
Graduate texts
in Mathematics

M. Scott Osborne

Basic
Homological
Algebra

Springer



Graduate Texts in Mathematics 196

Editorial Board
S. Axler F.W. Gehring K.A. Ribet

Springer
New York
Berlin
Heidelberg
Barcelona
Hong Kong
London
Milan
Paris
Singapore

Tokyo



Graduate Texts in Mathematics

1 TAKEUTI/ZARING. Introduction to
Axiomatic Set Theory. 2nd ed.

37
38

MONK. Mathematical Logic.
GRAUERT/FRITZSCHE. Several Complex

2 OxToBY. Measure and Category. 2nd ed. Variables.
3 SCHAEFER. Topological Vector Spaces.

2nd ed.
39
40

ARVESON. An Invitation to C°-Algebras.
KEMENY/SNELL/KNAPP. Denumerable

4 HILTON/STAMMBACH. A Course in Markov Chains. 2nd ed.
Homological Algebra. 2nd ed. 41 APOSTOL. Modular Functions and Dirichlet

5 MAC LANE. Categories for the Working
Mathematician. 2nd ed.

Series in Number Theory.
2nd ed.

6 HUGHES/PIPER. Projective Planes. 42 SERRE. Linear Representations of Finite
7 SERRE. A Course in Arithmetic. Groups.
8 TAKEUTI/ZARING. Axiomatic Set Theory. 43 GILLMAN/JERISON. Rings of Continuous
9 HUMPHREYS. Introduction to Lie Algebras

and Representation Theory. 44
Functions.
KENDIG. Elementary Algebraic Geometry.

10 COHEN. A Course in Simple Homotopy
Theory.

45
46

LOEVE. Probability Theory I. 4th ed.
LOEVE. Probability Theory 11. 4th ed.

11 CONWAY. Functions of One Complex
Variable 1. 2nd ed.

47 MoISE. Geometric Topology in
Dimensions 2 and 3.

12 BEALS. Advanced Mathematical Analysis. 48 SACHS/WU. General Relativity for
13 ANDERSON/FULLER. Rings and Categories Mathematicians.

of Modules. 2nd ed. 49 GRUENBERG/WEIR. Linear Geometry.
14 GOLUBITSKY/GUILLEMIN. Stable Mappings

and Their Singularities. 50
2nd ed.
EDWARDS. Fermat's Last Theorem.

15 BERBERIAN. Lectures in Functional
Analysis and Operator Theory.

51 KLINGENBERG. A Course in Differential
Geometry.

16 WINTER. The Structure of Fields. 52 HARTSHORNE. Algebraic Geometry.
17 ROSENBLATT. Random Processes. 2nd ed. 53 MANIN. A Course in Mathematical Logic.
18 HALMOS. Measure Theory. 54 GRAVER/WATKINS. Combinatorics with
19 HALMOS. A Hilbert Space Problem Book. Emphasis on the Theory of Graphs.

2nd ed. 55 BROWN/PEARCY. Introduction to Operator
20 HUSEMOLLER. Fibre Bundles. 3rd ed. Theory I: Elements of Functional
21 HUMPHREYS. Linear Algebraic Groups. Analysis.
22 BARNES/MACK, An Algebraic Introduction

to Mathematical Logic.
56 MASSEY. Algebraic Topology: An

Introduction.
23 GREUB. Linear Algebra. 4th ed. 57 CROWELL/Fox. Introduction to Knot
24 HOLMES. Geometric Functional Analysis Theory.

and Its Applications. 58 KoBLITZ. p-adic Numbers, p-adic Analysis,
25 HEWITT/STROMBERG. Real and Abstract

Analysis. 59
and Zeta-Functions. 2nd ed.
LANG. Cyclotomic Fields.

26 MANES. Algebraic Theories. 60 ARNOLD. Mathematical Methods in
27 KELLEY. General Topology. Classical Mechanics. 2nd ed.
28 ZARISKI/SAMUEL. Commutative Algebra. 61 WHITEHEAD. Elements of Homotopy

Vol.l. 62 KARGAPOLOVIMERLZJAKOV. Fundamentals

29 ZARISKI/SAMUEL. Commutative Algebra.
Vol.I1. 63

of the Theory of Groups.
BOLLOBAS. Graph Theory.

30 JACOBSON. Lectures in Abstract Algebra I.
Basic Concepts.

64
65

EDWARDS. Fourier Series. Vol. 12nd ed.
WELLS. Differential Analysis on Complex

31 JACOBSON. Lectures in Abstract Algebra II. Manifolds. 2nd ed.
Linear Algebra. 66 WATERHOUSE. Introduction to Affine

32 JACOBSON. Lectures in Abstract Algebra
III. Theory of Fields and Galois Theory. 67

Group Schemes.
SERRE. Local Fields.

33 HIRSCH. Differential Topology. 68 WEIDMANN. Linear Operators in Hilbert
34 SPITZER. Principles of Random Walk. Spaces.

2nd ed. 69 LANG. Cyclotomic Fields II.
35 ALEXANDER/WERMER. Several Complex

Variables and Banach Algebras. 3rd ed.
70
71

MASSEY. Singular Homology Theory.
FARKAS/KRA. Riemann Surfaces. 2nd ed.

36 KELLEY/NAMIOKA et al. Linear Topological
Spaces. (continued after index)



M. Scott Osborne

Basic Homological Algebra

Springer



M. Scott Osborne
Department of Mathematics
University of Washington
Seattle, WA 98195-4350 USA
sosbome@math.washington.edu

Editorial Board
S. Axler F.W. Gehring K.A. Ribet
Mathematics Department Mathematics Department Mathematics Department
San Francisco State East Hall University of California

University University of Michigan at Berkeley

San Francisco, CA 94132 Ann Arbor, MI 48109 Berkeley, CA 94720-3840
USA USA USA

Mathematics Subject Classification (2000): 18-01, 18G15

Library of Congress Cataloging-in-Publication Data
Osborne, M. Scott.

Basic homological algebra / M. Scott Osborne.
p. cm. - (Graduate texts in mathematics ; 196)

Includes bibliographical references and index.
ISBN 0-387-98934-X (hc. : alk. paper)
1. Algebra, Homological. I. Title. II. Series.

QAI69.083 2000
512'.55-dc2l

Printed on acid-free paper.

99-046582

© 2000 Springer-Verlag New York, Inc.
All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York,
NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use
in connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the
former are not especially identified, is not to be taken as a sign that such names, as understood by
the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

This reprint has been authorized by Spnnger-Verlag (Berlin/Heidelberg/New York) for sale in
the People's Republic of China only and not for export therefrom
Reprinted in China by Beijing World Publishing Corporation, 2003

987654321

ISBN 0-387-98934-X Spnnger-Verlag New York Berlin Heidelberg SPIN 10745204



Preface

Five years ago, I taught a one-quarter course in homological algebra. I
discovered that there was no book which was really suitable as_a text for
such a short course, so I decided to write one. The point was to cover both
Ext and Tor early, and still have enough material for a larger course (one
semester or two quarters) going off in any of several possible directions.
This book is'also intended to be readable enough for independent study.

The core of the subject is covered in Chapters 1 through 3 and the first
two sections of Chapter 4. At that point there are several options. Chapters
4 and 5 cover the more traditional aspects of dimension and ring changes.
Chapters 6 and 7 cover derived functors in general. Chapter 8 focuses on
a special property of Tor. These three groupings are independent, as are
various sections from Chapter 9, which is intended as a source of special
topics. (The prerequisites for each section of Chapter 9 are stated at the
beginning-)

Some things have been included simply because they are hard to find else-
where, and they naturally fit into the discussion. Lazard's theorem (Section
8.4)-is an example; Sections 4, 5, and 7 of Chapter 9 contain other examples,
as do the appendices at the end.

The idea of the book's plan is that subjects can be selected based on the
needs of the class. When I taught the course, it was a prerequisite for a
course on noncommutative algebraic geometry. It was also taken by several
students interested in algebraic topology, who requested the material in
Sections 9.2 and 9.3. (One student later said he wished he'd seen injective
envelopes, so I put them in, too.) The ordering of the subjects in Chapter
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9 is primarily based on how involved each section's prerequisites are.
The prerequisite for this book is a graduate algebra course. Those who

have seen categories and functors can skip Chapter 1 (after a peek at its
appendix).

There are a few oddities. The chapter on abstract homological algebra,
for example, follows the pedagogical rule that if you don't need it, don't
define it. For the expert, the absence of pullbacks and pushouts will stand
out, but they are not needed for abstract homological algebra, not even for
the long exact sequences in Abelian categories. In fact, they obscure the
fact that, for example, the connecting morphism in the ker-coker exact se-
quence (sometimes called the snake lemma) is really a homology morphism.
Similarly, overindulgence in 6-functor concepts may lead one to believe that
the subject of Section 6.5 is moot.

In the other direction, more attention is paid (where necessary) to set
theoretic technicalities than is usual. This subject (like category theory) has
become widely available of late, thanks to the very readable texts of Devlin
[15], Just and Weese [41], and Vaught [73]. Such details are not needed very
often, however, and the discussion starts at a,much lower level.

Solution outlines are included for some exercises, including exercises that
are used in the text.

In preparing this book, I acknowledge a huge debt to Mark Johnson.
He read the whole thing and supplied numerous suggestions, both mathe-
matical and stylistic. I also received helpful suggestions from Garth Warner
and Paul Smith, as well as from Dave Frazzini, David Hubbard, Izuru Mori,
Lee Nave, Julie Nuzman, Amy Rossi, Jim Mailhot, Eric Rimbey, and H.
A. R. V. Wijesundera. Kate Senehi and Lois Fisher also supplied helpful
information at strategic points. Many thanks to them all. I finally wish to
thank Mary Sheetz, who put the manuscript together better than I would
have believed possible.

Concerning source material, the very readable texts of Jans [40] and
Rotman [68] showed me what good exposition can do for this subject, and
I used them heavily in preparing the original course. I only wish I could
write as well as they do.

M. Scott Osborne
University of Washington
Fall, 1998



Preface vii

Chapter/Appendix Dependencies

Chapter 1
Categories

i
Chapter 2
Modules

i
Chapter 3

Ext and Tor

i
Chapter 4

Dimension Theory
Sections 1, 2

Appendix A

Appendix B

1

Chapter 6
Derived Functors

1

Chapter 7
Abstract

Homological
Algebra

r

Appendix C

Chapter 8
Colimits and Tor

c

i
Chapter 8
Section 5

Appendix D

Chapter 4
Sections 3, 4

Chapter 5
Change of Rings

Miscellaneous Prerequisites

Chapter 9
Odds and Ends





Contents

Preface V

1 Categories 1

2 Modules 11
2.1 Generalities . . . . . . . . . . . . . . . . .... . . . .. . . 11

2.2 Tensor Products . . . . . . . . . . ... . . .. .. . .. .. 14

2.3 Exactness of Functors . . . . .. . . . . . . . . . . . .. . . 22
2.4 Projectives, Injectives, and Flats . .. . . ... . . . .. .. 28

3 Ext and Tor 39
3.1 Complexes and Projective Resolutions . . . . . . . . . . . . 39
3.2 Long Exact Sequences . . . . .. . . . . . . . . . .. . . 47
3.3 Flat Resolutions and Injective Resolutions . .. . . . .. . . 55

3.4 Consequences . . . .. .. . . . . . . ... . . . . . . . . . . 66

4 Dimension Theory 73
4.1 Dimension Shifting .. . . . . . .. . .. .. . . . . ... . . 73
4.2 When Flats are Projective . . . .. . . . . . . . . . . . . .. 79
.4.3 Dimension Zero . . . . . . . . . . . . . . . . . . . . . . . .. 82
4.4 An Example . . . . .. .. . . . . . . . . . . . . . . . . . .. 91

5 Change of Rings 99
5.1 Computational Considerations . . . .. . ... . . . .. .. 99

5.2 Matrix Rings . . . . . . . . . . . . .. . . . . . . . . . . . . 104

5.3 Polynomials . . .. .... .... ........... .. .. 106

5.4 Quotients and Localization . . . . . . . . . . . . . . . . . . 110

6 Derived Functors 123

6.1 Additive Functors . . . . . . . .. . . . . . . . . .. . . . . 123

6.2 Derived Functors . .. . . . .. . . . . . . . . . . . .. . . 126



x Contents

6.3 Long Exact Sequences-I. Existence . .......... .. 130
6.4 Long Exact Sequences-II. Naturality .......... .. 140
6.5 Long Exact Sequences-III. Weirdness . . . . . . . . . . . . 147
6.6 Universality of Ext ... .. . .... ....... ...... 151

7 Abstract Homological Algebra 165
7.1 Living Without Elements .. .. ........ ... .. .. 165
7.2 Additive Categories ..... .. .... .... ... .. .. 169
7.3 Kernels and Cokernels .. . ... ......... . . .. .. 173
7.4 Cheating with Projectives . . . . . . . . . . . . . . . . . . . 186
7.5 (Interlude) Arrow Categories .. .. .. .... ... .. .. 202
7.6 Homology in Abelian Categories . . . . . . . . . . . . . . . 213
7.7 Long Exact Sequences .. . ... .. ...... ... .. .. 225
7.8 An Alternative for Unbalanced Categories ...... .... 239

8 Colimits and Tor 257
8.1 Limits and Colimits . . . . . . . . . . . . . . . . . . . . . . 257
8.2 Adjoint Functors . . . . . . . . . . . . . . . . . . . . . . . . 264
8.3 Directed Colimits, ®, and Tor ... . ......... .. .. 270
8.4 Lazard's Theorem .... ....... ..... .... . .. 274
8.5 Weak Dimension Revisited .. ... ......... ..... 280

9 Odds and Ends 285
9.1 Injective Envelopes .... . .... . .. .... ... .... 285
9.2 Universal Coefficients .. . .. ... ....... . ...... 290
9.3 The Kiinneth Theorems .. .. .. ....... ..... .. 296
9.4 Do Connecting Homomorphisms Commute? ......... 309
9.5 The Ext Product ... . .. ..... ...... ..... .. 318
9.6 The Jacobson Radical, Nakayama's Lemma, and Quasilocal

Rings .. ... ...... . .. .. ....... ... .. .. 324
9.7 Local Rings and Localization Revisited (Expository) . . .. 331

A GCDs, LCMs, PIDs, and UFDs 337

B The Ring of Entire Functions 345

C The Mitchell-Freyd Theorem and Cheating in Abelian Cat-
egories 359

D Noether Correspondences in Abelian Categories 363

Solution Outlines 373

References 383

Symbol Index 389

Index 391



1

Categories

Homological algebra addresses questions that appear naturally in category
theory, so category theory is a good starting point. Most of what follows is
standard, but there are a few slippery points.

First, a few words about classes. The concept of a class is intended to
generalize the concept of a set. That is, not only will all sets be classes,
but some other collections of things that are "too big" to be sets will also
be classes. For example, the collection of all sets is a class. It is a proper
class, in the sense that it cannot be a set; this is the Russell paradox, which
traditionally is presented as follows.

Let S be the class of all sets. Assume S is a set. Then

A = {XESIXVX}

is also a set. Note that for any set X,

XEA,# X¢X.

In particular, taking X = A,

AEAt-*A¢A,

a contradiction.
Note also that P(S) C S, which should be bizarre enough.
In Godel-Bernays-von Neumann class theory, sets are defined as classes

which are members of other classes. In fact, the only members any class
has are sets. The power class is the collection of subsets, so P(S) = S,
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and S ¢ P(S). The axioms of Godel-Bernays-von Neumann class theory
lead to what we have learned to expect of classes, but this is a complicated
business. A brief variant appears as an appendix to Kelley [48, pp. 250-281].

For our purposes (at least until Section 6.6), all we need to know is
that the class concept is like the set concept, only broader: Classes are still
collections of things, and all sets are classes, but some classes (like the class
of all sets) are not sets. Also, the elementary set manipulations, like union,
intersection, specification, formation of functions, etc., can be carried out
for classes as well. The one thing we cannot do is force a class to belong to
another class, unless the first class is actually a set. For example, one can
define an equivalence relation on a class, and then form equivalence classes,
but one cannot form the class of equivalence classes unless the equivalence
classes are actually sets. An example on the class S: Say that X - Y when
X and Y have the same cardinality. The equivalence class of 0 is {0}; it is
the only equivalence class which is a set.

A category C consists of a class of objects, obj C, together with sets
(repeat, sets) of morphisms, which arise in the following manner. There
is a function Mor which assigns to each pair A, B E obj C a set of mor-
phisms Mor(A, B) from A to B, sometimes written Morc(A, B) if C is to
be emphasized. Mor(A, B) is called the set of morphisms from A to B. The
category C also includes a pairing (function), called composition:

Mor(B, C) x Mor(A, B) Mor(A, C)

(g,f)'-'gf
Finally, each Mor(A, A) contains a distinguished element iA. The axioms
are:

1) Composition is associative. That is, if f E Mor(C, D), g E Mor(B, C),
and h E Mor(A, B), then (fg)h = f (gh).

2) Each iA is an identity. That is, if f E Mor(A, B), then f = fiA = iB f .

Note: Many authors also require

3) Mor(A, B) is disjoint from Mor(C, D) unless A = C, B = D.

This serves as a bookkeeping device, and also allows certain construc-
tions. It is also a pain in the neck to enforce. (See below concerning con-
crete categories.) However, if C does not satisfy this, one may replace
f E Mor(A, B) by the ordered triple (A, f, B). That is, replace Mor(A, B)
by {A} x Mor(A, B) x {B}.

Example 1 SETS. obj Set = class of all sets. Mor(A, B) = all functions
from A to B.
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Example 2 GROUPS. obj Gr = class of all groups. Mor(A, B) = all ho-
momorphisms from A to B.

Example 3 TOPOLOGICAL SPACES. obj Top = class of all topological
spaces. Mor(A, B) = all continuous f : A --> B.

"Composition" is functional composition. The reader should be able to
provide lots of examples like the above. There are other kinds, as well.

Example 4 Given C, form the opposite category, COP : obj C = obj C°P,
while Morcop (A, B) = Morc (B, A). Composition is reversed: Letting
denote composition in C°P, set f * g = g f .

Example 5 Note that, from the definition, Mor(A, A) is always a monoid,
that is, a semigroup with identity. This is quite general; if S is a monoid,
define a category as follows: obj C = {S}, and set Mor(S, S) = S. Composi-
tion is the semigroup multiplication. Note further that the singleton obj C
can, in fact, be replaced by any other singleton {A}, with Mor(A, A) = S.
At this point, we are rather far from our intuitions about morphisms; the
circuit breakers in our heads may need resetting.

The last two examples are different in flavor from the first three. But
that's good; the notion of a category is broad enough to include some
weird examples. To isolate the content of the first three examples:

Definition 1.1 A category C is called a concrete category provided C
comes equipped with a function or whose domain is obj C such that

1. If A E obj C, then v(A) is a set. (It is called the underlying set of
A.)

2. Mor(A, B) consists of functions from Q(A) to a(B), that is, any f E
Mor(A, B) is a function from v(A) to v(B).

3. Categorical composition is functional composition.

4. iA is the identity map on v(A).

Observe that, if one adopts the disjointness requirement in the definition
of a category, condition 2 cannot be taken literally. (For example, in Set,
Mor(O, A) = {empty function} for all A.) Rather, replace it with

2'. Mor(A, B) consists of ordered triples (A, f, B), where f is a function
from Q(A) to o(B).

Concrete categories have a number of uses; an odd one will be described
in the appendix. One use is the definition of free objects.
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Definition 1.2 If C is a concrete category, F E obj C, and X is a set,
and if cp : X v(F) is a one-to-one function, then F is called free on X
if and only if for every A E obj C and set map & : X ---+ a(A), there exists
a unique morphism f E Mor(F, A) such that f o cp = as set maps from
X to v(A).

Example 6 C = Ab = category of Abelian groups. Say X = {1, 2},
o ,(F) = Z x Z, i.e., F is the Abelian group Z x Z. Define cp(1) = (1, 0)
and cp(2) = (0,1). Given : X --> v(A), with 0(1) = a, 0(2) = b, define
f : F --> A by f (m, n) = ma + nb. Then f o cp = i ; furthermore, the
definition of f is forced. Roughly speaking, F is "large enough" so that f
can be defined, while F is not "too large" so that f is unique.

One quick definition: If C is a category, and f e Mor(A, B), then f is
an isomorphism provided there is a g E Mor(B, A) for which fg = iB and
g f = iA. By the usual trickery, g is unique: Given just that f g' = 1B, then
9' = iAg' = (9f)9' = 9(f9') = giB = 9

Theorem 1.3 If X is a set, C is a concrete category, and F, F' are free on
X (with cp : X , o ,(F), cp' : X -+ o, (F')), then F and F' are isomorphic.

Proof: F being free, 3 f E' Mor(F, F) with cp' = f o cp. F' being free,
3 g E Mor(F', F) with W = g o cp'. Then g f e Mor(F, F). Also, cp = gcp' _
g(f cp) = (g f )cp. The uniqueness of the map (namely iF) satisfying cp = hcp
implies that g f = iF. Similarly, fg = iF'. El

The above can be illustrated by using diagrams, as will usually be done
in what follows. A cp E Mor(A, B) can be illustrated by an arrow:

A

A 0 > B or wt or

B

Diagrams assemble such morphisms:

A ° 3C
'0 \. B/

A diagram is commutative if any two paths along arrows that start at
the same point and finish at the same point yield the same morphism
via composition along successive arrows. In the diagram above, two paths
lead from A to C, the direct one and the indirect one, so commutativity
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requires cp = O. For example, the commutative diagram associated with
the definition of a free object is

X \-/a (F)

which illustrates the concept more clearly than the prose in the definition.
There may be many paths:

A 7'>B

C 0> D

Commutativity requires a = OW = 877.
There may be many initial and/or final points:

A 77 B

C
1P

;D

Commutativity requires 77 = OW and 7l5 = 0,3, as well as 077 = 7licp. The last
follows from the first two: 077 = 0& = 7l)cp. That is, commutativity of the
whole diagram follows from commutativity of the two triangles. This phe-
nomenon is common; complicated diagrams are checked for commutativity
by checking indecomposable pieces.

Diagrams are so useful that it may (depending on psychological factors
more than anything else) be helpful to visualize morphisms as literal arrows.

Suppose {Ai : i E Z} is an indexed family from obj C. A product of the
Ai, written

fJ Ai
iE2

is an object A, together with morphisms 7ri E Mor(A, Ai) for all i E Z,
satisfying the following universal property:

If B E obj C, and Oi E Mor(B, Ai) for all i E Z, then there is a unique
0 E Mor(B, A) making all the diagrams

A
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commutative. (A dashed line is used for B to emphasize that its existence is
being hypothesized. Such hypothesized morphisms are often called fillers.
The idea is that a filler extends a diagram in a commutative way.) Roughly
speaking, a single morphism into fl Ai models a collection of morphisms
into the individual Ai ((?Pi) H B); as a target of morphisms, fl Ai encap-
sulates all the Ai. In Set, the ordinary Cartesian product is a category
theoretic product, with B(b) = (V)i(b)).

The case of only two objects can be illustrated with a single diagram:

Bi \02
A,A -37-+ A22

If the indefinite article in the definition of a product worries you, and
it should, rest assured. While products are not totally unique, they are as
unique as could be hoped for-they are unique up to isomorphism. For if
the B above is also a product, then there is also a unique i making

A

commutative, whence

A

is commutative. Uniqueness implies that Bra = iA. Similarly 779 = is.
The above is an example of a universal mapping construction; in gen-

eral, there are morphisms between some of the Ai. There may even be
noncategorical things, like the bilinear maps used to define tensor prod-
ucts. The idea behind uniqueness is the same, however, and such objects
are unique up to isomorphism when the recipe allows the above argument
to work. Here it is more important to understand the principle than to have
a general theorem stated.

Coproducts are just products on the opposite category. The coproduct
of Ai is an A, together with cpi E Mor(Ai, A). The diagrams that must
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commute are

The coproduct of the A; incorporates all the A2 collectively as far as tails
of arrows are concerned ((V)i) T). The coproduct in Set is the disjoint
union. That is, one defines

A=U{i}xAi
iET

and pi(ai) = (i, ai).
The coproduct in Ab is the direct sum. (Coproducts are sometimes called

direct sums, especially in older books. The term coproduct has largely taken
over.)

AN EXERCISE: Show that if A is free on a set S in Ab, with map 4) : S -+ A,
then A is also a coproduct of I S) copies of Z, where each cps : 7L A is given
by cpy(n) = n - 4, (x) (x E S). That is, given B E obj Ab, and ox : Z B,
... Do all this as categorically as possible.

One last gadget from general category theory: A (covariant) functor
F from C to D is a function from obj C to obj D, also called F, as well
as functions (also called F) from Morc(A, B) to MorD(F(A), F(B)), that
satisfy

i) F(iA) = ZF(A)

ii) F(cpo) = F(cp)F(V)) if cp E Morc(B, C), 0 E Morc(A, B).

Here is one place where requiring the morphism sets to be disjoint allevi-
ates confusion. If they are not disjoint, then the functor is, on the morphism
sets, an amalgamation of functions, one for each pair of objects.

A contravariant functor from C to D is literally a covariant functor from
C to D°P. That is, if cp E Morc(A, B), then F(op) E MorD(F(B), F(A)).
Rules (i) and (ii) above apply, suitably modified. A functor is defined as
either a covariant functor or a contravariant functor.

Example 7 C = Gr, D = Ab. F(G) = GIG', G' = commutator sub-
group of G. If cp E Mor(G, H), then cp(G') c H', so induces a homomor-
phism F((p) from G/G' to H/H'.
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Example 8 C = category of rings, D = Ab. F((R, +, )) = (R, +).
F(W) = cp. This is sometimes called a forgetful functor; it "forgets" that
R is a ring by filtering out all but the underlying additive group.

Roughly speaking, functors play the role in category theory that mor-
phisms play in individual categories. In fact, one may define a category Sm
of small categories, that is, categories C such that obj C is actually a set.
Since

obj C x obj C -> all sets (A, B) H Mor(A, B)

is a function, the collection of all Mor(A, B) so obtained is a set by the class-
theoretic version of the axiom of replacement: If the domain of a function
is a set, then its range is a set. Finally, morphisms of Sm are functors (or,
in more restrictive versions of this, covariant functors.)

Two final definitions: If C and D are categories, then C is a subcategory of
D if obj C C obj D, and if for all A, B E obj C, Morc(A, B) C MorD(A, B).
(One also requires that identity morphisms from C coincide with identity
morphisms from D.) If the last set containment is always an equality, then
C is called a full subcategory of D. For example, Ab is a full subcategory
of Gr. The category of rings with unit is (ordinarily) not a full subcategory
of the category of rings, since zero homomorphisms are allowed in the latter
but not the former.
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Appendix

Suppose C is a concrete category. Also assume C is "uniform", in that:
If A E obj C, S is a set, and cp : a(A) S is a bijective function, then
there exists B E obj C such that a(B) = S, and cp is an isomorphism of
A with B. (That is, cp E Mor(A, B) and co` E Mor(B, A).) In words, an
isomorphic copy of A can be manufactured from any set S which is in one-
to-one correspondence with a(A). (Note: This definition is not standard.)

Most familiar categories are concrete and uniform, but not all: If F is a
field, then the category of extension fields is a concrete category, but no
extension field can be manufactured from the set S unless F C S and cp is
the identity on F.

The theorem below shows how to make an object be a literal subobject
of another object. It will be called the Pulltab Theorem, for lack of a better
name.

Theorem 1.4 Suppose C is a concrete, uniform category. Suppose A, B E
obj C, and f E Mor(A, B). Suppose that, as a map from o, (A) to o, (B),
f is one-to-one. Then there exists C E obj C, as well as g E Mor(A, C),
h E Mor(C, B), such that f = hg, and

i) h is an isomorphism of C with B.

ii) a(A) C a(C), and g(x) = x for all x E a(A) (that is, g : A -> C is
set inclusion).

Discussion: In words, this says that any one-to-one morphism is set in-
clusion into 1i larger object followed by an isomorphism. Applications are
legion; here are two. C = metric spaces; morphisms are isometries. A = any
object, B = usual construction of the completion, and f = usual imbedding.
C is a completion which has A as a literal subspace. Another: C = fields,
A = a field, p(x) is an irreducible polynomial in A[x], B = A[x]/(p(x)),
and f = usual imbedding. Then C is a literal extension of A in which p(x)
has a root.

Proof: Let S' be a set which is disjoint from a(A), and cp' a bijection
from a(B) to S. (Such a pair (S', cp') exists with S' inside the power set of
a(A) U a(B) for reasons of cardinality.) Define a set S and cp : u(B) - S,
as follows:

S = [S' N W' (f (a(A)))] U a(A)
= cc' (a(B) - f (o, (A))) U a(A)

x, if y = f (x) for some x E a(A)
W(y) = W'(y), if y 0 f (a(A))

(Roughly speaking, we "pull" the "copy" cp'(f (a(A))) of a(A) out of S'
and replace it with a(A).)
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Note that cp is a bijection, since it is a bijection from f (v(A)) to a(A)
(namely f -1), and from Q(B) - f (v(A)) to S' - co'(f (v(A))) (namely cp');
further, the two target sets are disjoint. _

Let C be an object with v(C) = S, and h-1 = cp E Mor(B,C). Let
g = h-1 f . Then hg = hh-1 f = f. h is an isomorphism by construction.
By definition, cp "undoes" what f does on f (Q(A)), so g(x) = W f (x) = x
for x E Q(A).

One final comment. One might expect that in a concrete, uniform cate-
gory, the object C would be unique. The following example shows that this
isn't so.

Let C be the category of "hairy" sets: H is a class with at least two
elements (types of hair), and C consists of all ordered pairs (A, h), where
A is a set and h E H. The morphisms from (A, h) to (B, h') are just
functions from A to B. C is a concrete, uniform category with v((A, h)) =
A. There are different objects B and C (with different hair) for which
v(B) = o(C), and for which the identity function is an isomorphism. (By
the way, the term "hair" was borrowed from physicists who specialize in
general relativity.)



2

Modules

2.1 Generalities

In what follows, all rings will be assumed to possess a unit element, and all
modules will be assumed to be unitary. We shall use the following notation,
with R (or S) being a ring:

RM = category of left R-modules,
MR = category of right R-modules,
RMS = category of R - S bimodules.

Abusing notation, "A E RM" will mean "A is a left R-module." That
is, we won't be writing "(A, +, ) E obi RM, with v((A, +, )) = A." The
phrase "A E RM" is the shorthand used in most of mathematics. Note that
if R is commutative, then RM and MR are isomorphic in an obvious way;
also zM is isomorphic to Ab. They aren't quite the same since they start
with different internal structures. (For example, in the first case, on RM,
the multiplication is defined on R x A for an R-module A, while on MR it
is defined on A x R.)

Recall some of the standard constructions:

i) Direct products: If Ai is an indexed family in RM, i E T, then

11 Ai
iEZ

can be defined as the set of all Z-tuples (ai) with ai E A,. That is, an
element of the product is a function i H ai such that ai E Ai. Note
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that direct products are products in the category RM. The same
construction works in MR and RMS.

ii) Direct sums: If Ai is an indexed family in RM, i E Z, then

® Ai
iEI

can be defined as those elements (ai) in the direct product for which
{i E I : ai # 0} is finite. Note that direct sums are coproducts in
RM. The same construction works in MR and RMS.

iii) Free modules: If I is any set, then

®R
iEI

serves as a free module on the set Z. The same construction works in
MR, but not in RMS.

The product and coproduct of two objects in RM are the same, and this
is no accident. One has diagrams, for A = Al x A2

Al A
-12 A2 Al wl A 4-10? A2

satisfying iA1, ir202 = iA2, and cp17r1 + W21f2 = 2A. Such an A
is often called a biproduct. From this alone, A is both a product and a
coproduct.

Proposition 2.1 Suppose A1, A2, A E RM, and suppose

Al ' A 12 ; A2 Al wL4 A +-Y2 A2

are morphisms satisfying 7rlcpl = iA1, 7r2tp2 = iA2, and cp17r1 + (p27r2 = iA
Then W27C1 = 0, cp17r2 = 0, and A is both a product and a coproduct of Al
and A2.

Proof: cp1 = W01 = (tp17f1 + 027r2)21 = W17r1,1 + c27r2V1
= 'P1iA1 + W272P1 ='P1 + W27r2P1

Hence W27r29'1 = 0, so 0 = 7r2W27r2tp1 = iA27r2W1 = 72cc1. 7r1V2 = 0 by a
similar argument.

Now suppose B E RM, and -0i : Ai -+ B are given. If 0 : A --+ B makes

Al w1 A +-w A2

+G1 1B 0
B
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commute, then

0 = OiA = OGPiiri + 02ir2) = Bcp2ir2 = i&1ir1 + 121x2.

But, in fact, this works. Setting 0 = 1/51ir1 + &27r2 gives 41 = (0171 +
'+G27r2)SP1 = 011001 + V27r2(P1 = 'V1iA, + 0 = 01, and (similarly) 0cp2 = 'P2
This shows that A is a coproduct (with unique filler '17r1 + , 121r2)

Finally, suppose B E RM, and pi : B -* Ai are given. I f 7 7: B - A
makes

Ale-A"Z>A2
Pi

1

B

commute, then

77 = ZA71 _ (011r1 + 0272)7) = 011177 + O21r277 = <PiPi + 02P2

As before, setting ri = cp1p1 + 02P2 works; details are left to the reader.

Two operations are fundamental to homological algebra: the formation
of homomorphism groups, and the taking of tensor products. The former
is probably more familiar. If A, B E RM (or MR), let Hom(A, B) (or
HomR(A, B) if R is to be emphasized) denote the group of module homo-
morphisms from A to B. It is an Abelian group, with the group operation
inherited from B. Note that our notation-reducing conventions substitute
HomR(A, B). for

(MorRM((A, +, ), (B, +, )), +).

Horn is used in place of Mor to emphasize the fact that it is an Abelian
group. Furthermore, of fundamental importance is

For each fixed A E RM, Hom(A, ) is a covariant functor from RM
to Ab, and Hom(, A) is a contravariant functor from RM to Ab.

Functoriality comes from observing that, given 0 E Hom(B, C), we can
define

Hom(A, B) -+ Hom(A, C)

0.(f) = Of,

as well as

Hom(C, A) --+ Hom(B, A)

`(f) = f7p.
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In functorial notation, Hom(A, V)) = ?li*, while Hom(zb, A) _ Eli*. A routine
mess checks that these are functors. For example, if 0 E Hom(C, D), then
(80)*(f) = fe') _ (B*f)O ='+l)*(e*f)

The above has been carried out for RM; similar considerations hold for
MR.

Bimodules enter in when noting that, if A E RMS, then HomR(A, )
can be considered as a functor from RM to SM, while HomR(., A) can be
considered as a functor from RM to MS:

Given f E HomR(A, B), set (s f)(a) = f (as), and given g E
HomR(B, A), set (g s)(b) = g(b) s.

These are on the correct side:

(s (s' f))(a) = (s' f)(as) = f ((as) s') = f (a ss') = (ss' f)(a),

and

Of later use: If A E MS zMs and G E Ab zM, then Homz(A,G)
can be viewed in SM.

Finally, we note the behavior of B) and Hom(A, ) under prod-
ucts/coproducts:

Hom(A, IIB2) IIHom(A, Bz),

and

Hom(®Ai, B) II Hom(A2f B).

These isomorphisms can be directly verified from the constructions. They
can also be verified from the universal properties. (See Exercise 3 at the
end of this chapter.)

2.2 Tensor Products

Suppose A E MR and B E RM. A bilinear map from A x B to G E Ab is
a map cp : A x B -+ G satisfying, for all a, a' E A; b, b' E B; and r E R; the
identities

i) cp(a, b + b') = cp(a, b) + W(a, b'),

ii) cp(a + a', b) = cp(a, b) + W(a', b),
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iii) cp(ar, b) = cp(a, rb).

A pair (G, cp) is a tensor product of A and B if, for all H E Ab, and all
bilinear maps z/i : A x B -> H, there is a unique 0 E Hom(G, H) making

commutative. This is the solution of a universal mapping problem having
multiple categories involved, but the uniqueness-up-to-isomorphism result
holds.

We do need two things: (i) the fact that tensor products exist, and (ii)
a specific tensor product of A and B (so that we do not need to deal with
isomorphism classes of Abelian groups, which are proper classes that cannot
be made members of any class). The construction of a tensor product takes
care of both at once.

Let F be the free Abelian group (i.e., i-module) on A x B as constructed
in Section 2.1, that is,

F = ® Z.
AxB

By 1a,b we denote the element of F whose value at (a', b') is one if a = a'
and b = b', but zero otherwise. Note that the map (a, b) t-, la,b, which will
be denoted'by i, is exactly the map from A x B to F which specifies F as
a free Abelian group on A x B. Let H be the subgroup of F generated by
all

1a,b + la',b - la+a',b,

la,b + 1a,b' - la,b+b',

lar,b - la,rb-

Write A ® B (or A OR B if R is to be emphasized) for the quotient F/H.
Write a ® b for the coset of la,b in A 0 B = F/H. Set cp(a, b) = a ® b. The
generators of H guarantee that

(a+a')®b=a®b+a'®b,
a®(b+b') =a®b+a®b',

ar®b = a®rb.

That is, cp is a bilinear map from A x B to A ® B. It remains to show that
A 0 B is a tensor product.
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Suppose 0 : A x B -+ G E Ab is bilinear. There is a unique rl E
Hom(F, G) making

commutative, from the definition of F as a free Abelian group. Thus, 'O(a, b)
= rl(la,b). But now bilinearity of b, along with commutativity of the dia-
gram, guarantee that 77 will vanish on each generator of H, so 17 induces a
map B making

i
F

AxB n F/H=A®B

commutative. Finally, this 0 is unique in making

AxB F/H=A®B

G

commutative, which is equivalent to commutativity of

F

AxB '-;F/H=A®B

0G`
by commutativity of the top triangle: 9 = 07ri = Vi. If, in fact, B'co
then O'iri = 7P = Brri = 77i 9'7r = t by uniqueness in the diagram

F

AxB

H

so B'7r =,q = Sir = 0' = 0, since in is onto. Hence, 0 is unique.
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This is how the tensor product is constructed, but the universal mapping
property actually computes the typical tensor product (since F is, to put
it mildly, huge).

Proposition 2.2 Suppose B E RM.

a) R (9 B zz B as Abelian groups.

b) (R/I) ® B : B/IB if I is a right ideal, and IB is the subgroup of B
generated by all rb, r E I, b E B.

Proof: (a) We show B is a tensor product of R with B. Set cp(r, b) = rb. cp
is bilinear from R x B to B. Suppose V) is bilinear from R x B to G E Ab.
Then V'(r, b) = 7/i(1, rb) so 0 = 7&(1, ) is the unique element of Homz(B, G)
making

commutative (i.e., O(rb) = z'(r, b)).
(b) Define. cp' : (R/I) x B to B/IB by cp'(r + I, b) = rb + IB. cp' is

well-defined since r+I = r'+I r-r' E I (r-r')b E IB = rb+IB =
r'b+ IB. Suppose zb : (R/I) x B --* G E Ab is bilinear. Let cp be as in part
(a). We have a unique O (by part (a)) making

R x B
n XiB (R/I) x B

B =) B/IB

G

commutative. Note that if r E I and b E B, then O(rb) = Ocp(r, b) =
0(7r x iB) (r, b) = 0(0 + I, b) = 0, so IB c ker O. Thus, 0 induces a map
0': B/IB -+ G making O'7r' = 0. Hence,

O'cp'(7r x iB) = O'7f cp = OW = 0(7r X iB).
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Since 7r x iB is onto, 8'cp' that is,

R x B
lrxi4 (R/I)x B

G

is commutative. Finally, 0' is unique in that if 0" makes

(R/I)x B

G

commutative, then 0"V = 7p so that

8"7rIp=0"tp'(7rxiB)=,0(7rxiB)=0(p=8'7r'(p

Hence 0" = 0', since 7r'cp is onto.

Note two things. First is the absence of "10 B IB". This is missing
because it is false, as the example R = Z4, B = 7G2 I = {0, 2} R/I
shows: I®B (R/I)®I I/IZ I, while IB IZ = 0. (In general, I®B
maps onto IB, but not in a one-to-one fashion.) Second, note the absence
of even the symbols a ® b in the above. When written as combinations
of r ® b's, 10 B looks like a subgroup of R ® B, but it isn't; the free
Abelian groups and equivalence relations defining them are different. In
fact, caution is always in order when attempting to define anything on
some A 0 B by saying where each a ® b must go. Bilinear maps and fillers
work much better. In this vein, given f E Hom(B, B'), where B, B' E RM,
we can define f* E Hom(A ® B, A (9 B') when A E MR, using nothing but
the universal mapping property:

A x B A® B
\A X f

y
Ax B' If.

I

J

A ®B'

f (a(gb) = a®f (b) as expected. Compositions work properly as well, giving
that,
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If A E MR, then A®R is a covariant functor from RM to Ab. Sim-
ilarly, if B E RM, then ®RB is a covariant functor from MR to
Ab.

If B E RMS, and s E S, we can apply all this to f. E HomR(B, B),
where fs (b) = bs. Setting x s = (fs ). (x) turns A OR B into a right S-
module in which (a ® b)s = a ® (bs); details are left to the reader. (In this
connection, observe that fs oft = fts.) Similarly, if A E SMR, then A®RB
becomes a left S-module.

As before, we specify the behavior of A® under (in this case) direct sums.

Proposition 2.3 Suppose A E MR, and Bi E RM for i E T. Then A ®
(@B2) .:s ®(A (9 B2). In the isomorphism, a (9 (®bi) maps to ®(a (9 b2).

Proof: We show that A ® (®B2) is a coproduct of the A ® B2 in Ab. Set
B = ®B2, and let coi E Hom(B2, B) specify B as a direct sum. Applying
A® gives maps O2 E Homz(A®B2, A(& B). We must show that if G E Ab,
and if i'2 E Hom(A ® B2, G) are given, then there is a unique 0 making all

A®B2 A(9 B

ie
y
G

commute. To do this, let 77: A x B --* A ® B and 712 : A x B2 A ®B2 be
the bilinear maps specifying the tensor products. Then z/'i77i is a bilinear
map from Ax B2 to G. Hence, E' )ii7i, which is well-defined (despite being
a possibly infinite sum), will be a bilinear map from A x (®B2) = A x B
to G. (This is the one place in this proof where we use the explicit form of
a construction, in this case that of ®B2.) We thus have a unique 0 making

AxB-7 iA®B
i

ie

W

G

commute. We now have commutative diagrams

Ax Bj n' A®Bj
iA x'7 7'

Ax B- ) A®B
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Now (E,*:71j)(a, (bk)) = E' :77i(a, b:) = E,Oz(a (9 bs), SO (E011)(iA
pj)(a, bj) = Oj77j (a, bj). We get that

Bcoj.77j = (E7G070(iA X Wj) =''j77j-

Since the image of 77j generates A (9 Bj, we get that 9cpj, = r)j, that is,

A®Bj A®B

commutes.
It remains to show that 9 is unique with this property. Suppose all

A x B j = A x B

x

commute. Then 9'77(iA x cpj) _ Oj77j = 9cpj,77j = 977(iA x cpj), so that for
all a E A and for all j, 977(a, ) and 9'77(a, ) agree on all im cpj C B. Since
these images generate B, 977 = 9'77. Since im 77 generates A 0 B, 0 = 0', and
0 is unique. '

We close this section with the fundamental theorem of tensor products.
Recall that if A E MR, then we may consider A to be a member of ZMR.
Hence, if G E Ab, we may consider Homz(A, G) to be a member of RM.

Theorem 2.4 (Fundamental Theorem of Tensor Products) Suppose
A E MR, B E RM, and G E Ab. Then, as Abelian groups,

Homz(A (9 B, G) .:s HomR(B, Homz(A, G)).

This isomorphism is natural in A, B, and G; that is,
a) If cp E HomR(B, B'), inducing W. E Homz(A ® B, A (9 B'), then

Homz(A (& B, G) -- HomR(B, Homz(A, G))

11omz* ,G) tHomjz(V,Homz(A,G))

Homz(A (9 B', G) -: HomR(B', Homz(A, G))

commutes.
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b) If cp E HomR(A, A'), inducing V. E Hom(A ® B, A' O B) and cp*
Homz(A', G) -+ Homz(A, G), then

Homz(A (9 B, G) HomR(B, Homz(A, G))

JHomz((p.,G) fHOMR(B,(p*)
Homz(AII'

(& B, G) _- HomR(B, Homz(A', G))

commutes.
c) If cp E Hom(G, G'), then

Homz(A (9 B, G) HomR(B, Homz(A, G))

1H0mz0B,rp)

IHomR(B,Homz(A,))

Homz(A (& B, G') -_ HomR(B, Homz(A, G'))

commutes.

Proof: We show that each side is isomorphic (in a natural way) to
Bil(A, B, G) the group of bilinear maps from A x B to G. Note first that
Homz(A 0 B, G) = Bil(A, B; G) practically by definition, for the map
77: Ax B --+ A®B gives, via post-composition, a map from Homz(AOB, G)
to Bil(A, B; G). However, the universal mapping property of A®B just says
that post-composition is onto (existence of a filler) and one-to-one (unique-
ness of fillers.). It preserves the group structure, too, since that is inherited
from G. It remains to show that

Bil(A, B; G) HomR(B, Homz(A, G)).

The correspondence is the usual one:

{maps : A x B -+ G} 4-+ {maps : B -+ (maps : A --+ G)}

f' -'9
f(a,b) = [g(b)](a).

What needs to be verified is that f is bilinear if and only if g is a homo-
morphism from B to Homz(A, G). Note first that linearity off in A simply
guarantees that g takes values in Homz(A, G), while linearity off in B says
that g is a homomorphism of Abelian groups. Finally, f (ar, b) = f (a, rb) if
and only if g(rb)(a) = g(b)(ar) = [r g(b)](a), that is, f is R-bilinear if and
only if g is an R-module homomorphism.

Naturality follows, for example, in (a) from defining a map W* from
Bil(A, B'; G) to Bil(A, B; G) by precomposition in the second variable and
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verifying commutativity of the diagrams

Homz(A (9 B; G) Bil(A, B; G))

tHomz(W.,G) tw
-

Homz(A ® B'; G) : Bil(A, B'; G))

and

Bil(A, B; G) = HomR(B, Homz(A, G))

1W " tHomR(W,Homz(A,G))

Bil(A, B'; G) HomR(B', Homz(A, G))

which is routine and is left to the reader.

2.3 Exactness of Functors

Suppose cp E Hom(A, B) and 0 E Hom(B, C). The arrows

A-BBC
will be called exact if ker 1 = im cp. Note that exactness consists of two
parts:

i) The easy part, ker D im cp, verified by checking that OAP = 0.

ii) The hard part, kerb C im cp, verified by checking that O(b) = 0
b = cp(a) for some a.

That is, (i) is checked by verifying a functional composition, while (ii) is
checked by verifying an existential (existence of a) condition on certain
elements.

Let F be a covariant functor from RM to Ab. Suppose F(0) = 0. Then

tP)F(A)
F F(B) F

F(C)

satisfies the easy part of exactness. It need not satisfy the hard part, as
will soon become very apparent.

First off, the most important exact sequences are the short exact se-
quences

0-A`*B-*C-+0.
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Here, Tr is onto, cp is one-to-one, and ker 7r = im W. This situation occurs
when B is the biproduct of A and C, as well as, for example,

0-2Z -Z -+ 7Z2 -+ 0,

which has a different character. We say that

0-+A-°+B -+C, 0

splits if B is a biproduct of A and C in some way, that is, there exist maps
,0 : C ---+ B and p : B --+ A which, with cp and -7r, make B into a biproduct.
It is a fundamental result (see Exercise 2 at the end of this chapter) that
only 0 or p need be given (subject to 7rV = iC or pcp = iA, as the case may
be) to get both. 0 is sometimes called a section. We shall sometimes abuse
the language and say "B -+ C -+ 0 splits" or "0 -+ A --+ B splits". Note
also that splitting is equivalent to the existence of an q making

0)A >B >C>0
t?7

0>A>A®C>C>0
commutative. Any such g will be an isomorphism, thanks to the fabled
"five lemma" :

Proposition 2.5 (5-LEMMA) Suppose

Al "A2 >A3 f3 )A,-- L44

twi tW2 IW4 tws

B1 91 B2 - s> B3 93 B4 9 B5
is commutative with exact rows, and suppose

i) cp2 and cp4 are isomorphisms,

ii) cPi is onto, and

iii) cps is one-to-one.

Then W3 is an isomorphism.

Proof: cps is one-to-one: Suppose cp3(a) = 0. Then 0 = 9W3(a) =
W4f3(a) f3(a) = 0, since c04 is one-to-one. Hence, a = f2(a') for some
a' E A2, by exactness of the top row. Hence, 0 = cc3f2(a') = g2cp2(a')
Hence, cp2(a') = gl(b') for some b' E Bl by exactness of the bottom
row. Finally, b' = cpl(a") for some a" E Al, since cpl is onto. But now
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cp2(a') = gj(b') = gicpl(a") = co2 fi(a"), so fi(a") = a' since cp2 is one-to-
one. But that means that a = f2(a') = f2f1(a") = 0 by exactness of the
top row.

cp3 is onto: This breaks into two parts. First, img2 C im cp3: Suppose
b' E B2. Then b' = V2(a) for some a E A2, since 'p2 is onto. But now
92(b') =92'p2(a) ='p312(a) E imcp3.

Finally, suppose b E B3. Then 93(b) E B4 = imcp4i so 3 a E A4 with
g3(b) = cp4(a). Now 0 = g493(b) = 94'p4(a) = 'p5f4(a) by exactness of
the bottom row, so f4(a) = 0, since cps is one-to-one. Hence, a = f3(a')
for some a' E A3 by exactness of the top row. Hence, g3(b) = c04(a) =
'p4f3(a') = 9M03 (a'), that is, b - W3 (a') E kerg3 = img2 C imcp3. That is,
b - W3 (a') = W3 (a") for some a" E A3, so b ='p3(a' + a").

Whew! The above is an example of what is called a diagram chase, where
maps are, well, chased around a diagram. It is a long and involved argument,
but it is actually almost self-proving. Try it; cover, for example, the one-
to-one part of the proof, and reconstruct it. At each stage, there is really
only one thing to do.

Back to functors. Suppose F is a covariant functor from RM to Ab. F
will be called exact if, whenever

0-+A--,B-->C-->0

is short exact in RM, necessarily

0-4F(A),F(B) -+F(C),0
is exact. If given the same short exact sequence for A, B, and C, one always
has exactness of

0 F(A) -' F(B) , F(C),
then F will be called left exact; while if one always has exactness of

F(A) --> F(B) F(C) -> 0,

then F will be called right exact. Finally, if one always has exactness of

F(A) -+ F(B) -' F(C),

then F will be called half exact.
Note:

right exact
and

left exact

right exact

exact half exact

left exact
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Half exact functors will be considered further in Chapter 6. We now estab-
lish:

Proposition 2.6

a) If A E RM, then Hom(A, ) is left exact.

b) If A E MR, then A® is right exact.

Proof:

(a) If

0,B-B'O-+B"-+0

is exact, examine

0 -+ Hom(A, B) Hom(A, B') Hom(A, B").

Now if cp. (f) = 0, then W f = 0. Since co is one-to-one, f = 0. That is, W.
is one-to-one. Now, V).cp. = (Ocp). = 0. = 0, so it remains to show that
*. (f) = 0 = f =gyp. (g) for some g. Suppose 0. (f) = 0. Then Of = 0, that
is, im f C ker ''. Thus, im f C im V. Define g by g = cp-1 f , where cp-1 is
defined on im W. It is routine to check that g E Hom(A, B) and W. (g) = f .

(b) If

0 B --°B' B" -4 0

is exact, examine

A®B4A®B'3A®B"-->0

indirectly. Let H denote A ® B'/im cp.. Since ii.cp. = 0. = 0 at least, we
have a map 0 from H to A ® B" defined by 0(x + im cp.) =,O,, (x). We thus
have a commutative diagram

A(9 B=>A(9 B' H )0

II II
V).

to

A®B-+
It suffices to show that 0 is an isomorphism, since then, for example,
ker 0. = ker -7r (while ker 7r = im W. by definition of 7r).
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First of all, consider the diagram

AxB ZAx4AxB' Ax>AxB"
t17 I ,7'

i

Ti

J
®B A

4-
A >A®B' >H>0

II
`P

II

V)-

to

A®B->A®B'-->A®B"->0

T exists since 7r71'(iA x cp) = ircp.77 = 0, so that in?' vanishes on A x (im cp) in
A x B'. It thus induces a bilinear map on A x (B'/im cp) A x B", which
we call T. Note that, from uniqueness and commutativity again, Or is the
map 777" : A x B" A ® B" used in defining the tensor product A ® B".
This is easiest to see by writing 77"(a, b") = a ® b", b" _ ,O(b'). Then

Or(a, b") = 0(7r(a (9 b')) = -O.(a (& b') = a ® b" = rj"(a, b").

It follows that 0 is onto, since the subgroup imO contains im 0r = im r7",
which generates A ® B".

Finally, to show 0 is one-to-one, observe that the universal mapping
property gives a filler x for

Ax B" ' AO B11

We now have

A®B'
1"

ir

iA x'th i
n" >A®B"Ax B'->AxB"

commutative, from which X07rr7' = 7rr7', so (since im 77' generates A ® B')

A®B>A®B' 3H>0>0
jxo"A®B->A®B'>H-)O->0
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is commutative, so X0 is an isomorphism by the 5-lemma. Hence ker 0 C
ker X0 = {0}, so 0 is one-to-one.

Now suppose F is a contravariant functor from RM (or MR) to Ab. F
is left exact if, whenever

0- A-°+B-+C-->0

is exact in RM, necessarily

0 -+ F(C) "-*+ F(B) `P-+ F(A)

is exact. Note that the zero winds up on the left side. Right exact, half
exact, and exact are defined similarly.

Proposition 2.7 If A E RM, then A) is left exact.

The proof is very similar to the proof of Proposition 2.6(a), except the
compositions are on the other side. Details are left to the reader.

One final remark before closing this section. Suppose that

is exact, and suppose F is a left exact covariant functor. Setting D = im7p,
we have two short exact sequences

O-A-° BD-+0
and

0 -+ D -'-*+ C "+ CID -+ 0,

giving exactness of

0 -+ F(A) F(w) F(B) F(AG) F(D)

and

0 --+ F(D)
F(1.) F(C) F(7r) F(C/D).

Hence, F(t) is one-to-one, so that ker F(V)) = ker(F(t)
ker F(i) = im F(cp), while F(cp) is one-to-one. That is, exactness of

0 A-° B-4C

is enough to imply exactness of

0 -+ F(A) F(w) F(B)F(
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Similar remarks apply to right exact covariant functors, and left and right
exact contravariant functors. (Be sure the zero that is there corresponds to
the zero hypothesized for the exact sequence of F-values.) Doing this twice
shows that if F is exact, then F sends any exact sequence A -4 B - C to
an exact sequence F(A) F(B) F(C). (See Exercise 5.)

2.4 Projectives, Injectives, and Flats

Definition 2.8

i) Suppose A E RM. A is projective if Hom(A, ) is an exact functor.

ii) Suppose A E RM. A is injective if A) is an exact functor.

iii) Suppose A E MR. A is flat if A® is an exact functor.

This definition for projective (as well as for injective) is equivalent to the
usual one. That is, a filler g exists for any commutative diagram

P/g / tf

with an exact row. To see this, complete the diagram to

P
jf____0->kerpL >B P >C>0

Since P is projective, Hom(P, B) -+ Hom(P, C) is onto; in particular, f E
im Hom(P, p), so that there exists a filler g

P
/

9 /
f/ tPL- )0k -> B0 --> er p

with Hom(P, p)(g) = f, that is, pg = f. This argument reverses.
Similarly, E is injective if and only if any diagram

0 > A 4B

E
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with an exact row has a filler g.
Note that there are similar definitions of projective and injective modules

in MR and of flat modules in RM. Roughly speaking, homological algebra
is concerned with the question of how much modules differ from being
projective, injective, or flat.

The following result will be used to manufacture lots of projectives and
flats.

Proposition 2.9

a) Suppose Ai E RM. Then ®Ai is projective if and only if each Ai is
projective.

b) Suppose Ai E RM. Then 1TAi is injective if and only if each Ai is
injective.

c) Suppose Ai E MR. Then ®Ai is flat if and only if each Ai is flat.

Proof: The proofs are very similar, so only (a) will be done here. Suppose

0-- 'B)CD)0
is exact. Apply Hom(®Ai, ) to get

BH A H A C A DH )00 )om(® i,> ) om(® i, ) i, )om(®

A Bffl IIH A C D)IIH A 00 i, )> om( > om( i, ) ) om( i, )

(see Exercise 3). The top row is exact if and only if the bottom row is exact
if and only if each

0 > Hom(Ai, B) Hom(Ai, C) a Hom(Ai, D) )0

is exact, as can be seen by looking at I-tuples. (Note, too, that only the
right hand arrow is at issue, by left exactness of Hom(Ai, ).)

Now note that Hom(R, B) B via f H f (1), and R ® B B by
Proposition 2.2(a). Hence R is both projective (in RM) and flat (in MR).
Since free modules are direct sums of copies of R, we get that:

Free modules are projective and flat.

Furthermore, if A E RM, then there is a free module F (free on A as a
set) and a surjection F --> A (associated with the identity set map from A
to itself), giving:
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(Enough projectives) Every A E RM is the homomorphic image of
a projective module.

Now suppose P is projective, and suppose cp : A --+ P is onto. Completing

P/
9 /
/ tip

Y0kercp'>A >P)0
one obtains that the horizontal sequence splits, and P is a direct summand
of A. Conversely, taking F free and F --> P onto: If P is a direct summand
of F, then P is projective by Proposition 2.9(a). Thus,

If P E RM, then P is projective if and only if whenever A - P is
onto, necessarily P is a direct summand of A.

and

Any projective module is a direct summand of a free module.

Furthermore, reversing the sides R works on:

If P is projective in MR, then P is flat.

Except for the absence of free modules, much of what has been said about
projectives can be said about injectives, but this involves some work due
to the absence at this point of something like free modules as candidate
injectives. We also need to be able to identify injectives. The following, due
to Baer [4], does the latter.

Proposition 2.10 (Injective Test Lemma) Suppose E E RM. Then E
is injective if and only if a filler g exists for every diagram

0) lc-)R

where I is a left ideal in R.

Proof: The "only if" part follows from the fact that such diagrams are
particular cases of diagrams that must have fillers.
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For the "if" part, suppose

0 )A ° ) B

tf
E

has an exact row. We use Zorn's lemma. Consider all (B', g'), where O(A) C
B' C B, B' is a submodule of B, and

0 A -f-+ B'

tE

commutes, that is, g':p = f . Such (B', g') exist; (cp(A), f cp-1) is one. Par-
tially order by restriction, that is, (B', g') > (B", g") when B" C B' and
g'IB" _ g". If C is a nonempty chain of such pairs, then it is bounded by
(Bo, go), where Bo = U{B' : (B', g') E C} and go(x) = g'(x) if x E B' and
(B', g') E C (go is well-defined since C is a chain). Hence, there is a maximal
element (g', B'). It suffices to show B' = B.

Suppose not. Suppose B' B, and x E B - B'. Let I = {r E R : rx E
B'} = annihilator of x + B' E RIB', a left ideal. Set 1(r) = g'(rx) if r E I.
There is a filler g for

E

so that g(r) = f (r) = g'(rx) when r E I. Set B" = B' + Rx, and set
g"(b + rx) = g'(b) + g(r). If b + rx = b' + r'x, then b - b' _ (r' - r)x
r'-r E I = g'(b)-g'(b') = g'(b-b') = g'((r'-r)x) = 1(r'-r) = 9(r')-g(r),
that is, g'(b) + g(r) = g'(b') + g(r'). That is, g" is well-defined, so (B", g")
properly extends (B', g'), contradicting maximality.

Corollary 2.11 Suppose R is a PID, and suppose E E RM has the prop-
erty that rE = E for all r E R, r # 0. Then E is injective.

Proof: Suppose we are given

0IL-->R
if
E
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with I = Rr. If r = 0, then g - 0 is a filler. If r # 0, then f (r) E E = rE, so
3 a E E with ra = f (r). Set g(x) = xa. Then g(xr) = xra = x f (r) = f (xr),
so g is a filler.

The property hypothesized in the corollary is called divisibility: In gen-
eral, E is divisible if rE = E whenever r is a right nonzero divisor, that is,
xr = 0 x = 0 for x c R. Any injective module is divisible. (See Exercise
6.)

If R is a PID, we can now manufacture lots of injectives E. Suppose
A E RM. Write A F/K, where F is free, that is, F = ®R. Let Q be
the quotient field of R. Then A ,: (®R) /K --. (®Q)/K = E. E is divisible
(since ®Q is), hence injective. That is, A can be imbedded into an injective
module.

Not many rings are PIDs, but the following result manufactures injectives
over any ring from injectives in zM.

Theorem 2.12 Suppose A E MR is flat, and supposeG (=- zM is injective.
Then Homz(A, G) is injective in RM.

Proof: Suppose

0) BCD>0
is exact in RM. Since A is flat,

0>A®BA®CA®D>0
is exact. Since G is injective in ZM, by Theorem 2.4,

0 Homz(A ®D, G) --> Homz(A (9 C, G) -+ Homz(A (& B, G) -- 0

is exact. Using the fundamental theorem of tensor products,

0 -+ HomR(D, Homz(A, G)) --b HomR(C, Homz(A, G))

HomR(B, Homz(A, G)) - 0
is exact. That is Homz(A,
G) is injective.

Corollary 2.13 (Enough Injectives) If A E RM, then there exists an
injective E E RM and a one-to-one homomorphism: A E.

Proof: As an Abelian group, there exists a divisible Abelian group G
and an injection cp : A -a G. G is injective since Z is a PID. Hence, as R-
modules, recalling that Homz denotes homomorphisms of Abelian groups:

A HomR(R, A) C Homz(R, A) Homz(R, cp(A)) C Homz(R, G).
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Furthermore, the injection may be taken to be set inclusion by the pulltab
theorem. If E is injective, and E C E', then as with projectives (but
backwards), a filler for

0EL--*E'E'/E)0
tEl

9t"K

E

turns E into a direct summand of E'. Conversely, if E is a direct summand
of E' and E' is injective, then E is injective by Proposition 2.9(b). Thus:

E is injective if and only if E is an absolute direct summand, that is,
E is a direct summand of any module having E as a submodule.

This is probably the most important absolute property in mathemat-
ics, even compaied to the notion of an absolute neighborhood retract in
topology.

We close this section (and this chapter) with an amusing theorem due (in-
dependently) to Bass [5] and Papp [65]. Recall that in constructing enough
divisible (hence injective) Z-modules, we took direct sums, rather than
direct products. In view of Proposition 2.9(b), this seems strange.

Proposition 2.14 R is left Noetherian if and only if every direct sum of
injectives in RM is injective.

Proof: Suppose R is left Noetherian, that is, every left ideal is finitely
generated. We use Proposition 2.10, the injective test lemma. Let I be a
left ideal, I = (al, ... , an), and suppose Et are injective. If cp : I -+ ®Ei,
with P = ®cpt, then {i : cpi (aj) 0} is finite for j = 1,... ,n, so that

0 lc-----+ R

®Ei

factors as

O) Ic-->R
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where ®'Ei is the direct sum (and hence direct product) of finitely many
Ei. Hence, one has a filler g for

by Proposition 2.9(b).
Now suppose R is not left Noetherian. Then there exists a chain of left

ideals Ii C 12 C 13 C . Let I = U I,,. Choose injectives En and injections
96 96 0

cpn : I/In En. Define cp(x) = ®cpn(x+In) if x E I. Since any x E I is in
In for large n, tpn(x + In) = 0 for all but finitely many n. That is, cp takes
values in ®En. If g is a filler for

®En

then On(x + In) = gn(x) where g(x) = ®gn(x). But now on(x + In) =
gn(x) = xgn(1) for x V In implies that gn(1) # 0 for all n. Thus, g(1) does
not take values in DE,,, a contradiction.
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Exercises

1. Suppose only that A is a coproduct of Al and A2 in RM, that is,

Al wz 4A< `°? A2

makes A into a coproduct of Al and A2 in RM. Show that there
are unique 7ri : A --, Ai making A into a biproduct, using only the
properties of a coproduct.

Hint: irl, for example, arises as a filler for

Al -±L-+ A +-2- A2
i

4-

Al

Remark: There is a type of category called an additive category (to
be discussed in Chapter 7) in which the above argument, as well as that
of Proposition 2.1, can be carried out. When assembled, this shows that
"A® B A x B" holds in any additive category, since the left hand side is a
biproduct. A similar argument (with arrows reversed) shows that products
of two objects are also automatic biproducts.

2. Suppose

0'A °->B">C)0
is exact, and suppose 0 : C -+ B satisfies 7rVb = ic. Show that this
sequence splits. (Note: The case where i : B -+ A satisfies cprJ = iA
works pretty much the same way.)

3. Show that Hom(A, TIBi) IIHom(A, Bi) and Hom(eAi, B)
IIHom(Ai, B).

Hint: Proceed directly, or show that, for example, Hom(A, IIBi) is a
product of the Hom(A, Bi) in ZM. Use the idea behind Theorem 2.4:
A map from G to Hom(A, B) is a type of map from G x A to B.

4. Suppose B E RM, and I is a right ideal. Show that the obvious
map from I ® B to IB is always onto. Suppose it is not one-to-one.
Show that there is a finitely generated right ideal J C I such that
J ® B JB is not one-to-one. Hint: This is one of those rare places
where it helps to consider Eri ® bi E 1 ® B.



36 2. Modules

5. Suppose F is an exact covariant functor from RM to Ab. Show that
F sends any exact sequence A B C to an exact sequence
F(A) -* F(B) -- F(C).

6. Show that any injective module is divisible. Also show that if a is a
right zero-divisor, and if R is a submodule of E, then 1 ¢ aE (even
if E is injective).

7. (Simplest version of a projective test lemma.) Suppose P E RM, and
suppose a filler g exists for any diagram

P
i

i
Y

tf

9 /E ,->C)0
when E is injective. Show that P is projective.

Hint: Given A --i B - 0, imbed A in an injective E and consider

P

/

B )0

4-

E El ker 7r )0

8. Let R denote the ring of continuous functions from the real line R
to itself which are periodic with period Tr, that is, f (x + 7r) = f (x)
for all x. Let P denote the continuous functions from R to itself for
which f (x + 7r) = -f (x). Show that P ® P & R ® R, so that P is
projective. Show also that P is not free.

Hint: For the last part, recall that if R is commutative and F is free,
then the number of generators of F is uniquely determined as
the dimension of F/MF over RIM, where M is any maximal
ideal. (If you don't recall that, check it out. It's easy.) For the
first part, write functions in P ® P or R (D R as column vectors,
and consider the matrix

cos x sin x
- sin x cos x)

The next four problems are interconnected. Also use Exercise 4, restated
in the obvious way for A 0 I - AI, A E MR, I a left ideal. If G is a
divisible Abelian group, then G will be referred to as a coseparator if G
contains an element of order p for every prime p.

Example: Q/Z

/ft
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9. Suppose G is a coseparator and 0 54 h E H E Ab. Show that there
is a cp E Homz(H, G) for which <p(h) : 0. (An injective coseparator
in Ab is usually defined as an divisible Abelian group G with this
property.)

10. (Partial converse of Theorem 2.12.) Suppose G is a coseparator, A E
MR, and suppose Homz(A, G) is injective. Show that A is flat.

11. (Flat test lemma.) Suppose A E MR. Show that A is flat if and only
if A ® I AI is one-to-one for every finitely generated left ideal I.

12. Suppose R is a PID. Show that A is flat if and only if A is torsion free;
thatis,ar=0=a=0orr=0foraEA,rER.Hence,showQis
a ,flat 7L-module. Note: Q is not projective, as will be established in
the next chapter. It is somewhere between amusing and exasperating
to attempt this now. (There is a quick, tricky way.)

13. Suppose R and S are rings, A E MR, B E RMS, and C E SM. Then
A OR B E Ms and B ®s C E RM. Show that A®R (B ®s C)
(A OR B) ®s C.

Note: The "obvious" approach, defining a ® (b ® c) -+ (a ® b) ® c, has
the usual difficulty: Why is this well-defined? A better approach is
this. Define a "tritensor product" T as a solution to an appropriate
universal mapping problem for trilinear maps on A x B x C. Show that
solutions are unique up to isomorphism, and show that A®R(B®sC)
and (A OR B) ®s C are both solutions.

14. (The short 5-lemma.) Suppose we have a commutative diagram

0 >A-->B-)C>0
177 17P

77

to

0 )A'B'C')0
in RM with exact rows. Prove that:

a) If rl and 0 are one-to-one, then so is b.

b) If rt and ¢ are onto, then so is V).

15. Suppose A E SMR, B E RM, and C E SM. Then Homs(A, C) be-
comes a left R-module, and A OR B becomes a left S-module. Prove
that Homs(A OR B, C) HomR(B, Homs(A, C)) via the isomor-
phism of Theorem 2.4; that is,

Horns (A OR B, C) C Homz(A OR B, C)
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corresponds to

HomR(B, Homs(A, C)) C HomR(B, Homz(A, Q.

Hint: Show that each corresponds to the set of f E Bil(A, B; C) that
satisfy f (sa, b) = s f (a, b) for s E S, a E A, b e B.

16. Suppose R is a PID, and a is a nonzero nonunit in R. Show that
R/Ra is an injective module over itself.



3

Ext and Tor

3.1 Complexes and Projective Resolutions

As stated in the last chapter, homological algebra is primarily concerned
with measuring how much modules depart from being projective, injective,
or flat. The measure of this is contained in two new sequences of functors,
Tor and Ext.. While there are several ways of defining these functors (a fact
that is the source of some theorems), the most straightforward way is via
complexes.

Recall that

A d-)B->C
is exact if ker e = im d. It is called a complex (or sometimes underexact)
if 8d = 0, that is, if the easier of the two conditions defining exactness is
verified (see Section 2.3).

The homology of the complex is defined to be the quotient ker 8/im d.
The homology measures how much the sequence differs from being exact,
that is, how underexact it is. It should not be all that surprising that
certain homology groups will eventually specify how far a given module is
from being injective, projective, or flat, since these concepts were defined
in terms of the exactness of certain functors (see Section 2.4).

In general, we will have a long row (or column) which will be assumed to
be a complex; that is, any composition of two homomorphisms along the
row will be zero.
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Suppose

A d B a ) C
(Pt

d'
y

I

at
O

A'B'C/

commutes, with rows that are complexes. Set H = ker 8/im d, and H' _
ker 8'/im d'. One can now define, using -0, a homomorphism from H to H'
via ?p. (x +imd) = '(x) +imd'. The definition does not involve cp or rl, but
its internal consistency does:

i) 0. is well-defined thanks to the presence of cp. If x + im d = y + im d,
then x - y E imd = x - y = d(z) = '(x - y) = Pd(z) = d'cp(z) so
that 0(x) - L'(y) E imd, that is, 0(x) + imd = )(y) + imd.

ii) 0. takes values in H' (not just in B'/imd') thanks to the presence
of i. If x E ker 8, then 8'(O(x)) = 778(x) = 0, so that &(x) E ker 8',
and ik(x) + im d' E H'.

The above describes how homomorphisms of homology arise. It is of
major interest to know when different cp, i,b, and 77 yield the same *..
There are several reasons for this, among them being the fact that when
we write the complexes later used to define Ext and Tor, some choices will
be made, and we don't want our answers to depend on the choices. There
is also the basic reason that it is just nice to know when two functions are
equal.

The gimmick that does this is called a homotopy. Suppose

A --L4 B e>C

W InA' d y)B' e C'
also commutes, along with the earlier diagram with unprimed cp, b, and
rt. A homotopy is a pair of maps D : B A' and A : C --f B' satisfying
Eli - Eli' = d'D + O. When all the arrows are put in, we have the (decidedly
noncommutative) diagram

A d3B -L-+ C
I i D z ii o

n/

*` d' '' a'A'>B'
If a homotopy exists, then ii. = 0', since fi(x) + imd' = 0'(x) + d'D(x) +
A8(x)+imd' _ tP'(x)+d'D(x)+imd' when x E ker 8. But d'D(x) E imd',
so zfi'(x) + d'D(x) + imd' = i'(x) + imd'.



3.1 Complexes and Projective Resolutions 41

Why a homotopy? Isn't there an easier way? The advantage is that if F
is a functor that is additive, that is, F(f + g) = F(f) + F(g) for morphisms
f and g, then F sends a homotopy to a homotopy. Notice that we never
specified what A, B, C, etc. were. Typically, they are R-modules, and F
is an additive functor into Ab. The complex starts out exact in RM (or
MR), but applying F makes it underexact.

By the way, the term "homotopy" comes from algebraic topology. Homol-
ogy groups of topological spaces are, in fact, homology groups of certain
complexes, and continuous functions yield homomorphisms of the com-
plexes (cp, Eli, and 77). Homotopic continuous functions yield homotopic ho-
momorphisms.

Back to R-modules. Suppose B E RM. A projective resolution of B,
denoted (Pn, dn), is an exact sequence of R-modules

...) Pn+1 d"±1) Pn d^ }...) P1 di 3Po >B)O
going off to infinity to the left, in which all Pn are projective. Any left
R-module has a projective resolution, which can be assembled recursively
as follows using the fact that there are enough projectives:

Choose Po, and 7r : Po -y B onto.

Choose P1, and d1 : P1 -p ker 7r onto.

Choose P2, and d2 : P2 - ker d1 onto.

Etc.

(By the way, there is a reason for using the notation it : Po -+ B as
will become evident. Also, our constructions will eventually ignore 7r, so it
has been left from the (Pn, dn) notation. We set do = 0.) As noted earlier,
there are choices involved here. The extent to which the choices drop out
is covered by the following proposition.

Proposition 3.1 Suppose B, B' E RM, and co E Hom(B, B'). Suppose
(Pn, dn) is a projective resolution of B, and (,nn d') is a projective resolu-
tion of V. Then there exist fillers cpn E Hom(Pn, Pn) making

d,+1 d,. d1 7r

i i i

I'G'.+1 11P+. I API I Wo

-t- d' d- d;, y d'
Pn+1 n±'>Pn-4 ...3Pi ';Po">B'>0

commutative. Further, if con E Hom(Pn, Pn) also serve as fillers, then con
and con are homotopic, that is, there exist Dn : Pn - Pn+1 (with D_1 = 0)
such that cpn - cpn = d'T'+1Dn + Dn-ldn-
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Proof: Define cpo as a filler for

Suppose cpo, ... , cpn have been defined; we define cpn+1 recursively. Note
first that x E imdn+l = dn(x) = 0 0 = cpn_ldn(x) = dncpn(x). That is,
cpn (im do+1) C ker do = im dn+1 (This works if n > 0; essentially the same
argument works if n = 0, replacing do with 7r.) We can thus find cpn+1 as
a filler for

'Pn+1 // imdn+l
/

/ twn

Pn+1 =+> imdn+1 ) 0.

It remains_to show any two fillers are homotopic. The Dn are constructed
recursively, too. D_ 1 = 0 is given. As above, the recursion step is much like
the construction of Do. Note that 7r'cpo = xr = 7r'cp0' , that is, -7r'(cpo - cp'') _
0. Thus cpo - cpo takes values in ker 7r' = im dl. Do is a filler for

PO

/
I 'Po-coo

K
I

P1 1i imdi )0-

We now suppose we are given Do,- , D. In this case, we know that
Sin - on = dn+1Dn +Dn_ldn, so that

do+1(cpn+1 - pn+1 - Dndn+1) = do+1(Pn+1 - do+lDndn+l
_ <pndn+l - Wndn+1 - do+1Dndn+1

_ ('Pn - c°n - do+1Dn)dn+1

= Dn-ldndn+l
= 0.
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That is, im(cpn+1 - cpn+1 - Dnd,a+1) c ker do+1 = im d' +2. (This works
without change if n = 0.) Hence, Dn+1 can be constructed as a filler for

Pn+1

Dn+I
Dndn+I-

Pn+2=+Simdn+2>0.
0

Of course, any projective resolution is exact (by construction), and so
has zero homology as a complex. But if F is any additive functor (so that,
in addition, F(0) = F(0 + 0) = F(0) + F(0) F(0) = 0), applying F
to the resolution yields a complex that may have nontrivial homology, and
the fillers and homotopies are preserved.

