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PREFACE 

This book grew out of courses which I taught at Cornell University and 
the University of Warwick during 1969 and 1970. I wrote it because of a 
strong belief that there should be readily available a semi-historical and geo­
metrically motivated exposition of J. H. C. Whitehead's beautiful theory of 
simple-homotopy types; that the best way to understand this theory is to 
know how and why it was built. This belief is buttressed by the fact that the 
major uses of, and advances in, the theory in recent times-for example, the 
s-cobordism theorem (discussed in §25), the use of the theory in surgery, its 
extension to non-compact complexes (discussed at the end of §6) and the 
proof of topological invariance (given in the Appendix)-have come from 
just such an understanding. 

A second reason for writing the book is pedagogical. This is an excellent 
subject for a topology student to "grow up" on. The interplay between 
geometry and algebra in topology, each enriching the other, is beautifully 
illustrated in simple-homotopy theory. The subject is accessible (as in the 
courses mentioned at the outset) to students who have had a good one­
semester course in algebraic topology. I have tried to write proofs which meet 
the needs of such students. (When a proof was omitted and left as an exercise, 
it was done with the welfare of the student in mind. He should do such 
exercises zealously.) 

There is some new material herel-for example, the completely geometric 
definition of the Whitehead group of a complex in §6, the observations on the 
counting of simple-homotopy types in §24, and the direct proof of the 
equivalence of Milnor's definition of torsion with the classical definition, 
given in §16. But my debt to previous works on the subject is very great. 
I refer to [Kervaire-Maumary-deRhamJ, [Milnor 1] and above all [J. H. C. 
Whitehead 1,2,3,4]. The reader should tum to these sources for more material, 
alternate viewpoints, etc. 

I am indebted to Doug Anderson and Paul Olum for many enlightening 
discussions, and to Roger Livesay and Stagg Newman for their eagle-eyed 
reading of the original manuscript. Also I would like to express my apprecia­
tion to Arletta Havlik, Esther Monroe, Catherine Stevens and Dolores 
Pendell for their competence and patience in typing the manuscript. 

My research in simple-homotopy theory was partly supported by grants 
from the National Science Foundation and the Science Research Council of 
Great Britain. I and my wife and my children are grateful to them. 

Cornell University 
Ithaca, New York 
February, 1972 

Marshall M. Cohen 

1 Discovered by me and, in most instances, also by several others. References will be 
given in the text. 
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Chapter I 

Introduction 

This chapter describes the setting which the book assumes and the goal 
which it hopes to achieve. 

The setting consists of the basic facts about homotopy equivalence and 
CW complexes. In §l and §3 we shall give definitions and state such facts, 
usually without formal proof but with references supplied. 

The goal is to understand homotopy theory geometrically. In §2 we 
describe how we shall attempt to formulate homotopy theory in a particularly 
simple way. In the end (many pages hence) this attempt fails, but the theory 
which has been created in the meantime turns out to be rich and powerful in 
its own right. It is called simple-homotopy theory. 

§1. Homotopy equivalence and deformation retraction 

We denote the unit interval [0, 1 ]  by I. If X is a space, I x  is the identity 
function on X. 

If f and g are maps (Le. ,  continuous functions) from X to Y then f is 
homotopic to g, written f::::: g, if there is a map F: X x 1"""* Y such that 
F(x,O) = f(x) and F(x, I )  = g(x), for all x E X. 

f: X"""* Y is a homotopy equivalence if there exists g :  Y """* X such that 
gf::::: I x  and fg ::::: 1 y. We write X::::: Y if X and Y are homotopy equivalent. 

A particularly nice sort of homotopy equivalence is a strong de formation 
retraction. If X c Y then D :  Y """* X is a strong deformation retraction if there 
is a map F: Y x 1"""* Y such that 

(1)  Fo = I y 
(2) F,(x) = x for all (x,t) E X x I 
(3) F1(y) = D(y) for all y E Y. 

(Here F,: Y """* Y is defined by F,(y) = F(y ,t).) One checks easily that D is a 
homotopy equivalence, the homotopy inverse of which is the inclusion map 
i :X c Y. We write Y 1,. X if there is a strong deformation retraction from 
Y to X. 

Iff: X """* Y is a map then t he mapping cylinder Mf is gotten by taking the 
disjoint union of X x I and Y (denoted (X x I) EEl Y) and identifying (x, I )  
with f(x). Thus 

(X x I) EEl Y 
Mf = 

(x, I )  = f(x)" 

The identification map (X x I) EEl Y"""* Mf is always denoted by q. Since 
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q l X  x [0, 1 )  and ql Y are embeddings, we usually write q(X x 0) = X and 
q( Y) = Y when no confusion can occur. We also write q(z ) = [z ] if 
z E (X x I) EB Y. 

(1.1) Iff :  X -+ Y then the map P:Mf -+ Y, given by 

p[x,t] = [x, l ]  = [f(x)] , t < 1 

p[y] = [y] Y E Y 

is a strong deformation retraction. 
The proof consists of "sliding along the rays of Mf." (See [Hu, p. 1 8 ]  for 

details.) 0 
. 

(1.2) Suppose that f : X  -+ Y is a map. Let i :X  -+ Mf be the inclusion map. 
Then 

(a) The following is a commutative diagram 

(b) i is a homotopy equivalence iff f is a homotopy equivalence. 

Part (a) is clear and (b) follows from this and ( 1 . 1 ) .  0 

§2. Whitehead's combinatorial approach to homotopy theory 

Unfortunately, when given two spaces it is very hard to decide whether 
they are homotopy equivalent. For example, consider the 2-dimensional 
complex H-"the house with two rooms"-pictured at the top of page 3. 
H is built by starting with the wall Sl x I, adding the roof and ground floor 
(each a 2-disk with the interior of a tangent 2 -disk removed), adding a middle 
floor (a 2-disk with the interiors of two 2-disks removed) and finally sewing in 
the cylindrical walls A and B.  As indicated by the arrows, one enters the lower 
room from above and the upper room from below. Although there seems to 
be no way to start contracting it, this space is actually contractible (homotopy 
equivalent to a point) .  It would be nice if homotopy theory could tell us why 
in very simple terms. 

