that
slarling with o state p of A, gne can constryct a nontrivial represeptation
™1 A — B(H). This procedure is called the GNS constriction after the
three wuthomaticians, 1LM. Galfend, M.A. Npimark, and LE. Ségal, who
intriduced it. The purpose of this ection is to discusy the GNS constritction
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the general -context -of unital Banach s-algebras. Applicaticns to C*-
in -

algebras will:be taken-tup in Section 4.8.
prorosiTION 4.7.1. Every positive linear functional p on A satisfies the

ehwars incquolity
(4.19) lo(y" =) < plz"=)nly"y)

md moreover, ||pll = p(L). In porticular, every state of A has norm 1.

proor. Considéring 4 as a complex vector space,
zy € A [2,y] = p(y )

defines & sesquilinear form which is positive semidefinite-in: the sense. that
[z,z] 2.0:for every z. The argumerit that establishes the Schwarz inequality
for complex inper product spaces applies verbatim: in this' context, and we
deduce (4.18) from |(z, y]|* < [z, z}{, v).

Cleszly, (1) = p{1"1) > 0, and' we claim that ||g)] < p(1). Indeed, for
every = € A the:Sehwarz inequality (4.19): implies

[p(2)l* = [p(2°z)) < p(z"Z)ol1).

Uyin-addition, |[z|| < 1, then z*z is a selfadjoint element in 4 of norm at
most 1; consequently, 1 — z*z must have a self-adjoint squarc root y € A
(see Exercise (2b) below). It follows that s(1 — z°z) = p(z?} > 0, ie.
0< p(z*z) < p(1). Substitution. into the previous inequality gives [p(z)f* <
Az"2)p(1) < p(1)?, and ||p}| < 5(1) follows. Since the inequality {ipf > p(1)
I5'obivious, we conclude that |jpi] = g(1). O

DeriviTION 4.7.2, Let p be . positive linear functisnal on a Banach
*-algebra A. By a GNS pair for p we mean o pair (m,£) ‘copsisting of a
r@[@ﬂltétion 7 af A on a Hilbert space A and o vector § € H such that

(1) (Cyclicity) m(A)¢ = H, and

(2) p(z) = (m(x)E,£), lor every z € A.

Two. GNS.pairs (x,€) and (7', £) are said to be equivalent; if there is a
unitary operdtor W : & — H' such that WE = € and Wr(z) = ='(£}W,
ZE A

THEOREM 4.7.3. Every positive linear funclipnaly on.a unitol B“f“""" -
algebra A has a GNS pair (7, €), and any twe GNS pairs for p are equivalent.

PRrRoor. Consider the set
N = {a €.d:pla"a) =0}

ine i implies for every
With fixed a € A, the Schwarz inequality {‘1.1.9) implies that every
z € A we have lo(z"a)l? € plata)plz"x), from which it—.fqﬂaws. that p(a*a} —;
0 <= p(z*a) =0forevery 7 € A. Thus N is a left [deal: a linear subspac

of A such that 4-N C N,
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The sesquilinenr form x,» € A = p()°2) promotes arall

’ ) nﬂt . .
car form (-, ) on the quotient space A/N via 'y to Se8quilin.

(x4 N,y -+ N) = p(yz),

TYE A,
and for every r we have

(r+Nax+N)y=plz2) =0 = z+N=0¢

Hence A/N becomes an inner product space. Its comp
spoce A, and there is o natural vector £ € H defined by

£E=1+N.

It remains to define 7 € rep(4, H), and this is done as follows. Since ¥
in @ left. ideal, for every fixed e € A thefe is a linear opérator n(a) defined
on A/N by w{a){z + N) =ex+ N, £ € A. Note first that

{4.20) (wl(a)n ) = {n.n(")C),

for every pair of elements = y+ N,{ = 2+ N € A/N. Indeed, the left side
of (4.20) is p(2*ay), wiiile the right side is p{{(a°z)*y) = p{z"ay), a9 asserted.
We claim next that for every a € 4, |lx{a)|l < lla)|, where n(a) is viewed

ns an operntor on the inner product space A/N. Indeed, if ||laff <1, then
for every £ € A we bave

{(r{e¥{z + N),n{a){z + N)} = {az + N, az + N) = p({az) ax)
(4.21) ..
= p{z'a’az).