We now define Tor. Let A E MR. Apply A® to any projective resolution
of B, and drop the last A ® B term, giving

A®dn+I A®d...>A®Pn+l+A®Pn ®d >...

) A(& P,
A®di

)
A®PoA®d° j0.

(We will see later why A (9 B is dropped: It reappears via Proposition
3.2(a).) The nth homology of this complex, ker(A®dn)/im(A®dn+1), will
be isomorphic to Torn (A, B) (or Torn (A, B), if R is to be emphasized).
First, observe that, up to isomorphism, the homology is independent of the
projective resolution. Setting B = B', and V = iB, and applying Proposi-
tion 3.1 twice gives

do+I do>Pn+l3Pn+...>P1 d1 >P0 >B>0
dIiDtWn+

d;, I

t'Pn

d'-->Pn+1-->Pn "+...->Pi 1>Po">B>0
I?Pn+l tion t01 too IiB

pn+1"'Pn do
P1

Now by the proposition, ?/incpn is homotopic to ip , so (A(&'0n),(A(Wn), _
identity on the nth homology. Reversing the roles of (Pn, dn) and (Pn, dn)
yields the independence of projective resolution.

Example 9 R = Z4, A = B = Z2. A projective resolution of Z2 is

...->.4->Z4->Z4->Z4-L4 Z2->0.
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Tensoring with Z2 and deleting gives

... ) Z2 >Z2 0 ) Z2 0 372)0
so that Torn4 (Z2i Z2) Z2 for all n.

For each B E RM, choose a projective resolution of B. (Note: The axiom
of choice from Godel-Bernays-von Neumann class theory will be used in
Chapter 6 to choose injective resolutions. Here one can define Po as the
free module on B, Pl the free module on ker 7r, etc. "The" free module
on S is the direct sum of BSI copies of R, specifically parametrized by S.)
Torn (A, B) is now the homology with this projective resolution. This way
Tor is actually a group, not an isomorphism class of groups.

Note that by using (A (9 cpn)., where (cpn) is manufactured from cp E
Hom(B, B') using Proposition 3.1, we get that Torn(A, ) is a covariant
functor from RM to Ab. Also, this functor is additive, since if (cpn) is a filler
for cp E Hom(B, B'), and (,In) is a filler for z/) E Hom(B, B'), then (Wn+v5n)
is a filler for cp +'b. In particular, if B E RMS, then applying this to the
morphisms right-multiplication-from-S yields the fact that Torn (A, B) has
the structure of a right S-module.

Torn(., B) is also a functor, in fact an additive functor, since if A, A' E
MR and f E Hom(A, A'), we have a commutative diagram

A®dn+1 A®dn A®di AOdo......... 4

110100
A'®dn+t A'®dn A'Od1 A'Odo-yA'(&.Pn+1 )A'®Pn+ ...---+ A'®PI--+A'®Po-+0.

One can verify that the resulting Torn (f, B) is independent of the projec-
tive resolution by considering the three-dimensional diagram (gulp!) whose
typical block is given by

A®dn+t AOdn
)A®Pn+l A®Pn

f®Pn+1I

A'®Pn+1
11-1

A'OWn+1

A +1 I

A ®Pn+1 +'

f®P
A'Odn+i

A®dn
+A®Pn>...

®P A'®d"

A' n

fOPn+i fop,

A'®d' A'Od'
'A'®Pn+ A'®P, -. "

Commutativity is verified on the various squares. The vertical arrows
yield Torn(f, B) in the homology of the two resolutions. This also shows
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(when (P, , d') is a projective resolution of B' and cp E Hom(B, B')) that
Torn (f, B')Torn(A, cp) = Torn (A', co)Torn(f, B). That is, following the ge-
ometry of the diagram,

Torn (A, B)

I Torn (A, B')

Torn (A', B) Tor

(A', B')

is commutative. (Functors of two variables with this property are called
bifunctors.)

The functor Ext is defined by a similar device. If C E RM, apply
C) to the chosen projective resolution of B, yielding

Hom(do,C) Hom(do,C)
Hom(Pi, C) c Hom(Po, C) t---- 0

Hom(Pn}1i C) E Hom(Pn, C) F
Hom(d,,C)f-

with Hom(B, C) deleted as before. The nth homology of this is Extn(B, C)
(or Extn (B, C) if R is to be emphasized).' Again, even though directions
are reversed (since Hom(., C) is contravariant), different projective reso-
lutions give isomorphic homology, and everything in sight is well defined.
Also, if B E RMS, then Extn (B, C) has the structure of a left S-module.
It is a useful exercise to check exactly what the bifunctor condition means
for Ext.

Example 10 Let B = Z,, R = Z. As a projective resolution, use -+
0 -j Z -p 7L --+ Zp - 0. The map from Z to 7G is multiplication by p.
Tensoring with A and deleting, we get

... >0)0)...)0>A Xp>A>0.
Hence, Toro (A, Zp) A/pA, while Torn(A, Zp) {x E A : px = 0}.
Similarly, applying Hom(., C) gives

...E--04-0E---...E--O c C+p Cf-0

In is a superscript for Ext since Extn(B, C) is contravariant in B, and it is an ancient
convention that contravariant functors be indexed by superscripts.
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so Ext°z(Z,, C) {x E C : px = 0} and Extz(Z , C) C/pC.

We close this section with the elementary properties of Tor and Ext.

Proposition 3.2 If A E MR, B E RM, C E RM, then

a) Toro (A, B) : A (9 B.

b) Ext°(B, C) Hom(B, C).

c) Torn (A, B) = 0 if A is flat or B is projective, n > 1.
d) Extn(B, C) = 0 if B is projective or C is injective, n > 1.

Proof: First (a). Since A® is right exact, the sequence

A®P1 A®dlA®Pq A"') A®B>0
is exact. Hence, A ®B A ® Po /im(A (9 dl) = Toro (A, B). The proof of
(b) is similar, since C) is left exact.

If A is flat and n > 1, then A ® Pn+1 -+ A ® Pn -* A ® Pn_1 is exact
since A® is an exact functor. Hence, Torn (A, B) = 0 for n > 0. The proof
that Extn(B, C) = 0 if C is injective works pretty much the same way.

Finally, if B is projective, then

is a projective resolution of B. Applying A® and deleting the last term
gives just

B)0.
Hence, Torn (A, B) = 0 for n > 1. Again, Ext works virtually the same way.

0

The reader who has been wondering how two functors could measure
three properties (departure from flatness, projectivity, or injectivity) now
has an answer: Ext(B, C) simultaneously measures departure of B from
projectivity and departure of C from injectivity. By the way, this proposi-
tion is not definitive; it will turn out that Torn(A, B) = 0 whenever B is
flat in RM and n > 0. Tor(A, B) will simultaneously measure unflatness of
A (in MR) and B (in RM).

Also, the proof of Proposition 3.2 shows why we never applied Hom(C, )
to a projective resolution. The analog of property (b) would not hold, since
Hom(C, ) is not right exact. This failure will be more significant in the
next section, where we relate Extn to Extn+l. The fact that Hom(C, ) is
left exact suggests that something can be done. The thoroughly remarkable
result of this (to be discussed in Section 3) will be a cloning of the same
Ext we got here. Onward!
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3.2 Long Exact Sequences

We now have the definitions of Ext and Tor. As in most of mathematics, this
is hardly enough to either compute or derive relations. Among other things,
we have no relationship between Ext" and Extm (or Torn and Tor,,,,). This
kind of thing would be very helpful, as eventually it would lead down to
Hom (respectively, ®). Long exact sequences provide the mechanism to do
this. In this section we shall describe how these long exact sequences arise,
and derive two of them (one each for Ext and Tor).

First, how they arise. For this purpose, a chain complex will denote a
complex C = (Ci, di) of Abelian groups, with di : Ci Ci_1i and with i
coming in from oo. There are two standard conventions (lucky us!): In one,
the Ci also go off to -oo, while in the other the Ci terminate at i = 0 (so
do = 0). The second can be thought of as a special case of the first (with
Ci = 0 for i < 0), so we adopt the first convention now. Nevertheless, when
forming the category of chain complexes, there is good reason to adopt the
second convention because of the way tensor products of two complexes
eventually get defined. (More on this in Section 9.3.) We don't need this
now; it is easier to have Ci defined for all integer i. That way we can apply
our results to cochain complexes: A cochain complex (Ci, 8i) is a complex
where 8i : Ci_1 --> Ci, i E Z. (The indexing matches the complex defining
Ext.) We can get a chain complex by replacing i with -i and adjusting the
subscript on 8.

To define a category Ch of chain complexes, we need to define what the
morphisms are. This should be no surprise. If C = (Ci, di) and C' = (Ci', d')
are chain complexes, then a morphism c ' = (co) from C to C' is a sequence
of homomorphisms cpi : Ci Ci' such that

d,
Ci . Ci-1 .. .

ti. 1W.-I

Ci i -- C1_ 1 -3 .. .

commutes. A morphism of chain complexes is called a chain map. Note
that for all n, the nth homology Hn is now an additive covariant functor
from Ch to Ab.

A short exact sequence of chain complexes

0-) C ° )C' 0 ) C"--)0
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is a commutative diagram

0->C °' C C'i0
d, d d;'

0 Cti_1 Cti_1 -'> Ca''_1 )0

I 1 1

with exact rows.

Theorem 3.3 Suppose

0>C )C'----!L->C")0
is a short exact sequence of chain complexes. Then there is a sequence of
maps 6n : Hn(C") -> Hn_1(C) such that

Hn (C)
Hn(-v) Hn(C')

H^() Hn(L,")

is exact. The sequence of maps is also natural, in that if

0 )C --±-+ C1 C")0
tf Jg th

0C `°i& 30/ )0

is commutative (in Ch) with short exact rows, then for all n,

Hn(C") b' > Hn-1(C)

tHn(h) tHn-I(f)

Hn(G") Hn-1(C)

commutes.
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Proof: We first define S. Consider the diagram

j
Wn ?0 --> n-- C' --) I ) 0

td td' do

0Cn_1 Cn1_1-->C""-1)0
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and suppose x E Cn with dn(x) = 0. VJn is onto, so 3 y E C,, with
x. Now 0 = d'n(x) = do "V' nn(y) = in-ldn(y), so d' (y) E ker On-1 =

im cpn_ 1. We define Sn (x + im d"+1) to be the coset of that z E Cn_ 1 for
which cpn_1(z) = d' (y). There are now a large number of things to check:

(i) z +imdn is independent of the choice of y: If On (y') = x, then 'Jn (y-
y') = 0, so y-y' E ker On = im cpn, so y-y' = cpn(t), for some t E Cn.
Hence, d' (y) - d' (y') = d' (y - y') = dncpn(t) = cpn_Idn(t). Hence, if
d' (y) = cpn_1(z) and d' (y') = cpn_1(z'), then (since cpn_1 is one-to-n n
one) z - z' = do (t) E imdn, so z + im do = z' + imdn.

(ii) z + imdn E Hn_1(C), that is, dn_1(z) = 0: cpn_2dn_1(z) = dR_1
cpn_1(z) = dn-1dn(y) = 0, so dn_1(z) = 0, since cpn-2 is one-to-one.

(iii) If X E imdn+l, then z E imdn: If x = d''+1(s), choose u E Cn+l
such that On+1(u) = s (possible since ?pn+l is onto). Then x =
do+1,On+1(u) _ ndn+l(u), so we may take y = do+1(u). But then
dn(y) = 0 so we take z = 0. By (i), any other choice of y gives a
zE0+imdn=imdn.

At this point we know that x H z + imdn yields a well-defined map
from ker do to Hn_ 1 (C) which is zero on imdn+1, so that Sn is well-defined.
(When different x's are added together, the chosen y's can also be added,
so Si-, is a homomorphism.) We next check exactness at the slots involving
Sn:

(iv) kerSn imHn(zP): If x+imdn+1 E imHn(-t,b), then we may take y
to be such that Hn(tfi)(y+imdn+1) = since all that was
required of y was that i,b (y) = x. That is, we may replace x with
?Pn(y) without changing the coset of imdn+1 in Hn(C"). But for this
y and x, dn(y) = 0, since it represents a homology class in Hn(C').
Hence, z = 0, and Sn (x + imdn+1) = 0.
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(v) ker Sn C im Hn (i/i): If Sn (x + imdn+1) = 0, then z E imdn, that is,
z = dn(t) for some t E Cn. Thus dn(y) = cpn_1(z) = cpn_ldn(t) _
dntpn(t), that is, dn(y-(en(t)) = 0. However, On(y-cen(t)) = wn(y)

x - 0. Hence, Hn(i/i)(y - cen(t) + imdn+1) = x + imdn.

(vi) ker Hn_1(cp) D imSn: From the definition, Hn_1(cp)Sn(x+imdn+l) _
cen_ 1(z) + imdn = do (y) + imdn = 0.

(vii) ker Hn_1(Sp) C imSn: If z + imdn E ker Hn_1(cp), then cpn_1(z) E
imdn, that is, (pn_l(z) = dn(y) for y E Cn. Set x = 4/&n(y). This is
just the definition of Sn run backwards, so all we must do is check
that x +imdn}1 E Hn(C"), that is, that dn(x) = 0 for the x defined
here. But dn(x) = dn?in(y) = Vin-1dn(y) = "Pn-1;Pn-1(z) = 0.

We still need exactness at the slot not involving S. Observe that H,,(-O)
Hn(w) = H.( W) = Hn(0) = 0, so at least ker Hn(1) D imHn(cp).

(viii) ker Hn(o) C imHn(cp): Suppose Hn(i1i)(u + imdn}1) = 0. Then
hn (u) E imdn+1+ so 'n (u) = do+1(v) for some v E Cn+1. Now ' bn+1
is onto, so v ='0n+1(W) for some w E Cn+1. Hence,

Wn(u) = do+1(v) = do+1On+l(w) = Y'ndn+1(w)

or 1/in (u - do+l (w)) = 0. That is, it - d' +1(w) E ker On = im cpn, so
it - do+1(w) = cen(t) for some t E Cn. Now, cpn_1dn(t) = dnlpn(t)
dn(u) - dndn+l(w) = 0, since it represents a homology class, so
dn(t) = 0, since cpn-1 is one-to-one. But now Hn(cp)(t + imdn+l) _
it + imdn+1.

What remains is naturality. This comes from a three-dimensional dia-
gram chase. First note how Sn is defined via a "diagram':

y x

Idn

gyp,.-iz >--3

In this diagram, and others like it, the asterisk is used to signify the fact
that the two arrows going to it have the same image. The three-dimensional
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diagram is

t wn t
0 i Cn 0

Xn t
t t

n I TGn00>0
d, i

dni
d"I

0 -- Cn-1 - C_1 -i Cn"-1 )0- do 9n- do
h -i dei

<Dn- TG_- 00 Cn-1
Cn'- T

1 I 1

Now observe that one can chase

through the diagram. That is, if Hn(h)(x + imdn+1) = 2 + imdn+1, one
can define the lower zigzag using the upper one, but any zigzag from i to
2 defines Sn(2 + imdn). Hence, we get Hn_1(f)(z + imdn) = z + imdo. 0

It should be noted that, for cochain complexes, the analog of Sn increases
the index on the homology. The maps Sn are called connecting homomor-
phisms. For consistency, the index on 6n is set to equal the index on the
differential do used to define it.

The following theorem is really a corollary to Theorem 3.3, but it is too
important to be called a mere corollary.

Theorem 3.4 a) (First Long Exact Sequence for Tor) Suppose 0 -*
A --. A' - A" -> 0 is short exact in MR. Then for all B E RM, there is a
long exact sequence
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... --> Torn+I (A", B)

LTorn(A, B) Torn(A', B) -+ Torn(A", B)

) Sn+l

) 6n

... --+ Tor, (A', B) -+ Tor, (A", B) 61

B-+0
b) (First Long Exact Sequence for Ext). Suppose 0 C - C' -+

C" -+ 0 is short exact in RM. Then for all B E RM, there is a long exact
sequence

Extn+1(B,C) -, ...

c
Extn(B, C) Extn(B, C) --* Extn(B, C")

Ext1(B, C) -f Extl (B, C) -p .. .

0 ----+ Hom(B, C) Hom(B, C) -+ Hom(B, C")
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Proof: For Tor, tensor 0 --> A -+ A' -- A" -+ 0 with a projective resolution
(Pi, di) of B, giving

1 I I
0 >A®P,, )Al (& P,, )A"®Pn>0

I I I0A®Pn_1A'(g Pn_1 A"®Pn_1>0
I I I

I I I
0) A(& Po )A'®Po>A"(9 Po) 0

Rows are exact since each Pk is projective, hence flat, in RM. Apply The-
orem 3.3 and the definition of Tor.

For Ext, a similar construction applied (via Hom) to 0 -> C C' --'
C" -+ 0 and (Pi, di) yields

T T T
0 --> Hom(Pn, C) -f Hom(Pn, C') -f Hom(P, C") -)0

T I I
0 -4 Hom(Pn_1, C) -i Hom(Pn_i, C') --+ Hom(Pn_1, C") -4 0

0 --) Hom(Po, C) -i Hom(Po, C') -) Hom(Po, C") -- 0

Rows are exact since each Pk is projective. Columns are cochain complexes,
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and their homology gives Ext by definition. Apply Theorem 3.3 (and the
comment following the proof).

Corollary 3.5 Suppose 0 -+ A -+ F -* A' 0 is short exact in MR, With
F flat. Then Torn(A, B) Torn+,(A', B) for all B E RM and n > 1.

Proof: 0 = Torn+, (F, B) Torn+i (A', B) -4 Torn (A, B) Torn (F, B)
= 0 is exact.

Corollary 3.6 Suppose 0 -+ C -+ E -+ C' --+ 0 is short exact in RM, With
E injective. Then Extn(B, C') ,: Extra+1(B, C) for all B E RM and n > 1.

Proof: 0 = Extn(B, E) -+ Extn(B, C') -+ Extra+l (B, C) , Extra+1(B, E)
= 0 is exact.

(These two corollaries are examples of dimension shifting. There is much
more of this to come.)

Corollary 3.7 Suppose B E RM, and suppose Tor, (R/I, B) = 0 for every
finitely generated right ideal I. Then B is flat.

Proof: Applying Theorem 3.4(a) to 0 -+ I R -+ R/I --+ 0 yields, in
part,

0=Tor,(R/I,B)->I®B-+R®B;z B.
Hence I ® B -+ IB is one-to-one. By the flat test lemma (Chapter 2,
Exercise 11),. B is flat.

Corollary 3.8 Suppose B E RM. The following are equivalent:

(i) B is projective.

(ii) For all C E RM and n > 1, Extra (B, C) = 0.

(iii) For all C E RM, Extl (B, C) = 0.

Proof: (i) (ii) is Proposition 3.2(d). (ii) (iii) is trivial. Given (iii),
if 0 -+ C -+ C' -4 C" 0 is exact in RM, then Theorem 3.4(b) says, in
part, that

0 Hom(B, C) -+ Hom(B, C') Hom(B, C") -+ Ext' (B, C) = 0

is exact, i.e. Hom(B, ) is an exact functor. Hence B is projective.

Clearly, Corollary 3.7 is not as satisfactory as Corollary 3.8, since Corol-
lary 3.7 does not assert an equivalence of conditions. Further, we need to
derive long exact sequences involving the variable we have called B. These
issues will be addressed in Section 4.
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3.3 Flat Resolutions and Injective Resolutions

It is now time to address seriously the question: What happens if, in A®B,
we form a resolution of A instead of B. Similarly, while a projective reso-
lution of C does no service to Hom(B, C), something ought to be possible.
The resolutions of A will be flat resolutions; those of C will be injective
resolutions.

A flat resolution (Fi, di) of A E MR is an exact sequence

...-F, d+ Fn-1 -> ... -, F1-+ F o -* A - 0

where each Fn is flat; note that any projective resolution is a flat resolu-
tion, but not vice versa. Our immediate objective is to show that the nth
homology of

...,Fn®B d,.®B ,F.n-1®B...-.,F1®B d1®B ,Fo®B->0

is our old friend Torn(A, B). There are a number of ways of going about
this.

One method, which would only work for projective resolutions, would
be to call the new functor "tor" (projectives are required to give a functor
in the resolved variable), derive properties of tor, then do a dimension
shifting argument to show that for Tor. Much later, one shows that flat
resolutions produce the same result as projective resolutions.

Another method, whose organization is very similar to many homological
algebra proofs, is carried out in three steps. To show that the nth homology
is isomorphic to Torn by induction on n: (i) check the case n = 0; (ii) check
the case n = 1; (iii) verify the induction step. Oddly, step (ii) is the hardest
both here and generally; step (iii) works by replacing A with imd1, and
explicitly using what step (ii) says about the entries in the long exact
sequence for Tor derived in the last section. This proof will be deferred to
the exercises; it is the easiest of the proofs to carry out.

The approach here will be the "zigzag proof." The advantage is that the
isomorphism is displayed before one's very eyes, allowing its naturality to
be observed as well. This construction will also be used later in Sections
6.5 and 9.4. However, the version in Exercise 3 is sufficient for this chapter
as an alternative approach. That is, if you solve Exercise 3 (and its analog
for Ext, the first sentence of Corollary 3.12), then you have what you need
for Section 3.4.

The fundamental idea behind the zigzag proof is to take the chosen
projective resolution of B and tensor it with the flat resolution of A. After
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deletion of A ® B we get the commutative diagram,

J.. .1 .1.. 1
-*F3P3-4F3®P2-*F3®P1---*F3®P0-F3®B---+0

I I I I

I I I I I

I I I I I
I I I I __I_>0 >0

I I I I I
0 0 0 0 0

Observe that all rows but the bottom are exact (since all F3 are flat), while
all columns but the rightmost are exact (since all P3 are projective, hence
fiat, in RM). We now quote a general result:

Proposition 3.9 Suppose C2,3, d1,3, 81,3 form a commutative array in Ab
(with rows and columns being complexes):

d3,2
c,1

d3,1 d3,o

1032 103I 1030
d2,3 d3,3 d2,1

C2,3 > C2,2 > C2,i ) C2,0 > 0

,L&23 1022 1021 1020
d1,3 d1,2 di,1 di,o

,C13 >C1,2 >C11 >C10 >0

10133 18122 18ii
do1

C0,3 C0,2 C0,1 > Co,o 0

1003
jOO.2 jâo.i joo.o
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with all rows but the bottom exact, and all columns but the rightmost exact.
Then the nth homology of the bottom row is isomorphic to the nth homology
of the rightmost column.

Proof: As the reader might guess, a detailed proof is likely to drown in
a sea of indices. There is a way of avoiding this while still including the
relevant details. The gimmick comes in two parts.

The first half of the modification is to set Ci,j equal to 0 if i < 0 or
j < 0, extending the Ci, j diagram to the whole plane by putting in zeros
off the second quadrant. (The ai,j and di,j are extended to zero as neces-
sary.) The second half consists of replacing the Ci,, (as well as ai, j and di, j )
by isomorphic copies in such a way that the replacement Ci,j are pairwise
disjoint. (In particular, we get a countable infinity of disjoint zeros off the
second quadrant.) Now let C denote the (disjoint) union of all the C6.
We define a : C -' C by a(x) = ai,j (x) if x E Ci,j; d : C -+ C is defined
similarly. The disjointness guarantees that d and a are unambiguous; the
extension-by-zero makes d and a globally defined with values back in C.
Commutativity of the diagram is stated thusly: da = ad. Rows are com-
plexes: dd = 0. Columns are complexes: as = 0. Exactness of all rows
except the axis: d(x) = 0 = x = d(y) for some y UNLESS x E Col for
some j. (The proviso illustrates the not-so-surprising point that we must
occasionally write indices.)

Now to the zigzags. The space of zigzags (from Cl,,, to Cn,1), call it Zn,
is defined as follows for n > 2:

n

Zn C Ci,n-i+1
i=1

(yi,...,yn) E Zn t* d(yi) = a(yi+1),

In pictures:

Y3)

y2>- > *--

a
Y1>-

> *--

i=1,...,n.

The set Zn is a group by linearity of d and a. Further, Zn maps to Co,n
by applying al,n to yl. We now have several things to check.
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i) If (yi, ... , y,) E Z,a, then ai,n(yi) E ker do,,,,. Reason: do,na1,n(yl) =
a1,n-1d1,n(y1) = a1,n_1192,n_1(y2) = 0. Remember that we assume
n > 2 here.

ii) If x E ker do,n, then 3 (yl,... , yn) E Zn, with al,n(yi) = x. Well, al,n
is onto, so 3 yl with ai,n(yi) = x. Now 0 = do,n(x) = do,nal,n(y1) =
al,n-idi,n(yl) di,n(y1) E ker a1,n-i = ima2,n_1. Hence 3 Y2 with
82,n_1(y2) = di,n(y1). Now drop indices. Given yi,... ,yk, k > 2,
ad(yk) = d8(yk) = dd(yk_1) = 0, so from the diagram

Yk+1
Y
is

d
Yk>

Yk-1> d *)-
>

0

we have d(yk) E ima, that is, a(yk+1) = d(yk) for some yk+1

We now have that (yi,... ,yn) ' . 8i,n(yi) yields a map from Zn onto
the nth homology along the horizontal a)ds. We need the kernel. Suppose

n+1

(z1, ... , zn+i) E ®Ci,n-i+2
i=1

and, for k = 1,... , n: Yk = d(zk) + a(zk+1). In pictures,

Zk+2

Ia

zk+1> d

Ia

sum
= yk

5

d

sum
= Yk+1

The question mark is a star, that is, d(yk) = 8(yk+l):

d(yk) = dd(zk) + da(zk+1) = d8(zk+1)
= ad(zk+1) = ad(zk+l) + aa(zk+2) = 19(Yk+1)

iii) Any (yi,... , yn) that is produced this way produces zero in the nth
homology of the horizontal axis. To see this, observe that ai,n(yi)=
al,n(d(zi) + a(z2)) =ad(zi) + aa(z2) = do,n+18(x1) E im do,n+l
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iv) If a1,n(y1) E imdo,n+1, then 3 (zi,... ,zn+1) that produces
(yl,... ,y,) as above. To see this, first note that if 81,n(yl)=do,nF.1(x),
one can choose zi so that ai,n+1(zi) = x, since al,n+1 is onto. But

al,n(yl - dl,n+1(z1)) = a1,n(yl) - al,ndl,n+1(zl)
= al,n (yl) - do,n+lal,n+1(z1)

= a1,n(yl) - do,n+1(x)
=0

so that yl - dl,n+l(zi) E ker a1,n = ima2,n. Hence (dropping indices
now) 3 z2 E C2,n with a(z2) = yl -d(zi), so that yl = d(zi)+a(z2) as
required. Given z1, ... , zk+l, k > 1, an examination of the diagram

Zk+2
Y

zk

shows that

zk+1 Y d)
sum
= Yk+1

a

sum
= Yk

Y
d I

a

a(yk+1 - d(zk+1)) = 19(yk+1) - ad(zk+1)

= d(yk) - da(zk+1) = d(yk - a(zk+l))

= dd(Zk)

=0

so that Yk+1 - d(zk+l) = a(zk+2) for some Zk+2 (and Yk+1 = d(zk+1)
+ 8(zk+2))

So we now have that the nth homology of the bottom row is isomor-
phic to Zn/Bn, where Bn is the subgroup consisting of those (yl, ... , yn)
which come from a (zl, ... , zn+l), since that is the kernel of (yl, ... , yn) H
al,n (Yi) + im do,n+1-

This situation is symmetric. That is, if we flip the whole diagram about
a 45-degree line going northwest-southeast, changing Cj,, to Cj,i and in-
terchanging d with a, we get the same picture, but with (yi, ... , yn) H
(y..... , yl) and (zl,... , zn+1) ..' (zn+i, ... , zi). That is, in the original
picture, Zn/Bn is isomorphic to the nth homology of the righthand column,
too, under the correspondence

(yl, ... , y,) +B. H dn,1(yn) + im&+l,o
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In pictures:

homologyd'1 ;yn;

Yn-17--i

Y3

112> *

y1)--->

homology'
class

.11

.11

class

11

.

A

Before declaring the proof complete, we need to check the n = 0 and
n = 1 cases. n = 0 is easy enough: Since 81,1 and d1,1 are onto,

imdo,1 = imdo,181,1 = im81,od1,1 = imal,o

so that the zero'th homology groups are actually the same group, namely
Co,o /im do,1 = Co,o /im a1,o.

For n = 1, we redo the above, but with a special Z1, namely

Zi = {y' E C1,1 : do,1a1,1(yl) = 0}
= {y1 E C1,1 : al,odl,l(yl) = 0}.

As before, but more easily, 81,1(y1) E ker do,1. Further, any x E ker do,1
is the image of a y1 E C1,1 since 81,1 is onto, and x E ker do,1 = y1 E Z1.
We can get such a y1 from (z1, z2) E C1,2 ® C2,1 by y1 = d(zi) + 8(z2),
since then

do,1a1,1(y1) = d8d(z1) + d88(z2)

= add(z1) +d88(z2)

= 0.

Further, in this case, (using indices):

all(yl) = 51,1d1,2(z1) + a1,102,1(z2)
= do,2a1,2(z1) + 0 E imdo,2.
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Finally, any yl which winds up in im do,2 comes from a (z1i z2), a result
that is left as an exercise. Again, the situation is symmetric.

Corollary 3.10 Torn(A, B) is isomorphic to the nth homology of a flat
resolution of A, tensored with B (and A (9 B deleted). Furthermore, this
isomorphism is natural in that if cp E Hom(B, B'), and if Hn denotes the
nth homology of a chain complex, and (Fk, dk) is a flat resolution of A,
then

Torn (A, B) Torn (A, B')

22 22

H . ( F k ® B, dk (9 B) H,.(F'k,dk)OV
Hn(Fk ®B', dk (9 B')

commutes.

Proof: The isomorphism was just proved. To see naturality, take a diagram

...)Pn-)Pn-1-3...--+P1-sPo--;B-)0
tlp 1W.-I

t (PI
1(P0 1(P

Po-aB'-)0
and tensor it with the flat resolution (Fk, dk) of A. The result is a two-layer,
three dimensional diagram whose typical cube looks like:

F ® P F ®P) i+1 j+1 I

F ® P l

> i+1 j

F ' --> ..(9 Pi+1 +1i i+l j

F P F ® P) i® j+1

F ®

I

P

i) j

. F P l®i I j+1 i j
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Now simply observe that a zigzag for (Fi (& Pj) maps to a zigzag for
(Fi (a Pj):

The first homology, Z1/B1, works even more easily, and these are all that
appear here.

There is one more thing that needs to be said, and it is reflected in the
notation. "Zn/Bn is (almost) the homology of a complex." To see this, note
that the condition "d(yi) = C7(yi+1)" can be replaced by "d(yi) - 8(yi+i) =
0," the vanishing of certain maps on (yl,... , yn). In more detail, one may
set (for n > 2):

n

Cn = ® Ci,n_i+l
i=1

dn(x1, ... , xn) = (d(xi),... , d(xn-1)),
an(xl, ... , xn) = (a(x2), ... , 5(xn)),

and

Dn=dn+(-1)n+1an:Cn-*C._i

Also, as a special case, set Co = CO,(), and D1 = dO = ad on C1 =
C1,1. Then Dn_1Dn = 0, and Zn/Bn is the nth homology of (Cn, Dn)
when n is even, and (y1, y2, y3, ... , yn-1, yn) H (y1, -y2, , -yn-1, Yn)

makes Zn/Bn isomorphic to the nth homology when n is odd. Furthermore,
(y1, ... , yn) i--> ai,nyl is a chain map to the horizontal axis complex. This
sign convention is not standard, but any convention has advantages and
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disadvantages. This one facilitates the discussion in Chapter 6, but we shall
have to modify it in the discussion of the Kiinneth.theorems in Chapter 9.
Anyway, no matter what sign is used, we will not get a chain map to the
vertical axis complex. Those minus signs eventually cause some trouble. In
Section 6.5 this will all be done systematically.

Now consider injective resolutions and Ext. The construction is simi-
lar, but with some differences. Suppose C E RM. An injective resolution
(Ei, d;) of C is an exact sequence

i dl d2 d3
0 --> -E2 ...

going off to infinity on the right. Injective resolutions exist, thanks to the
enough injectives theorem. Imbed C in Eo via t; imbed Eo/t(C) in El, etc.
Apply Hom(B, ) and delete Hom(B, C); we wish to show that the nth
homology of

Hom(B,di) Hom(B,d2)
0 -> Hom(B, Eo) Hom(B, Ei) Hom(B, E2) -->

is isomorphic to Extn(B, C).
The relevant double complex is

T T T T
E- Hom(P2, E2) F- Hom(P2i Ei) +- Hom(P2, Eo) Hom(P2, C) 4- 0

T T T T
f- Hom(Pj, E2) F- Hom(Pi, Ei) F- Hom(Pi, Eo) Hom(Pi, C) +- 0

T T T T
Hom(Po, E2) F- Hom(Po, Ei) F-- Hom(Po, Eo) F-- Hom(Po, C) 4- 0

T T T T
f- Hom(B, E2) F-- Hom(B, Ei) f- Hom(B, Eo) F--- 0( -- 0

T T T T
0 0 0 0

Again, all rows but the bottom are exact since all Pn are projective,
and all columns but the rightmost are exact since all En are injective. The
companion to Proposition 3.9 is:

Proposition 3.11 Suppose CZj, di,3, 82,E form a commutative array in Ab
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(with rows and columns being complexes):

d3,2
t d31 d3o T

C3,3 E C33,2 ( C33,1 F- C3,0 0

10922 1dEC2,3
C2,2 < C2,1 E2- C2,0 4 0

181.3
181,2 Jai.i 181,0

E-- C1,3 d( 1-2 C1,2 d< C1,l d,o C1,o E 0

J82.3 1822,
1801 Taoo

Co,3 Co,2 Co,1 E 0 Co,o 4 0

with all rows but the bottom exact, and all columns but the rightmost exact.
Then the nth homology of the bottom row is isomorphic to the nth homology
of the rightmost column.

Proof: Make the same modifications and conventions as in the proof of
Proposition 3.9. Here, a zigzag is a member of

n

ZnC®Ci,n_i
i=o

(xo, ... , xn) E Zn 8(x.i) = d(xi+l), d(xo) = 0, and8(xn) = 0.
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In pictures:

d

Ta
d* (<x2

a
* ( <X l
e

0 +--L-4

We manufacture such a zigzag from the object (zo,... , zn_1) in

n-1

® Ci,n-i-1
i=0

xj = d(zj) + 8(zj_ 1) for j = 1,... , n - 1
xo = d(zo), xn = a(zn-1)

The correspondence to ker do,n is just (xo, ... , xn) H xo. (The situation
is simpler here.) All this works for all n > 0; if n = 0, keep Zo as is, and
set B0 = 0. Note that this time the bottom row and right hand column are
included.

From the definition, it follows that x0 E ker do,n, while if (xo, ... , xn)
comes from a (zo,... ,zn_1), necessarily xo = do,n-1(zo) E imdo,n_1. It
remains to show that any xo e ker do,, can be extended to a zigzag, and
that if (xo, ... , xn) E Zn is such that xo = do,n_1(zo), then zo can be
extended to (zo, ... , zn-1) mapping to (xo, ... , xn) as above.

For the first part, since 0 = do,n(x0), 0 = ad(xo) = da(xo) = a(xo) _
d(x1) for some x1. In general, given (xo,... , xk), k > 1, da(rk) = ad(xk) _
aa(xk-1) = 0 so a(xk) = d(xk+1) for some xk+1. Finally, given (xo,... , xn)
constructed this way, 0 = a8(xn-1) = ad(xn) = da(xn), so a(xn) = 0,
since d is one-to-one on Cn,o. (Okay, the case n = 0 is special; 0 = d(xo),
so 0 = ad(xo) = da(xo) a(xo) = 0, too.)

The second part is left as an exercise.
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Corollary 3.12 Ext'n (B, C) is isomorphic to the nth homology of
Hom(B,.) applied to an injective resolution of C (and Hom(B, C) deleted).
Furthermore, this isomorphism is natural in that if cc E Hom(B, B') and if
H'n denotes nth homology of a cochain complex, and (Ek, dk) is an injective
resolution of C, then

Ext"(B, C) 4
Ext"(W,C)

Extn(B', C)

22 22

H"(Hom(rp,Ek))

H"(Hom(B, Ek), Hom(B, dk)) 4 Hn(Hom(B', Ek), Hom(B', dk))

commutes.

The proof is essentially the same as that of Corollary 3.10 with arrows
going the other way.

One may ask what happens if rows and columns other than the edges are
just complexes, and not exact. What one gets is a spectral sequence, a gadget
discussed, for example, in Rotman [68, Chapter 11}. Spectral sequences are
important, but not "basic," and are beyond the scope of this book.

3.4 Consequences

The last two sections were long, with just a few results. This one will be
shorter, with a lot of results. First, Ext.

Proposition 3.13 (Second Long Exact Sequence for Ext). Suppose
0 B - B' --> B" 0 is a short exact sequence in RM, and suppose
C E RM. Then there is a long exact sequence:

6.+1
EXtn(B", C) --* Extn(B', C) ---* Extn(B, C)

62

Ext'(B", C) Extt (B', C) -+ EXtn(B, C)

0 ---> Hom(B", C) -+ Hom(B', C) -' Hom(B, C)
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Proof: Take an injective resolution (E,, di) of C and apply Hom(B, s),
Hom(B', .), and Hom(B", .) to it, deleting the terms with C:

0 0 0

0 -- Hom(B, Eo) -- Hom(B, El) -- Hom(B, E2)

0 - Hom(B', Eo) -- Hom(B', E1) - Hom(B', E2) .

0 -- Hom(B", Eo) - Hom(B", El) -- Hom(B", E2) -

Columns are exact since all E3 are injective. The result now follows from
Theorem 3.3 and Corollary 3.12.

Corollary 3.14 Suppose 0 -- B -+ P ---> B' -* 0 is short exact in RM,
with P projective. Then Ext"(B, C) Extn+1(B', C) for all C E RM and
n> 1.

Proof: 0 = Ext" (P, C) -> Ext" (B, C) --+ Ext"+1(B', C) Ext"+1(P, C)
= 0 is exact..

Corollary 3.15 Suppose C E RM. The following are equivalent:

i) C is injective.

ii) Ext"(B, C) = 0 for all B E RM and n > 1.

iii) Ext1(R/I,C) = 0 for all left ideals I.

Proof: (i) = (ii) is Proposition 3.2(d). (ii) => (iii) is trivial. Given (iii),
one has, as part of the long exact sequence,

0 -> Hom(R/I, C) -> Hom(R, C) -+ Hom(I, C) Ext' (R/I, C) = 0

so that Hom(R, C) -+ Hom(I, C) is onto. This is exactly what gives a filler
for any diagram

0-}I-->R

C
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so that C is injective by the injective test lemma.

It should be noted that the long exact sequence is natural, in that if
cp E Hom(C, C'), then

Extn(B", C) -->- Ext"(B', C) ->- Extn(B, C) -- Extn+1(B", C)

IExt'(B",,P) IExt"(B',co) IExt'(B,,P) IExtn+1(B",V)

Extn(B", Cl) --->- Extn(B', C) -- Extn(B, C') Extn+1(B", C')

commutes. The idea is much like the business in Proposition 3.1, but for
injectives. One has, for injective resolutions (Ei, di) of C, and (Ei', d2) of
C, fillers

0 C -- Eo E1 E2 - .. .
i I I

'P I'Po I'P1 I'2
Y W V

Eo El -

Again, any two fillers are homotopic. Finally, these maps, after applying
any Hom(B, .), and deleting Hom(B, C) and Hom(B, C'), give chain maps,
hence maps from Extn(B, C) to Extn(B, C'). By an argument like that of
the naturality part of the two corollaries in the last section, this map is
precisely Extn (B, cp). Finally, if 0 --> B -+ B' -+ B" -+ 0 is short exact, one
obtains a two-layer array like the one near the end of the proof of Theorem
3.3. Details are left as an exercise.

Before going on to Tor, the next example gives an amusing calculation
(which shows among other things, that Q is not projective).

Example 11 ExtZ(Q, Z) R (as groups).

Use an injective resolution of Z:

0->Z->Q-*Q/Z-'0-'0->...

The complex is 0 -+ Hom(Q, Q) -* Hom(Q, Q/Z) -+ 0 -+ 0
Now Hom(Q, Q) Q, since Q is uniquely divisible: If f E Hom(Q, Q)
and f (1) = q, then q = f (n/n) = n f (1/n) = f (1/n) = q/n, so that
f (m/n) = mf (1/n) = n q. Hence f i---> f (1) is an isomorphism of
Hom(Q, Q) with Q. To finish, note that Q E ZMQ, so that Hom(Q, Q/Z) is
a vector space over Q. It suffices to show that its dimension over Q is the
same as the dimension of R, that is, a continuum. That way the dimension
of Extz(Q, Z) will be a continuum. For this purpose, it suffices to show
(since Q is countable) that Hom(Q, Q/Z) is a continuum. To see this, note
that one can define an f E Hom(Q, Q/Z) by recursive choices:
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i) Choose ro E Q fl [0,1); set f (k) = kro + Z.

ii) Choose r1 = z ro or f2 2ro + 1; set f (2) = kr1 + Z.

iii) Choose r2 = 3r1i sr1 +.1 or sr1 +
3;

set f (s) = kr2 +7L.

Etc. There is a continuum of total choices.

Now Tor. Let RP denote the ring opposite to R; that is, R°P is the same
as R as an additive group, but the multiplication is reversed: Letting *
denote multiplication in RIP, define a* b = ba. Note that any B E RM may
be considered a member of MROP.

Proposition 3.16 Tor,,,(A, B) . Tor,R°P (B, A).

Proof: Tgrn
oP

(B, A) is computed using a projective resolution of A. Since
a projective resolution of A is a flat resolution, this follows from Corollary
3.10.

We close this chapter with five(!) corollaries to this.

Corollary 3.17 (Second Long Exact Sequence for Tor) If 0 -p B -'
B' --> B" -+ 0 is short exact, then there is a long exact sequence

T ,.R(A B) _ To R(A B') T R(A B")o r or

) 6n+1

n ,n n
6n

... --> Tor, (A, B")
S1

A®B--*A®BI 0.

Proof: Apply the corollary to Proposition 3 to TorR°P (., A), then use
Proposition 3.16 to put A on the left.

Corollary 3.18 Suppose A E MR. The following are equivalent:

i)Aisflat.

ii) TornR(A, B) = 0 for all B E RM, n > 1.

iii) TorR(A, R/I) = 0 for every finitely generated left ideal I.
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Proof: (i) (ii) is Proposition 3.2(c). (ii) = (iii) is trivial. (iii) = (i)
follows from Proposition 3.16 and Corollary 3.7.

Corollary 3.19 Suppose B E RM. The following are equivalent:

i) B is flat.

ii) Torn (A, B) = 0 for all A E MR, n > 1.

iii) TorR(R/J, B) = 0 for every finitely generated right ideal J.

Proof: Corollary 3.18 plus Proposition 3.16.

Corollary 3.20 Suppose 0 -> B -+ F --> B' -+ 0 is short exact in RM,
with F flat. Then Torn (A, B) Torn+,(A, B') for all A E MR, and n > 1.

Proof: 0 = Torn+l(A, F) -* Torn+1(A, B') Torn(A, B) -+ Torn(A, F)
= 0 is exact.

Corollary 3.21 Torn (A, B) can be computed from any flat resolution of
B.
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Exercises

1. Compute Torna (7G4i Z4).

2. Define what it means for Ext to be a bifunctor, and prove it.

3. Suppose (Fn, dn) is a flat resolution of A. Show that the nth homology
of

-4 F2(9 B--+F19B->Fo(9 B->0

is isomorphic to Torn (A, B) by the following steps:

a) Verify the case n = 0.
b) Verify the case n = 1 by the following device: Set K = im d1 C

F0. One has a short exact sequence 0 , K -* F0 -- A ---+ 0, to
which Theorem 3.4(a) applies. One also has F2 F1 -+ K --4 0
exact, and ®B is right exact. Play these off against each other.

c) Verify the induction step n - n+1, using Theorem 3.4(a) again,
along with the fact that --. F2 -* F1 -> K , 0 is a flat
resolution of K.

4. Complete the proof of Proposition 3.9, as stated in the last two sen-
tences in the proof.

5. Show that, in defining a zigzag in Proposition 3.11, the conditions
"d(xo) = 0" and "8(xn) = 0" follow from "8(xj) = d(xj+1)" when
n>2.

6. Complete the proof of Proposition 3.11, as described in the last sen-
tence in the proof.

7. Suppose (Ei, di) is an injective resolution of C E RM, (Ei', di) is an
injective resolution of C', and cp E Hom(C, C'). Show that fillers cpn
exist for -'

0 - C ` - Eo dl - El d E--)
I I I

IWo IW1 1W2

'V d' W d' W0 T C' Eo > E' 2 E2

and that any two fillers are homotopic.

8. Show that if Ext1(B, C) = 0, then any short exact sequence 0
C -+ X -> B -- 0 is split. (This has a converse; in fact, Extk(B, C)
parametrizes the available X's. This can be found in many books, for
example Northcott [60, pp. 83-87] or Rotman [68, pp. 202-206] . It
is the origin of "Ext" as a shortened form of "Extension".)
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9. Suppose I is a left ideal and J is a right ideal. Show that

a) Torn (R/J, R/I) .:s Torn-2 (J, I) for n > 2.
b) Tor2(R/J, R/I) ti kernel of (J ® I -+ JI).
c) Tor, (R/J, R/I) (J n I)/(JI).

10. Suppose B is an Abelian group. The torsion subgroup, T(B), is the
subgroup of B consisting of elements of finite order. Show that T (B) ;Ztl

Torz(Q/9G, B). (This result and others like it gave Tor its name, short
for "Torsion.")

Hint: B/T(B) is torsion free, hence flat, and 0 --+ T(B) - B -->
B/T(B) -+ 0 is short exact. Also, Q/Z has a straightforward flat
resolution. Finally, there are no nonzero bilinear forms on Q x T(B).
(Why?) What does this say about Q (9 T(B)?

11. Show that

a) Ext'n(®1B2, C) 111 Extn(Bi, C).

b) Ext'(B, fl_- C'i) ^ r1l Ext"(B, Ci).
c) Tor.(A, ®1Bi) ®iTorn(A, Bi).

12. Suppose B, and B2 are submodules of B E RM. Show that V C E RM
there is a long exact sequence

Ext'(B1 + B2, C) --+ Extn(B1, C) a Ext' (B2, C) -* Extn(B1 n B2, C)

Ext1(B1 + B2, C) Ext1(B1i C) ® Ext1(B2, C) Ext"(B1 n B2, C)

0 Hom(B1 + B2, C) -+ Hom(B1, C) ® Hom(B2, C) -+ Hom(Bi n B2, C).

J

D

D

Derive similar exact sequences for the second variable in Ext and for
Tor. These are called algebraic Mayer-Vietoris sequences.



4
Dimension Theory

4.1 Dimension Shifting

The functors Ext and Tor measure properties of the modules entered as
variables, but for certain purposes they provide too much information. The
underlying idea in this chapter (and much of the next) is to defocus a bit.
The resulting concept (expressed as a number) is called dimension, and we
shall define three such dimensions for any B E RM.

There are advantages and disadvantages to the dimension concept. The
most obvious disadvantage is that information is lost. More subtle is the
fact that any dimension will be only a number, not a group. All the algebra
that comes associated with group theory is lost, too.

There are two things gained. The first is that there will be only one
variable instead of two; the modules will stand alone. The second is that
relations between dimensions of modules can be set up using devices other
than module homomorphisms. In particular, even the ring itself can change.

Dimension is easy enough to define, although some care is required to
keep the trivial module from having dimension -1. (Actually, some authors
make this convention.) Projective dimension first. A preliminary observa-
tion is helpful.

Suppose n > 1, and Ext"(B, .) - 0, that is, suppose Ext'l (B, C) = 0
for any C E RM. Then for any C E RM, imbedding C in an injec-
tive E yields Ext"1(B, C) ~ Ext" (B, E/C) = 0 by Corollary 3.6. Thus,
Ext"}1(B,.) - 0, too. Continuing this upward:

If B E RM, n > 1, and Ext"(B,.) - 0, then Extk(B,.) - 0 for all
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k > n.

We now define projective dimension, abbreviated P-dim :

P-dim B = inf {n > 0 : Extra+1(B, .) __ 0}.

(By the usual convention, the infimum of the empty set is oo.) In words,
we have an ironclad guarantee that (for k _> 1) Extk(B, C) will be zero,
regardless of C, exactly when k > P-dim B. Note also that B has projective
dimension zero if and only if B is actually projective, since that is exactly
when Ext 1(B, .) - 0 by Corollary 3.8

Injective and flat dimension are defined analogously. As above, if C E RM
and Extra(., C) = 0, and B E RM, then one may find a projective P
mapping onto B by the enough projectives theorem; say 0 -* K --* P --*
B -* 0. Then by Corollary 3.14, Extra+1(B, C) Extra (K, C) = 0. Since B
is arbitrary, C) = 0, too. Thus,

If C E RM, n > 1, and Extra(., C) = 0, then Extk(., C) - 0 for all
k > n.

We now define injective dimension, abbreviated I-dim :

I-dim C = inf {n > 0 : C) = 0}.

Finally, the following is left as an exercise:

If B E RM, n > 1, and Torn(., B) __ 0, then Tork(., B) = 0 for all
k > n.

With this in mind, we define flat dimension, abbreviated F-dim :

F-dim B = inf{n > 0: B) - 0}.

In a similar way, one may define projective dimension, injective dimen-
sion, and flat dimension for A E MR.

We now define dimensions for R itself. The left global dimension of R,
abbreviated LG-dim, is defined as follows:

LG-dim R = sup{P-dim B : B E RM}.

Similarly, one can define the right global dimension, abbreviated RG-dim ,
as follows:

RG-dim R = sup{P-dim A : A E MR}.

The (left) weak dimension, abbreviated W-dim, is defined as follows:

W-dim R = sup{F-dim B: B E RM}.

The word "left" is actually superfluous, thanks to the following.



4.1 Dimension Shifting 75

Proposition 4.1

a) LG-dim R = inf{n > 0 0}
= sup{I-dim C : C E RM}.

b) W-dim R = inf{n > 0: 0}
= sup{F-dim A : A E MR}.

Proof: For n < oo,

n>LG-dimR n >P-dimBfor all BERM
Extn+1(B, C) = 0 for all B E RM, C E RM

t n> I-dim C for all C E RM.

This proves (a); (b) is similar.

The fundamental tool in this section is a generalized form of dimension
shifting. The setup is the same for projectives, injectives, and flats, but the
interpretation is slightly different. The following result incorporates the
relevant mathematics to the extent that all that follows in this section is
really corollary. Nevertheless, the consequences will require some discussion.

Proposition 4.2 Suppose 0 -* D ---+ L1 --+ L2 -* -> Ln ---+ D' -+ 0 is
exact in RM, and d > 0.

a) If P-dim L3 < d for all j, then Extk(D, C) EXtk+n (D', C) for all
C E RM, and k > d.

b) If I-dim L3 < d for all j, then Extk(B, D') Extk+n(B, D) for all
B E RM, and k > d.

c) If F-dim L3 < d for all j, then Tork(A, D) Tork+n(A, D') for all
A E MR, and k > d.

Proof: They all work essentially the same way, so only (a) will be proved.
The proof is by induction on n; the discussion of the n = 1 case also carries
out the induction step.

Given n = 1, we have 0 -+ D -+ L1 -+ D' --+ 0 short exact, and a piece
of the long exact sequence of Proposition 3.13 yields, for k > d:

0 = Extk(L1, C) Extk(D, C) Extk+1(D', C) Extk+1(Li, C) = 0.

The induction step (with n > 2) comes from defining Q to be the kernel
of Ln --+ Y. We have two sequences, 0 -+ D -+ L1 --+ L2 ---+ . --+ Ln-1
Q -+ 0 and 0 -+ Q --+ Ln -+ D' -+ 0. We thus get (by induction)

E, ctk(D, C) Extk+n-1(Q, C) Extk+"(D', C).
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For this chapter, we will be primarily concerned with the d = 0 case, that
is, where the Lk are projective, injective, or flat, respectively. One corollary
to the general case needs to be recorded now; it will play a role in Chapter
5.

Corollary 4.3 Suppose 0 Q. Q._1 Q1 -, Qo -, B 0 is
exact in RM.

a) If P-dim Qi < d, for all j, then P-dim B < d + n.

b) If F-dim Qj < d, for all j, then F-dim B < d + n.

Proof: For (a) Extd+n+1(B, C) ~ Extd+1(Qn, C) = 0 for all C E RM. For
(b) Tord+n+l (A, B) Tord+1(A, Qn) = 0 for all A E MR.

To proceed, suppose we are given a projective (or flat) resolution of
BERM:

p2a2 p1d;Po"B->0.

Set Ko = B, K1 = ker 7r, and Kn = ker dn_1 if n > 2. In all cases, we may
define a new "resolution" of B by defining, for n fixed,

Pk, ifk<n
Pk= K,,, if k = n

10, ifk>n
to get Po,B --0, which will be
exact. If, by chance (!), Kn is projective (or flat), we have a new projective
(or flat) resolution of B. Kn is called the nth kernel of the projective (or
flat) resolution (Pk, dk).

Proposition 4.4 (Projective Dimension Theorem) Suppose B E RM.
The following are equivalent:

i) P-dim B < n.

ii) The nth kernel of any projective resolution of B is projective.

iii) There exists a projective resolution of B whose nth kernel is projec-
tive.

iv) There exists a projective resolution (Pk, dk) of B for which Pk = 0
when k > n.

Proof: (i) (ii) follows from Corollary 3.8, since Ext' (Kn, C)
Extn+1 (B, C) if Kn is the nth kernel of a projective resolution of B. (ii)
= (iii) is trivial. (iii) = (iv) by the discussion immediately preceding this
proposition. Finally, (iv) = (i), since Extn+1(B,C) will be the homology
at ... E- Hom(Pn+l, C) ... , and Pn+1 = 0.
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Proposition 4.5 (Flat Dimension Theorem) Suppose B E RM. The
following are equivalent:

i) F-dim B < n.

ii) Torn+1(R/I, B) = 0 for all finitely generated right ideals I.

iii) The nth kernel of any flat resolution of B is flat.

iv) There exists a flat resolution of B whose nth kernel is fiat.

v) There exists a fiat resolution (Fk, dk) of B for which Fk = 0 when
k>n.

Proof: Pretty much like Proposition 4.4, except (ii) r (iii) uses Corollary
3.19.

Corollary 4.6 For all B E RM, F-dim B < P-dim B.

Proof: If P-dim B = oo, this is immediate. If P-dim B = n < oo, then the
nth kernel of a projective resolution of B is projective, hence flat. Thus,
F-dim B < n.

Corollary 4.7 LG-dim R > W-dim R and RG-dim R > W-dim R.

Proof: Take the supremum; see also Proposition 3.16.

Now for injectives. Suppose we are given an injective resolution of C E
RM:

0,C `,Eo'_' E1-4E, ,...

Set Dn = imdn if n > 1, while Do = C. Again, fixing n, if we define

Ek, ifk < n
Ek= Dn, ifk=n

0, ifk>n

to get 0-->C- Eo-->..._ En_1-->D,-->0-->0--> we have an
exact sequence. It is an injective resolution of C provided D.,' is injective.
Dn is called the nth cokernel of the injective resolution.

Proposition 4.8 (Injective Dimension Theorem) Suppose C E RM.
The following are equivalent:

i) I-dim C < n.
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ii) Ext"+1(R/I, C) = 0 for all left ideals I.

iii) The nth cokernel of any injective resolution of C is injective.

iv) There exists an injective resolution of C whose nth cokernel is injec-
tive.

v) There exists an injective resolution (Ek, dk) of C for which Ek = 0
when k > n.

Proof: Again, like Proposition 4.4, with arrows reversed. (ii) = (iii) uses
Corollary 3.15.

The fact that (ii) only incorporates quotients R/I, for I a left ideal, leads
to the following, due to Auslander:

Proposition 4.9 (Global Dimension Theorem)

LG-dim R = sup{P-dim (R/I) : I a left ideal}.

Proof: Set n = sup{P-dim (R/I) : I a left ideal}. n < LG-dim R by
definition, so suppose n < LG-dim R. Then n < oo, so by Proposition
4.1(a), there exists a C E RM with I-dim C > n. By Proposition 4.8, there
exists a left ideal I for which Extn+1 (R/I, C) 0. But now by definition
P-dim (R/I) > n, contradicting the definition of n.

Corollary 4.10 If LG-dim R > 0, then LG-dim R = 1 + sup{P-dim I :
I a left ideal}.

Proof: From 0 -> I R - R/I -> 0, for all n > 1, Ext"(I, C)
Ext"+1(R/I, C). Hence, if R/I is not projective, then n+1 > P-dim (R/I)
if and only if n > P-dim I. That is, P-dim (R/I) = 1 + P-dim I. (This is a
special case of some general results; see the exercises and the next chapter.)
On the other hand, if R/I is projective, then so is I by setting n = 1.
Hence, in all cases, 1 + P-dim I < LG-dim R, while if P-dim (R/I) > 0,
then P-dim (R/I) = 1 + P-dim I. Taking the (positive) supremum yields
the result.

Corollary 4.11 LG-dim R < 1 if and only if every left ideal is projective.

Rings with this property are called left hereditary.

Corollary 4.12 If R is a PID, then LG-dim R < 1.
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Proof: If I = Ra # 0, then I is isomorphic to R in RM since R is an
integral domain (I is free on {a}).

Note: The ring Z4 has infinite weak dimension, since Torn4 (Z2, Z2) Z2 3A
0, a calculation from Chapter 3. Note that Z4 is a principal ideal ring; the
preceding corollary requires R to be an integral domain.

Finally, we have:

Proposition 4.13 (Weak Dimension Theorem)

W-dim R = sup{F-dim (R/I) : I a finitely generated right ideal}
= sup{F-dim (R/I) : I a finitely generated left ideal}.

Proof: Much like Proposition 4.9, but using the flat dimension theorem
instead of the injective dimension theorem.

Corollary 4.14 If W-dim R > 0, then W-dim R = 1 + sup{F-dim I : I
a finitely generated right ideal} = 1 + sup{F-dim I : I a finitely generated
left ideal}.

Corollary 4.15 W-dim R < 1 if and only if every finitely generated left
ideal is flat.

4.2 When Flats are Projective

At this point, we know that all projectives are flat, but not vice versa (e.g.,
Q as a Z-module). It turns out that all nonprojective flats are "big" in
some sense. The purpose of this section is to clarify the matter.

First, some remarks about module homomorphisms. Suppose B E RM.
Define B* to be Hom(B, R). Note that since R E RMR, we have that
B* E MR. Further, we have a natural map from B* ® C to Hom(B, C).
How? The same way we always get maps from tensor products: Define a
bilinear map from B* x C to Hom(B, C) by sending (f, c) to co, where
W(b) = f (b) c. Bilinearity is easy to check, as is naturality: If B --> B is
given, then

B*xC<----B*xC B*®CEB*®C

1 i and
1 1

Hom(B, C) - Hom(B, C) Hom(B, C) ( Hom(B, C)

commute. This is the most important part; similarly paired diagrams in-
volving C -> C' are also commutative. Details are left to the reader.
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To make further progress, we need to identify projectives more closely.
The preceding discussion will be relevant in the finitely generated case.

Proposition 4.16 (Projective Basis Theorem) Suppose P E RM. The
following are equivalent:

i) P is projective.

ii) If P is generated by {si : i E I}, then there exist oi-E P*, i E I such
that for all x E P, {i E I : cpi(x) # 0} is finite, and x = Ecpi(x)si.

iii) There exists a generating set {si : i E Z} of P for which there exist
cpi E P*, i E I such that for all x E P, {i E I : cpi(x) 0} is finite,
and x = Ecpi(x)si.

Proof: (i) = (ii). Suppose P is generated by {si : i E I}. Let F be the free
module on I, it : F --> P defined via i -+ si. Then F --+ P -+ 0 is exact,
hence splits since P is projective. Suppose rl : P -; F is a splitting, with
rl(x) _ (cpi(x) : i E I), that is, suppose the ith coordinate of rl is cpi. Then
these cpi have all the required properties, including x = E(pi(x)si, which
follows from ip = -r7.

(ii) z. (iii) is trivial, so assume (iii), and again let F be the free module
on I, -7r : F -+ P defined via i +--+ si. Run the previous paragraph in
reverse; define rl(x) = Ecpi(x) i, that is, define i(x) by requiring its ith
coordinate to be cpi(x). Then x = Ecpi(x) si implies that ip = 1rrl, so that
F -+ P --+ 0 splits. Thus, P is (isomorphic to) a direct summand of F, and
so is projective.

Corollary 4.17 Suppose P is finitely generated. Then P is projective if
and only if the image of the natural map: P* ® P -+ Hom(P, P) contains
ip.

Proof: x = Ecpi(x) si for all x < Ecpi ® si i--> ip.

Before generalizing this to identify finitely generated projective modules
more closely, we need to discuss finitely generated free modules. First note
that R* R, so that R* ® C C Hom(R, C) for any C E RM.
Taking finite direct sums, we see that F* ® C Hom(F, C) for any finitely
generated free module F.

Finally, suppose B E RM is finitely generated. B is called finitely pre-
sented provided there exists a finitely generated free module F, and a
map 7r from F onto B, such that ker 7r is also finitely generated. Observe
that if F '-`+ B -+ 0 splits, then ker 7r is a direct summand, hence an image,
of F; ker 7r will then automatically be finitely generated. Thus all finitely
generated projective modules are finitely presented. Since we will need it in
Chapter 8, the next result is stated as a proposition.
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Proposition 4.18 Suppose B E RM is flat, and suppose C E RM is
finitely presented. Then C* ® B -- Hom(C, B) is an isomorphism.

Proof: We may suppose that we have finitely generated free modules FO
and F1, and an exact sequence F1 -> FO --p C --> 0. R) is left
exact, so 0 - C* -* FO* - F1 is exact. B is flat, so we have exactness of
0 -> C* (g B --> FO* ®B - F1 ®B. But naturality of A* ®B Hom(A, B)
in the variable A gives commutativity of

0)0>C*®B OFF ®B 3 F1 ®B
22 22 I 2? 22

0 )0 ----> Hom(C, B) > Hom(Fo, B) > Hom(Fl, B)

so that C* (9 B , Hom(C, B) is an isomorphism by the 5-lemma. O

We can now give the main result of this section.

Theorem 4.19 Suppose P E RM is finitely generated. The following are
equivalent:

i) P is projective.

ii) P is flat and finitely presented.

iii) The natural map from P* ® P to Hom(P, P) is an isomorphism.

iv), The image of the natural map from P* ® P to Hom(P, P) contains
ip.

Proof: (i) * (ii) is contained in the discussions preceeding Proposition
4.18. (ii) = (iii) follows from Proposition 4.18 by setting B = P and
C = P. (iii) (iv) is trivial. Finally, (iv) =: (i) is part of Corollary 4.17.

D

Now suppose R is left Noetherian. Suppose B E RM, and suppose B is
finitely generated. Choose a finitely generated free FO and 7r from FO onto
B. ker 7r is also finitely generated; choose a finitely generated F1 and d1 from
F1 onto ker 7r; etc. Moral: If B E RM and B is finitely generated, then B has
a projective resolution consisting of finitely generated free modules. Note
that given any such resolution, the nth kernel will be finitely generated; in
fact, it will be finitely presented. Hence, it will be projective exactly when
it is flat. Combining this with the projective and flat dimension theorems
proves:

Proposition 4.20 Suppose R is left Noetherian, and suppose B is a finitely
generated left R-module. Then P-dim B = F-dim B.



82 4. Dimension Theory

Corollary 4.21 Suppose R is left Noetherian. Then LG-dim R = W-dim R.

Proof: The global and weak dimension theorems imply that only dimen-
sions of quotients R/I need to be examined, and P-dim R/I = F-dim R/I
by Proposition 4.20.

Corollary 4.22 (Auslander) Suppose R is both right and left Noethe-
rian. Then LG-dim R = RG-dim R.

Proof: Both equal W-dim R.

4.3 Dimension Zero

The second corollary to the projective dimension theorem asserts that R
has left global dimension less than or equal to one if and only if every
left ideal is projective. In this section we shall be concerned with small
dimension, especially dimension zero. Some useful things can be said about
global dimension one, however, primarily for integral domains.

The term "Dedekind domain" is one of those mathematical terms with
many possible definitions. The one we adopt is this: A Dedekind domain
is an integral domain with global dimension less than or equal to one.
Hungerford [37, pp. 405-6] gives nine equivalent conditions; our definition
appears sixth on his list. Rather than reproduce this, we shall be concerned
with what the condition "Every ideal is projective" says, in view of the
projective basis theorem. It will be helpful for later use to discuss this in
more generality. First note that the zero ideal is always projective, and any
nonzero ideal in an integral domain must contain nonzero divisors.

Suppose R is a commutative ring, and suppose I is a projective ideal
which contains a nonzero divisor, b. Suppose I is generated b y 5i, 82, ... .
By the basis theorem, there exist module homomorphisms Wi : I R for
which each x E I is given by x = Etpi(x)si (finite sum for each x). However,
if x E I, then bcpi(x) = cpi(bx) = cpi(xb) = xcpi(b). Hence, if tpi(b) = 0, then
for any x E I, bcpi (x) = 0. But then cpi (x) = 0 since b is not a zero divisor.
Since x is arbitrary, Wi - 0 whenever cpi(b) = 0. But cpi(b) # 0 only for
finitely many i, so all but finitely many Wi are identically zero. Since those
i for which cpi - 0 can be discarded from "x = Ecpi(x)si," we get that both
{si} and {cpi} can be reduced to finite subsets. In particular, I is finitely
generated. Further, if cpi(b) = bi, then for all x E I, b divides xbi, and
(xbi)/b is exactly tpi(x). That is, x = E((xbi)/b)si, so that the coordinate
homomorphisms are computed from the ring operations. Finally, setting
S = {1, b, b2, b3,.

- - }, R imbeds in the ring S-1R of quotients (since b is a
nonzero divisor), where the equation x (bi/b)" is valid. We have
proved:
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Proposition 4.23 Suppose R is commutative, and I is a projective ideal
containing a nonzero divisor b. Then I is finitely generated, say by sl,.. , sn.
Further, there exist bl, ... , bn in R such that, for all j, b divides xbj for
all x E I, and x = E((xbj)/b)sj. In particular, if R is an integral domain,
then any projective ideal is finitely generated; hence, any Dedekind domain
is Noetherian.

A final note about this situation. Suppose J is the ideal generated by
bl,... , bn. Then b divides each sibj so IJ C Rb. However, b = Ebjsj
so IJ Rb. Thus IJ = Rb. Further, if R is a Dedekind domain, then
R = I I. (b-1 J) in the quotient field of R. (This establishes the connection
between finding a "fractional ideal inverse" to I, and finding a projective
basis.)

Now for global dimension zero. A number of associated concepts arise in
this context, and we will need some lemmas. First note that, for a ring with
left global dimension zero, every left R-module is injective by Proposition
4.1(a), so if B is a submodule of C, then B is a direct summand of C since
B is injective, that is, an absolute direct summand. This establishes the
relevance of the concept of semisimple.

Definition 4.24 If R is a ring, and B is an R-module (left or right), then
B is semisimple if every submodule of B is a direct summand of B.

Two more definitions also are needed; those of simple and maximal.

Definition 4.25 If R is a ring, and B is an R-module, then B is simple
if B :, 0, and the only submodules of B are 0 and B.

Note that B is simple if and only if B # 0, and Rx = B for all x E B,
x 0 (since Rx is a submodule).

Definition 4.26 If R is a ring, B is an R-module, and B' is a submodule,
then B' is maximal if B/B' is simple, that is, if (thanks to submodule
correspondence in the fundamental isomorphism theorems) B' is maximal
among proper submodules of B.

For the last definition, observe that if I is a maximal left ideal in R, then
I is maximal as a submodule, that is, R/I is simple. On the other hand,
if B is simple and 0 x E B, then Rx = B. But Rx ^s R/ann(x), where
ann(x) = Jr E R : rx = 0} is the annihilator of x. Since B is simple, ann(x)
is a maximal left ideal. Moral: Every simple left R-module is isomorphic to
a quotient R/I, where I is a maximal left ideal.

It is clear that every simple module is semisimple, but trivially so; there
is no obvious connection between the two concepts. There is a subtle one,
as will soon become evident.

Lemma 4.27 Every submodule of a semisimple module is semisimple.
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Proof: This follows from the modular law (the term is from lattice theory,
and its proof is left as an exercise): If A, B, and C are submodules of D,
with A C C, then A + (B fl C) = (A + B) n C. Taking C C D with D
semisimple and A a submodule of C, there exists B such that A ® B = D,
since D is semisimple. Hence, A + (B n C) = (A + B) fl C = C. Since
An (B fl C) C A fl B = {0}, A + (B fl C) is a direct sum.

Since the following will be needed in Chapter 9, it is recorded as a propo-
sition.

Proposition 4.28 Suppose R is a ring, and B E RM. Suppose B is gen-
erated by a set S together with an element x, but is not generated by S
alone. Then any submodule of B that contains S, and is maximal (under
set inclusion) with respect to the property of not containing x, is maximal
as a submodule. Such submodules exist.

Proof: If B' is such a submodule, then S C B', x ¢ B', and (B' C B" C
0

B, B" a sub-module) =* x E B". But then xEB"andSCB"=B"=B
since S and x generate B. Hence, B' is maximal. It remains to show that
such submodules exist. This uses Zorn's lemma: Look at the set 13 of all
submodules of B that contain S but do not contain x; the submodule gen-
erated by S is such a submodule. Partially order by set inclusion. The union
of a nonempty chain of submodules not containing x will be a submodule
not containing x, and will constitute an upper bound for the chain. Since
every nonempty chain in 13 is bounded, Zorn's lemma applies, and 13 has a
maximal element.

Lemma 4.29 Every nonzero semisimple module contains a simple sub-
module.

Proof: Suppose B is semisimple, and 0 # x E B. Let B' be the submodule
generated by x, and let S = 0. Using Proposition 4.28, there exists a B"
which is a maximal submodule of B', so that B'/B" will be simple. But B'
is semisimple by Lemma 4.27, so there exists B"' such that B' = B" ® B"'.
But B"' B' /B", so B' is a simple submodule of B.

Lemma 4.30 Every semisimple module is the sum of its simple submod-
ules.

Proof: Let B be semisimple, and let B' denote the sum of the simple
submodules of B. If B # B', then B = B' ® B" for a nonzero submodule
B" since B is semisimple. But B" is semisimple by Lemma 4.27, so B"
contains a simple submodule by Lemma 4.29. This contradicts B" n B' = 0,
since B' is the sum of all simple submodules of B.
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Lemma 4.31 Suppose B is an R-module, I is an index set, and Bi is a
simple submodule of B for each i e Z. Also suppose B = E1Bi, that is, B
is the sum (possibly not direct) of the Bi. Then for any submodule B' of B
there exists a subset J of I such that B = Y e (®,7Bi) (direct sum).

Proof: Consider all subsets 3 of Z such that B' + (E9Bi) is a direct
sum, B' ® (®3Bi), and partially order by set inclusion. (The empty set
is such a subset of I.) Zorn's lemma applies: Given any chain {Ja} of
such subsets, their union 3 = UTa is such a subset, that is, B' + (E jBi)
is a direct sum, B' ® (®,7Bi). To see this, observe that any b' + (E .bi)
(being a finite sum) has only nonzero bi for (finitely many) i in one of
the 3a (since {,7a} is a chain), so b' + (E7bi) = 0 b' = 0 = bi, all
i E 3 Thus, there is a J' C I which is maximal with the property that
B' + (EjBi) is a direct sum, B' ® (®3TBi). Suppose j E I - J. Then
.7 C 3 U {j}, so B' + (EJu{j)Bi) is not a direct sum while B' ® (®.?Bi)

is, so (B' E) (®,7Bi)) fl Bj 54 0. As a submodule of the simple module Bj,
(B'@ (®,7Bi)) fl Bj = Bj. That is, Bj C B' ® (®jBi). But that means
that Y ED (®jBi) contains every Bj, j E I, since it trivially contains every
Bj, j E J. Hence, Y e (ejBi) D E1Bi = B.

Proposition 4.32 Suppose B is an R-module. The following are equiva-
lent:

i) B is semisimple.

ii) B is a sum of simple submodules.

iii) B is a direct sum of simple submodules.

Proof: (i) = (ii) is Lemma 4.30. (ii) (iii) is Lemma 4.31, with B' = 0.
(iii) = (ii) is trivial. (ii) (i) follows from Lemma 4.31, since Lemma 4.31
says that any submodule B' is a direct summand, the other factor being
®,7Bi.

We now have the connection between simple modules and semisimple
modules, but we will need more about simple modules. First note that for
any R-module B, HomR(B, B) is a ring with multiplication being functional
composition. (It is an R-algebra if R is commutative.) This is called the
endomorphism ring of B, and is denoted End(B) (or EndR(B) if R is to
be emphasized). The following result and its corollary are easy, but are too
important not to emphasize.

Proposition 4.33 If B and B' are simple R-modules, then every nonzero
element of Hom(B, B') is an isomorphism.
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Proof: If054 pEHom(B,B'),then cp#0=kercp#B,so kercp=0
since B is simple. Also, cp # 0 * im:p # 0, so imcp = B' since B' is simple.
Hence, ,p 0 :p is bijective co` exists in Hom(B', B). 0

Corollary 4.34 (Schur's Lemma) If B is a simple R-module, then
End(B) is a division ring.

If R is a ring, let Mn(R) denote the ring of n x n matrices with entries
in R. Also, if B is an R-module, let Bn denote the (abstract) direct sum
of n copies of B. After writing elements of Bn as column "vectors" and
using matrix "multiplication," we obtain the following; details are left to
the reader.

Lemma 4.35 End(Bn) Mn(End(B)).
n n n n

Note that Hom(® B, ® B) ~ ®® Hom(B, B). One need only verify
i=1 j=1 i=1j=1

that matrix multiplication gives functional composition on the direct sum.
Suppose B and C are simple but not isomorphic. By Proposition 4.33,

Hom(B, C) = 0. Hence,

n m n m
Hom(Bn, C'n) = Hom(® B, (@ C) ®(@ Hom(B, C) = 0.

i=1 j=1 i=1 j=1

Repeating as often as necessary, we get:

Lemma 4.36 Suppose B1, ... , BN are pairwise nonisomorphic simple R-
modules. Then

End(Bi' ® ... ® Bf') Mn, (End(Bi)) ® ... ® M., (End(BN)),

a finite sum of matrix rings over division rings.

Proof-
1V N

End(Bi' ® ... ® BN) ®® Hom(Bn., Bj )
i=1 j=1
N

Hom(Bi', Bin' )
i=1
N

=®End(B;')
i=1
N

ti ® Mn, (End(Bi)). D
i=1
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We're almost up to the fabled Artin-Wedderburn structure theorem, but
we need three more lemmas.

Lemma 4.37 Suppose B is a finitely generated semisimple R-module. Then
B is a finite direct sum of simple modules.

Proof: If B = EBi over some index set Z, and B is generated by xl, ... , xn,
then for each j, there exists a finite subset .Fj of Z such that x3 E Ey,Bi.
Set F = U.Fj. Then each xj E so B = E.FBi. By Lemma 4.31, F
has a (necessarily finite) subset 9 for which B = ®jBi.

Finally, we consider opposite rings. If R is a ring, then RP will denote the
opposite ring, and RR will denote R as a left R-module. The next lemma is
the noncommutative ring version of the familiar result from linear algebra
that (AB)T = BT AT for n x n real matrices, where superscript T denotes
transpose. Details are left to the reader.

Lemma 4.38 If R is any ring, then the opposite ring to Mn(R) is isomor-
phic to M,, (R°P), via A H AT.

Why opposite rings?

Lemma 4.39 End(RR) RP.