In the 1 930's one view of how topology ought to develop was as combina­
torial topology. The homeomorphism classification of finite simplicial com­
plexes had been attacked (most significantly in [ALEXANDER]) by introducing 
elementary changes or "moves", two complexes K and L being "combina­
torially equivalent" if one could get from K to L in a finite sequence of such 
moves. It is not surprising that, in trying to understand homotopy equivalence, 
J. H. C. WHITEHEAD-in his epic paper, "Simplicial spaces, nucleii and 
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H 

m-groups"-proceeded in the same spirit. We now describe the notions which 
he introduced. 

If K and L are finite simplicial complexes we say that there is an elementary 
simplicial col/apse from K to L if L is a subcomplex of K and K = L u aA 
where a is a vertex of K, A and aA are simplexes of K, and aA n L = aA. 
Schematically, 

We say that K col/apses simplicial/y to L--written K '!. L-if there is a finite 
sequence of elementary simplicial collapses K = Ko --+ Kl --+ . . . --+ Kq = L. 
For example, any simplicial cone collapses simplicially to a point. 

b 
a� c � 

d 
• a 

If K '!. L we also write L yr K and say that L expands simplicially to K. 
We say that K and L have the same simple-homotopy type2 if there is a finite 

2 This is modern language. Whitehead originally said "they have the same Ilucleus." 
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sequence K = Ko -'>- Kl -'>- ... -'>- Kq = L where each arrow represents a 
simplicial expansion or a simplicial collapse. 

Since an elementary simplicial collapse easily determines a strong deforma­
tion retraction (unique up to homotopy) it follows that, if K and L have the 
same simple-homotopy type, they must have the same homotopy type. 
WHITEHEAD asked 

If two finite simplicial complexes have the same homotopy type, do they 
necessarily have the same simple-homotopy type? 

Despite the apparent restrictiveness of expanding and collapsing, it is quite 
conceivable that the answer to this question might be yes. To illustrate this 
and to show that simple-homotopy type is a useful notion, let us return to the 
house with two rooms. 

Think of H as being triangulated as a subcomplex of the solid cylinder 
D2 x I where D2 x I is triangulated so that D2 x I � D2 X 0 � * 
( = point). Now, if the solid cylinder were made of ideally soft clay, it is clear 
that the reader could take his finger, push down through cylinder A, enter 
the solid lower half of D2 x I and, pushing the clay up against the walls, 
ceiling and floor, clear out the lower room in H. Symmetrically he could then 
push up the solid cylinder B, enter the solid upper half and clear it out. 
Having done this, only the shell H would remain . Thus we can see (although 
writing a rigorous proof would be unpleasant) that 

* P' (D2 X 1) � H. 

Hence H has the same simple-homotopy type as a point and, a fortiori, His 
contractible. 

-

So we shall study the concept of simple-homotopy type, because it looks 
like a rich tool injts own right and because, lurking in the background, there 
is the thought that it may be identical with homotopy type. 

In setting out it is useful to make one technical change. Simplicial com­
plexes are much too hard to deal with in this context. WHITEHEAD'S early 
papers [J. H. C. WHITEHEAD I, 2] are a marvel in that, besides the central 
concepts introduced, he overcame an enormous number of difficult technical 
problems related to the simplicial category. These technical difficulties later 
led him to create CW complexes [J. H. C. WHITEHEAD 3] and it is in terms of 
these that he brought his theory to fruition in [J. H. C. WHITEHEAD 4] . In the 
next section we summarize the basic facts about CW complexes. In Chapter II 
the expanding and collapsing operations are defined in the CW category and 
it is in this category that we set to work. 

§3. CW complexes 

In this section we set the terminology and develop the theorems which will 
be used in the sequel. Because of the excellent treatments of CW complexes 
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which exist (especially [SCHUBERT] and [G. W. WHITEHEAD]) proofs of standard 
facts which will be used in a standard fashion are sometimes omitted . The 
reader is advised to read this section through (3.6) now and to use the rest of 
the section for reference purposes as the need arises. 

A CW complex K is a Hausdorff space along with a family, {e.}, of open 
topological cells of various dimensions such that-letting Ki = U {e. ldim e. 
:5: J}-the following conditions are satisfied : 

CW 1 :  K = U e., and elX r'I ell = 0 whenever cc =I- {J. 
a. 

CW 2 :  For each cell e. there is a map cp.:Q" --->- K, where Q" is a topolo­
gical ball (homeomorph of 1" = [O, ln of dimension n = dim e., such that 

(a) cp.IQ" is a homeomorphism onto e • .  

(b) cpioQ") c K"-I 

CW 3 : Each e • •  is contained in the union of finitely many elX• 

CW 4 :  A set A c K is closed in K iff A r'I elX is closed in e. for all e •. 

Notice that, when K has only finitely many cells, CW 3 and CW 4 are auto­
matically satisfied . 

A map cp:Q" --->- K, as in CW 2, is called a characteristic map. Clearly such 
a map 'I' gives rise to a characteristic map '1" :1" --->- K, simply by setting '1" = cph 
for some homeomorphism h :1" --->- Q". Thus we usually restrict our attention 
to characteristic maps with domain 1", although it would be inconvenient to 
do so exclusively. Another popular choice of domain is the n-ball 
J" = Closure (01"+ 1 _ 1"). 

If '1': Q" --->- K is a characteristic map for the cell e then cploQ" is called 
an attaching map for e. 

A subcomplex of a CW complex K is a subset L along with a subfamily 
{ep} of the cells of K such that L = U ell and each ell is contained in L. It 
turns out then that L is a closed subset of K and that (with the relative topol­
ogy) L and the family {ell} constitute a CW complex. If L is a subcomplex 
of K we write L < K and call (K,L) a CW pair. If e is a cell of K which does 
not lie in (and hence does not meet) L we write e E K-L. 

Two CW complexes K and L are isomorphic (denoted K � L) if there 
exists a homeomorphism h of K onto L such that the image of every cell of 
K is a cell of L. In these circumstances h is called a CW isomorphism. Clearly 
h - I is also a CW isomorphism. 

An important prop'erty of CW pairs is the homotopy extension property : 

(3.1) Suppose that L < K. Given a map I:K --->- X (X any space) and a 
homotopy I.:L --->- X such that 10 = IlL then there exists a homotopy 
F, : K --->- X such that Fo = I and F,IL = I.IL, 0:5: t :5: 1. (Reference : 
[SCHUBERT, p. 197]). 0 

As an application of (3.1) we get 
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(3.2) If L < K then the following assertions are equivalent:  

( 1 )  K � L 
(2) The inclusion map i :L  c K is a homotopy equivalence. 
(3) 1Tn(K, L) = o for all n:-:; dim (K-L). 