Since g’e is s self-adjoint element in the unit ball-.;_,q[ A, we can -_ﬁn._(i:-_a
self-ndjoint square root y of 1 — a®a {see Exarcige (2b)). It follows that
x*c - 2*a*ax = 2*(1 - a'a)xr = z°)°z = (yz)* y=z; hence

plz°z — z*a"ax) = p((yz) yr) 2 0,

from which we conclude that p{z*a*az) < p(x*x). This provides an upper
bound for Lhe right side of (4.21), and we obtain

{(r{a)(z + N),mla)iz + N)) < p(z"z) = (z+ N,z + N).

b follows that |[w(a)lj < 1 when Jja]] < 1, end the ¢laim is proved.

Thus, for.enchia € A we may extend n{e) uniguely to a bounded operator

ou the completion # by taking the closura.of its graph;.und we denote the
closure n(a) € B(H) with the same notation, Note that (4.20) implies that
(men, ¢} = (e )Q) ‘

for oll 7,{ € H, and from this we deduce that
e} = 7a").a € A. It is clear from the définition of m that w(ab) =
w{a)n(b) for a,b € A; hence 7€ replA, H).

Finnlly, note that (a, §€) is a GNS pair for p. Indecd,

A =m{AH1+ N)={a+ N :a e A)
s obviously dense in H, and

letion is o Hilbert

(m8)6.€) = (6+ N1 +N) = p(1%a) = pla).
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For the uniqueness assertion, let (7, &’) be another GNS pair for p,
¢ rep(A A, H'). Notice that there is & unique linear isometry Wy from the
H'(A)E ontd WI(A)E‘ dEﬁ.ﬂEd by WG W(g)s — ﬂJ(a)e' Simply

Engegubﬂpﬂce
g forallaeA

(nla)k, w(a)6) = (m(a"a)6, €) = pla’a) = (v'(a)E 7' (a)E).

The isometry Wo ext.cnds uniquely to & unitary operator:W : H -+ H, and
one verifies readily that WE = ¢, and that Wr(a) = #'(a)W on:the dense set
of vectars (A € H. Tt:follows thiit (,€)-and (7', £') are equivalent. O

REMARK 4:7.4. Many important Banarch s-algebras do-not have units.
Por example, the group algebras E1(C) of locally:commpact:groups fail to have
uiilts except-when G is discreté. ' C*-algebras such as X do not have units.
But the:mbst:ifnportant examples of Banach: -algébras have “approximate
units,” and it is signiflcant that- there is an appropristé generalization of
the. GNSr'construction: (Theorem 4.7.3) that applies to Banacly «-algebras

conmimng ah dpproximate unit [10], [2].

Exerclses.
(1) (a) Pix exin-the;interval 0 < o < 1. Show that the binomial series
of (1 — 2} has the form

00
=1

 wheree, >0forn=1,2,....
(b) Deditce that
oo
Z_c,-. = ].

(2) (a) Let 4 be a Banach algebm withs normalized unpit, and- let
€1:C2, ... be the binomial ::oeﬂicients of the precediang exercise

for the parameter valiie @ = &. Show that for every element
z & A satisfying ||z]] < 1, the senes

1~ Z e "
n=l
converges absolutely to anclement p € A satisfying
yi=1 -
(b) Supposein addition that A is a Banach v-glgebra: Dedt

for every sell'-a.cypint. clement = in thc uait ball of A,2
o selfagljoint square root in A.

ammnln exercises, A = {(z € C:
In:the r ges, e ek aliubre, causisiivg

cloged unit. disk and A denotes
‘functions f € O(A) that wre anulytic oo the interior of A.

uce thit
- has

(z] <1} denotes the
of all
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(3) (n) Show that the map f — f* defined by

[ (z)= T(:z:jt z €A,
makes A into a Banach s-algebra.

(b) For each 2 € A, let.w:(f) = f(2), f € A. Show that w, i5 ,
positive linear functional if and only if z € [-1, 'l']' is reql.
(4) Let p he the lincar functional défined-on A by '

!
o1} = fo [(z) de.

(a) Show that p is & state.

(b} Caleulate & GNS:pair {m,£) for-pin.concrete terms as follows,
Consider the Hilbert space L"'[O, 1], and let € € £2[0,1] be the
constant, function €(t) = 1, ¢ € [0,1]. Exhibit a representation

7 of A on L2[0,1] such that {m,£) becomes a:GNS palr for p.
(c) Show that # is faithful; that is, for f € A we have

#(f)=0= f=0.

(d) Show that the closure of #{A) in the weak operator topology
is o maximal abelian von Neumann- algebra.