Proof: Send R to End(RR) by sending r to cpr, where cpr(x) = xr. That
pesky problem of writing r on the right guarantees that if we define -D(r) _
yr, then (D(rs) = D(s)(D(r); this is left to the reader. Finally, observe that
ker,D = 0, since t(r)=0= 4
is onto, since * E End(RR) implies that z(:(x) _ *(x 1) = xi(1) = cpr(x),
where r =(1), so that = -D(r).

We now have all the ingredients for the Artin-Wedderburn structure
theorem, but in the immortal words of toy manufacturers everywhere, some
assembly is required.

Theorem 4.40 (Artin-Wedderburn Structure Theorem) Suppose R
is a ring. The following are equivalent:

i) LG-dim R = 0.

ii) Every left R-module is projective.

iii) Every left R-module is injective.

iv) Every left R-module is semisimple.
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v) Every short exact sequence of left R-modules splits.

vi) Every left ideal is injective.

vii) Every maximal left ideal is injective.

viii) Every maximal left ideal is a direct summand of R.

ix) For every left ideal I, R/1 is projective.

x) Every simple left R-module is projective.

xi) R is semisimple as a left R-module.

xii) R is a finite direct sum of matrix rings over division rings.

Proof: It's hard to follow the logic without a scorecard. The implications
are proved as follows:

(vii) (viii) (x)

The implications marked with a check are trivial as statements. Most of
the rest are quick. If B E RM, then P-dim B = 0 q B is projective, so
(i) = (ii) by definition of left global dimension. Similarly, (i) (iii), using
Proposition 4.1(a). (ix) = (i) by the global dimensign theorem. (iii) (v),
since if 0 -+ A --+ B -+ C -+ 0 is short exact, then it must split when A is
injective. (v) (iv) since if A is a submodule of B, then the splitting of
0 -+ A B -+ B/A -+ 0 will guarantee that A is a direct summand of B.
(vii) (viii) since injectives are absolute direct summands. (xi) (ix),
since if a left ideal I is a direct summand of R, then the other summand is
R/I, which will then be projective, since R is projective. We now have all
the implications except (ix) = (x) (viii) . (xi) s ()ii).

Suppose B is a simple left R-module, and 0 0 x E B. Then B = Rx
R/ann(x). Hence, (ix) (x). But if I is a maximal left ideal, then R/I is
simple, so (x) = 0 --+ I --+ R -+ R/I --+ 0 splits when I is a maximal left
ideal, and this implies (viii). We are now left with (viii) = (xi) s (xii).

(viii) (xi): Suppose (viii). Let I be the (left ideal) sum of all simple
submodules (that is, simple left ideals) in R. Suppose 10 R. Let J be
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a maximal left ideal with J D I. Then J is a direct summand of R, say
R = J ® X. But J' = R/J is simple, so J' C I by definition. But now
J' C I C J, while J ® J' is a direct sum. Hence, J' = 0, contradicting the
definition of "simple."

(xi) (xii): If RR is semisimple, then it is a finite direct sum of simple
left R-modules (that is, simple left ideals) by Lemma 4.37. Grouping iso-
morphic submodules together (possible since "isomorphic" is an equivalence
relation) leads to the situation of Lemma 4.36, whence RP ~ End(RR)
(Lemma 4.39) is isomorphic to a finite direct sum of matrix rings over divi-
sion rings, a fate befalling R itself by Lemma 4.38. (Note that the opposite
ring of a division ring is also a division ring.)

Finally, (xii) (xi): If R is a finite direct sum of matrix rings over
division rings, then R is the (finite) sum of the column ideals over each
matrix ring. In more detail, if D is a division ring, the kth column left ideal
Lk of Mn(D) is the left ideal of n x n matrices having zero everywhere
except the kth column. Mn(D) is the sum of these, and each is isomorphic
to Dn as an Mn(D)-module. Hence, each is simple since Dn is simple.
(0 # x E Dn Mn(D) x = Dn by the usual linear algebra. This implies
simplicity.)

A few comments are in order before going on. The Artin-Wedderburn
theorem actually comes in three varieties. The above is the middle-sized
version. The small version asserts the equivalence of (iv), (v), (xi), and
(xii); it is devoid of homological algebra. (The implication (xi) = (iv) is
done without the global dimension theorem.) The large version tacks on a
thirteenth condition, that R be nonzero, and that R have Jacobson radical
zero and be left Artinian. (A ring is left Artinian if left ideals satisfy the
descending chain condition. The Jacobson radical is discussed in Chapter
9.) That thirteenth condition is a major addition because in it R is not
assumed to possess a unit element. The reader is referred to Herstein [32,
pp. 48-50] or Hungerford [37, pp. 435-6] for a discussion of this.

Finally, note that condition (xii) is symmetric in left and right. Hence
LG-dim R = 0 if RG-dim R = 0. We could have rewritten (i)-(xi), re-
placing "left" with "right," and gotten a theorem asserting the equivalence
of twenty-three statements. The interested reader is invited to expand on
each statement, for example, expanding " ... is semisimple" to three state-
ments via Proposition 4.32, " ... is injective" via Corollary 3.15, etc. The
resulting truly monstrous structure theorem would assert the equivalence
of over fifty statements!

Now for weak dimension zero. Theorem 4.40 is often called the Artin-
Wedderburn structure theorem because it explicitly tells what kind of rings
arise, via condition (xii). For weak dimension zero the result is not so defini-
tive. We will at least be able to assert the equivalence of "W-dim R = 0"
with an internal condition that is devoid of tensor products in its statement.
This condition is called regularity.
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Definition 4.41 (von Neumann) If R is a ring, then R is regular if,
for all a E R, there exists r E R for which a = ara.

Suppose a = ara. Then ra = rara = (ra)2, that is, ra is an idempotent.
Furthermore, Rra C Ra trivially, while a = ara E Rra, so that Rra D Ra.
Hence, Ra = Rra. In words, every principal left ideal is generated by an
idempotent. The significance of this is contained in the next lemma, the
first of four we need in discussing weak dimension zero.-

Lemma 4.42 Suppose R is a ring, and I is a left ideal. Then I is a direct
summand of R if and only if I is principal and generated by an idempotent.

Proof: If I = Re, with e = e2, set f = 1-e. Then 1 = e+(1-e) E I+Rf,
while if r, s E R and re = s(1-e) E InRf, then re = s-se = s = se+re
se = (se + re)e = see + re2 = se + re re=O. Hence, I fl Rf = O and
I®Rf R.

If R = I® J for some left ideal J, then 1 = e + f for some e E I and
f E J. Thus, Re C I and R f C J; also, if x E R, then x = x- 1=
x (e + f) = xe + x f . Hence, "x = xe + x f " is the decomposition of x into
a sum of elements of I and J. Taking x E I gives x = xe (and 0 = x f );
in particular, e = e2 and I C le. Hence, I D Re D Ie D I, so I = Re is
principal and generated by an idempotent.

Lemma 4.43 Suppose R is a ring, and suppose e and f are idempotents in
R such that e f = 0 = f e. Then e+ f is idempotent and Re+Rf = R(e+ f ).

Proof: (e+f)2=e2+ef+fe+f2=e2+f2=e+f. Further, e+f E
Re + Rf, so R(e+f) C Re + Rf. Finally, e = e(e+f) E R(e + f) and
f = f(e+f) E R(e+f), so that Re+Rf C R(e+f).

Lemma 4.44 Suppose R is a ring. Then Ra + Rb = Ra + Rb(1 - a).

Proof: b(1 - a) = b - ba = -ba + b E Ra + Rb, so Rb(1- a) C Ra + Rb.
Ra C Ra + Rb trivially, so Ra + Rb(1 - a) C Ra + Rb. On the other hand,
b = ba + b(1 - a) E Ra + Rb(1 - a), so Rb C Ra + Rb(1 - a). Again
Ra C Ra + Rb(1 - a), so Ra + Rb C Ra + Rb(1- a).

Lemma 4.45 Suppose R is regular. Then every finitely generated left ideal
is principal (and generated by an idempotent).

Proof: Suppose we knew the sum of two principal left ideals was principal.
Then the set of principal left ideals would be closed under addition of ideals,
and so would include every finitely generated ideal. It thus suffices to show
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that Re + R f is principal if e and f are idempotents. (Recall that if R is
regular, then every principal left ideal is generated by an idempotent.) For
this purpose, we successively modify e and f without changing the sum
Re + Rf until we are in the situation of Lemma 4.43.

First of all, Re + Rf =Re+Rf(1-e) by Lemma 4.44. Write f(1-e) _
f (1 - e)r f (1 - e), and set f = r f (1 - e). Then Rf (1 - e) = Rf', so
Re + Rf = Re + Rf '. Also, f'e=rf(1-e)e=rf(e-e2)=0.Next, dothe
same toe : Rf'+Re = Rf'+Re(1- f'). Set e' = e(1- f'). This e' is already
idempotent: (e')2 = e(1 - f')e(1 - f) = e(e - f'e)(1 - f) = e2(1 - f') =
e(1 - f) = e'. Furthermore, e' f' = e(1 - f) f = e(f' - (f')2) = 0, while
f'e' = f'e(1- f) = 0. Hence, Re+Rf = Re+Rf' = Re'+Rf' = R(e'+f'),
the last equality by Lemma 4.43.

Theorem 4.46 (Weak Dimension Zero Characterization) Suppose
R is a ring. The following conditions are equivalent:

i) W-dim R = 0.

ii) Every left R-module is flat.

iii) For every finitely generated left ideal I, R/I is projective.

iv) Tor, (R/J, R/I) = 0 for every finitely generated right ideal J and
every finitely generated left ideal I.

v) Torl (R/aR, R/Ra) = 0 for every a E R.

vi) R is regular.

Proof: We prove that (i) * (ii) = (iv) = (v) (vi) (iii) = (i). (i) (ii)
by definition. (ii) (iv) by Corollary 3.19. (iv) = (v) trivially. (v) = (vi)
by Exercise 9(c) of Chapter 3, which states, "Tor,(R/J, R/I) (JnI)/JI":
If aR fl Ra = aR Ra, then a E aR fl Ra = aR Ra = aRa = a = ara
for some r E R. (vi) * (iii), since every finitely generated left ideal I is
then principal and generated by an idempotent (Lemma 4.45), hence is a
direct summand of R (Lemma 4.42). But R/I is the other summand of R,
and so is projective (since R is projective). Finally, (iii) (i) by the weak
dimension theorem.

One final remark. The occurrence of the word "projective" in (iii) is no
accident. R/I is finitely presented (since I is finitely generated), so R/I is
projective if and only if it is flat (Theorem 4.19).

4.4 An Example

There are examples to complement some of the results. In Exercise 7 there
is a commutative example where: (i) weak and global dimensions differ;
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(ii) there is a flat, finitely generated module which is not finitely presented
(and not projective); and (iii) there is a projective ideal (consisting of zero
divisors) which is not finitely generated. In the next chapter, there will be
an example where right and left global dimensions are not the same. Here
we shall discuss an example where weak and global dimensions differ in a
systematic way. This example is not as well known as it should be; it is a
Bezout domain, that is, an integral domain in which every finitely generated
ideal is principal. It is not a PID. The global and weak dimensions always
differ in this circumstance. Furthermore, the constructions computing the
global dimension mimic (in a simpler setting) some constructions in the
next chapter.

First, a few simple facts about Bezout domains. Suppose R is an integral
domain, and a is a nonzero element of R. Then R is isomorphic to Ra as an
R-module via x H xa. Thus, any principal ideal in an integral domain is
projective, hence flat. It follows that any Bezout domain has weak dimen-
sion less than or equal to one by Corollary 4.14. However, in an integral
domain, 0 5 a = ara implies ra = 1. That is, a regular integral domain is
a field. Consequently, by Theorem 4.46, any Bezout domain which is not a
field has weak dimension one.

If a Bezout domain is not a PID, then it must contain ideals which are not
finitely generated, hence not projective by Proposition 4.23. By Corollary
4.11, the global dimension will be greater than or equal to two.

Suppose R is a Bezout domain, and suppose I is a nonprincipal ideal
generated by a countable set {r1, r 2,. .. }, r1 0. We shall show that
P-dim I = 1. Let In be the ideal generated by {r1, ... , rn}. Say In = Ran,
so anlrk if k < n, and In C In+l, so that an+iIan, say an = dnan+l.
U In = I. Note that all an are nonzero.

Let F be free on 1, 2, ... , and send (xl, x2, ...) E F = ®R to Exjaj.00
i=1

This maps F onto I. Set v1 = (1, -d1, 0, 0, ... ), v2 =
(0,

1, -d2, 0, 0, ... ),
etc. Note that vj i--> aj -djaj+l = 0, so all vj are in the kernel K of F I.
In fact, the vj form a free basis of K, as we shall shortly see.

n n-1
Suppose (x1i X2.... ) E K, so that Exjaj = 0. Then xnan = -1: xjaj E

j=1 j=1
In-1 = Ran_1i so for some sn-1, xnan = sn-lan-1 = sn-ldn-lan, and
xn =sn-ldn-1. Thus, (x1, ... , xn-1, xn, 0.... )+ sn-lvn-1 = (x1 i ... , Xn-1
+sn-L,xn-sn-ldn-li0) ...) = (xl)...,xn_1+sn-1i0,0,...) is an ele-
ment of K that has fewer nonzero entries. By induction on n, there are

n-1
sl, ... , sn-1 giving (x1i... , x , 0 , 0 , . . . ) _ Esjvj. That is, K is gener-

j=1
ated by {v1,v2,...}.

n
Finally, suppose Esjvj = 0, with sj E R. Then the entry in the n + 1

j=1
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slot is -dnsn, so that sn = 0. To see this, note that

s1v1 = (s1, -d1s1, 0, 0, 0, ... ),
S2V2 = (0, s2i -d2s2, 0, 0, ... ),

S3v3 = (O, 0, S3, -d3S3i 0, ... ),

That is, the n+1 slot in skvk is 0 unless k = n, where it is -dnsn. It follows
n-1

that Sn = 0, and the sum is actually Esjvj = 0. Hence, by induction on
j=1

n, all sj = 0. That is, the submodule K is free, with basis {v1, v2, ... }.
Thus, P-dim I = 1.

Now for the example. Let F be a field. The ring R consists of all "formal
n

expressions" Eat x4i , where a3 E F, and qj is a nonnegative rational
j=1

number. (Literally, R = (D1F, where I = Q n [0, oo).) Add and multiply
like polynomials: (Eajx9t)(Ebkx',k) = EEajbkx4i+Tk, for example. Note
that R = (J and R is an integral domain.

In fact, if a 0 and 3 # 0, pick n so that a, 0 E then a/3 # 0
there. The idea behind this is general: Any finite subset of R lies in a
subring that is a PID, and properties defined using finite sets of elements
(e.g. "a8 = 0 a = 0 or 3 = 0," which is defined using sets {a, o} having
two elements) that hold in PIDs also hold in R. (Also of some importance
is that as the rings F[x1/n'] get larger, the group of units stays the same.)

Suppose T is a finitely generated ideal in R generated by a1 i ... , a,n.
Choose n so large that all aj E F[x1/n']. Then the ideal in F[x1/n!]
generated by a1i ... , a,n is principal, generated by d. Now d = EAja
Aj E F[x1/n'], and from this equation we conclude that d E I. However, we
also have that aj E F[x1/n']d C Rd for all j, so I C Rd. Thus I = Rd, a
principal ideal. Since I was arbitrary, R is a Bezdut domain. However, R is
not a PID since it is not a UFD: x is divisible infinitely often. From earlier
remarks, W-dim R = 1 and LG-dim R > 2.

Let I be an ideal in R. Then In F[x1/n'] is an ideal in the PID F[x1/n'],
so it is principal, generated by dn. But now I is generated by {d1, d2, ... }-
Letting I vary, we have that all ideals are countably generated. So: P-dim I
is zero if I is principal, and one if I is not. Also, some ideals do have
projective dimension one. By Corollary 4.10, the global dimension of R is
two.

We close with some nonhomological remarks about this ring. First of all,
suppose P is a nonzero prime ideal in R, and suppose a ¢ P. Find n so that
a E F[xl/n'], and so that P n F[x1"n'] 0. Then P n is a nonzero
prime ideal in the PID F[x1/n'], so it is maximal. Hence, there exists 0 E
F[x1/n'] for which 1 - a,0 E P n F[x1/n'], since F[x1/n']/(F[x1/n'] n P) is a
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field. Since we now have that 1 - a,Q E P, we conclude that a is invertible
in R/P. Since a ¢ P is arbitrary, R/P is a field, that is, P is maximal. So:
Every nonzero prime ideal in R is maximal.

Furthermore, any Bezout domain is a GCD domain, an integral domain
in which any two nonzero elements a and b have a GCD. (It is "the"
generator of the ideal Ra + Rb when R is a Bezout domain.) However, if
F is algebraically closed, then any irreducible a E F[xl/"'] has the form
a = rxl/"' + s, and it factors into n + 1 terms in F[xl/(n+1)!]. That is,
R has no primes at all. On the other hand, if F is the quotient field of
a UFD, then any polynomial in F[x] which is directly2 proved irreducible
using Eisenstein's criterion (e.g., X N - p, p a prime), remains irreducible
in R, so R has some primes. (Note, however, that x is not divisible by any
prime.) In Appendix A, there is a quick review of GCDs, UFDs, and PIDs.
Since it may be helpful for Exercise 9, we record here one result:

A UFD is a PID if Rp + Rq = R for any pair of distinct (that is,
nonassociate) primes p and q.

This is helpful since, among other things, a UFD need not be Noetherian.
(Consider a polynomial ring over Q in an infinite number of variables.)

Finally, one might think that in any "reasonable" Bezout domain, all
nonprincipal ideals would, in fact, be countably generated. This depends
on one's definition of reasonable; the ring of entire functions is a Bezout
domain containing ideals that are not countably generated. A discussion of
the algebraic aspects of this ring appears in Appendix B.

2i.e. without a change of variables, like x F--* x + 1.
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Exercises

1. State and prove the analog for injective dimension of Corollary 4.3.

2. Suppose 0 -+ B -+ B' - B" -+ 0 is short exact in RM, and suppose
P-dim B > P-dim B' or P-dim B" > 1 + P-dim B'. Show that

P-dim B" = 1 + P-dim B.

3. If f E Hom(C, C'), prove commutativity of

B* ®C B*®f B* ®C'

s
Hom(B,C)

xom( 'f
Hom(B, C')

4. Prove Schanuel's lemma: If 0 -+ Ki -+ P2 --+ B --+ 0 are short exact
for i = 1, 2, with Pi and P2 projective, then K1 ® P2 K2 ® P1.

Hint: Complete the diagram

0 K 'iP 01 i->- B
i i

la
i2--> K0 P

II

B------ ' 0
2 2

using projectivity of Pi. Map K2 ® P1 to P2 via (k, p) '-+ j2(k) - /3(p),
and show that this map is onto with kernel isomorphic to K1. Now
exploit projectivity of P2.

5. Suppose B is finitely presented, and suppose P is projective and
finitely generated, with 0 -+ K -+ P -+ B -+ 0 short exact. Show
that K is finitely generated. (Exercise 4 will help here.)

6. A ring R is called a Boolean ring if x = x2 for all x E R.

a) Show that any Boolean ring R is commutative, with x = -x for
all x E R. (This involves no homological algebra.)

b) Show that any Boolean ring is regular.

c) Show that any finite Boolean ring is isomorphic to a (finite)
direct sum of copies of Z2-

7. Let R = fl Z2, the product of infinitely many copies of Z2. Note that00

n=1
00

R is a Boolean ring, hence is regular by Exercise 6. Let I = ® 7L2.
n=1
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a) Show that I is projective but not finitely generated.

b) Show that R/I is flat and finitely generated, but neither finitely
presented nor projective. Show as explicitly as possible where
Theorem 4.19 breaks down (e.g., FO = R, I* R*, etc.).

c) Show that LG-dim R > W-dim R.

8. Suppose I is a projective ideal in a GCD domain, and suppose x, y E
1. Show that "the" GCD d of x and y belongs to I. Hence show
that I is principal. Finally, deduce that a GCD domain is a Dedekind
domain if and only if it is a PID.

9. The following is a theorem from commutative algebra:

Suppose R is a UFD, and not a field. Then R is a PID if and
only if the Krull dimension of R is equal to one.

(See Appendix A.) Prove the analogous result with the word "Krull"
replaced with "weak". (Hint: Suppose p and q are distinct primes for
which I = Rp + Rq 0 R. Compute Tor(R/I, R/I).)

10. Prove the modular law: If A, B, and C are submodules of D, with
ACC, then A+(BfC)=(A+B)flC.

11. Suppose Bi E RM. Show that P-dim (®Bi) = sup(P-dim Bi).

12. Suppose R is an integral domain and suppose a and b are nonzero and
are nonunits in R. Set R = R/Rib, and if x E R, set x = x + Rab E
R/Rab = R.

a) Show that Rb R/Ra in M.
b) Show that the following are equivalent:

i) R/Ra is R-projective.
ii) Ra + Rb = R.

iii) Ra + Rb = R and Ra f1 Rb = Rab.
iv) Ra ®Rb = R.

c) Show that if Ra + Rb R, then R has infinite weak dimension.
(In particular, taking b = a, R/Ra2 has infinite weak dimen-
sion.)

d) Compute Torn (R/Ra, R/Ra) for the case R = Z[x], a = x,
b=2.

13. Suppose P is projective and finitely generated in RM, and suppose
C E RM. Show that P* ® C -> Hom(P, C) is an isomorphism.

14. Suppose P-dim B = N > n. Show that the nth kernel of any projec-
tive resolution of B has projective dimension N - n.
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15. Analytically similar objects can be algebraically quite different.

a) Let R = C°° (R), the ring of C°° functions from R to R. Let
M be the (maximal) ideal If E R : f (0) = 0}. Show that
P-dim RR/M = 1.

b) Let R = C(R), the ring of continuous functions from R to R.
Let M be the (maximal) ideal If E R : f (0) = Q. Show that
P-dim RR/M > 1.

16. (See 15(a), as well as Exercise 8, Chapter 2.) Let R be the ring of
COO functions on lR that are periodic with period 27r.

a) Show that all maximal ideals have the form Ma = If E R
f (a) = 0} for some a E R. Show that these ideals are projective
(generated by sin(x-a) and any 0 E Ma for which O(a+ir) 0).
Hence, show P-dim B = 1 for all simple modules B.

b) Let I be the ideal of all f E R such that there exists an N for
which f (1/n) = 0 when n > N, n a positive integer. (For the
usual reasons, a-11x sin(7r/x), 0 < x < e, extends to a nonzero
divisor in I.) Show that I is not projective, so that LG-dim R >_
2 > sup{P-dim B : B simple}. (See (i) # (x) in Theorem 4.40.)

17. Suppose X is a nonempty locally compact Hausdorff space, so that,
for example, X is completely regular. CC(X) is an ideal in C(X),
where C,(X) is the set of compactly supported continuous functions.

a) Suppose (D: CJX) -> C(X) is a C(X)-module homomorphism.
Show that 3 cp E C(X) such that d f E Ca (X) : 4? (f) = W f .

b) Suppose IF C C,(X). Show that IF generates CC(X) as an ideal
if nrf-1(0) = 0-

c) (Bkouche) Show that CC(X) is projective as a C(X)-module if
X is paracompact.

Hints:

a) If f E CC(X), then w(x) ='D(f)(x)/ f (x) whenever f (x) # 0.
Show that these quotients patch together to give a well-defined
cpEC(X).

b) If g E CC(X), and E F are such that f,2+-.-+f,,
6 > 0 on supp(g), then

n
fig

g
2.1 max(6, fi

c) There is a relation between projective bases and things that look
enough like partitions of unity to give locally finite refinements.
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Change of Rings

5.1 Computational Considerations

In the discussions of the preceding chapters, the ring has stayed fixed. It
has been arbitrary, but unvarying. That is about to change; we shall now
be concerned with what happens when certain modifications are made to a
ring. The three structural operations addressed later are the formation of
matrix rings, polynomial rings, and localization. There are some generali-
ties to the theory, however, and they not only form a backdrop for change
of rings, they also ease computations for specific rings.

The most general setting for change of rings involves two rings R and S,
together with a covariant functor F : SM -4 RM having the following two
properties:

i) F is exact, and
ii) F(E)1B2) ®ZF(B=) for any indexed family in M.

Condition (ii) will be referred to as "strong additivity," so such a functor
will be called an exact, strongly additive covariant functor. About half the
time,such functors arise as follows: ¢: R--+R is aring homomorphism and
any B E RM is viewed as an R-module via r b = 0(r)b. Set F(B) = B
viewed as an R-module. By the way, the notation in this case is intended
to be suggestive: Anything wearing a hat comes from R. Furthermore, we
shall often put subscripts on "P-dim " or "F-dim " to identify the relevant
ring.

It can be argued that there is no such thing as a fundamental theorem of
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change of rings, let alone a first or second fundamental theorem. Neverthe-
less, if any result deserves to be called the fundamental theorem of change
of rings, it is part (a) of this:

Theorem 5.1 Suppose F : SM -+ RM is an exact, strongly additive co-
variant functor. Then for all B E SM:

a) P-dimRF(B) < P-dimsB + P-dimRF(S), and

b) F-dimRF(B) < P-dimsB + F-dimRF(S).

Proof: First case: B is free. Then B = EDzS for some index set Z, and
F(B) = E91F(S) since F is strongly additive. But P-dimR E3z F(S) is
P-dimRF(S) (Chapter 4, Exercise 11), or zero if I is empty. Flat dimension
also works this way.

Second case: B is projective. Then B E) C is free for some C, and
P-dimRF(B) < P-dimRF(B) ® F(C) = P-dimRF(B ® C) < P-dimRF(S)
by the first case. Flat dimension also works this way.

Finally, arbitrary B. If P-dimsB = oo, there is nothing to prove, so sup-
pose n=P-dimSB<oo.Let 0Pn-+Pn_1-+ Po--+ B-+0be
a projective resolution of B, possible by the projective dimension theorem.
Then 0 -+ F(Pn) -+ F(Pn_1) --+ , F(PP) -+ F(B) --> 0 is exact since
F is exact, so P-dimRF(B) _< n + d, where d = P-dimRF(R) by Corollary
4.3 (and the second case). Flat dimensions follow in a similar way.

Clearly, (b) is less satisfactory than (a). The problem is that, in (b),
the second case is still "B is projective," not "B is flat". Furthermore,
no real analog of the first case would work for injective dimension. This
explains why global dimension (rather than weak dimension) is analyzed for
ring changes, as well as why global dimension is computed from projective
dimension (rather than injective dimension). Nevertheless, the deficiencies
of part (b) can be fixed using methods from Chapter 8: Proposition 8.19
asserts that F-dimRF(B) < F-dimSB + F-dimRF(S).

To proceed further, we need to generalize the corollary to the global
dimension theorem. If B E RM, and if B' is a submodule of B, define the
"Supremal projective dimension" of (B', B) as follows. (Note: This is not
a standard concept.)

SP-dim (B', B) = sup{P-dim C : C is a submodule of B, and C D B'}

Also set SP-dim B = SP-dim (0, B). Note that if LG-dim R > 0, then
LG-dim R = 1 + SP-dim R by Corollary 4.10.

Proposition 5.2 Suppose B E RM, B' is a submodule of B, and B" is a
submodule of B'. Then

SP-dim (B", B) = max{SP-dim (B", B'), SP-dim (B', B)}.
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Proof: Since B"CCCBI or BI cCCB=B"CCCB,SP-dim (B",
B) _> max{SP-dim (B", B'), SP-dim (B', B)}. Suppose this inequality is
strict. Then 3 C with P-dim C > max{SP-dim (B", B'), SP-dim (B', B)}
and B" C C C B. Since B" C C fl B' C B' and B' C C + B' C B, it
follows that P-dim C >'max{P-dim (C fl B'), P-dim (C + B')}. This can-
not happen, though: Choose n finite, P-dim C > n > max{P-dim (C fl
B'),P-dim (C + B')}; and choose D so that Ext"(C,D) # 0. By the
algebraic Mayer-Vietoris sequence (Chapter 3, Exercise 12), we have an
exact sequence 0 = Extn(C fl B', D) f-- Extn(C, D) ® Ext"(B', D) .-
Extn(C + B', D) = 0, a contradiction.

Corollary 5.3 IfLG-dimR>0,
chain of left ideals in R, then LG-dim R = 1 + max{SP-dim (Ij_1i Ij)
j=1,...,n}.

Proof: See comments preceding Proposition 5.2.

Proposition 5.4 Suppose B, C E RM. Then

SP-dim (B ® C) = max{SP-dim B, SP-dim C}.

Proof: SP-dim (B ® C) = max{SP-dim (B ® 0), SP-dim (B ® 0, B ® C}
by Proposition 5.2. But any module between B ® 0 and B ® C corresponds
to a submodule of C B ® C/B ® 0 by the fundamental isomorphism
theorems, so any module between B ® 0 and B ® C has the form B ® C' for
a submodule C' of C. Also P-dim (B ® C') = max{P-dim B, P-dim C'} by
Exercise 11, Chapter 4. Taking suprema over C', SP-dim (B ® 0, B ® C} _
max{P-dim B, SP-dim C}, so that

SP-dim (B ® C) = max{SP-dim B, SP-dim C}

(since SP-dim B > P-dim B by definition).

Corollary 5.5 If LG-dim R > 0, and if R = I® ® ® In is a direct sum
of left ideals, then LG-dim R = 1 + max{SP-dim II : j = 1,... , n}.

Proof: Again, see the comments preceeding Proposition 5.2.

The preceding propositions and corollaries facilitate computations by
reducing the number of left ideals that need to be considered. We need one
more result:

Proposition 5.6 Suppose 0 : R ---+ R is a surjective ring homomorphism,
and suppose R is R-projective. Then P-dimRB = P-dimRB for all B E

M.
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Proof: P-dimRB < P-dimRB by Theorem 5.1. Hence, all R-projective
modules are R-projective. Suppose B is R-projective. There is an R-projec-
tive module P

J-
and asurjection ii : P -+ B. There is a splitting over R,

that is, an 77 -+ P such that err/ = if,,. since B is R-projective. But 0
surjective 77 E HomR(B, P): r7(¢(r)b) = 77(r b) = r 77(b) = O(r)77(b) for
all r E R and b E B, (77 is an R-module homomorphism), so ,7(Tb) = i77(b),
since 0 is onto. Thus, B is (isomorphic to) a direct summand of P, and so
is R-projective. That is, b is R-projective a B is R-projective.

In general, P-dimRB < P-dimRB by Theorem 5.1. If n = P-dimRB <
P-dimRB, then the nth kernel of an R-projective resolution of B will be
R-projective, hence R-projective, a contradiction. O

We close this section with an example, due to Small [71), where W-dim R
= RG-dim R = 1, and LG-dim R = 2. R consists of all 2 x 2 matrices

(a b) for which a E Z and b, c E Q. Note that ) 0 (0 ) r
(20(0 00 00)

for any r E R (direct calculation), so R is not regular, and W-dim R > 1
by Theorem 4.46.

Right ideals first. (.10

0) R
0) R = R, so ( 0) R and (0 0) R

are projective, and

RG-dim R = 1 + SP-dim R

0) R}= 1 + max { SP-dim (10 0) R, SP-dim (001

by Corollary 5.3. /
Suppose I is a right ideal, I C (1 0) R={ I a 0) : a E 7G, b E Q}. Set00 0

I = { n E 7G : (0 0) El }. If (0 0) E I, then (0 0) = (0 0) (0 0) E

I, so a E I. I is an additive subgroup of Z, so it is an ideal in Z; conse-

quently, I = Zn for some n, and (n 0) R C I. If n # 0, then all elements of

knb n0 kbn-1 n0 n0
I have the form (0 . 0) = (00) (0 0 ) E

(0 0) R, so I = (0 0 R.

But r t-. (n 0) r is an isomorphism (as right R-modules) of ( 0) R with

I, and (1 0) R is projective, so I is projective. If I = 0, then I consists of

01
matrices of the form (0 p ). Now (0 0) (00 q01) = (0 0) E I if q 0,

and (0 0) (a0
c) = (0 0)' so I 0 implies that I = (0 ) R. But



/ \
5.1 Computational Considerations 103

(0
0)

R is isomorphic to (D o) R as a right R-module, via r H (0 0r,
so ( 0 0) R is projective. Hence SP-dim (0 0 ) R = 0.

Suppose I is a right ideal, and I C (0 0) R = {(°) : c E QJ. If

(°) E 1, q 0, then (0 1) = (0)() E I. Hence I 0 = I =

(0
0) R (i.e., I 0 0) R is simple). Thus the two right ideals inside

(00

) R

are 0 and I 0 ) R, and both are projective. Hence SP-dim (0 I R = 0.

Combini\ng all of the above, 1 >_ RG-dim R >_ W-dim̀ R /> 1, so
RG-dim R = W-dim R = 1. The equality of RG-dim R with W-dim R
is no accident:

\R
is right Noetherian. To see this, note that all right ide-

als inside (1 0 I R or I 0 i I R are principal, hence finitely generated, so00
(0 0) R and I ) R are Noetherian as right R-modules (ascending chain

condition; in general, if R is any ring, a module is Noetherian if and only if
every submodule is finitely generated; see Dummit and Foote [17, p. 438]).

Since sums of Noetherian modules are Noetherian, R = I p p) R+ (0 0) R

o\\\etherian. (R is notis Noetherian as a right R-module, that is,
\R

is right NI

s not principal.)a right principal ideal ring, though; { (0 b f : b, c E Q i

Now left ideals. Note that R = R (1 0) ® R (00 0). LG-dim R >00 1

W-dim R = 1, so Corollary 4.3 applies again.
l

First, suppose I C R (0 0) = { (0 0) : a E Z J- If I = Zn, I as above,

then I = R (00)-n 0If n 0, then R (00)1 0 R (0 0) via r _ r (0 0)'

so I is projective. Since 0 is projective, SP-dim R (1 0) = 0.00

Next, R(00) _ {(') :i,c} j {() :q}. Now

J is a left ideal, since (0 b) (0 0) = (0 0
Furthermore, if

(O0

t) E

R (0 0) - J (i.e., t # 0), then 0 bt-
11)

(0 t) = (0 b for any b, c E Q.
0 1 0 ct 0 0 c)

That is, J is maximal in R (0 0), so the only left ideals between J and



104 5. Change of Rings

R (00
\
I are R 100 0) (which is projective) and J itself (which is between J

and 0); thus, SP-dim R (0 ) = max {SPdim J, SP-dim R (! ) }

= SP-dim J. We now have that LG-di m R = 1

((0

+SJ. /
Now define R= Z, and 0: R via 0 a b I) = a. 0 is a ring

homomorphism onto, and as an R-module, R R (1 00), which is pro-

jective. But (
0 b) (0 0) =

(00 0) implies that any left ideal inside J

comes from a B E AM, where B is a Z-submodule of Q. By Proposition
5.6, P-dimRB = P-dimRB < 1, and the value of one is achieved by Q itself
(which is not Z-projective). Hence, SP-dim J = 1, and LG-dim R = 2.

In reviewing the above, note how many ideals did not have to be exam-
ined. That's the beauty of Propositions 5.2 and 5.3 (and their corollaries).
We shall see this again in the next section.

5.2 Matrix Rings

Nearly all the work required to prove the main result of this section has
been done. Here is the situation: R is a ring; form the ring Mn (R) of n x n
matrices with entries from R. One might expect global dimensions to go
up, but they'don't: 'LG-dim Mn(R) = LG-dim R.

The case LG-dim R = 0 requires some discussion, since Corollary 5.5 will
be used. First of all, easy calculations show that Mn(R (D S) Mn(R)
Mn(S) and Mn(Mk(R)) - Mnk(R) (block matrices). Thus, if R is a finite
sum of matrix rings, then so is Mn (R); the matrices are just bigger. Conse-
quently, LG-dim R = 0 * LG-dim M,, (R) = 0 (Artin-Wedderburn). This
lends some plausibility to the following result.

Theorem 5.7 For any ring R, and any positive integer n, LG-dim R =
LG-dim Mn(R).

Proof: Set R = Mn(R). Define 0 : R -+ R via q(r) = r- In, 1, = n x n
identity matrix. R ,= Rn2 as an R-module, so P-dim RR = 0. Thus, for
any B E AM, P-dimRB < P-dimRB by Theorem 5.1(a).

Define F : RM --> AM by F(B) = Bn, where elements of Bn are
written as column vectors. F(B) is in AM via the expected version of



5.2 Matrix Rings 105

matrix multiplication:

(rul ... run (bi'\ rllbl + ... + rlnbn.

rnl rnn bn rn1b1 + + rnnbn

F is an exact, strongly additive covariant functor. (This is not hard;
F(B) Rn OR B. See Exercise 4.) Also, F(R) is isomorphic to the usual
column left ideals (which are isomorphic to each other), so that R F(R)n
as R-modules. Hence, F(R) is projective as an R-module, so Theorem 5.1(a)
says that P-dimRF(B) < P-dimRB.

But notice: For any B E RM, we can combine these two inequalities,
setting B = F(B):

P-dimRB > P-dimkF(B) = P-dimRB

> P-dimRB = P-dimRB' = P-dimRB.

(The last is by Exercise-11, Chapter 4.) Thus P-dimRB = P-dimRF(B)
for any B E RM. Taking the supremum, LG-dim R < LG-dim Mn(R).

To prove the reverse inequality, we use Corollary 5.5, with Il, ... , In be-
ing the column left ideals, each isomorphic to F(R). We have that
LG-dim M,(R) = 1 + SP-dimRF(R) when LG-dim M.(R) > 0. (The case
LG-dim R = 0 is covered by the discussion earlier, so we assume 0 <
LG-dim R. But we know that LG-dim R < LG-dim Mn(R).) If we knew
that all submodules of F(R) had the form F(I) for some left ideal I, we
would be done, since then

LG-dim Mn(R) = 1 + sup{P-dimRF(I) : I a left ideal in R}
= 1 + sup{P-dimRl : I a left ideal in R}
= LG-dim R.

To this end, let B be a submodule of F(R). Let Aij be the n x n matrix
with 1 in the (i,j)-slot and all other entries zero. Observe that

bl bj
b2 0

Duj =

bn 0

Thus if I is the set of all entries from all elements of b, then

b

0I= bER: EB

0
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an R-submodule of R, that is, a left ideal. The original definition of I shows
that F(I) D B, while

Abl
b2

E F(I) =

bn

bl b3
n 0b2

_ 1
j=1

bn 0

_.

I E B

Thus, F(I) = B.

Finally, it should be noted that while the functor F is not an isomorphism
of the category RM with M (R)M, it is so close that it almost doesn't
matter. It is an equivalence of categories, leading to a different approach to
Theorem 5.7. See Exercise 4.

5.3 Polynomials

Like the last section, this one has a target result that is easy to state: If R
is a ring, then LG-dim R[x] = 1 + LG-dim R. However, the scenery along
the way will be a lot more interesting.

One big difference is that the formula does not assert the equality of
two dimensions. The left global dimensions of R[x] and R differ (by one).
Hence, we must develop some machinery that will allow formulas other
than equalities.

A preliminary observation is worth isolating. Suppose I is a two-sided
ideal in R, and suppose F is a free R-module. F is a direct sum, F = ®_R;
then IF = ®3I, and F/IF = ®j-(R/I). In particular, F/IF is R/I-free.
If P is R-projective (say P ®Q = F, a free R-module), then F/IF =
(P/IP) ®(Q/IQ), so that P/IP is R/I-projective.

Proposition 5.8 Suppose a is central in R, and a is neither a unit nor a
zero divisor. Set R = R/Ra. Suppose B is a nonzero left R-module with
finite projective dimension as an R-module. Then

P-dimRB = 1 + P-dimRB.

Proof: The proof is by induction on P-dimRB; by hypothesis this is finite.
First observe that, by Theorem 5.1, P-dimRB < P-dimRB + P-dimRB.
Furthermore, 0 - Ra R - R --> 0 is an R-projective resolution of R
(since a is not a zero divisor, Rzz Ra as R-modules). Hence, P-dimRB < 1,
and P-dimRB < 1 + P-dimRB.

Suppose B is a nonzero left R-module. Since a is not a zero divisor,
multiplication by a is one-to-one on any free left R-module, hence on any
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projective left R-module (since projective left R-modules are direct sum-
mands of free modules, hence are submodules of free modules). However,
aB = 0; hence, b cannot be R-projective. That is, 1 < P-dimRB_when-
e_ver B # 0. Taking B = R, we have that P-dimRR = 1. Taking B to be
R-projective, we have that 1 < P-dimRR < 1 + P-dimkB = 1; this is the
dimension zero case of the induction.

Like many induction in homological algebra, we must separately check
the P-dimRB = 1 case. This will be the most complicated part of the
proof. Suppose P-dimRB = 1. We have, by the earlier discussion, that
1 < P-dimRB < 1 + P-dimRB = 2. We must eliminate the possibility that
P-dimRB = 1. This is done by showing that, in fact, P-dimRB = 1 and
P-dimRB < 1 P-dimRB = 0.

Assume that P-dimRB = 1 and P-dimRB < 1. There is an exact se-
quence 0 -> P -+ F - B - 0 of R-modules, where F is R-free and P is
R-projective by the projective dimension theorem. aB = 0 a(F/P) =
0 = aF C P, so that h F/P = (F/aF)/(P/aF) by the funda-
mental isomorphism theorems. This gives another short exact sequence
0 -> P/aF -+ F/aF -* B - 0. Since a kills each term, this is an exact
sequence of R-modules. Furthermore, F/aF is R-free by the remarks pre-
ceding this proposition. Since P-dimRB < 1, P/aF is R-projective by the
projective dimension theorem.

But again, P/aF;ze (P/aP)l (aF/aP) by the fundamental isomorphism
theorems, leading again to a short exact sequence 0 aFlaP ---r P/aP
P/aF --> 0 where P/aP is R-projective by the remarks preceding this
proposition. Also, this is again an exact sequence of R-modules. Hence
aF/aP is R-projective by the projective dimension theorem. (More: 0 ->
aF/aP P/aP P/aF --+ 0 must split sinceP/aF is R_-projective.) But
since a is not a zero divisor, aF/aP F/P B, so b is R-projective. This
completes the n = 1 case.

The induction step n --> n + 1 remains; assume P-dimRB = n + 1, with
n > 1. We have a short exact sequence 0 C F --> B -+ 0, where
F is free over R. Here, P-dim RC = n by Exercise 2, Chapter 4. But
P-dimRF = 1 by the dimension zero case, while P-dimRC = n + 1 by the
induction hypothesis, so again using Exercise 2, Chapter 4, P-dim RB =
1 + P-dimRC = 1 + (n + 1) = 1 + P-dimRB.

The requirement that P-dimRB < oo is definitely necessary: If R = 7L,
a = 4, B = Z2, then P-dim RB = oo, while P-dimRB = 1. We have two
corollaries:

Corollary 5.9 Suppose a is central in R, and a is neither a unit nor a
zero divisor. Set R = R/Ra, and suppose LG-dim R < oc. Then LG-dim R
> 1 + LG-dim R.
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Proof: Take the supremum over kM in Proposition 5.8.

Corollary 5.10 If LG-dim R < oo, then LG-dim R[x] > 1 + LG-dim R.

Proof: Take a=xER=R[x]:R.
To finish the discussion of polynomials, we define a functor from R-

modules to R[x]-modules, often called the polynomial functor. If B E RM,
n

let B[x] denote all formal finite sums >bkxk. Let R[x] act on B[x] in
k=0

the expected way: (Erjxi)(Ebkxk) = Er,,bkxj+k. Set F(B) = B[x]. Note
that F(B) . R[x] OR B, so F is strongly additive and exact (since R[x]
is free, hence flat, in MR). F(R) = R[x], so P-dixR(xjF(R) = 0, and
P-dim R[xjB[x] < P-dim RB by Theorem 5.1. This is, in fact, an equal-
ity.

Proposition 5.11 For all B E RM, P-dimR[JB[x] = P-dimRB.

Proof: This is much like the two-functor argument of Theorem 5.7 in the
last section. Let R = R[x]. P-dimRR = 0, so by Theorem 5.1 we have that
P-dimRB < P-dimRB for any B E RM. Setting B = B[x] = F(B), where
F is the polynomial functor,

P-dimRB[x] < P-dimRB[x] = P-dimR[ ]B[x] < P-dimRB.

But P-dimRB[x] = P-dimRB by Exercise 11, Chapter 4. Hence
P-dimRB = P-dimRB[x].

Proposition 5.11 arises from considering what happens when the poly-
nomial functor F is followed by viewing R-modules as R-modules. Reverse
the order in which these operations are done. That is, given an R = R[x]-
module k, view it as an R-module, and apply the polynomial functor. The
result is B[x] = R[x] OR B. We now define two maps on B[x], defined via
bilinear maps:

R[x] x B
-W

R[x] ®B = B[x]
0

i 7r ',(f (x), b) = f (x) b

r

and

R[x] x f3 R[x] ®B = B[x]

i .i rl(f (x), b) = f (x)x ®b - f (x) ®xb.
r

R[x] 0 B = B[x]
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o is the bilinear map defining the tensor product.

Lemma 5.12 0 B[x] j B[x]-`+ B 0 is short exact.

Proof: For any b E B, 7r(1 (9 b) _ 0(1,3) = b, so 7r is onto. Also,
7r7 7(f (x), b) = f (x)xb - f (x)xb = 0, that is, 7r77 = 0. Hence 7rj = 0, since 7rj
is the unique filler in the diagram

R[x] x b R[x] ®B = B[x]

r
B.

To show that j is one-to-one, and onto ker in, it is clearest to work with
a modified b[x] picture, treating B[x] as consisting of N-tuples:

n

(bo, bl, b2, ... ,,0,0...) H > bkxk E B[x]
k=0

n
H E xk ®bk E R[x] OR B

k=0

Note that

n

7r((bo, bl, ... , bn, 0, ... )) = > xk bk
k=0

and

j ((bo, b1, ... , bn, 0, ... )) = (-A-o, 3o - xb1,... , 3n-1 - xbn, bn, 0) ... ).

The fact that kerj = 0 follows quickly, since j((30,31.... , &A-)) _
0 bn = 0 bn_1 = 0 bo = 0. That j maps onto ker 7r takes
more work. n n

Suppose 7r((bo, 31,
. , bn, 0, ... )) _ Exkbk = 0. Then bo = -Exkbk =

k=0 k=1

-x (x1k). Set = xk-lk; then o = -xco. Also, b1 - =
k=1

n

(tt_2).= -x Set Cl = Exk-2k; then 1-co = -xCi,
kk=2
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n

so that bl = co - xC1. In general, set Cl = E xk-l-1bk. Then
k=1+1

&I-1 - XCl
n n

E xk-1bk -

X

E xk-l-lbk

k=1 k=1+1
n n

_ E xk-lbk - E xk-1bk = bl,
kk==l k=1+1

as well as cn-1 = bn. Hence,

(bo,bl,... ,bn,0,...) j((co,cl,... Cn-1i0....)).

Since (bo, b1, ... 3 ,0 . . . .) E ker 7r was arbitrary, j is onto ker 7r.

We can now prove:

Theorem 5.13 If R is any ring, then LG-dim R[x] = 1 + LG-dim R.

Proof: If LG-dim R = oo, then LG-dim R[x] = oo, too, by taking the
supremum over B E RM in Proposition 5.11. This verifies the theorem
if LG-dim R = oo, so suppose LG-dim R < oo. Then LG-dim R[x] >
1 + LG-dim R by Corollary 5.10. It therefore suffices to show that 1 +
LG-dim R > P-dimRB for all B E AM (with R = R[x]).

Suppose B E M. By Lemma 5.12, we have a short exact sequence of R-
modules 0 --> B[x] -> B[x] B -+ 0. By Proposition 5.11, P-dimRB[x] _
P-dimRB < LG-dim R. By Corollary 4.3 (with n = 1 and d = LG-dim R),
P-dimRB < 1 + LG-dim R.

Corollary 5.14 (Hilbert's Syzygy Theorem) If K is a field, then
LG-dim K[xl,... , xn] = n.

Proof: Induction on n : K[xl,... , xn+l] = K[xl, , xn] [xn+l] for the
induction step.

5.4 Quotients and Localization

In this last section of Chapter 5, the ring-R will be assumed to be commu-
tative. An admissible multiplicative subset of R is a subset S that contains
one, does not contain zero, and is closed under multiplication. S may con-
tain zero divisors, but S cannot contain nilpotent elements. (If a E S, then
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a' E S for all n E N ...) The most important case is when S is the com-
plement of a prime ideal, but the situation is more general than that. One
can form the ring of quotients S-1R, which we recall shortly. The idea is
that even though the ring S-1R is typically larger, it is also "nicer," in the
sense that its internal structure is simpler. For example, if R is an integral
domain and S = R - {0}, then S-1R is the quotient field of R. One might
expect that, upon forming S-1R, the global dimension should go down, or
at least not go up. This is indeed the case, as Theorem 5.18 asserts. But
there is more as well, at least if the ring is Noetherian.

The ring of quotients is defined as follows. Form the product set S x R;
S x R is a commutative monoid, that is, a commutative semigroup with
unit, where R is treated as a multiplicative semigroup. Define a relation
on S x R as follows:

(s, r) - (s', r') <* I s* E S : s*(sr' - s'r) = 0.

(Note that if S contains no zero divisors, then (s, r) - (s', r') Sr' = s'r.)
This is an equivalence relation. As usual, symmetry and reflexivity are more
or less obvious. Transitivity goes as follows:

(s, r) - (s', r') = s* (sr' - s'r) = 0
(s', r') '-i (s", r') = s** (s'r' - s"r') = 0

Hence, adding and subtracting ss"r' = s"sr'

S*S**s'(Sr' - Stir) = S*S**(ss'r' - Sitsr)
= s*s**(ss'r" - ss"r' + s"sr' - s"s'r)

= s*ss**(s'r" - s"r') + s**s"s*(sr' - s'r)

= 0.

Define S-1R to be the set of equivalence classes in S x R under the
relation -. The equivalence class of the ordered pair (s, r) is written r/s,
and S-1R is made into a commutative ring by requiring what one ex-
pects, namely, r/s + f/s = (sr + sf)/ss and (r/s)(f/s) = rf/ss. A long,
tedious calculation shows that S-1R becomes a commutative ring, with
0/1 = 0 and 1/1 = 1. Try it some night when you can't sleep. (The least
obvious point, that addition is well-defined, may be found, for example,
in Hungerford [37, p. 143].) Two little facts should be noted: If R is an
integral domain, then so is S-1 R. (If (1, 0) - (ss, rf), then 1 rf - 0 ss = 0
[since S contains no zero divisors] = r = 0 or f = 0 (s, r) " (1, 0) or
(s, f) - (1, 0).) Also, (s, r) - (s's, s'r), that is, r/s = s'r/s's.

One has a homomorphism 0 from R to S-1R which sends r to r/1; ker 0
consists of those r for which (1, r) - (1, 0), that is, for which there is an
s* E S such that s*r = 0. Thus, 0 is one-to-one if and only if S contains
no zero divisors.
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All the above can also be carried out for R-modules. If B E RM, one may
define S-1B in an entirely analogous way. Define a relation - on S x B via

(s, b) ti (s', b') a 3 s* E S : s* (sb' - s'b) = 0.

The relation - is an equivalence relation, and S-1B, the set of equiv-
alence classes, becomes an S-1R-module under b/s + b/s = (sb + sb)/ss
and (r/s) (b/§) = rb/ss. The two most fundamental facts about S-1B are
contained in the following proposition.

Proposition 5.15 Suppose R is a commutative ring, and S is an admis-
sible multiplicative subset of R. Suppose B E RM. Then

a) S-1B : S'1R OR B.

b) S-1R is flat as an R-module.

Proof: (a) The technique is to show that S-1B satisfies the universal
property defining a tensor product. First of all, define i : S-1R x B
S-1B via 1i(r/s, b) = rb/s. 0 is easily checked to be well-defined; if (s, r)
(s',r'), and s*(sr' - s'r) = 0, then s*(sr' - s'r) b = 0, so that s*(s(r'b) -
s'(rb)) = 0, and rb/s = r'b/s'. t,b is also R-bilinear, since ip((r/s)(F/1), b) =
ip(rf/s, b) = rrb/s = ip(r/s, Fb). Further, ' is onto, since ?i(1/s, b) = b/s
for any s E S, b E B. Hence, any filler r for

S-1R x B . S-1B

Y

G

will be unique. Suppose 0: S-1R x B --i G is R-bilinear. Define Tr(b/s) =
9(1/s,b). Since r&(r/s,b) = r(rb/s) = 0(1/s,rb) = 0((1/s)(r/1),b) =
8(r/s, b), we will have that r is a filler provided r is well-defined (and is a
homomorphism).

r is well-defined: If (s, b) - (s', b'), then 3 s* E S with s* (sb' - s'b) = 0,
that is, s*sb' = s*s'b. Hence,

9(1/s, b) = 8(s*s'/ss*s',b)

= 8((1/ss*s')(s*s'/1),b)

= B(1/ss*s', s*s'b)

= 0(1/s's*s,s*sb')

= 0((1/s's*s)(s*s/1),b')

= 0(s*s/s's*s, b')

= 0(1/s', b').
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Hence, this value for r(b/s) is well-defined. To see that r is a homomor-
phism,

T(b/s + b/s) = r((sb + sb)/ss)

= 8(1/ss,9b + sb)

= 0(11s§, 9b) + 0(11s§, A)

= 0((1/ss)(9/1),b) + 8((1/ss)(s/1),b)

= 0(§1s§, b) + 0(s/ss,b)

= 0(11s, b) + 0(1/s, b)

= T(b/s) + T(b/s).

(b) To show S-1R is R-flat, suppose 0 --+ B B' is exact, that is,
j : B --a B' is one-to-one. We must show that S-1R ®R B -- S-1R ®R B'
is one-to-one, that is, that S-1B , S-1B' is one-to-one. Suppose (S-1R9
j)(b/s) = 0/1. Then 3 s* E S such that s*j(b) = 0, that is, j(s*b) = 0,
from which s*b = 0 (so that b/s = 0/1), since j is one-to-one.

Corollary 5.16 Suppose R is a commutative ring and S is an admissible
multiplicative subset of R. Then the map B H S-1B is an exact, strongly
additive covariant functor.

Proof: S-1B S-1R®B. Tensor products are always right exact, strongly
additive covariant functors. It is exact in this case since S-1R is flat.

To proceed further, we need a few technical results. Some are of con-
siderable importance; some are little lemmas. One technical point comes
from the fact that B H S-1B is now a functor. If f E Hom(A, B),
we have S-' f E Hom(S-1A, S-1B); of course, S-1 f^ S-1R OR f E
Hom(S-1R OR A, S-1R OR B). One should note that, if OA : A --, S-1A

and,OB : B --+ S-1B are the maps x H x/1, then the diagram

A fB
S-'A f S-1B

commutes. (See Exercise 5.)
The following summarizes what can be said before specializing the quo-

tient construction to localization.

Proposition 5.17 Suppose R is a commutative ring, and S is an admis-
sible multiplicative subset. Set R = S-1R, 0 : R -p R the associated ring
homomorphism.
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a) If B E RM, and 0 : B -- S-1B is the associated module homomor-
phism, then b E ker 0 S fl ann(b) # 0. If -0 is one-to-one, then
b/sEi,i(B)t* bEsB.

b) If B E RM, then the following are equivalent:

i) B = C for some C E AM.
ii) sB=B and{bEB:sb=O}=0 forallsES.
iii) B S-1 B.

c) If A, B E AM, then A®RB A®RB, and HomR(A, B) = HomR(A, B).

d) S-1(S-1B) S-1B for all B E RM.

e) S-1(A®RB) .: (S-1A)®RB.:; A®R(S-1B) (S-1A)®R(S-1B)

(S-1A) ®S-1R (S-1B) for all A E MR and B E RM.

Proof:(a)bEkeriit*b/1=0-# 3s*ESfor which s*b=0# 3s*ES
for which s* E ann(b). b/s = V)(c) t* b/s = c/1 t_* 3 s* E S for which
s* (b - sc) = 0 . b = sc if is one-to-one: By the first sentence, ker zy =
0 r* (s*(b - sc) = 0 . b - sc = 0).

(b) (i)=(ii) trivially, since all s/1 (s E S) are invertible in S-1R. (ii)=(iii)
by part (a). (iii)=*(i) by using the isomorphism of B with S-1B to make
B into a literal S-1R-module C. This does (d) as well, since S-1C C
S-1(S--1B) S-1B when S-1B = C.

(c) A OR B A ®A B follows from the fact that an R-bilinear map from
A x b to any G is R-bilinear (and trivially vice-versa),from which A_®R B
solves the universal mapping problem defining A OF, B: If : A x b -i G
is R-bilinear, then V r E R, s E S:

O(a(r/s), (s/1)(1/s)b)

_ O(a(r/s)(s/1),(1/s)b)

_ '(a(r/1),(1/s)b)

= 0(a,(r/1)(1/s)b)

_(d (rls)b)

Similarly, HomR(A, f3) C HomR(A, b); however, if f E HomR(A, b), then
(s/1)f((r/s)a) = f((s/1)(r/s)a) = f((r/1)a) = (r/1)f(a) = (s/1)(r/s)f(a),

so f((r/s)a) = (r/s)f(a).

Finally, (e). We have

S-1(A®R B) ^ S-1R®R (A OR B) (Prop. 5.15)

(*) (S-1R OR A) OR B (Exercise 13, Chapter 2)

ti (S-1A) OR B. (Prop. 5.15)
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Similarly, S-'(A ®R B) A® (S-'B) by symmetry. Hence,

S-1(A OR B) S-1(S-1 (A®R B)) (d)
S-1((S-'A) OR B) (*)

(S-'A) OR (S-1B) (*)

(S 'A) ®S-1R (S-1B)
(C)

0
It should be noted (see Exercise 6) that the isomorphisms of part (e)

above are natural. That is, if one has, say, an f E Hom(A, A'), then the
various diagrams, with various modifications of f vertically and various
isomorphisms horizontally, all commute. For example, for S-1(A OR B)
(S-1 A) OR B:

S-1 (A (&R B) ^ (S-1A) OR B

IS-1(f(gRB)

S-1 (A' OR B) (S-1A') OR B.

A corollary to the above proposition appears next as one of the two
theorems of this section. Part (b) can be improved upon (see Exercise 8).

Theorem 5.18 Suppose R is a commutative ring and S is an admissible
multiplicative subset of R. We have

a) P-dims-1RS-1B < P-dimRB for any B E RM.

b) FdimRB < P-dims-1RB for any b E S-IRM.

c) LG-dim (S-1R) < LG-dim R.

Proof: (a) Apply Theorem 5.1(a) to the functor

B '-+ S-1B : P-dims- I RS- 1 R = 0,

yielding the inequality. _
(b) Apply Theorem 5.1(b) to the functor B-as-S-'R-module u--* B-as-R-

module. _F-dimRS-1R = 0, yielding the inequality.
(c) If C ES-IR M, then

P-dims-1RC = P-dims-IRS-1C (Prop. 5.17(b))

< P-dimRC (part (a) above)

< LG-dim R.
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Take the supremum over S-ARM.

To proceed further, it is necessary to restrict the situation. Suppose P
is a prime ideal, and set S = R - P. The ring of quotients S-1R is then
called the localization of R at P, and is written Rp. The reason is that the
ring Rp has just one maximal ideal, namely S-1P (or Pp if you prefer).
The usual definitions are as follows: A ring R will be called quasilocal if it
has a unique maximal left ideal. R is local if R is quasilocal, commutative,
and Noetherian. Some authors do not require commutative or Noetherian,
and their "local" equals our "quasilocal." However, there are good reasons
for imposing the Noetherian condition. We shall shortly see one; more ap-
pear in Chapter 9. See also any good book on commutative algebra. The
commutativity and Noetherian conditions impose limits that are hard to
dispense with in most circumstances.

In general, if P is a prime ideal, with S = R-P, then a subscript of P will
substitute for a prefix of S-1. For example, if A E RM, then Ap E RPM,
and f E Hom(A, B) yields f p E Hom(Ap, Bp).

The following result makes no Noetherian assumptions (one of its virtues).
Nevertheless, we shall have to impose the Noetherian condition to make use
of it.

Proposition 5.19 Suppose R is commutative and A E RM. Suppose AM
is RM flat for every maximal ideal M. Then A is flat.

Proof: Suppose A is not flat. We must produce a maximal ideal M such
that AM is not RM-flat.

To begin with, there is an exact sequence 0 -+ B C such that A 0
j : A ® B -+ A ® C is not one-to-one. Choose x E ker(A (9 j), x # 0.
A ® B is an R-module, and ann(x) is a proper ideal; choose a maximal
ideal M D ann(x). We shall show that M works.

First of all, B H BM is an exact functor, so 0 --* BM --+ CM is exact,
that is, jM : BM CM is one-to-one. The diagram

A®RB
A®j

A®RC

(A (&R B)M (A (A

®RI

C)M

22 22

AM OR, BM
AM®JMi

AM ®RM CM

commutes by naturality of Proposition 5.17(e) (see Exercise 6). But *'(A®
j)(x) = 0 = (A (9 j)Mt)(x) = 0, and O(x) # 0 by Proposition 5.17(a).
Hence, AM 0 jM is not one-to-one. Since AM® sends the exact sequence
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0 -> BM -+ CM to the nonexact sequence 0 -> AM ® BM --> AM ® CM,
AM is not flat.

We can now prove the second major theorem of this section. The Noethe-
rian condition is required for it.

Theorem 5.20 Suppose R is commutative. Then LG-dim R > LG-dim Rp
for every prime ideal P. Moreover, if R is Noetherian, then LG-dim R =
sup{LG-dim RM : M a maximal ideal}.

Proof: LG-dim R > LG-dim Rp by Theorem 5.18. Hence, LG-dim R >
sup{LG-dim RM : M a maximal ideal}. Suppose R is Noetherian but this
inequality is strict. Set n = sup{LG-dim RM : M a maximal ideal}. Then
n < oc, and it suffices to show that, in fact, LG-dim R < n.

Let Ibe any, (left)ideal. Let
R/I -+ 0 be a free resolution of R/I consisting of finitely generated R-
modules. If M is any maximal ideal, and F3 _ ®3R, then (Fj)M = ®jRM,
a free RM-module. Since A 1-+ AM is an exact functor,

...- (Fn)M- (Fn-1)M->...--a(Fl)m-(Fo)M- (R/I)M-+0

is an RM-free, hence RM-projective, resolution of (R/I)M. Let Kn denote
the nthkernel of -+Fn
finitely presented since R is Noetherian. Also,

0--+(Kn)M' (Fn-1)M->...-->(Fl)M-->(Fo)M(R/I)M0

is exact, so (Kn)M is isomorphic to the nth kernel of

... -> (Fn)M -'> (Fn-1)M -> ... -4 (Fl)M -+ (FO)M (R/I)M 0.

Since n > LG-dim RM > P-dimRM(R/1)M, (Kn)M is projective by the
projective dimension theorem.

Now let M vary over all maximal ideals. (Kn)M is always projective,
hence flat. Thus Kn is flat by Proposition 5.19. But now Kn is projective
by Theorem 4.19. Thus, P-dim (R/I) < n by the projective dimension
theorem.

Now let I vary: P-dim (R/I) < n for all (left) ideals I, so LG-dim R < n
by the global dimension theorem.

The moral is this: If R is commutative and Noetherian, then any partic-
ular localization may reduce the global dimension, but localization taken
together do not. In fact, if LG-dim R < oo, then there must exist a local-
ization RM for which LG-dim R = LG-dim RM.

By the way, W-dim R = sup{W-dim RM : M a maximal ideal}, whether
R is Noetherian or not. A proof of this can be recovered from the proof of
Theorem 5.20 after using Exercise 8(d) to show that W-dim R >
W-dim S-1R for any admissible multiplicative set S.
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A final comment on this chapter as a whole. Notice what has not ap-
peared: This paragraph contains the first reference to Tor (and the second
to Ext) in this chapter. You can prove more when you use these functors
(see Exercise 9b, for example), but contemplate what can be done with
"just a theory of homological dimension," as Kaplansky [45, Introduction]
notes.)
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Exercises

1. Suppose K is a field. Unravel the induction in Hilbert's syzygy the-
orem and produce a module over K[xl,... , x,,] with projective di-
mension n. (Try the n = 1 and n = 2 cases if you don't see how to
proceed.)

2. Suppose R is a ring and suppose a is a central nonzero divisor. Let
B be an R-module on which a acts simply, that is, such that ax =
0, x E B = x = 0. Set R = R/Ra, and B = BlaB. Show that
P-dimRB < P-dimRB. (Hint: Induction on P-dimRB.)

3. a) Suppose F : sM --> RM is an additive covariant functor. If
s E S, define f3(r) = rs. fg E Homs(S, S), where S is viewed as
a left S-module. Then F(f3) E HomR(F(S), F(S)). If x E F(S),
define xs = F(f3)(x). Show that this turns F(S) into an R - S
bimodule.

b) Suppose F is a right exact, strongly additive covariant functor
from sM to RM. (It will be shown in the next chapter that
strongly additive additive.) Show that if we set A = F(S) E
RMS (part (a)), then F(B) zzi A®s B for all B E sM in such a
way that the diagram

F(B) A ®s B

IF(O) IAOs(k

F(B') A®s B'

commutes for all 0 E Horns (B, B'). (This result is Watts' The-
orem.)

4. A functor F : sM -4 RM is called an equivalence if

i) For all B, B' E sM, F : Hom(B, B') , Hom(F(B), F(B')) is
an isomorphism of groups (so F is additive), and

ii) For all C E RM, 3 B E sM such that F(B) C.

a) Show that an equivalence is exact.
b) Show that P-dimRF(B) = P-dimsB and I-dimRF(B) _

I-dimsB for all B E RM whenever F is an equivalence.
c) Show that LG-dim R = LG-dim S whenever an equivalence

F exists as above.
d) Show that F(B) R' OR B if F is the functor in the proof

of Theorem 5.7.
e) Show that the functor F in the proof of Theorem 5.7 is an

equivalence.
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For the remaining problems, R is commutative and S is an admissible
multiplicative subset of R. Set R = S-1R.

5. Show that the diagram

A f oB
Y

S-1 f IS-IA-

S-B

is commutative.

6. Define what it means for one of the isomorphisms in Proposition
5.17(e) to be natural, and prove it. (Your choice which one; commu-
tativity of a certain diagram is the point here.)

7. Show that if we map b E S-ARM to B-as-R-module, then this is an
isomorphism of S-ARM with a full subcategory of RM. In fact (see
Proposition 5.17(b)), set

S*B - B, if B = C for some C E RM
- t S- B, otherwise.

Show that S* is a retraction of RM onto a full subcategory isomorphic
to S-ARM.

8. Suppose B E RM, and A ES-iR M. Prove that

a) B is R-flat S-1B is R-flat.

b) A is R-flat 4* A is S-1R-flat.

c) F-dimRB > F-dims-SRS-1B.

d) F-dimRA = F-dims-BRA.

9. a) Show that S-1TorR(A, B) Torn-'R(S-1A, S-1B) for all A E
MR,BERM.

b) Suppose R is an integral domain. Show that every element of

Tor,R(A, B) is torsion when n > 1, that is, annR(x) # 0 for all
x E TorR(A, B).
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Hint for (a): If B -+ B' -- B" is underexact, homology H can be
computed from the diagram

0

IB -C-0
I

where rows and columns are exact.





6

Derived Functors

6.1 ' Additive Functors

The purpose of this chapter and the next is to generalize the earlier con-
structions of Ext and Tor. In this chapter, functors beyond Hom and
will be applied to projective (and injective) resolutions in RM. In the next
chapter, these constructions will be carried out in more general categories.

In order to say anything intelligent at all, our functors must be additive.
That is, F(f +g) = F(f)+F(g) for f, g E Hom(B, C). Recall the discussion
preceeding and following Proposition 3.1: Additive functors send complexes
to complexes and homotopies to homotopies. In this section we discuss
additive functors. The first result clears up the parenthetic point in Exercise
3(b) of Chapter 5.

Proposition 6.1 Let F : RM - SM be a covariant functor. The following
are equivalent:

i) F is additive.

ii) F(B1® B2) F(B1) ®F(B2) for all B1i B2 E RM.

iii) F(B ® B) F(B) ® F(B) for all B E RM.

Remark: Recall from Chapter 2, Proposition 2.1 and Exercise 1, that
direct sums, direct products, and biproducts (of two objects) are identical
objects. Hence, the second condition could just as well read "F(B1 x B2)
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F(B1) x F(B2) for all B1, B2 E RM." Also, tacitly, "F(A ® B) . F(A)
F(B)" means that if

A--'0-+ A®B<B

defines A ® B as a direct sum (i.e. coproduct), then

F(A) F F(A ®B) F+- F(B)

defines F(A ® B) as a coproduct.

Proof: (i) (ii): To show F(B1 ® B2) is a biproduct of F(B1) with
F(B2), suppose we have the arrows specifying a biproduct:

B1<-B1®B2- 11-
2
-* B2 B1-Wi+ B1®B2-B2.

Since F is covariant, we get arrows

F(B1) F(B1 ®B2)
F(a2)> F(B2)

F(B1)
F(VI)

>F(B1 ® B2) FE

(W2)F(B2).

Furthermore, F(7rj)F(<c) = F(iB3) = iF(BJ) for j = 1,2; also
F(coi)F(ir1) + F((P2)F(ir2) = F(p2ir2) = F(Vliri +W27r2) since
F is additive. But F(cp17r1 + cp2ir2) = F(iB1®B2) = iF(B,®B2)

(ii) = (iii) is trivial, so suppose (iii). Suppose f, g E Hom(B, C). We
have diagrams

°1 B<-B®B "2 >B

C f ®9 = f lrl + 972 -

(The formula for f ® g appears in the proof of Proposition 2.1.) Applying
F yields diagrams

F'(vi) F(112) F("i) )F(ire)F(B) ->F(B ® B)E-F(B) F(B) F-F(B®B B)
F(f®s)

W

F(C)
F(f (D 9) =F(fir1+9r2)

But F(B(DB) is assumed to be a direct sum, hence must be the biproduct
in SM. (Note: There is a technical point here that needs to be addressed.
Exercise 1 does just that.)
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Since F(f ® g) is the (one and only) filler, F(f ® g) = F(f)F(iri) +
F(g)F(72) (again by the formula in the proof of Proposition 2.1). Thus,
we have that F(fTri+glr2) = F(f)F(iri)+F(g)F(iB2). Applying F(cp1+cp2)
on the right,

F(firi +gwr2)F((oi + (P2) = F((firi +91r2)(W1 + W2))

= F(f7r1cci + f 91ZP1 + 91rZ02)

= F(fir1W1 +gir2gc2)
=F(f+g)

by Proposition 2.1, while

(F(f)F(iri) + F(9)F(r2))F(cPi + 02)
= F(f)F(ir1)F(co1 + 02) + F(9)F(ir2)F(cP1 + V2)

= F(f)F(ri(coi + W2)) + F(9)F(ir2(co1 + p2))
= 7rlcp2) + F(9)F(ir2W1 + TW2)
= F(f)F(iB) + F(g)F(iB)
= F(f) + F(g),

again by Proposition 2.1. Hence, F is additive.

We close this section with a result that identifies some additive functors.

Proposition 6.2 Any half exact covariant functor from RM to SM is
additive.

Proof: Suppose F is any (not necessarily half exact) covariant functor from
RM to SM. Suppose B1, B2 E RM. We have short exact sequences

0->B1 w'B1ED
B2

12 B2--0
and

0-> B2 W2 ®B2 -"1>B1 ->0

Now 7r1W1 = iB1, so F(r1)F(W1) = F(rricpi) = F(iB') = iF(B1). Hence,
F(Tri) is onto and F(cp1) is one-to-one. Similarly, F(7r2) is onto and
is one-to-one. But this means that the sequences

0
F(ca') F('r2))>F(B )->0)>F(BF(B ®B 2211

and

F(v2) F BBF ) -> 0) F-"7> F(BB0 (2) 1 ®( i2
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are exact at every slot except the middle if F is any covariant functor.
Thus, if F is half exact, these two sequences are exact. They are also split
exact (both F(r1) and F602) split the top sequence; both F(ir2) and F(w1)
split the bottom sequence), so F(B1 (D B2) F(B1) ® F(B2). Hence, F is
additive by Proposition 6.1.

Contravariant functors from RM to SM are defined to be additive if
F(f + g) = F(f) + F(g). The above considerations apply in an analogous
fashion to prove: A contravariant functor F is additive if and only if F(BE)
C) F(B) x F(C) (or F(B x C) F(B) ® F(C); the point is that arrows
are reversed (see Exercise 2). Also, a half exact functor is additive.

From here on in this chapter all functors will be assumed to be additive.

6.2 Derived Functors

Left derived functors are manufactured in the same way as Ext and Tor.
One starts with a projective resolution, applies the functor, deletes the
righthand term, and takes homology. Right derived functors use injective
resolutions.

Suppose F : RM -, SM is an (additive) covariant functor. If B E RM,
form a projective resolution of B:

dl an+1+Pn'''-,Pl-"-PO_

Apply F, and delete F(B), giving (with do = 0)

... - F(Pn+1) F(dn+l) F(Pn) F(dn) . . . _, F(P1) F(di) F(Po) F(do)

---p - --00.

This is a complex, since F(dn_1)F(dn) = F(dn_1dn) = F(0) = 0. The nth
homology of this complex is isomorphic to the nth left derived functor
GnF(B). That is,

LnF(B) .:s kerF(dn)/imF(dn+1)

The considerations here are essentially those involving the definition of
Tor (it really is deja vu time). Simply replace "A®" with "F" (and put in
parentheses) and the definition of Torn(A, ) yields the definition of GnF.

For concreteness, as in Chapter 3, one must choose for each B a specific
projective resolution and make its homology equal to LnF(B). Also, one
must prove that the nth homology is (up to isomorphism) independent
of the projective resolution. Finally, to get a functor, one must show how
to define, using f E Hom(B, B'), a homomorphism LnF(f) : LnF(B)
.CnF(B').
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Suppose (Pn, dn) is a projective resolution of B, and (Pn, d) is a projec-
tive resolution of B'. Given cp E Hom(B, B'), construct fillers as in Propo-
sition 3.1:

->p p ..._> --n+i
do}1

P. dry Pi PO > B - > 0
I I I I

Iw..+1 Ian I W1 Iwo w

d' d' 1' d' W

Pn+i po B' 1 0

and apply F, deleting F(B) and F(B'):

F(Pn+i,(- F(P,,)Fia") ... - F(P1)
-p-

F(Po) 0

IF(`Pn+1) I F(Wn) 1F(l) 1Ffo)
... - (Pi') F(di) F(P) - 0- F(pn+i' J(dn 1)F(pn)F(dn) F

Since the vertical arrows are chain maps of chain complexes, one obtains
maps from the homology of the top complex to the homology of the bottom
complex. These will be (isomorphic to) £ F(cp).

The homotopy part of Proposition 3.1 guarantees that the homology
homomorphisms will be independent of the choice of fillers Wn. If cp'n also
serve as fillers:

F((pn) - F(cpn) = F(cpn - WO (F is additive)

= F(dn+iDn + Dn-idn)
= F(dn+iDn) + F(Dn-idn) (ditto)

= F(dn+i)F(Dn) + F(Dn-i)F(dn)
Hence, the F(cpn) and F(cpn) are homotopic. Applying Proposition 3.1
twice to projective resolutions (Pn, dn) and (P,, dn) of B yields

>Pn+i dl >P0">B '0
I(Pn+1

I
WI (Pi Iwo

I iB

-> Pn+i Pn pi

P,
7r,_;B0

7G,'+1
I 0n I 'Pi

00 jB
Pn+i d"±'>Pn Pi d'>PO ' > B- > 0

Hence, both (7Pncpn) and (ip.) serve as fillers for

Pn+i do}1 a>P0 ' >B- > 0
I I I I

I

T d , W d W d W-

J/B

Pi >P0 >B->0'Pn+i nPn
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and so are homotopic. Thus, the maps induced by (pn and by V)n on homol-
ogy (call them cpn* and V)n*) satisfy the equation TPn*(pn* = ip *. Reversing
the roles of (Pn, dn) and (Pn, dn) yields that cpn*' n* = ipn*. Thus, the ho-
mology of the complex

F F(d°)_ ... -3- F(d,) F(do)--> F(Pn+,) - (Pn) F(P1) F(Po) 0

is independent of the projective resolution up to isomorphism.
Since fillers for consecutive resolutions can be composed, we get that

GnF is a functor.
Now suppose F is a contravariant functor-again additive. Our construc-

tion of GnF now mimics the construction of C). (We use a super-
script since G'F will be contravariant.) Apply F to a projective resolution
of B and delete F(B):

...
( (dn}1) ( )

F(dn)
F(Pi)

F )
F(P0) F(dA)0.F Pn+1 - F Pn - -

TheThe homology at F(Pn) is G"F (literally, if the projective resolution is the
"chosen" one; up to isomorphism otherwise). The arguments parallel those
for covariant functors, with arrows reversed.