COMMENT ON PROOF: The implications ( 1 )  => (2) and (2) => (3) are 
elementary. The implication (3) => ( I )  is proved inductively, using (3) and 
the homotopy extension property to construct first a homotopy (reI L) of I K  
to a map fo : K --->- K which takes KO into L, then to construct a homotopy 
(reI L) offo to fl : K  --->- K such thatfl(Kl) c L, and so on. 0 

If Ko and Kl are CW complexes, a map f: Ko --->- Kl is cellular if 
f(K'O) c K'j for all n. More generally, if (Ko ,Lo) and (Kl ,Ll) are CW pairs, 
a map f:(Ko,Lo}--->- (Kl,Ll) is cellular if f(K'O U Lo) c (K'j U L1) for all n. 
Notice that this does not imply that flLo :Lo --->- Ll  is cellular. As a typical 
example, suppose that!" is given a "Ceil structure with exactly one n-cell and 
suppose thatf:!" --->- K is a characteristic map for some cell e. Thenf:(1n, or) 
--->- (K, Kn-1) is cellular while f lar need not be cellular. 

If f:::: g and g is cellular then g is called a cellular approximation to f 

(3.3) (The cellular approximation theorem) Any map between CW pairs, 
f:(Ko ,Lo) --->- (KilL!) is homotopic (reI . Lo) to a cellular map. (Reference : 
[SCHUBERT, p. 198]) .  0 

If A is a closed subset of X andf: A --->- Y is a map then X u Y is the identi-
fication space [X EB Y / x = f(x) if x E A] . f 

(3.4) Suppose that Ko < K and f: Ko --->- L is a map such that, given any cell 
e of K- Ko,  fee (J Ko) c £"- 1 where dim e = n. Then K U L is a CW f 
complex whose cells are those of K- Ko and those of L. (More precisely the 
cells of K U L are of the form q( e) where e is an arbitrary cell of K - Ko or f 
of L and q :  K EB L --->- K U L is the identification map. We suppress q whenever 
possible). 0 

Using (3.4) and the natural cell structure on K x I we get 

(3.5) Iff: K --->- L is a cellular map then the mapping cylinder M f is a CW 
complex with cells which are either cells of L or which are of the form e x 0 or 
e x (0, 1) ,  where e is an arbitrary cell of K. 0 

Combining ( 1 .2), (3.2) and (3 . 5) we have 

(3.6) A cellular map f: K --->- L is a homotopy equivalence if and only if 
Mf l" K. 0 
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Cellular homology theory 

If (K, L) is a CW pair, the cellular chain complex C(K, L) is defined by 
letting C.(K, L) = H.(K' U L, K·- l U L) and letting d.:C.(K, L) ---+ C._l(K, L) 
be the boundary operator in the exact sequence for singular homology of the 
triple (K' U L, K·-l U L, K·-2 U L). 

C.(K, L) is usually thought of as "the free module generated by the 
n-cells of K-L". To make this precise, let us adopt, now and forever, 
standard orientations w. of I"(n = 0, 1 ,2,  . . . ) by choosing a generator Wo of 
Ho(I°) and stipulating that the sequence of isomorphisms 

H._l(I·-l , 01"- 1) excision) H._l(ol",r- l) � H._l(ol") � H'(I" o/") 
takes W._l onto -w •. (Here /"- 1 == /"-1 X 0). If rpa.:/"---+K is a 
characteristic map for e. E K- L  we denote (rp.) = (rp.)*(w.) where (rp.)*: 
H.(I', oj") ---+ H.(K' U L, K·- l U L) is the induced map. Then the situation 
is described by the following two lemmas. 

(3.7) Suppose that a characteristic map rp. is chosen for each n-cell e. of K -L. 
Denote Kj = Kj U L. Then 

(a) H/K., K.- 1) = 0 if) oft n 
(b) H.(K., K.- l) is free with basis {(rp.) le� E K -L} 
(c) If c is a singular n-cycle of K mod L representing y E H.(K., K.- 1) 

and if lei does not include the n-cell e.o then n.o = 0 in the expression 
y = I na.(rp.). (Reference : [G. W. WHITEHEAD, p. 58] and [SCHUBERT, 

<X 

p. 300]) . 0 
A cellular map f: (K,L) ---+ (K',L') clearly induces a chain map 

f*: C(K,L) ---+ C(K',L') and thus a homomorphism, also called f* , from 
H(C(K,L» to H(C(K',L'». Noting this, the cellular chain complex plays a 
role in the category of CW complexes analogous to that played by the 
simplicial chain complex in the simplicial category because of 

(3.8) There is a natural equivalence T between the "cellular homology" 
functor and the "singular homology" functor. In other words, for every CW 
pair (K,L) there is an isomorphism TK,L : H(C(K,L» ---+ H(IKI, ILl), and for 
every cellular map f: (K,L) ---+ (K',L') the following diagram commutes 

H(C(K,L» TK•L ) 
H(IKI, ILl) hI Ih . 

H(C(K',L'» � H(IK'I, IL' I) 

The isomorphism TK.L takes the homology class of a cycle I ni(rp.) E C.(K, L) 
i 

onto the homology class of the cycle I ni<P., E S.(K, L), where <P., is a singular 
i 

chain representing ( rp.). (Reference : [G.W. WHITEHEAD, p. 65] and [SCHUBERT, 

p. 305]) . 0 
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(3.9 ) Suppose that I: K � L is a cellular map with mapping cylinder M f' 
Then C(Mf,K) is naturally isomorphic to the chain complex ('lI,o)-"the 
mapping cone" 011* : C(K) � C(L)-which is given by 

'lin = Cn-1(K) EB C.(L) 

0n(x+y) = - d"- I (X)+ [f*(x)+ d�(y)J, x E Cn-1(K), Y E Cn(L) 

where d and d' are the boundary operators in C(K) and C(L) respectively. 

By "naturally isomorphic" we mean that, for each n, the isomorphism 
constructed algebraically realizes the correspondence between n-cells of 
Mf- K and cells of Kn-1 U Ln given by en- 1 x (0, 1 )  ..... e"-1 

and un ..... un 

(en-1 a cell of K, un a cell of L). 