4:8. Existence of States: The Gelfand-Naimark Theorem

Turning our attention to C*-algebras, we now show that every unital C°-
algebrn has an abundance of states. The ‘GNS'construction implies that
every state is associated with s represcntation; these two principles.combine
to show that every unital C"-algebra has an isometiic Tepresentation 25 &
conarete C*-algebra of ioperators on some Hilbert space.

- [

Let Abe a unital C*dlgebra, fixed throughiout. A positive element.of A8
u self-adjoint element with nonnegative spectrumi, #(z) € [0, 00).- One writes
z > 0. Notice that z2 > 0 for every sclf-adjoisit element z € A Indeed,
one cun compute o{z?) relative to auy urital C"-subalgebra containlng i,
ond if oue uses the commutative C*-algebra gengrated by z amd 1, the
result follows immediately from Theorem 2.2.4 and basic properties of:the
Gelfand map. Significantly, this argunient ‘does not imply that z°z bas
nounegative spectrum for nopnormal elements z € 4, and in fact, the praof
tLat 2°z > 0 in general (Theorem 4.8.3) is the cornerstone of the Gelfand-
Nuimark theorem,

Welet A denote the set of all positive elements of A. Tt is clear that A™

s closed under multiplication by nonnegative séalars, but it is not chvious
that the suun of Lwo-positive eletuesits is positive.

LEMMA 4.8.1. {fz,y are twe.positive clements of A, then x4y is positive.

Prooy. By replacing ., ¢ with Az, Ay for an appropriately small positive
uumber A, we can sssute that ||={| < 1 and {ly}] < 1. This implies that Both
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have their spectra in the unit interval [0, }]. Hence 1 -z and 1 -y
¥

rand . in
pave theu' spectrn
(1-A: A€} =[-L0 € [-L+1)
since they are self-adjoint, their norms agree with' their spectral radii, and
S clode that [~z < 1add 1-yl<L
[t suffices to show that z = 3(z+y) is positive. z is obviously self-adjoint
ond 1

1 1 1
-— I == N - — -] - Y <-—- -_== .

Hepce
a(z)C{teR:(1-t| <1} C[0,00).

O

LEMMA 4.8.2. [f a € A salisfies o{a’a) C (—o0,0}, then a = 0.

Proor. If a,b are elements of any Banach algebra with unit, then the
nonzero points of o(ab) and;o(ba) are the same (see Exercises (3) and (4) of
Section 1.2). It follows. that o(aa*) C (—o0,0]. From the preceding lemma
we conclude that o(a*a +aa’) C (—00,0].

Let a = z + iy be the Cartesian decomposition of ¢, with z = z* and
¥ = y°. Expanding a®a = (z - iy)(z + iy) and aa® = (z + iy){z - iy) and
canceling where possible, we obtain

a’a+aa” = 222 + 22
Hence —(222 + 2y?) > 0. Adding the positive element 2y? we find that
~2z? > 0, and thus ~z2 > 0. Since z° is a positive element, the preceding
sentence implies that its spectrum is contained in (—00,0j N [0.cc) = {0}:
hence f|z?]| = r(z2) = 0, and = = O follows. Similarly, y = 0. O

The key result op the existence of positive elements is the following:

THEOREM 4.8.3. In a unital C*-slgebra A, every element of the form
a’a has nonnegalive spectrum.
PROOF. Fix a € A, and consider the following contipuous functions

[l g: R R:
vi .t20,
f(”:{o 12 <0,
and
0 A 20
gm:{‘/:-'t' &< 0.

les of the
We have f(1)? — g{t)? = ¢ and f(t)g(t) = 0. ¢t € R. The propertie= st - -
c“ﬂanl:!-l‘:(ﬁ)mallm calculus imply that £ = f(a'a) ad y = gla®n) wr

self-adfoint clements of A satisfying zy = y£ = 0 and

2 )
g'u=3" - YN -
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Consider the element ya®ay = y{z? - )y =
L | ¥=-y*" Th
nonpasitive, so that Lemma 4.8.2 implies that ag =7. %?;?br'{m of putay i
0, and since y is self-adjoint, this entails y= oy =~

. 0. We copi . y.q.“”"*‘
it the square of a self-adjoint element of 4 and i ﬁhmi?:l:ed;:gl;:;: =2

Q
CoroLLARY 1. Let p be a linear functiona] on unita) ¢

‘ . . . a!‘ C.-
satisfying ||oll = p(1) = 1. Then p is a state. vlgebra 4

ProoF. We have to show that p(a*a} > 0 for every a € A. By T1
4.8.3 it is enough to show that for every self:adjoint element 2 ¥ Tlieorerm

. cment r € 4 hh?ing
nonnegative apectrum, we have p(z) > 0. More generally, we claim that for
evory normal clement 2 € A,

p(z) € Tonv o (2).