Right derived functors are defined using injective resolutions. Suppose F
is a covariant functor from RM to SM, and suppose B E RM. Choose an
injective resolution of B:

d

(The choice can be made as follows. For any B E RM, there exists a smallest
cardinal r such that B can be imbedded in an injective having cardinality
T; set T(B) equal to this T. T(B) is a set; using the axiom of choice from
Godel-Bernays-von Neumann class theory, in which a choice function is
defined on the class of nonempty sets, choose a structure on the set r(B)
itself making it into an injective left R-module E(B), and choose a one-
to-one homomorphism t : B -- E(B). Set Eo = E(B), El = E(Eo/t(B)),
etc.) Apply F and drop F(B), giving the complex

0 F(Eo)F)F(El)F)F(E2)F)... .

The homology at the nth entry F(En) will be RnF(B). Thanks to Exercise
7 of Chapter 3, an argument can be constructed resembling that for GnF
to show that 1 F is, up to isomorphism, independent of the injective
resolution; also, R F is a covariant functor. Finally, if F is contravariant,
one forms RIF from the homology at F(En) of

F(di) (d2) F(d3)0 -- F(Eo) F- F(E1) F+- F(E2) ....
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It might be noted here that all derived functors are additive; fillers for
sums V + V) : B - C can be added. We will get this free in the next
section, where the long exact sequence for derived functors appears. It
will then follow that all derived functors are half exact, hence additive by
Proposition 6.2 (and its contravariant version).

We close with the analog of Proposition 3.2, giving the elementary prop-
erties of derived functors.

Proposition 6.3 Suppose F is an additive functor from RM to SM.

a) If F is covariant and right exact, then G°F(B) F(B) for all B E
RM.

b) If F is covariant and left exact, then R°F(B) F(B) for all B E
RM.

c) If F is contravariant and left exact, then G°F(B) F(B) for all
BERM.

d) If F is contravariant and right exact, then R°F(B) F(B) for all
BERM.

e) If F is covariant, then GnF(P) = 0 for all projectives P E RM,
n>0.

f) If F is covariant, then 0 for all injectives E E RM, n > 0.

g) If F is contravariant, then CnF(P) = 0 for all projectives P E RM,
n>0.

h) If F is contravariant, then RnF(E) = 0 for all injectives E E RM,
n>0.

Proof: (Sketch) The proofs for Proposition 3.2 can be suitably modified
for the covariant cases. To see this, consider (a). Since F is right exact,

F(Pi) Fa F(P°) F F(B) --* 0

is exact. Hence F(B) -- F(P°)/imF(dl) = G°F(B).
That was the first part of the proof of Proposition 3.2, with F replacing

A®, and G°F replacing Toro (A, *).
Contravariant functors work the same way, with some arrows reversed.D

The above proof outlines should be examined. Most (but not all) of
the time, there will really be four results, one for left derived covariant
functors, one for left derived contravariant functors, one for right derived
covariant functors, and one for right derived contravariant functors. Most
(but not all) of the time the proofs will be similar. Finally, in this section
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the constructions resembled those for Ext and Tor; that will change in the
next section. When forming derived functors, one usually does not have a
second factor to resolve, a gimmick used in Chapter 3 to derive the long
exact sequences.

6.3 Long Exact Sequences-I. Existence

The objective of this section is to obtain the long exact sequences for derived
functors. This involves considerations that did not arise in Chapter 3, since
now there is only one entry in our functor.

To start with, we want to assemble a short exact sequence of projective
(or injective) resolutions from a short exact sequence of left R-modules.
That is, given a short exact sequence 0 -+ B -+ B' --+ B" -+ 0, we want to
manufacture (somehow) an exact array

0 0 0 0

...--- P2 -- Pi Po ---3,-- B , 0

...P2--- Pi PoB'>0
Pi -B" --- O

0 0 0 0

in such a way that when we apply F and delete, then

0 0 0

F(P2) - F(Pi) -- F(Po) - 0

1F(P2)--F(Pj)- F(1%')-0

0 0 0

will have exact columns. The long exact sequence of Theorem 3.1 will then
give a long exact sequence:
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G1F(B) -+ G1F(B') ---+ G1F(B")

(-.ICOF(B) --+ GoF(B') -+ GoF(B") -+ 0.

To start with, note that since P,,,' is projective, 0 -+ P,, -+ P, - P,, -+ 0
is split exact. Hence, 0 -+ F(P,,) -+ F(P,2) , F(P,,) -+ 0 is split exact by
Proposition 6.1, since F is additive. It follows that all we need to do is to
manufacture a "simultaneous resolution" of B, B', and B". Furthermore,
Pn Pn ® P,,, so given the resolutions of B and B", we know what each
P, must be.

It turns out that things will be built up recursively in the same way that
projective resolutions of single objects are. The following result is the basic
step in this direction for projective and injective resolutions.

Proposition 6.4 Suppose

0 0

B1 -} Ci

CP2
rj

B2 - ) C2
p Wq

B3 -> C3

I

0 0

is commutative with exact columns. Set Ki = ker cpi, and Li = C=/im Wi.
One has an induced diagram with exact rows and columns:

0 0 0

K1c- Bl P a Cl -Li
(P2

1i
'R2

P
K2-- > B2>C2- L2
p J1p y9 11C3 L3

W W

0 0 0

Furthermore, the following are equivalent:
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i) p' is onto.

ii) j is one-to-one.

There exists an extension of the original diagram to the left,

0 0 0

1 1 1

Al -> B1 C1

A2 - B2 -> C2

A3 - B3 - C3

0 0 0

having exact rows and columns.

iv) There exists an extension of the original diagram to the right,

0 0 0

B1 --> C1 D1

B2-'C2->D2
B3 C3 -D3
I I I

0 0 0

having exact rows and columns.

Proof: Consider

0 0 0 0 0 0

->0I------- '0II------- B1------- C1------- 3,I0-------

0- 0
0 0

I
0 0 0 0 0 0

Rows are complexes and columns are short exact. Homology at B3 is K3,
while homology at C3 is Lj. The long homology exact sequence (Theorem
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3.3) produces the exact sequence:

0K1 K3 L1 > L2 >L3->0.

(This is sometimes called the ker-coker exact sequence.)
Implicit in all this is that i(Kj) C K2, so that i' is defined; p(K2) C K3

so that p' is defined; etc. We now have exactness of the columns containing
K's and L's.

Furthermore, p' is onto tr S = 0 j is one-to-one, so (i) < (ii). Clearly
(i) = (iii) by setting Aj = Kj, and (ii) (iv) by setting Dj = Lj. It
remains to show (iii) = (ii) (and (iv) = (i)).

Suppose (iii), and extend again:

0 0 0 0 0 0 0

0- A B -C 0------- >...1---->- > 0' 1 _-
...00- > A2-->B2- > C2 ' 0

0 0 0 0 0 0 0

Homology at C. is L j and homology at Bj is now zero. A piece of the long
homology exact sequence (Theorem 3.3) gives 0 -* Ll -+ L2 L3 0.
Hence, (ii).

(iv) (i) is similar, and is left to the reader.

Example 12

0 0

gives
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0 0 0

0 - 7GC>Q- Q/Z
Ix2 I,x2 J,x2

0 -, Zc > Q -> Q/Z

Z2->Z20->0
0 0 0

We are now in a position to give the main results of this section. The next
proposition is sometimes called the "Simultaneous resolution theorem," but
is more often called the "Horseshoe lemma," due to the shape of the initial
diagram. (Imagine a horse with a very long hoof.)

Proposition 6.5 Suppose 0 -> B --> B' -> B" -> 0 is short exact in RM.

a) Given projective resolutions of B and B",

0

P d-
di "> >P2 > P1 Po B B 0

1
B'

d" d" 11 IPz a>Pill 'F, B"1->0
4,

0

there exist maps ir' : Po a Po -> B' and do : P,, ED Pri -> P,,_1®P,,'-
such that

I

0 0 0 0

>- d>dlP2 P1 P B->0
d2 d',

W W

P2 ®PZ ? P1 ®II Pi ' > PO ®II PO
1r - BIB -> 0

Wd," dlll

'r- p2, ? pig po - ; B11 0

4,

0 0 0 0
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is commutative with exact rows and columns. (The vertical maps are
the obvious ones.)

b) Given injective resolutions of B and B",

0

d-- B L > Eo al E1 2 E2 d30 .. .

B'

d" d" d"EZ 3 ...

0

there exist maps t' : B' --' Eo ®Eo and do : E,,_1®E'_1 --; E,, ®E'
such that

0 0 0

0 -~ B Eo 1 > E1 d2

0

T d' T dr T

0 > B' Eo®Eo El®El`------- E2®E2

0 , B" Eo 1 ,Ei 2 EZ

0 0 0 0

is commutative with exact rows and columns. (The vertical maps are
the obvious ones.)

Proof: We do (a); (b) is similar and is left as an exercise (Exercise 7).
First, 7r'. We find a filler f using projectivity of Po :

0

Po"-B-0
i.s

i p
1

PO 0
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Set 7r'(xo, xo) = j7r(xo) + f (xo). In the diagram

0

1

0

PO
" B -) 0

PO 9 PO ----- ---3, B1

1PP'` >- B"-)0
0 0

ir'(xo, 0) = jir(xo), while pir'(xo, xo) = p(jir(xo) + f(xo)) = pjlr(xo) +
p f (xo) = 0 + 7r"(x0") = r" (x"). ). That is, the diagram commutes. Hence ir'
is onto by the short 5-lemma (Chapter 2, Exercise 14(b)).

To construct do recursively, given 7r' and do, ... , d' _,, let Kn, Kn, Kn
be the nth kernels:

0 0 0

1 1 1

Kn Pn-1 Pn-2

I I I
KnPn_1®Pn 2

W 4,

Kri -> Pn 1 Pn2

0 0 0

The left hand column is exact by Proposition 6.4 (condition(iv) is satisfied).
We now have

0

1

Pn

I

0

d- Kn 0 0

4,

Pn®Pn" Kn
f 'r

Pn"

4

0 0

By the earlier argument constructing 7r', the filler do defined by dn(x, x") _
(dn(x), 0) + f (x") has the required properties. (See Exercise 6.)
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Example 13 B = B" = Z2i R = B'= Z4

0 0 0

2x2 x
Z4 Z2 0

d,
->-Z.4 ED

Z4 --X Z2 -- 0
0 0 0

ir'(x, y) = 2x ± y; d. (x, y) = (2x ± y, 2y) all n. (See Exercise 9.) The
differentials down the middle are not do ® dn.

In general, if 0 -+ B -+ B' B" 0 is not split, then the d'' will not
be "diagonal," that is, d' # do ® d,. (See Exercise 8.)

As a corollary to Proposition 6.5, we have the long exact sequences for
derived functors. These results are too important to be called a corollary.

Theorem 6.6 Suppose F : RM - SM is a functor, and 0 --+ B -+ B' -
B" -+ 0 is short exact in RM.

a) If F is covariant, then there is a long exact sequence

... -+ Gn+1F(B") 6n+1

L CnF(B) ---> .CnF(B') . ,C,i,F(B") 6n

C--.,Cn-lF(i3) _+ ...

....-, £1F(B")
D61

,CoF(B) --+ GoF(B') --+ GoF(B") 0.
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b) If F is covariant, then there is a long exact sequence
Rn+1F(B) -, ...

7F(B) , 7Z F(B') -- RnF(B")

8n
Rn_1F(B")

R1F(B)

S1

0 ---' R°F(B) R°F(B') R0F(B")

c) If F is contravariant, then there is a long exact sequence

... <-- ,Cn+1F,+(Bn)
n+l

GnF(B) <- G"F(B') < GnF(B")
bn

Gn-1F(B) <- ... ... ,- G'F(B")
81

G°F(B) <- G°F(B') (-- G°F(B") F- 0.

d) If F is contravariant, then there is a long exact sequence
Rn+1F(B) -- ...

R"F(B) -- RnF(B'\ <-- RnF(B")

sn+1

sn+1

Sn

C---
R1F(B) ,_ ...

al

0 f- R°F(B) j-- R°F(B') <- R°F(B")
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Proof: These all work out like the long exact sequences of Chapter 3; only
(d), the right derived contravariant functors, are new, so we prove (d) only.

We have a commutative diagram by applying F to the array in Proposi-
tion 6.5(b), and deleting F(B), F(B'), and F(B"):

0 0 0

T T ItF(E°) F(E1) F(2) .. .0

0F-F(E°®Eo)F(E1®El)F(E2®E2)E-

I T I
0 t F(E') t F(El') E F(E2) ( ...

t
0 0 0.

Columns are (split) exact, since, for all n, 0 -+ E,,, -- En ® E' - E;' -i 0
is split exact. Applying Theorem 3.1 yields the long exact sequence of part
(d).

Corollary 6.7 Suppose F : RM -i SM is a functor. Then:

a) If F is covariant, then G°F is right exact, and £ F is half exact for
all n.

b) If F is covariant, then R°F is left exact, and RnF is half exact for
all n.

c) If F is contravariant, then G°F is left exact, and CnF is half exact
for all n.

d) If F is contravariant, then R°F is right exact, and RnF is half exact
for all n.

Proof: Again they all work out the same way; the first clause after "then"
in each statement follows from the bottom row of the appropriate long
exact sequence, and the second clause from the other rows.

Corollary 6.8 Suppose F : RM -i SM is a functor.

a) If F is covariant, then G°F F if and only if F is right exact.
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b) If F is covariant, then R°F ^ F if and only if F is left exact.

c) If F is contravariant, then G°F F if and only if F is left exact.

d) If F is contravariant, then R°F F if and only if F is right exact.

Proof: The "only if" parts come from the left/right exactness of G°F/R°F
in the preceeding corollary; the "if" part restates a part of Proposition 6.3.

0

For most purposes (but not all), the results of this section suffice as
regards long exact sequences. There do remain two issues, however. First,
naturality of the connecting homomorphisms should be established. Second,
a comparison should be made with the long exact sequences of Chapter 3.
These issues will occupy the next two sections.

6.4 Long Exact Sequences-II. Naturality

The objective of this section is to derive the naturality of the long exact
sequences of Theorem 6.6. The idea is to produce a situation in which we
can appeal to the naturality part of Theorem 3.3. This is accomplished by
mimicking the construction in Proposition 3.1, but for short exact sequences
of modules rather than individual modules. In fact, one can define a category
of short exact sequences, RSh, as follows: An object in RSh is a short
exact sequence 0 -* B B' --> B" -> 0. A morphism from 0 B ->
B' --> B" 0 to 0 C --> C' , C" 0 is a triplet (f, f, f") of
homomorphisms from Hom(B, C) x Hom(B', C') x Hom(B", C") such that

0>BiB'>B")0
tf tf, If"

0CC'-->C"i0
commutes. Composition of morphisms is defined by (g, g', g")
(g f, g' f', g"f"). In this context, our main construction resembles (but does
not coincide with) the idea that short exact sequences of projective modules
behave like projectives in the category RSh. We shall return to this circle
of ideas in Chapter 7, as well as in the proof of Corollary 6.10.

In the next proposition, the labels on most arrows will be left out. The
diagrams would almost be unreadable otherwise. Some care is needed; see
Exercise 10, and the comment referring to it in the proof.

Proposition 6.9 Suppose given the commutative diagram
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B

d I

B ic-u--P

1 d sBu

P® P"

0
" 1

0

Of 0

0

0

with exact columns and diagonals in RM, and with P and P" projective.
Then there exist fillers

forming a commutative diagram.
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Proof: Choose any fillers for

B

C4-P and

B' F `

l

C'F-P®P"* P"

V)

and define

W, (X, x")
= w (x) + OW)

and

cp"=irb.

Commutativity of the three-dimensional diagram follows from commuta-
tivity of the five faces containing purported fillers (three triangles and two
"roof" squares).
First,

B

I\
P

Next,

B'

which translates into two subdiagrams,

B'

and

P/I
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which imbeds in

or

The third triangle is

B'

CE-- P

B"

C P
which imbeds in

since cp'(0, x") = V) (x"). Note that the arrow P" - P®P" is reversed from
that in the original diagram; we must check that the diagram

C'' PeP

commutes. This is left as an exercise. (Exercise 10, to be specific.)
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We also have the two "roof" squares,

B

B' P

P®P"

and

B'

B' P®P"z
P"

-7rcp'(x, x") = 7rup(x) + 7r?,b(x") = 7ri,b(x") = tp"(x").

Corollary 6.10 Suppose the diagram

0- -BB'B"0
0- > C->

0

(with entries in RM) is commutative, with exact rows. Then, given simul-
taneous projective resolutions of B, B', B" and C, C, C", there exist fillers
forming a commutative diagram with exact rows and columns:
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0 , Pn+1 - - Pn+1 ®441y- Pn+1 y I - 0
WW

0 Qn+1 Qn+1 ®Qn+1 Qn+I - 0
00--

0 Qn QneQn y Qn--- 3,-0

r 1

--0 - P1 P1 Pit'

0 Q1 y Q1 Q' Q1 -- -----

0- Po I-P. I-0
3-- Ot 0Qo ® Q

o
y0B t-L-0 C

0

0

0 0
1

0 0

Proof: In RSh, let a boldface letter (e.g., C) denote a short exact sequence
of left R-modules denoted with the plainface letter, with primes attached
(e.g., 0 C C C" --* 0). Also, FOR THIS PROOF ONLY, let
"A -> B C is exact" mean that the commutative diagram

0 --> A - A' - A" - 0

0 > BBB' B"- > 0

1110->C->C'---> C"-,0
has exact columns. WARNING: This is emphatically not the categorical
meaning of exactness to be discussed in the next chapter. In fact, RSh
provides a nice example of how the categorical concepts in the next chapter
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can produce peculiar consequences, and so will be discussed further at that
point.

Setting P,, = Pn ® P,,' and Q' = Q,, ® Qn, the corollary can be restated
as asserting the existence of fillers:

P ...P P BP 0n+l n - 1 fl

Y Y Y Y

C 0Qn+1 Qn Qi -->Qo - '
if the simultaneous resolutions of B and C are treated as given (by Propo-
sition 6.5). The construction is identical to that in the proof of Proposition
3.1, in boldface. For example, the arrow Po - - - Qo comes from

PO

i B
i

iQoC0
filled in via Proposition 6.9. The remainder of the argument also works,
bearing in mind that, in the notation of Proposition 3.1, im do+1 = ker dn:
If Kn (respectively, K,,, K,,) is the kernel of Pn Pn_1 (respectively,
Pn-+Pn-1,Pn -+Pn1), then 0-+Kn-+K71-+Kn-+0is short exact
by Proposition 6.4 (condition (iv) is satisfied), so that Kn is an object in
RSh. Finally, the homotopy part of Proposition 3.1 does not appear here.

0

The naturality of the connecting homomorphisms in the last section fol-
low readily. More: We get that connecting homomorphisms are independent
of the simultaneous resolution via an argument similar to the independence
of resolutions in Section 3.1.

Proposition 6.11 Suppose

0- B `B'--B" -0

1 I I
0- - C L' -C11-)0

is commutative in RM, with exact rows. Letting 6 denote (generically) the
connecting homomorphisms of the long exact sequences of Theorem 6.6, we
have the following commutative diagrams for derived functors of an additive
functor F : RM -+ SM:
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a) If F is covariant: Gn+1F(B") 6 C,,F(B)

6Gn+1F(C") - £ F(C)

b) If F is covariant: R,,F(B") 6 > Rn+1F(B)

1
6

1

R,,F(C") -> Rn+1F(C)

c) If F is contravariant: Gn+1F(B") 6 G"F(B)

I T
Gn+1F(C 6

") 6 G"F(C)

d) If F is contravariant: RnF(B") Fa Rn+1F(B)

6RnF(Cn)

Proof: For (a) or (c), apply F to the simultaneous resolution of Corollary
6.10, and delete. Upon taking homology, one has the situation of Theorem
3.3, from which our result here follows.

For (b) or (d), do the same, after stating and proving the analog of
Proposition 6.9 (and its corollary) for [short exact sequences of] injectives.
(See Exercise 11.)

A closing comment: We shall wind up reproving this result in the next
chapter, using slightly different means. Nevertheless, for pedagogical rea-
sons, the present approach (and associated constructions) are worth study-
ing.

6.5 Long Exact Sequences-III. Weirdness

We now have two ways of defining the long exact sequences for Tor and Ext.
For this section we shall concentrate on Tor; Ext will be left to Exercises
12 and 13. One can use Theorem 6.6, or one can use Corollary 3.17.

Suppose 0 --+ B -+ B' -+ B" -+ 0 is exact in RM, and A E MR.
Tracking it all down, the long exact sequence for Tor(A, ) is obtained in
Corollary 3.17 by using a flat resolution of A and tensoring with 0 --+ B
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B' -+ B" ----+ 0. In Theorem 6.6 it arises from a simultaneous resolution
of 0 -+ B --+ B' --+ B" ---+ 0, via Proposition 6.5, tensoring with A. The
maps from Torn (A, B) to Torn(A, B') to Torn(A, B") are the same; this is
the naturality part of Corollary 3.10. One would expect that the connecting
homomorphisms would be the same, too. It is something of a shock to learn
that they are not.

Proposition 6.12 Suppose 0 -+ B `> B'-'r+ B" -+ 0 is short exact in RM,
and suppose A E MR. Let Sn : Torn (A,B") --+ Torn_,(A,B) be the con-
necting homomorphism of Corollary 3.17, obtained from a flat resolution
of A. Let 6n : Torn(A, B") -+ Torn-, (A, B) be the connecting homo-
morphism of Theorem 6.6(a), obtained from a simultaneous resolution of
0--+B--'B'--+B"--+ 0, viaTorn (A,9) =Ln(A®). Then 6n =(-1)n6n.

Proof: In this proof, a capital script letter, for example, C, will denote a
chain complex. If C is a chain complex (Ci, di), di : Ci --+ Ci_1, denote by
C the chain complex (Ci, (-1)i+ldi).

Let

- - FnFn_1-v ..._ j.'1->Fo->A' 0
be a flat resolution of A. Let A denote the complex

...--Fn ®B- -Fn-1®B...F'1®B-->Fo®8- -0--0,

with indices shifted, so that the ith group is Fi_ 1® B (and the 0th group is
0). Similarly, let A' (respectively, A") be the complex with B' (respectively,
B") replacing B. (We need this dimension shift to match up with the
notation in Proposition 3.9.)

Let

0 0 0 0 0

Pn >Pn-1Pi--- Po ' B--0

...-Pn®Pn"-Pn-i®P,,1- -..._->Pi ®Pi -),- Po®Po"B'- 0
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denote a simultaneous resolution of 0 --+ B -+ B' -' B" --+ 0, constructed
via Proposition 6.5. Let V denote the complex

0 ->0

(again with the dimension shift), and similarly let D' (respectively, D")
denote the (deleted) complex obtained by tensoring the resolution of B'
(respectively, B") with A.

Finally, let C denote the complex (Cn, Dn), where we use the form de-
scribed after the proof of Corollary 3.10:

C;,j = Fi-1 ®P,j-1
n

Cn = Ci,n-i+l, , n > 1
i=1

Dn = do + (-1)n+lan : Cn -+ Cn-1, n > 2

with Co = 0, D1 = 0, and do and O as in Proposition 3.9. Note that we
have chain maps C --+ V (as well as C' -+ D' and C" -+ D") thanks to in-
corporating the required dimension shifts into D, D', and D". (Consult the
array preceeding Proposition 3.9.) Also, since (-1)n+'Dn = an+(_-1)n+ldn
corresponds to the flipped version of the array Cij, we have that e -+ A, as
well as C' --+ A' and C" -+ Al', are chain maps, by the symmetry part of the
proof of Proposition 3.9 (as well as the n-tuple (yl, -Y2, ... , -yn-1, yn) '-'
dn,1(yn) being the zigzag correspondence, without any sign changes, when
n is odd). Finally, note that the diagrams

C - C' -------- >- C//

illD)D'-D"
and

AA'A"
commute: The first follows from the naturality part of the proof of the
corollary to Proposition 3.9, letting t and ir replace cp in the proof. The
second diagram follows by symmetry.

Now, however, we have the diagrams

.0-> C C'->C"-0
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and 0e0 Of 0

-0
with exact rows, yielding isomorphisms on homology via vertical arrows.
(Note: The top rows are exact for the usual reasons: Each

0->Fi®Pj - - Fi®P,' - - Fi®Pj'-->0

is exact.)
Using Theorem 3.3, especially the naturality part, it suffices to compare

the connecting homomorphisms of

0-C->C'- >C"--0
and

0e d)- ' & - 0

for any short exact sequence of complexes. This is easy enough to do: Sn is
constructed in the same way in each case, except that (-1)1+ldn substitutes
for dn:

Cn -- Cn Cn _ C;'

d;, versus Jr(-1r+1d.

Cn-1 --- - c: _1 Cn-1 - Cn-1

b
bnz F-> *

Finally, we get a sign change of (-1)n instead of (-1)n+1 due to the
dimension shift incorporated into A, A', A", V, D', and D".

It should be noted that one can modify the isomorphisms of Corollary
3.10 to get rid of the above sign discrepancy. The obvious modification
(multiply the nth isomorphism by (-1)n or (-1)n+1) does not work. (See
Exercise 14.) Oh, if only life were so simple!
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6.6 Universality of Ext

The following is an easy exercise: If F is a covariant functor from RM to
SM, then P-dim B < k = GkF(B) = 0. In particular,

(V C E RM, Extk (B, C) = 0) GkF(B) = 0.

That is, in some sense Extk controls GkF. It is the aim of this section to
be a lot more precise about this, but some fundamental set theoretic issues
arise in formulating such a result.

Before beginning, we need some definitions. If F, G : RM SM are
covariant, then a natural transformation from F to G is the assignment to
each object B E RM of a homomorphism rB E Homs (F(B), G(B)) such
that whenever f E HomR(B, C), the diagram

F(B)
F(f)

F(C)

IITC

G(B) GM (f))
G(C)

commutes. (This definition is used, suitably modified, when F and G are
two covariant functors or two contravariant functors from any category to
any other. We shall return to this in Chapter 7.)

If r is a natural transformation from F to G, and a is a natural trans-
formation from E to F, then one may form the composite ra from E to
G via (ra)B-= rBaB. There is an identity transformation t from F to it-
self defined by tB = ?F(B) for all B. If E = G, then a is an inverse to 7
if ar and TO are the appropriate identity transformations. r is a natural
isomorphism if r has an inverse, or equivalently (see Exercise 15), if rB is
an isomorphism for all B. F and G are naturally isomorphic if there is a
natural isomorphism from F to G. Example: Hom(B, ) and Ext°(B, 0) -

Since our target category is sM, another operation exists. If a and
r are natural transformations from F to G, we can form the sum via
(a + r)B = aB + rB. This construction makes it look like natural transfor-
mations form an Abelian group, leading to the consideration of collections
of natural transformations. But what kind of collection could it be? Any
natural transformation is a function on RM, a proper class. Hence, (as a
class of ordered pairs) any natural transformation from F to G will be a
proper class, and so cannot belong to any class.

A way out of this dilemma, discussed in Herrlich & Strecker [31, esp.
appendix on foundations], is to extend the set-class hierarchy one more
step to what they (and we) call conglomerates.

The idea is that conglomerates should obey the elementary axioms of
set theory, and furthermore, any class should be a conglomerate. A natural
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transformation from F to G is a subclass of

U Homs(F(B),G(B))RM X (BERM

as a class of ordered pairs, and so the natural transformations from F to G
form a subconglomerate of the power conglomerate of this as a conglomer-
ate.

The next question is consistency. First of all, to be explicit about what
we assume, note what we do not assume. Exactly three axioms from ZFC
(Zermello-Frankel set theory along with the axiom of Choice) are absent:
foundation (or regularity), choice, and replacement. What we do assume are
that conglomerates satisfy the remaining axioms of set theory. (See, e.g.,
Halmos [27] or Devlin [15].) They are: extension, pairing, powers, unions,
and specification (sometimes called subset selection). While we do not need
it, a weak replacement axiom is necessary for some purposes, in which the
parameter space is assumed to be a set: "If A is a set, and S(a, x) is a
sentence such that for all a E A, {x : S(a, x)} is a conglomerate, then
{x : S(a, x) for some a E Al is a conglomerate." One thing we do need
is the final assumption that a subconglomerate of a class is a class. In
particular, a subconglomerate of a set is a class, hence is a set. (A subclass
of a set is a set.) This way, the power operation on conglomerates restricts
to the usual power set operation on sets, but not on proper classes: If A
is a proper class, then A belongs to the power conglomerate of A, since
A is a conglomerate, but not to the power class of A since A is not a set.
(See Chapter 1.) Call the resulting theory conglomerate theory, or strong
conglomerate theory when conglomerates satisfy all the axioms of ZFC.

While it is not evident, we have now entered the realm of large cardi-
nals. Recall that a cardinal is an ordinal with the property that all smaller
ordinals have smaller cardinality. (That looks circular, but it isn't; cardi-
nality is defined first in terms of bijections.) A cardinal K is called regular
if it cannot be the cardinal supremum of a set A of smaller cardinals when
IAI < ,c. it is called strongly inaccessible if a is uncountable, regular, and
A < n 2a < rc for any cardinal A. Basically, strong inaccessibility for it
means that it cannot be obtained from lower cardinalities using the usual
set theoretic operations.

Finally, recall the Zermello hierarchy. Set Vo = 0, and recursively define
(for a ordinal) Va+1 = P(Va), with Va = U{V,3 : a < a} if a is a limit
ordinal. Note that Va grows via iterated exponentials: I Vo I = 0, I V1 i = 1,

V2I = 2, I V3 1 = 4, I V4I = 16, I V5I = 65,536, and so on (IVn+1I = 21 v 1 ). In
general, if a+ is the successor ordinal to a, then Va C Va+ (or equivalently,
A E (,, A C Va), by transfinite induction on a. Hence, a <,3 Va C
V. Similarly, a C Va, again by transfinite induction. Hence, jai < IVaI.
Nevertheless, letting c = continuum, To = IVI, and (recursively) Tn+1 =
I VT 1, one can construct a monster cardinal T = sup{ T1, r2.... } for which
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IV, I = T. (RT = T as well, since by transfinite induction 1w + al < R,, <
IV,,,+a I for any ordinal a, where w = natural numbers; but w +a = a when
a > w2, so that w + T = T and T < ZZT < I VT 1.) Nevertheless, r is not
regular, and is much(!) too small to be strongly inaccessible.

The following is a standard result from set theory (see Devlin [15, p. 98]
or Kanamori [42, p. 18]):

If f£ is a strongly inaccessible cardinal, then IV,,J = 1L, and P(V,.) is
a model for Godel-Bernays-von Neumann class theory, where V,c _
{A C V,, : JAI < !c} is the associated class of sets.

In particular, if 1c is the smallest strongly inaccessible cardinal, the re-
sulting model has no strongly inaccessible cardinals. (Note, too, that in this
model, proper classes have "cardinality" it, and so really are too big to be
sets. This is a general phenomenon in Godel-Bernays-von Neumann class
theory, deducible from the global axiom of choice. In general, conglomer-
ates can be large or small: If A is a proper class, then {A} is a conglomerate
but not a class.) We have the following conclusion:

If ZFC is consistent, then the existence of strongly inaccessible cardi-
nals is either inconsistent with ZFC or is undecidable in ZFC.

(Recall that a statement is undecidable if neither it nor its negation can be
proven.)

Now back to conglomerate theory. We only assume "ordinary" conglom-
erate theory; the ability to restate (in rather cumbersome fashion) many
results without it causes one to suspect consistency. For strong conglomer-
ate theory, the situation is much more definitive.

Proposition 6.13 Suppose ZFC is consistent. Then strong conglomerate
theory is consistent if and only if the existence of strongly inaccessible car-
dinals is undecidable in ZFC.

Proof: For the if part, suppose the existence of strongly inaccessible car-
dinals is consistent with ZFC. There then exists a model M for ZFC which
contains a strongly inaccessible cardinal rc by the consistency theorem of
mathematical logic. For a model of strong conglomerate theory, let con-
glomerates be the universe of sets in the model M, while the collection of
classes is P(V,,), and the collection of sets is {A C V,,: IAA < ic} = V,,.

On the other hand, if strong conglomerate theory is consistent, let U be a
universe of conglomerates in some model. U exists again by the consistency
theorem. Let C be the conglomerate of classes, and S the class of sets in
this model. Then U is a model of ZFC, so U has its own "collection" of
ordinals and cardinals, which will include the class a of all ordinals from
S. (The von Neumann definition of an ordinal is consistent between U
and S.) Furthermore, any conglomerate function between two classes (e.g.,
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ordinals) A and B is a subconglomerate of the class A x B, so it is a class,
that is, it is a function relative to C. Thus the S-cardinals in a are U-
cardinals, and vice versa, since a set correspondence between an ordinal in
S and a smaller ordinal is a conglomerate correspondence, and vice versa.
If 0 is a U-ordinal below a, then 3 E a (so that ,Q is a set) Q and a
are not in one-to-one correspondence (otherwise a would be a set by the
axiom of replacement). That is, a is a U-cardinal. If 3 is a cardinal and
,0 < a, then P([) E S 12,31 E a 1201 < a. Finally, if a conglomerate
A C a, A consists of cardinals, and Al C< a, then (i) A is a class (since
A C a and a is a class), and (ii) A is in 1-1 (conglomerate, hence class)
correspondence with the set JAI E a. Since JAI is a set, it follows that A
is a set by the axiom of replacement in C and S. Hence A has a cardinal
supremum in S, which by definition is a member of a and so is less than a
relative to U. The conclusion then is that a is strongly inaccessible in the
model U of ZFC.

Remark: The following is left as an exercise for the set-theoretically
inclined reader. In the proof of the "if" part, let W denote the countable
infinite cardinal, and + denote ordinal sum. Then ordinary conglomerate
theory has the much smaller model V,,+, or V,,+k if weak replacement is
assumed.

It should be noted that strongly inaccessible cardinals are almost at the
bottom(!) of the hierarchy of large cardinals contemplated by set theoreti-
cians. See, for example, Kanamori [42] or Drake [16] for a discussion of
all this. Certain of these assumptions lead to the existence of a large car-
dinality of large cardinals, allowing the extension here of set - class
conglomerate to proceed further through a large cardinality. The extent to
which one believes in the existence of these large cardinals dissipates in
the higher realms, but there does seem to be some consensus that strongly
inaccessible cardinals, at least, can be assumed to exist. Since we don't
even need that for ordinary conglomerate theory, we shall proceed with
assuming ordinary conglomerate theory. (By the way, the limited use we
make here can be shown to be consistent with set theory; see the article by
Levy in [58].)

Specialize now to the case S = Z, that is, let F and G be covariant
fnctors from RM to Ab. Let Nat(F, G) denote the conglomerate of natural
transformations from F to G. Nat(F, G) is an Abelian conglomerate group,
that is, an Abelian "group" whose underlying "set" is really a conglomerate.

Proposition 6.14 (Yoneda Lemma) If F is a covariant functor from
RM to Ab, then for all B E RM, F(B) & Nat(Hom(B, ), F). The isomor-
phism sends T E Nat(Hom(B, ), F) to TB(iB). (Note: Tc : Hom(B, C) -
F(C).)

Remark: A restatement not using conglomerate theory would read as
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follows: "If F is a covariant functor from RM to Ab, then for all B E RM
and all x E F(B), there exists a unique natural transformation T from
Hom(B, ) to F for which T(iB) = x. All natural transformations from
Hom(B, ) to F arise in this way."

Proof: First, note that T H TB(iB) is a homomorphism, which is im-
mediate from the definition of the sum of two natural transformations.
Furthermore, for any C E RM and f E HorR(B, C), HomR(B, f) is post-
composition by f (abbreviated f,) in Homz(HomR(B, B), HomR(B, C)).
Hence,

Hom(B, B) I. Hom(B, C)

Ts1
TTC

F(B) F(f) F(C)

commutes. But now suppose TB(iB) = 0 and look where f goes:

0 = F(f)(0) = F(f)TB(iB) = Tc(f.iB) = Tc(f)

Since C and f are arbitrary, T = 0. Hence the kernel of the homomorphism
is trivial, so it is one-to-one. (The kernel is a conglomerate subgroup. El-
ementary theorems from group theory remain theorems for conglomerate
groups.)

Finally, we must show that the homomorphism is onto. Given x E F(B),
and C E RM; define TC (f) = F(f) (x) when f E Hom(B, C). (This has the
right values. F(f) E Hom(F(B), F(C)), so that TC(f) E F(C). That is, TC
maps Hom(B, C) to F(C).) Clearly TB(iB) = x; we must check that r' is
natural. If C, D E RM and g E Hom(C, D), we must check commutativity
of

Hom(B, C) g' } Hom(B,D)

iTC ITDF(C) F(g)- F(D)
If f E Hom(B, C), then

F(g)Tr(f) = F(g)F(f)(x) = F(gf)(x) = TD(gf) = TD o g.(f ).

The preceding, surprisingly, does not even use additivity of F. The next
result, the final one of this chapter, requires even more than additivity.
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Proposition 6.15 (Universality of Ext, or the Derived Yoneda
Lemma) Suppose F is a right exact covariant functor from RM to Ab.
Then for all B E RM and n > 0, LnF(B) Nat(Extn(B,.), F).

Proof: This is one of those homological algebra inductions on n requiring
special discussion for n = 1. First, the easy parts. Since F is right exact,
G°F(B) :: F(B) Nat(Hom(B,.),F) Nat(Ext°(B,.),F). This covers
the n = 0 case.

Suppose 0 --> K -`r P B -+ 0 is short exact, with P projective. If
n > 1, then the induction step reads

Gn+1F(B) ~ LnF(K) Nat(Extn(K,.),F)
.:s Nat (Extn+ 1 (B, .), F).

(Here we use the fact that Extn (K, ) and Extn+1(B, .) are naturally iso-
morphic, as follows, for example, from Proposition 6.11(b).)

Finally, we must tackle the n = 1 case. For this, we have an exact se-
quence

0 G1F(B) - G°F(K) G°F(P) - G°F(B) -- 0.

(The presence of G°F(P) distinguishes the cases n = 1, n > 1.) Since F is
right exact, we have as part of this

0 G1F(B) -> F(K) F(P)
22 22

Nat(Hom(K, .), F) Nat(Hom(P, .), F).

Clearly, we need an exact sequence of conglomerate groups

0 Nat(Ext'(B,.), F) --> Nat(Hom(K,.), F) Nat(Hom(P,.), F)

put into the bottom row. This requires some discussion.
First of all, for any C, we have an exact sequence

Hom(P, C) Hom(K, C) -- Ext' (B, C) 0

which is natural; that is, we have natural transformations T from Hom(P, )
to Hom(K,.), and S from Hom(K,.) to Ext'(B,.), such that

Hom(P, C) Tc Hom(K, C) 6 Extl(B, C) - 0
is exact. Tc = t' in earlier notation. Furthermore, precomposition by T, T',
yields the diagram

F(K)
F(a)

F(P)
R 22

Nat(Hom(K,.), F) T Nat(Hom(P,.), F
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This diagram is commutative: If v E Nat(Hom(K, ), F), we must check
that

(0'T)P(ip) = F(t)0K(iK)
But

Hom(K, K) . Hom(K,P)

I aK I ap

F(K) F-t) F(P)

commutes by naturality of o; also, t.(iK) = tiK = t, so

oP(t) = 0Pt.(iK) = F(t)oK(iK)

while

(0T)P(ip) = OP(TP(ip)) = a'P(t*ip) = QP(ipt) = ap(t).

In a similar fashion, precomposition by 6, S* yields a homomorphism
sending o E Nat(Ext1(B, ), F) to oS E Nat(Hom(K, ), F). Combining,
we now have a commutative diagram

0 LIF(B) F(K) F(`) F(P)
22 22

0 -- Nat(Ext1(B, ), F) L- Nat(Hom(K, ), F) i Nat(Hom(P, ), F)

with an exact top row. Once we know the bottom row is exact, we will be
done, as then

G1F(B) kerF(t) c ker(r*)
Nat(Ext1(B, ), F).

This is a general fact, a kind of left exactness, for the construction 7 H
77*. We state this as a lemma, the proof of which completes the proof of
Proposition 6.15.

Lemma 6.16 Suppose F, G, G', G" are covariant additive functors from
RM to Ab. Suppose T E Nat(G, G') and S E Nat(G', G") satisfy, for all
C, exactness of

Then

'rcG(C) G'(C) G" (C) - 0.

0 Nat(G", F) Nat(G', F) Nat(G, F)

is exact.
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Proof: As usual, the easiest part is that for all a E Nat(G", F), T*S*(a) =
0 : T*S*(o) = T*(US) = OST, so that for any C, [T*S*(o)Jc = (UST)c =
uc8CTC = 0, since SCTC = 0. Also, S* is one-to-one, since S* (v) = 0
vS = 0 QCSC = 0 for all C = cc = 0 for all C since all Sc are onto.

Finally, we must show that if a E ker(T*), then a E im(S*). Suppose
a E ker(T*), i.e. aCTC = (QT)c = 0 for all C. Hence for each C a unique
filler a' exists for

G(C) T G(C) ac G"(C) - 0

F(C)

s o that by definition T SC = cc. (This is fairly easy, and will define coker-
nels in Chapter 7.) Once we show that a' defines a natural transformation,
we will be done, since then o Sc = (v'S)c = (S*(o'))c. We must establish
commutativity of

G"(B) G lf G"(C)

oBI Io

F(B)
F (f)

F(C)

for all B, C E RM, f E Hom(B, C).
Suppose 1 G"(B). Since SB is surjective from G'(B) to G"(B), there is

a y E G'(B) for which 8B (Y) = x. Furthermore, o (x) = QBSB(y) _ CYB(y)
Since

G'(B) GIM G'(C) G'(B) C- "f)3-G'(C)

oBW

lac

F(B)
F(f)

F(C)

commute,

and
Ss I

G"(f)
I Sc

G"(B) G"(C)

ScG'(f)(y) = G"(f)SB(y) = G"(f)(x)

But QCSc = cc, so

F(f)ciB(x) = F(f)aB(y) = acG'(f)(y) = a'cScG'(f)(y)
= ccG"(f)(x)

Letting x float, F(f)o,' = c'cG"(f ). 0
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By the way, the last verification can be redone without elements by
considering the diagram

G'(B) °$ F(B)

a

G'(f)

G"(B) B F(B)
IF(f)

G"(C) ° F(C)

F(f)

G'(C) aO F(C)

The interested reader is invited to pursue further (-» denotes a surjection).
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Exercises

1. Suppose F is a covariant functor from RM to SM satisfying condi-
tion (iii) of Proposition 6.1. Show that F(zero object) = zero object.
Hence, show F(zero homomorphism) = zero homomorphism. From
the biproduct construction of Chapter 2, Exercise 1, show that F(7rl)
and F(7r2) are, in fact, the projections that (with F(cpi) and F(WO)
define F(B ® B) as a biproduct.

Remark: This clears up the technical point in the proof of Proposition
6.1, so Proposition 6.1 cannot be used here. Note that while the zero
object is not the only module for which B B ® B (think large), it
is the only module for which

B B®B
1P O

same

is a coproduct.

B

2. Suppose F is a contravariant functor from RM to SM. Show that F
is additive if and only if F(B x C) F(B) ®F(C) for all B, C E RM.
(Same tacit assumption as that following Proposition 6.1.)

3. Suppose F is a covariant additive functor from RM to SM.

a) Show that G,,(ImF) - 0 if m > 0.

b) Show that G,,F(B) for all B.

Hint: This is one of those inductions on n requiring special discussion
when n = 1.

4. Suppose F is a covariant additive functor from RM to SM. If B E
RM, and if (Pt, di) is the projective resolution chosen for B, then
the map 7r : Po -' B induces F(ir) : F(Po) , F(B). Use this to
construct a natural transformation -r from £0F to F such that TB is
an isomorphism whenever B is projective.

5. SetR=Z4i S=Z, F:RM SM, F(B)=Hom(Z2,B).

a) Using the exact sequence 0 -+ Z2 Z4 Z2 --* 0, show that
G,aF(Z2) ti L,,+1F(Z2) for n > 1. Also compute GoF(Z2) and
G1F(Z2). Hint: Setting GoF(Z2) = X, one has an exact sequence
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0-i--G1F(Z2)- X->- z2, X->0

which determines everything.

b) Show that if r is the natural transformation of Exercise 4, then
Tz2 = 0. Hint: Exact sequences involving F(Z2) and CoF(Z2)
have very different homomorphisms.

c) Write down a projective resolution of Z2, and directly compute
G,,F(Z2) and Tom.

6. Show that the maps do defined in the proof of Proposition 6.5(a) have
the required properties.

7. Prove part (b) of Proposition 6.5.

8. In Example 13 following Proposition 6.5, show that the definitions of
ir' and d',, work, and that nothing else does.

9. In the construction of the maps d' in the proof of Proposition 6.5,
show that the following are equivalent:

i) do = d ® d' is an allowable choice for all n.

ii) d= d1® d'1 is an allowable choice.

iii) 0->B-+B'-+B"-+0 splits.

10. Suppose

0 -y P ). P" -P" -0
I

IV, 17"

0-C C,

commutes and has exact rows. (The maps P -r P ® P" -' P" are
the obvious ones.) Show that

C' P®P"

7r lT
C - P
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commutes, but

C {W P

C'E-PE) P"

does not commute unless cp' is zero on 0 ® P" (which cannot happen
unless cc" = 0).

11. Prove parts (b) and (d) of Proposition 6.11. For this, formulate and
prove the analog of Proposition 6.9 for short exact sequences of in-
jectives. See also Exercise 10.

12.. Suppose 0 -+ B --p B' -+ B" -+ 0 is short exact in RM, and
C E RM. Let bra, : Extn-1(B, C) -> Extra (B", C) denote the connect-
ing homomorphism of the long exact sequence of Proposition 3.13,
obtained from an injective resolution of C. Let 8n : Extn-1(B, C) -
Extn(B", C) denote the connecting homomorphism of Theorem 6.6(c),
with Extra C) : C), obtained from a simultaneouspro-
jective resolution of 0 -+ B -+ B' -- B" -+ 0. Show that Sn =
(-1)n6n

13. Suppose 0 -, C -+ C -' C" -> 0 is short exact in RM, and B E RM.
Let Sn : Extra-1 (B, C") -+ Extn(B, C) denote the connecting homo-
morphism of Theorem 3.4(b), obtained from a projective resolution
of B. Let Sn : Extra-1(B, C") --> Extn(B, C) denote the connecting
homomorphism of Theorem 6.6(b), with Extn(B, ) RnHom(B, ),
obtained from a simultaneous injective resolution of 0 -+ C -, C' -+
C" -+ 0. Show that bra = (-1)nOn.

14. Suppose Hn and Hn are covariant functors fromRM to Ab, and
suppose rn is a natural isomorphism of Hn with kn. Suppose Ho =
Ho, and ro,B = iHo(B). Suppose, given 0 -> B B' -+ B" -+ 0, we
have Or, : Hn+1(B") -- Hn(B) and Sn : Hn+1(B") --* Hn(B) such
that

Hn+1(B")Tii}1 Hn+1(B")

3n1 (-1)nbn

Hn(B) TB Hn(B)
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commutes. Explain how to modify the Fn to Fn (retaining To = iden-
tity) so that

Hn+1(B")T^+

6n 1

I

Hn(B)
r

> Hn(B)

commutes.

15. Suppose r is a natural transformation from F to G, where F and
G are covariant functors from RM to SM, and suppose FB is an
isomorphism for all B. Set QB = FB 1. Show that u is a natural trans-
formation from G to F. (It is the inverse of r.)





7
Abstract Homological Algebra

7.1 Living Without Elements

A close look at much of the earlier material, especially in the last chapter,
reveals the strong connection between projectives and injectives. The idea
is this: Formulate your result purely in terms of arrows (morphisms), then
reverse them. That is, work in the opposite category. Not everything can
be done this way, but a surprising amount can.

The immediate objective is to produce category-theoretic analogs of some
of the function-theoretic concepts of which we have already made use. Sup-
pose C is a category, A, B E C, and f E Mor(A, B).

i) f is a monomorphism (adjective form being monic) if, whenever
C E C, and g, h E Mor(C, A), then fg = f h g = h. That is, f is
left-cancellable.

ii) f is an epimorphism (adjective form being epic) if, whenever C E C,
and g, h E Mor(B, C), then g f = h f = g = h. That is, f is right-
cancellable.

iii) f is a bimorphism (no adjective form) if f is both a monomorphism
and an epimorphism.

Observe that if f and g are monic, then so is f g; and if f g is monic, then
g is monic. Similarly, if f and g are epic, then so is f g; and if f g is epic,
then f is epic.

Suppose C is a concrete category, and a (A) = underlying set of A. Then
for A, B E C and f E Mor(A, B): If f is one-to-one, then f is monic; if
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f is onto, then f is epic. Also, note that, in any category, isomorphisms
are bimorphisms. A category is called balanced if all bimorphisms are
isomorphisms.

Example 14 Let Haus denote the category of Hausdorff topological
spaces, with morphisms being continuous functions. If A, B E Haus, and
f E Mor(A, B), then f is monic f is one-to-one, while f is epic
f (A) is dense in B. Note also that if A = (R, discrete topology), B =
(R, usual topology), and f = iR, then f is a bimorphism (even a bijec-
tion), but not an isomorphism.

It should be noted that in Top, the category of all topological spaces,
an epimorphism must be onto. (If f is not onto, let C = {0, 1} have the
indiscrete topology, set g - 0, and set h = 0 on f (A), but h = 1 on
B - f (A).)

Example 15 objC = 1{0, 11, 10, 1, 2}}; set A = {0,1} and B = 10, 1, 2}.
Set Mor(A, A) _ {iA}, Mor{B, B} = {iB}, Mor(B, A) = 0, and Mor(A, B)
= all functions from A to B. C is a subcategory of Set, and is concrete, with
a(A) = A, v(B) = B. Every function in Mor(A, B), whether one-to-one or
not (none are onto), is a bimorphism.(!)

It should be remarked that the failure of bimorphisms to be isomor-
phisms is fairly common, even for algebraic categories; RSh is an example
to be discussed later. The failure of epimorphisms to be onto is rare in
the algebraic setting but common for topological categories. The failure of
monomorphisms to be one-to-one is rare, generally; most counterexamples
have the odor of artificiality possessed by the last example. The reader is
invited to examine the concepts in various categories. One final note: Epi-
morphisms in the category Gr of groups really are onto, and this is not
obvious. See Exercise 1 for a description of how this goes.

Now some more concepts. Suppose C is a category, and A E C.

i) A is an initial object if Mor(A, B) is a singleton for all B E C.

ii) A is a final object if Mor(B, A) is a singleton for all B E C.

iii) A is a zero object if A is both an initial object and a final object.

Example 16 In Set, 0 is an initial object, and any singleton is a final
object.

Example 17 In Gr, the trivial group is a zero object.

Example 18 Let Top,, denote the category of pointed topological spaces,
that is, ordered pairs (X, x), where X is a topological space and x E X.
A morphism from (X, x) to (Y, y) is a continuous f : X -> Y for which
f (x) = y. Then any ({x}, x) is a zero object.
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Example 19 Let X be a topological space, and set objC = all open
subsets of X, with Mor(U, V) = {inclusion U -+ V} if U C V, and
Mor(U, V) = 0 if U 0 V. Then 0 is an initial object and X is a final
object.

Note that initial objects, final objects, and zero objects are unique up to
isomorphism. The usual routine applies, once one recognizes that basically
a final object is a product over an empty index set while an initial object
is a coproduct over an empty set. For a final object A, for example, a
unique filler B -+ A must exist for each B, making the empty collection of
diagrams

Intentionally

left blank

commute. Note also that any morphism into an initial object is epic, while
any morphism from a final object is monic. Also, if A is either an initial
object or a final object, then Mor(A, A) = {iA}. Finally, if a zero object Z
exists, then composing the elements of Mor(A, Z) and Mor(Z, B) yields a
0 E Mor(A, B); this definition of 0 is independent of the zero object Z (see
Exercise 2).

We have one last sequence of definitions generalizing to arbitrary cate-
gories some of the module-theoretic concepts of Chapter 2.

i) An object P is projective if a filler exists for any diagram

P

for which 7r is epic.

ii) An object E is injective if a filler exists for any diagram

E

for which t is monic.
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The main thing to note is that the definitions are purely category-
theoretic. A category C has a separating class of projectives if, given any
pair of morphisms f, g E Mor(A, B), with f 54 g, there exist a projective
P and h E Mor(P, A) such that f h # gh. C has enough projectives if,
given any object A E C, there exists a projective P and an epimorphism
7r E Mor(P, A). Observe that "enough projectives" = "separating class
of projectives". Refining "separating class" further, a separating set of pro-
jectives is a set of projectives from which the P's above can be selected.
A [projective] separator is a single P which does the job. Reversing all
arrows (i.e., working in C°P), one defines coseparating class of injectives,
enough injectives, coseparating set of injectives, and [injective] coseparator
analogously.

Example 20 In Set, any set is projective (axiom of choice), and any
nonempty set is injective. (So it has global projective dimension zero and
global injective dimension one. Arggh.)

Example 21 In Haus, only the empty space is projective, and only sin-
gletons are injective. (Exercise for the topologically inclined.)

One final example: In the' category of compact Hausdorff spaces, [0,1] is
injective, thanks to the Tietze extension theorem.

Projectives can often be manufactured using free objects, but some care
is needed. Recall that if C is a concrete category, and if v(A) denotes
the underlying set of A, then "F is free on a set S" means we have a set
mapping cp : S -+ a(F) such that whenever : S --* Q(A) is a set mapping
(with A E C), there exists a unique f such that the diagram

a(A)

f E Mor(F, A) C Q(A)°(F) : S f

v(F)

is commutative.

Let C be a concrete category in which epimorphisms are onto as set
mappings of the underlying sets. Then all free objects are projective.

This is left as an exercise (Exercise 3) and we will not make any specific
use of it. Nevertheless, it is suggestive. Note that in Haus, the free object
on S exists; it is just S with the discrete topology. Unless S is empty, it is
not projective.

We seem to be ready to do homological algebra in any category having
enough projectives, but we're not. What would a "kernel" be? For that we
need more.
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7.2 Additive Categories

In the closing paragraph of the last section, the possible significance of a
category-theoretic notion of "kernel" arose. This would seem to suggest
that we must stick to subcategories of Gr, where kernels first arise. This
turns out not to be the case, a fortunate circumstance. However, some kind
of group structure is required. The point here is to place it on the morphism
sets. That way it can interact with composition. Since the homomorphisms
from one (non-Abelian) group to another do not form an appropriate al-
gebraic object, we shall stick to Abelian groups. The result is called an
additive category. It is not just a special type of category, any more than a
group is a special type of set. It has additional structure, whose presence
we shall emphasize (for a short while) by being disgustingly strict about
notation.

If G is a group, let a(G) denote the underlying set of G. An additive
category A consists of three things: a class objA of objects; a function
Hom : objA x objA -+ objAb; and a composition rule, subject to the
following (with Mor = o o Hom):

i) objA, Mor, and the composition rule constitute a category.

ii) If A, B, C E objA, then

composition : Mor(B, C) x Mor(A, B) -* Mor(A, C)

is Z-bilinear relative to the group structures that is endowed
with via

iii) The category defined by objA, Mor, and the composition rule, con-
tains a zero object.

Before returning to our usual terminological shorthand, note that the
difference between Hom(A, B) and Mor(A, B) is precisely the difference
between a group and its underlying set. Ordinarily in algebra, it is not
dangerous to be sloppy about this distinction, and the same holds here.
Ordinarily., But not always, so again the notation "Hom" will be used to
emphasize the additional structure present.

It should be noted that what we have is a special example of an "aug-
mented category," a loose notion described as follows. Let C be any concrete
category, and let o : objC -+ Set be the function that picks off the under-
lying set of an object of C. A C-augmented category D consists of three
things: a class of objects objD; a function Hom : objD x objD - objC;
and a composition rule, subject to the following (setting Mor = v o Hom):

i) objb, Mor, and the composition rule constitute a category.

ii) If A, B, C E ob jD, then
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iia) For all f E Mor(A, B), the map g F--> g f from Mor(B, C) to
Mor(A, C) is the underlying set mapping of a C-morphism.

iib) For all g E Mor(B, C), the map f H g f from Mor(A, B) to
Mor(A, C) is the underlying set mapping of a C-morphism.

iii) Whatever else is required.

(iii) varies with the situation. ("Augmented" is loosely defined!) Mak-
ing (iii) read "D has a zero object" defines an additive category as an
Ab-augmented category. When C = Top, (iii) ordinarily requires joint
continuity of composition. LCH, the category of locally compact Haus-
dorff spaces, then becomes a Top-augmented category if the morphism
sets are equipped with the compact-open topology. Finally, if R is commu-
tative, then RM is an RM-augmented category (!): (iii) includes the rest
of R-bilinearity'for composition (as well as existence of a zero object) for
RM-augmented categories.

Now back to additive categories, with our usual notational shorthand.
An additive category is now a triplet consisting of a class of objects objA,
morphism Abelian groups Hom(A, B) for A, B E objA, and a bilinear
composition rule, which combine to form a category with a zero object.
The first question leaping to mind is, "Why must there be a zero object?"
Good question. To see the answer, look back at Exercise 1 in the last
chapter. The zero homomorphism from one module to another is precisely
the homomorphism that factors through the zero module. That is, the zero
homomorphism can be identified purely in category-theoretic terms (aha!),
since that is how the zero objects are defined. Bilinearity guarantees that
this continues to hold in any additive category.

Example 22 RM and MR are additive categories, any R. So is RMS, for
any two rings R and S.

Example 23 If G is your favorite nontrivial Abelian group, then {G} and
HomZ(G, G) do not form an additive category, since it has no zero object.
However, {G, O}, with 0 the trivial group, is an additive category (with
"Hom" being Homz.)

Before going on to results, a few comments are in order about the overall
drift. First, we introduced in the last section some categorical analogs of
earlier concepts. There is a limit to how far this can go; the word "kernel"
formed a stopping point. Next, we introduced further structure on the cat-
egory, producing an additive category. After discussing some results and
constructions, we shall define a pre-Abelian category to be an additive cat-
egory in which certain universal constructions can be carried out. Finally,
we shall make two technical assumptions about pre-Abelian categories in
order to define Abelian categories. These technical assumptions are ab-
stracted from known properties of RM. It is hoped that this will give some
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coherence to the subject. By the way, the assumptions do restrict things:
Gr is not additive; the category in the last example above is additive but
(usually) not pre-Abelian; and RSh is pre-Abelian but not Abelian.

As for results, we start with products, biproducts, and direct sums (still
the preferred term for a coproduct in an additive category). If A is an
additive category, then a biproduct (A; W1, ca2, 71, 72) of two objects Al, A2
in A is a quintuplet, with 7rj E Hom(A, Aj) and cps E Hom(Aj, A), j = 1, 2,
satisfying 7r1W1 = iA1, 7r2W2 = iA2, and W17r1 +W27r2 = iA-

Proposition 7.1 Suppose A is an additive category, and suppose
(A; cpl, P2, 7r1 i 72) is a biproduct of Al and A2. Then 7r1W2 = 0, and 7r2<o1 =
0. Also,

A1-9-1-+ A*A2

defines a direct sum, and

Al *- A- A2

defines a (direct) product.

Proof: Identical, word for word, with the proof of Proposition 2.1 (except
that A replaces RM and the letter A replaces B).

Proposition 7.2 Suppose A is an additive category, and suppose

Al- A+ 102 A2

defines a direct sum in A. Then there exist unique 7rj E Hom(A, Aj), j =
1, 2, such that (A; W1, W2, 7rl, 7r2) is a biproduct of Al and A2.

Proof: From Proposition 7.1 above, 7r1 and 7r2 are fillers for

Al vi A c A2

Al

P1 W2
Al--------- A - A2

A2

and these fillers exist uniquely by the definition of a direct sum (coproduct).
All we must now check is that cp17r1 + W27r2 = 2A. Set = cp17r1 + W272-
Note that

W1 = Mir1 + '272)W1
= cp17r1p1 + P2721P1

= (P12A1 + W20

= W1
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Similarly, 0cp2 = cp2. That is, is a filler for

Al A W? A2

A

But this filler is unique, and iA works, so = iA.

Corollary 7.3 Suppose A is an additive category, and suppose

Al -AW2 A2

defines a product in A. Then there exist unique cps E Hom(Aj, A), j = 1, 2,
such that (A; cpl, w2, 7rl,'7r2) is a biproduct of Al and A2.

Proof: A, 7rl, and 7r2 define a coproduct in the additive category A°p; use
Proposition 7.2.

At this point we note that many (perhaps most) authors require additive
categories to possess biproducts of any two objects. Others do not. The
following proposition provides evidence for both points of view.

Proposition 7.4 Suppose A and A' are two additive categories, and sup-
pose A contains a biproduct of any two objects. Suppose F : A --+ A' is a
covariant functor. Then the following are equivalent.

i) F is additive, that is, F(f + g) = F(f) + F(g) for any f, g E Hom(A,
B); A, B E A.

ii) F(Al ® A2) = F(A1) ® F(A2) for all Al, A2 E A.

iii) F(A ® A) F(A) ® F(A) for all A E A.

Remark: As with Proposition 6.1, tacitly "F(A ® B) F(A) ED F(B)II
means that if

A `P_+ A ®B + Ip B

defines A ® B as a coproduct, then

tP)
F(A) F - F(A ®B)

F
F(B)

defines F(A ® B) as a coproduct.

Proof: (i) (ii) (iii) = (i) works the same way here as it did in
Proposition 6.1. The technical point-that F(7r,) and F(r2) are the 7r',
and ir2 for which (F(AED A); F(cpl), F(cp2), ir', 7r2) is a biproduct in A'-is1
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even the same. To see this, we must establish that F(7r1) and F(7r2) are
fillers for the appropriate diagrams in the proof of Proposition 7.2. That
is, we must check that iF(A) = F(7ri)F(c,l) = /while 0 =

But iF(A) = F(iA) = F(ir1'1) = F(ir1)F(W1);
similarly, iF(A) = F(7r2)F(V2). Also, F(iri)F(cp2) = F(iricp2) = F(0), and
similarly F(ir2)F(cpl) = F(0), so it suffices to show that F(O) = 0, that is,
F (zero morphism) = zero morphism. Since the zero morphism is precisely
the morphism which factors through "the" zero object (both in A and A'),
it suffices to show that F (zero object) = zero object.

Let 0 denote a zero object of A. Note that (0; i, i, i, i) is a biproduct of
0 with 0 in A, where i = io is the only element of Hom(O, 0). Hence

is a coproduct in A, so

F(O)
F F(O) 1 F(O)

is a coproduct in A'. By Proposition 7.2, there exist unique 7r1, 1r2 E
Hom(F(O), F(O)) such that (F(O); F(i), F(i),1r1i ir2) is a biproduct. Let-
ting F(i) play the role of W1, iF(o) _ iriF(i). Letting F(i) play the role of
V2, 7riF(i) = 0. Hence iF(o) = 0, so F(O) is a zero object. (See Exercise 4.)

Note that, in the above, A' did not have to contain biproducts, but it
did have to contain a zero object.

In the next section we shall describe two more constructions whose pres-
ence (with biproducts) specify a pre-Abelian category.

7.3 Kernels and Cokernels

We are now very close to what we need for homological algebra in the ab-
stract, at least for the domain category. We start with an additive category
A. Suppose A, B E A, and f E Hom(A, B). What we need is some way of
defining categorically the objects we are used to having around for mod-
ules. They are the kernel, the image, and the cokernel. The image will be a
bit of a problem at this stage, so we shall stick to the kernel and cokernel
for now.

A kernel of f is defined in category-theoretic terms as follows. A kernel
consists of an object K E A and a morphism j E Hom(K, A) such that
f j= 0 and, whenever C E A and g E Hom(C, A) satisfies f g= 0,
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there exists a unique filler g

K2AfB
19

9
11

11

fg = 0

forming a commutative diagram. Note that since the definition is categori-
cal, a kernel is only unique up to isomorphism (see below). This is a general
phenomenon that one must simply get used to. Abusing the terminology a
bit, we shall often say that j is a kernel for f.

A cokernel of f is defined similarly, with arrows reversed. A cokernel
consists of an object D E A and a morphism p E Hom(B, D) such that
pf = 0 and whenever C E A and g E Hom(B, C) satisfies g f = 0, there
exists a unique filler g

Af>B a'D
9 ig gf=0
C

forming a commutative diagram. If A = RM, some R, then D = B/ f (A)
works.

Note that a cokernel in A is a kernel in A°p. Also, one can use an
"overcategory" to define a kernel: Given A, B, and f c Hom(A, B), consider
the category of all pairs (C, g) such that C E A, g E Hom(C, A), and
f g = 0. A morphism from (C, g) to (D, h) is a cp E Hom(C, D) such that
g = hcp, that is,

commutes. Then a kernel is a final object in this category. (See Exercise
6.) In particular, any two kernels are isomorphic in this, category, hence
are isomorphic. in A. Similar considerations, with arrows reversed, apply to
cokernels.

Suppose one has a commutative square

A - Bf
f, I tP

A'-'B'.
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If kernels are taken, one has a diagram

K 3'A f>B

in which f'(cpj) = f'cpj = ?b f j = 0. Hence cpj factors through K':

K 1'B
w

0Y j, f,K'A'-->B'.
Similarly, attaching cokernels produces a commutative rectangle

K- A 1 ' B -D
Y if W Y

K'-->A'-
Given later developments, one can make a functorial interpretation of all
this; this will be done in Section 7.5.

We now make a definition: An additive category A is pre-Abelian if it con-
tains a biproduct of any two objects, and if any morphism has both a kernel
and a cokernel. It turns out that to make a start on abstract homological
algebra, all we need for our domain category is a pre-Abelian category with
enough projectives and/or enough injectives. Further conditions then force,
for example, Ext° -- Hom. (It should probably be noted that there are ways
of manufacturing Ext without using projectives or injectives. They are less
than transparent and are inappropriate for this book. See, for example,
Hilton [33, Chapter 4].) When we abstract the range category, we shall
need more.

A couple of quick remarks are in order. First of all, by the usual subtrac-
tion trickery, if f E Hom(A, B), then f is an epimorphism 4= (V C E
A, g E. Hom($, C) : g f = 0 = g = 0), and f is a monomorphism

(V C E A, g E Hom(C, A) : f g = 0 g = 0). That is, "right
cancellable" means "right nonzero divisor", and ditto on the left. More
subtle is the fact that kernels are monic. Suppose f E Hom(A, B), with
kernel j : K -+ A. Then j is monic. To see this, suppose g E Hom(C, K)
and jg = 0. Then g is a filler for

K 2'A f >B
o

g

C
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But 0 is also a filler, so g = 0 by uniqueness. Similarly, if p : B -+ D is a
cokernel of f , then p is epic. One of the simplest ways of defining an Abelian
category (there are several) is to require of a pre-Abelian category that this
be reversible: Monomorphisms should be kernels and epimorphisms should
be cokernels. We shall return to this in a while.

Example 24 RSh, the category of short exact sequences from RM. This
category is pre-Abelian. To see this, note that it is additive in the obvious
way (adding components). Also, (0 - A - B -+ C 0) ® (0 --+ A' -+
B'-+ C'--+0)is 0,A®A'- BED B'C®C'-+0.Finally, we have
the diagram

0 0 0

iii
0 0 0

from Proposition 6.4. The fact that K3 connects to Dl rather than 0 makes
it seem like we don't have a kernel (or cokernel). Certainly 0 -' Ki -+ K2 -+
K3 will not do for the kernel, since it is not short exact. But 0 -- Kl -p
K2 -+ p(K2) -+ 0 will. In fact, if 0 -+ Al -+ A2 -- A3 -+ 0 maps into
0 -+ Bl -+ B2 - B3 -> 0, with composite into 0 --+ Cl -' C2 -+ C3 0
being 0, then it factors (uniquely) through 0 Kl K2 p'(K2) 0.

(See Exercise 7.) Similarly, 0 -+ ker q -+ D2 -+ D3 0 serves as a cokernel.

I I fI
K1 ' B1 - Dl

1.1 13
Yi 9 C2- D2

l i'

'I?'_____
jp

h

jq I -q

K3c B3 -.31- C3 . D3
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The category RSh shows its bizarre nature in other ways. For example,

I

0

01
81

I
=B2

IB2-B2
1182 I P

B2 n} B3

1 1

0 0

is a bimorphism in RSh, which is neither a kernel, a cokernel, nor an isomor-
phism (unless Bl = 0). Similarly, 0 -+ Bl -+ B2 -+ B3 -+ 0 is projective
s Bl = 0 and B2 B3 is projective in RM. This is nevertheless sufficient
to provide enough projectives. (See Exercise 8.)

The following proposition lists the basic properties of kernels and coker-
nels.

Proposition 7.5 Suppose A is a pre-Abelian category; A, B E A; f c
Hom(A, B). Let j : K --+ A be a kernel of f, and p : B , D a cokernel of
f

a) K and D are unique up to isomorphism.

b) j is monic and p is epic.

c) If cp E Hom(B, C), and cp is monic, then j : K -+ A is a kernel for
W f . If b E Hom(C, A), and ip is epic, then p : B -+ D is a cokernel
for f O_

d) f is monic K = 0; f is epic t D = 0.

Proof: (a) and (b) were done earlier. For (c), note that cp f j = 0, and if
g E Hom(E, A), then cp f g = 0 e=* f g = 0, so exactly the same morphisms
are asked to factor through K as through ker(cp f ). Again, D = coker f i/i
works the same way in AP.

Finally, for (d),

f is monk V C, V g E Hom(C, A) (f g = 0 g = 0)
t V C, V g E Hom(C, A) (f g = 0 t=* g factors through 0)

0 is a kernel of f.
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By (a), K is a zero object. The result for D is the same in A°p.

We are now in a position to define what exactness means. Unfortunately,
there are two distinct ways of doing this.

Definition 7.6 Suppose A is pre-Abelian, and suppose

A B 9C
is a diagram in A, with g f = 0.

a) This diagram is kernel-exact if, letting j : K -+ B denote a kernel
of g, the factorization

has 7 epic.

b) This diagram is cokernel-exact if, letting p : B --> D denote a
cokernel of f, the factorization

C
9

A -- B 9

P
D

has g monic.

In general, these two definitions do not agree. However, some things do
hold in both situations. Specifically, note that 0 A --' B is kernel-exact
if and only if it is cokernel-exact if and only if A -p B is monic; see Exercise
9. Similarly, A B -+ 0 is kernel-exact if and only if it is cokernel exact if
and only if A -4 B is epic.

We do need one observation. Suppose 0 -p A -- B --+ C is kernel-exact.
In the notation of part (a) of the definition, f is epic. Since f = i7 is monic
(preceeding paragraph), it follows that f is monic as well. That is, f is a
bimorphism. We thus have:

Suppose A is balanced and pre-Abelian. Then 0 -* A B -* C is
kernel-exact if and only if A B is a kernel for B --+ C. Similarly,
A - B C -> 0 is cokernel-exact if and only if B --; C is a cokernel
for A -- B.
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(The "if" parts can be read from the definitions: f = iA. Recall that a
category is balanced when bimorphisms are isomorphisms.)

The above properties are what one needs for the exactness properties of
Hom; we shall return to this in Section 7.8. Furthermore, kernel-exactness
is exactly what we need when working with projectives. Similarly, cokernel-
exactness is what works well for injectives.

Definition 7.7 Suppose A is pre-Abelian, and B E A. A projective res-
olution of B is a semi-infinite kernel-exact sequence

... P2 -> P1 -4 Po -, B -* 0

with all Pj projective. An injective resolution of B is a semi-infinite
cokernel-exact sequence

0->B- Eo --+El -,E2-->...

with all Ej injective.

The following is the analog of Proposition 3.1. It is exactly what one
needs in the domain to define left derived functors in the abstract.

Proposition 7.8 Suppose A is a pre-Abelian category with enough projec-
tives. Then any object in A has a projective resolution which can be chosen
with a choice function. If B, B' E A and cp E Hom(B, B'), and if (Pa, dn)
is a projective resolution of B and (P,,, d') is a projective resolution of B',
then there exist fillers V,, E Hom(Pn, P,) making

do+1 d,. diPn+l-->Pn--}... Pl--3--Po - B ' 0
I I i i

own+1 IWn l'1 IOo fp

W d;,+1 W, d'
W, di

w ' B' 0Po -" '

commutative. Further, if cp'n E Hom(Pn, Pn) also serve as fillers, then cpn
and cp'n are homotopic, that is, there exist Dn E Hom(Pn,, Pn+1) (with
D_1 = 0) such that cpn - cp'n = d'' +1Dn + Dn-ldn.

Proof: This goes much like Proposition 3.1, without the images (or ele-
ments). It turns out that all this does is make things more inductive.

To begin with, projective resolutions do exist. Choose a projective Po
and an epimorphism 7r : Po --> B. Let j1 : Kl -> PO be a kernel for it.
Choose a projective P1 and an epimorphism pi : P1 -> K1i set dl = jlpl
Let j2 : K2 -* Pl be a kernel for dl. (Note: Since j1 is monic, j2 : K2 --> P1
is a kernel for pl as well, by Proposition 7.5(c).) Choose a projective P2
and an epimorphism p2 : P2 --> K2; set d2 = j2p2. Et cetera.
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True, an infinite number of choices from (possibly) proper classes are
made, something that cannot be accomplished directly using a choice func-
tion. Nevertheless, one can bypass this using the Zermello hierarchy (Sec-
tion 6.6). If B E A, let a(B) be the smallest ordinal a such that VQ fl A
contains a projective P for which Hom(P, B) contains an epimorphism.
Using the axiom of choice, choose P(B) E Va(B) n A (a set) and 7rB an
epimorphism in Hom(P(B), B). Similarly, choose a kernel for -7rB from a
smallest VQ fl A. Note that, by recursion, the above constructions actually
choose (using a function) a specific projective resolution for any B E A.

Next, fillers. To begin with, recall that "PO B' 0 is kernel-exact"
means "PO -i B' is epic." (See Exercise 9.) Hence, projectivity of Po pro-
duces a filler coo:

Now we have to start being more careful. In general, let jn : K. -->
Pn_1 (respectively, jn : Kn -+ Pn-1) denote a kernel of dn_1 (respectively,
dn_1), or of 7r (respectively, 7r') if n = 1. Let pn : Pn -+ Kn (respectively,
pn : P,n -' Kn) denote the corresponding factorization, with do = jnpn
(respectively, do = jnpn) This notation is consistent with what we had
earlier.

Suppose coo, ... , cpn have been defined:

do+1 d.
Pn+1- ' P. 0 Pn-1

1 d'P 1 i

IWn IWn-1

n n
P n+1 Kn+1-+;

P
,
n

n-
Pn-1

(The righthand column is replaced by B , B' if n = 0.) Note that
dncpndn+1 = con-ldndn+l = 0, so that condn+l factors (uniquely) through
Kn+l since jn+1 : Kn+1 -' P;1 is a kernel for dn:

do+1 d.
Pn+1 -- IN- P. ' Pn+1

Wn n+1
Pn+1 in+1 , d

Pn+1 ---4- Kn+1 Pn - Pn-1
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Finally, since p'n+1 is epic and Pn+1 is projective, this dotted arrow has a
filler through P11+1:

Pn+1 dn}1 - Pn
d}

Pn-1
Pn+1 i

i: d
gy p

± p' P'P' - N K'n+1 n+1 n n-1

Homotopies work in a similar fashion. Suppose (cpn) and ((pn) provide
fillers. Note that lr'cpo = cp1r = rr''cpo, so that ir'cpo -cpo) = 0. Hence wo -V'
factors through Ki since ji : K1' -' Pa is a kernel of ir'. That is, we have

PO

I

I

WO-vo

Ki P.