PROOF OF (3.9): Let {ea} be the cells of K and suppose that characteristic 
maps 'Pa have been chosen. Then (Kx I, K x  0) is a CW pair with relative 
cells of the form ea x 1 and ea x (0, 1 )  possessing the obvious characteristic 
maps 'Pa,1 and 'Pa x 11' If dim ea = n- l ,  let ('Pa) = 'Pa,I*(wn- 1 ) and 
('Pa) x 1 = ('Pa x 11)*(wn) be the corresponding basis elements of 
C(K x I, K x O). In general, if c = �>i('Pa'> is an arbitrary element of 

i 
Cn-1(K), set c x 1 =  L n,( ('Pa) x I). In the product cell structure for I" we 

i 
have W. E C,,(l") and (exercise-induction on n suggested) dw" = ± ( - 1 )" - j 

j- I  
(ij,I*W,,- I - ij,tl*W.- I) E C"_I(In) where ij,. : I" -

1 � I"  i s  the characteristic 
map ij,.(tl'" .,t,,-I) = (tl'" .,tj_l,e,tj, • • •  ,t.-l)' e = 0, 1 .  This gives dw" = 
i.,I*W.-1- i n,o* w,,_ I- (dw,,_IXI). Interpreted in C(1", 1"-IXO) this be­
comes dWn = in,I*W,,- 1 - (dw,, _ 1 X I), and applying the chain map ('Pa x 1 1)* 
we get 

d«'Pa) x I) = ( 'Pa) - (d) 'Pa) x l) E Cn_1(K x I, K x O) .  

Let {up} be the cells of L, with characteristic maps .f;p. Then 
q* :  C(Kx I, K x  0) EB C(L) � C(Mf,K), and C(Mf,K) has as basis-from 
the natural cell structure of M f-the set 

{q*«'Pa) x I) l ea E K} u {q* (.f;p) l up E L}, 

Define a degree-zero homomorphism T: C( M f,K) � 'lI by stipulating that 
T(q*«'Pa) x l)) = ('Pa) and T(q* (.f;p») = (.f;p) . Notice that (with the 
obvious identifications) Tq*IC(K x l ) = I* : C(K) � C(L) and Tq*(c x I) = c 
for all c E C(K). Thus 

Td[q*« 'Pa) x 1) ] = Tq*d[ ('Pa) x IJ 
= Tq*[('Pa) - (d('Pa) x l) ]  
= Tq*( ('Pa») - Tq*(d('Pa) x I) 
= 1* ('P.) - d('Pa) 
= o('P.) = oT[q*«'Pa) x I) ] 

It follows trivially that T is a chain isomorphism. D 
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We turn now to covering spaces. Connectivity of the base space will be 
assumed throughout this discussion 

(3.10) If K is a CW complex then K is locally contractible. Thus for any 
subgroup G c 7T 1 (K) there is a covering space p :  £ -? K such that p # (7T 1 £) = G. 
In particular K has a universal covering space. (Reference: [SCHUBERT, 

p. 204]). D 

We define p:E --+ K to be a covering in the CW category provided that p 
is a covering map and that E and K are CW complexes such that the image of 
every cell of E is a cell of K. By a covering we shall always mean a covering 
in the CW category if the domain is a CW complex. Nothing is lost in  
doing this because of  

(3.11) Suppose that K is a CW complex and p :  E --+ K is a covering of K. Then 

{e. I e. E K, e. is a lift of e. to E} 

is a cell structure on E with respect to which E becomes a CW complex. If 
'P. :!" --+ K is a characteristic map for the cell e., if e. is a lift of e. and if 
'P.:!" --+ E is a lift of 'P. such that 'P.(x) E e. for some x E 1", then 'P. is a 
characteristic map for e •. (Reference : [SCHUBERT, p. 25 1 ]). D 

(3.12) If p :  E --+ K is a covering and f: K' --+ K is a cellular map which lifts to 
f: K' --+ E then J is cellular. Iff is a covering (in the CW category), so is]. D 

Since a covering which is also a homeomorphism is a cellular isomorphism, 
(3.12) implies that the universal covering space of K is unique up to cellular 
isomorphism. 

(3.13) Suppose that (K, L) is a pair of connected CW complexes and that 
p:K --+ K is the universal covering. Let L = p - 1L. If i# :7TIL� 7T1 K is an 
isomorphism then p i  L: L --+ L is the universal covering of L. If, further, 
K '" L then K '" L . 

- I _ 
PROOF: Lis a closed set which is the union of cells of K (namely, the lifts of 
the cells of L). Thus L is a subcomplex of K. Clearly p i  L is a covering of L. 
We shall show that, if i# is an isomorphism, L is connected and simply 
connected. Notice that, by the covering homotopy property, 
p# :7Ti (K, L) � 7T,(K, L) for all i ;::: 1. To see that L is connected, notice that 
7TI(K, L) = 0 since we have exactness in the sequence 

7T1 (L) � 7T1 (K) --+ 7T1 (K, L) --+ 7To(L) � 7To(K). 

Thus 7TI (K, L) = O. Hence by the connectedness of K and the exactness of the 
sequence 0 = 7TI)K, L ) --+ 7To( L) -� 7To (K) 

it follows that L is connected. 
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L is I - connected because of the commutativity of the diagram 

Hence p :  L--'>- L is the universal covering. 
Finally, K 1;. L implies TTJK, L) = 0 and hence TTJK, L) = 0 for all 

i � 1. Thus K 1;. L by (3.2). 0 

(3.14) Suppose that I: K --'>-L is a cellular map between connected complexes 
such that 1# :TT1K --'>-TTIL is an isomorphism. If K, L are universal covering 
spaces 01 K, L and}:K --'>- L is a li/t off, then M, is a universal covering space 
ol Mf· 

Exercise : Give a counter-example when /# is not an isomorphism. 

PROOF OF (3.14): j is cellular and M, '-.. L , so M, is a simply connected 
CW complex. Let p : K  --'>-K and p': L --'>- L be the covering maps. Define 
IX:M,--'>- Mf by 

IX[W, t] = [p(w), t], 
<x[z] = [p'(z)], 

o � t � I ,  W E K 

Z E L 

If [w, I] = [z] then j(w) = z, so <x[w, I] = [p(w), I] = [fp(w)] = [pl(w)] 
= [p'(z)]. Hence IX is well-defined . It is clearly continuous. Notice that 
IXI(M,-L) = IXIKx[O, I) =PXI[O,I) and IX IL = p'. Thus <xIM,-L) and 
IXI Lare covering maps, and <X takes cells homeomorphicaIly onto ceIls. 