To sce this, let B be the commutative C*-subalgebra generated by z and 1.
The restriction pg of p to B satisfies the same hypotheses ||ppfl = pg(1) = 1.
By Theorem 2.2.4, B is isothetrically »-isomoiphie to C(X), and for C(X)
this is the result of Lemma 1.16.3. 0

COROLLARY 2. Tor every element z in a unital C*-algebra A thereisa
state p such that p(z°z) = |||

Proor. Consider the self-adjoint element 3 = z*z, and let. B be the sub
C*-nlgebra generated by y and the identity. Again, since B 22 C({X) there
is 8 complex homomorphism w € sp(B) such thet w(y) = [lv|l. Let o beany

extension of w to a linear furictional an A with {p]] = Jjwll = 1. We;also

have p(1) = w(l) = 1. Thus ||p)] = p(1) = 1, abd the preceding corallary
implies that p is s state. D

Let us examine the implications of Corollary 2. Fixing an element £ € 4,
choose a stnte p satislying p(z"z) = ||z)|2. Applying the GNS-constructian

to p we obtain g Bilbert space H, a vector £ € H, and a representation
7 € rep(A, H) with the property

ﬂ(a) = (ﬂ'{a')fl f)t G € A“

Taking ¢ = 1 we have JI€|12 = p(1) = 1; hence £ is o unit vector. Takiog
a = z we find that |[z(2)€)2 = p(z"z) = ||z|%; hence |In(z)f = li=ll, We
conclude that for every-clement = € A there is o representation 7 of A op
some Hilberl space H, such that ||r.(z)]] = ||z||. Considering the direct
sum of Hilbert spaces

H = @zcaH;

sud the representation n € rep{A, i) defined by

n = &’SEA“’-:t

we gee thal v is an isometric representation of A ou . Thus we have proved
the lollowing result:
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TheOREM 4.8.4 (Gelfand-Naimark). Every unital C*-algebra can be rep-
resented isometrically and «-isomorphirally as a C*-algebra-of operators on
some Hﬂbﬂr‘ mccv

Of course, the Hilbert space @;cAH. is never separable, and a natural
question is whetber A can be represented faithfully on a separable Hilbert
space. There is no satisiactory answer in general, .but for the important
class of C*-nlgebras that are generated by a couritable set of clements the
answer is yes (see Exercise (4) below).

REMARK 4.8.5. Pure slates: Irreducible representations. Let A be a
unital C*-algebra. The set S(A) of all states is a convex set in the unit
ball'of the dual of A, and it is closed and therefore compact in its relative
weak®-topology. By the Krein-Milinan-theorem, S(A4) is the closed convex
hull of its set of extreme points.

An extreme point of S(A) is called a pure state. The result of Exercise (6)
below implies that Corollary 2 can be strengthened so that p(z"z) = ||z||? is
achieved with:a pure state p. It is significant that pure states correspond to
irreducible representations in the sense that a state p Is pure-if, and only if,
its GNS;pair (7, £) bas the property that # is an irreducible representation.
Thus one may infer that for every element z € A there is an irreducible
representation 7 € rep(A, H) such that ||r(z)|| = ||z||. The reader is referred
to [2] and [10] for more detail and-further applications.

(1) Show that the Gelfand-Naimark theorem remains true verbatim for
C*-algebras without a unit.

(2) Show that in the disk algebra A, considered as a Banach «aigebra
with lnvolution f*(z) = f(Z), = € A, there are elements « for which
the spectrumofl a®a is the closed unit disk.

A C’-algebra is separable if it contalns a countable norm-dense sel.

(3) Let A be a C*-algebra that is generated as a C*-algebra by & Bnite
or countable set of its clements. Show that A is o separable C*-

algebra. |
(1) Show that every sepasable C*-algebra can be represcoted (isowet-

rically and s-isomorphically) on a sepazable Hilbert space.
(5) Let )i: be a compact Hausdorfl space. Show that for every pE X
the point ¢valuation f € C(X) +» {(p) s a pure state of C(X).
(6) Let A be a unital C*-algebra and let z be au element of,;l. St‘tovu-'
that there is a pure state p of A such that p(z*z) = |lef|”. Hint:
the unital C*-subalgebra Ag € /1 gener

ly Exercise (5) to
APP y - ( ) ure slate of A,o can be extended to a pure

by z°z, and show that a p
state of A.
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