Since Pi -+ K'1 is epic, we further get

PO

A
Pl Kl Pa

Pl

Do,

I WO - (POI

By definition, WO - cpo = diDo = diDo + D_1do (since D_1 = 0).
Now suppose we have Do,- , Dn, so that cpn -W' = d' +1Dn+Dn_1dn.

We have

do+1(Vn+l - w'+, - Dndn+1) = d'n+lcpn+l - do+lcpn+l - do+lDndn+1
_ cndn+1 - Wndn+l - do+lDndn+1
_ (pn - cn - do+1Dn)dn+1
= Dn-ldndn+l
= 0.

Hence, cpn+1 - cpn+1 - Dndn+1 factors through Kn+2, and hence (Pn+1
being projective) through Pn+2:

Pn+li
Dn+1 - ' i

,

I (Pn I (Pn-I

Wn+1-w.,+i - Dn do+1

Pn+2 ; ; Kn+2 }2 Pn+l
Pn+2

As required, cpn+1 - cpn+1- Dndn+1 = do+2Dn+1
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Corollary 7.9 Suppose A is a pre-Abelian category with enough injectives.
Then any object in A has an injective resolution which can be chosen with
a choice function. If B, B' E A and cp E Hom(B, B'), and if (En, 8n) is an
injective resolution of B and (E,,, 8n) is an injective resolution of B', then
-there exist fillers WI E Hom(En, En) making

02 ...O--B ` - EE El
i I

IWo I(Pi
W ai az

Eo Elm...
commutative. Further, any two collections of fillers are homotopic.

Proof: Quote Proposition 7.8 for A°P.

If A is pre-Abelian with enough projectives (or respectively, injectives),
and F is an additive covariant functor from A to Ab, we can now define
L IF (or respectively, RF) via our chosen projective (or respectively, in-
jective) resolution of any B E A. Apply F, delete F(B), and take homology,
just like in Chapter 6. Ditto L 'F (or RIF) if F is contravariant. However,
recovering the right properties requires more. The same is true if we want
to change the target category from Ab to something more general. For all
this, we need to examine the conditions defining an Abelian category. We
also need to examine projectives and injectives.

To start with, consider the following two conditions on a pre-Abelian
category A.

Ab-monic. If A, B E A, and if f E Hom(A, B) is monic, then there
exist C and g E Hom(B, C) such that f : A --p B is a kernel of g.

Ab-epic. If A, B E A, and if f E Hom(A, B) is epic, then there exist C
and g E Hom(C, A) such that f : A -4 B is a cokernel of g.

Definition 7.10 A pre-Abelian category is Abelian if it satisfies both Ab-
monic and Ab-epic.

A surprising amount happens with just one condition.

Proposition 7.11 Let A be a pre-Abelian category that satisfies either
Ab-monic or Ab-epic. Then

a) A is balanced.

b) If A, B E A, and f E Hom(A, B), then there exist C E A, p E
Hom(A, C), and j E Hom(C, B) such that f = jp, where j is monic
and p is epic.

I 1P
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Proof: Assume Ab-monic; for Ab-epic, work in A°P
For (a), suppose f E Hom(A, B) is a bimorphism. Since f is monic, there

exists a 9 E Hom(B, C) for which f A -+ B is a kernel of g. Since g f = 0
and f is epic, g = 0. That is, f : A --+ B is a kernel of the zero map. Since
iB : B --+ B is also a kernel, f is an isomorphism by Proposition 7.5(a).

Now (b). Assume f : A -+ B is given. Let q : B --+ D be a cokernel of f,
and let j : C --+ B denote a kernel of q. We have a diagram

A f B q D=coker(A-+B)
P\

C = ker(B -+ D)

with a (unique) filler p, since q f = 0 (q = coker f) = p exists (j = ker q).
By Proposition 7.5(b), j is monic; we must show that p is epic. Suppose
g E Hom(C, E), and gp = 0:

Let e : K -+ C denote a kernel for g : C --+ E. We now have a commutative
diagram

with a filler d since gp = 0. Now e and j are monic, so je is monic, hence
is a kernel of some h E Hom(B, F):

A f >B 9 -D
I' '1/a 9

K CAE
But now watch this:

hje = 0 hjed = 0 hf = 0 = h factors through D



184 7. Abstract Homological Algebra

F
\kfa qA

K e C 9 E
In this diagram, hj = kqj = 0 since qj = 0. (j : C -+ B is a kernel for q.) It
follows that j factors through je : K - B since je is a kernel of h : B -+ F:

F

Now we have that j = jeep ecp = is since j is monic. Also, ewe = ice =
eiK, so We = iK since e is monic. That is, e is an isomorphism with inverse
W. But e : K - C was a kernel for g : C -+ E, so g = 0. Since g was
arbitrary with gp = 0, p is epic.

The oddball proof of (b) may make it appear that (b) is unusual. In fact,
pre-Abelian categories not satisfying (b) are hard to come by. Condition
(b) also holds if there is a separating class of projectives, or a coseparating
class of injectives; this is shown in Section 7.4.

If A is pre-Abelian and satisfies Ab-monic, then the intermediate object
in any factorization (b) is unique up to isomorphism. (See Exercise 10.)
It is referred to as the image of f. (If A satisfies Ab-epic, it is called the
coimage. If A is Abelian, go back to "image.") We will not really need this
concept until Section 7.7.

The proof of (b) in the presence of Ab-monic is in a sense "generic."
(See Exercise 11.) Consequently, it is no surprise that the proof of (b) is
appealed to for the following.

Proposition 7.12 Suppose A is a pre-Abelian category. Then the follow-
ing are equivalent:

i) A satisfies Ab-monic.

ii) A is balanced, and cokernel-exact sequences are kernel-exact.

iii) If 0 -+ A B --+ C is cokernel-exact, then A B is a kernel for
B --+ C.
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iv) If A -+ B is monic, with cokernel B --+ D, then B -+ D has kernel
A --+B.

Proof: (i) = (ii). If A satisfies Ab-monic, then bimorphisms are iso-
morphisms by Proposition 7.11(a). To show that cokemel-exact sequences
are kernel-exact, we appeal to the construction in the proof of Proposition
7.11(b). Suppose

A fa.- B 9C

is cokernel-exact. Filling in K = a kernel of B --+ C and D = a cokernel of
A -+ B yields

A f *_ B 9 -C

K D

Since l is monic, q and lq = g have the same kernel, namely K. By the
proof of Proposition 7.11(b), p is epic, so A -+ B ---+ C is kernel-exact.

(ii) = (iii). If 0 -> A --+ B -+ C is cokernel-exact, then in the presence
of (ii) it is kernel-exact, so that A -+ B is a kernel for B --+ C (since also
bimorphisms are isomorphisms).

(iii) (iv). If A --+ B is monic with cokernel B -+ D, then by definition
A B -+ D is cokernel-exact. 0 --+ A ---+ B is also cokernel-exact, so
0 -+ A --+ B -+ D is cokernel-exact; assuming (iii), A --+ B is a kernel for
B-+D.

Finally, (iv) (i) is trivial.

Condition (iv) is sometimes written "f = ker(cokerf) if f is monic,"
being sloppy about equality.

Corollary 7.13 Suppose A is a pre-Abelian category. Then the following
are equivalent:

i) A satisfies Ab-epic.

ii) A is balanced, and kernel-exact sequences are cokernel-exact.

iii) If A -+ B -+ C -+ 0 is kernel-exact, then B C is a cokernel for
A B.

iv) If A -+ B is epic with kernel K --+ A, then K -+ A has cokernel

A -+B.

Proof: Apply Proposition 7.12 to A°P.
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It should be noted that in any pre-Abelian category, if f : A --+ B is
a cokernel-that is, if there exist a C and a g : C -> A such that f is a
cokernel of g-then necessarily f is a cokernel of j K A, where j is
a kernel for f. (That is, any cokernel is a cokernel of its kernel.) Exercise
13 covers this, and the corresponding result for kernels. We shall not need
this in all generality until Section 7.8.

We can now be explicit about what we should have in a domain for
homological algebra.

Suppose A is a pre-Abelian category.

a) If A has enough injectives, then one can form right derived functors
(including Ext, by resolving the second variable in Hom). Ext° is
isomorphic to Hom, provided A satisfies Ab-monic (Section 7.8).

b) If A has enough projectives, then one can form left derived functors
(including Ext, by resolving the first variable in Hom). Ext° is iso-
morphic to Hom provided A satisfies Ab-epic (Section 7.8).

(At this point, the functors to be derived take values in Ab. The target
category will be generalized in Section 7.6. If (a) and (b) both apply, there
is no guarantee that the two Ext groups coincide.)

In case (a), one always uses cokernel-exact sequences (which will imply
kernel-exact; this is Proposition 7.15 below in A°P). In case (b), one always
uses kernel-exact sequences. If A is actually Abelian, then kernel-exact
sequences are cokernel-exact and vice versa (thus, simply called exact);
furthermore 0 - A -i B -i C --> 0 is exact if and only if A , B is monic
with cokernel B --p C if and only if B -* C is epic with kernel A B. See
Exercise 15 for more about all this.

In the next section we shall further investigate the detailed consequences
of the presence of projectives and injectives.

7.4 Cheating with Projectives

Cheating?
In certain situations, with some categories, one can prove many state-

ments about arrows by pretending that the objects are sets and the mor-
phisms are functions. That is, one pretends the category is concrete. This
is usually called "cheating" when the category is not known to be concrete.
It can be carried out if enough of the category is equivalent to a concrete
category; the usual case of Abelian categories is discussed in Appendix C.
Nevertheless, a form of cheating can be carried out in any pre-Abelian cat-
egory with a separating class of projectives. This is not very well known;
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it is also good "diagram practice," although overindulgence leads to slop-
piness. (Various standard results about Abelian categories will be proved
in Section 7.6 with no cheating.)

The idea behind "cheating with projectives" in a pre-Abelian category
with a separating class of projectives is this: Make the arrows do the work
that elements do in concrete categories. Before getting into this, we need
a few results which tighten the analogy between "elements" and "arrows
from a projective." Keep in the back of your mind the case where the
category is concrete, and the separating class of projectives consists of one
object: a free object P on one generator, *. A function f from {*} into
the underlying set of an object A just means the element x = f (*); f
corresponds to a unique arrow P -+ A. If the category is RM, then the
phrase "choose x E A" will correspond to "choose f E Hom(R, A)," with
the correspondence being "x = f (1)."

Consider the following three statements for RM:

a) Given f : A -+ B in RM: f is monic if and only if d x E A, f (x) _
0=x=0.

b) Given f : A -+ B in RM: f is epic if and only if V x E B, 3 y E A for
which f (y) = x.

c) Given f: A-+Bandg:B-+CinRM,withgf =O:A--+B-+C
is exact if and only if V x E B with g(x) = 0, 3 y E A for which
f(y) = X.

The following result corresponds to these statements, given a separating
class of projectives.

Proposition 7.14 Suppose A is a pre-Abelian category with a separating
class of projectives.

a) Given f : A -+ B in A: f is monic if and only if for all projectives
P and all cp:P-+A, fcp=0= w=0.

b) Given f : A -+ B in A: f is epic if and only if for all projectives P
and all W : P -> B, there exists a filler

c) Given f:A--+Band g:B-+C in A,with gf=0:A--+B--+Cis
kernel-exact if and only if for all projectives P and cp : P -+ B with
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gc = 0, there exists a filler

Proof:
(a) If f is monic, then f W = 0 W = 0 by definition. Suppose f is

not monic. Let j : K -+ A be a kernel for f. There exists a projective P
and 0 : P -+ K for which jai ¢ 0-0 = 0, since j # 0. Set W Then
fcp= fjzfi=0,0=0, but cp#0.

(b) If f is epic, then fillers exist by definition of the term "projective."
Suppose f is not epic. Let 7r : B -+ D be a cokernel for f. D 3& 0, so there
exist a projective P and z/b : P -+ D, 0 # 0. (The reason is quite general:
iD # 0, so there exist P and ) with iD ,b # 01/i, i.e., ' # 0.) Let V be a
filler for

Then for any 77 : P -+ A, 7r f i7 = Orl = O, while 7rW = 7P 0 0, so f77 # cp, and
no filler exists for

P

(c) Suppose A -+ B -+ C is kernel-exact, and suppose w : P -+ B satisfies
gyp = 0. Let j : K -+ B be a kernel for g, and let 7r : A -+ K satisfy f = jir.
Also, let : P -+ K satisfy cp = jai. Since -7r is epic, a filler rl exists for

A">K-' }B g -C.
jir=f

On the other hand, suppose A --+ B --+ C is not kernel-exact. Again let
j:K-+Bbe akernel for g,and let ir:A-+Ksatisfy f =j-7r.Then iris
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not epic, so by part (b), there exists a projective P and i : P - K such
that no filler for

P

i a
A -K

exists. Set w = jib. Note that gcp = gjii = 0,0 = 0.
If a filler 17 existed for

P
nf B ---A C

we would have jai = cp = f77 = jir, = 0 = Tri since j is monic, giving

P

A-K
commutative, a contradiction.

Remark: In the above, (c) is easily the strongest, since (a) and (b) can
be derived from it.

This proposition has a number of uses; we start with the result alluded
to after Proposition 7.11. It is a corollary to the following.

Proposition 7.15 Suppose A is pre-Abelian with a separating class of pro-
jectives, and suppose f : A -> B and g : B - C in A, with A - B -> C
kernel-exact. Then A -+ B -p C is cokernel-exact.

Proof: Let it : B --+ D denote a cokernel for f, and h : D -+ C satisfy
hir = g. Let P be projective, and suppose ) : P --* D satisfies hV) = 0. A
filler cp exists for

since 7r is epic, and a filler 77 exists for

A f }B 9 ;C
77 1hP-D
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since A -+ B -+ C is kernel-exact (Proposition 7.14(c)). But now O = ircp =
it f i = 077 = 0. Since P and 0 are arbitrary, h is monic by Proposition
7.14(a).

If A were RM, we might have said, "If h(x) = 0, then (writing x =
x + im f ), g(x) = h(x) = 0, so x E ker g = x = f (y) for some y (since
A --+ B --+ C is exact). But then ± = f (y) + imf = 0." Elements would
correspond to arrows out of projectives.

Corollary 7.16 Suppose A is pre-Abelian with a separating class of pro-
jectives. Suppose f : A -+ B in A. Let j : K -+ A denote a kernel for f,
and 7r : A -+ D a cokernel for j. Let g : D -+ B satisfy gir = f (possible
since fj = 0).

K I
.

- A 1 >B
4

/9

D

Then g is monic. Hence, f = g7r is a composite of an epimorphism followed
by a monomorphism.

Proof: K -+ A -> B is kernel-exact by definition, so it is cokernel-exact.
This just means that g is monic.

Combining with Corollary 7.13, we have:

Proposition 7.17 Suppose A is a balanced pre-Abelian category with a
separating class of projectives. Then A satisfies Ab-epic.

Proof: A satisfies condition (ii) in Corollary 7.13.

Corollary 7.18 Suppose A is a balanced pre-Abelian category with a sep-
arating class of projectives and a coseparating class of injectives. Then A
is Abelian.

Proof: Both A and A°P satisfy Ab-epic by Proposition 7.17, since a cosep-
arating class of injectives in A becomes a separating class of projectives in
A°P. But if A°P satisfies Ab-epic, then A satisfies Ab-monic, so A satisfies
both Ab-monic and Ab-epic.

The above result helps to explain why most pre-Abelian categories that
fail to be Abelian, do so because they are not balanced. A separating class of
projectives and a coseparating class of injectives are just too often present.

We next present a particularly transparent example of cheating, the 5-
lemma. The method follows Proposition 2.5 very closely-so closely that
we can actually convert the proof of Proposition 2.5 into arrows.
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Proposition 7.19 (5-Lemma) Suppose A is a pre-Abelian category with
a separating class of projectives. Suppose that, in A,

Al A2 13_ A4f
A5

W1 I
W21 W31 W4I

WS I

B1 91 ' B2 -92 ' B3 93 ) B4 9 B5
is commutative with kernel-exact rows, and suppose

i) cp2 and cp4 are bimorphisms,

ii) cpl is epic, and

iii) cps is monic.

Then cp3 is a bimorphism.

Proof: To emphasize the manner in which this mimics the proof of Propo-
sition 2.5, the latter's proof will be written on the right, while Proposition
7.19's proof appears on the left. Illustrations of the overall diagram chase
appear after the proof and may be consulted to maintain perspective.

c03 is monic:

Suppose P is projective and a : P
A3 with cp3a = 0.

cp3 is one-to-one:

Suppose p3(a) = 0.

Then f3a=
0, since (o4 is moniC.

Hence, a filler a' exists for

P

Then 0 = 93W3 (a) = cp4f3(a)
f3(a) = 0, since cp4 is one-to-one.

Hence, a = f2(a') for some a' E A2,
by exactness of the bottom row.

a'
a

A2 f2 ' A3 A4

by Proposition 7.14(c).

Hence, 0 = cp3 f2a' = g2cp2a'. Hence, 0 = W3f2(a') = g2W2(a').
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Hence, a filler /3' exists for

by Proposition 7.14(c).

Finally, a filler a" exists for

Al

Hence, cp2(a') = gl(b') for some b' E
BI by exactness of the bottom row.

Finally, b' = WI (a") for some a" E
Al, since W, is onto.

P

since P is projective and cpl is epic.

But now cp2a' = 91/3' = 91W1a" =
(p2 f la", so h 0l" = a', since cp2 is
monic.

But that means that a = f2a' _
f2fla" = 0, since f2 fl = 0.

But now W2(al) = gl(b') =
9l(l(a") = (2fl(a"), so fi(a") = a'
since (p2 is one-to-one

But that means that a = f2(a') _
f2 f, (a") = 0 by exactness of the top
row.

We now have that the original (ar-
bitrary) a was 0, so (p3 is monic by
Proposition 7.14(a).

(p3 is epic:

This breaks into two parts.

Suppose P is projective, and /j E
Hom(P, B3). We shall show that 3
factors through A3. cp3 will then be
epic by Proposition 7.14(b).

(p3 is onto:

This breaks into two parts.

Suppose first that 93,9 = 0. 1 First, im 92 C im cp3:
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There is a filler /3' for

92 93
B2 > B3 B4

P

by Proposition 7.14(c), since B2
B3 -+ B4 is kernel-exact.

Then a filler a exists for

A2

since tp2 is epic.

But now g2/3' = g2 '2a = cp3 f2a, so
f2a is a filler for

f2a s
A3

P
B3

/
W3

11

Finally, suppose /3 : P --+ B3 is arbi-
trary.

Then a filler a exists for

A4
a -

23

Wa

Pa B3 - . B4

since (p4 is epic..

Now 0 = 9493E = (p5f4a
(since g4g3 = 0), so f4a = 0, since

cp5 is monic.

Suppose Y E B2.

Then b' = cp2(a) for some a E A2,
since tp2 is onto.

But now g2(b') = 92402(a) _
403f2(a) E imcp3.

Finally, suppose b E B3.

Then g3 (b) E B4 = im cp4i so 3 a E
A4 with g3(b) = p4(a).

Now 0 = g4g3(b) = g04(a) =
W5f4(a) by exactness of the bottom
row, so f4(a) = 0, since cp5 is-one-to-
one.
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Hence, a filler a' exists for Hence, a = f3(a') for some a' E A3
by exactness of the top row.

f3 f4
A3 - A4 A5F" to

a' P

by Proposi/ttion 7.14(c).

Hence, 93/9 = (Na = ca4f3a' _
93W3a', that is, g3(,3 - W3a') = 0.

Hence, by the first part of the "W3 is
epic" portion of the proof, a filler a"
exists for

Hence, g3(b) = W4(a) _ W4f3(a') =
93<03(a'), that is, b - tp3(a') E

kerg3 = img2 C imW3.

That is, b-tp3(a') = cp3(a") for some
a" E A3, so b = W3(a' + a").

A3
s- -- .L'P3i tttPB3

A-cp3a'

from which 3 = cp3(a' + a").

0

The individual parts of the proof can be diagrammed as follows.
Monic:

'/P11 i
a i ,/ a
,#

Al f/ _A2 A3 f3 A4 f A5

W11 / 13' 1'P2 I'03 I'P4 1W5
/" ry

B1
91

82
92 ` B3 93 B4 94 B5

(commutative)
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Epic, first part:

Al !' A2 -- > A3 f3 > A4 t A5

:2I W2 al W3 W4 IMPS

B1
91

B2 \ B3
93 B4 94 B5

P
(commutative)

Epic, second part:

Al fi
A2

f2 A3 f3 A4 A - A5

I Pi

91

1W2

I''

x/j W4 1W5

B1
-

B2
92 B3

s3 i/ B4 B5

\/
P

(NOT ,commutative)

195

The first two diagrams are commutative. The third is commutative except
that 0 # cp3a' in general. The morphism a' is only designed to make the
triangle involving a, f3, and a' commutative.

The final issue is the subject of simultaneous resolutions. To start with,
we need an analog of Proposition 6.4 (which provided for proper behavior
of kernels) suitable for our limited purposes.

Proposition 7.20 Suppose A is a pre-Abelian category with a separating
class of projectives. Suppose

0 0

I 1 I

I,.

W2
I

B2 - C2

IP

P2 1
B3 - - C3
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is commutative in A with kernel-exact columns. Let ips : Ks --> Bi denote
a kernel of cpi. Then the diagram

0 0 0

L 1111
K1 B1 ->C1

02 c02K2->B2-C2
p Ip 9

K3 G3B3 o3C3

has kernel-exact columns. Moreover, p' is epic provided (pi and p are epic.

Proof: First of all, note that 9L12c' = c101 is monic, so t' is monic directly.
Furthermore, ?/i3p'L' = poet' = pi ! = 0, so p'c' = 0, since 03 is monic.
Now suppose P is projective, and 0 P -* K2 satisfies p'0 = 0. Then
P020 = '/3 p'O = 0, so we get a filler A for

B1

y

l
1

+G2 )P B2

\IP

B3

by Proposition 7.14(c). Now jcpjA = cp2tA = cp2zb20 = 0, so cplA = 0, since
j is monic. But that means that A factors through Kl:

01 Wi
K1 Bi ' C'1

7G3 wsK3 B3 'C3

In we know that µ satisfies 1/i1µ = A; we want that c'µ = 0.
But th2c'µ = U/ilµ = tX = I)20, so c'µ = 0, since .2 is monic. Since our
original 0 : P -> K2 was arbitrary, K1 K2 K3 is kernel-exact by
Proposition 7.14(c).
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Now suppose cpl and p are epic, and suppose 0 : P -+ K3 is given, with
P projective. Since p is epic, we have a filler rl for

B > ±P K3 '3 > B3

Since 0 = 03'030 = W3P'l = qW277, there is a filler A for

Cl

A

P C2n2

C3

by Proposition 7.14(c). Finally, since Wi is epic, there is a filler p for

Bi ' Ci

Ir
B2

7 7,1
P

A

µI

I

P

since P is projective. Now W277 = 3A = jWIJU = W2cµ, so 02(77 - tp) = 0,
and q - tp factors through K2

>- C2
K2 B2

W2

A
vl

P

since '02 is a kernel for cp2. We have that

23PV=p02v=p(77-LA)=p71 -pti=pi]= b30.

Since 03 is monic, 0 = p'v, and v is a filler for

P e_K3
Since 0 : P -+ K3 was arbitrary, p' is epic by Proposition 7.14(b).

We can now obtain simultaneous resolutions by following the recipe in
Proposition 6.5, suitably modified.



198 7. Abstract Homological Algebra

Proposition 7.21 Suppose 0 - + B - B' - B" -* 0 is kernel-exact in
a pre-Abelian category A with enough projectives. Given projective resolu-
tions of B and B":

0

->P2 p1 d j'o">B- >0
4,

B'

d" I
P2 API I, Po ` B"

I
0

there exist morphisms 7r': PO ®Po -* B' and d'n : Pn ®Pn --' Pn_ 1 ® P;,'_ 1
such that

0 0 0 0

2d' pl di o"-'. B 0

' d2. dl' 4 I
P2®I '-P0®Po' B' ' 0

T d d.. 4 .. 4,

P2 P1 -PO BIf ------ -0

0 0 0 0

is commutative with kernel-exact rows and columns. (The vertical mor-
phisms are the obvious ones.)

Remark: P1 ® Pj' is projective (see Exercise 21). and consequently the
middle row is a projective resolution of B'.

Proof: First, find a filler f for

using the fact that Po' is projective. Now suppose (Po; cp, ep", p, p") is a
biproduct of Po with Po (so that PO' can serve as Po ® P0'). The first two
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columns now are

0 0

and these columns are exact. (Exactness of the PO column is easily checked;
we shall return to this in Section 7.8.) We now set 7r' = f p" + j7rp. Note
that Tr'cp = fp"cp + j7rp'p = 0 + jir = jir, while p7r' = Pf p" + Pjirp =
7r"p" + 0 = 7r"p"; thus,

0 0

IAI
Po -- ' B

P0,, 7;B11
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is commutative. Observe that 7r' is epic by the "epic 4-lemma" (see Exercise
16; it is buried inside Proposition 7.19), since we have

epic

?_:rPo B'

epic 1

0

1 monic 10-0
To construct do recursively, given 7r' and do,... , d'n_1, and Kn, Kn, K'

kernels of do-1i d,',- 1, and dn_1 (or 7r, 7r', and yr" if n = 1) we construct do
via its factorization through Kn:

0 0 0

I ;n I nn-1 I
Kn- P--1- Kn-1

17r. IKn 9,.
Pn_1 Kn-1

. I .. 1

Kn - Pn 1- Kn-1

I I I
0 0 0

Note that things start with n = 1, and in that circumstance 0 - B -+
B' B" 0 replaces 0 Ko --> Ko -> Ko --* 0. By induction on n, the
lefthand column is kernel-exact (using Proposition 7.20).
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At this point we have

0

d,.

K 7"

I

d"P" "P/In-1n "

"" K" i"n

0

0

in which the missing fillers are marked with "?". Now construct 7rn (and
thereby do = jnin) inside

I It,, l
" n Kn"Pn n

in exactly the same way as 7r' was constructed. Kernel-exactness of the
middle row will follow from the fact that 7rn is epic.

The above construction now produces long exact sequences when we
form derived functors of an additive functor F : A -+ Ab, where A is pre-
Abelian with enough projectives. Applying F to a resolution such as the one
in Proposition 7.21 yields an array in Ab with rows that are complexes and
split-exact columns (by Proposition 7.4, using Ab°p if F is contravariant).
The appropriate long exact sequences then follow; this is Theorem 7.48 of
Section 7.7. Ext, which is obtained by setting F = C), is covered
by this, compliments of the management.
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7.5 (Interlude) Arrow Categories

The subject of this section is a construction that turns most discussions of
naturality into trivialities. We shall need the results of this in the next two
sections, but the subject itself is a bit of an orphan, not really belonging
in any specific place. The construction itself is admittedly a gimmick, but
it is a surprisingly useful one. It is called the arrow category of a given
category. If C is a category, then the arrow category C(->) of C is defined
as follows.

The objects of C(-*) are the morphisms f : A --* A' in C. A morphism
from f : A -> A' tog : B --+ B' is a pair of morphisms W : A -+ B and
;p' : A' B' such that the square

A
wa-B

A'-'B'
cv'

commutes. In order to sort things out, in this section (at least until the last
paragraph) Roman letters will be used to denote the morphisms from C
that define objects in C(-*), while Greek letters will (in pairs) denote mor-
phisms from C(->). Also, whenever possible, the morphisms which define
objects in C(---) will be written vertically, while the C(-*) morphisms will
be written horizontally. For concreteness, objects in C(->) are denoted as
triples (A, f, A'); the pair (P, co') denotes a morphism. Abbreviations like
"f" or "A -* A"' sometimes will be used.

The connection with opposite categories is both obvious (in statement)
and subtle (for an unconfusing proof).

Proposition 7.22 Suppose C is any category. Then the correspondence

(A, f, A') '-' (A', f, A)
W') '-'

gives an isomorphism of (C(-->))°P with (C°p)(-).

Proof: Recall that C°P is literally obtained as follows:

obj C°p = obj C . (objects)
MorcoP (A, B) = Morc(B, A) (morphisms)

(P c°P z' = Il' c 'p (composition rule)

For clarity, if we start with a C-morphism f or ', we shall write f °p
or 'POP to denote this same f or 'p considered as a C°p-morphism. The
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correspondence can be viewed then as

(A, f, A') '-' (A', f°P, A)
(w, W) '--> cpP).

Note that

(A, f, A') E obj C(-) = obj(C(-*))°P f : A -> A' in C
fOP:A' -- Ain COP

(A', f°P, A) E COP(->).

Furthermore, the reversibility of this shows that obj(C(->))°P
obj(C°P)(-) is a bijection.

Suppose (cp, cp') E Morc(.) ((A, f, A'), (B, g, B')) so that

AFB

A' --,B'
is a commutative square in C. Then

A -E
P--- B

I f op 19p
A' - B'W,op

is a commutative square in COP, that is,

(cp °P, cp°P) E ((B', g°P, B), (A', f°P, A)).

This too is reversible, so the morphism correspondence is also a bijection.
Finally, if also (0, 0') E Morc(-) ((B, g, B'), (C, h, C')), we get a commu-
tative rectangle in C:

A ---- B-0 -C

A/ -, B'- C'
+G'

which transforms into
pop 'pop

A B C

Ifop
190P I hop

A'--B'-*C'op Vop
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in COP. The composition in COP(--+) is

(W'P' cP°P) -C°P(.-.) (*'0P, °P) = (c'°P SC°P *'P, W°P C°-, ,,°P)

= ((p' .C W ')OP' (0 -C cP)°P)

while the composition in C(--+)'P is

(cp'
(p')OP

C(---)°P (v,,'
')°P

= [(v,, V) C(--.) (cc, w')] 'P

= ('0 C cc, 't"i
C W )°P

Dropping the superscript "op" in the morphisms produces the needed
result (while making interpretation of the formulas more difficult).

In our situation, we start with an additive category. Note that if A
is an additive category, then so is A(te): If (co, (p') and (z', ') are in
Hom((A, f, A'), (B, g, B')), then (cp +V), cc' + v') is also in Hom((A, f, A'),
(B, g, B')). Furthermore, 0 : 0 0 is a zero object in A(te). Finally, to re-
duce notation, Hom((A,, f, A'), (B, g, B') will be abbreviated as Hom(f, g).

Proposition 7.23 Suppose A is an additive category, and (cp, cp') E

Hom(f, g) in A(-). Suppose t : K A is a kernel for cc, and t! : K' -, A'
is a kernel for cc'. Let f : K --+ K' denote the induced morphism

K ` }A W B

K'A' B'i 'p

Then (t, t') : (K, f, K') -> (A, f, A') is a kernel for (cp, cc').

Proof: Suppose (vi, ii') maps (C, h, C') to (A, f, A') in A(-*), with (cp, cc')
(,0, ii') = (0, 0). Then i/i factors through K and ,01 through K', yielding the
diagram

C- K A ' B

C' -,K' L ' A' , B

0=t

This diagram is commutative, since t' f iji = f ti = f V) = O'h = t'i'h, so
that 1i = i]i'h since t' is monic. (The lefthand square is the only one at
issue.) Finally, and i' are each unique, so that the pair is unique.

There are three corollaries:



7.5 (Interlude) Arrow Categories 205

Corollary 7.24 Suppose A is an additive category, and (cp, cp') E Hom(f, g)
in A(-*). Suppose 7r : B -> D is a cokernel for cp, and ;r' : B' D' is a
cokernel for cp'. Let g : D --+ D' denote the induced morphism

A
WB '-D

B' D'A',- 7r,

Then (ir, zr') : (B, g, B') -+ (D, g, D') is a cokernel for (cp, cp').

Proof: Essentially the same as Proposition 7.23, with arrows reversed.
(Look in A(-)°P A°P(-+).)

Corollary 7.25 Suppose A is a pre-Abelian category, and suppose (cp, cp') E
Hom(f, g) in A(-). Then is monic in A(-) if and only if cp and
cp' are each monic in A.

Proof: (cp, cp') is monic if and only if its kernel (ker cp, 1, ker cp') is zero
(using earlier notation); this happens if and only if cP and cp' are each
monic.

Corollary 7.26 Suppose A is a pre-Abelian category, and suppose (cp, cp') E
Hom(f, g). Then (cp, cp') is epic in A(-+) if and only if cp and cp' are each
epic in A.

Proof: (cp, cp') is epic if and only if its cokernel (cokercp, g, cokercp') is zero
(again using earlier notation); this happens if and only if cp and cp' are each
epic.

Next, consider biproducts. Suppose (A; W1, (p2, irl, 72) is a biproduct of
Al and A2, and (B;'01, 02, p1, p2) is a biproduct of B1 and B2. Suppose
fl : Al -+ Bl and f2 : A2 --* B2. There is an induced f : A -+ B defined
by f = ' i flirt + 04272 making the diagrams

IP2Al
W1 - A' A2

I f, I f J,f2

B1
--1 - B a B2

and

Al r A2- A 7
Ifl I f I f2

B1 vi B P2 B2



206 7. Abstract Homological Algebra

commutative:

f'p1 = Y'ifiir1'1 +V)2f2ir2V1 =,1fliA, + 0 = 01f1

etc.
""NOW (iA1)iB1),(7r2,P2)(co2, 2) _ (iA2,ZB2), and

W1)(rrl, Pl) + (V2, ")2)(rr2, P2) = (Vlrrl +<p2Tr2,V)iP1 +''2P2) _ (iA, iB)
This just says:

Proposition 7.27 Suppose A is an additive category. Suppose Al and A2
have a biproduct in A, and Bl and B2 have a biproduct in A. If f1 : Al -->
B1 and f2 : A2 -+ B2 are given, then f1 and f2 have a biproduct in A(->).

We can now quickly prove:

Proposition 7.28 Suppose A is a pre-Abelian category. Then A(-+) is
pre-Abelian. Furthermore, if A is Abelian, then so is A(--).

Proof: If A is pre-Abelian, then has biproducts (Proposition 7.27),
kernels (Proposition 7.23), and cokernels (Corollary 7.24). Hence, A(-) is
pre-Abelian.

Suppose A is Abelian. If z,) is monic, then cp and V) are each monic
(Corollary 7.25). Let rr denote a cokernel for cp, and p a cokernel for '0.
Then (rr, p) is a cokernel for (cp, 0) (Corollary 7.24). Furthermore, cp is a
kernel for rr, and zG is a kernel for p (Proposition 7.12(iv)) since cp and z/&
are monic. Hence, (W, ,O) is a kernel for (7r, p) (Proposition 7.23). All put
together, A(->) satisfies Ab-monic; Ab-epic is similar.

Now projectives. Suppose A is pre-Abelian, and suppose P and P' are
projective in A. Then P ® P' is projective (Exercise 21).

Proposition 7.29 Suppose A is pre-Abelian, and suppose P and P' are
projective in A. Then P -> P ® P' is projective in A(te).

Proof: This is done in two stages. First, 0 -+ P' is shown to be projective,
then P -- P is shown to be projective. Their coproduct P -+ P ® P' is
then projective (see Exercise 21).

Suppose (p, p') is epic in A(te):

C-A
C' ->- A'.

P,
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Given " 1: P -' A', we need fillers for

producing a commutative diagram. Any p' serving as a filler for

A' , P'0

will do. (P' is projective, and this triangle is the only nontrivial part.) This
takes care of 0-+P'.

Again, suppose (p, p') is epic in A(-+). Given (z/',ip') : ip -> f, we need
fillers p and p' such that

+V'

gives a commutative diagram. To do this, find a filler p for

Cvµ

A-P.
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The far triangle is commutative. Setting p' = gp makes the top rectangle

C

C'

P

commutative. Finally, for the near triangle

A' ; F,

note that p'p' = p'gp = fpp = fib = ', so this triangle is also commuta-
tive.

This has a corollary, which is a technical result needed in Section 7.7.

Corollary 7.30 (to proof of Proposition 7.29) Suppose A is a pre-Abelian
category in which P, P', and P" are projective. Suppose the diagram
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is given in A with p, p', and p" all epic. Finally, suppose the commutative
diagram (with fillers p, p' chosen)

is given. Then there exists a filler p" for

giving a commutative diagram.
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Proof: From the point of view of the far wedge, this consists of lifting two
things. First, given p, the morphism gµ makes

commutative (as noted in the earlier proof), so gµ is the filler for this wedge.
Furthermore, from the proof of Proposition 7.29, any filler p" for

All P'®P"

yields a commutative diagram. The filler to use is g'µ' from

C"
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combined with any filler for

C',

p,1 .R

A --c- P

This will make the far wedge (and, by symmetry, the near one as well)
commute.

Proposition 7.29 is both helpful and a disappointment. It does produce
plenty of projectives, but the hoped for doesn't fall out (and isn't even
true-see Exercise 20), that P -+ Q would be projective when P and Q
were projective. Nevertheless, our "plenty" is sufficient.

Proposition 7.31 Suppose A is a pre-Abelian category.

a) If A has enough projectives, then so does A(-).

b) If A has a separating class of projectives, then so does A(-+).

c) If A has a separating set of projectives, then so does A(te).

d) If A has a projective separator, then so does A(-+).

Proof: For starters, suppose P_ P (BPI + i P' is a coproduct, and ir' :

P' -+ A' and cp : A' -+ D satisfy cpnr' # 0. Suppose p : P - A' is any
morphism, and form a filler 0 using the coproduct construction:

P
by

P ®P' -B- A' D

P'

In this, 0 # cpur' = cpOl, so cpO 0, too. In particular, if 7r' is epic, then
(letting cp float among all nonzero morphisms) 9 is also epic.

To use this in proving (a), let f : A A' be given in A(-+), and suppose
7r : P A is epic, while 7r' : P' A' is epic, with P and P' projective.
Then (setting p = f 7r)

P > A

PEP' eA'

is (horizontally) epic in A(-+).
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To use this in proving. (b), (c), and (d), let P be a separating class of
projectives. Given a nonzero morphism (;p, cc') in A(-*):

A
W

B

A' -'- B'W1

choose P, P' E P and 7r : P -' A, 7r' : P' -' A' such that either cpir 0 or
tp'7r' # 0. Then (again setting p = f7r), either cprr # 0 or cp'6 0, so the
morphism

P r -A
I h I f

P®P' e ;A'
satisfies (cp, cp') (7r, 0) (0, 0). This proves (b). Taking p to be a set proves
(c). Taking P to be a singleton proves (d).

Corollary 7.32 Suppose A is a pre-Abelian category.

a) If A has enough injectives, then so does A(-).

b) If A has a coseparating class of injectives, then so does A(-).

c) If A has a coseparating set of injectives, then so does A(-*).

d) If A has an injective coseparator, then so does A(-4).

Proof: Quote Proposition 7.31 in A(--')°P (A°P)(--+). (Proposition
7.22).

There are two more things before leaving the subject. First of all, arrow
categories are particular examples of functor categories. If Co is a small
category and C is any category, one may define a functor category [Co, C]
whose objects are covariant functors from Co to C and whose morphisms
are natural transformations. C(---) is obtained by taking Co so that

obj Co = {0,1}
Mor(0, 0) = {io}
Mor(1,1) = {il}
Mor(0,1) = {z}
Mor(1,0) = 0.
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A triple (A, f, A') corresponds to the functor

O - A
1 - A'

20 iA

i1 ti iA/
Z -.f.

The pair (<p, cp') corresponds to the natural transformation a, where

ao=cP
=cp'.al

Naturality of this translates to the required commutative square. Details
are left to the interested reader.

Finally, dropping the Roman letter-Greek letter convention, A(-+) con-
cepts can be applied to horizontal arrows as well. For example, the diagram
of Proposition 7.23 can now be interpreted as asserting that the "map"
which sends (A, cp, B) to (K, t, A) is a covariant functor from A(-+) to it-
self. As usual, we must choose (using the Zermello hierarchy and the axiom
of choice in the same way that projectives are chosen in a pre-Abelian
category with enough projectives) a particular kernel t : K --+ A for each
cp : A -+ B; write Ker((A, cp, B)) for this particular kernel. Then Ker yields
a covariant functor from A(-+) to itself. One may similarly define a cok-
ernel functor Coker. These provide the "functorial interpretation" of the
kernel and cokernel arrows on the first two pages of Section 7.3; there is
more on this in Section 7.7.

7.6 Homology in Abelian Categories

The domain category for homological algebra has already been broadened
to include any pre-Abelian category with, for example, enough projec-
tives. Preferably such a category will satisfy Ab-epic, so that, for example,
Ext0 Hom. (One can often produce a variant with this property even
if Ab-epic is not satisfied; this is discussed in Section 7.8.) When working
with projectives, Ab-monic recedes into the background. In generalizing
the range category, however, we shall have to be more particular.

There is a lot to do in this section, so as in Section 4.3 we will have
several lemmas. There is an underlying theme which should be kept in
mind: Define homology for a complex in an arbitrary Abelian category,
and prove the basic results one expects to need in order to exploit this
definition, for example, 4-lemmas and the 5-lemma (long exact sequences
will be the subject of the next section). We start with an analog of Exercise
14(a) of Chapter 2 for pre-Abelian categories.
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Lemma 7.33 Suppose A is pre-Abelian, and suppose

K-3 _). B -C

A' f' , B'
g'

-C,

is a commutative diagram in A with

i) j:K --+B a kernel for g: B --+ C,

ii) f monic, and

iii) cp and r) monic.

Then,i is monic.

Proof: Let I : L --+ B denote a kernel for zG : B -+ B'; we shall show that
I = 0, which will imply that L = 0 and 0 is monic. The relevant diagram
is

Now l = 0 0 = g'z)l = rlgl =:>, gl = 0 since rl is monic. Hence, d factors
through K, since j : K -' B is a kernel for g : B -+ C:

L
T / 1

K--" B C

A'T-- B' , -- C'

But now l = jr = 0 = z,bl = jr = f'cpr cpT = 0, since f is monic
= r = 0, since cp is monic. Hence, l = jr = 0.

Note that we did not need projectives for the above factorization like we
did for Proposition 7.19. This is because K -+ B actually is the kernel of
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B C, rather than just having K --+ B -+ C kernel-exact. This suggests,
correctly, that the key to results like the 5-lemma for Abelian categories
lies in breaking up exact sequences into short exact pieces. There is more
involved, but that's the key.

Before continuing, we record the main consequence, stated for Abelian

categories. It is sometimes called the "short 5-lemma."

Proposition 7.34 Suppose A is an Abelian category, and suppose

O-A-B 'r .0-C-0

7r

commutes and has exact rows in A. Then

a) If cp and t are monic, then so is

b) If cp and 77 are epic, then so is z['.

c) If cp and 71 are isomorphisms, then so is st'.

Proof: For (a), note that Lemma 7.33 applies. (Proposition 7.12(iii) guar-
antees that A --> B is the kernel of B --, C.) For (b), apply (a) to A°P. For
(c), use (a) and (b) together with the fact that A is balanced (Proposition
7.11(a)).

Situations like the one in Proposition 7.34 sometimes reverse; that is,
a condition on the middle term of a short exact sequence is equivalent to
simultaneous occurrence on the ends. (The Noetherian condition in RM
comes to mind.) That happens partly here: If 0 is monic, then so is cp; and
if 0 is epic, then so is 77. To see this, just examine

A JAB

A'-,B'.i'

in which j and j' are already monic; if zk is monic, then Oj = j'cp is monic,
so that cp is monic. epic = 7? epic is just as immediate. This, however, is
as far as it goes for conditions on z/i alone, as

0 - > 0-B-> B->0
iiiO->B->B->0->0

shows rather graphically. To do more, we need some more preparation.
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Lemma 7.35. Suppose A is pre-Abelian, j : K -+ A and f : A -+ B are
monic, and cp E Hom(B, C), producing

K 3 -A- 1 B 'b,- C.

Suppose f j is a kernel for cp. Then j is a kernel for (p f .

Proof: We show j has the required universal property. Suppose g : D -+ A
has the property that (cp f )g = 0. Then cp(f g) = 0, so f g factors through
K

K fiB C
10, ff

IP
\

\ /fg
D

via some morphism 7/i. Thus f jai = fg = jai = g since f is monic, and

K - A °f- C
N.

D

commutes. Finally, & is unique since j is monic.

The next bit of preparation is interesting in its own right. When asked to
prove that a morphism is monic, the nerve is hit and the knee jerks: "Show
that the kernel is 0." While often appropriate, this is sometimes useless.
The following result may get one past such difficult straits.

Proposition 7.36 Suppose A is an Abelian category, 7r : A -+ B is epic,
and cp E Hom(B, C). If it and cpa have the same kernel(s), then cp is monic.

Proof: Suppose first that cp is epic. Let j : K ---+ A denote a kernel for
both 7r and cpir. Then 7r and cpir are both cokernels for j by part (iv) of
Corollary 7.13. Hence, there is an isomorphism V) : B --+ C such that

B
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commutes, by uniqueness of cokernels. But cpr = bir = cp = i,b, since it is
epic, so cp is an isomorphism.

For general cc, write cp = fp according to Proposition 7.11(b), where f
is monic and p is epic. Then kernels of cpir = f p7r coincide with kernels of
p7r since f is monic, so the first part of the proof applies (with p replacing
cp). Thus, p is an isomorphism, and cp = f p is monic.

One major consequence of all this is a reversed variation on the short
5-lemma.

Proposition 7.37 Suppose A is an Abelian category, and suppose

O- AA

0->A .,-B' ;}C'-- 3--0
3 it

commutes and has exact rows in A. Then ik monic = rt monic.

Proof: Assume 0 is monic. Note that j : A -+ B is a kernel for 7r : B -+ C
by Proposition 7.12(iii), and likewise t4'j = j' is a kernel for 3r'. By Lemma
7.35, j is a kernel for ir' = 7)lr. Thus, j : A --> B is a kernel for both ipr
and 7r, so rt is monic by Proposition 7.36.

Corollary 7.38 Suppose A is an Abelian category, and suppose

0->A' B' , C-0
n

commutes and has exact rows in A. Then i/i epic cp epic.

Proof: Apply Proposition 7.37 to A°P.

To go further, we need images. Suppose f : A -+ B is a morphism in an
Abelian category. Then by Proposition 7.11(b), f can be factored f = jp,
where p E Hom(A, I) and j E Hom(I, B), with j epic and p monic:

A ---
P-4- I 3 >B f = ip.

Furthermore, this factorization is unique up to isomorphism of I (Exercise
10), and I is a kernel of a cokernel of f by the proof of Proposition 7.11(b).
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I is called the image of f ; more properly, j : I -+ B is the image of f (and
p : A -, I is the coimage).

Suppose we have a commutative square

A
f

o B

A' f B'
f,

in our Abelian category. Let rc : K -* A denote a kernel for f, and tc' :

K' - A' a kernel for f'. Similarly, let n : B -+ D be a cokernel for f, and
r': B' -i D' a cokernel for f'. We get a commutative rectangle:

K D

-1 IV I IP 117

K'_- )-- A' f,>-B'--, D'

Taking kernels of -7r and 7r' in the righthand rectangle, we get (in obvious
notation)

K A p a.- I3 B 7 D

K' K, At I' ---- B' D'

Note that, by construction, O j = j'O, so that j'p'cp = f'cp =,of = i jp =
j'Bp; hence, p'cp = Op, since j' is monic. It follows that this diagram is
commutative.

The next result is almost an observation, but it is a major producer of
isomorphic entries in the situation of Proposition 7.37 and its corollary.

Lemma 7.39 Suppose A is Abelian, and

A f B

A' f _ B'

is a commutative square in A with W epic and 0 monic. Then f and f
have isomorphic images.
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Proof: Consider

A
P -I ' B

B'A'
P J

In the righthand square, j, j', and 0 are all monic, so 0 is monic by the
discussion following Proposition 7.35. Similarly, consideration of the left-
hand square shows that 9 is epic. Hence, 0 is an isomorphism since A is
balanced (Proposition 7.11(a)).

The relationship between exactness and images is just what one expects.

Lemma 7.40 In an Abelian category,

A g C
is exact if and only if "the" image off coincides with "the" kernel of g.

Proof: Suppose j : K -> B is a kernel for g, and suppose it is also an
image for f. Then by definition of image, the A -> K part is epic. (The
proof of Proposition 7.11(b) is used in making the definition.) Conversely, if
A B - 4 C is exact, again let j : K B be a kernel for g, and p : A -> K
satisfy jp = f. By definition of (kernel-) exactness, p is epic. Hence, f = jp
is a factorization of f as a monomorphism following an epimorphism. Since
this is unique (Exercise 10), the intermediate object K must be the image
of f.

Corollary 7.41 In an Abelian category,

A f B 9-C
is exact if and only if "the" cokernel off coincides with "the" coimage of
g

Proof: Apply Lemma 7.40 to A°P.

This corollary should give us pause. The conditions in the corollary and
lemma suggest that homology will have two definitions that will have to
be proven isomorphic. This is indeed the case. Before opening that can of
worms, we now have all we need for the 4-lemma and 5-lemma, and it seems
best to get that out of the way.



220 7. Abstract Homological Algebra

Lemma 7.42 (Monic 4-Lemma) Suppose A is an Abelian category, and
suppose

Al !1 > A2 -J - A3 A A4

I'P1
I W2

I'P3 1'P4

B1 9i s B2 s2 B3 93 B4
is commutative in A with exact rows. Assume cpl is epic, while cc and cp4
are monic. Then cp3 is monic.

Proof: Let Kj = kernel of f,+l image of f; (Lemma 7.40), and Kj' =
kernel of g,+1. Note that by Lemma 7.39, K1 Ki, so we have a diagram

0K1->A2--> K20
I W2 10

0 > K1 B2 K2 ----->'O

with short exact rows (since K2 image f2i and K2 zt image of 92). Since
T2 is monic, ?/i is also monic by Proposition 7.37. Finally, we now have

0 --> K2 -> A3 A4

0------- .K2A3 93A4

with exact rows, in which the hypotheses of Lemma 7.33 are satisfied.
Hence, cp3 is monic.

Corollary 7.43 (Epic 4-Lemma) Suppose A is an Abelian category, and
suppose

Al > A2 f2 } A3 t3 A4

I W1 t'P2

1W3 1W4

B1 9 B2 9 > B3 9 - B4

is commutative in A with exact rows. Assume cp4 is monic, while cpj and
cp3 are epic. Then W2 is epic.

Proof: Apply Lemma 7.42 to A°P.

Remark: Both versions can be combined to say: If cpl is epic and cp4 is
monic, then cp2 monic W3 monic, and cp3 epic cp2 epic.
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Proposition 7.44 (5-Lemma for Abelian categories) Suppose A is an
Abelian category, suppose

Al fi > A2 f- - A3 fs 0 A4 A . As

-. -,Bi
91

B2
92

B3 3 B4
04 BS

is commutative in A with exact rows, and suppose

i) cp2 and cp4 are isomorphisms,

ii) cpl is epic, and

iii) cps is monic.

Then (p3 is an isomorphism.

Proof: cp3 is monic by Lemma 7.42, and epic by Corollary 7.43, so cps is
an isomorphism, since A is balanced (Proposition 7.11(a)).

We now tackle the two possible definitions for the homology of

A f>B 9C
when g f = 0. Let j : K -+ B denote a kernel for g, and it : B -> D a
cokernel for f.

We have factorizations:

A f >K OB'D 9 -C

jf =f
Let p : K -, H denote a cokernel for f , and is : H -+ D a kernel for
g; H and H will be our two definitions of "homology." First note that in
any pre-Abelian category, H = 0 < A --> B --+ C is kernel-exact, while
H = 0 q A - B C is cokernel-exact.3 Since these concepts coincide in
an Abelian category (i.e., H = 0 0), it should come as no surprise
that H H.

3What we call "kernel-exact" is often called "exact", while what we call "cokernel-
exact" is often called "coexact". Our terminology is used partly to keep the two notions
on an equal footing, and partly to avoid having to now call H "homology" and H
"cohomology" for the sake of notational consistency. This is definitely not what the "co"
in "cohomology" refers to in general.
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To expand further, let I denote an image for f, so that f factors

ApI kB.
Now g f = 0 = gkp = 0 gk = 0 since p is epic. Hence, k factors through
K, giving

K j B

f = jWP

Now j7 = f = jcpp, so 7 = cpp, since j is monic. Furthermore, jcp = k is
monic, so cp is monic. Hence, f = Vp is the monic-after-epic factorization
of f, so that I(or rather, cp : I -# K) is the image of f. Now p : K -+ H is
a cokernel for f = V p, hence is a cokernel for cp since p is epic (Proposition
7.5(c)). Thus the definition of H coincides with the usual definition of
homology in RM as the cokernel of im f -+ ker g.

Theorem 7.45 Suppose A is an Abelian category in which f : A -+ B
and g : B -+ C satisfy g f = 0. Let j : K - B denote a kernel for g, and
x: B --> D a cokernel for f. Let

A f B 9 C
\7

K D

denote the resulting factorization, with p : K -+ H a cokernel for f and
rc : H --+ D a kernel for g. Then the induced r is an isomorphism.

Proof: A construction similar to the one preceeding the theorem (actually
the same in A°p) yields a diagram

A f B 9

\P
W
/ \- 0I- -K D-!,-

IP I-
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where p : K --> H is a cokernel for cop and for co, and n : H -' D is a kernel
for kV; and for 0 . Using this, we may delete f and g to get

I ---W > K 3 >B"> D-

H H

This diagram contains enough information to produce the isomorphism T
of H with H.

To start in this direction, note that we have the following:

it = cokerf = coker(jcpp) = coker(jco) so that jcp = ker7r,
j = kerg = ker(k?/inr) = ker(i ir) so that 0nr = coker(j),
p = cokercp, and
n = ker 0.

Now 7rjcp = 0 irj factors through cokerco, that is, through H:

I °>K >B "> D-'}J

H H

Claim: In the preceeding diagram, in an Abelian category, a is monic.

Proof of claim: Twist the diagram to

0->I "°>K P >H0

> B > D -- > 0

From earlier remarks, the rows are short exact, so that o is monic by
Proposition 7.37. End of proof of claim.

Continuing, note that 0 = V)irj = O/iap, so that O o, = 0, since p is epic.
Hence, o factors through H = ker :

H------>H



224 7. Abstract Homological Algebra

Now u = icrr is monic, so r is monic. Similarly, looking in A°p, -rp (which
corresponds to a) is epic, so r is epic. That is, r is a bimorphism, hence is
an isomorphism (Abelian categories are balanced).

We can now be explicit about what we mean when we form the derived
functor of, for example, an additive covariant functor F : A -+ B, where
B is Abelian and A is pre-Abelian (and preferably balanced) and has,
for example, enough projectives. Take an object A in A, and choose a
projective resolution of A in A:

...P2--' PlPo - A0.
Apply F and delete F(A), yielding a complex in B:

... - F(P2) -> F(P1) ' F(Po) 0.

Take homology (i.e., choose a representative) using either definition from
Theorem 7.45. The result is independent of the resolution, since homotopies
still do in B what they did in RM (see Exercise 17). The result will be the
left derived functors of F, C,,F. (It's deja vu all over again!) They are
functors, using the fillers in Proposition 7.8, together with the following
construction. Suppose

A f>B 9>C

A'--B'- C'

is commutative, with g f = 0 and g' f' = 0. We have, with j : K -+ B a
kernel for g and j' : K' -+ B' a kernel for g', a diagram

A---f K 3 > B9 - C

IV l° Ip I°
A'-------- >-K'-- 3-- B' -C'

7' 9'
9,

Taking cokernels of the lefthand square yields the homology map

Af>K - H

A'--- - K1 H1
f'

The homology map can be defined using H as well. The result is the
same, as an examination of Theorem 7.45 in A(-+) shows rather quickly.
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Similarly, one may define C'F if F is an additive contravariant functor:
It is the nth homology of

... - F(P2) - F(Pi) E F(Po) -F- 0

Using injective resolutions, one may define the right derived functors,
symbolized using Rn and Rn. If A has enough injectives, one may choose
for each A in A an injective resolution

0AE6 EIE2
If F is covariant, then RnF is the nth homology of

0 - F(Eo) - F(Ei) -> F(E2) -> .. .
while if F is contravariant, then RnF is the nth homology of

0 E F(E0) c F(E1) - F(E2) E- .. .

It should be noted that these, three cases are covered by the original £ F
by replacing B with B°p (producing £ F) and/or replacing A with A°p
(producing RnF and W'F).

At this point we really have all we need to make the definitions, but we
lack properties. Looking back at Chapter 6 for left derived functors, for
example, what we lack are the analogs of Proposition 6.3 and Theorem
6.6. If, say, F is covariant, then Proposition 6.3(e) is almost trivial, while
Proposition 6.3(a) requires discussion of what it means for a functor to
be right exact. This is actually a bit subtle, and we shall return to it in
Section 7.8. As for the analog of Theorem 6.6, that is the subject of the
next section.

7.7 Long Exact Sequences

By far, the most useful gadget in computing homology in general, and
derived functors (including Ext and Tor) in particular, are the long exact
sequences connecting homology at different levels. Homology in Abelian
categories would be barren without them, and the objective of this section
is to derive long exact sequences for homology in Abelian categories (with
application to derived functors).

The starting point is the ker-coker exact sequence. It is important in its
own right, and the more general homology long exact sequence is mostly
derived from it. The proofs of these two results are interconnected and a bit
convoluted, so a description of how this goes is in order. The ker-coker exact
sequence (Proposition 7.47) is proved first, except for the exactness of the
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parts of the sequence involving the connecting morphism. A special case
is done by hand. Then we move on to the long homology exact sequence
(Theorem 7.48), which is proven from the ker-coker exact sequence, which
at that point is not completely proven. However, the known special case of
the ker-coker exact sequence yields a special case of the long homology exact
sequence, from which we finish the proof of the exactness of ker-coker exact
sequence. At this point, the proofs of both Proposition 7.47 and Theorem
7.48 are completed. Along the way, we shall be explicit about what is known
and what is needed.

Before starting on all this, we need a preliminary result (really a gener-
alization of Proposition 7.37), which will be used twice.

Proposition 7.46 Suppose A is an Abelian category.

a) Given a diagram

A.B1 ">D1

in which irl is a cokernel for f, 7r2 is a cokernel for cp f , and cp is
monic, then the induced morphism ip is also monic.

b) Given a diagram

K2 32 A2 1 B
A

I v

K1
3

. Al
1

in which j2 is a kernel for f, jl is a kernel for fcp, and cp is epic;
then the induced morphism 7 is also epic.

Remark: In, for example, (a), 7 is induced by the fact that
0 ir2cp factors (uniquely) through Dl.

Proof: For (a), consider the diagram

A f B1 -Dl->0

(Tr2cc)f =

1q1 O

f 71 s0T
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iA is epic, and cp and io are monic, so ip is monic by the monic 4-lemma.
(b) follows by applying (a) to A°p, or by using the epic 4-lemma in a

similar fashion.

Proposition 7.47 (Ker-Coker Exact Sequence) Suppose A is an Abelian
category in which

Al
wA2 -A30

I A I f2 I f3

0 B1 -B2 > B3

is commutative and has exact rows. Extend to include kernels and cokernels
of the vertical arrows:

K1

I31 1,2 1/3

Al ° A2 >A3' 0
1f1 I f2 I f3

G °B20B1 ± >B3

I91 1/2 1/3

°D1 '>D2 D3

Then this diagram has exact rows. Furthermore, there is a naturally defined
S : K3 -* D1 such that

K1 K2 K3 a}D1'>D2 °-D3

is exact. Finally, is monic if cp is monic, and p is epic if p is epic.

Remark: "Naturally defined" for 6 means here (and everywhere else) that
if we have a similarly defined primed diagram, with morphisms between the
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two diagrams:

I\
0 BI

B,

2 B3

Dl - -- D2 - - D3
\11. I Xi

D11 --- D'2 D3

then the resulting diagram involving S and S'

K3

commutes.

Proof: First of all, let cp' : Ai --+ A2 denote a kernel for 7r; one has induced
fillers f f and- W*:

Al w
A2

'R Ip

N IN INK K K2 3

K, K2 ------ ---*- K3

1 A2 Ii >-A'2'2 A3 - 0All

0 Bi -

fi

I 1

-- B2 - B3
IN I

A

A!, f2

B2

n

p

A3

f3

'' B3,
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where fi occurs since 0 : B1 -+ B2 is a kernel for p, (and pf2cp' = f37rcp' = 0,
so that f2cp' factors through B1) and cp* is induced because 7rcp = 0. This
is really the induced diagram for images discussed in Section 7.6 and is
commutative. Letting ji : Ki -+ A'1 denote a kernel for fi, we also get
induced kernel maps ip* and gyp':

Kl ----
Iii

A1.

Since Vr : K1 -+ K2 fills in where 7 did, and is unique, we get that
_ Vqp*. Now <p* is epic by Proposition 7.46(b), since cp* is epic (kernel-

exactness of Al -+ A2 -+ A3), j'1 is a kernel for f1', and jl is a kernel for
fi = ficp*. Thus, if we show that gyp' is a kernel for T, we obtain kernel-
exactness of K1 -+ K2 -+ K3 by definition. Furthermore, if cp is monic, we
can take Ai = A1, and Ki = K1, giving = gyp' monic.

Wcp' = 0 since j3rcp' = 7rcp'ji = 0, and j3 is monic. To show that gyp' is a
kernel for W, let g : C , K2 be such that erg = 0. It suffices to show that g
factors uniquely through K. Now 0 = j3Trg = 7r32g, so j2g factors through
A', since cp' is a kernel for zr:

C

T*

h, \9

K'1 /- K2 K3
i

it 22

0-31- A'1 A2 A3

Ifi I f2 I f30B1 B2-° B3

Furthermore, 0 = f2j2g = f2cc'h = i/ifih, so fih = 0, since -0 is monic.
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Consequently, h factors through K'1 since j'1 -is a kernel for f1':

C

W

0 - Ai ----W '- A2 A A3

I
fiIf2

I f3

0 Bi B2 ° B3

In this diagram,

j2V9 = co'ji9 = cP h = j29 9 = g, since j2 is monic.

This says that .g gives the required factorization through K1. It is unique,
since gyp' is monic. (j2cp = cp'j'1 is monic.)

D1 -+ D2 -+ D3 is exact for similar reasons-actually the same reasons
applied in A°P. Also, D2 -+ D3 is epic if B2 --> B3 is epic, again looking in
A°P.

A special case needs to be isolated:

Special Case: If B1 = 0, then K1 -+ K2 --+ K3 -+ 0 is exact.

The reason is that all we have to check now is that T is epic, and this
follows from Proposition 7.46(b): p is now monic, so that j2 is a kernel for
P12 = f3lr-

There remains the definition of S and its exactness properties. The defi-
nition is surprisingly easy; all the work was done in proving Theorem 7.45.

Consider first the complex

Al > A2 f37r B3,

and consider how the homology referred to as H was computed in Theorem
7.45. One takes the cokernel of cp (which is just ir), and factors:

Al > A2 f3 7r
B3

/f3
A3

H=K3
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The homology is K3, since j3 : K3 A3 is a kernel for f3. Similarly, the
homology referred to as H in Theorem 7.45 for the complex

Al +Gh B2 P - B3

comes from the diagram

Al Pfi B2 P
} B3

\f X,
B1

H=D1

so that its homology is isomorphic to D1. The "connecting morphism" 6 is
defined as the homology map:

Al --' A2
f37r - B3 : homology = K3

1A1 j12 jia3
I

(f2).=b

Al f B2
P

' B3 : homology = D1.

Naturality of 6 comes simply from examining this construction in A(-).
Also, observe that 7: K2 -+ K3 is the induced homology map

0
0 K2 0: homology = K2°

0 I 1i2 10 1(i2).=f

Al A2 f- B3: homology = K3

since we factor through cokernels

0 2K20-- K2 K2

01 1i2
t1n22331t

Al A2 ,r ' A3

then take kernels

K2 sK2>K20 0
w 173,1

1°
K3 A3 -3

33 f3
B3



232 7. Abstract Homological Algebra

We now factor 6 as follows. Let f2 = f,,, f, denote a monic-after-epic
factorization for f2, with fe : A2 --+ I and fn,, : I -+ B2. Let H. denote the
homology of

fW
°fAl -I - B3 : homology = H.

and factor

Al W A2 fan B3: homology = K3

iA1 fe jiBs
I fe).=be

Al f ` ° I Pf m; B3: homology = H.

1A1I If- I iB3
1(fm)*6m

Al B2 B3 : homology = D1

We can now isolate what we need to complete the proof of the ker-joker
exact sequence.

Needed Result: K2 " K3 ae H. 0 is exact.

Observe that once we know this, 6. will be epic, and (in A°P) 0 -+

H. D1 ' + D2 will be exact. Thus, K2 -+ K3 -+ Dl --+ D2 will be, by
definition, kernel-exact at D1 and cokernel-exact at K3. (Also, S = 5,,,,8e
will be the monic-after-epic factorization of 6.)

At this point, we break off the proof and proceed-to the long homology
exact sequence, which will be used to establish the needed result.

Theorem 7.48 Suppose A is an Abelian category in which the array

Wn+10 - By +I Bn+l -' Bn+l - 0

Jr

dntl Idn}l

Id}1

0- Bn ' 'n " aBn 30

Jrdo dn
1dn'

°-I0B B1 B"n-1 n-1 n-1 0

Jr
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has rows that are short exact and columns that are underexact. Let Hn
(respectively, H71, Hn) denote the homology of the vertical arrows at Bn
(respectively, Bn, Bn). Then there are naturally defined morphisms Sn
Hn --* Hn-1 such that ... Hn+1

f ) (7f)Wn * / LT//H. 1T
,.., n n

Sn

H.-1 - .. .

is exact.

Proof: Consider the portion

Wn+2 , Irn+z0 - Bn+2 - Bn+2 -) Bn+2 - 0
+z

I I n.

IW do+2
d +z

a.,
0 -- Bn+1 ). Bn+l a Bn+1 - 0

dn+1 td+1 dn+1

0 Bn Wn Bn= BR0
1 do

dn
Idn'B - B . B. ->0 n n-1 n- 0

of the diagram. Let Dn+1 (respectively, Dn+1, D"n+1) denote cokernels of
do+2 (respectively, do+2, do+2). Let Kn (respectively, Kn, K;,) denote ker-
nels of do (respectively, dn, dn). For example, the first column gives

dn+2
Bn+2 Bn+1

do+1 doBnBn-1
on+1

do+1

Qn+1I
I 7n

H.+1 Hn

in which the filler do+l exists by first factoring do+l through jn (possi-
ble since dndn+l = 0) producing an+l, then factoring an+1 through Dn+1
(possible since jnan+ldn+2 = do+ldn+2 = 0 = an+ldn+2 = 0, jn being
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monic). Note that by definition, Hn is the cokernel of an+1 = do+1Qn+1,
which is the cokernel of do+1, since Qn+1 is epic. Similarly, Hn+1 is iso-
morphic (via Theorem 7.45) to the kernel of jndn+l, which is the kernel
of do+1, since jn is monic. Defining do+1 and d11+1 (as well as ,$n+1, ari+1,
yn, we get the array

H (w=} H' ( H"
n+1 n+1 n+1

Qn}1 041 Pn}1

1n}1 I 1
///

Dn+1 DI
',fin}-, Dn+1 - 0

n
9o}1

n T

Un}1 ,. I do}1

71

0 > Kn Kn Kn

7n I-Yn Try'n

Hn n n

The middle two rows are exact by what we already know from the ker-coker
exact sequence. Carrying out the construction of an+1, 13n+1, 'yni and 3n+1
in A(-+) shows that the morphisms in the bottom and top rows really are
(p.), and (ir.),,. From the ker-coker exact sequence, we will get a naturally
defined 8n+1 and an exact sequence

H (w H' (=}1 H" s°± H (any H' ('r, ); H"n+1 n+1 tt+1 n n n

which (letting n vary now) will complete the proof once we know "Needed
Result." We obtain that from the special case there.

Suppose Bn = 0. We get that Kn = 0, so that from the special case in
the ker-coker exact sequence, Hn+1 -4 Hn+1 -' H,,'+1 0 is exact. In the
notation of the ker-coker exact sequence, the following diagram, with short
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exact rows and columns that are complexes

0->0->0>0-0
iii

n + 1 level :

0->0--Al- -AIO
;z 1 f I f-W

0 > K2>A2=> 1 >0

1Pf2 jPfm

00B3- > B3-' 0
1 I l0->0 >0>0> 0
1 l 1

yields (from the homology calculations in the proof of the ker-coker exact

sequence) the exactness of K2 3 K3 a`-.)-- H. --->- 0 . The proofs of
Proposition 7.47 and Theorem 7.48 are now complete.

Our main consequence is the analog of Theorem 6.6 for derived functors.

Theorem 7.49 Suppose A is a pre-Abelian category, A' is an Abelian
category, and F : A -+ A' is an additive functor.

a) If F is covariant, A has enough projectives, and 0 B -+ B' -
B" --> 0 is kernel-exact, then there is a naturally defined long exact
sequence for the left derived functors of F:
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... , ,Cn+1F'(B")

L..F(B) -+ ,C.F(B') --+ ,C,iF(B")

C,,,-1F(B) --+ ...

---4 A'Cj, FI"(J B-I ")'

£0F(B) -p ,c0F(B') ---+ £0F(B") 0

b) If F is covariant, A has enough injectives, and 0 -+ B -+ B' -+
B" -p 0 is cokernel-exact, then there is a naturally defined long exact
sequence for the right derived functors of F:

Rn+1F(B) -._, ...

RnF(B) -+ RnF(B') - RnF(B")

-
R1F(B) -, ...

0 --* ROF(B) -+ RgF(B') -i ROF(B")

c) If F is contravariant, A has enough projectives, and 0 -+ B --+ B' --+
B" --' 0 is kernel-exact, then there is a naturally defined long exact
sequence for the left derived functors of F:
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... <---- ,Cn+1F(Bii)

C CnF(B) F- ,CnF(B') f-- ,CnF(B")

C Gn-1F(B) i ... ... E- ,C1F(B11)

1C°F(B) +- £°F(B') +- £°F(B") f-- 0

d) If F is contravariant, A has enough injectives, and 0 --> B - B' -
B" - 0 is cokernel-exact, then there is a naturally defined long exact
sequence for the right derived functors of F:

Rn+1F(B)
c<

RnF(B) E-- RnF(B') 7ZnF(B")

.- Rn-1F(Bii)

C-- R1F(B) +--- ...

0 . R°F(B) . R°F(B') R°F(B")

Proof: We do (a); (c) follows by replacing A' by (A')°p, (d) follows by
replacing A with A°p, and (b) follows by making both replacements.

The crucial point, once again, is a simultaneous projective resolution of
0 --* B -+ B' -- B" -+ 0 using Proposition 7.21. Since F is additive, each
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column (obtained by applying F to the projectives of Proposition 7.21)

is split exact by Proposition 7.4. This gives everything except naturality
and independence of the simultaneous resolution used. Naturality follows
directly from the usual A(--+) business once independence of the simul-
taneous resolution is known, but (alas) independence of the simultaneous
resolution does not follow directly from working in A(-->), since a typical
P,, -> P., as it appears in Proposition 7.8, is not projective in A(-+). (See
Exercise 20.) This is where that obscure Corollary 7.30 comes in.

Suppose we have two projective resolutions of B, say,

... P P P2 -- -
i

o > B 0

and

P2 > P1 ' Po?- B 0.

One can choose Q,, projective so that

- -P2eP2®Q2- P1®P1ED Q1--Po®P0®Qo- -B-.- 0

is a projective resolution, and (in fact)

P2 P1 Po--'-B--0
1 1 1

...-p2ED P2®Q2-P1®PlED Q1"PoED 0
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commutes. To do this, set Qo = 0, and choose Qn so large that the required
morphism to the next kernel is epic. We can now work in A(-+) since the
vertical arrows are projective. Using a diagram like that in Corollary 7.30
(with Kn denoting nth kernels of the middle resolution above):

we observe that the diagonal arrows from projectives into primed kernels
yield the morphism called f in the proof of Proposition 7.21. (Here, P.111
Pn, and Qn replace P,,,, P, , and Qn, respectively, with B" replacing B.)
Looking in A(-+) twice (once for the near wedge and once for the far wedge)
we get that the connecting morphisms are the same for

(i) the Pn and Pn B Pn E) Qn resolutions from the near wedges; and

(ii) the Pn and Pn e Pn E) Qn resolutions, from the far wedges.

An oddity: We now have the "deep" results, the long exact sequences
(and even their naturality). What we don't have is the most basic, that, for
example, for F = C) : A --+ Ab, G°F F. Unless A is balanced,
we won't get it either. A way around this is the subject of the next (and
last) section.

7.8 An Alternative for Unbalanced Categories

When working with Abelian categories, most of what needs to be said has
been said. It is not hard to show by hand, for example, that C)

C) for Abelian categories. As for more general pre-Abelian cate-
gories, we haven't even defined left/right exactness. This is more subtle
than it looks. We will definitely want C) to be left exact (the ana-
log of Proposition 2.6), even in the most perverse pre-Abelian categories.
We would also like (but won't get) G°F F for left exact functors.

There are two subjects in this section. The first covers the various kinds
of exactness for functors from pre-Abelian categories to Abelian categories,
and it is limited to the situation at hand. C) will turn out to be left
exact. The second is a replacement for G'F, for example, labeled QG"F,
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for which QC°F F whenever F is contravariant and left exact. If A
is pre-Abelian and balanced, and has enough projectives, then A satisfies
Ab-epic and QCn will equal Cn, so nothing new will appear. The difference
will come with pre-Abelian categories that are not balanced. It may well be
the case that a specific application dictates using Cn. In other applications,
it may be possible to use QCn instead, and QCn will behave better.

To see directly what the problem is, suppose A is pre-Abelian and has
enough projectives, but is not balanced. Suppose f : A --+ B is a bimor-
phism, but not an isomorphism. Then by Exercise 23 there is a C for which
f* : Hom(B, C) -+ Hom(A, C) is not an isomorphism. Set F = C).
Let... -P, -PO-7-'+ A --, 0 be a projective resolution of A. Then f r is
also epic (since f and %r are epic), while a kernel for /r is a kernel for f 7r

(since f is monic). Thus --+ Pl -+ Po f * B -+ 0 is a projective resolu-
tion of B. Since only the projectives survive into the definition of C"F, we
get C"F(A) = CnF(B), all n. But that means that C°F(A) = C°F(B), a
group which cannot possibly reproduce both F(A) (via 7r*) and F(B) (via
(fir)* = 7r f*). Ouch.

We start with the kind of exactness we need. The following proposition
tells us most of that.

Proposition 7.50 Suppose A is a pre-Abelian category in which cp : A
B and : B --+ D are given. Then

0 --> Hom(D, C) + Hom(B, C) Hom(A, C)

is exact for all C if and only if 0 is a cokernel for cp.

Proof: Suppose first that z/i is a cokernel for W. Fix C. Then 0 is epic, so
V f E Hom(D, C), Vi* f = 0 = f = 0 = f = 0. That is, 0* is one-to-one.
--Next, cp*b* _ (0cp)* = 0* = 0. Finally, if cp* f = 0 for f E Hom(B,C),
then f cp = 0 = f = 7,0 for a (unique) 7, since ip is a cokernel for cp:

A
p>B lp

D

f
C.

But ( 7 )

For the converse, suppose

0 -+ Hom(D, C) Hom(B, C) 4 Hom(A, C)

is exact for all C. Setting C = D, 0 = cp*1*(iD) = iDl,bcp = OW, so OW = 0.
But we also have that for any C, and any f c Hom(B, C), 0 = f cp =
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cp* (f) 3 a unique 'f E Hom(D, C) such that f = zli* (f) = 77P. This is
just the definition of a cokernel.

Now for exactness. Peeking ahead, we make one modification to the
above.

Definition 7.51 Suppose F : A --+ A' is a covariant functor, where A is
pre-Abelian and A' is Abelian. F is (i) exact, (ii) left exact, (iii) right
exact, or (iv) half exact, provided that whenever

A-0'-+ B0- + C

satisfies both cp = kernel of -0, and z[i = cokernel of cp, we have exactness
in A' of

i) 0-CF(A)->F(B)->F(C)-+0,

ii) 0 -+ F(A) -+ F(B) F(C),

iii) F(A) --, F(B) - F(C) - 0,

iv) F(A) - F(B) F(C).