Let f1:Mf--,>-Mf be the universal cover of Mf, with R = f1-I(K), 
L = f1-I(L). By (3.13), fllL: L --'>-L is a universal covering. Since 
1# :TT1K --'>- TTIL is an isomorphism, so, by (1.2), is i# :TT1K --'>-TT1 Mf. Hence R 
is simply connected, using (3.13) again. But clearly f11(Mf-L):Mf-L 
--'>-Mf -L is a covering and TTi(Mf-L, K) = TTi(Mf-L,R) = 0 for all i. 
So Mf-L is simply connected and f11(Mf-L) is a universal covering also. 

Now let 12: M, --'>-M f be a lift of IX. By uniqueness of the universal covering 
spaces of Mf -L and L, 12 must take M,- L homeomorphically onto Mf-L 
and L homeomorphicalIy onto L. Thus 12 is a continuous bijection. But it is 
clear that 12 takes each celI e homeomorphically onto a celI l2(e). Then 12 takes 
e bijective1y, hence homeomorphicalIy, onto l2(e) . The latter is just l2(e) 
because if 'I' is a characteristic map for e, 12'1' is a characteristic map for l2(e) , 
so that l2(e) = 12'P{l") = l2(e) . Since M, and Mf have the weak topology with 
respect to closed celIs it foIlows that 12 is  a homeomorphism. Since f112 = IX 
it folIows that IX is a covering map. 0 

Consider now the ceIlular chain complex C(K, L), where K is the universal 
covering space of K and L < K. Besides being a I-module with the properties 
given by (3.7) and (3.8), C(K, L )  is actuaIly a I(G)-module where G is the 
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group of covering homeomorphisms of K or, equivalently, the fundamental 
group of K. We wish to explain how this richer structure comes about. 

Recall the definition: If G is a group and 7L is the ring of integers then 
7L(G)-the integral group ring of G-is the set of all finite formal sums 
L nigi , n i E 7L, gi E G, with addition and multiplication given by 

i L n igi + L migi = L (ni + m;)gi i i i 

One can similarly define \R(G) for any ring IR. 
Let p :  K � K be the universal covering and let G = Cov (K) = [the set of 

all homeomorphisms h :  K � K such that ph = pl. Suppose that L < K and 
t = p - 1L. Each g E G is (3.12) a cellular isomorphism of K inducing, for 
each n, the homomorphism g* : C.(K, L) � C.(K, L) and satisfying 
dg* = g"d (where d is the boundary operator in C(K, L». Let us define an 
action of G on C(K,L) by g'C = g*(c), (g E G, c E C(K,L». Clearly 
d(g'c) = g·(dc). Thus C(K,L) becomes a 7L(G)-complex if we define 

(Lnjgi)'c = Lnj(g(c) = Ln.(gi)*(C) 
i i i 

The following proposition shows that C(K,L) is a free 7L(G)-complex with a 
natural class of bases. 

(3.15) Suppose that p :  K � K is the universal covering and that G is the group 
of covering homeomorphisms of K. Assume that L < K and L = p- 1L. For 
each cell e. of K -L let a specific characteristic map CP.: I" � K (n = n(o<» 
and a specific lift CP.: r � K of CP. be chosen. Then {( cp«) Ie. E K - L} is a basis 
for C(K,L) as a 7L(G)-complex. 

PROOF: Let * = *. be a fixed point of jn for each n. For each y E p-Icp.("), 
let <P.,y be the unique lift of CP. with <p«i*) = y. Since p :  K � K is the universal 
covering, G acts freely and transitively on each fibre p - l ex). Thus each <P.,y 
is uniquely expressible as <P.,y = go cp« for some g E G and {<p«,y ly E p-Icpi*)} 
= {go cp. lg E G} . But, by (3 .7) and (3 . 11), C(K,L) is a free 7L-module with 
basis 

where g varies over G and cp« varies over the given characteristic maps for 
K-L. Thus each C E C(K,L) is uniquely representable as a finite sum 

C = L n iig i'(CP«» 
i,a. 

= L (L lli,.gi)· (cp«) 
'" i 

= L r«(cp«) , r. E 7L(G) 
'" 

Therefore {(q;:) le« is a cell of K - L} is a basis of C(K,L) as a 7L(G)-module. 0 
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The fundamental group and the group of covering transformations 

If we choose base points x E K and x E p - I (x) then there is a standard 
identification of the group of covering transformations G with 1TIK = 1T 1 (K,x). 
Because of its importance in the sequel, we review this in some detail. 

For each", :(1)) -+ (K,x), let a be the lift of", with a(o) = X. Let g[.]:K -+ K 
be the unique covering homeomorphism such that g[.](x) = a(l). We claim 
that, if y E K and if w :(1,0,1) -+ (K,x,y) is any path, then 

g[.](y) = � (I) 

where pw is the composition of wand p, and "*" represents concatenation of 
loops. To see this, note that ;;p;;.(I) = p�(l) where � is the unique lift of 
pw with �(O) = a(l). But g[.](�(O)) = g[.l") = a(l), so g[.]opw is such a 
lift. Hence p--;;' = g[.] ° Pw and 

The function fJ = fJ(x,},) :1T IK -+ G, given by ["'] -+ g[.], is an isomorphism. 
For example,  it i s  a homomorphism because, for arbitrary ["'], [,8] E 1T1 K, we 
have (by the preceding paragraph) 

g[.lg[Pix)) = g[.](P(I)) 
= �(I ) 

,........, 
= "'*,8(1) 
= g[.][P](x) 

Hence g[.] ° g[P] = g[.][P]' since they agree at a point. 
Suppose that p:K -+ K and p': r. -+ L are universal coverings with 

p(x) = x and p'(y) = y, and that GK and GL are the groups of covering 
transformations. Then any map f:(K,x) -+ (L,y) induces a unique map 
f# :GK -+ GL such that the diagram 

commutes. (We believe that it aids the understanding to call both mapsf# .) 
This map satisfies 

(3.16) If g E GK and ]:(K,x) -+ (IS) covers J, then f# (g) 01 = log. 
P ROO F: Since these maps both cover f, it suffices to show that they agree at 

• 
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a single point-say x. So we must show that (f#(g»(Y) = hex). Letting ex be a 
loop such that [ex] corresponds to g under O(x,x), we have 

hex) = la(l) 
,........- ,..... = (fo ex)(l), since la(o) = y = fex(O) 

= (O(y,y)(f#[ex]))(y), where f# :1T1(K,x) ->-1TM,y) 
= ((O(y,y)f#O(X,X)-l)(g»(y) 

= U#(g»(Y). 0 



Chapter II 

A Geometric Approach to Homotopy Theory 

From here on all CW complexes mentioned will be assumed finite unless 
they occur as the covering spaces of given finite complexes. 