If F is contravariant then F is defined to have the same exactness as the
covariant functor F°P : A°P -' A'. Again, note that

right exact

right exact
and

left exact
exact half exact

left exact

and (from Proposition 7.50) C) is left exact.

In this section, with the focus on C), we shall concentrate on
contravariant functors and left exactness. Making the substitution of A°P
for A and/or (A')°P for A' will give the appropriate generalizations of the
to-be-defined QGn (i.e., QGn, QRn, and QRn) for covariant/contravariant
functors. The routine should be clear by now.

Suppose F is a half exact contravariant functor from a pre-Abelian cat-
egory A to an Abelian category A'. If (A ® B; cp,,O; 7r, q) is a biproduct of
A with B in A, then q is a cokernel for cp:

W . _ .. e fcp=0
i

f=11'lp/
C
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since f oq = ff bq + 0 = f,bq + f pr = f ( q + cp7r) = f. (This 7 is unique,
since q7p = iB = q is epic.) Similarly, cp is a kernel for q. (No surprise so
far.) Furthermore, suppose

0-- A1"1- A n2
-
A20

is split exact in A', say 3 cp2 : A2 - A for which 7r2cp2 = iA2. Then
1r2(ZA - ca272) = 72 - 7r2W27r2 = 72 - ZA27r2 = 0, so iA - ca2rr2 factors
through Al (since cpl is a kernel for 7r2): iA - cp21r2 = W17f1 for a unique
71. Well. iA = cp17rl + c021r2 and iA2 = 7r2cp2. How about 7r1cpl? collrlca1 =
(iA -W27r2)Wl = cal -W27r2co1 = cal = °1iA1, since 7r2cp1 = 0, so 7r1W1 = iA1,
since cpl is monic. Moral: (A; cal, cp2i 71, 72) is a biproduct of Al with A2.
That is, a split exact sequence is a biproduct in any Abelian category.

Suppose F is half exact and, say, contravariant. If (A; cpl, cp2i 7r1, 7r2) is a
biproduct, then

0 - F(A2) F(2' F(A) F(Al) --> 0

is exact at F(A2) (iF(A2) = F(iA2) = F(1r2ca2) = F(W2)F(7r2) = F(7r2) is
monic), F(A) (half exactness) and F(A1) (iF(A1) = F(iA1) = F(7rica1) =
F(cpl)F(7rl) F(cp1) is epic). It is split exact since F(W1)F(7r1) = F(7ricai)
= F(iA1) = iF(A,). Hence, by Proposition 7.4, F is additive. (Note: We
learn from this that the abstractly existing fourth map from F(A) to F(A2)
constructed earlier is actually F(cp2).)

Any half exact functor is additive.

So much for our discussion of functors. The real departure from ear-
lier material comes in deriving them. The replacement for projectives is
dictated now by the cokernel business in the definition of exactness.

Definition 7.52 Let A be a pre-Abelian category. An object Q in A is
quasiprojective if a filler exists in any diagram

A

n

B' Q

in which 7r is a cokernel, that is, is a cokernel for some morphism into A.
A has enough quasiprojectives provided that, for any object A, there
exists a quasiprojective Q and a cokernel it : Q A.

Remark: Note that projective = quasiprojective. It is easier to be quasi-
projective than projective, but harder to have enough of them (since the
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epimorphism 7r : Q -* A must actually be a cokernel). Note, also, that if
A has the property that, for each object A, there is a projective P and a
cokernel it : P --. A, then A is balanced (see Exercise 23). The weakening
of the condition on Q matches the strengthening of the condition on 7r.
Finally, any cokernel is a cokernel for its kernel (see Exercise 13); similarly,
any kernel (= kernel of some morphism) is a kernel for its cokernel.

As in Section 7.4, we shall need a mechanism for cheating. Here, we do
it with a definition.

Definition 7.53 (temporary) Suppose A is a pre-Abelian category with
enough quasiprojectives. A morphism 7r : A -+ B will be called a cokernel'
if a filler exists in any diagram

B C Q
in which Q is quasiprojective.

Remark: It will turn out that cokernel' is the same as cokernel. While
a direct proof is possible, it seems simpler to let this be an almost trivial
consequence of the theory to be developed. Note that cokernel = cokernel'
trivially, while cokernel' = epimorphism by selecting Q and the horizontal
arrow above to be epic (e.g. a cokernel).

A quasiprojective resolution of an object A will be a sequence

- Q2 _ Qi al ->. Qo ' B
of morphisms in which each Qj is quasiprojective, djdj+l = 0 for j > 1,
7rd1 = 0, and, if pn is the factorization of do through a kernel in : Kn -->
Qn_1 of dtt_1 (or of 7r if n = 1) so that do = jnpn, then each pn (as well
as ir) is a cokernel'.

Proposition 7.54 Suppose A is a pre-Abelian category with enough quasi-
projectives. Then any object in A has a quasiprojective resolution, which
can be chosen using a choice function. If B, B'# A and cp E Hom(B, B'),
and if (Qn, dn) is a quasiprojective resolution of B, and (Qn, d',) is a quasi-
projective resolution of B', then there exist fillers cpn E Hom(Qn, Qn) mak-
ing

> Q + > Qn - ... Qi
dl

> Qo
-n

B
I I I I

ISPn+i ISn IWi IWo
Y do+1 /W, d. W di , aQn+l -> Qn - ... _ > Q1 Qo BI
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commutative. Further, if cp, E Hom(Q,,, Q;,) also serve as fillers, then c
and cpn are homotopic, that is, there exist Dn E Hom(Qn, Q;,+1) (with
D_1 = 0) such that Wn - cPn = do+1Dn + Dn-ldn

Proof: Virtually identical to the proof of Proposition 7.8, with the letter
Q replacing P, "quasiprojective" replacing "projective," and
replacing "epimorphism." In particular, each p;, is a allowing the
proof to proceed.

For each object A in A, choose once and for all a quasiprojective reso-
lution of A, but not just any old quasiprojective resolution: Choose it in
such a way that -7r and each pn are actually cokernels. (This can be done
by the first part of the above "proof", transported over from Proposition
7.8.) The nth left quasiderived functor of an additive contravariant functor
F from A to an Abelian category is defined to be the nth homology of

...E-- F(Q2) F s)
F(Q1) Ff() F(Qo) - 0,

homology at F(Qn) : QGnF(B).

For the usual reasons, the definition of QGnF is independent (up to
isomorphism) of the quasiprojective resolution, and does yield a sequence
of contravariant functors. Furthermore, as with Ext back in Chapter 3,
there is a natural transformation -7r* from F to QG°F defined by applying
F(7r) to any F(B):

F(B) F() - F(Qo) '( i)> F(Q1)

QG°F(B) = a kernel for F(d1)

QL ° has the missing property.

Proposition 7.55 If A is a pre-Abelian category with enough quasipro-
jectives, and F is a left exact contravariant functor from A to an Abelian
category, then ir* is a natural isomorphism of F with QG°F.

t
Proof: Recall that we selected it to be a real live cokernel; it is a cokernel
for ji, and ji is a kernel for ir, so

0 -> F(B) F( F(Qo) F( F(Ki)

is exact in the (target) Abelian category. Similarly,

0-}F(Ki) F (p,)
F(Q1) F(2) F(K2)
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is exact, so F(pi) is monk. Hence, F(ji) and F(pi)F(jl) = F(jipi) =
F(di) have the same kernel, namely F(B). This is the zeroth homology.

Corollary 7.56 Suppose A is a balanced pre-Abelian category and A' is
Abelian. Suppose F : A -' A' is a functor.

a) If F is contravariant and left exact, and A has enough projectives,
then .&F _- F.

b) If F is covariant and right exact, and A has enough projectives, then
G0F_- F.

c) If F is contravariant and right exact, and A has enough injectives,
then R°F F.

d) If F is covariant and left exact, and A has enough injectives, then
R°F F.

Proof: (b), (c), and (d) follow from (a) by making substitutions of opposite
categories for A and/or A'.

For (a), note that A satisfies Ab-epic by Proposition 7.17. But this means
that projective = quasiprojective, and epimorphism = cokernel = cokernel'
(Proposition 7.14(b)). Hence, G°F ;tti QG°F F.

So. The results we want are falling right and left. There remains the
business of long exact sequences. We need an analog of Proposition 7.20.

Proposition 7.57 Suppose A is a pre-Abelian category that has enough
quasi-projectives. Suppose we have the diagram

Ki "1">Bi W1 Ci

1
+62 spaK2 -- B2 --> C2

'p' 1P
I q

K3 ±Gs> B3 (P3 C3

in which t is a kernel for p, j is a kernel for q, and i0: is a kernel for cpt,
i = 1, 2, 3. Suppose that each of cpi, <p3i and p is a cokernel'. Then W2 is
a cokernel', t' is a kernel for p', and p' is also a cokernel'.

Remark about English Usage: In the above, one strains to avoid the
plural of "cokernel'."
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Proof: W2 is a Suppose f : Q -+ C2 is a morphism, with Q
quasiprojective. There is a filler g:

B3

W3 I' \ 9
C3 f Q

since W3 is a There is a filler h:

B2
P!\ h

B3 fg Q
since p is a Now q f = cp39 = cp3ph = gcp2h, that is, q(f - W2h) _
0. Hence, f - (p2h = jO for some 0 : Q -+ C1, since j is a kernel for q.
Finally, there is a filler a:

since cpl is a But now

P2(h+Ga) = tp2h+c 2ta

= cp2h+jvla
= W2h + j6

= cp2h+f -w2h
= f.

p' is a cokernel': Suppose f : Q -4 K3 is a morphism, with Q quasi-
projective. There is a filler g:

B2

P

aB3..3 Q

since p is a Now pg = cp3z/53 f = 0, since 0, so
W29 factors through C1, since j is a kernel for q : W29 = j h, h : Q -' C1.
Finally, there is a filler a:

\ 9

tt f \
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since Wi is a cokernel': Now tp2ta = jWia = jh = cp29, so lp2(g - ta) = 0.
Hence, g - to factors through K2, since 02 is a kernel for W2 : 9 - to = '027-
But now IP3P'f =P02f =p(9-ta)=p9-pta=p9-O= b3f,sop'f = f,
since z/i3 is monic.

t' is a kernel for p': Suppose f : D -+ K2 satisfies p' f = 0. Then 0 =
b3p'f = P /'2f , so 02 f factors through Bi since t is a kernel for p : ,02 f = t f .

Now jcplf =W217 = ca202f = Of = 0, so (ply = 0, since j is monic. Hence,
f factors through K1, since O1 is a kernel for Wi : f = ' 1 f . But now
z/)2t' f = tVil f = b f = Y'2f, so t' f = f, since 02 is monic. Finally, this f is
unique, since 02 t' = t't/Il is monic t' is monic.

We have a few corollaries.

Corollary 7.58 Suppose A is a pre-Abelian category with enough quasipro-
jectives. Suppose j : B -> B' is a kernel for the cokernel' p : B' B".
Given quasiprojective resolutions of B and B":

--Q2d2Q1
B

J1i

B'

d" d" 112 if // 7rQ2'Q1 ->QO B"

there exist morphisms ir' : Qo ED Q0 -* B' and do : Qn ®Qri --> Qn-1®Qii_ 1
such that

d2 Q1 dl -- Qo">B
i

r d2 T d' r y

Q2®Q2-3Q1®Q1QO®Qp 7r,

_B'

Q2
Q11 I

QO
a B"

is commutative and consists (horizontally) of quasiprojective resolutions.
(The vertical morphisms are the obvious ones.)

Proof: Virtually identical to the proof of Proposition 7.21. The is
a cokernel" part of Proposition 7.57 replaces the "epic 4-lemma," and
the filler f from Qo to B' arises because Qo is quasiprojective and p is a
cokernel'. Finally, the rest of Proposition 7.57 guarantees that the sequence
Kn -+ Kn - K;' inductively has the same properties that B --> B' _+ B"
did.
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Corollary 7.59 Suppose A is a pre-Abelian category with enough quasi-
projectives. Suppose j : B -+ B' is a kernel for the cokernel' p : B' --+ B".
Then for any additive contravariant functor F on A with values in an
Abelian category, there is a long exact sequence

... 4-QGn+'F(B")

C QGnF(B) :-- QGnF(B') : QGnF(B")

C QLn-1F(B) ....... 4 QL1F(B")

QG°F(B) QG°F(B') F- QG°F(B") 4-- 0

Proof: Apply Theorem 7.48 to

0 0 0

F(Q2) F(Q1) ---' F(Qo) 4-- 0

I

F(Qa) F(Q") ---- F(Q) 4-- 0

0 0
0

Corollary 7.60 Suppose F is an additive contravariant functor from a
pre-Abelian category A with enough quasiprojectives to an Abelian category
A'. Then QG°F is left exact, and QGnF is half eccact for all n.

Proof: Read it off the diagram in Corollary 7.59, with connecting homo-
morphisms deleted.

Corollary 7.61 Suppose F is an additive contravariant functor from a
pre-Abelian category A with enough quasiprojectives to an Abelian category
A'. Then QG°F : F if and only if F is left exact.



7.8 An Alternative for Unbalanced Categories 249

Proof: Corollary 7.60 plus Proposition 7.55.

Corollary 7.62 If A is a pre-Abelian category with enough quasiprojec-
tives, then every cokernel' is a cokernel.

Proof: Suppose A is pre-Abelian with enough quasiprojectives. Suppose
p : B' -4B" is a and suppose j : B --ti B' is a kernel for p. We
shall show that p is a cokernel by appealing to Proposition 7.50.

Suppose F = C), C an object in A. F is left exact, so F is
naturally isomorphic to QL °F by Proposition 7.55. Now 0 --p QG°F(B") --+
QG°F(B') QG°F(B) is exact by Corollary 7.59, so 0 -i F(B") ->
F(B') --a F(B) is exact, thus (letting C vary), B' --> B" is a cokernel for
B --+ B' by Proposition 7.50.

Example 25 RSh. Note that in

0 0

J fi I
l

I- f3
jq

A3 B3

(fi, f2, f3) is a cokernel if and only if fl, f2, and f3 are each epic. (See
Exercise 7.) Hence, any (necessarily split) short exact sequence of projec-
tives is quasiprojective by Proposition 6.9. It follows that RSh has enough
quasi-projectives, and all the preceeding applies.

One not-so-trivial consequence of Corollary 7.62 stands out. It is not
hard to see directly from the definition that the composite of two cokernels
is a hence a cokernel. Thus, as with "enough projectives," a
balanced pre-Abelian category with enough quasiprojectives must satisfy
Ab-epic (see Exercise 11).
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Exercises

1. Suppose G is a group, and H is a subgroup. Let G/H denote the set
of left cosets of H, and let * denote anything that is not a member of
G/H. Let A((G/H) U {*}) denote the group of bijections of (G/H) U
{*}, and define b : G -* A((G/H) U {*}) by 4D(x) sending yH to
xyH and * to itself. Let a E A((G/H) U {*}), exchange * with the
coset H, and let W denote the inner automorphism of A((G/H) U {*})
determined by o. Show that 4D(x) = IQ o '(x) if and only if x E H.
Use this to show that an epimorphism in the category Gr of groups
is necessarily onto.

2. Suppose C is a category with a zero object 0. Define 0 E Hom(A, B)
to be the composite A --> 0 -+ B. Show that the definition of 0 is
independent of the choice of the zero object 0.

3. Suppose C is a concrete category in which epimorphisms are onto.
Show that free objects in C are projective.

4. Let C be a category with a zero object 0. Zero morphisms are defined
as in Exercise 2. Show for an object A the following are equivalent:

i) A is a zero object.

u) iA = 0.

iii) 0 -- A is epic.
iv) A -* 0 is monic.

5. (More on why additive categories are often required to contain biprod-
ucts.) Suppose A is an additive category that contains a biproduct
for any two objects. Show that the additive structure on each Hom
set is unique.

Hint: Let A' denote the category A with the additive structure per-
haps altered. Let F : A --> A' denote the "identity" functor. Show
that F is additive.

6. Suppose A is an additive category, and suppose f : A - B in A.
Define the category B, whose objects are pairs (C, g) for which g :
C -+ A satisfies fg = 0, with a morphism from (C, g) to (D, h) being
acp:C --- D,making



7.8 An Alternative for Unbalanced Categories 251

commute. Show that a kernel of f is a final object in this category
and vice versa.

7. Show that the kernel and cokernel defined for RSh in Section 7.3
actually work. Show that if

0 0

l fz I
B2 -> C2

jir_____
B3 C3

defines a morphism (fl, f2, f3) in RSh, then (fl, f2i f3) is epic t-*
f2 and f3 are epic, while (fl, f2, f3) is the cokernel of some other
morphism fl, f2, and f3 are all epic.

8. Show that 0 --+ P -+ P' - P" -+ 0 is projective in RSh if and only
if P = 0 and P' P" is projective in RM.

9. Suppose A is a pre-Abelian category. Show that 0 -+ A -+ B is kernel-
exact . 0 -+ A - B is cokernel-exact A -> B is monic. Also show
that A -+ B --+ 0 is kernel-exact <* A --+ B -+ 0 is cokernel-exact

A-+Bisepic.

10. See Proposition 7.11(b) and its proof. Suppose A is a pre-Abelian
category that satisfies Ab-monic. If f : A -+ B is a morphism with
cokernel q : B -+ D, and, if f = jp, with p : A --+ C epic and
11 B monic, show that j is a kernel for q, and hence that (C, j)
and (C, j) are isomorphic in the category of Exercise 6.

11. Suppose A is a pre-Abelian category. Show that A satisfies Ab-monic
if and only if A is balanced and the composite of two kernels is a
kernel. Also show that A satisfies Ab-epic if and only if A is balanced
and the composite of two cokernels is a cokernel.

12. Suppose A is an additive category. Show that'Hom(A, A) is a ring
for any object A in A.
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13. Suppose A is a pre-Abelian category in which cp : A -+ B is a kernel
for some morphism. Show that cp is a kernel for any 7r : B --* D that
is a cokernel for gyp. Formulate and prove the corresponding result for
cokernels.

14. (Essay question.) Formulate a result which is proven by the proof of
Proposition 7.11(b), and which applies directly to Proposition 7.11(b)
and to Proposition 7.12, (i) (ii).

15. Show that in an Abelian category, the following are equivalent:

i) 0-->A-->B-.C-+O is exact.
ii) A B is monic, with cokernel B --+ C.

iii) B C is epic, with kernel A --+ B.

16. Suppose A is a pre-Abelian category with a separating class of pro-
jectives. Given a commutative diagram

2
- )-.

A3 f3) A4Al A-->-
A3

1

I, '
I W2 I W3 I W4

B1 9i B2 9 B3 93 B4
in A with kernel-exact rows, in which co4 is monic and wl is epic,
show that cp2 monic cp3 monic (the monic 4-lemma) and tp3 epic

W2 epic (the epic 4-lemma).

17. Suppose A is an Abelian category in which

Al > A2
7' A3

I A I f2 jf3

B1 B2 P " B3

is commutative with underexact rows. Suppose there exists D3
A3 - B2 and D2 : A2 --' B1 for which f2 = OD2 + D37r. Show
that the induced homology map (f2). is zero.

18. Suppose A is an Abelian category in which the diagram

K-'-A'
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satisfies

i) cp is a kernel of

ii) cc' is,a kernel of ?P', and

iii) j is a kernel of ?li'cp.

j' exists since z/i'(cpj) = 0 . cpj factors through A'. Show that j'
K -+ A' is a kernel for icp'.

Note: cpj = cp'j' is often interpreted as the intersection of cp and cc'.

Additional exercise. If A = RM, and if j, cp, and cp' are inclusion
maps, show that K = A n A'.

19. Prove the 9-lemma: Suppose A is an Abelian category in which the
diagram

0 0 0

0, All-,.A12- - A13--"' 0iii
0 A21 A22 A23 0

0 , A31 A32 A33 0

l I 1

is commutative, in which all but one of the rows and columns is short
exact, and in which all rows and columns are complexes. Show that
all rows and columns are exact.

20. Suppose A is an Abelian category. Define functors Ker and Coker
as in Section 7.5. If Coker(A, f, B) = (B, x, D), set Co(A, f, B) =
D. That is, Co picks off the chosen cokernel object. Similarly, if
Ker(A, f, B) = (K, j, A), set Ke(A, f, B) = K.

a) Show that Co is right exact from A(-) to A, while Ke is left
exact.

b) Suppose A has enough projectives. Show that

Co, ifn = 0
G,aCo Ke, ifn=1

10, ifn > 1
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Hence, show that (P, f, P') cannot possibly be projective in A
unless f is monic.

Hint: Dimension shift.

21. a) Show that in any category, coproducts of projectives are projec-
tive.

b) Show that in a pre-Abelian category, the coproduct of quasipro-
jectives is quasiprojective.

22. Suppose A is a pre-Abelian category. State precisely and prove: A
is Abelian if and only if for every morphism f, ker(coker(f))
coker(ker(f)).

23. Suppose A is a pre-Abelian category, and suppose f : A ---' B is a
bimorphism in A.

a) Show that f is an isomorphism if and only if f * : Hom(B, C) -+
Hom(A, C) is ?n isomorphism in Ab for all C.

b) Suppose there is a cokernel 7r : P -+ B, with P being projective.
Show that f is an isomorphism.

c) Compute Ext°(B, C) for A = RSh. C) = C).)

24. Suppose A denotes the full subcategory of Ab consisting of finitely
generated free Abelian groups. Prove that:

a) A kernel for f : A Bin Ab is a kernel for f in A.
b) If Tr : B -+ C is a cokernel for f in Ab, then f : B - C is

a cokernel for f in A, where C = C/T (C). (T (C) = torsion
subgroup.)

c) f is monic < f is one-to-one.
d) f : A -+ B is epic a B/ f (A) is finite.
e) f : A - > B is a kernel <* f is one-to-one and f (A) is a direct

summand of B.

f) f is a cokernel * f is onto.
g) Only the zero object is projective or injective.

h) Every object is quasiprojective (and quasiinjective, that is, quasi-
projective in A°").

25. Given the situation of Proposition 7.37, that

0-A 9 BC- 0
I P l17
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is commutative with short exact rows and monic columns in an Abelian
category, prove that 0 and 77 have isomorphic cokernels, that is, the
natural morphism from a cokernel of V to a cokernel of rl is an iso-
morphism.

Hint: If you set it up right, you can read it off from the 9-lemma,
Exercise 19.

26. (Long essay question).

Some results can be interpreted in terms of the "Noether isomor-
phisms/correspondences." These are (stated for left R-modules):

I. If f : A - B is onto, then B A/ ker f .

II. If K is a submodule of A, then the correspondence H '--, H/K
sets up a bijection between the submodules of A containing K
and the submodules of A/K.

III. If H is a submodule of A and K is a submodule of H, then
A/H .:: (A/K)/(H/K).

IV. If H and K are any two submodules of A, then (H + K)/K .:;
H/H n K.

Now in an Abelian category, Ab-epic just interprets I, since if f
is onto, then Al ker f is a cokernel (by definition in RM), so B
A/ ker f is also a cokernel.

Interpret II partially in terms of Proposition 7.37 and III in terms of
Exercise 25. The rest of II, and an interpretation for IV, appears in
Appendix D.

Note: A submodule is interpreted as a monomorphism.
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Colimits and Tor

8.1 Limits and Colimits

Of the two functors defined in Chapter 3, Ext is the more- "universal";
Section 6.6 describes how Tor can, in principle at least, be defined using
Ext. On the other hand, Tor has more properties. Up to now, this has
only been reflected in the fact that Tor mixes right R-modules with left
R-modules. But there's more. Tor behaves well with respect to certain
colimits, and that is the general subject of this chapter.

A bit about terminology is in order. The terms "limit" and "colimit"
replace the older compound terms "inverse limit" and "direct limit," re-
spectively. There is method to this: Given a concept in a category C, the
"coconcept" should be the corresponding thing in C°P. Moreover, the prefix
"co" should be attached to "corresponding" objects; speaking frivolously,
"co" should commute with adjectives. To see what this means, consider Set
and Ab. A product in Set or Ab is an ordinary product, while a coproduct
in Set is a not-so-ordinary disjoint union, not at all like a direct sum in
Ab. Consequence: "Product" (without the prefix), the familiar term, has
precedence. "Coproduct," the not-so-familiar term, denotes the direct sum
in Ab and the disjoint union in Set. So far, so good. Now for limits and
colimits. The product is a special case of an inverse limit, using old termi-
nology; specifically, it is an unordered inverse limit. In current terminology,
the old "inverse limit" is termed a limit, and the old direct limit becomes
a colimit. That way, a product is an unordered limit, while a coproduct is
an unordered colimit (rather than a co-unordered limit). "Co" commutes
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with "unordered." (Okay, "Co" commutes with participles.)
Now to what limits and colimits are. The form we use involves a partially

ordered index set Z. (More generally, Z can be replaced by a small category;
see most any book on category theory.) For limits, we assume that we have
a function i H Ai from I to objC, as well as a cij E Mor(Aj, Ai) whenever
i < j, subject to OijOik = ¢ik whenever i < j < k. The pair (Ai, Oij) will
denote this limiting system. A limit (if it exists) L = limz Ai is defined as
follows. There are 0i E Mor(L, Ai) such that all diagrams

commute, and L is "universally terminal" with this property: If 'Of E
Mor(L', Ai) are such that all diagrams

commute, then there is a unique filler (P E Mor(L', L) making all diagrams

L' -- lb --L

V\1-1

Ai

commute. Limits are unique up to isomorphism for the usual reasons.

Example 26 If Z is unordered, that is, if "i < j" is always false, then
lim1 Ai = riz Ai.

Example 27 If C = RM, Z is totally ordered ("directed" is actually suf-
ficient; see below and Exercise 1), and Oij is set inclusion, where i < j if
Aj C Ai, then lima Ai = na Ai.

Definition 8.1 Z is directed when `d i, i' E Z, 3 j E Z with j > i, j > V.
An element i E I is maximal if "i < j " is false for all j E I. io is largest
ifio>jistrue tlje1.
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Note that if T is directed, then any maximal element is largest. Also, in
general, if I has a largest element io, then limn Ai = Aio (see Corollary
8.4).

Now for colimits. Here, we wish colimZ in C to coincide with lim1 in
C°P. I is unchanged; we have a function i H Ai from I to objC, as
well as a cij E Mor(Ai, Aj) whenever i < j (Take particular notice! The
positions of Ai and Aj are reversed from their positions for limits.) subject
to cb kcbij = tik whenever i < j < k. Again, the pair (Ai, q5ij) will denote
a "colimiting system." A colimit (if it exists) C = colimzAi is defined as
follows. There are Pi E Mor(Ai, C) such that all diagrams

A;

C=s i < j
0i

Ai

commute, and C is "universally initial" with this property: If E Mor(Ai,
C') are such that all diagrams

commute, then there is a unique filler (P E Mor(C, C') making all diagrams

C'< - It - -C

10\.1

Ai

commute. Colimits are unique up to isomorphism for the usual reasons.
By the way, the term "T-cotarget" will be used for (C', V) as well as

(C,9Pi). For limits, (L', ?Pi') and (L, Vi) will be called "T-targets." These
terms are not standard, but we need words for them.

Example 28 If I is unordered, then colimzAi is the coproduct of the Ai.

Example 29 If C = RM, I is directed, and Oif is set inclusion, where
i < j when Ai C A; (and all Ai c some fixed A), then colimzAi = Uz Ai.

A point worth remarking on. For both limits and colimits, the direction
in which the limits are taken is +oo, that is, things increase. This is partic-
ularly the case with our limits once called "inverse limits," which do not go
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to -oo; they do, however, go toward the "tails" of the Oij arrows. Also, our
focus eventually will be on directed colimits, that is, colimits over directed
sets. In the old terminology, these were "direct limits over directed sets," a
phrase to which the mind reacts at first sight with a profound "Huh? Isn't
that redundant?"

Recall that if .7 is a subset of a partially ordered set I, then .7 is cofinal if
V i E 1, 3 j E .7 with j > i. Also, for notational convenience, set Wii = 2Az
when i E I.

Proposition 8.2 Suppose I is directed, and suppose .7 is cofinal in 1.
Then .7 is directed, and for any limiting system (Ai, (Iij) on 1,

limzAi = lim jAi,

that is, if either exists, then it is a model for the other.

Proof: First, .7 is directed: If i, j E .7, then 3 k E 1 with k > i, k > j,
since Z is directed. But 3 1 E .7 with ,l > k, since .7 is cofinal. But now
l>i,I>j.

Next, any .7-target extends uniquely to an 1-target. Suppose we are
given L E objC, and Oj E Mor(L, Aj) whenever j E .7, with Oj = OjkOk
when j < k in .7; that is, suppose (L,Oj) is a .7-target. Suppose i E 1.
Define Oi as ciji,ij for any j E .7, j > i. (This is forced.) The first claim
is that this definition is independent of the choice of j. (This is the point
where "I is directed" is used.) The reason is this. Suppose also i < k,
k E J. Since .7 is directed, 3 1 E J, l > j, l > k. But now

0ii0i = OijOil'bi = 410 1 = OikOkl'bl = cik'bk

The second claim is that these ,b satisfy i = cbijV)j for any i < j, i, j E Z.
To this end, choose k E .7, k > j. Then

Oij'Oj = ciiOjkbk = Oikbk = Wi-

Now suppose L = limn Ai exists, and suppose (L', Off) is a .7-target.
Define ?Pi', i E 1 as above, via r1'i = Oijoj, j E .7, j >- i, extending (L',Oj')
to an 1-target. Note that the V)= are data that produce a (unique) 1> E
Mor(L', L) such that r/' = Oi4> for i E 1. This (D is also unique subject to
Vj = 7/'j-0 for j E .7, since if V E Mor(L', L) satisfied Oj' = tJ ' for j E .7,
then one would have oi' = Oijip,' = Oiji,b V = Oil' for all i E I (choosing,
for each i, a j E .7, j >- i), from which V = -0.

Finally, suppose L = limy Ai exists. Extend the .7-target (L, i/ij) to an
1 -target (L,V)i). The claim is that these define L to be limn Ai. Suppose
2ki' E Mor(L', Ai), i E Z. There is a unique D satisfying z)jID ='Oj for j E J.
It suffices to show that iii =,1i for i E 1, since (D will then be the unique
morphism satisfying this broader class of formulas. But if i E 1, choose
j E .7, j > is Y)il> _ OijOj4t-= Oijoj' _ 0i.
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Corollary 8.3 Suppose Z is directed, and suppose J is cofinal in Z. Then
9 is directed, and for any colimiting system (Ai, Oij) on Z,

colimjAi = colirn ,Ai,

that is, if either exists, then it is a model for the other.

Proof: Proposition 8.2 in C°P.

Corollary 8.4 Suppose Z has a largest element io. Then lime Ai = Aio .

Proof: I is directed, since if i, j E T, then io > i and io > j. Set J = {io};
this 3 is cofinal.

Proposition 8.5 Arbitrary limits and colimits exist in RM.

Proof: One may define limn Ai to be a submodule L of fJI Ai defined as

L={(ai)E[JAi:¢ij(aj)=aifor i<j}.
iEI

Set v/ j((ai)) = a3. By definition of L, cjk0k((ai)) _ cbjk(ak) = aj =
V)1((ai)). Also, given an .1-target (L', iz), one notes that (0=(x)) E L for all
x E L' (since 1' = cbijij' for i < j), so one may set 4D(x) = (,ii(x)).

As for colimits, set C to be the quotient module

C = ((D iEIAi)/B

where B is generated by all Sjk(x), where one defines for j < k and x E Aj,

Sjk(x) E ®iEIAi

Ix, ifi=j
5jk(x) _ (ai), and ai = -cjk(x), ifi = k

0, otherwise.

One defines j E Mor(Aj, ®i A,) as the natural map Aj --+ ®I A,, and
,Oj = 7rj, where Tr : ®I Ai -+ C is the quotient map. Note that if j <
k, and x E Aj, then j(x) - kOjk(x) = Sjk(x) E B, so that Oj(x) -
'bkcbjk(x) = 0, that is,,Oj(x) _ OkC'jk(x). Given *,' : Aj --' C' subject to
z(ij'Oi j = -i(, we have simply from the Oj alone a unique : ®I Ai -+ C'
defined by -0 ((a,)) = EIVi=(ai). It suffices, since ®I Ai -+ C is onto, to
show that this $ kills B, that is, that $(Sjk(x)) = 0 for all j < k, x E Aj.
But'D(Sjk(x)) = & (x) +,k(-0jk(x)) = Oj(x) - k' Ojk(x) = 0.

There is a corollary to the above construction which isolates why directed
colimits are of such special significance, but we shall have to wait until the
next section to see how tensor products interact with them.
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Proposition 8.6 Suppose I is directed, and suppose (Ai, Oij) is a colimit-
ing system on I in RM. Form C = colim1Ai as in the proof of Proposition
8.5, as (®2Ai)/B. Suppose (ai) E ®Z-Ai. Set S((ai)) = {i : ai # 0}.
Then (ai) E B if and only if 3 k E I such that k > i for all i E S((ai)),
and EiES((a,))Oik(ai) = 0 in Ak.

Remark: The set S((ai)) is finite; the ability to even produce k requires
Z to be directed. Also, there is no version of this for limn since it is not
defined as a quotient.

Proof: The proof is most easily completed by making a series of observa-
tions. For this purpose, given (ai) E ®a Ai, say that (ai) has property P
if 3 k > i for all i E S((ai)) such that EiES((a,))cbik(ai) = 0 in Ak.

1. Every bjk(x) has property P.

This is because S((ai)) C {j, k}, and one may use k for the top index:
10jk(aj) + Okk(-cjk(aj)) = 0.

'2. The set of (ai) satisfying property P forms a submodule of ®Z Ai.

This is where "directed" comes in. First note that E¢ik(ai) = 0
E4ik(rai) = 0 for r E R, so the set of (ai) satisfying property P is closed
under R-multiplication. It therefore suffices to show that it is closed under
addition, that is, if (ai) and satisfy property P, then so does (ai +ai).
Choose k > i for all i E S((ai)), so that EiES((a,))cbik(ai) = 0, and choose
I > i for all i E S((a()), so that EiES((a;))Oit(ai) = 0. Finally, choose m E Z,
m > k, m > l (possible since Z is directed). Note that S((ai + ai)) C
S((ai)) U S((ai)), and m > i for all i E S((ai)) U S((ai)). Also,

Z'iES((a,))US((a.))Y+im(ai ai) = EiES((a,))Oim(ai) + EiES((a.))Oim(ai)

= 4km (EiES((a,))Oik(ai))

+Olm (EiES((ai))Oil(a))
= 0.

3. Every (ai) having property P is a finite sum of elements of the form
bjk(X)

To see this, note that if j is such that EiES((a,))Oij(ai)=0, then one can
set S' = S((ai)) - {j}, for which aj + EiEs'Oij(ai) = 0 whether aj = 0 or
not. But this means that aj = -EiES'Oij(ai), so that (ai) = EiES'bij(ai).

But now we're done. Set

B' = {(ai) E ®1Ai : (ai) has property P}.

Statement 2 says that B' is a submodule, in view of which Statement 1
says that B C B'. But Statement 3 says that B' C B.
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While on the subject of limits and colimits, two examples should be
defined for later use. Suppose Z = {0, a, b}, where 0 < a, 0 < b, and a is
unrelated to b. A limiting system on.T looks like

The limit in this case is called a pullback.

Since Oo = OoaV)a = OWN, the morphism V)o is usually left out. L is
universal, in the sense that, given V)z : L' -+ Ai such that Ooaoa = 0o =
OobO (so '0o can also be. deleted), there is a unique filler from L' to L:

Ab -
00b

o

When this happens, the limit L is called a pullback, and

L -0. Aa

ObI
1 00.

Ab
950b

AO

is called a pullback square.
Similarly, for colimits, a copullback is called a pushout

0oa
AO - Aa

00bI 1+Ga

Ab Ob
30 C
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and this square is called a pushout square.
Again, specialize to RM. For later use, we record here that

AFB-C->0
is exact if and only if

A 0B
01 0

1-0-C
is a pushout square. (See Exercise 2.) Consequently, any covariant func-
tor that preserves all colimits must necessarily be right exact, as well as
additive. In the next section, we shall see a condition that guarantees this.

8.2 Adjoint Functors

Adjoint functors constitute an abstraction of such things as free objects,
or tensor products in Theorem 2.4. Consider free objects first. Suppose C
is a concrete category, with a(A) denoting the underlying set of A, where
any f E Morc(A, B) is a function from a(A) to a(B). The first step is to
observe that

AF-+a(A)
f-+f

constitutes a functor, in fact a faithful (i.e., one-to-one on each morphism
set) functor from C to Set. Furthermore, one could define a concrete cat-
egory to be a category pre-equipped with a faithful functor c to Set.
MacLane [521 does this.' One may then replace each morphism set with
its image under o. (Some even define a concrete category to be a category
C for which there exists a faithful functor to Set, but this has the unpleas-
ant side effect that any small category would be concrete: If C is a small
category in which morphism sets have been arranged to be disjoint, then
one can send any object A to Mor(X, A) and f E Mor(A, B) to f,.)

Now suppose to each S we can associate a free object F(S) in C. The
defining characteristic of F(S) is that morphisms from F(S) to any B
correspond to functions from S to a (B), that is,

Morc(F(S), B) Mors t(S, o(B)).

This is the property that adjoint functors have. In what follows there are
two covariant functors, say F and F, which stand in a similar relationship.
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Before going into detail, the order is significant: F will be a left adjoint,
and F will be a right adjoint. (This is not like adjoint matrices. Exercise
4 exhibits a particularly transparent example.) Traditionally (and a bit
deceptively), (F, F) will be called an adjoint pair. Furthermore, F and
F (and later C and C) need have no particular relationship other than
adjointness; this notation is chosen so the reader can see at a glance where
objects and morphisms lie: If it wears a hat, it's in C; if not ... .

The situation is this. We have two categories a and C. (Note the order.)
There are actually three pieces of data, two of which are F and F. We
assume we are given:

i) A covariant functor F : C -- C,

ii) A covariant functor F : C -- C, and

iii) A naturally defined bijection between

MorC(B, P(C)) and Morc(F(h), C)

that is, a function (B, C) H aB c, with domain objC x objC such
that

aB,c : Morc(B, F(C)) --4 Morc(F(B), C)

is a bijection, and

iii a) V f E Mora(B, f?), the diagram

Morc(B, F(C)) aB'c> Morc(F(B), C)

P1 I F(j)*

Mora (B', F(C)) '> Morc(F(B'),C)

commutes.

iii b) `d g E Morc(C, C'), the diagram

Morc(B, F(C)) "'a', Morc(F(B), C)

9'

Morc(B, Pr)) ", Morc(F(B), C)

commutes.

Example 30 Suppose C = RM, and C = Ab. Fix A E MR. Define

FIRM-'AbviaF(B)=A®RB
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and

F : Ab -+ RM via P(G) = Homz(A, G).

Theorem 2.4 says that Homz(F(B), G) HomR(B, P(G)), while Theo-
rem 2.4(a) verifies condition (iii a) and Theorem 2.4(c) verifies condition
(iii b).

By the way, there is a hidden symmetry in all this. If (F, F) is an adjoint
pair of functors between C and C, then (F, F) is an adjoint pair of func-
tors between C°p and C°p. (See Exercise 3.) One may thus obtain results
about right adjoints from results about left adjoints. In general, a covariant
functor F_ : C --' C will be called a left adjoint if there exists a covariant
functor F : C - C for which (F, F) is an adjoint pair. Similarly, F is called
a right adjoint if (F, F) is an adjoint pair for some F.

At this point, we know that A®R is a left adjoint from RM to Ab, and
the focus is on the consequences for ® and Tor. The main result is the
following.

Proposition 8.7 Suppose F is a left adjoint functor from a category a to
a category C. Suppose that I is partially ordered, and (Bi, Oij) is a colim-
ifing system in C on I which has a colimit b = colim1Bi, with morphisms
1di E Mor(Bi, B). Then F(B) (with the morphisms F(0i)) constitute a
colimit for (F(B1), F(¢ij)), that is,

F(colimiBi) = colimjF(Bi).

Proof: We have commutative diagrams

so that given commutative diagrams
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all we have to do is find a unique filler 4D for all diagrams

C<----- F(B)

F(Bi)

To do this, note that (including P and a in our data) we have from (iii a)
a commutative diagram

Morc(F(Bj), C) a *-Morc(Bj, F(C))

Morc(F(Bi), C) Morc(Bi, F(C))

so that

that is,

C('Yj))wij.

Now iii, so we get

that is, the diagrams

all commute. Hence, there is a unique q'o E Morc(B, P(C)) making all

`YoF(C)---B
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commute. Our final claim is that for any if E Mora(B, P(C)),

P(c)it

B

Bi

commutes for all i if and only if

F(.§,)

commutes for all i. This will complete the proof since vB c is a bijection,

giving 4D = as the unique filler in C.
To see this final claim, we use (iii a) again. We have a commutative

diagram

Morib(B, P(C)) =c- Morc(F(B), C)

Morc(Bi,F(C)) 0' >Morc(F(B=),C)

which sends W E More (8, F(C)) to

that is, to

B c('1')F (i) _

Now W ii = QB 1c (7/ii) if and only if ac(z) = ipi, that is, if and only

if Wi = vB i), which is what we wished to prove.

Corollary 8.8 Suppose R is a ring, and A E MR. Then for any partially
ordered set I and colimiting system (Bi, Oij) in RM, colimj(A (& Bi)
A ® (colim1Bi).

Proof: A® is a left adjoint.
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Remark: This leads to an alternate proof of Proposition 2.3 (strong ad-
ditivity of A®), since direct sums are coproducts, as well as an alternate
proof of Proposition 2.6(b) (right exactness of A(&) since right exactness
can be checked using pushouts (which are colimits).

After a while, one gets used to changing diagrams

into diagrams

F(B)----------}C

F(B3)

but one must be careful about the morphisms:

B ---- 0----F(C)
ost c+b.
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becomes

aa,c(Wo)F(B)-------------- :I- C

F(Bj)

in which replacements of morphisms are not made by an obviously uni-
form prescription. (They are made by a subtly uniform prescription, which
suggests caution until one gets used to them.)

8.3 Directed Colimits, ®, and Tor

When working with Tor,. the main property we gain over Ext is that, for
each A E MR, Tor(A,.) commutes with directed colimits. It is too much
to ask that Tor(A,.) commute with all colimits, since this would imply
right exactness (see Exercise 2), a property Tor(A,.) lacks. Nevertheless,
directed colimits are enough.

The preliminaries we need are almost all completed; a consequence of
Proposition 8.6 needs to be stated, and this requires a bit of discussion.

Suppose we have a partially ordered set Z, and two colimiting systems
(A;, 46ij) and (Ai, OiJ) in a category C. Suppose we have ft E Mor(Aj, Aa)
for all i such that

Ai t' Aa

0., 1 0:i i < j
11

C
A A'

commutes. Suppose C = colimzA= and C' = colim1A; both exist using
morphisms z E Mor(A2, C) and i E Mor(Ai, C'). We have a commutative
diagram
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which leads to the simpler commutative diagram

A01f j

Ai

This diagram, in turn, leads to a unique filler :

colim1f'-
' EC C

Ai

(appropriately labeled colim1fi). One can interpret this category theoret-
ically (see Exercise 5). At any rate, we shall call (fi) a morphism from
the colimiting system (As,Oij) to the colimiting system (Ai,Oij). Similar
considerations apply to limiting systems (see Exercise 6).

We can now state the result we need.

Proposition 8.9 Suppose R is a ring, and suppose I is a directed set.
Let (As, Oij ), (A'i, 0ij ), and (A", Oi'j ) be colimiting systems on I in RM,
and suppose (fi) is a morphism from (Ai,Oij) to (A',and (gi) is a
morphism from (Ai, Oij) to (Ai'; Oil). Finally, suppose

Aif',Ai-'>Ai,

is exact for all i. Then

colimZAi
colimzf.,

colimZAi
colimzg'+

colimZAi'

is exact.

Proof: We use the construction appearing in Propositions 8.5 and 8.6. To
simplify matters, copy the notation, with primes applied: C = colimzAi =
((DZ Ai)/B, C' = colimZAi = (®Z A') /B', and so on. Note that the pre-
viously defined morphism colimx fi, for example, sends

(ai) + B E (®Ai)/B
I

to

(.fa(ai)) + B' E (®Ai)/B'
Z
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(See Exercise 7; this is really the naturality of Proposition 8.5 in the cate-
gorical context of Z-colimiting systems.) It is clear from this that since gi fi
sends (ai)+B to (gi fi(ai))+B" = (0)+B", one has (colimzgi)o(colimzfi) =
0.

Suppose (ai) + B' E C', and suppose colimzgi((ai) + B') = (0) + B",
that is, suppose for S"((gi(ai))) = {i : gi(ai) # 0} we have a j > i for
all i E S"((9i(ai))) such that EO.(9i(ai)) = 0. S'((ai)) D S"((9i(ai)))
Choose k > j, k > all i E S'((a (possible by induction on #S'((ai)),
since Z is directed). We have that

0 = 0jk 1 0:'-(9i(ai))
iES"((9.(as)))

0"(9i(a'))

ik(9i(a))

iES'((a,'))

_ E 9k(eik(ai))
iES'((a;))

= 9k( i oik(ai)).
iES'((a',))

It follows from exactness of Ak -4 Ak ---> A',' that 3 ak E Ak such that

fk(ak) = EiES'((a.))Oik(ai)

Extend ak to an Z-tuple by setting ai = 0 if i # k. The claim is that
colim1fi((ai) + B) = (ai) + B', that is, (ai - fi(ai)) E B'. But this is
immediate: Set T' = S'((ai)) - {k}. Then fk(ak) = ak + EiET'Oik(ai), so
ak - fk(ak) = -EiET'Ck(ai) and

(ai - fi(ai)) = EiET'Sik(ai).

We can now state, and prove, the main theorem of this chapter.

Theorem 8.10 Suppose R is a ring, and suppose A E MR. Let Z be a
directed set, and suppose (Bi, Oi3) is a colimiting system on I in RM.
Then for all n,

colimiTorn (A, Bi) Torn (A, colimiB2)

where the colimit on the left is computed in Ab and the colimit on the right
is computed in RM.
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Proof: Induction on n; n = 0 is Corollary 8.8. As usual, the n = 1 case
requires special discussion, relevant to the induction step.

Suppose

O--*K-F-*A-+ 0

is exact in MR, with F flat. For each i, we have exact sequences

0- Tor,(A,Bt)-6+K®BiB

from which we have a diagram

0 2oumzb'
colim coii - -®B

colim> colimzTor,
(A,

Bi) z(K ®Bi) z(F ®Bi)

22 ti

0 Tor, (A, colimzBi) 6 K ® (colimzBi)

with exact rows by Proposition 8.9. Hence

colimiTor,(A, Bi) ker(colimz(9 ® Bi))

c ker(O (9 colimzBi)

Tor, (A, colimzBi).

The induction step is easy; for n > 1,

colimxTorn+l(A, Bi) colimxTorn(K, Bi)

Torn(K, colimzBi)

Torn+i(A,colimiBi).

Remark: One can be more explicit if one desires. There is, for any I, a
homomorphism defined from colimxTorn(A, Bi) to Torn (A, colimzBi) us-
ing the universal colimit property; see Exercise 8. This homomorphism will
be an isomorphism when T is directed, by the 5-lemma. Also, one really
should check, for example, that (hi) : Tor, (A, Bi) -- K ® Bi is a morphism
of colimiting systems, which follows easily from naturality of the connecting
homomorphisms. (See also Exercise 5.)

Corollary 8.11 Suppose R is any ring, and suppose Bi E RM satisfy
F-dim Bi < n for i E I, T a directed set. Suppose (B1, lpj) is a colimiting
system on T. Then F-dim colimzBi < n. In particular, a directed colimit
of flat R-modules is flat.
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Proof: Apply Torn+1; Torn+1 of each entry in the colimit is zero.

This generalizes (see Exercise 9).

Example 31 Q is flat as a i-module; it is also the colimit (morphisms
are set inclusion, ordering is "m _< n when m divides n") over the positive
integers N+ of I Z, that is,

= colimN+ 1 Z.
n

Note that 0 is not projective, although it is now a colimit of projectives.
This is quite general and is the subject of the next section.

8.4 Lazard's Theorem

Lazard's theorem is part of the lore of homological algebra. From Corollary
8.11, and the example Q following it, we can conclude that a directed colimit
of projective modules need not be projective, but it must be flat. Lazard's
theorem [51] turns this on its head: Any flat module is, in fact, a directed
colimit of finitely generated free modules.

At first glance, this isn't even plausible. Suppose R is a direct sum of
two left ideals, R = I ® J. I is projective, hence flat. How is I a directed
colimit of free modules? Aren't free modules too big?

This example can be done directly. The index set is the natural numbers
N with the usual ordering. Let 7r : R -+ I denote the projection, and set
F. = R, n E N. Set 0n = Tr, and = 7r when n < m. This gives a
colimiting system, in which I = colimNFn. (See Exercise 10.)

Doing all this systematically will require a much larger indexing set. To
start the colimit discussion, we describe a general situation where colimits
can be "read off."

Suppose C E RM, and suppose D is a submodule of C. Let A and B be
nonempty families of submodules of C. These data will be said to constitute
a "(C, D)-subquotient system" provided the following conditions hold:

i) A and B are directed under set inclusion.

ii) C= U A and D= U B.
AEA BEB

iii) VBEB, 3AEAwithADB.
Given a (C, D)-subquotient system, set

I={(A,B)EAx1:ADB}.
Partially order I by

ACA'andBCB'.
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For notational convenience, we shall denote a typical index by an italic
letter, such as i = (A, B) E Z, and set A = A,, B = B,. That way,
subscripts won't be written as ordered pairs, sometimes with primes (e.g.,
A = A(A,B)). In this notation, i = (A,, B,), which looks peculiar. Never-
theless, the index will always be i, j, k.... ; the modules Ai, Bi, Aj, Bj, etc.
That is, as often happens, we forget the messy world where Z originated,
and denote a typical member as i, which parametrizes the pair (Ai, Bi).
Observe that i < j q Ai C Aj and Bi C Bj.

Our first result, and the reason for the terminology "(C, D)-subquotient
system" is the following.

Proposition 8.12 Suppose A and B give a (C, D)-subquotient system.
Form T, A,, Bi as above. Then I is directed and

colimzAi/Bi C/D.

Remark: The morphisms are the obvious ones: If i < j, then 0ij :

A,/Bi -> Aj/Bj is defined by ¢ij(x + Bi) = x + Bj. Also, for all i,
0i : Aj /Bi -i C/D is defined by 0i (x + B,) = x + D.

Proof: Suppose i,j E Z. 3 B E B with B 3 Bi and B D Bj, since B is
directed. 3 A E A with A B by condition (iii). Finally, 3 A' E A with
A' 3 A, A' D Ai, A' D Aj, since A is directed. Setting k = (A', B), we
have that k > i and k > j. All this says that I is directed.

To finish, suppose E E RM, and suppose 01 : Ai/Bi --> E satisfy i 'cij =
V)i when j > i. We must produce a unique 4> : C/D --, E for which 1' = 4>0i
for all i.

Notice what is forced. Choose x E C. 3 A E A with x E A. Choose
any B E 5, and any A' E A with A' D B. Finally, choose any A" E A
with A" A' and A" D A. Set i = (A", B). Then for this i (shifting
notation), x E Ai. Among other things, this shows that U1A, = C. But we
also know that Vi(x + Bi) = Doi(x + Bi) = 4)(x + D), so we are forced to
set 4)(x + D) = oi'(x + Bi). We will be finished if we show that this does
define 4), since this definition is then unique.

First of all, for x E C, set $(x) = /4(x + B,) for any i for which x E Ai.

1. $ is well-defined: If also x E Aj, "choose k E .T, k > i, k > j. Then

Bj) = 4'kgjk(x + Bj)
= 0k(x + Bk)
_ OkOik(x + Bi)
= W{(x + Bi)

2. $ is an R-module _homomorphism: If r E R, then 4)(rx) = zbi(rx +
Bi) = rO2(x + Bi) = r4 (x). If x, y E C, choose i, j with x E Ai, y E Aj.
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Choose k E Z, k >_ i, k > j. Then x E Ai C Ak and y E Aj C Ak, so
X, y E Ak, and -t(x + y) =,Ok(x + y + Bk) = 7/1k(x + Bk) + ip'k(y + Bk) _
$(x) + $(y).

3. $ is zero on D: If x E D, then 3 B E B with x E B. Choose A E A with
ADB,and set i=(A,B).Then xEB,CA,,so $(x)=7'(x+Bi)=0.

Combining all these, we can now set 4D(x + D) _ $(x) = ip1 (x + B,)
(when x E Ai), as required.

There are direct consequences to this, for example, if B = {0} or A = {C}
(see Exercise 11). However, we shall focus on a particular example devised
by Lazard. We need a structural lemma.

Lemma 8.13 Suppose A E RM, with A = Al A2, an internal direct sum.
Suppose B1 is a submodule of A1, and B2 is a submodule of A2. Suppose
0 : Al/B1 , A2/B2 is a homomorphism, and suppose Al is generated
by {x1i ... , xn}. For each k = 1,... , n, choose Ilk E A2 such that O(xk +
B1) = Ilk + B2. Let B be the submodule of A generated by B1, B2, and
{x1 - yl, ... ,x n - yn}. Let 0i : A,/Bi -+A/B be the natural maps 7/1i(x +
Bi) = x + B. Then 7&2 is an isomorphism, and the triangle

A/B

Al/B1 I02

A2/B2

is commutative.

Proof: Note that z/120(xj + B1) = i2(yj + B2) = yj + B = xj + B =
tbl(xj + B1), since all xj - yj E B. Since 1/J20 and Y)1 agree on a set of
generators of Al/B1, '020 = '1

If y E A2, then y + B is in the image of 02. If X E Al, then x + B E
im7b1 = im7/120 C im7/12. Combining, all of A/B = (A1 (D A2)/B is in the
image of 02, SO *2 is onto.

Finally, 7/)2(y + B2) = y + B for y E A2i so ,02(y + B2) = 0 + B $> y E
n

A2 n B. If y E A2 n B, then y = b1 + b2 + E rj (x j - yj ), with b1 E B1 and
j=1

b2 E B2. But then y = (b1+Erjxj)+(b2-Erjyj), so that since y E A2 and
Al n A2 = 0, b1 + Erjxj = 0. This means that Erjxj = -b1 E B1, so that
Erjyj + B2 = Erj6(xj + B1) = 0(Erjxj + B1) = 0(0) = 0, so Erjyj E B2
as well. Hence y = b2 - Erj yj E B2, and y + B2 = 0 + B2. This says that
1I2 is one-to-one.

Remark: This proof can be simplified slightly by forming a quotient with
B1® B2 at the outset. Also, B can be generated by B1, B2, and the graph
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of -B. The form we have is selected to match its application as closely as
possible.

Lazard's theorem is based on the following result about the existence of
a subquotient system which is universal, at least as far as finitely presented
modules are concerned.

Proposition 8.14 (Lazard) Suppose E E RM. There exists a (C, D)-
subquotient system with the following properties (index set I and all Ai, Bi,
Vii, Oij as in Proposition 8.12):

a) C/D E.

b) Ai/Bi is finitely presented for all i E I.

c) If F is finitely presented, and if 17 : F C/D is a homomorphism,
then 3 i E I and an isomorphism i7' : F -+ Ai/Bi such that the
triangle

n' C/D

F

commutes.

d) If i E I, and if iii = po, where o : Ai/Bi F and p : F -+ C/D
with F finitely presented, then 3 j E I, j > i, and an isomorphism
T : F --> A3/B? such that the diagram

m

Aj/Bj

Ai/Bi T C/D

commutes.

F

Remark: (d) is the crucial point. This colimiting system is universal for
finitely presented modules and their homomorphisms.

Proof: Let C be the free module on the set E x N, N = natural numbers.
Define a map 7r from C onto E by sending each (e, n) E E x N to e. Let
D be the kernel of this map, and let A be the family of submodules of
C generated by finite subsets of E x N (hence, free on finite sets) and let
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B be the family of finitely generated submodules of D. With this setup,
we have a (C, D)-subquotient system, and C/D ti E, while each Ai/Bi is
finitely presented (since each Ai is free on a finite set and each Bi is finitely
generated). There remain the universality properties (c) and (d).

For (c), note that (0,0) E Z, so the zero module appears as an Ai/Bi.
But then (d) (c), by taking (given F and r7) Ai/Bi = 0, v = 0, p = 77,
and setting 17' _ -r. Hence, we focus on (d). Let v, F, and p be as stated in
(d).

Choose N > all nk, where Ai is generated by {(ei, n1), ... (el, ni)}. Since
F is finitely presented, it is generated by {x1, ... , x71}, where the ker-
nel of the homomorphism from the free module on {x1, ... , xm } to F
is finitely generated. For each j = 1,... , m, choose yj E C such that
p(xj) = yj +D, and let A be the member of A which is free on {(7r(yi), N+
1),... , N + m)}. Define a : A -4 F by setting a((a(yj), N + j)) =
xj, a is onto by construction, and its kernel B will be finitely generated.
Note that ir((Tr(yy),N+j)) =Tr(y ), so that (7r(y3),N+j)+D = y3 +D.
But then pa((ir(yj), N + j)) = p(xj) = yj + D = (ir(y3),N+j)+D. Thus,
pa(x) = x + D for all x E A, since this equation holds for generators of
A. If X E B, then x + D = pa(x) = 0 + D, since a(x) = 0. That is,
B C D, so (A, B) = (Ak, Bk) for an index k. Letting a denote the induced
isomorphism: Ak/Bk --+ F, we have a commutative diagram

Ak/Bk
?Pk

a C/D

(which, by the way, establishes (c) already).
Now use the lemma, with 0 : Ai/Bi - Ak/Bk defined by 0

The resulting Ai ® Ak will be A3 (note that this sum is direct, and the
resulting Aj E A), while the "B" in the lemma will be B3. This B3 is
finitely generated; we need to know that B3 C D. Since Bi C D and
Bk C D, we need to know that when a(y) = v(x + Bi) then, necessarily,
x-y E D (since then 0(x+Bi) = y+Bk, and the elements called "xj -yj" in
the lemma will all be in D). But a(y) = v(x+Bi) . x+D = ,Oi(x+Bi) =
pa(x + Bi) = pa(y) = pa(y + Bk) ='Ok(y + Bk) = y + D. Hence, we can,
in fact, define this (A;, Bj), j E Z.

We now have a commutative diagram

Aj/Bj

Ai/Bi

a"o AklBk
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with Okj an isomorphism, assembling into the commutative diagram

-1\ 4'k,u
A Biil

B=a-'ateAk/Bk -- F

CID

from which p = ,Oka-1 = z/ijokja-1 so that

AJ /B2

., \+V,

Ai/Bi ' ok,-d-' C/D

F

is commutative. Set r = Okj 1.

Corollary 8.15 Every left R-module is a directed colimit of finitely pre-
sented left R-modules.

Actually, more holds. We are nearly finished; just recall some ideas from
Section 4.2. If F E RM, set F* = Hom(F, R). F* ® E maps naturally to
Hom(F, E) by sending Egi ® ei to 4D, where (D(x) = Egi(x) ei.

Theorem 8.16 (Lazard's Theorem) Suppose R is a ring, and E E M.
The following are equivalent:

i) E is flat.

ii) For all finitely presented F, F* (9 E -, Hom(F, E) is an isomorphism.

iii) For all finitely presented F, F* 0 E --+ Hom(F, E) is onto.

iv) E is a directed colimit of finitely generated free modules.

Proof: (iv) (i) follows from Corollary 8.11, since free modules are flat.
(i) = (ii) is Proposition 4.18. (ii) = (iii) is trivial. Finally, (iii) (iv):

Assume (iii). Let Z, Ai, Bi, Oi, Oij be as in Proposition 8.14. Set

J={jEZ:Al/BBisfree}.
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Suppose i E Z. Then z/ii E Hom(Ai/Bi, C/D) lies in the image of (Ai/Bi)*®
(C/D), so 3 al, ... , an E Hom(Ai/Bi, R), and yl, .. , yn E C/D, with
'Oi(2) = Evk(2)9k. Define v = (o , ... , an): Ai/Bi --+ Rn, and p : Rn -+
C/D by p(ri,... , rn) = Erkyk. Then 0i = pa, so by Proposition 8.14,
3 j E Z, j > i, and an isomorphism r : Rn -+ A3/B3, for which the
diagram

Ai/Bi I T C/D

is commutative. But observe: j E ,7, since A2/B2 Rn is free. This just
says that ,7 is cofinal in Z. Hence, by Corollary 8.3 (and Proposition 8.12),
.7 is directed, and

E .:s C/D colimzAi/Bi colimyA3/BB.

Lazard's theorem has some consequences. One major result is discussed
in the next section.

8.5 Weak Dimension Revisited

This section requires results from Chapter 5.
In Chapter 5, the focus was on projective dimension, and through it,

global dimension. The problem was that flats could not be handled defini-
tively, and the deficiency appeared right up front in Theorem 5.1(b).
Lazard's theorem allows us to fix that.

Adopt the situation that started Chapter 5, that is, suppose R and S are
rings, and suppose F : SM -+ RM is an exact, strongly additive functor.
The functors appearing in Chapter 5 were basically of two varieties. In the
first case, there was an A E RMS for which F(B) A ®S B for B E sM.
In the second case, there was a homomorphism 0 : R -+ S which turned
any B E SM into an R-module via r b = qS(r)b, r E R, b c- B. But this
F(B) was really S ®s B, where S E RMS via r s = 0(r)s, r E R, S E S.

All exact, strongly additive functors from SM to RM arise in this way-
this follows from Watts' theorem (Chapter 5, Exercise 3), which states
that whenever F : sM -+ RM is a strongly additive right exact functor,
necessarily F(B) A ®S B, where A = F(S) E RMS. Here, F(S) is
flat as a right S-module since F is actually exact. This isomorphism is also
"natural" in that morphisms are preserved. In what follows, we will replace
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the abstract functor F with the concrete functor A®s when necessary, with
the proviso that A is flat as a right S-module. The opening step, however,
does not require this proviso, and is the key point in generalizing Theorem
5.1(b).

Proposition 8.17 Suppose R and S are rings, and suppose A E RMS.
Then for all flat B E SM, F-dimRA ®s B < F-dimRA.

Proof: Write B ,: colim1Bi,, where each Bi is free and finitely gener-
ated. Lazard's theorem says that we can do this. Then A ®s B A ®S
(colimiBi) colimz(A (gs B1).

Interlude: There is a technical point here. A®s preserves colimits as a
functor from SM to RM (Note: It is RM here, not Ab.) by Proposition
8.7, since A®S is a left adjoint; the right adjoint functor from RM to SM
is C H HomR(A, C) by Chapter 2, Exercise 15, the generalization to our
situation of Theorem 2.4.

Now, each A ®s B= is a direct sum of a finite number of copies of A, so
F-dimRA ®S Bi = F-dimRA (or 0 if B1 = 0). Hence, F-dimRA ®s B =
F-dimR(colim2(A (gs Bt)) < F-dimRA by Corollary 8.11.

Corollary 8.18 Suppose R and S are rings, and suppose A E RMS and
B E sM. Suppose A is flat as a left R-module, and suppose B is flat as a
left S-module. Then A ®s B is flat as a left R-module.

Proof: F-dim A = 0 in Proposition 8.17.

Remark: There is an elementary, Chapter 2-level proof of this (see Ex-
ercise 12). In fact, there is a Chapter 4-level proof of Proposition 8.17 as
well, although it involves an auxiliary concept (see Exercise 15).

The generalization of Theorem 5.1(b) is as follows.

Proposition 8.19 Suppose R and S are rings, and suppose F : SM
RM is an exact, strongly additive covariant functor. Then V B E SM,

F-dimRF(B) < F-dimsB + F-dimRF(S).

Proof: Replace F with A®s, where A E RMS and A is flat as a right S-
module; this is possible by Watts' theorem, where A = F(S). If F-dimsB =
oo, there is nothing to prove, so assume F-dim SB < oo. There is a flat
resolution of B:
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which, after applying A®S, yields

O --+ A ®s D,, --> A ®S Dn-i -+ ... - A ®S Dl --, A ®S Do -+ A ®S B -- 0

since A is flat as a right S-module. But F-dimR(A ®S Dk) F-dimRA =
F-dimRF(S) by Proposition 8.17, so F-dimR(A ®s B):5 n + F-dimRF(S)
by Corollary 4.3.

There is a corollary, which improves Theorem 5.18(b). For this, S is
an admissible multiplicative set (one reason why we have been so explicit
about R and S), that is, a nonempty subset of R - {O} which is closed
under multiplication. The following redoes Exercise 8(a & b), Chapter 5.

Corollary 8.20 Suppose R is a commutative ring and S is an admissible
multiplicative subset of R.

a) For all B E RM, F-dims-lRS-1B < F-dimRB.

b) For all b E S-1RM, F-dims-1RB = F-dimRB.

Proof: For (a), let F(B) = S-1B S-1R®RB. Then F-dims-1RF(R) =
F-dims-10-1R = Okso F-dims-1RS-1B < F-dimRB by Proposition 8.19.

For (b), let F(B) = B-as-R-module. Then F-dimRF(S-1R)
F-dimRS-1R = 0, so F-dimRB < F-dims-1RB by Proposition 8.19. But bX
part (a), F-dims-1RB = F-dims-IRS-1B < F-dimRB, since B S-1B
by Proposition 5.17(b).

One can now redo much of Chapter 5, with flat, dimensions replacing
projective dimensions, but there are limits. A good example is Proposition
5.8. An attempt to simply replace "projective" with "flat" is doomed. Nev-
ertheless, it is possible to revise the argument (including the preliminary
observation). (See Exercise 14.)
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Exercises

1. Suppose (Ai,Oil), is a limiting system on an index set I with the
Ai E RM, where i < j s Al C A. Suppose I is directed. Show that
limn Ai = n1Ai.

2. In RM, show that A -* B --p C -4 0 is exact if and only if

is a pushout square. Hence, show that any covariant functor F :
RM -* SM, which commutes with all finite colimits, is necessarily
right exact. (Warning! There is one small, subtle point.)

3. Suppose (FP) is an adjoint pair of functors between C and C. Show
that (F, F) is an adjoint pair of functors between C°p and C°p. Be
explicit about the map playing the role of Q.

4. You may have noticed that both limits and colimits in RM coin-
cide with their constructions in Ab. This is no accident. Let F :
RM --' Ab be the forgetful functor, which sends any B E RM to
its underlying Abelian group. Show that F is both a left adjoint
((F, Homz(R, )) is the adjoint pair) and a right adjoint ((R®z , F)
is the adjoint pair).

Hint: Chapter 2, Exercise 15, will help here.

5. Suppose Z is a partially ordered set, and C is a category having all
colimits from Z. Manufacture a category of colimiting systems on I
in C, and show that (after choosing a specific model) colimz is a
covariant functor from this category to C.

6. Reformulate Exercise 5 for limiting systems, and give a one-sentence
solution.

7. In the proof of Proposition 8.9, show that the category-theoretically
constructed colimz fi really does send (ai) + B to (fi(ai)) + B'.

8. Suppose I is any partially ordered index set (not necessarily di-
rected), and suppose (Bi, Oij) is a colimiting system on I in RM.
Show that there is always a naturally defined homomorphism from
colimzTor,, (A, Bi) to Tor,, (A, colimzBi) for each A E MR.

Hint: There is a homomorphism from each Tor,,(A, Bj) to Tor,,(A,
colimzBi).
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9. Prove the "Fatou lemma" for flat dimensions: Suppose I is directed,
and (Bi, cij) is a colimiting system on I in RM. Show that

F-dim (colim2Bi) < liminnf(F-dim B,)

where, for ri in the extended real numbers,

liminf ri = sup(inf{rj : j > i}).
Z iEZ

10. Verify that I = limn Fn for the example in the second and third
paragraphs of Section 8.4.

11. Give quick proofs that if A E RM and if B is a nonempty directed
family of submodules of A, then colim0B = U B and colimBA/B =
A/ U B.

12. Give an elementary, Chapter 2-level proof of Corollary 8.18.

Hint: See Chapter 2, Exercise 13.

13. Countable directed colimits are easy: Show that any countable di-
rected set either has a largest element, or has a cofinal subset which
is order-isomorphic to N, the natural numbers.

14. Suppose R is a ring and a is a central element of R_ which is neither
a_unit nor a zero divisor. Set R = R/Ra. Suppose B is a nonzero left
R-module with finite flat dimension as an R-module. Show that

F-dimRB = 1 + F-dimRB.

Hint: Mimic Proposition 5.8 as much as you can, including the prelim-
inary observation preceeding the proposition. Some things will defi-
nitely have to change. For example, in the second paragraph of the
proof, flats are not always direct summands of free modules. Never-
theless, multiplication by a is one-to-one on any flat left R-module.
Why is that?

15. (Absolute continuity for modules). Suppose B, B' E RM. Write B <-
B' if d A E MR, Torl (A, B') = 0 = Tor, (A, B) = 0.

a) Show that B < B' if and only if the following happens: When-
ever 0-'K-'F is exact in MR with Fflat, then
F®B'exact =0--+K®B-+F(& B exact.

b) Show that ifB<B',then dn>1:VAEMR,Torn(A,B')=
Torn(A,B)=0.

c) Show that if B < B', then F-dim B < F-dim B'.
d) Given the situation in Proposition 8.17, show that A®s B < A.
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Odds and Ends

9.1 Injective Envelopes

This section uses material from Chapters 1 and 2.
The enough injectives theorem asserts that any left R-module can be

imbedded in an injective module. An injective envelope is basically a small-
est injective with this property. More specifically, if B E RM with injective
envelope E(B), then any injective extension D of B contains an isomorphic
copy of E(B) in the following sense: B C E(B), and there is a one-to-one
homomorphism v : E(B) -+ D such that the diagram

E(B) ° > D

\ U
B

is commutative. (In what follows, this will always be the meaning of the
phrase "contains an isomorphic copy of.") E(B) also has the property that
it is an "essential" extension: If B is a submodule of C, that is, if C is an
extension of B, then C is an essential extension of B when every nonzero
submodule of C has a nonzero intersection with B.

The proof that injective envelopes exist is carried out backwards. In-
jective envelopes are constructed as certain maximal essential extensions.
Consequently, the term "injective envelope" will have an oddball definition.



286 9. Odds and Ends

Injective envelopes then turn out to be smallest injectives, as well as actu-
ally being largest essential extensions. Also, all injective envelopes of B are
isomorphic as extensions of B. We start with business.

Lemma 9.1 Suppose C is a left R-module, and suppose B is a submodule
of C. Then the set of essential extensions of B within C has a maximal
element.

Proof: Partially order the set of essential extensions df B within C by set
inclusion. This set is nonempty since B is an essential extension of itself.
To complete the proof, we need only verify that the hypotheses of Zorn's
lemma are satisfied. Let C be a nonempty chain (under set inclusion) of
essential extensions of B, and let Co be the union of the members of C. Co
is a submodule of C, since C is a chain, and Co is an extension of B within
C. It remains to show that Co is an essential extension of B.

Suppose A is a nonzero submodule of CO, and choose any a E A, a 0.
Choose aDECwith aED.Then RaCD,so RanB#0, since Dis an
essential extension of B. But now 0 0 Ran B C A n B.

We have one more Zorn's-lemma argument, concerning the opposite sit-
uation.

Lemma 9.2 Suppose C is a left R-module, and suppose B is a submodule
of C. Then there is a submodule D of C which is maximal with respect to
the property that D n B = 0.

Proof: Partially order the set of submodules of C having trivial intersec-
tion with B by set inclusion. This set is nonempty since it includes the zero
submodule. The union of a ponempty chain (under set inclusion) of sub-
modules of C having trivial intersection with B, yields a submodule having
trivial intersection with B, so every chain has an upper bound. By Zorn's
lemma, there is a maximal submodule D with respect to the property that
DnB=O.

The connection between this and essential extensions is the following.

Lemma 9.3 Suppose C is a left R-module, and suppose B is a submodule
of C. Let D be any submodule of C that is maximal with respect to the
property that D n B = 0. Let it : C -+ C/D denote the canonical surjection.
Then it yields an isomorphism of B with ir(B), and C/D is an essential
extension of 7r(B).

Proof: The kernel of it is D, so the kernel of 7rjB is D n B = 0. Hence, it
is one-to-one on B and yields an isomorphism of B with 7r(B).

Suppose D'/D is any nonzero submodule of C/D. Then D' n B # 0,
since D is maximal with respect to having trivial intersection with B. But
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if 0 # x E D' fl B, then 7r(x) = x + D 54 0, since ir is one-to-one on B,
while 7r(x) = x + D E (D'/D) n 7r(B). Hence, 0# 7r(B) n (D'/D). Since all
submodules of C/D have the form D'/D, C/D is an essential extension of
ir(B) = (B + D)/D.

We can now prove our first proposition, which makes the connection
between essential extensions and injective modules.

Proposition 9.4 Suppose E E RM. Then E is injective if and only if E
has no nontrivial essential extensions.

Proof: The proof is based on the result from Chapter 2 that injectives are
absolute direct summands, and vice versa. First, suppose E is injective, and
suppose E is a submodule of C. Then E is a direct summand of C, since
injectives are absolute direct summands. If C = E® F, then F fl E = 0. If
C is also an essential extension of E, then this implies that F = 0, that is,
C = E. That is, C cannot be an essential extension of E unless C = E.

Now suppose E has no nontrivial essential extensions. This property can
be restated as follows. Suppose B is a submodule of C; make a temporary
definition that B is inessential in C when the only essential extension of
B in C is B itself. Then "E has no nontrivial essential extensions" can be
restated as "E is absolutely inessential." But absolute properties are invari-
ant under isomorphism, thanks to the pulltab theorem in the appendix to
Chapter 1. Consequently, any isomorphic copy of E also has no nontrivial
essential extensions.

Now let C be any extension of E. Let D be a submodule of C that is
maximal with respect to the property that D n E = 0. Then C/D is an
essential extension of ir(E) in accordance with Lemma 9.3, so that C/D =
7r(E) = (E + D)/D, since 7r(E) has no nontrivial essential extensions. But
this just says that C=E+D.Since EflD=0,C=E® D, and E
is a direct summand of C. Since C was arbitrary, E is an absolute direct
summand, and so is injective.

There is one other connection between essential extensions and injectives,
and it is almost an observation. We record it as a lemma for concreteness.

Lemma 9.5 Suppose B E RM, and suppose B is a submodule of both C
and E, where otherwise C and E are unrelated. Suppose C is an essential
extension of B, and E is injective. Then E contains an isomorphic copy of
C.

Proof: Define a : C -+ E as any filler:0C
T A
E
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defined via injectivity of E. Then o (b) = b for b E B, so keranB = 0. Since
C is an essential extension of B, ker v = 0. Thus, or (C) is an isomorphic
copy of C inside E.

We can now define what we will mean by an injective envelope.

Definition 9.6 If B E RM, then an injective envelope of B is an in-
jective essential extension of B.

From Lemma 9.5, any injective envelope will contain an isomorphic copy
of any other essential extension. We're getting close to the main theorem for
injective envelopes. There is one more result needed; it constructs injective
envelopes.

Proposition 9.7 Suppose E is an injective left R-module, and B is a sub-
module of E. Let C be any maximal essential extension of B in E. Then
C is an injective envelope of B.

Proof: First, observe that C has no nontrivial essential extensions C'
in E, since C' would then be an essential extension of B (contradicting
maximality):00AcC'*00AnC=00(AnC)nB=An B.

Now if D is any essential extension of C at all, then by Lemma 9.5,
E contains an isomorphic copy D' of D, from which D' = C and then
D = C. That is, C has no nontrivial essential extensions, so C is injective
by Proposition 9.4. Since C is by definition an essential extension of B, C
is an injective envelope of B.

Corollary 9.8 Any B E RM has an injective envelope.

Proof: In Proposition 9.7, E and C exist by the enough injectives theorem
and Lemma 9.1.

The main theorem reads as follows.

Theorem 9.9 Suppose B E RM. Then

a) B has an injective envelope, and any two injective envelopes of B are
isomorphic.

b) If E(B) (respectively, E(C)) is an injective envelope of B (respec-
tively, C), then any v E Hom(B, C) has an extension T E Hom(E(B),
E(C)). Furthermore, if a is one-to-one or bijective, then so are all
such T.

c) Any injective envelope E(B) of B is a largest essential extension of
B in that E(B) contains an isomorphic copy of any other essential
extension of B.
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d) Any injective envelope E(B) of B is a smallest injective extension of
B in that any other injective extension of B contains an isomorphic
copy of E(B)-

Proof. First, the quick deductions. (c) follows directly from Lemma 9.5,
as remarked following the proof. (d) follows from the uniqueness part of (a)
since any injective extension of B contains, via Lemma 9.1 and Proposition
9.7, an injective envelope. Finally, (a) follows from Lemma 9.5 and the
"bijective" part of (b), by setting C = B and Or = iB. There remains (b).
r is constructed as a filler:

0 -- BL-- E(B)
a /

E(C)

and may not be unique. As in the proof of Lemma 9.5, r is one-to-one
when o is, since ker or = ker r n B so that ker v = 0 ker r = 0, since
E(B) is an essential extension of B. If additionally o is bijective, then
r(E(B)) E(B), so r(E(B)) is an injective submodule of E(C), forcing
E(C) = r(E(B)) ® A for some A, since r(E(B)) is injective and so is an
absolute direct summand. But now A n C= A n v(B) = A n r(B) C
A n r(E(B)) = 0 so that A = 0 (and r(E(B)) = E(C)), since E(C) is an
essential extension of C.

The possibility acknowledged in (b) actually happens, and the extensions
(r's) are not unique. This prevents B f-+ E(B) from being used to define
a functor, and is much more serious than the easily solved "For each B,
choose a particular injective envelope and call it E(B)."

Example 32 The injective envelope of Z is Q (exercise). The injective
envelope of Z, is the p-quasicyclic group C, = Z[1/p]/Zp (exercise). The
natural map n F-+ n + Zp has lots of extensions to Q. For instance 11p may
go to 1/p + Zp, or it may go to 1 + 1/p + Zp, or 2 + 1/p + Zp, or ...

So much for injectives. How about projectives? What happens if we re-
verse the arrows? To see what is needed, it is best to find first an interpre-
tation of "essential extension" that involves only categorical concepts.

The first thing to go is "B is a submodule of C," which is replaced by
"t : B -+ C is one-to-one." The A C C for which we have "A # 0 =
A n t(B) # 0 . a 1(A) # 0" is replaced by an arrow f : C -+ D with
kernel A: "f is not one-to-one ft is not one-to-one," or "f t is one-to-one

f is one-to-one."
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The opposite notion to an essential extension can now be defined. A
homomorphism ir : C -+ B is called a cover if a is onto, and for all f E
Hom(D, C), r f is onto = f is onto. The analog of an injective envelope
is then a projective cover. If one exists, it will have properties similar to
injective'envelopes: Any projective which maps onto our module will factor
through the projective cover, and so on.

The problem is existence. We shall return to all this in Section 9.6, since
one situation when they do exist is for finitely generated modules over
quasilocal rings. In general, however, the problem is with Lemma 9.1. The
analogous construction for quotients does not Zornify.4

Example 33 Z2 E zM does not have a projective cover. Suppose P is
projective and zr : P --a Z2 is a cover. (P is free, but we don't need that.)
If g : Z -+ Z2 is the usual map, then any filler f :

Z

A

a

P-. )-- 7G2- 0

mould have to be onto, that is, P Z (7/n is not allowed since Zn is not
projective) so that f will be an isomorphism. But then f (n) = 3f (n) is a
filler which isn't onto.

9.2 Universal Coefficients

This section requires material discussed in Chapters 1, 2, 3, and 4.
The universal coefficient theorems in algebraic topology are results that

allow the computation of cohomology from homology, as well as allowing
the coefficient group in homology to change. There are two universal co-
efficient theorems, one of which is a corollary to the Kiinneth theorem in
the next section. The other is the subject of this section. Both are really
homological algebra results in disguise.

The usual starting situation is a chain complex

d,.+i d--+ Pn+1 -+ Pn -' Pn_1 -' .. .

consisting of projective modules over a left hereditary ring R. That is,
the ring R has left global dimension less than or equal to one, so that
submodules of projective modules are projective, and quotient modules of
injective modules are injective. In the application to algebraic topology, R is

41 first heard this lovely verb from George Seligman, when I was a graduate student.
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usually Z, but the result is quite general. In fact, it comes from assembling
even more general results. The proof here is modeled on the one in Massey
[54, pp. 269-273 and 314-315].

Set

B. = im(dn+l)
Zn = ker(dn)
Hn = Zn/Bn = homology at Pn.

This notation will be used throughout this section. The first thing to ob-
serve is that Hn can be computed in another way. We have the "standard
picture"

0

d.,}1Pn+1Ba,0

0 Zn( Pn - , Pn-1

H.

0

which has the virtue that everything is exact. We also have (since Zn =
kerdn) an injection an : P,, 1Z. - Pn-1, yielding the "unstandard picture"

0

d

Zn/Bn = Hn

f
Pn+l n-- p._Pn/Bn_0
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The universal coefficient theorem "computes" the result if C) is
applied to the complex (P1, d;) and homology is then taken.

One such result can be obtained directly without any assumptions on R
or on the Pi.

Proposition 9.10 Suppose R is any ring for which (P1, d1) is a chain com-
plex in RM. Denote the homology at Pn by H. Suppose C is an injective
left R-module. Then the homology of (Hom(P=, C), d,*) at Hom(Pn, C) is
Hom(H,,, C).

Proof: Apply C) to the unstandard picture for Hn:

0

Hom(Hn,C)

t
Hom(Pn+1, C) F Hom(PP, C) E-- Hom(P,,/Bn, C) -,-- 0

T do
0 -*- Hom(P,,/Zn, C) E-- Hom(PP-1, C)

0

in which all rows and columns are exact, since C) is an exact functor
(C being injective). This is just the standard picture for the homology of
(Hom(Pn, C), dn), except that it's upside down. That is,

Hom(Pn/Z,,, C) = image of do
image of do

and

Hom(P,,/Bn, C) kernel of do+l

so that Hom(H, C) homology of (Hom(P,,, C), dn). 0

Proposition 9.10 serves both as a special case and as a lemma. Our main
result weaves together two results (Propositions 9.11 and 9.12 below) which
partially overlap. To prepare for the details, we need a bit more notation,
also to be used in the rest of this section. If (Pi, d,) is a chain complex of
left R-modules, and C E RM, consider the complex introduced above:

. F- Hom(P,+i, C)
a'

Hom(Pn, C) t Hom(Pn-1 i C)
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Denote its homology by H"(C). Suppose g E ker(d,*,+1). Then g E Hom(P.n,
C), and gds}1 = do+1(g) = 0. That is, g is zero on im do+1 = B. Con-
sequently, g induces a homomorphism from Ps/B,, to C, which restricts
to a homomorphism g : Hs -+ C, since Hs = Zs/B,, C Ps/B,,. Now if
g E im d ,, that is, g = do (h) = hdn, then g is zero on Zs = ker dn, so that
g = 0. That is, one may set

p : Hs (C) -+ Hom(HH, C),

p(g + im(dn)) = 9,

and the resulting function p is well-defined. It is also a homomorphism
virtually by inspection, and coincides with the isomorphism of Proposition
9.10 (exercise).

Furthermore, again virtually by inspection, p has the right "naturality"
properties. For example, if 0 : C -+ C' in RM, then there are induced
1/i" : H'(C) -, H"(C'), as well as 1P. : Hom(H C) -+ Hom(HH, C').
After putting subscripts on p to refer to the modules C and C', we have a
diagram

H"(C) Hom(Hn, C)

H' (C) PC,
Hom(H,, C')

which is commutative. (This is an easy diagram chase, left as an exercise.)
There is a similar naturality when the chain complex (Pi, d2) is mapped
to a new chain complex (P=, d=) using a chain map; details are left as an
exercise.

Our first result concerning p in the abstract is the following.

Proposition 9.11 Suppose (Pi, d1) is a chain complex of left R-modules,
and suppose that for a particular n, Zn is a direct summand of P, . Then
p : H"(C) - Hom(Hn, C) is onto and splits.

Remark: The splitting is not asserted to be natural, as the way in which
Zn is a direct summand of Pn is not asserted to be natural.

Proof: The point is to define a homomorphism v : Hom(Hn, C) -,, H" (C),
so that pa is the identity oil Hom(Hn, C). We will then have imp D im pa =
Hom(Hn, C), so that p is onto; also a will provide the splitting.

To this end, let it : Pn --+ Zn denote the projection associated with
Zs as a direct summand of P, . Suppose f E Hom(HC). Then since
Hn =Zn/Bn, we get a unique f E Hom(ZZ, C) such that f is zero on Bs,
and 7(x) = f (x + Bs). Set g = fir E Hom(Pn, C). Now it is the identity
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on Zn, so g and f agree on Z. In particular, g is zero on B, and the
defined in the discussion of p agrees with f. So: Set

a(f) = fir +imd,*, E H'(C).

o- is again a homomorphism virtually by inspection, and po is the identity
on Hom(Hn, C).

The next result is the universal coefficient exact sequence in its most
general form. It overlaps with Proposition 9.11 in giving a circumstance
when p is onto, but otherwise it is entirely separate.

Proposition 9.12 Suppose (Pi, di) is a chain complex of left R-modules,
and C E RM. Suppose each Pi is projective and I-dim C < 1. Then there
is a naturally defined exact sequence

0 - ExtR(Hn_1i C) -> H" (C) Hom(Hn, C) 0.

Remark: "Naturally defined" means that what was said above about
p also applies to Extk(Hn_1i C) -> Hn(C). The details are a little more
complicated than for p, but only in that the idea behind functoriality of
Extk(Hn_1, ) is used. Details are left as an exercise.

Proof: There is a short exact injective resolution of C

0 C - Eo - E1 0,

since I-dim C < 1 (Proposition 4.8). Put these in the second factor of
and the Pi in the first factor, yielding the diagram

0 0

I Hom(d,.,C) Jr

Hom(Pn, C) E- Hom(Pn-1, C) E ---
Hom(P,,,c) Jr JrHom(P._l.t)

Hom(d,.,Eo)- Hom(Pn, Eo) -*- Hom(P,,-1, Eo) E --
Hom(P,a)Jr JrHon1(P.._i7r)

- Hom(Pn, El) Hom(d,,,El)
Hom(P,,-1, El) -c

0 0

with exact columns since each Pn is projective. The long homology exact
sequence is then
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Hn(C) -' Hn(Eo) -' Hn(El)

Hn-1(C) _+ Hn-1(Eo) _' Hn-1(El)

from which (after applying Proposition 9.10) we extract

Hn-l(Eo) Hn-l(E1) --Hn(C)
22 u

Hom(Hn-1, Eo) (7rn1)=- Hom(Hn-1, E1)

Hn(EE) _.. Hn(E1)
R u

Hom(Hn, Eo) (Irn). + Hom(Hn, El)

yielding the short exact sequence

0 - Hom(Hn-1, El)/im (in-1) -' H" (C) --' ker(ir ) --+ 0.

However, by Corollary 3.12 (computation of Ext from injective resolutions):

Hom(H, i, El)/im (ten-1).
(n-O.

=homology of (Hom(H li Eo) -' Hom(Hn-1i El))at Hom(Hl, E1)

Pt Extk(H1, C)

while

ker(7rn),

= homology of (Hom(Hn, Eo) ( Hom(Hn, El))at Hom(Hn, Eo)
Exto (Hn, C)

Hom(Hn, C)
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All that remains is the task of showing that the induced homomorphism
Hn(C) -+ ker(irn), Hom(Hn, C) is p, which is left as an exercise. (Use
the naturality of p.)

The universal coefficient theorem is now a corollary of this.

Theorem 9.13 (Universal Coefficient Theorem Involving Ext)
Suppose R is a left hereditary ring, that is, suppose LG-dim R _< 1. Suppose
(Pi, di) is a complex of projective left R-modules with homology Hn at Pn.
Let C E RM, and suppose the homology of (Hom(Pi, C), di) is Hn(C) at
Hom(Pn, C). Then there is a naturally defined short exact sequence

0 -+ Extk(Hn_1i C) Hn(C) --> Hom(Hn, C) -+ 0

which splits (although the splitting is not asserted to be natural).

Proof: I-dim C < LG-dim R < 1, so Proposition 9.12 applies, giving the
short exact sequence. To see that Proposition 9.11 also applies, observe that

is a submodule of the projective module Pn_1, so Bn_1 is projective
by the projective dimension theorem (Pn_1 -' Pn_1/Bn_1 -+ 0 extends
to a projective resolution of Pn_1/Bn_1, where first kernel is Bn_1i and
P-dim (Pn_1/Bn_1) < LG-dim R < 1). Consequently, 0 -+ Zn -+ Pn -+
Bn_1 -+ 0 splits (see Section 2.3), and Zn is a direct summand of P.

A slightly frivolous corollary ...

Corollary 9.14 (Universal Coefficient Formula) Suppose R is a left
hereditary ring, (Pi, di) is a complex of projective left R-modules with ho-
mology Hn at Pn, and C E RM. Then the homology H(C) of
(Hom(Pi, C), di*) at Hom(Pn, C) is unnaturally isomorphic to

Extk(Hn_1, C) ® Hom(Hn, C).

9.3 The Kenneth Theorems

This section uses material from Chapters 1, 2, 3, and 4. Furthermore, the
next two paragraphs, which are introductory and may be omitted, refer to
Section 9.2 (the previous section).

The universal coefficient theorem of the last section is an island of ho-
mological algebra in the sea of algebraic topology. Another island is the
Kiinneth formula, except that what one has in the homological algebra
setting is not so definitive. As in Corollary 9.14 in the last section, there
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is a Kenneth formula; it is a consequence of a more general short exact
sequence (the Kiinneth exact sequence) which splits under certain circum-
stances. One major difference is that here the splitting will require more
from the ring. In Corollary 9.14, the assumption that R was left heredi-
tary did two things. First, it forced I-dim (C) < 1. Next, it forced Zn to
be a direct summand of Pn, which caused the splitting. Here, the natural
condition on R is that W-dim R < 1. This no longer forces the second
conclusion, nor the splitting. As a result, there is a slight irony in the way
the phrases roll off the algebraic topologist's tongue: universal coefficient
theorem and Kenneth formula They should be the other way around, at
least from the homological algebraist's perspective.

There is another difference. There is no analog of Proposition 9.11. Fur-
thermore, in the analog of Proposition 9.12, the assumption "I-dim C <
1" will be replaced: We shall jump immediately to the assumption that
W-dim. R<1.

The Kiinneth exact sequence, as well as the Kenneth formula, are used
in algebraic topology to compute the homology of product spaces. The
Eilenberg-Zilber theorem (which is topological) sets up the algebraic pic-
ture, and the Kiinneth theorems (which are algebraic) knock it down. The
approach we follow is modeled on Greenberg and Harper [26, pp. 253-257],
at least in part. The setting is one where we have two chain complexes
(F, d,) and (F, ds), where Fi E MR and F' E RM. Form the tensor array
as in Section 3.3 (1j = iF,;1j = ir):

1 1,®d'. 1
...----------

d.®1;
T

ld.®1;_1

®Fj-1 _ ...

Make the following definitions (establishing notation):

Zn=kerdn

Bn = im do+i

H. = Zn/Bn

Zn = ker do



298 9. Odds and Ends

Bn = im do+1

Hn = Zn/Bn

Ci,j =Fi®Fj
di,j = li (9 dj

ai,j=di®1;
Fn = ® Ci,j

i+j=n

do : F. - Fn-1 via

do = (® di,j) + ((@ (-1)iai,j)
i+j=n i+j=n

Zn = ker d,,,

Bn = im dn+1

Fn = Zn/Bn

In defining dn, we treat, for example, di, j as mapping Ci, j to C_1 and
then into Fn-j. By replacing each Ci,j with its image in Fi+j, we can also
assume that C1, j C Fi+j .

The above conventions define the tensor product of complexes
(Fi, di) ® (F', dy). Take particular notice that the sign convention for do
is not the one in the discussion following Corollary 3.10. That conven-
tion fits the requirements of Proposition 6.12 later, but has the peculiar
vice of not being associative. Nevertheless, the old signs arise when we
take (Fi, di) ® (Fi, (-1)i+1di), and (Fi, (-1)i+1d2) has the same homol-
ogy as (F(, di) does. Consequently, the data we enter into the Kenneth
exact sequence (and formula) are unaffected. (Slightly messy exercise: The
homology of the tensor product is also unaffected.)

There is a homomorphism, the Kenneth homomorphism, which is defined
as follows. Let i and j denote fixed indices. The bilinear map ® : Fi x Fj' -a
Fi ® F3' = CC,j C Fi+j has the following properties:

i) If u E Bi, v E Zj, then u ®v c Bi+j. Reason: If u = di+l u, then

di+j+1((-1)ju (9 v) = u ®v(where it (9 v E Ci+1,j),

since di+1 ® (9 v) = u ® v, while li+1 ® dj(u (9 v) = 0.

ii) Similarly, if u E Zi, v c BB, then u(9 v E Bi+j.

iii) If u E Zi, v E Zj, then u 0 v E Zi+j by a direct calculation, since
both di ®1j and li ®dj kill u 0 v.



9.3 The Kiinneth Theorems 299

We can now define Oij : Zi x Z,' --> Hi+j by

Oij (u, v) = u ®V + Bi+j

(iii) says that Oij does take values in Hi+j, while the fact that Oij kills
Bi x Z,' and Zi x B.' says that we can successively produce fillers i, j and

(Zi/Bi) x (Z;/B;) Zi x (Z;/B;) Zi x Zj

Now Hi x H,' -+ Hi+j is bilinear, so we get a filler ?(ii, j

Hi x H.' -- H®(9 Hl'
i

O"J
., _V

Hi+j

The Kenneth homomorphism is

Hn® Hi (9 H3
i+j=n

_ E V)i,j
i+j=n

or ic( ® (ui + Bi) (9 (vj + Bj)) = ( E ui (9 vi) + Bn.
i+j=n i+j=n

The objective is to say something intelligent about the homology Hn of
the chain complex (Fi, di) at F. We start this by proving a theorem whose
hypotheses seem almost dopey.

Proposition 9.15 Suppose (Fi, di) and (Fi, di) are chain complexes in
MR and RM, respectively, where R is any ring. Suppose that for all j, dj =
0, and F,' is flat. Then the Kenneth homomorphism is an isomorphism.

Proof: If dj = 0 for all j, then di,j = 0 for all i and j so that

do = ® (-1)3aiJ,
i+j=n
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and consequently

Zn ® (Zi(9 F3),
i+j=n

Bn ® (Bi (9 F,), and
i+j=n

Hn ® (Zi/B1) ®Fj,
i+j=n

since each ®Fj is an exact functor (Fj' being flat). Since Fj H,, the
Kenneth homomorphism yields an isomorphism.

At this point we make our standing assumption for the rest of this section,
namely

W-dim R < 1.

Hence, if F is flat, and if A is a submodule of F, then F-dim F/A <-
W-dim. R < 1, so that A is flat by the flat dimension theorem (F -*
F/A - + 0 extends to a flat resolution of F/A having A as its first kernel).
That is, every submodule of a flat R-module (left or right) is flat.

As an example of how this works, suppose that F;' is flat. Then so are
Zn and B. In fact, 0 --+ Bn -> Zn -+ Hn -+ 0 is a flat resolution of H.

To get a reduction to the case in Proposition 9.15, define B;a = B;a_1.
Then (Z,,, O) and (B,*,, 0) are chain complexes of the type discussed in
Proposition 9.15. Furthermore, the vertical arrows in

0 0 0

I,n

T d' T d' V:M+ IFri+l Fn _ Fn-1
dn+i

'Fd,. I d.-1
0 0

l
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give a short exact sequence of chain complexes. If the Fi are also flat, then
we get complexes

Fn = ® Fi®Zj'
i+j=n

Fn = ® C'i,ji+j=n

Fn = ® Fi®B.
i+j=n

d' = ® (-1)7di ®izi
i+j=n

do = ® (-1)3di ®ZBi
i+j=n

and we get a short exact sequence of chain complexes

0 0 0

Fn+l -' Fn ` Fn-1iii
Fn+1 FnFn_1-------- >-...

7n+1 Fn ` 7n-1

(since all Fi are flat), which can be exploited to give the Kunneth exact
sequence.

Theorem 9.16 (Kunneth Exact Sequence) Suppose R is a ring, with
W-dim R < 1. Suppose (Fi, di) is a chain complex of flat right R-modules,
while (F', di) is a chain complex of flat left R-modules. Let Hn denote the
homology of (Fi, di) at Fn, and H,, the homology of (F, di) at F. Form
the tensor complex

(Fi, di) = (Fi, di) ® (Fi, di)

Then the homology Hn of (F,, di) at Fn fits naturally into a short exact
sequence

0 -i ® Hi ®H3' -"-+Hn ® TorR(Hi, 0.
i+j=n i+j=n-1

Proof: Adopt the notation in the discussion preceeding Proposition 9.15.
Let Hn denote the homology at Fn of the complex and Hn the
homology at Fn of the complex (Fi , di ). We get a long exact sequence
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-` Hn-'Hn-'Hn
bn

from which we get for each n a short exact sequence

0 -+ Hn/imbn+l Hn -+ kerbn -, 0.

We know that

Hn1 ® Hi®Zj
i+j=n

and

Hn H®®B3* Hi ®B3'-1
i+j=n i+j=n

by Proposition 9.15. We need to analyze

bn+l : Hn+1 -' Fin

to identify the kernel and image. Now

7?n+1 = ® Hi ®B,j = ® Hi ®Bj.
i+j=n+1 i+j=n

Given Eui ® bb E Hn+1, we compute bn+1(Eui (& bb) as follows. Find for
each j, a v'j E Fj'+1 such that dj+1(v,) = b,; this pulls Eui ®bb back to
Eui ® v'j E Fn+1 with each ui ®v j' E Ci, j+1. Now each ui represents a
member of Hi, so diui = 0 and do+l(Eui (9 vj) = Eui ® dj+1vi = Eui ®b;
we're back where we started. The map bn+1 simply looks at this inside
eHi ® Z,, since the Fn Fn maps are obtained from the set inclusions
Zj' + F,. That is,

bn+1 ® Hi Hi ® Zj
i+j=n i+j=n

bn+1 = ®Hi ®(Bj' ti Zj).
i+j=n
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But 0 --* B)' * ZJ --+ HJ -+ 0 is a flat resolution of Hj, so the kernel of
Sn+1 is

® TorR(HH, Hj,)
i+j=n

while ®(H® (9 Zj)/imSn+l is

... nl

1

Furthermore, the injection Z y F' leads directly to the Kiinneth homo-
morphism Ic. Since kerbn (6, not 5n+,) is now

TorR(H1,Hj,)
i+j =n-1

we are down to the naturality question.
Naturality is most easily seen, for example, from chain maps (Wn) from

Fn to Fn +, by drawing all the diagrams preceeding Proposition 9.15 in two
layers, for example,

0 0

0

Z' - Z'n}1\

F F' -n+1 - n

® Hi ®HH .
i+j=n

4,

aF
I

n+1

/

n

0
l

0

0 0

Tensor with Fj and add. Chain maps on (Fi,di) are even easier; details are
left to the reader.

nn+1
'

r Bs

Corollary 9.17 (Universal Coefficient Sequence Involving Tor)
Suppose R is a ring with W-dim R <_ 1. Suppose (Fi, di) is a chain com-
plex of flat right R-modules, and B E RM. Let Hn denote the homology
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of (Fi, d,) at F,,, and H,, (B) the homology of (Fi ® B, di (9 B) at Fn ® B.
Then there is a natural short exact sequence

0 -+ Hn ®B HnA -+ TorR(Hn_1, B) -+ 0.

Proof: Let 0 -+ Fi
d,

+ Fo -i B -+ 0 denote a flat resolution of B, possible
by the flat dimension theorem since F-dim B < 1. Let Fn = 0 for n # 0,1,
and d;, = 0 for n # 1. We now get a complex (F', d1) whose homology is
B at Fo and zero everywhere else, that is, Ho = B, and H' = 0 if j # 0.
Applying the Kiinneth exact sequence, only the terms where j = 0 survive
giving the sequence

0-Hn®B-Nn -+TorR(Hn_1iB) 0.

Now consider the following short exact sequence of complexes:

0

0- F1C -Fo-' B- -0

The righthand column complex, tensored with (Fi, di), is (Fi ® B, di (D 1B).
Unfortunately, the Kiinneth exact sequence does not apply to the righthand
column, but it does apply to the middle and lefthand columns, tensored
with (Fi, di). The middle column is the one just discussed. Furthermore,
we get a short exact sequence of complexes after tensoring with (Fi, di)
since all Fn are flat. When the Kiinneth exact sequence is applied to the
lefthand column, the result is identically zero; consequently, by the long
exact sequence for homology of complexes, H,,(B) H, , so that

0 -+ H®®B H,,(B) -+ TorR(HH-1, B) -+ 0

is exact.
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Naturality in morphisms of chain complexes is direct. As for naturality
in morphisms cP : B -+ B+, replace FO' with a projective; Fl' is still flat
but may not be projective. Similarly, we may choose a flat resolution 0 -
Fl +' -, FO +' B+ , 0 with FO +' projective, and we also get fillers coo and
(Pi

0 -- Fib--> Fo "---
>_ B 0

I'Pi I Po W

Y Y +"B+0
as follows

F 'O

/

APO WO/
B

Fo'-` -- B+0p +

(F,') = cPir(F,') = 0, so

Wi : w (F,') C ker i+ = Fj '

W1 = (PO

This leads to a chain map ((pn) once we set Wn' = 0, n # 0,1. The chain
map sets up the appropriate homomorphisms by naturality of the Kiinneth
sequence.

There remains the question of when the Kiinneth sequence actually splits,
leading to the Kiinneth formula with H being isomorphic to the direct
sum of the two ends. For this we need the Kiinneth homomorphism K to
split, that is, we need a map 7r : Hn -* ®H® ® H' for which 7rrc is the
identity. This requires a lot more than weak dimension one can provide.

Proposition 9.18 Suppose R is a ring, with RG-dim R < 1 and
LG-dim R < 1. Suppose (Fi, di) is a chain complex of projective right
R-modules, while (F;, dz) is a chain complex of projective left R-modules.
Then the Kiinneth exact sequence splits (although the splitting is not as-
serted to be natural).

Proof: Again adopt the notation preceeding Proposition 9.15. Then
P-dim (Fn_1/Bn_1) < RG-dim R < 1, so Bn_1 is projective by the pro-
jective dimension theorem (Fn_1 -+ Fn_1/Bn_1 0 extends to a projec-
tive resolution of Fn-1/B,,_1 whose first kernel is Bn_1). Consequently,
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0 Zn Fn - Bn_1 -. 0 is split exact, giving a homomorphism
7rn : F,, -> Hn as the composite of the quotient following the splitting
Fn -+ Zn Hn. Similarly, there is a homomorphism ir;, : F;, -+ H,,. We
thus get

7r= ® it ®ir : ® Fd®F,' -+ ® HH®HH
i+j=n i+j=n i+j=n

or7r:Fn ® Hi®HH.
i+j=n

Almost by inspection, 7rk(ui (9 v,) = ui ® vj; we need only show that it is
actually well-defined on Hn, that is, that 7r sends Bn to zero. But 7ri sends
Bi to zero and 7r sends B,' to zero. It follows that 7ri ® irk sends Fi ® Bj'
and Bi ®Fi to zero. However,

do+l l ® ( ui,j,k ®vi,j,k) / = ® l> ui,j+l,k ®dj+1(vi,j+l,k)
i+j=n+1 k / i+j=n k

+(-1)jdi+1(ui+1,j,k) ®vi+l,j,k) E ® (F® (9 BJ' + Bi ®FJ),
i+j=n

that is,

Bn C ®(F= ®B3' + Bi ®F3) C ®ker(7ri (9 7rj)
i+j=n i+j=n

Remark: In the above, Fi ® BB is treated as a submodule of Fi ® Ff . This
is allowed since Fi is flat: Apply Fi® to 0 -> BB -+ F,. Similarly, Bi ® Fj
can be viewed as a submodule of Fi 0 Fj.

The Kenneth theorem has some algebraic consequences; Hilton and
Stammbach [34, pp. 180-183] present some examples, and the next propo-
sition is a variant of what they have. One is tempted to call the second
part, "the bizarre exact sequence."

Proposition 9.19 Suppose W-dim R < 1, and suppose R is flat as a Z-
module. Suppose A E MR, B E RM, and G E Ab. Then Torf (B, G) E
RM, and

TorR(A, Torzl(B, G)) Torzi(TorR(A, B), G).

Furthermore, if R is projective as a Z-module, then there is a short exact
sequence

0 -+ A®RTorzl(B,G)
-> (TorR(A, B) ®z G) ® (Torz(A OR B, G))

-+ TorR(A, B ®z G)
--+0
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which splits if LG-dim R < 1 and RG-dim R < 1.

Remark: As will be seen from the proof, only the first isomorphism is
natural. One more thing: Don't think about that short exact sequence while
operating heavy machinery.

Proof: The idea is to use the Kenneth theorem twice, once with R and
once with Z. The complexes are the ones appearing in Proposition 3.9 and
its corollary. To this end, let

d A--'+Po- A--+ O

denote a free resolution of A, and

d'2

I
P, ---

a free resolution of B. (Free objects are easiest to handle here.) Further-
more, let

O-4 Q1P4Qo-->G-,0

denote a projective (i.e., free) resolution of G as a Z-module.
To start the game, set

Fn= ® Pi ®R F3
i+j=n

and

Dn = ®(ip. 0 dj' + (-1)jdi 0 iP,,)
i+j=n

(Fn, Dn) is now a complex whose homology is Torn (A, B) at Fn, by the
proof of Proposition 3.9 and its corollary, since (Fn, DO _ (Pi, di) 0
(Pj,dj).

Next, set F,', = Qn. Only Ho is nonzero; it is G. Now apply the Kenneth
theorem to the tensor product over Z, yielding the exact sequences

0 --' 0 H2 Torz(TorR(A, B), G) -- 0,

0 TorR(A, B) ®z G Hl -+ Torz(A OR B, G) --> 0,

and

o-+0-*0.
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This is allowed since each Fn is a direct sum of A OR PjI, which are in turn
direct sums of R OR R since each Pi and Pj' is free. But R OR R R, which
is flat as a Z-module by assumption, so each Fn is flat as a Z-module,
and Theorem 9.16 applies. Furthermore, if R is actually projective as a
Z-module, then each F,, will be Z-projective, so that Proposition 9.18 will
apply to split the sequence for 771, yielding

Hl (TorR(A, B) ®z G) ® Torzl(A OR B, G) (R projective/Z).

At any rate, we have H2 Torz(TorR(A, B), G).
Now what we did was form ((Pi, di) OR (Pi, di)) ®z (Qi, di), with that

grouping. Suppose instead we work with (Pi, di) ®R ((Pi', &) ®z (Qi, di)).
Thanks to our changed sign conventions, we get the same complex, and
thus the same homology. (Easy exercise: With the new sign convention,
tensoring of complexes is associative.)

In the new picture, we have F,, = P,,, and

Fn= ® P'®zQj
i+j=n

i+j =n

Since

-.8--+ 0

is still a free resolution of B, it is a flat resolution of B as a Z-module,
so the homology of (Fi, Di) is Torn (B, G) at Fn, again by Proposition 3.9
and its corollary. The homology of (Fn, dn) is A at F0 and zero everywhere
else, so the Kiinneth theorem for R yields the exact sequences

0 0 -+ H2 - TorR(A, Torz(B, G)) -> 0,

0 -+ A OR Torz(B, G) -+ H1 TorR(A, B ®z G) -+ 0,

and

0-+AOR

The groups H0, H1, and H2 are the same as we had before, and H2
TorR1(A, Torz(B, G)) now. Also, if R is Z-projective we get H1
(TorR(A, B) ®zG) ®Torz(A®RB, G), with splitting occurring when Propo-
sition 9.18 also applies to tensor products over R.
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9.4 Do Connecting Homomorphisms Commute?

This section uses material from Chapters 1, 2, 3, and 6.
At first sight, the question seems a bit strange, since diagrams containing

connecting homomorphisms only are, well, unusual. The situation is easiest
to describe for Tor.

Suppose 0 -+ B -+ B' , B" -* 0 is a short exact sequence in RM. For
each A E MR, we have connecting homomorphisms S,a : Tor,a(A, B") -+
Tor,i_1(A, B). Now suppose 0 --* A -+ A' - A" -+ 0 is also short exact
in MR. We also have connecting homomorphisms an : Torn (A", B)
Tor,a_ 1(A, B).

The question is whether the diagram

Torn,+,(A", B") 6n}1 } Tor,y(A", B)

3n+11 13n

Torn (A, B") Torn-I(A,B)

is commutative. The answer is "yes," provided the connecting homomor-
phisms are the ones defined in Chapter 3. These are not necessarily the
same as the ones defined in other books, thanks to Proposition 6.12. In
fact, the proof is somewhat roundabout, depending on Proposition 6.12 for
the coup de grace.

It is probably best to start with a generality, concerning a truly awesome
diagram constructed as follows. We start with a 3 x 3 lattice

0 0 0

V T P10->C11 - C12 C13 0

Ig1 1g2 1g3

2

0C21------- >_
C22_CWI230

q1 1 q2 1 q3

0-- 3-- C31 f3- C32 C33 ' 0

1 l 1

0 0 0

with short exact rows and columns, whose entries are themselves chain
complexes: CO = (C,", j, dn) has homology H,a at C,,, J, and the fi, g2, pi,
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qt are chain maps for which

0 0 0

fn 1 I I
0- Ci11 -->Cn2 C,3 -->- 0

II9n I9n

0 Cn2i f^ Cn22 Cn2' _ 0

19n
S

I q,
3

19n

0Cnl->Cn2-Cn30

0 0 0

has short exact rows and columns for each n. To see what this "really"
looks like, tilt and delete the names of the maps:

0yOCn11
y

0 Cn21

0

0

0

C3 _ 0n y

Cn32 _

y
0

and finally, delete the zeros and put the Cn in their chain complex verti-
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cally:

C1+1 - Cn+1

Cn+1 - -_a. ('n+1 Cn+1y
C31

y
Cn 32 I

y
33

n+1 1
Cn+1

Gn1n1 C12 C13

C21 C22 C23

I 1 (i33
n nn

1' I

Cn11
1

n1 -1 -
i y

_- C.,11-
C31
n-1

2
C2-1- - Cn-1

C33n-1

I

W

Gadzooks! Masochistic readers are invited to visualize morphisms of such
diagrams. We shall call this situation a "post." There are connecting ho-
momorphisms associated to the various short exact sequences; we need a
notation for four of them, the ones along the outside:

33 3132 l1
1

: H _y H6n n n1 - Hn6n
1Hn

63 H3 - Hn13
1 612: Hn3 -* H11 1

In bn , the index "ij" coincides with that on the differential employed in
defining bn , just as the index n is defined. For example, 6n2 is defined via
the three-step chase:

C31
n-1

C32 _ C.33
n33

n
1' dn2

C32
n-1

C 3n1
23
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The construction is as follows. Pick u e Cn3 representing a homology
class, so that dn3(u) = 0. pn is onto, so u = p,3, (v) for some v E Cn2.

Now 0 = dn3(u) = dn3pn(v) =pn-ldn2(v), so d3,,2(v) E kerp3n_1 = imf3n_1,
and dn2(v) = fn_1(w). 6n32(u + imdn+l) is defined as the homology class
determined by w.

The question now is whether

n+ 1
Hn+1

b

} Hn1
6z3 6n 21

612H3 n H11
n' n-1

commutes. The answer is a resounding "No!" In fact, it anticommutes.

Proposition 9.20 In the post diagram above, Sn Sn+, = -Sn Sn+1

Proof: The proof is a bit involved, and very messy. Nevertheless, it does
break up into four digestible chunks. The first of these is a lemma which
applies to all the layers of our post.

Lemma 9.21 Suppose

0 0 0

I P Y p1 W

0

YI

191

WI

192

2
YI

I93

0C21 C22 _C23 0

I91 192 1q3

0 C31 f33 CWI32 p C33 0

is commutative with short exact rows and columns. Suppose y E C22 sat-
isfies p2(y) = 0 and q2(y) = 0. Then I v E C11 such that y
f291(v)

.

Remark: It is left to the reader to check that
p2

2 1 2

0 - C11 9 f C22 4 C23 9 C32

= g2f1(v) =
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is actually exact; we shall not need this much.

Proof of Lemma 9.21 Since p2(y) = 0, exactness of the middle row
says that y = f 2(z) for some z E C21. Furthermore, f 3g1(z) = q2 f2(z) =

q2 (y) = 0, so q1(z) = 0 since f3 is one-to-one. But now z = g' (v) for some
v E C" by exactness of the lefthand column, and y = f2(z) = f2g1(v) =
g2 f1(v) by commutativity of the diagram.

Return to Proof of Proposition 9.20 Before getting down to the details,
a few words about the overall strategy. Let u E C.33

+1 with
dl+lu

= 0. Let
u denote the homology class of u. (We shall make this convention: A bar
denotes a homology class.) 5,2,1S,'3'+lu and Sn2Sn,+1i are calculated by chasing
along the post diagram as follows:

I \iN
W

sum:
1

S's

a _1( ) = ig Sn1(w) = 3

Sn+, ('a) = w' Sn2 (V) = s'
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The letters in this diagram will correspond to their appearance in the proof.
The whole point of the construction is to produce a v E C,1,1 for which
s + s' = d,',' (v) so that s + s' = 0, ors = -3'. When all the elements used
in the proof are labeled, the overall diagram is as follows, where elements
separated by commas lie in the same space:

u0

U'

v F

dn1

sum:

S,3'

9nfn

xn
WI

d21 I d1n2

f1-1

9,1,-1

y, u1 I-A,,<2

fn

p2.+I

Pn

d23
+1

z'

91

The first chunk of the proof was Lemma 9.21. The second concerns the
upper right (partial) cube:

U0 P;.+3
u"

d22
n+1

2

Psn}1

U'I

Pn

9n

z'

'-U

23The point is that two-thirds of the way through the construction of Sn+ l (u)
and 6n}1(u), the objects z and z' come from the same ul E Cn2, for which
dn2(ul) = 0. Here is how this goes.
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Start with u'. pn+1 is onto, so 3 u' E Cn+1 for which p3+1(u') = u. This
is how the first step of the construction of 6n+1 goes; the next step takes

+1?z = d3,,+1(u'). How about 6.23

Well, qn+1 is onto, so u' = qn+l (uo) for some uo E Cn}1. But now
u = pn+1(u) = pn+lgn+1(uo) = qn+lpn+1(uo) by commutativity of the
(n + 1)-layer of the post, so if we set u" = p2n+1(uo), we get u = qn+1(u").
That is, we can (and will) use this u" in the first step of the construction
of bn+1 For the next step, set z' = do+23 1(u").

But now, setting ul = d2n+1(uo):

z = do+2
2

l(u) = do+lqn+1(uo) = gndn+l(u0) - gn(u11,
_ 23 ii 23 2 _ 2 2 / 2(Z' - do+1(u ) = do+lpn+1(u0) - pndn+lluo) = P(Ul

and

dn2(ul) = d22d22o+1(uo) = 0.

We now have what we want for the second part of the proof.
For the third part, the relevant diagram is only two-dimensional, but it

is bigger: Almost the whole nth layer. The top view is:

V

qn

t fn 1'

wI - z

x I I

qn

PI
n

P,2.
z'

The element y will be defined in due course, and v (produced from
Lemma 9.21) will be the v referred to earlier. Now to the details. We al-
ready have u1, z, and z' from the last part. Furthermore, z = fn (w) for
some w E C"7 and 6,3,2+,(U) = w by the construction of bn+ Similarly,
z' = g,3, (w') for some w' E Cn3, and bn+1(u) = W.

Proceeding on to 6,2,(w-) and 5112(w'), choose x E C n2' so that qn(x) = w,
and x' E C'1,2 so that pn(x') = w'. This is the first part of the construction
of 621 (w) and S'2 (w'). We now define

y=fn(x)+9n(2)-ul.
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We have that

gn(y) = gnfn(x) +gngn(x') - gn(ul)
= fngn(x) + 0 - z
= fn(w) - z
= 0.

Similarly, pn(y) = 0. By Lemma 9.21, y = gn fn(v) for some v E Cnl. This
is the v described in the discussion of strategy.

Finally, the last part. This concerns the cube

V f

dn1

sum:

S'S/

91

n-1

x y

d,1,2

where the construction of bnl (w) is completed by finding s E Cnl 1 for which

9n-1(s) = dn1(x); bn1(w) = s for this s. Similarly, one finds s' E C,',' for

which fn_1(s') = dn2(x'); 6n2(w') = s' for this s'. But now
b2n1(w) = s, and 6.126.+1 (u) = Sn2(w') = s', so bnlSS+1(u) +612bn+1(u) _

s + s'. To complete the proof, it suffices to show that s + s' = dn1(v). To
see that this is the case, apply g2n_lfn_1:

9n-lfn-ldnl(v) = 9n-1dn fn(v)

= dn9nfn(v)

= dn2(y)

= dn2fn(x) + dn2(u1)

= f2n- 1 dn21(x) +gn_1dn2(x') - dn2dn+1(uo)

= fn-19n-1(S) +9n-1fn-1(S') - 0

= 9n-1fn-1(S) +9n-lfn-1(S

= 9n-1fn-1(S + s').
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But gn-1 and fn-1 are one-to-one, so d,1(v) = s + s' as claimed. Hence,
+'s'=0.
We can now prove the main result of this section.

Theorem 9.22 Suppose 0 -+ B -+ B' -+ B" -+ 0 is short exact in RM.

a) Suppose 0 -+ A --+ A' -+ A" -+ 0 is also short exact in MR. If
connecting homomorphisms are as defined in Chapter 3, rotation-
ally, Sn : Torn (., B") -+ Torn-1(., B), and b, : Torn (A", ) -+
Torn_ 1(A, .), then the diagram

Torn+1(A", B") b.+1 > Torn (A", B)

bra+II

)
8
°

I 3n

Torn (A, B" Torn-1(A, B)

is commutative.

b) Suppose 0 -+ C -+ C' --+ C" 0 is also short exact in RM. If
connecting homomorphisms are as defined in Chapter 3, notation-
ally, Sn : Extn-1(B,.) -+ Extn(B",.), and Sn : Extra-1(.,C") -+
Extra (., C), then the diagram

Extn-1(B, C") bras Extn(B, C)

bra J
Jb.+1

Ext"(B", C")
b

Extra+1(B", C)

is commutative.

Proof: In accordance with Proposition 6.5(a), construct a simultaneous
projective resolution of 0 -+ B -+ B' -+ B" -+ 0:

0 0 0

...->P1Po>B _ 0

-Pi-Po-3- B'-- 9-0
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Since each P,' is projective, the vertical sequences split, and P, Pn®P,,
as in the statement of Proposition 6.5(a). For part (a), tensor this with
0 A -+ A' -p A" -* 0 (and prop it upright); the result is a post di-
agram. Sn stays the same, but the connecting homomorphisms Sn are re-
placed by in accordance with Proposition 6.12. We have that
SnSn+1 = -SnSn+i by Proposition 9.20, so that SnSn+i = (-1)n+lsnsn+l =
-(-1)n+15nsn+l = (-1)' SnSn+1 = bnsn+l.

As for (b), apply C) -+ C') --+ C"), and appeal
to Exercise 12, Chapter 6.

A final comment. This is not just the answer to an obvious but pointless
question. In the next section we shall use this (and the even more obscure
Proposition 6.15) to put additional structure on Ext (and Tor).

9.5 The Ext Product

This section uses material from Chapters 1, 2, 3, and 6, as well as the result
of the last section (Section 9.4).

There are various ways of introducing products into homological algebra.
One involves algebras and is discussed in many texts. There is one product,
however, that requires no additional structure; it exists for any ring. It is
also not well known; there is some discussion of it in Bourbaki [9], but
hardly any elsewhere. It therefore fits as an odd end here.

The Ext product is defined on Ext groups in the following manner. If R
is a ring, and B, C, D E RM, then the Ext product gives a function

U : Extn(C, D) X Extm(B, C) --, Extn+m(B, D)

which has a number of properties. (We use the U notation because of the
resemblance to the cup product U for cohomology in algebraic topology.)
It seems best to list the properties first, since they are not independent, a
fact usable in deriving them.

Property LB. (Linearity on the Right). Given u E Extn(C,D), the
maps u U : Extt (B, C) ---> Ext,+n (B, D) are homomorphisms.

Property LL (Linearity on the Left). Given v E Extm(B, C), the maps
U v : Ext'(C, D) --+ Extm+n(B, D) are homomorphisms.

Remark: These two properties basically say that U is bilinear in Ab.
Alternatively, they assert a distributive law.

Property NR (Naturality on the Right). Given f : B --+ B', letting f*
generically denote the induced map from Ext*(B', ) -+ Ext*(B, ), then
for all u E Extn (C, D) and v E Extm (B', C), f * (u U v) = u U (f *v).
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Property NL (Naturality on the Left). Given f : D --+ D', letting f*
generically denote the induced map from D) to

E Extn(C, D) and v E Extm(B, C), (f*u) U v = f. (u U v).

Property NC (Naturality in the Center). Given f : C -+ C', letting
f* and f* be defined generically as above, then for all u E Ext' (C', D) and
v E Extm(B, C), (f *u) U v = u U (f*v).

Remark: It is easy to verify now, by taking n = m = 0, that the re-
sulting map from Ext°(C, D) x Ext°(B, C) to Ext°(B, D), that is, from
Hom(C, D) x Hom(B, C) to Hom(B, D), is just functional composition,
provided identity maps multiply as identity elements. (This is the reason
for the ordering of the entries in U.) In fact, it is derivable from any one
of NR, NL, or NC, given that U iB : Ext"(B, C) -+ Ext"(B, C) and
is U : Ext' (B, C) --+ Extn (B, C) are identity maps. But this all follows
from:

Property ZR (Dimension Zero on the Right). If f E Hom(B, C)
Ext°(B, C), then for all u E Extn(C, D), u U f = f *(u).

Property ZL (Dimension Zero on the Left). If f E Hom(C, D)
Ext°(C, D), then for all v E Ext n(B, C), f u v = f. (v).

We also want connecting homomorphisms to behave well.

Property CR (Connecting Homomorphisms on the Right). If 0
B -+ B' -> B" 0 is short exact, with generic connecting homomor-
phisms 37n : Extii-1(B, ) -+ Extm(B", ), and if u E Extn(C, D) and
v E Ext"t-1 (B, C), then Snt+,,(u U v) = u U 800(v).

Property CL (Connecting Homomorphisms on the Left). If 0
D D' -+ D" -+ 0 is short exact, with generic connecting homomorphisms
37, D") -+ E Extr-1(C, D") and v E
Ext'(B, C), then 373 (u) U v = 3n+7n(u U v).

Remark: A bar is placed over the connecting homomorphisms in CL to
distinguish them from the connecting homomorphisms in CR. The ability
to use both at once is crucial to developing U; the ability to distinguish
between them is crucial to reading that development.

Property A (Associativity). If u E Extn(D, E), v E Ext7"(C, D), and
w E Ext1(B, C), then u U (v U w) = (u U v) U w.

We can now formally define

00

Ext* (B, C) = ®Extn (B, C).
n=0

Using the product U, Ext* (C, C) becomes a ring, with Ext* (B, C) a left
Ext* (C, C)-module (and Ext* (C, D) a right Ext* (C, C)-module). Suggested
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exercise: From the properties alone, show that Exta4 (Z2, Z2) .zs Z2[t].

(Tora4 (Z2, Z2) was computed as Example 9 in Chapter 3; a similar calcu-
lation shows that ExtZ4 (A2, Z2) -- Z2 for all n. The "Bockstein sequence"
0 Z2 --* Z4 -+ Z2 --, 0 works out the product.)

The above properties are not independent. Some of the relations are
subtle, but some are more direct.

Lemma 9.23 Suppose U is a product satisfying ZR, ZL, and A. Then U
satisfies NR, NL, and NC.

Remark: In the proofs that follow, we adopt the notation of the property
being verified.

Proof: For NR, note that

f*(uuv) _ (uuv) u f
=uU(vU f)
= u U Y* M)

NL is similar. As for NC,

(f*u)Uv=(uuf)Uv
=uU(f Uv)
= u U (f*v)

(ZR)

(A)

(ZR)

(ZR)

(A)

(ZL)

0

The surprising conclusion is that we get naturality (of all things) as a
consequence of associativity (and dimension-zero regularity.) This lemma
can also be run backward, using induction.

Lemma 9.24 Suppose U is a product satisfying ZR, NR, and CR. Then
U satisfies A.

Proof: Induction on P. The t = 0 case is just NR and ZR:

u U (v u f) = u U (f *v) (ZR)

= f*(uUv) (NR)

_ (u U V) U f (ZR)

As for e - 1 -+ f, we use CR. Choose a projective P and an epimorphism
r: P --4B with kernel K. Then w = 8t (w') for some w' E Extt-'(K, C).
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By the induction hypothesis, (u U v) U w' = u U (v U w'). We have

(uUv)Uw=(UUv)USP(w')
= St+m+n((u U V) U W')

= 6t+.+. (U U (v U WT
=UUSe+m(VU(w'))
= u U (v U St(w'))

=uU(vUw)

(def.)

(CR)

(ind. hyp.)

(CR)

(CR)

(def.)

0
The above is prototypical as far as induction proofs go. At this point we

introduce an auxiliary condition, which will be used in some proofs, then
dropped. It could be stated for either the left or the right; we use the left
for no particularly good reason.

Condition WCL (Weak Connecting Homomorphisms on the Left)
Given D E RM, there is an injective E and an imbedding D - E such
that if bn : Extn-1 (., E/D) - Ext' (., D) is the associated connecting
homomorphism, then for all C, B E RM, U E Extn-1(C, E/D), and v E
Extm(B, C), we have Sn(u) U v = bn+m(u U v).

Note that there is nothing "natural" about E (or E/D); the only natu-
rality comes from the fact that for any fixed D, the same E is used for C
and B (the lefthand entries in Ext* D)), as well as the index n. This is
enough.

Lemma 9.25 Suppose U is a product that satisfies ZL and WCL. Then U
is unique with these properties, and U also satisfies LR, LL, ZR, NR, and
CR. Similarly, any product satisfying ZR and CR necessarily satisfies CL
(among others).

Proof: All are by induction on n. First, LR, LL, and uniqueness, by
induction on n. If n = 0, then u = f, and by ZL, f u v = f.v. This is
forced, and is bilinear. Next, n -1 - n. If u E Extn (C, D), then u = Sn (u')
for some u' E Extn-1(C, E/D), and u U v = (Sn(u')) U v = 3n+,,, (u' U v)
is forced (uniqueness) and is bilinear (if for u1 we choose ui and for u2 we
choose u2, then for u1 + u2 we can choose u' + u2.)1

The next induction is for ZR: We have f E Hom(B, C), and u E
Extn(C, D). If n = 0, then by ZL, u U f = u* f = u o f = f *u, as re-
quired. As for n - 1 -- n, write u = 5 (u'), as before. Then u U f =
(Sn(u'))Uf =Sn(u'Uf)=bn(f*u')= f*(Sn(u'))= f*(u) by naturality of
connecting homomorphisms.

The next induction is for NR. If n = 0, then f * (u U v) = f * (u* (v)) _
u* (f *v) = u U f *v using ZL and the fact that Ext is a bifunctor (Chapter
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3, Exercise 2). As for n - 1 -, n, writing u = Sn(u'),

f *(u U v) = f* ((Sn (UT U v)

= .f*(Sn+m(ui
U V)) (WCL)

= Sn+m f * (u' U v) (naturality of S)

= Sn+m(u U f *(v)) (ind. hyp.)

= (Sn(ug)) U f* (v) (WCL)
= u U f * (v) (def.)

Finally, we need CR. If u E Hom(C, D), then Sm(u U v) = Sm(u*(v)) _
u*Sm(v) = u U Sm(v) by naturality of 5m and ZL. For n - 1 n, write
u = Sn(u') as usual:

Sm+n(u U V) = Sm+n(Sn(u') U v) (def.)

= Sm+n(Sm+n-1(u U V)) (WCL)

= Sm+n6m+n-1(u' U V) (Theorem 9.22)

= Sm+n(u' U Sm(v)) (ind. hyp.)

= (Snu') U Sm(v) (WCL)

= u U Sm(V) (def.).

The proof that ZR plus CR implies CL is essentially like the above and
is left to the reader.

The weakness of WCL allows us to use it as a definition, leading to:

Theorem 9.26 There is a unique product U satisfying properties LR, LL,
NR, NL, NC, ZR, ZL, CR, CL, and A.

Proof: For each D E RM, choose an injective extension E of D. Re-
cursively (on n) define u U v for u c Extn (C, D) and v E Extm (B, C) as
follows: If n = 0, set u U v = u*(v). ZL is now satisfied. We recursively
arrange that WCL is satisfied by setting Sn(u) U v = Sn+m(u U v). Be-
cause WCL is so "unassuming," the only thing we have to check is that
U is well-defined. Since Sn is an isomorphism for n > 1, this only requires
looking at the n = 1 case. We must show that if u1i u2 E Ext°(C, E/D),
then 31(u1) = 51(U2) 51+m(u1 U V) = S1+m(u2 U v), that is, (writing
u = u1 - U2) that 31(u) = 0 b1+m(u1 U V - u2 U v) = 0. In view of ZL,
we need that 51(u) = 0 * S1}m(u*(v)) = 0.

If m = 0, we have that u*(v) = uov = v* u, and 31(u*(v)) = S1(v*(u)) _
v*S1(u) = 0 by naturality of connecting homomorphisms. Finally, if m > 0,
we have from the long exact sequence for Ext* (C, ) that 31 (u) = 0 u =
7r*(u') for u' E Hom(C, E). That is, u = 7r o u' for u' E Hom(C, E), and
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: E -; E/D the quotient map. Thus, u* (v) = i*u' (v), and u' (v) E
Extm(B, E) = 0, so already u; (v) = 0 = u*(v) = 0 Sl+,"(u*(v)) = 0.

We now have, by definition, ZL and WCL. By Lemma 9.25, U is unique
with these properties, and also satisfies LR, LL, ZR, NR, and CR. Also by
Lemma 9.25, U satisfies CL (and not just WCL), since we have ZR and
CR. By Lemma 9.24, we pick up A, and Lemma 9.23 then produces NL
and NC.

There is also a product resembling the cap product from algebraic topol-
ogy which maps as follows (A E MR; B, C E RM):

f : Extm(B, C) x Tor"(A, B) -+ Tor"_,,,(A, C).

n is most easily defined using universality of Ext, Proposition 6.15, with
F = A®. G"F = Tor" (A, ), and for all B,

Tor"(A, B) : Nat(Ext"(B, ), A®).

If v E Extm(B, C), then

U v : Ext"-"`(C, ) - Ext"(B, )

is a natural transformation by NL, so precomposition by U v yields a
transformation ( U v)*:

Nat(Ext"(B, ), A®) Nat(Ext"-'"(C, ), A(&)
R 22

Tor"(A, B) "n' - Tor"_,,,,(A, C)

Note that by A, we have, with u c Ext'(C, D):

Nat(Ext"(B, ), A®) ( - Nat(Ext"-'"(C, ), A®)

I (.uu)'
Nat(Ext"-"`-Q (D, ), A(9)

The diagonal arrow sends T to

( U u)*( U v)*T = T(( U u) U v)

This just says that for x E Tor"(A, B), un(vnx) = (uUv)nx. The remaining
properties of n (e.g., bilinearity) are left to the interested reader; most are
straightforward.
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9.6 The Jacobson Radical, Nakayama's Lemma,
and Quasilocal Rings

This section requires material from Chapters 1 through 5, and Section 9.1.
The first half is actually pure ring theory, and has no prerequisites beyond
the ring theory assumed throughout this book (except for a reference to
Proposition 4.28, which can be read on its own).

The first subject for discussion is the Jacobson radical. It is not well
known, but the Jacobson radical makes perfectly good sense for modules, at
least when working with rings-with-unit. This actually gives a good setting
for the preliminaries to Nakayama's lemma. This will be discussed as a unit
(no pun intended), culminating in a bona-fide proposition (Proposition 9.26
below).

A very readable reference for this material is Farb and Dennis [18, Chap-
ter 2]. (See also Lam [49, Chapter 2 and §19], especially about quasilocal
rings.)

First of all, let B E RM. Given a subset S C B, write (S) for the
submodule generated by S; (S, xii ... , xn) for the submodule generated by
S U {xl,... , xn }; and so on. An element x E B is called a nongenerator of
B if for any subset S of B, B = (S, x) = B = (S). The set of nongenerators
J(B) of B is the Jacobson radical of B. J(B) is the module analog of the
Frattini subgroup in group theory. It is pretty easy to show that J(B) is a
submodule of B, but we will shortly get that free of charge.

First of all, suppose x E J(B), and suppose M is a maximal submodule.
Then x ¢ M = B = (M, x), but B (M), a contradiction. That means
that J(B) is contained in every maximal submodule of B. On the other
hand, if x ¢ J(B), say B = (S, x) but B # (S), Proposition 4.28 says that
S is contained in a maximal submodule M with x ¢ M. Consequently, the
intersection of the maximal submodules is exactly J(B). This intersection
is a submodule, so J(B) is a submodule. J(B) = B if B has no maximal
submodules. (Example: J(Q) = Q as a Z-module, a fact left as an exercise.)

The module form of Nakayama's lemma reads: If B is finitely generated,
and C is a submodule with B = J(B) + C, then B = C. The reason is that
if B is generated by {bl+cl, ... , , bn+cn}, bj E J(B) and cj E C, then B =
(cl,... ,cn) bl,... ,bn) = (c1,... ,c,,,,bl) ... ,bn_1) (cl,... ,cn) C
C.

One more definition, for R itself. If X E R, then x is left quasiregular if
1 + x has a left inverse. Writing the inverse as 1 + y, the relevant equation
is x + y + yx = 0. y is called a left quasi-inverse. Similarly, x is right
quasiregular if 1 + x has a right inverse. Set

QL = {x E R : rx is left quasiregular for all r E R}
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and

QR = {x E R : xr is right quasiregular for all r E R}.

Example: If R is a field, then only -1 fails to be left quasiregular, but " .. .
for all r c R" forces QL = 0.

If x E J(R), then x must be left quasiregular, since otherwise R(l+x) #
R R(1 + x) C M for some maximal left ideal M. But already x E M,
so 1 + x, x E M = 1 E M, a contradiction. That is, J(R) consists of left
quasiregular elements, so J(R) C QL. (Trivial exercise: QL contains any
left ideal consisting of left quasiregular elements.)

We have one more thing to work out so everything will fall into place:
QL B C J(B) for any B E RM. To see this, suppose x E QL and b E B;
we must show that xb is a nongenerator of B. But if B = (S, xb), then
b c (S, xb) b = (Ey2si) + r xb for si E S, y2 E R, r E R. But now
(1 - rx) b = Eyis2i and x E QL (-r)x is left quasiregular 1 - rx
has a left inverse u so that b = u(1 - rx)b = Euyis2 E (S). But now
b E (S) =xb E (S) =* (S) = (S, xb) = B.

The rest is observation. Set B = R:

J(R) C QL C QL R C J(R).

Hence, all these containments are equalities. Thus,

a) J(R) = QL, in view of which

b) J(R) R = J(R), that is, J(R) is a right ideal, too.

c) In general, J(R) B C J(B).

Now suppose x E J(R). Then x has a left quasi-inverse y for which
x + y + yx = 0. But then y = -x - yx E J(R), so y has a left quasi-inverse,
too, call it z. Thus 1+x = ((1+z)(1+y))(1+x) = (1+z)((l+y)(1+x)) =
1 + z, and x = z. But that means that x is also right quasiregular. Since
x was arbitrary and J(R) is a right ideal, J(R) C QR. So QL C QR in
general. Looking in the opposite ring RP, QR C QL, so QR = QL = J(R).
Still looking in R°P, J(R) is the Jacobson radical of RIP. We have proved:

Proposition 9.27 For any left R-module B, the Jacobson radical J(B) of
B, that is, the set of nongenerators of B, is equal to the intersection of the
maximal submodules of B. Furthermore, if B is finitely generated and C
is a submodule with B = J(B) + C, then B = C. Also, J(R) B C J(B).
Finally, J(R) is a two-sided ideal which can be characterized in any of the
following ways:

i) J(R) is the intersection of the maximal left ideals.

'ii) J(R) is the intersection of the maximal right ideals.
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iii) J(R) is the largest left ideal consisting of left quasiregular elements.

iv) J(R) is the largest right ideal consisting of right quasiregular ele-
ments.

Corollary 9.28 (Nakayama's Lemma) If B is a finitely generated left
R-module, C is a submodule, and B = J(R)B + C, then B = C.

Proof: J(R)B C J(B) B = J(B) + C B = C.

Corollary 9.29 (Nakayama's Lemma-Alternative Form) If B is a
finitely generated left R-module for which B = J(R)B, then B = 0.

Proof: Set C = 0 in the preceeding corollary.

The material just developed is particularly useful for local rings, and
much applies to quasilocal rings. A ring R is quasilocal provided R has
a unique maximal left ideal M. The first point: The apparent left-right
asymmetry is illusory. To see this, observe that M = J(R) is a two-sided
ideal, and furthermore RIM has no nontrivial proper left ideals. By an old
standby in undergraduate modern algebra, RIM is a division ring, so it
has no nontrivial proper right ideals either. But J(R) = M is contained in
every maximal right ideal of R, so M is the unique maximal right ideal,
too. The structure we need is given by the following.

Proposition 9.30 Suppose R is a ring, and M is a left ideal. Then the
following are equivalent:

i) R is quasilocal with maximal ideal M.

ii) Every x ¢ M has a left inverse.

iii) Every x ¢ M has a two-sided inverse.

Proof: (i) (iii): Suppose (i). If x c R, then Rx # R = Rx C some
maximal left ideal, which must be M. That is, Rx # R Rx C M
x E M. Hence, x M Rx = R = x has a left inverse, call it y.
Similarly, x ¢ M xR = R = x has a right inverse, call it z. Final step:
y = y(xz) = (yx)z = z is a two-sided inverse.

(iii) = (ii) is trivial, so to prove (ii) (i), assume (ii). If I is any left
ideal, then I M = 3 x E I - M, for which R = Rx C I. That is,
10 M = I = R, or I # R = I C M. Hence, M is a largest proper left
ideal, so it is the unique maximal left ideal.

If the Jacobson radical of a ring is known, quasilocality is easily checked:

Corollary 9.31 If R is a ring, then the following are equivalent:



9.6 The Jacobson Radical, Nakayama's Lemma, and Quasilocal Rings 327

i) R is quasilocal.

ii) Every element of R - J(R) is invertible.

iii) R/J(R) is a division ring.

Proof: (i) = (ii) follows from Proposition 9.30(iii). (ii) (iii) is direct,
since if x ¢ J(R), then x-1 + J(R) is an inverse to x + J(R) in R/J(R).
Finally, given (iii), R/J(R) has no nontrivial proper left ideals, so if M is a
maximal left ideal, then J(R) C M by Proposition 9.27, so that J(R) = M
by the Noether correspondence for ideals containing J(R). Hence, J(R) is
the unique maximal left ideal, and R is quasilocal.

For the remainder of this section, R will denote a quasilocal ring. Suppose
B is a finitely generated left R-module. A set {xl,... , xn} C B is a minimal
set of generators if B is generated by {xli ... , xn} but is not generated by
a proper subset of {x1, ... , xn}.

Proposition 9.32 Suppose R is a quasilocal with maximal ideal M, and
B is finitely generated as an R-module. Then {x1, ... , xn} is a minimal
set of generators of B if and only if {x1 + MB,... , xn + MB} is a basis
of B/MB as a left vector space over the division ring RIM. In particular,
the number n of generators is unique.

Proof: This follows directly from a subclaim, that {x1, ... , xn} generates
B over R if and only if {x1 + MB,... , xn + MB} generates B/MB over
RIM, the reason being that a basis of a left vector space over a division
ring is just a minimal set of generators. As for the subclaim, observe that

(x1 + MB,... , xn + MB) = B/MB
e* (MB, x1, ... , xn) = B
4* B = MB + (x1, ... , xn)
e* B = (xl,... xn),

the last implication via Nakayama's lemma.

Now for some homological algebra.

Proposition 9.33 Suppose-R is quasilocal with maximal ideal M, and sup-
pose {x1, ... , xn} is a minimal set of generators for a finitely generated left
R-module B. Let F be free on {uli... , un}, and let it : F --> B be defined
by 7r(uj) = xj. Then MF D ker7r, and 7r : F --+ B is a projective cover.

Proof: If Eriui E ker7r, then all ri E M, since if some rj ¢ M, then

uj +Er,-lriui E ker7r xj +>r lrixi = 0
i96j i#j

xj E (x1i... ,xj_1,xj+l.... xn)Y
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contradicting minimality. Finally, if f : C -+ F is such that 7r f is onto, then
F = ker 7r + im(f) C MF + im(f) F = im(f) by Nakayama's lemma.

Corollary 9.34 If R is a quasilocal ring, then any finitely generated pro-
jective left R-module is free.

Proof: Construct F as above for a finitely generated projective P. There
is an f : P --+ F such that 7rf = ip since P is projective; this implies that
f is one-to-one, while Proposition 9.33 says that f is onto.

Kaplansky [44] has shown that "finitely generated" can be omitted in
this corollary.

In the next section, examples will be given of commutative quasilocal
rings. A noncommutative example can be constructed as follows:

Example 34 If k is a field of characteristic p, and G is a finite p-group,
then the group ring k[G] is quasilocal. In particular, taking k finite and G
noncommutative, there exist finite noncommutative quasilocal rings.

To see how this example works out, define e : k[G] -+ k via e(Exzgz)
Ezs; e is called the augmentation map, and is a ring homomorphism onto
with kernel M = {Ex=g= : Exi = 0}. Now k[G]/M k is a field, so
it suffices to check that J(k[G]) = M. Since M is a maximal left ideal,
M D J(k[G]), so to get M C J(k[G]) it suffices to check that M consists
of quasiregular elements. But k[G] is also a k-algebra, and M has a vector-
space basis {g - 1 : g E G,g # 1}, each element of which is nilpotent:
[G[ = p" (g -1)P" = gP' -1 = 0 since k has characteristic p. A theorem
of Wedderburn (see Herstein [32, pp. 56-58]) asserts that if an ideal in a
finite-dimensional algebra over a field has a basis consisting of nilpotent
elements, then the ideal must consist of nilpotent elements. But nilpotent
elements are left quasiregular:

This example has all the Noetherian or Artinian properties one could
want. In fact, without some kind of Noetherian condition we could not
proceed systematically, but left Noetherian is enough to get the remaining
results of this section. We need two lemmas.

Lemma 9.35 Suppose R is quasilocal with maximal ideal M and quotient
division ring D = RIM. Suppose B is a finitely generated left R module,
and it : F -+ B is a projective cover as described in Proposition 9.33, with
K = ker 7r. Then

Tor, (D, B) :.. K/MK
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and

Extl (B, D) Hom(K, D).

Proof: 0 -+ K --+ F --+ B --+ 0 is short exact, so we have from the long
exact sequence for Tor:

0 --+Torl(D,B) D®B-+O.

Now

D®K=(R/M)®K;:z K/MK

and

D ®F = (R/M) ®F : F/MF

by Proposition 2.2(b). But D ® K D ® F then becomes K/MK
F/MF, which is zero since K C MF (Proposition 9.33). Hence, Tor, (D, B)

K/MK.
As for Extl, we have from the long exact sequence for Ext:

0 Hom(B, D) -+ Hom(F, D) -+ Hom(K, D) -+ Ext' (B, D) -+ 0.

If f E Hom(F, D), then for all m E M, f (mx) = mf (x) = 0, since mD = 0.
That is, any f E Hom(F, D) restricts to zero on MF D K, so Hom(F, D) -+
Hom(K, D) is the zero map and Ext' (B, D) Hom(K, D).

The second lemma reinterprets the isomorphism for Extl. Recall that if
V is a left vector space over a division ring D, then its dual HomD(V, D)
is a right vector space over D.

Lemma 9.36 Suppose R is quasilocal with maximal ideal M and quo-
tient division ring D = RIM. Then for any B E RM, HomR(B, D)
HomD (B/MB, D).

Proof: As in the proof of Lemma 9.35, if f E HomR(B, D), then for
m E M, x E B, we have f (mx) = m f (x) = 0, since f (x) E RIM. Thus, f
restricts to zero on MB, so restriction from Hom(B, D) to Hom(MB, D)
is the zero map. Applying Hom(., D) to 0 -+ MB -+ B -+ B/MB - 0
yields exactness of

0 - HomR(B/MB, D) - HomR(B, D) .2+HomR(MB, D),

so that HomR(B, D) ^' HomR(B/MB, D) = HomD(B/MB, D), since
B/MB and D are "really" D-modules.

We can now apply this all inductively, after making our left-Noetherian
assumption.



330 9. Odds and Ends

Theorem 9.37 (Universality of D) Suppose R is quasilocal and left
Noetherian with maximal ideal M and quotient division ring D = RIM.
Let B be a nonzero finitely generated left R-module. Then Torn (D, B) is
nonzero for0 < n < P-dim (B), and the dual of Torn (D, B) as a left vector
space over D is Extn(B, D). In particular, the left global dimension of R is
equal both to the flat dimension of D as a right R-module and the injective
dimension of D as a left R-module.

Proof: The claim is that if n < P-dim B, then Torn(D, B) 0 and the
dual of Torn (D, B) as a left vector space over D is Extn(B, D). This is by
induction on n. The n = 0 case is just

Tor°(D, B) (RIM) ® B Pz B/MB # 0

by Proposition 2.2(b) and Nakayama's lemma. Furthermore,

Ext°(B, D) ti HomR(B, D) HomD(B/MB, D)

by Lemma 9.36.
For n > 0, let 7r : F -> B be a projective cover as described in Lemma

9.35. Then by Lemma 9.35, for P-dim B _> 1 we get K 0 0, so that
K/MK 0 0 by Nakayama's lemma. But then Tor, (D, B) # 0 and
Ext1(B,D) is its dual by Lemmas 9.35 and 9.36. As for the induction
step n - 1 H n, when n > 1 observe that

Torn (D, B) Torn- 1(D, K) 0 for n - 1 < P-dim K

by the long exact sequence for Tor and the induction hypothesis. But
P-dim K = P-dim B-1 by Exercise 2, Chapter 4. Furthermore, Extn(B, D)

Extn-1(K,D) is the dual of Torn- 1(D,K) by the long exact sequence
for Ext and the induction hypothesis.

Finally, since Torn (D, B) 0 for all n < P-dim B, the flat dimension of
D as a right R-module must be > P-dim B. Letting B float and using the
global dimension theorem, the flat dimension of D as a right R-module is
_> LG-dim R = W-dim R. The situation for the injective dimension of D
as a left R-module is similar.

Corollary 9.38 Suppose R is quasilocal and left and right Noetherian with
maximal ideal M and quotient division ring D = RIM. Then all dimen-
sions (left/right and flat/projective/injective) of D are equal to the left
global dimension of R, and Torn (D, D) and Extn(D, D) are nonzero for
0 < n < LG-dim R.

Proof: Theorem 9.37 applies on both sides, giving left/right, flat/injective
dimensions = LG-dim R = RG-dim R = W-dim R by Corollary 4.21. Since
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projective dimension = flat dimension by Proposition 4.20 itself, we have
the dimensional result. The rest is now direct from Theorem 9.37.

As an example of some of this, a definitive answer about projective di-
mension can be given in one unusual case.

Proposition 9.39 Suppose R is quasilocal and left Noetherian with maxi-
mal ideal M. Suppose 3 x E M with x # 0 but xM = 0. Then every finitely
generated nonprojective left R-module has infinite projective dimension.

Proof: Suppose not. Suppose some finitely generated B E RM has finite
projective dimension and is not projective. We can replace B with K, where
F is free and 0 --' K --> F - B -> 0 is short exact, reducing the dimension
if n > 1, so without loss of generality we may assume that P-dim B = 1.
Let 7r : F --, B be a projective cover as described in Proposition 9.33
with K = ker 7r. Then P-dim B < 1 = K is projective by the projective
dimension theorem, while P-dim B > 0 K 0. But K C MF, so
xK C xMF = 0. But xK # 0 when K is free and nonzero since 0 0 x E xR,
a contradiction since all projective left R-modules are free (Corollary 9.34).

0
This proposition applies to the rings k[G], where k has characteristic

p and G is a nonzero p-group. The reason is this. If R is a left Artinian
ring, then J(R) is actually nilpotent, that is, J(R)n = 0 for some n (see
Hungerford [37, p. 430]). Setting R = k[G], there is a smallest n for which
any product x1x2 ... xn from the maximal ideal M is zero, and there is
a product 0 = x1x2 ... xn for which x = x1x2 ... x,i_1 # 0, since n is
minimal. This x works, since if y E M, then xy = x1x2 ... xn_ly = 0,
being a product in Mn. This actually proves the following corollary to
Proposition 9.39:

Corollary 9.40 Suppose R is quasilocal and left Noetherian, with maximal
ideal M. If M is nilpotent, then every finitely generated left R-module has
projective dimension zero or infinity; moreover, the dimension infinity case
is taken on by M itself unless M = 0 (in which case R RIM is a division
ring).

In the next section, commutativity will be imposed. The situation is more
definitive, but it requires more commutative algebra in the details than can
be casually assumed, so that final section will be largely expository.

9.7 Local Rings and Localization Revisited
(Expository)

This section requires material from Chapters 1 through 5, and Sections 9.1
and 9.6. It is primarily a continuation of the last section.
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In this section we assume our ring R is commutative. A commutative,
Noetherian, quasilocal ring is called a local ring. The last section showed
what the (left) Noetherian and quasilocal conditions forced. Here we inves-
tigate the consequences of commutativity.

Local rings come in two varieties, regular and nonregular. This dichotomy
is well illustrated by two examples.

Example 35 k[[x]], the ring of formal power series over a field. k[[x]] is a
PID with one prime, x, that generates the maximal ideal. Also the Krull
and global dimensions of k[[x]] are equal to one.

Example 36 Z4. The Krull dimension is zero, and the global dimension
is infinite. (This case is covered by Proposition 9.39.) Finally, the maximal
ideal is generated by one element.

There are various ways of defining regularity. The simplest is the follow-
ing. If R is a local ring with maximal ideal M, then the minimal number
of generators of M is the dimension of M/M2 over RIM by Proposition
9.32. R is regular if this number equals the Krull dimension of R.

If R is any commutative ring, and if P is a prime ideal, then the rank of
P is the supremum of the lengths of chains of prime ideals

P0#P1#P2c...cPn=P: length=n

descending from P. The Krull dimension is the supremum of the ranks of
the prime ideals. In Noetherian rings, every prime ideal has finite rank,
thanks to the generalized principal ideal theorem. See Kaplansky [46, pp.
116-111]; see also Nagata [59, p. 26], who calls this the altitude theorem of
Krull:

If R is a commutative Noetherian ring, and if I is an ideal generated
by n elements, then the rank of any prime ideal minimal over I is
less than or equal to n.

If R is local, with maximal ideal M = (x1, ... , xn), where n = dimR/M
(M/M2), then M is minimal over itself, so M has rank < n. It's pretty
clear that the rank of M is the Krull dimension of R, since any chain of
prime ideals can be extended up to M. Thus, the Krull dimension of R is
less than or equal to n, with equality occurring exactly when R is regular.

The big theorem about regular/nonregular local rings, due to Serre, is:

Suppose R is a local ring. If R is regular, then the global dimension
and the Krull dimension of R are equal. If R is not regular, then R
has infinite global dimension.
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The proof that regular local rings have equal global and Krull dimensions
can be found in Rotman [68, pp. 261-262] or Kaplansky [47, p. 183]; the
relevant structural results about local rings are in Kaplansky [46, pp. 115-
120]. Three different proofs that nonregular local rings have infinite global
dimension can be found in Aussmus [3], Matsumura [55, pp. 131-139], and
Kaplansky [47, pp. 183-185]. This is the hard part, since it is regular local
rings that have the nice internal structure. The Krull dimension zero case
is easy to do "by hand" using Corollary 9.40.