§4. Formal deformations 

Suppose that (K, L) is a finite CW pair. Then K � L-i.e., K collapses to 
L by an elementary collapse-iff 

( 1 )  K = L U e·- I U e' where e" and e"- I are not inL, 

(2) there exists a ball pair (Q', Q.-I) � (r, ["-I) and a map<p : Q'-+K 
such that 

(a) <p is a characteristic map for e" 
(b) <p I Q • ..., I is a characteristic map for e" - I 
(c) <p(p. - I) CL·- I , where p·- I == Cl (oQn _ Q. - I) .  

In these circumstances we also write L pi K and say that L expands to K by an 
elementary expansion. It will be useful to notice that, if (2) is satisfied for one 
ball pair ( Qn, Qn- I ) , it is satisfied for any other such ball pair, since we need 
only compose <p with an appropriate homeomorphism. 

Geometrically, the elementary expansions of L correspond precisely to 
the attachings of a ball to L along a face of the ball by a map which is almost, 
but not quite, totally unrestricted . For, if we set <Po = <plpn - I  in the above 
definition , then <Po: (pn - I , opn - I )  -+ (L'- I , Ln - 2) and 

(K, L) � (L U Q', L). 'Po 

Conversely, given L, any map <PO: (pn - l , Opn - I ) -+ (L·- I , £0- 2) determines 
an elementary expansion. To see this, set K = L U Qn. Let <p: L ® Qn -+ K 'Po . 
be the quotient map and define <p(Q.- I) = e"- I , <p(Q') = e". Then K = 
L U e"- I U e" is a CW complex and L pi K. 

14 
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(4.1) If K '" L then (a) there is a cellular strong deformation retraction 
D: K  --+ L and (b) any two strong deformation retractions of K to L are homo­
topic rei L. 

PROOF. Let K = Lv en - 1 v en. By hypothesis there is a map 
'Fo:I "- I --+Ln - 1 such that (K, L) � (LVI",L). But LvI" is just the qlO lPo 
mapping cylinder of 'Fo. Hence, by (Ll) and its proof there is a strong defor­
mation retraction D: K --+ L such that D(en) = 'Fo(Jn - I ) C L n - 1 . Clearly D 
is cellular. 

If D I and D2: K --+ L are two strong deformation retractions and 
i:L c K then iDl � lK � iD2 rel L. So Dl = Dl iDI � DliD2 = D2. 0 

We write K"'- L (K collapses to L) and L /' K (L expands to K) iff there 
is a finite sequence (possibly empty) of elementary collapses 

K = Ko '" Kl '" . . .  '" Kq = L. 

A finite sequence of operations, each of which is either an elementary expan­
sion or an elementary collapse is called a formal df!formation. If there is a 
formal deformation from K to L we write K A L. Clearly then, L A K. 
K and L are then said to have the same simple-homotopy type. If K and L have 
a common subcomplex Ko, no cell oLwhich is ever removed during the 
formal deformation, we write K A L rei Ko. 

Suppose that K = Ko --+ Kl --+ . . . --+ Kq = L is a formal deformation. 
Define fi : Ki --+ Ki + 1 by letting fi be the inclusion map if Ki f' Ki + 1 and, 
(4. 1 ) ,  lettingfi be any cellular strong deformation retraction of Ki onto Ki+ 1 
if Ki '" Ki + l' Then f = fq _ 1 . .  fdo is called a deformation. It is a cellular 
homotopy equivalence which is uniquely determined, up to homotopy, by 
the given formal deformation. If K' < K and f = /q- l ' . .fo:K--+L is a 
deformation with each fdK' = I (so K A L reI K'), then we say that f is a 
deformation rd K'. 

Finally, we define a simple-homotopy equivalence f: K -> L to be a map 
which is homotopic to a deformation .jis a simple-homotopy equivalence rei K' 
if it is homotopic, rei K', to a deformation rei K'. 

Some natural conjectures are 

(I) If f:K --+ L is a homotopy equivalence then f is a simple-homotopy 
equivalence. 

(II) If there exists a homotopy equivalence from K to L then there exists 
a simple-homotopy equivalence. 

In general, both conjectures are false .3  But in many special cases (e.g. ,  if 
7rlL = 0 or l. (integers» both conjectures are true. And for some complexes 
L, (I) is false while (II) is true. 

In the pages ahead , we shall concentrate on (I)-or, rather, on the 
equivalent conjecture (1') which is introduced in §S. Roughly, we will follow 
WHITEHEAD'S path. We try to prove that (I) is true, run into an obstruction, 

3 See Ci4. 1) and (24.4). 
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get some partial results, start all over and algebraicize the theory, and finally 
end up with a highly sophisticated theory which is, in the light of its evolution, 
totally natural. 

Exercises : 

4.A. If K '" L then any given sequence of elementary collapses can be 
reordered to yield a sequence K = Ko'f. Kl 'f. ... 'f. Kq = L with 
Ki = Ki+ 1 U £1" U £1',-1 where no ;::: nl ;::: . . . ;::: nq_l . 

4.B. If K is a contractible I -dimensional finite CW-complex and x is any 
O-cell then K'" x. 

4.C. If K '" x for some x E KO then K '" y for all y E KO. 
4.D. If K A L then there are CW complexes P and L' such that 

K?, P'" L' � L. (In essence : all the expansions can be done first.) 

§5. Mapping cylinders and deformations 

In this section we introduce some of the important facts relating mapping 
cylinders and formal deformations. The section ends by applying these facts 
to get a reformulation of conjecture I of §4. 