The consequences for an arbitrary commutative Noetherian ring R come
through localization. First of all, the Krull dimension of R is the supremum
of the ranks of the maximal ideals M. But for any prime ideal P, the rank
of P is equal to the Krull dimension of the localization Rp, as can be
read off from Hungerford [37, Theorem 4.10, p. 148]. Combining, the Krull
dimension of R is equal to the supremum of the Krull dimensions of the
localizations RM of R at maximal ideals.

This looks suspiciously like Theorem 5.20. In fact, combining with Serre's
theorem yields:

Theorem 9.41 Suppose R is a commutative Noetherian ring. If every lo-
calization RM of R at a maximal ideal is regular, then the global dimension
of R is equal to the Krull dimension of R. If some localization RM of R
at a maximal ideal is not regular, then R has infinite global dimension. In
particular,

LG-dim R > Krull dimension of R

with equality if LG-dim R is finite.

We would like to be more definitive about the infinite case, but we can't;
commutative Noetherian rings can have infinite Krull dimension (Nagata
[59, p. 203]) so LG-dim R = oo does not force a localization to be non-
regular.

What can be said if R is not Noetherian? Not much. Chapter 4 closed
with an example having global dimension two and Krull dimension one.
The ring of entire functions (Appendix B) has infinite Krull dimension
and (granting the continuum hypothesis) finite global dimension. We close
with an example with weak dimension one, global dimension two, and Krull
dimension three.

Example 37 R = real numbers. Set

R = if (t, x, y) E R(t, x, y) : f (t, e-1/t2, a-1/t4) extends
to a C°° function near 0}.

R is clearly an integral domain, being a subring of a field..To illuminate
the structure further, note that for all n E N, t-nx e R, t-ny E R, and
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x-ny E R; the first is a standard example in CO° function theory, and the
others work the same way. These extend to zero at zero.

Suppose f (t, x, y) E R[t, x, y], the polynomial ring, with f (t, x, y) # 0.
There is a lowest power n of y that appears so that one may write

f (t, x, y) = yn(g(t, x) + y0t, x, y))

with g(t, x) 5 0. There is a lowest power m of x that appears in g(t, x) so
that one may write

g(t, x) = xm(h(t) + x'(t, x))

with h(t) 0. Finally, h(t) = tl(a+tO(t)) for some l and a # 0. Thus,

f(t,x,y) = yn(g(t,x) +yo(t,x,y))

= yn(xm(h(t) + xO(t, x)) + yO(t, x, y))

= yn(xm(ti(a + tO(t)) + x'(t, x)) + yO(t, x, y))

= ynx'n(tl(a+tO(t))+xV)(t,x)+x 'nycb(t,x,y))

= ynxmtl(a + tO(t) + t-lxV)(t, x) + t-lx my,i(t, x, y))

= ynxmtl , U(t, x, y)

where U(t, x, y) is a unit in R. Hence, by dividing, we get that any nonzero
f (t, x, y) E R(t, x, y) can be written as f (t, x, y) = tlxmyn U(t, x, y);
1, m, n E Z and U(t, x, y) a unit in R. Thus, f (t, x, y) E R if and only
if one of the following holds:

i) n > 0, or

ii) n=0 andm>0,or

iii) n=m=0andl>0.
In particular, if f (t, x, y) ¢ R, then f (t, x, y)-1 E R, so R is a valuation

domain, an integral domain in which, for all nonzero a and b, either a/b or
b/a is defined in the ring, that is, either bla or alb. In any valuation domain,
given nonzero elements {al, ... , an}, one must divide all the others, so it
will be a GCD of {al, ... , an} and will generate Ral + + Ran. Hence
any valuation domain is a Bezout domain, an integral domain in which all
finitely generated ideals are principal. (See Section 4.4.)

In any valuation domain, the ideals are totally ordered, since if I and J
are ideals with I¢ J and J¢ I, choosing a E J - I and b E I - J yields

adoesnotdivideb,
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and

b c I, a ¢ I * b does not divide a,

a contradiction. Hence, a maximal ideal in a valuation domain is actually
largest, so it is the unique maximal ideal. That is, any valuation domain
is quasilocal. Here the maximal ideal is Rt. Since x E n(Rt)'", R is not
Noetherian. (See Hungerford [37, Corollary 4.7, p. 390].) Since the group
of units has a countable number of R-orbits (indexed by (1, m, n) above),
all ideals are countably generated, so by the discussion in Section 4.4, R
has weak dimension one and global dimension two.

The reason R has Krull dimension three is that the prime ideals are
exactly

PO={0}
P1 = (y, y/x, y/x2, ... )
P2 = (x, x/t, x/t2, ... )
P3 = (t).

By the way, t-lx-'y = (t-ix) (x_'-ly) E P1 for 1,M E N. With this in
mind, suppose f (t, x, y) is associated as above with (1, m, n). Then

f E Plan>0;
f E Plan>0orn=0andm>0;
f E P3an>0, orn=Oandm>0, orn=m=Oand1>0.

Since these exponents add when forming products, virtually by inspection
P1i P2, and P3 are prime ideals. Since R/P3 R, P3 is maximal.

Suppose P is a nonzero prime ideal. Then P contains some tlxmyn. We
can now analyze P by examining the alternative possibilities for (1, m, n)
described earlier.

i) If n > 0 for all such expressions in P, then P C P1. But then y'+1 =
(t-ix-my) (tixmyn) E P = y E P, since P is prime, and x"' ¢ P =
x-7Ry E P for all m (since xm (x-"'y) E P), since P is prime. Thus,
P=P1.

ii) If P contains some tlxm, and if m > 0 for all such expressions in P,
then P C P2. But then xm+1 = (t-1x) (tlxm) E P, so that x E P
since P is prime, and ti ¢ P = t-ix E P for all 1 (since tl (t'tx) E P),
since P is prime. Thus, P = P2.

iii) Finally, if P contains some tl, then P = P3 directly.





Appendix A
GCDs, LCMs, PIDs, and UFDs

Abbreviations:

GCD-Greatest Common Divisor

LCM-Least Common Multiple

PID-Principal Ideal Domain

UFD-Unique Factorization Domain

We start with the most basic properties of divisibility, GCDs, and LCMs,
namely those that do not depend on the additive structure of the integral
domain in question. If R is an integral domain, let U(R) denote the group
of units of R, and R* the nonzero elements of R. The quotient R*/U(R) is a
monoid, that is, a semigroup with unit, which has some special properties:
It is commutative, has a cancellation law, and no nonidentity element is
invertible. This internal structure is enough to start the discussion, identi-
fying divisibility, GCDs, LCMs, irreducibles, primes, and even UFDs.

To see how this goes, let M be any commutative monoid (with unit 1)
having a cancellation law, in which no nonidentity element is invertible.
Write alb when b = ac for some c E M. c is unique by the cancellation
law, and we write c = b/a. Observe that for any a, b, and c, alb q aclbc,
in which case cl(b/a) a cab, and c (b/a) = (cb)/a, etc. If alb and also
bla, then a = bd for some d, so a 1 = a = bd = acd, and cd = 1 by the
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cancellation law. But now d = c'1 and c = d-1, so c = d = 1, since no
nonidentity element is invertible. Thus a = b.

Notice two things about the preceeding (if you didn't doze off). First,
the required properties are all there in M. Second, that "no nonidentity
element is invertible" restriction made "divides" antisymmetric.

One example of an abstract monoid with the above properties is a free
commutative monoid, that is, a free object in the category of commutative
monoids. If {ul, u2, ... }, say, are generators, then elements have a unique
(up to a permutation) finite expression

n1 n2 n3 nk
u1 u2 u3 ...uk

A glance at this verifies that:

An integral domain R is a UFD if and only if R*/U(R) is a free
commutative monoid.

Now for the old familiar concepts and the basic connections. In the fol-
lowing, M is a commutative monoid (with unit 1) having a cancellation
law, in which no nonidentity element is invertible.

=Definition A.1 If p E M, then p is irreducible if p # 1, and V a : al p
a=1 ora=p.

Definition A.2 If p E M, then p is prime if p 54 1, andV a, b : plab pea

or pub.

Definition A.3 If a, b E M, then d is a GCD of a and b if dla, ddb, and
V c : (cla- and cib) = c1d.

Definition A.4 If a, b E M, then d is an LCM of a and b if aid, bid, and
V c : (alc and bic) = dic.

Many of the familiar properties are immediate. For example, all primes
are irreducible.

Miniproof: If alp, say p = ab, then plab, so pla or pub. If pla, then p = a
by the earlier discussion since alp. If plb, then p = b (and a = 1) by the
earlier discussion too, since bip.

Similarly, since any two GCDs must divide each other, a GCD is unique
if it exists. If a GCD of a and b exists, it will be written as (a, b). The LCM
of a and b is similarly unique if it exists, in which case it will be written as
[a, b]. The following result lists the basic properties that are not necessarily
trivial, or necessarily familiar.

Proposition A.5 Suppose M is a commutative monoid satisfying a can-
cellation law, in which no nonidentity element is invertible. Suppose a, b, c E
M.
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a) If (ac, bc) exists, then (a, b) exists, and (ac, bc) = (a, b) c.

b) [ac, bc] exists if and only if [a, b] exists, and [ac, bc] = [a, b] c.

c) [a, b] exists if and only if (ad, bd) exists for all d E M, and (a, b)
[a, b] = ab.

d) If (a, b) = 1, and if (a, c) and (ac, bc) exist, then (a, bc) _ (a, c).

Proof: (a) clac and clbc, so cl(ac, bc). The claim is that (ac, bc)/c is a GCD
for a and b. First of all, (ac, bc)lac, so {(ac, bc)/c}l {(ac)/c}, or {(ac, bc)/c}la.
Similarly, {(ac, bc)/c}fib. Finally, if dja and dlb, then dclac and dclbc, so
dcl (ac, bc), giving di {(ac, bc)/c}.

(d) The claim is that (a, c) is a GCD for a and be. In the first place,
(a, c) lc, so (a, c) l bc. Since also (a, c) l a, it only remains to show that if dja
and dlbc, then di(a,c). But for such a d, diac too, so dl(ac,bc). By (a),
(ac, bc) = (a, b) c = c, so dl c. Since already di a, we get that dl (a, c), as
required.

(b) and (c) are proven simultaneously by verifying the following three
statements.

(e) If [a, b] exists, then [ac, bc] exists, with [ac, bc] = [a, b] c.

(f) If [a, b] exists, then (a, b) exists, with (a, b) = ab/[a, b].

(g) If (ad, bd) exists for all d E M, then [a, b] exists.

These do give (b): The "if" part is (e), while also by (e), if [ac, bc] exists,
then for all d E M, [acd, bcd] also exists. Hence, for all d E M, (acd, bcd)
exists by (f), so that (ad, bd) exists by (a). But then (g) gives that [a, b]
exists, since d is arbitrary.

These also give (c): The "if" part is (g) and the formula is from (f), while
if [a, b] exists, then for all d E M, [ad, bd] exists by (e), whence (ad, bd) exists
by (f).

Proof of (e): The claim is that [a, b] c is an LCM for ac and be. Well,
al [a, b], so act [a, b] c. Similarly, bcl [a, b] c. Finally, if acid and bcl d, then
cad, so that al (d/c) and bl (d/c), giving [a,b]I(d/c), or {[a, b] c}fd.

Proof of (f): The claim is that ab/[a, b] is a GCD for a and b. In the first
place, alab and blab, so [a, b] lab and ab/[a, b] is defined. Also, a = (ab/[a, b])
([a, b]lb), so (ab/[a, b])la. Similarly, (ab/[a, b])Ib. Finally, if dja and djb, then
ab/d = a.(b/d), so aj(ab/d). Similarly, bj(ab/d), so [a, b]l(ab/d), or [a,
or dl (ab/[a, b]).

Proof of (g): Here we show that ab/(a, b) is an LCM of a and b. ab/(a, b) _
a {bl (a, b)}, so aj{ab/(a, b)}. Similarly, bl{ab/(a, b)}. Finally, if aid and
bjd, then ablad (since bid) and abjbd (since aid) so that abl(ad, bd). That is,
abl{(a, b) d} by (a), or jab/(a, b)}Id.
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Corollary A.6 Suppose M is a commutative monoid satisfying a cancel-
lation law, in which no nonidentity element is invertible. Then any two
elements of M have a GCD if and only if any two elements of M have an
LCM, in which case all irreducibles are prime.

Proof: The "if and only if" statement follows directly from Proposition
A.5(c). As for irreducibles being prime, suppose p is irreducible, and plab
but p t a. Then as a divisor of p, (p, a) = 1 or p, but can't be p since p a.
Hence, (p, a) = 1, so by Proposition A.5(d), (p, ab) = (p, b). But (p, ab) = p
(since cad (c, d) = c always), so since (p, b) 1b, we get that pib.

With that out of the way, we move on to integral domains, specifically
GCD domains, UFDs, and PIDs. (A GCD domain is an integral domain in
which any two nonzero elements have a GCD) In the first place, products
of primes are unique by the usual business (see, e.g., Artin [2, pp. 390-
395] or Isaacs [39, p. 239-240]). It is products of irreducibles that aren't.
Nevertheless, in view of the preceeding corollary, an integral domain is a
UFD if and only if it is a GCD domain in which every nonzero element is
a product of irreducibles.

The next result is easy, but fundamental.

Proposition A.7 Suppose R is an integral domain, with a and b nonzero
in R. If a and b have a common divisor of the form d = as + µb, then d is
a GCD for a and b.

Proof: If cia and c1b, then ciAa and cipb, so cl(Aa+µb), or c1d.

A Bezout domain is an integral domain in which every finitely generated
ideal is principal.

Corollary A.8 Any Bezout domain is a GCD domain.

Proof: A generator for Ra + Rb divides a and b, so it is a GCD for a and
b by Proposition A.7.

A bit more is needed for Bezout domains in Appendix B, as well as below.

Proposition A.9 A GCD domain is a Bezout domain if Ra + Rb = R
whenever a and b are relatively prime (and nonzero).

Proof: Suppose a and b are arbitrary nonzero elements of R. Set d =
(a, b); then 1 = (a/d, b/d) by Proposition A.5(a), so R(a/d) + R(b/d) = R,
that is, 1 = A(a/d) + µ(b/d) for some A, µ E R. But now d = as +µb,
so Ra + Rb D Rd. Since already dja (giving Ra C Rd) and ddb (giving
Rb C Rd), we get that Rd = Ra + Rb. That is, Ra + Rb is principal.
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Now suppose a1, ... , a,a are nonzero in R. The claim is that Rat + +
Ran is principal, and the proof is by induction on n. n = 1 is trivial, and
since Ran_ i + Ran = Rd, where d = (an_1 i an), we get Raj + + Ran =
Ra1 + + Ran-2 + Rd, a principal ideal by the induction hypothesis.

A note about LCMs: An LCM for a and b is just a generator for Ra fl
Rb. Consequently, in view of Corollary A.6, an integral domain is a GCD
domain if and only if the intersection of any two principal ideals is principal.

Now for the identification of PIDs from among UFDs. Recall that any
PID is a UFD. (See Hungerford [37, p. 138]). Also, a subset of a ring is
a multiplicative set if it is closed under multiplication. Finally, if R is a
UFD, and 0 # a E R, then writing a = u pi ... pk, where u is a unit
and pl,... , Pk are primes (perhaps not distinct), then k is the length of
a, written a{a}. Observe that P{a} = 0 if and only if a is a unit, and
${(a, b)} < E{a}, unless alb. We need a lemma, which is quite general.

Lemma A.10 Suppose R is a ring, possibly without a unit, and suppose
I is a right ideal. Then

{xER:I+Rx=R}

is a multiplicative set.

Proof: Suppose I + Rx = R = I + Ry. Then

R=I+Ry=I+(I+Rx)y=I+Iy+Rxy=I+Rxy

since I y C I.

We now have what we need for our first PID identifier.

Proposition A.11 Suppose R is a UFD. Then the following are equiva-
lent:

i) R is a PID.

ii) Rp + Rq = R whenever p and q are distinct (i.e., nonassoc-
iate) primes.

iii) R is a Bezdut domain.

Proof: (i) (ii) is immediate, since Rp + Rq is principal, generated by
(p, q) = 1 by Proposition A.7.

(ii) (iii). Suppose (ii), and suppose a and b are relatively prime. If pta,
then p is not a prime factor of b, and all prime factors of b belong to

{xER:Rp+Rx=R},
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so b belongs to this set since it is a multiplicative set by Lemma A.10. But
that means that all prime divisors of a belong to

{x E R : Rb + Rx = R},

also a multiplicative set, so a belongs to this set. That is, Ra + Rb = R.
Hence, R is a Bezdut domain by Proposition A.9.

(iii) r (i). Suppose R is both a UFD and a Bezdut domain. Let I be a
nonzero ideal in R, and suppose a is a member of I having smallest length.
If 0 b E I, then Ra + Rb = Rd for d = (a, b) by Proposition A.7, so
d E Ra + Rb C I. But B{d} < P{a} unless alb, and f{a} is smallest, so in
fact alb and b E Ra. Since b E I was arbitrary among nonzero elements,
Ra D I. But a E I Ra C I, so I = Ra is principal.

There is one more connection to make. The next lemma is an exercise
in Hungerford [37, p. 140, Ex. 2] and a theorem in Cohn [14, p. 309] and
Kaplansky [46, p. 41.

Lemma A.12 Suppose R is an integral domain. Then R is a UFD if and
only if every nonzero prime ideal in R contains a nonzero principal prime
ideal.

Proof: First, suppose R is a UFD, and P is a nonzero prime ideal. Then
there exists an a E P, a # 0. Since R is a UFD (and a is not a unit), a can
be written as a product of primes: a = pi ... pn. But pi . pn E P some
pj E P since P is prime, giving P D Rp3.

Next, suppose R is not a UFD. Let S denote the set of units together
with the products of primes. If ab c S, then a E S and b E S by induction
on the length of ab: If ab is a unit (length zero), then so are both a and
b. If ab = Pi - - - pn+l is a product of n + 1 primes, then pn+1 dab, so pn+1Ia
(and (a/pn+1) - b = pi ... pn) or pn+l Ib (and a - (b/pn+1) = pi ... Pn), giving
a, b E S. (Observe that if x/pn+l E S, then x E Spn+l C S.)

By assumption, R is not a UFD, so 3 a ¢ S, a # 0. If Ra fl S # 0, say
ra E S, then a E S by the above, a contradiction. Hence, Ra fl S = 0. But
now Ra is contained in an ideal P which is maximal among ideals in R - S
by Zorn's lemma, and this ideal P is prime, since S is a multiplicative set
(see Hungerford [37, p. 378]). But now P fl S = 0 P contains no primes,
hence no principal prime ideals. But a E P, and a # 0, so P # 0. Thus,
R does have a nonzero prime ideal, one that explicitly contains no nonzero
principal prime ideal.

Next, recall that the Krull dimension of any commutative ring is the
supremum of the lengths

P0CP1C...CPn: length = n
0 0 0
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of chains of prime ideals. Since a nonzero prime ideal in a PID is maximal,
any PID has Krull dimension one (unless it is actually a field, having Krull
dimension zero). We need a lemma.

Lemma A.13 (Variation on a Theme by Cohen [13]) Suppose R is
a commutative ring that is not a principal ideal ring. Let P be any ideal
which is maximal with respect to the property of not being principal. Then
P is prime. Also, such ideals exist.

Proof: Suppose P is as above, and suppose ab E P, but a ¢ P, b ¢ P.
Since a ¢ P, Ra + P D P, so Ra + P = Ra for some a by maximality of

0
P among nonprincipal ideals. Set I = {x E R : xa E P}. Then P C I, but
also b E I, since (Ra + P)b = Rab + Pb C P. That is, I D P, so I = R/3

for some ,Q again by maximality. Now p E P = p E Ra = p = ra for
some r E R. But now ra E P = r E I = r = s(3 for some s E R, so
that p = ra = s/3a E Roa. Since p E P was arbitrary, P C R,3a. But
(3 E I (3a E P, so in fact P = R/3a is principal after all, a contradiction.

Such ideals exist by Zorn's lemma. Let N denote the set of nonprincipal
ideals, partially ordered by set inclusion. N is not empty since R is not a
principal ideal ring. It suffices to show that if {I; : i E Z} is a nonempty
chain of nonprincipal ideals, then U Ii is not principal. But if it were, say
U IZ = Ra, then a E I2 for a fixed j, where Ra = U I= D Ij D Ra, giving
Ij = Ra as a principal ideal, a contradiction.

Corollary A.14 Suppose R is a commutative ring. If every prime ideal is
principal, then R is a principal ideal ring.

Proof: Immediate; contrapositive to Lemma A.13.

Cohen's theorem states that a commutative ring is Noetherian when
every prime ideal is finitely generated. Hungerford [37, pp. 379, 388, and
3921 contains a nice discussion; see also Kaplansky [46, p. 51. Lemma A.13
itself is due to Isaacs.

Proposition A.15 Suppose R is a UFD. Then R is a PID if and only if
the Krull dimension of R is < 1.

Proof: We show that if R is a UFD that is not a PID, then R contains a
chain of prime ideals of length two. To start things, let P2 be a nonprincipal
prime ideal, which must e?:ist by Lemma A.M. P2 # {O} since {0} is
principal. Hence, P2 contains a nonzero principal prime ideal Pl by Lemma
A.12. P2 D Pl since Pl is principal, but P2 is not. Finally, set Po = {0}.
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Corollary A.16 Suppose R is any ring consisting of algebraic integers.
ThenR is a UFD if and only if R is a PID

Proof: R has Krull dimension one since it is integral over the PID Z, and
integrality preserves Krull dimension (see Kaplansky [46, p. 32]).

Closing remarks. If R is the ring of integers of a number field K (i.e., K is
a finite extension of Q), then R is a PID if R is a UFD if the class number
of K is one. This is a standard result from algebraic number theory (see
Weiss [76, p. 146]). In fact, there's a generality (Krull dimension) behind
it.
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The Ring of Entire Functions

And now for something completely different.
- Monty Python

The ring £ of entire functions is a most peculiar ring.
In some ways £ is quite nice. Granted the continuum hypothesis, it has

finite global dimension. It is a GCD domain; in fact, any nonempty subset
of £' has a GCD, just as if £ were a UFD. It also has lots of primes. In
fact, most of what one expects of UFDs (e.g., being integrally closed) is
true of E.

But £ also has its dark side. Some ideals aren't even countably gener-
ated. And the Krull dimension of £ is infinite; in fact, the cardinal Krull
dimension of £ is at least 2".

The Jekyll-Hyde nature of £ will emerge in due course. As should be
expected, most proofs in this appendix are complex analytic proofs of al-
gebraic facts.

The two primary sources of algebraic consequences are the Weierstrass
product theorem and the Mittag-Lefiler theorem: Versions of these theo-
rems are valid for any region in C, so every proposition in this appendix
about £ is also valid for the ring of analytic functions on a region U in
C. We keep to £ to maintain some control on the analytic prerequisites.
(Ahlfors [1, Chap. 5] or Rudin [70, Chaps. 13 and 15] will do.) Statements
of these theorems are as follows:

The Weierstrass Product Theorem Suppose (ak) is a sequence (finite
or infinite) of distinct complex numbers with no accumulation point, while
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nk are positive integers. Then there exists an entire function that has zeros
of order nk at ak, and no other zeros. (This function can be expressed as
a product.)

The Mittag-LefHer Theorem Suppose (ak) is a sequence (finite or
infinite) of distinct complex numbers with no accumulation point, while
Pk(t) are nonzero polynomials without constant term. Then there exists a
meromorphic function on C whose poles occur exactly at the points ak with
the principal part at ak being Pk(1/(z - ak)).

The principal part at a pole is that part of the Laurent series having neg-
ative exponents.

Now a few things can be said about E on more basic grounds. For ex-
ample, E is an integral domain, since if f and g are not identically zero,
then they have a discrete set of zeros whose union can't be C, that is, f g
is not identically zero. Furthermore, divisibility is checked using an easy
criterion: gIf if f /g has only removable singularities, that is, every zero of
g (of order n) is a zero of f (of order > n). Here, f and g are nonzero, by
which we mean "not identically zero." Since this kind of thing can actually
be arranged using the Weierstrass product theorem, we get:

Proposition B.1 6 is a GCD domain. In fact, any nonempty set of nonzero
entire functions has a GCD.

Proof: Let S be a nonempty set of nonzero entire functions. Set

{ak}= {zEC: f(z) = 0 for all f ES}= n f-1(0),
fES

a discrete set since S # 0. Set

nk = m in(order of zero of f at ak).

If g E 6, then gif for all f E S if and only if g-1(0) C {ak}, and each ak is
a zero of g of order < nk (or not a zero at all); so a GCD is a function with
a zero at ak of order nk, produced by the Weierstrass product theorem. 0

By Corollary A.6 every irreducible in ,6 is prime. The irreducibles are the
functions (z - a), a E C (and their associates). The units are the functions
that are never zero. Functions like sin z are divisible by infinitely many
primes, but no function (except zero) is divisible infinitely often by a single
prime. Also, divisibility is completely determined by prime divisors:

If f and g are entire functions, not identically zero, then f Ig if
and only if for every prime p and natural number n, p" If =
pfIg.
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This is left to the interested reader; it plays no role here. Also, 6 is
integrally closed (as are all GCD domains; see Kaplansky [46, p. 33]). It is
easy to show analytically that a meromorphic function that is integral over
£ must be entire.

A good deal more is true of £; this requires the Mittag-Leffier Theorem.

Proposition B.2 (Helmer) £ is a Bezdut domain, that is, every finitely
generated ideal in £ is principal.

Proof: Thanks to Proposition A.9, it suffices to show that if f and g are
nonzero entire functions with no common zeros (i.e., are relatively prime),
then there exist entire functions A and p for which A f +µg = 1. To this end,
let cp be a meromorphic function with poles precisely at the zeros of g only,
with the principal parts of cp at these zeros coinciding with the principal
parts of (f g)-1. Two things now happen.

1. The order of the pole of cp at any zero of g equals the order of the
zero of fg, which equals the order of the zero of g, since f and g are
relatively prime. Hence, cpg extends to an entire function, A.

2. (fg)-1 - cp has only removable singularities at the zeros of g. But
away from the zeros of f and g:

C-9
0)f9Wf-

The expression on the left has removable singularities at the zeros of
g, while the expression on the right is actually analytic at the zeros
of f. Consequently, the expressions have only removable singularities,
and extend to an entire function, p.

But now, away from the zeros of f and g,

Af+µ9=cogf+(g-Wf)9
=wgf+1-Wf9=1,

an identity that persists to all of C by continuity.

Corollary B.3 Let I be any ideal in E. Then I contains the GCD of any
two of its elements.

Proof: Read off from Proposition A.7.

The next subject treats maximal and prime ideals. The following result
is one of the purest interplays of analysis with algebra that one could ask
for.
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Proposition B.4 Suppose P is a prime ideal in E. Then P is maximal if
and only if P contains a function having no multiple zeros.

Proof: First, suppose P is maximal. Since {0} is not maximal, P contains
an entire function f which is not identically zero. Let {an} denote the
zeros of f, and let g be an entire function with simple zeros at the points
ak, constructed using the Weierstrass product theorem. The claim is that
gEP.

Suppose not; suppose g P. Then g+P is invertible in £/P, since S/P is
a field (P being maximal). That is, 3 h c £ such that 1+P = (g+P).(h+P),
that is, 1- gh E P. But at each ak, 1- gh has the value 1 since g(ak) = 0.
That is, 1 - gh and f have no zeros in common. Thus 1 - gh and f are
relatively prime elements of P, from which P must contain their GCD, one,
by Corollary B.3. This contradicts maximality.

Conversely, suppose P is a prime ideal that contains a function f having
no multiple zeros. To show that P is maximal, we verify that S/P is a
field, that is, that if g ¢ P, then for some A E £, 1 - .fig E P (so that
(A + P)(g + P) = 1 + P). To this end, let cp denote a GCD of f and g; cp
has simple zeros at the zeros common to both f and g. Since cp divides g,
<p cannot be in P (cp E P = g E Scp C P). Let h denote an entire function
(constructed using Weierstrass' theorem) with simple zeros at exactly the
zeros of f that are not zeros of g; then cph is a unit times f, so that
cph E P. But cp ¢ P, so h E P, since P is prime. But g and h are relatively
prime, so by Proposition B.2, there exist entire functions A and u such that
1= .fig +µh. But this gives 1- Ag = ph E P.

The condition hypothesized in Proposition B.4 is important. There is no
standard term, but a nonzero ideal I in S will be called "superradical" if it
contains a function having no multiple zeros. The concept will eventually
have an algebraic characterization. The terminology is explained by the
next proposition.

Proposition B.5 Suppose I is a superradical ideal in E. Then I is radical.
Furthermore, if f E I, and if g has the same zeros as f, then g E I.

Proof: The second part is best proved first. Suppose f E I, and suppose g
has the same zeros as f. Let h be a function in I having no multiple zeros.
Let cp be a GCD for f and h; then cp E I by Corollary B.3. Since h has
no multiple zeros, all zeros of cp are simple. Furthermore, all zeros of cp are
zeros of f, hence of g. Combining, cog so that g E £cp C I.

Now for the radical part. Suppose f n E I. Since f and f n have the same
zeros, the part that was just proved shows that f E I.

If I is any nonzero ideal in £, choose any nonzero f E I, and let fo denote
any entire function having the same zeros as f, but all with multiplicity
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one. Set

Proposition B.6 The preceding definition of S(I) is independent of the
choice of f, and is the smallest superradical ideal containing I.

Proof: Clearly S(I) is superradical since fo E S(I). Furthermore, since
the starting f was in I, any superradical ideal containing I must also con-
tain fo by Proposition B.5. But that just means that S(I) is the smallest
superradical ideal containing I, a concept which is uniquely determined.

To go on, we need to introduce filters. A filter F on a set S is a collection
of subsets of S subject to:

a) IfAEF,andACBcS,thenBEF.
b) If A, B E IF, then A f1 B E IF.

c) 0 ¢ F.

If IF is a filter on S, then IF is an ultrafilter if V A C S, either A E F or
S - A E F. Any filter is contained in an ultrafilter, thanks to the following
considerations. Set E(IF) = {B C S : B fl A 0 0 for all A E F}.

1. IF C E(IF), by property (b).

2. If B ¢ E(F), then 3 A E IF f o r which A fl B = 0, that is, A C S - B
so that S - B E F.

3. If B E E(F), then

IF'={C:C:AflBforsome AEF}

is a (possibly larger) filter ((a) and (c) are direct, and (b) is easy)
such that F C IF' and B E F.

4. The union of a nonempty chain (under set inclusion) of filters is a
filter (again (a) and (c) are direct, and (b) is easy), so by Zorn's
lemma any filter is contained in a maximal filter.

5. If lF,, is a maximal filter, then IF,, is an ultrafilter, since IF,, cannot
be extended by the procedure described in (3) above: Necessarily
E(IF,,) =Fu; but now (2) above says that Fu is an ultrafilter.

6. Combining (4) and (5), every filter is contained in an ultrafilter.
There's more: If C ¢ F, then by (2) applied to B = S - C we get that
S - C E E(F), so that by (3) there is a filter F D F with S - C E F.
But now IF' is contained in an ultrafilter F,,, and we have that F C Fv,
and S-C E F,,, so that C ¢ F. Since C ¢ F was arbitrary, it follows
that:
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7. IF is the intersection of the ultrafilters which contain it, that is,

IF= n IF.
F,iaan

ultrafilter
and FCF..

An ultrafilter IF is principal if IF contains a set {a}, in which case for all
A C S: A E IF if and only if a E A. An ultrafilter is principal whenever it
contains a finite set, as is easy to see by asking what a smallest member of
an ultrafilter could look like.

The prototype of a filter is the set of (not necessarily open) neighbor-
hoods of a point in a topological space. This will help us later. For now,
suppose I is any nonzero ideal in E. Set

.F(I) _ {ACC : 3 f c I with f-1(0) C A}.

Our first point is that .F(I) is a filter on C. In fact, it is an "admissible"
filter on C, that is, a filter on C that contains a (necessarily countable)
discrete set (thanks to the fact that I * 0). To see this, run through the
conditions:

a) If A E.F(I), say A D f-1(0);andifACBCC,then B:) f-1(0).

b) If A, B E .P(I), say A f -1(0) and B g-1(0), with f, g E I: Let h
be a GCD of f and g; then h-1(0) = f-1(0) fl g-1(0) c An B, and
h E I by Corollary B.3.

c) 0 V F, since f -1(0) # 0 for all f E I. (I cannot contain a unit, and
f-1(0) = 0 f is a unit.)

Conversely, if IF is an admissible filter on C, set

I(IF)={f E£: f-1(0)EF}.

Then I(IF) is a superradical ideal. To see this, observe the following:

a) If f,g E I(F), then (f +g)-1(0) D f-1(0) fl g-1(0) E IF, so (f+
g)-1(0) E F.

b) If f E I(F) and g E 6, then (fg)-1(0) D f-1(0) E IF, so (fg)-1(0) E
IF.

c) 1 ¢ I(F), since 0 ¢ F.

d) If D E F, with D countable and discrete, then there is an entire
function f with simple zeros at the points of D. Since f E I(F), I(F)
is superradical.
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Some things are more or less obvious. First of all, if I is a nonzero ideal,
and f E I, then f-1(0) E .F(I), from which f E I(.F(I)). That is, I C
I(.F(I)). Furthermore, if I C J, then F(I) C .F(J).

This looks a little like algebraic geometry. How about filters? Suppose F
is an admissible filter with D being a countable discrete member. If A E F,
then there is an entire function f whose zero set is precisely A fl D, from
which f E I(F). But f -1(0) = A fl D C A gives that A E That
is, F C .F(I(F)). On the other hand, if A E .F(I(F)), say A D f(0), with
f E I(F),'then by definition f -1(0) E IF, so that A E F. That is, combining,
F = .F(I(F)). Furthermore (again more or less obviously) F C F' I(F) C
I(IF'); observe that F C F' means that F' contains smaller sets than F does.

This looks a lot like algebraic geometry.

Proposition B.7 (Nullstellensatz) For any nonzero ideal I in E,
I(.F(I)) = S(I).

Proof: First of all, I(.F(I)) is a superradical ideal containing I, so I(.F(I))
D S(I). On the other hand, suppose f E I(.F(I)). Then f-1(0) E .F(I),
so there is a g E I with f-1(0) D g-1(0). Let go be an entire function
with simple zeros at the points of g-1(0); then go E S(I). But golf, so
f E Ego C S(I).

Corollary B.8 .F and I set up an order-preserving one-to-one correspon-
dence between admissible filters on C and superradical ideals in E.

How about maximal ideals?

Proposition B.9 If F is an admissible ultrafilter, then I(F) is a maximal
ideal. If P is a nonzero prime ideal, then .F(P) is an ultrafilter.

Proof: Suppose F is an admissible ultrafilter with D being a countable
discrete member of F. Suppose f ¢ I(F). Then f -1(0) it IF, so C- f -1(0) E
F, since F is an ultrafilter, giving D - f -1(0) = D fl (C - f -1(0)) E IF. Let g
be an entire function with zero set D - f -1(0); then g E I(F). Furthermore,
g and f are relatively prime, so there exist entire functions A and u for which
of + jig = 1, giving 1- Af = pg E I(F). Thus, E/I(F) is a field, and I(F)
is maximal.

Now suppose P is a nonzero prime ideal, and suppose A .F(P). Let f be
a nonzero entire function in P, and let g have zeros at f -1(0) fl A with mul-
tiplicity the same as f , and let h have zeros at f -1(0) - A with multiplicity
the same as f . Then gh is a unit times f , so gh E P. Now g'1(0) = f -1(0) fl
A¢ F(P), since A¢ F(P). (A D f-1(0) fl A E F(P) A E .F(P).)
Hence, g ¢ P. Since P is prime, it follows that h E P, so f -1(0) - A =
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h-1(0) E F(P). Since G- A D f-1(0) - A, it follows that G- A E .F(P).

There are three corollaries.

Corollary B.10 (Henriksen) Under the correspondence between admis-
sible filters on C and superradical ideals, maximal ideals correspond to ul-
trafilters. Principal maximal ideals correspond to principal ultrafilters.

The next corollary gives an algebraic characterization of S(I).

Corollary B.11 If I is a nonzero ideal in £, then S(I)/I is the Jacobson
radical of £/I.

Proof: The Jacobson radical of £/I is the intersection of the maximal
ideals in £/I; see Section 9.6. But the maximal ideals of £/I are the ideals
M/I, where M is a maximal ideal containing I, thanks to the Noether
correspondence for ideals. It therefore suffices to show that S(I) is the
intersection of the maximal ideals containing-I. That is, we must show that
I C M S(I) C M whenever M is a maximal ideal, and f¢ S(I) = 3 M
maximal such that I C M, but f ¢ M.

Suppose M is a maximal ideal and I C M. Then F(I) C F(M), and
I(F(I)) C I(F(M)), that is, S(I) C S(M) by Proposition B.7. But
8(M) = M by Proposition B.4, so S(I) C M.

Suppose f ¢ S(I). Then f 0 I(.F(I)) by Proposition B.7, so f -1(0) ¢
.P(I) by definition of By item (6) on the list in the earlier discus-
sion of ultrafilters, there exists an ultrafilter 1F,, such that ]Fv, 3 ,F(I) and
f-1(0) $1F.. But now f $ I(1Fu), while I C I(.P(I)) C I(]F,,). Since I(1Fu)
is maximal by Proposition B.9, we are done.

One more corollary, in which the analogy with algebraic geometry crashes
and burns.

Corollary B.12 Every nonzero prime ideal in 6 is contained in a unique
maximal ideal.

Proof: If P is nonzero and prime, it is only contained in S(P) = I(y(P)),
a maximal ideal by Proposition B.9.

In short, despite being an integral domain, 6 behaves more like a ring
of continuous functions when it comes to prime ideals; see Gillman and
Jerison [22, p. 1071.

The above tells us where to look for a prime ideal, but doesn't spell out
how to manufacture one that isn't maximal. The next result does.
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Proposition B.13 Let F be an admissible ultrafilter, with D being a count-
able discrete member of IF. Let a : D -> (0, oo) be a function. Set

Po = If E£:3AEF,ACD, and3c>O,s.t.VzeA,
f has a zero at z of order > ca(z).}

Then PQ is a prime ideal contained in Z(F).

Proof: Given f E PQ, if A and c are as in the definition, then f (0) J A,
so f-1(0) E F and f E 1(F). That is, PQ C 1(F)

Suppose f, g E PQ. Suppose A, B E F, A C D, B C D, and c, d are
positive such that

f has a zero of order > ca(z) at all z E A,

and

g has a zero of order > da(z) at all z E B.

Then f + g has a zero of order > min(c, d) a(z) at all z E A n B, so
f + g E Po. Furthermore, if h E 6, then h f has a zero of order > ca(z) at
all z E A, so h f E PQ. It follows that Po is an ideal.

Suppose f g E PQ, and A E IF, A C D, and c > 0 satisfy

f g has a zero of order > ca(z) at each z E A.

Set

B = {z E A : the order of the zero of f at z
is > the order of the zero of g at z.}

(The order of a zero of f at z is 0 if f (z) 0.) Since F is an ultrafilter,
either B E F or C - B ER In the latter case, A n (C - B) = A - B E F.

Suppose B E F. Then for any z E B, the order of the zero of fg at z is
equal to the sum of the orders of the zeros of f and g, which is < twice
the order of the zero of f at z by definition of B. But now the order of
the zero of f at z is > (c/2)a(z). Thus, f E PQ. By a similar argument, if
A - B E F, then g E Po. Since one of these must happen, Po is prime. 0

Corollary B.14 Every nonprincipal maximal ideal in 6 is at the top of a
chain of prime ideals in one-to-one order preserving correspondence with
the nonpositive real numbers.

Proof: Suppose M = 1(F) is nonprincipal and maximal, so that F is a
nonprincipal admissible ultrafilter. Let D = {al, a2, a3, ... } be a countable
discrete member of F. Set at(an) = n-t, where t E (-oo, 01. The chain
is {P0. }. Observe that t < s at > as Poi C PQ, . More: If s < 0,
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let f have a zero at each an of order [n-8], where [ ] is the greatest
integer function. f E PQ, since [n-8] > 2n-8. But if f E Pa, for t < s,
then 3 A E IF, A C D, and c > 0 such that for all an E A, [n-8] > cn-t.
Hence, n-8 > [n-8] _> cn-t, so n'--q > c. Since t - s < 0, this can hold for
only finitely many n, from which A must be finite. But then IF would be
principal. Hence if IF is not principal, then the {Pt } are all distinct. 0

This can be improved upon. Read on.
Once we know that nonprincipal admissible ultrafilters exist (and they do

in abundance), then we will know that the Krull dimension (the supremum
of the lengths of finite chains of prime ideals) of £ is infinite. Indeed, its
cardinal Krull dimension (the cardinal supremurn of the cardinality minus
one of all chains of prime ideals) will at least be a continuum.

Both nonprincipal admissible ultrafilters and noncountably generated
ideals can be manufactured using the same device. Let D be any countably
infinite discrete subset of C. Let * denote some point not in D (e.g., 00
on the Riemann sphere), and somehow make D U {*} into a Hausdorff
topological space in which * is an accumulation point (e.g. neighborhoods
in the Riemann sphere). Define IF to be the admissible filter consisting
of all A C C such that {*} U (A n D) is a neighborhood of *. Since *
is an accumulation point of D, F is a filter. Furthermore, for all p E D,
D - {p} E F, so the intersection of the members of IF is empty. This holds
for all larger filters, so any ultrafilter IFu, containing IF (IF,, is still admissible
since D E IF,,) will have the same property and hence will not be principal.
Such spaces D U {*} exist, so nonprincipal maximal ideals exist, and 6 has
infinite Krull dimension.

There's more. Suppose Z(IF) is countably generated, with F as above.
As in Section 4.4, 2-(IF) can be generated by a sequence fl, f2, ... , where
fn+iIfn, and Z(IF) = U£ fn. Suppose A E IF, A C D, that is, AU {*} is a
neighborhood of *. Let g be a function whose zeros occur precisely on A.
Then g E 1(F), so g E £ - fn for some n, and so fn 1(0) C g-1(0), that is,
fn 1(0) c A. That is,

{{*} U fn 1(0) : n = 1, 2.... }

is a base for the neighborhoods of {*}. If no such countable base exists,
then 1(IF) will not be countably generated.

An example in which there is no countable base at * can be constructed
as follows. Let D = {a1, a2, ... }, and let * E [3D - D, where /3D is the
Stone-Cech compactification of D. Give {*} U D the induced topology as a
subspace of /3D; * is a cluster point of the sequence (an), since D is dense
in /3D. However, no subsequence of (an) can converge to *: If (an,,) is a
subsequence of (an), then there is a bounded function f on D such that
f(an,,) _ (-1)k, and f extends to a continuous function F on /3D by the
universal property defining [3D. But an,, -+ * implies F(*) = limF(an,,) _
lim(-1)k, a contradiction. Since no subsequence of (an) converges to
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despite the fact that * is a cluster point of (a,), it follows that there is no
countable neighborhood base at *. The earlier construction now produces
an ideal in £ which is not countably generated. By the way, it is an easy
topological exercise to show that the filter produced by this example is an
ultrafilter. Somewhat deeper is the fact that all admissible ultrafilters arise
this way.

Before going on to global dimension, a few words about arbitrary prime
ideals. Henriksen [30] has expanded on Proposition B.13 as follows. Fix the
situation and notation as in Proposition B.13.

1. Given any two functions o, r : D - (0, oo), either PQ C PT or P, D PT,
depending on whether

{zED:a(z)>-r(z)}

or its complement belongs to F. Consequently, the set of all ideals {P} is
actually totally ordered.

2. Given any nonzero prime ideal P C Z(IF), P is the union of those PQ
which it contains. Specifically, if f E P, one may define

o1(z) = max{1, order of zero of f at z}

on D; f E P f (c = 1 on A = D fl f -1(0)), while P 1 C P by the following
reasoning. Fix g E Pf, , say g has a zero of order > c a f (z) on A C D. Let
h have zeros with orders matching those of f on f -1(0) - A. h V P since
h V 1(IF) (h-1(0) = f-1(0) - A 0 F since A E F). But if < c, then hg'
is a multiple of f, so hg" E £ f C P. Consequently, g E P since P is prime.

3. Combining (1) and (2), the set of all nonzero prime ideals in 1(F) is
totally ordered, and it corresponds to the set of Dedekind cuts in the set of
all P. (Recall that the union or intersection of a nonempty chain of prime
ideals is prime.) This set is large. In fact:

4. Using an argument of Erdos and Gillman, Henriksen shows that the
cardinal Krull dimension of £ is at least 21.

There remains the question of global dimension. This is a chapter in
the relationship between cardinal arithmetic and global dimension. A nice
discussion appears in Osofsky [63, pp. 54-70]. The primary result is Aus-
lander's lemma, which relates ordinal arithmetic to projective dimension.

Proposition B.15 Suppose a is an ordinal, B is a left R-module, and n
is a nonnegative integer. Suppose that for all /3 < a, there is a submodule
Bp of B subject to

i) ry</3r B1 C: B,3

ii) U BO = B
p<«

iii) V/3<a:P-dim(Bq/ U By) <n.
-YO
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Then P-dim B < n.

Proof: The proof presented here is perhaps not the shortest, but it illu-
minates most clearly the role of the well-ordering of a, namely the appli-
cability of transfinite recursion.

Given C E RM, we shall show that Ext"+1(B, C) = 0. The first reduction
is to take the nth cokernel D of an injective resolution of C. By Proposition
4.2(b), Ext' (A, D) -- Exti}1(A, C) for all A E RM, so it suffices to show
that for any D E RM,

(V3<a:Ext'(B,3/UB.y,D)=0)*Ext'(B,D)=0.
ry<O

To this end, imbed D in an injective E. Let a : E -+ E/D denote the
canonical projection. For any A E RM, the long exact sequence for the
second variable in Ext gives the exact sequence

0 -+ Hom(A, D) --+ Hom(A, E) $ Hom(A, E/D) -+ Extl (A, D) --+ 0,

since E is injective. Hence, Ext'(A,D) = 0 if and only if 7r. is onto, that
is, if and only if any f E Hom(A, E/D) has a lifting g c Hom(A, E) such
that f = irg = ir.(g). It therefore suffices to show that this happens when
A = B provided it happens whenever A = Bp/ U By for all P. Given

y<(3
f E Hom(B, E/D), a lifting g will be defined by transfinite recursion as a
sequence g,3 on B,3 such that 7rgp = f I Ba, with -y < Q * g y = gp I B.y for
consistency. The union of [the graphs of] the gp will be our desired g.

Suppose we know all g.y, y < P. These define a map go on U By, and
ry<f3

ig,6 agrees with f on U B. Since E is injective, there is a filler gg
7<p

0 B-fc B/3

E

for which it may be that f IB,, ,-4 irgp. It nevertheless is the case that f J BO -
wgQ is zero on U B.y, so it induces a map FF E Hom(B,6/ U By, E/D),

-t<O 7<0
and this FF is a composite FO = 7rGg, since Ext'(Bp/ U By, D) = 0.

7<a
Letting irp : B,6 -+ Bp/ U By denote the canonical projection, we have

y</3

the equations

fIB5-iga=FFirg
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and

Fp = 7rGp,

giving

f l Bf = 7rgp + irGp7r0.

Set gp = gp+Gprp. Then 7rgp = f I Bp, 9,3 = 9p = 9,3 on U B.r as required.

Final step: Choose go as such an extension (axiom of choice).

Corollary B.16 Suppose B is a left R-module which is generated by 11,,,
elements, and suppose that any finitely generated submodule of B has pro-
jective dimension < n. Then P-dim B < m + n + 1.

Proof: Induction on m. m = 0: Write B = U Bk, where Bk are finitely
k=1

generated by the first k elements in a countable generating set for B. From
the exact sequence 0 -+ Bk -+ Bk+1 -' Bk+1/Bk -, 0 and part (a) of
Corollary 4.3, all Bk+1/Bk have projective dimension < n + 1 (and B1
has projective dimension < n), so this follows from Proposition B.15 with
a=110.

As for m m + 1, suppose B is generated by 11,,,+1 elements. Set a =
11,,,+1 and put a set of generators of B in one-to-one correspondence with
a. Let Bp be the submodule generated by the first ,Q elements. Then for all
/3 < a, Ia1 < t m, so by the induction hypothesis all Bp and all U B.r have

ry<p

projective dimension < m + n + 1. Hence, as above, using Corollary 4.3(a)
on 0 -, U B.r Bp --, Bp/ U B.r -, 0, we have P-dim (B)3/ U By) <

7<p 1<13 'Y<p
m + n + 2 for all /3. Proposition B.15 then gives P-dim B < m + n + 2.

Corollary B.17 Any Bez6ut domain of cardinality 11,,, has global dimen-
sion < m + 2.

Proof: By the preceeding corollary, any ideal has projective dimension
< m+1, since it is generated by < fit,,, elements, and since finitely generated
submodules are principal ideals, hence are free (and projective: n = 0 in
the corollary). The result now follows from Corollary 4.10.

Corollary B.18 Given the continuum hypothesis, LG-dim 6 < 3.
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Proof: It suffices to check that 161 is a continuum c, that is, R, in the
presence of the continuum hypothesis. But 161 < d' (w = Ro), since 6
imbeds in the ring of formal power series C[[x]] (Taylor expansions at zero).
Hence, 161 < (2W)w = 2- = 2"' = c. But C C 6, so 161 > c.

Some closing comments. Again, all results in this appendix apply to the
ring of holomorphic functions on a region in C. The big difference is in the
structure of the group of units when the region is not simply connected (e.g.
the unit disk minus the Cantor set). In fact, Kaplansky's Understatement
[46, p. 72] applies even more:

"This [the ring of entire functions] is a good example to keep
in mind if you are looking for a Prefer domains with unusual
properties."

5A Priifer domain is an integral domain in which every nonzero finitely generated
ideal is invertible. All Bezdut domains are Priifer domains.



Appendix C
The Mitchell-Freyd Theorem and
Cheating in Abelian Categories

In working with Abelian categories, the verb "'to cheat" has taken on a
special meaning. A typical Abelian category isn't even concrete, but in
some circumstances one can play a game of "let's pretend" and act as if
morphisms were functions. There are three varieties of such cheating.

One variety is described in Section 7.4, and involves projectives. It is
actually available for pre-Abelian categories, and is suitable for checking
things like whether a morphism is monic or epic. It is unsuitable for defining
things, although a variant (using quasiprojectives) can do this.

Another is described in, for example, MacLane [52, p. 2001, using what
he calls members. A member of an object B is a morphism into B. To
keep a lid on things, two morphisms into B, say x E Hom(A, B) and x' E
Hom(A', B), are declared to be equivalent if there exists an object A and
epimorphisms u E Hom(A, A) and u' E Hom(A, A') such that xu = x'u'.
This is an equivalence relation, thanks to the peculiar properties of Abelian
categories; Proposition D.6 is the key result for transitivity. As an example
of a nontrivial theorem (also based on Proposition D.6): If f : A --+ B is
a morphism in an Abelian category, then f is epic if and only if for every
member y of B there exists a member x of A such that f x is equivalent to
Y.

This approach has three deficiencies. First, there are limits to the anal-
ogy; some things work and some don't. Second, equivalence classes are typ-
ically proper classes, and so cannot belong to any class; this can be avoided
by using the language of conglomerate theory (see Section 6.6) or by keep-
ing the idea purely linguistic (as MacLane does). The third problem is that,
strictly speaking, members don't really correspond to elements; they corre-
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spond to subobjects instead. For example, in RM, every equivalence class
contains a unique inclusion A y B. In particular, unelementlike properties,
such as overlap (intersection of subobjects), raise their ugly heads.

The third method of cheating relies on the Mitchell-Freyd theorem,
which goes as follows:

Every small Abelian category is isomorphic under an exact func-
tor to a full subcategory of RM for some ring R.

Now most interesting categories are not small. The device for overcoming
this is the following:

If A is an Abelian category, and S is a set of objects in A, then
A has a full, small, exact Abelian subcategory Ao(S) such that
S C obj Ao(S).

In this context, "exact" means that kernels and cokernels in Ao(S) coin-
cide with kernels and cokernels in A, that is, the inclusion Ao(S) -+ A is
an exact functor. To prove this, if S is a set of objects in A, define A(S) by
choosing a kernel and cokernel (usual business with the Zermello hierarchy;
see, e.g., the choice of projectives in Proposition 7.8) for each morphism
between objects of S, then choosing biproducts of pairs of elements of S;
the resulting set (axiom of replacement) of objects is A(S). By the way, zero
objects arise directly as kernels of identity morphisms. AO(S) U A' (S)

does the job (unless S = 0; if S = 0, any singleton {zero object} will serve
as Ao(0)).

Observe that since they are constructed from kernels and cokernels, ex-
actness is preserved:

A f+B-C
is exact if and only if

0 0

ill
K E

Pt
9

f9
A B>C
it X tj
L D

0 0 0
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is short exact along the three legs of the capital N, where K = ker g,
D = cokerf, L = kerp, and E = cokerj. Consequently, if F : Ao(S) RM
is the functor in the Mitchell-Freyd theorem, then

A - B --> C is exact in A

if
A B -> C is exact in Ao (S)

if
F(A)

F(f)
) F(B) F(9}+F(C) is exact in RM.

The last can be checked using elements.
Homology also behaves well, since it, too, is computed via exact sequences

(see the diagram accompanying Exercise 9, Chapter 5), so F sends homol-
ogy to homology. This all leads to an alternative approach to such things as
long exact sequences in homology. However, it is not recommended. Abelian
categories have their own flavor, and it is a good idea to get used to it as
soon as possible. Living only with arrows has its own yoga.





Appendix D
Noether Correspondences in Abelian
Categories

The Noether isomorphisms and correspondences that are familiar for mod-
ules actually hold in any Abelian category. Given the Mitchell-Freyd the-
orem, this is no surprise. However, they are actually fairly easy to set up,
given the material in Chapter 7 together with pullbacks and pushouts from
Chapter 8. We describe them here since those chapters are independent.
However, this appendix does depend on knowledge of both the material
in Chapter 7 and at least the discussion of pullbacks and pushouts from
Chapter 8.

Pullbacks will be discussed first, since all but two applications use these.
Assume, to begin with, that A is a pre-Abelian category, and we have a
diagram in A:

A2

f2

Al B

Let (A; cpl, (p2i 7r1, 7r2) denote a biproduct of Al with A2 in A. Let j :

K --k A denote a kernel for f17r1 - f27r2 so that (fun -.f2ir2)j = 0, or
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fiirij = f27r2j. The first claim is that

K 7r2j
A2-->

Al AB
is a pullback square, which will certainly establish the existence of pullbacks
in any pre-Abelian category. Well, the square is commutative, and given
any commutative diagram

Ai Bf1
observe that

(fun - f21r2)(coi91 + <p292)

= f17r1W191 + fiir1 292 - f27rW191 - f27r2W292

=fi9i+0-0-f292
=0

so that cP191 + c0292 factors through K as cp191 + c'292 = jO.Consider

C

Al B
fl }

This diagram is commutative, since (7r2j)O = 7r2(cpigi + c'292) = 7r2W191 +
x2<'292 = 0 + 92; (irij)O = gl by a similar computation. Also, 0 is unique
with this property, since if 7rl j0' = gl and a2 j0' = 92, then

j0' = (WWrl +
9221r2)j0,

= cpiinij0' + c027r20'

= cP191 +'P292
= j0,



Appendix D. Noether Correspondences in Abelian Categories 365

so that 9 = 9', since j is monic. This proves:

Proposition D.1 Pullbacks and pushouts exist in any pre-Abelian cate-
gory.

Proof: See above; use A°p for pushouts.

The next result plays an odd role in the development. The corollary is
only one application; the other involves the definition of sums.

Proposition D.2 Suppose in an Abelian category:

K 92 A2
911 1f2

Al
fl >B

is a pullback square, and

K 92.A3
911

1hz

Al hl D

is a pushout square. Then the induced morphism 0:

9sK _A2

is monic.

Remark: The idea is this. First form a pullback, then do a pushout. How
does the last object manufactured relate to the original lower righthand
object?

Proof: Let (A; 01, W2,1r1, 7r2) be a biproduct of Al with A2. The morphism
j : K -- A is a kernel for fi7ri - f2ir2, and gi = lri j, i = 1, 2. Reversing,
p : A - D is a cokernel for Wi9i - p292, and hi = pcpi, i = 1, 2. Finally,
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Op = flirt + f27r2 This requires a bit of reinterpretation, largely to adjust
the signs.

Consider the morphism f = f17r1 + f2-7r2 = Op from A to B, and the
morphism A = cpl7rl - W27r2 from A to itself. Observe that

®2 = (cpl7fl - W27r2)2

= c017r1(p17r1 - cp17rlcp27r2 - W272'P17r1 + W27r2cp27r2

= cp17r1 -0-0+cp27r2

= iA

so that ® is an isomorphism, and

f® = (f17r1 + f27r2)(cp17r1 - cp27r2)

= fl7rlcp17rl - fl7rlcp27r2 + f27r2Vl7fl - f27r2co27r2

= fl7rl-0+0- f27r2

so that j : K -+ A is a kernel for f ®. It follows that 9j is a kernel for f by
invariance of kernels under isomorphisms. (Or use Lemma 7.35: j = OOj
is a kernel for f ®, so E )j is a kernel for f OO =J f .)

Now p : A --> D is a cokernel for cp191 - W292 = cpliflj - V27r2j = 9j,
that is, p is a cokernel for a kernel of f. There's more: Op = f, so f = Op is
the monic-after-epic factorization of f (see the proof of Proposition 7.6(b)
in A°p). In particular, 0 is monic.

Corollary D.3 Suppose that in an Abelian category A we have a commu-
tative square

K 92 A2
91 1 1f2

Al
f, - B

(*)

Suppose that (*) is a pullback square, and fl is epic. Then (*) is also a
pushout square.

Proof: Complete the construction in the statement of Proposition D.2,
producing D and 6. Since fl = Oh1 is epic, 6 is epic. But Proposition D.2
says that 0 is also monic, so 0 is an isomorphism since A is balanced.

Remark: By an argument similar to the corollary above, one can show
that in an Abelian category, if (*) is a pullback square, then (*) is also a
pushoutsquare iffVa:B-+E: (aft=0 and af2 = 0) =a = 0.
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If one of the morphisms in a pullback is monic, then there is another
construction available in an Abelian category A. Suppose, for example, fl
is monic, with cokernel 7r:

A2

I f2

Al lia- B WC

Let 92 : K --+ A2 denote a kernel for 1rf2. Then 1r(f292) = 0 f2g2 factors
through A1:

92K > A2
1

911 f2
W

}B CAl h

since fl is a kernel for Tr (A being Abelian). The square above is also a
pullback square. To see this, given

a filler 8 exists for which g20 = h2, since irf2h2 = 7rflhl = Oh1 = 0 and 92
is a kernel for 1r f2. This diagram also commutes, since

flgi0 = f2g28 = f2h2 = f1h1

so that 910 = hl, since fl is monic. Finally, 0 is unique as a filler since if
even g28' = h2, then g28' = h2 = g28 so that 0 = 6' since 92 is monic.

The ability to carry out a construction in more than one way is always
useful. Here, it shows that if fl is monic then so is g2i since 92 is manufac-
tured here as a kernel. This is actually a lot more general.

Proposition D.4 Suppose A is a pre-Abelian category in which

C 92 A2
911 1f2

Al f B
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is a pullback square. Suppose j : K --> C is a kernel for g2. Then g1 j : K
Al is a kernel for fl.

Proof: Suppose cp : D -> Al satisfies flop = 0. Find a filler 0 for the
commutative diagram

D

Since 920 = 0, 8 factors through K, giving 0 = jO where i/i : D - K. But
now cp = 919 = 91j ', as required.

This 0 is unique, since if cp = g1 jip', then the diagram

D

Al f, B

is commutative, so that uniqueness of fillers gives that jai' = 8 But
then z/i = i,b', since j is monic.

Corollary D.5 Suppose

C 92 A2

911 1f2

Al f> B

is a pullback square in a pre-Abelian category. Then g2 is monic if and only
if f, is monic.
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Proof: Each happens if and only if the K in Proposition D.4 is zero.

The next result combines several earlier results.

Proposition D.6 Suppose A is an Abelian category in which

C92 A2

A1---B
is a pullback square, with fl epic. Then g2 is also epic.

Proof: By Corollary D.3, the above square is also a pushout square. Now
use Proposition D.4 in A°P: The square becomes a pullback square

in which flop is monk in A°P. Thus g2P is monk in A°P (and 92 is epic in
A) by Corollary D.5.

We now have all the machinery we need to derive the Noether isomor-
phisms and correspondences. They are (stated for left R-modules):

I. If f : A --> B is onto, then B Alzzi ker f .

II. If K is a submodule of A, then the correspondence H t--, H/K sets
up a bijection between the submodules of A containing K and the
submodules of A/K.

III. If H is a submodule of A and K is a submodule of H, then A/H
(A/K)/(H/K).

IV. If H and K are any two submodules of A, then (H + K)/K
H/H n K.

Exercise 21 of Chapter 7 does part of this; as in that exercise, a subobject
is interpreted as a monomorphism. Finishing II is direct. We already have
part of this from Proposition 7.37, which says that if
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is commutative with short exact rows, then 0 monic . r, monic. We also
know that rl monic ?p monic by the short 5-lemma, Proposition 7.34(a).
Furthermore,, i is uniquely determined by rl thanks to Exercise 25, Chapter
7: It says that a cokernel for 0 is pir', where p is a cokemel for 77, and
this implies that is a kernel for p7r', since our category is Abelian. So:
Given a subobject B of B' containing A, there exists a unique C (namely
a cokernel for j) which is a subobject of C (replacing B'/A in the Noether
correspondence). The only thing missing is that all subobjects 77: C C'
arise in this way, but that is exactly what Proposition D.6 produces. B is
defined using

B 7 C

B'-C'n

as a pullback square. We also have A as a kernel of 7r via Proposition D.4.
There remains IV, which requires an interpretation of H n K and H + K.

H n K appears in Exercise 18, Chapter 7; it is defined using the pullback
square

H n K ---' H

Jr I

thanks to the alternative pullback construction for monomorphisms. Ob-
serve that H n K -+ H and H n K - K are monic (i.e., subobjects) by
Corollary D.5 (or directly from Exercise 18, Chapter 7). How about H+K?
That is more subtle; it is easier to just define H + K and then explain why
it works.

H + K is defined as the lower righthand comer of the pushout square

HnK-}H

KPH+K
Proposition D.2 says that the induced morphism H + K A is monic,
that is, H + K is a subobject. Furthermore, H H + K and K --' H + K
are monic by Proposition D.6 applied to A°P. Finally, given any subobject
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L containing both H and K, we have a diagram

HnK-H

which has a filler H + K L. This filler is monic since the composite
H + K --> L ---> A is monic. That is, H + K is a smallest subobject that
includes both H and K.

How about the Noether isomorphism? That's just Proposition D.4 in
A°P:

0

The top row interprets D as H/H n K, while the bottom row interprets
this same D as (H + K)/K.

One last, last comment. In deriving IV, no morphisms were given names.
This was deliberate. If the argument is basic enough (i.e., no formulas),
this can be done routinely. Morphisms really can be visualized as arrows.





Solution Outlines
for Selected Exercises

Chapter 2

1. irl is defined as in the hint, and sr2 is defined analogously. To see that
W17rl + V2ir2 is the same as iA, one shows that both are fillers for

Ai ip').- A V2 A2

2. Without loss of generality, cp : A --+ B is set inclusion and A = ker 7r.
One verifies that 7r(iB -07r) = 0 so that i = iB -'07r takes values in
A. i is easily checked to be the identity on A since 7r1A = 0-

3. Let 1r., :1TBi --+ Bj denote the projection. One has a homomorphism

4D : Hom(A, IIBi) -+ IIHom(A, Bi),

Vf) = (Trif)

However, observe that an Z-tuple (fi) E IIHom(A, Bi) is precisely the
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data defining a filler

giving O(f) = (fi). Existence of fillers gives that is onto, and
uniqueness of fillers gives that 4) is one-to-one.

4. Any Eribi E IB is the image of Eri ®bi. If 0 # x E 10 B is mapped
to zero, write x = Eri ® bi, and let J be the right ideal generated
by the ri. Let t = Eri ® bi E J 0 B. (Warning: Even though the
sum-and-tensor symbols for x and 2 are the same, x and t are not
even in the same space. Furthermore, a different selection of the ri
and bi could yield a different 2, but the same x.) Since ± maps to x
in 1®B,2; 0.

5. Let K denote the kernel of B --> C and L the kernel of A -+ B. We
get the diagram

L

A

0->K-B -C
0

with exact row and column. Applying F and using its exactness yields
the result.

9. Choose x E G with prime order p dividing the order of h. (The
convention here is that all primes divide oo.) Define zP(nh) = nx, and
choose a filler cp for

0- >(h)(>H

G

10. Running the proof of Theorem 2.12 backward and using right exact-
ness of A®, it suffices to show that

0 -+ H --+ H' is exact if Hom(H', G) --+ Hom(H, G) --+ 0 is exact,



Solution Outlines 375

where H = A ® B and H' = A ® C. This is done by contradiction: If
H H' is not one-to-one, choose 0 h E ker(H -- H'), and choose
W in accordance with Exercise 9. This W cannot be in the image of
Hom(H', G) -+ Hom(H, G).

11. For the difficult half, choose an injective coseparator G, such as Q/Z,
and suppose A ®I --> AI is one-to-one for any finitely generated left
ideal I. Then by Exercise 4 (reversed) the same holds for any left ideal
1. Applying the proof of Theorem 2.12 to the short exact sequence
0 -; I -> R - R/I -* 0 yields that

HomR(R, Homz(A, G)) -* HomR(I, Homz(A, G))

is onto. It follows that Homz(A, G) is injective (injective test lemma),
so that A is flat (Exercise 10).

13. A trilinear map from A x B x C to G E Ab is such that f (a, , )
is S-bilinear on-8 x C for all a E A, and f c) is R-bilinear on
Ax B for all c E C. For example, for the latter, f defines an S-module
homomorphism from C to Bil(A, B; G) Homz(A OR B, G). Letting
T (A, B, C; G) denote the set of trilinear maps,

T(A,B,C;G) .: Homs (C, Homz(A OR B, G))
Homz((A OR B) Os C, G).

When interpreted properly, this says that (A(DR B) Os C is a solution
to the universal trilinear mapping problem. Now repeat, with a H
f (a, , ) from A to Bil(B, C; G).

14. (a) If V'(x) = 0, then 0 = ir' b(x) = 07r(x), so -7r(x) = 0 and x = j(y)
for some y. But0j(y)=0,soj'rl(y)=Dandy=0.

(b) im 1' D imz/j = imj'77 = imj' = ker-7r'. If b' E B', then, since
¢-7r is onto, -7r'(b') = 07r(b) = 7r',i(b) for some b E B. But now
b' - ii(b) E ker ir' C imi/'.

15. If f E Bil(A, B; C), then f corresponds to f E Homz(A OR B, C)
(where 1(a (9 b) = f (a, b)) and g E HomR(B, Homz(A, C)) (where
[g(b)] (a) = f (a, b)). One can check that f E Homs (A OR B, C) iff
f (sa, b) = s f (a, b) for all s E S, a E A, b E B if g takes values in
Horns (A, C).
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Chapter 3

2. One must check that, given V : B --+ B' and ip : C -+ C', the diagram

Extn(B, C)
Ex

Extn(B', C)

Ext°(B,+G)I 1Ext'(B',)
Extn(B, C') ExtE--C')Extn(B', C')

commutes. To establish this, take projective resolutions of B and B':

... --, P2 P1 0 PO o B 0 0

1 ,B 1B' '0
Delete B - B' and apply Hom(., C) -+ Hom(., C'), yielding the
commutative diagram

- Hom(Pn, C) Hom(Pn_1, C)

Hom(PP, Cl) -- ;

. <- Hom(Pn,C)-

= Hom(Pn_1, C') E- ...

Hom(P,_1, C

Hom(PP, C') - Hom(Pn_1, C') f- .. .

Taking homology yields commutativity of

Extn(B, C)

Extn(B, C')

Extn (B', C)

Extn(B', C')

3. b) F2 ®B -+ F1®B -> K ®B 0 is exact. Let I denote the image
of F2 ® B -+ F1® B; then K ® B (F1(9 B)/I. From Theorem



Solution Outlines 377

3.4(a), Tor1(A, B) is isomorphic to the kernel of K®B -+ Fo®B,
that is, the kernel of F1 ® B/I --+ F0 ® B. This kernel is the
homology at F1 ® B.

4. 81,1y1 = do,2(y2) for some Y2, and y2 = 81,2(x1) for some z1 since 81,2
is onto. But now 81,1(y1-di,2(z1)) = 0, so that yi-d1,2(zl) = &2,1(z2)
for some z2 by vertical exactness at C1,1.

6. Suppose xo = do,n_1(zo). zo must be extended to (zo, ... , zr_1)
recursively: If xj = d(z3) + 8(zj_1) (starting with z_1 = 0) then
d(xj+1 - 8(zj)) = 0, so xj+1 - 8(z2) = d(zj+1) for an appropriately
chosen zj+1. To show that xn = 8(zn_1) at the end, one checks that
dn,o(xn) = dn,o8(zn-1). (dn,o is one-to-one.)

7. The argument is a mirror image of Proposition 3.1, with kerdn re-
placing, for example, imdiijl, and arrows all reversed. For example,
if x E En-1, then recursively cpndn_1(x) = d;,_1Vn-1(x) E imd;,_1,
so that co sends imdn_1 to imdn_1.

9. (a) From 0 -+ I -+ R -+ R/I -+ 0, one gets Torn(R/J, R/I) .:
Torn_1(R/J, I) from a long exact sequence. From 0 -+ J -+ R
R/J 0 one similarly gets Torn_1(R/J, I) Torn_2(J, I).

(b) The first half of part (a) gives Tor2(R/J, R/I) Tor1(R/J, I),
while 0 --+ J -+ R R/J -+ 0 gives exactness of

0 -+Tor1(R/J,I) -+ J®I-+ R®I.

But R®I;zt5 I,and J®I has image J1.
(c) From0-+I-+R-*R/I-+Owe get

0 -+ Tor1(R/J, R/I) (R/J) ®I -+ (R/J) ® R

or

0 --+ Tor1(R/J, R/I) -, I/JI R/J.

The kernel of I/JI -+ R/J is (J fl I)/JI.

11. For (a), apply Hom(®B27 ) IIHom(Bi, ) to an injective resolution
of C. For (b), apply IICi) ~ Ci) to a projective
resolution of B. For (c), apply 0 (®Bi) _ ®( (9 Bi) to a flat
resolution of A. The latter, for example, yields

...Fn+1o(®Bi)-- Fn®(®B2)- ...

...- ®(F.+1 0 Bi), ®(Fn(9 Bi)->...
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and the homology of

®Ai --+ ®Ai --+ ®A='

is the direct sum of the homologies of A= -+ Ai --+ A". (The same
holds for direct products.)

12. Define Tr : Bl ® B2 -+ Bl + B2 by 7r((bl, b2)) = bl + b2. ker Jr
Bl n B2 via b F-+ (b, -b). The result follows from Proposition 3.13,
with Exercise 11(a) reinterpreting the middle terms.

Chapter 4

2. If P-dim B > P-dim B', then for n > P-dim B', Ext'(B, C)
Extra'+I (B", C) is an isomorphism for all C. Taking the supremum,
over the n for which Ext'(B, C) 34 0, gives P-dim B" = 1 +P-dim B.

10. A, BnC c (A+B)nC, so A+(BnC) c (A+B)nC. Ifa+bE
(A+B)nC, then bE C anda+bEA+(BnC).

11. Apply Exercise 11(a) of Chapter 3, and take the supremum over the
n and C for which either side is nonzero.

14. Apply Proposition 4.2(a) and take the supremum over the k > d = 0
for which Extk(D, C) ~ Extk+"(D', C) # 0. This handles the case
N > n; the case N = n is covered by the projective dimension
theorem.

Chapter 5

3. (a) F(fs+t) = F(fs + ft) = F(fs) + F(ft), since F is additive.
Hence, x(s + t) = xs + xt. Similarly, x(st) = F(fst)(x) =
F(ft)F(fs)(x) = F(ft)(xs) = (xs)t. Finally, (rx)s = F(fs)(rx)
= rF(fs)(x) = r(xs).

(b) F(S) = A A®s S, and since both sides are strongly additive,
F(P) A ® P for any free P. Given any B, choose Pl and Po
as part of a free resolution of B, so that Pl -+ P0 -+ B --+ 0 is
exact. We have exactness of

F(P1) - F(Po) - F(B) --> 0
22 22

A®s Pi ->A®sPoA®sB- 0
from which the isomorphism F(B) A ®s B follows. (Com-
mutativity of this diagram must be checked.) Given B', 0 E
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Hom(B, B'), and Pl --+ Po -+ B' -+ 0 part of a free resolution
of B', we have fillers 01 and 00

Pi - Po - > B 0
1

101 I00
W WPi------ Po---B'0

from Proposition 3.1, giving

F(Pi) -- - F(Po) F(B) > 0

\ I \ I \
A®s P1 >A(z O

-- F(Po) -1 --- F(B') - -.0

A®s Pi- A®sPo>A®sB'-0
The square containing B and B' commutes since the parts con-
taining P1, Pi, Po, and Po commute. Furthermore, setting B =
B' and 0 = is, the isomorphism of F(B) with A ®s B can
be seen to be independent of the choice of free resolution. (The
considerations are essentially those making Tor and Ext into
functors.)

Chapter 6

1. In the remark, if 7r : B ED B -+ B is one of the projections, then
iB = rcp = 0, so B = 0. Since F(zero object) has this property,
F(zero object) = zero object.

6. Since the map from K,, to K;' kills (4 (x), 0) (it only sees the second
coordinate), the resulting diagram is commutative. d,, is onto K,, by
the short 5-lemma.

7. Part (b) is related to part (a) in the same way that Exercise 7 of
Chapter 3 is related to Proposition 3.1.

9. (ii) = (iii): If d' = d1 a d'1, then imdi .:: imdi a imdi, and Po E)
Po'/imdi (Po/imdi) E) (Po'/imdl) B e B".

10. it '(0, x") = cp"(x") from the original diagram, while cp'(x, x") will
not agree with up (x) = cp'(x, 0) unless cp'(0, x") = 0.
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Chapter 7

2. If 0' is also a zero object, then

commutes.

9. 0 - A -a B is kernel-exact if 0 --- ker(A -- B) is epic if A B is
monic if 0 -+ A -+ B is cokernel-exact.

10. Since p is epic, q is a cokernel for so that is a kernel for q by
Proposition 7.12(iv).

11. Suppose the composite of two kernels is a kernel. Then the proof of
Proposition 7.11(b) works, so any f : A --+ B factors f = jp with p
being epic and j being a kernel. If f is monic, then so is p. If A is
balanced, then p is an isomorphism, so f is now a kernel.

13. Suppose cp is a kernel for f : B -+ C. Then f = g7r for some g : D -
C. If 0 : E --' B satisfies it = 0, then fo = g7r{G = 0 as well, so that
0 = cp for a unique z%i.

E

17. Let j : K --p A2 denote a kernel for 7r, and j' : K' - B2 a kernel for
p. We have a diagram.

A1---- K 3 _A2A3
jfi B'r f2 j I f3

P
B1 ' K' B2 > B3

3

in which j'9 = f2 j = (bD2 + D31r) j = iPD2 j = j' iD2 j, so 0 =
D2 j. Hence, the induced morphism from K to coker (which is the

homology of B1 -+ B2 - B3) is zero.
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21a) Suppose cpi : Pi -+ P defines P as a coproduct of projective Pi. Given
f : P - B and an epimorphism 7r : A --p B, fillers gi exist:

AF

W

BEf P4 Pi

Also, a filler g exists for all diagrams

P

But now 7rgcpi = lrgi = f Vi, so both 7rg and f are fillers for all
diagrams

By uniqueness of fillers, irg = f, and g is a filler for

A

W

B f P

Part (b) is similar.

Chapter 8

2. The subtle point is that F(O) = 0, since 0 = colimiBi when Z = 0.

7. The diagram is

Aj (®Ai)/B

f, I

W

A;
(®A:)/B,I
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