(5.1) Iff:K � L is a cellular map and if Ko < K then MI'" MilKo' 

PROOF: Let K = Ko u e 1 U ... U er where the ei are the cells of K-Ko 
arranged in order of increasing dimension. Then Ki = Ko U e l U ... U ei 
is a subcomplex of K. We set Mi = MilK, and claim that Mi'f. Mi-1 for 
all i. For let <Pi be a characteristic map for ei and let q: (Ki x I) EB L � M i 
be the quotient map. Then Mi = Mi-1 U e i U (ei x (0, 1» and 
q 0 (<Pi x 1): 1"' x I � Mi is a characteristic map for (ei x (0, 1» which restricts 
on 1"' x ° to a characteristic map for ei• Clearly the complement of 1"' x ° in 
8(I"' x l) gets mapped into M't'-I' Hence Mi'f. Mi-I• Therefore 
MI'" MilKo' 0 

Corollary (5.IA) : Iff: K � L is cellular then M I '" L. 0 

Corollary (5.IB) : If Ko < K then (K x I) '" (Ko x I) u (K x i), i = ° 
or 1 . 0 

Corollary (5.IC) : If Ko <11K and:!K is the cone on K then vK'" vKo· 0 
Since we shall often pass from given CW complexes to isomorphic com­

plexes without comment, we give the following lemma at the very outset. 

(5.2) : (a) If (K, K1 , K2) is a triple which is CW isomorphic to (J, J1, J2) and if 
K A Kl rei K2 then J A J1 rei J2· 

(b) If K1 , K2 and L are CW complexes with L < KI and L < K2 and if 
h : Kl � K2 is a CW isomorphism such that h lL = I then Kl A K2 reI L. 

tr 
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PROOF: (a) i s  trivial and we omit the proof. To prove (b) it suffices to 
consider the special case where (Kl -L) (\ (K2 -L) = 0. For if this is not the 
case we can (by renaming some points) construct a pair (K, L) and iso­
morphisms hi:K � Ki, i = 1, 2, such that (K-L) (\ (Ki-L) = 0 and 
such that hilL = l. Then, by the special case, KI A K A K2, reI L. 

Consider the mapping cylinder Mh• By (5 .1) , 

Mio \.t MhlL = (L x J) u (K2 X I), 

and, h being a CW isomorphism, the same proof can be used to collapse from 
the other end and get Mh \.t (L x J) U (KI X 0). Now let Mh be gotten from 
Mh by identifying (x, t) = x if x E L, 0 :5 t :5 l. Since (KI -L) (\ (K2 -L) 
= 0, we may (by taking an appropriate copy of Mh) assume that Kl and K2 
themselves, and not merely copies of them are contained in the two ends of 
Mh. Then the collapses of Mh (rei L x I) may be performed in this new context, 
since4 Mh-(L x I) i s  isomorpnic to Mh-L, to yield K1)' Mh \.t K2 rei L. 0 

If we let I: L x I � L be the natural projection, the argument in the last 
sentence is a special case of: 

(5.3) (The relativity principle.) Suppose that Ll < K and I:Ll � L2 is a 
cellular map. II K A J reI L1, then K U L2 A J U L2 reI L2 (by the "same" f f 
sequence 01 expansions and collapses). 

REM ARK: In forming K y L2 and J y L2 one uses a "copy" of L2 disjoint 

from K and J. By (5.2a) it doesn't matter which copy. In particular if I is an 
inclusion map we have as corollary: 

(5.3 ') : Suppose that K U L2 and J U L2 are CW complexes, with sub complexes 
K, L2 and J, L2 respectively, and suppose that K (\ Lz = J (\ L2 = L1• II 
K A J reI Ll then K U L2 A J U Lz reI L2. 

PROOF 01(5.3) : Suppose that K = Ko � Kl � . . . � Kp = J is a sequence 
of elementary deformations rei L1• Let qi:Ki Ef> L2 � Ki U L2 be the f 
quotient maps (0 :5 i:5 p).If Ki±1 )'Ki = Ki±1 U e"-1 U en, and cp:r � Ki 
is a characteristic map for en restricting to a characteristic map cp II" -1 for 
en-1 then qiCP and qi(CPI!"-I) are characteristic maps for qi(en) and qi(e"-I), 
since qi!Ki-LI is a homeomorphism and I is cellular. Thus 

(Ki±1 U L2»)' (Ki U L2) = (Ki+1 U L2) U qi(en-1) U q;(en). f f - f 
The result follows by induction on the number of elementary deformations. 0 

(5.4) If I: K � L is a cellular map and K \.t Ko then Mf \.t K U M flKo' 
PROOF: Suppose that K = Kp '" Kp-l \.t . , . '" Ko. For fixed i let 
Ki+1 = Ki U (en-1 Ve") and let cp:(ln, r-1) � (en, en-I) be an appropriate 

4 This is spelled out in  the next proof. 



1 8  A geometric approach t o  homotopy theory 

characteristic map. Then 

Kv MilK,., = KV MflK, V [e"- 1 x (0, I) V e" x (0, 1)]. 

Then, q being the quotient map, q 0 (9' x I):(ln x I, r-1 x I) � K V MflK,., 
gives characteristic maps for these cells and meets the specifications for an 
elementary collapse. Hence K V MilK,., � K V MilK,. The result follows 
by induction. 0 

(5.5) Iff, g :  K � L are homotopic cellular maps then MI A Mg rei K V L. 

P ROOF: Let F: K x I � L be a, homotopy with Fa = f and Fl = g. By the 
cellular approximation theorem we may assume 

'
that F is cellular. Then , 

by (5.4), 
MFo V (KxIL,7f MF"-'I. MF, V (KxI) 

since (Kx I) "-'I. Kx i (i = 0, 1). Now let w: Kx I � K be the natural pro­
jection and let M = M F V K. By the relativity principle (5.3) the above , . 
deformation gives 

(5.6) Iff: Kl � K2 and g :  K2 4- K3 are cellular maps then MgI A MI V Mg 
rei (Kl V K3) where MI V Mg is the disjoint union of MI and Mg sewn 
together by the identity map on K2. 

P ROOF: Let F = gp : M I � K3 where p :  M I 4- K2 is the natural retraction. 
Then F is a cellular map, FIK! = gf, and FIK2 = g. Since MI"-'I. K2 by 
(5.1A), it follows from (5.4) that MF"-'I. MI V Mg. On the other hand, since 
K! < MI, (5.1) implies that MF"-'I. MgI. Thus MgI)'l MF"-'I. MI V Mg, 
where all complexes involved contain Kl V K3 . 0 

More generally we have 
-

rl" I, K J, 10-1 K . if II l d (5.7) I.J Kl ----+ 2 ----+ . . . � q IS a sequence 0 ce u ar maps an 
/ = fq_l . . .  fl then MI A MI, V MI2 V . . . V Mlo_" rei (Kl V Kq), where 
this union is the disjoint union of the M I, with the range of one trivially identi­
fied to the domain of the next. 

PROOF: This is trivial if q = 2. Proceeding inductively, set g = fq_1 • • • fd2 
and assume Mg A MI2 V . . . V Mlo_1 rei (K2 V Kq). Then by (5.6) and 
(5.3') 

MI = MgII A Mil V Mg, rei Kj V Kq 
A Mil V (Miz V . . .  V Mlo_,)' rei Mil V Kq• 0 

(5.8) Given a mapping f: K -> L, the following are equivalent statements: 
(a) f is a simple-homotopy equivalence. 
(b) There exists a cellular approximation g to f such that Mg A K, ref K. 

(c) For any cellular approximation g to f, Mg A K, rei K. 

to , 

\' 
I 
; 

+ 
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PROOF: (a) => (b): By the definition of a simple-homotopy equivalence, 
there is a formal deformation 

K = Ko � KI � . . .  � Kq = L 

such that f is homotopic to any deformation associated with this formal 
deformation. Let g = gq-l . . . glgo be such a deformation, where 
gi: Ki � Ki+ l . Notice that, for all i, Mg, '\.. dom gi = Ki. 
For if Kipl Ki+ l> then 

Mg, = (KixI) U Ki+ l '\.. (KixI)'\.. (KiXO) == Ki g, 
and if Ki � Ki+ 1 then, by (5.4) 

Thus 

Mg, '\.. MgdK,+, U Ki = (Ki+l xl) U (KjxO) '\.. Kj xO == K,. 

Mg A MgO U ... U Mg._, rei Ko, by (5.7) 

'\.. (MgO U ... U M9._2)'\.. • • •  '\.. Mgo'\.. Ko = K. 
(b) => (c): Suppose that g is a cellular approximation to f such that 
Mg A K rei K and that g' is any cellular approximation to f. Then, by (5.5), 
Mg, A Mg A K rel K. 
(c) => (a): Let g be any cellular approximation to f. By hypothesis Mg A K, 
rei K. Thus the inclusion map i :K c Mg is a deformation. Also the collapse 
Mg'\.. L determines a deformation P: Mg � L. Since any two strong deforma­
tion retractions are homotopic, P is homotopic to the natural projection 
p: Mg � L. So f � g = pi � Pi = deformation. Therefore f is a simple-

' 

homotopy equivalence. 0 

(5.9) (The simple-homotopy extension theorem). Suppose that X < Ko < K 
is a C W triple and that f: Ko � Lo is a cellular simple-homotopy equivalence 
such that fiX = 1. Let L = K U Lo. Then there is a simple-homotopy f 
equivalence F: K � L such that FIKo = f. Also K A L rei X. 

PROOF: Let F: K � L be the restriction to K of the quotient map 
KEEl Lo � L. Then M F = (Kx I) U Mf where q: Ko x I � Mf is also the q 
restriction of a quotient map. But K x I '\.. (Ko x I) U (K x 0), so 

MF'\.. Mf U (KxO) == Mf v K, by (5.3) 

A K rei K, by (5.8) and (5.3'). 

Clearly FIKo = f and , by (5.8) again ,  F is a simple-homotopy equivalence. 
The last assertion of the theorem is true because 

K A  MF'\.. MF1X = (XxI V L)/, LxI '\.. LxO == L 

and this is all done rei X = X x 0.
5 0 

S The reader who is squeamish about "L x 0 == L" may invoke (S.2b). 
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In the light of (5.8),  Conjecture (I) of §4 is equivalent to 

(I' ) :  Jf(X, Y) is a CW pair and X '" Y then X A Y reI Y. 

For, assuming (I'), suppose that f: K -;. L is a cellular homotopy equivalence. 
By ( 1 .2), Mf '" K. Hence by (I'), Mf A K reI K; and by (5 .8) f is a simple­
homotopy equivalence, proving (I). Conversely, assuming (I), suppose that 
X ",  Y-i.e. , i: Y c  X is a homotopy equivalence. Then by (I) , i is a (cellular) 
simple-homotopy equivalence, so (5.8) implies that Mj A Y reI Y. Therefore 

X = X x O ?'  X x I = M J X � M J A Y reI Y, 

proving (I') . 
We turn our attention therefore to Conjecture (I') and (changing nota­

tion) to CW pairs (K, L) such that K '" L. 

§6. The Whitehead group of a CW complex6 

For a given finite CW complex, L, we wish to put some structure on the 
class of CW pairs (K, L) such that K '" L. We do so in this section, thus 
giving the first hint that our primitive geometry can be richly algebraicized . 

If (K, L) and (K', L) are homotopically trivial CW pairs, define 
(K, L) '" (K', L) iff K A K' reI L. This is clearly an equivalence relation and 
we let [K, L] denote the equivalence class of (K, L). An addition of equivalence 
classes is defined by setting 

[K, L] + lK', L] = [K v K', L] . L 
where- K v K' is the disjoint union .of K and K' identified by the identity map L 
on L. {By 5 .2 it doesn't matter which "disjoint union of K and K' 
identified . . .  " we take. Also by (5.2) the equivalence classes form a set, 
since the isomorphism classes of finite CW complexes can easily be seen to 
have cardinality :s; 2c. } The Whitehead group of L i s  defined to be the set of 
equivalence classes with the given addition and is denoted Wh(L). 

(6.1) Wh(L) is a well-defined abelian group. 

PROOF: A strong deformation retraction of K to L and one of K' to L 
combine trivially to give one of K 't K' to L. Thus [K 't K', L] is an element 

of Wh(L) if [K, L] and [K', L] are. Moreover, if [K, L] = [i, L], then 

K v K' /l, i v K' reI L by (5 .3 ') ,  so [K v K', L] = [i V K', L]. Similarly, if L L ·· L L 
[K', L] = [1' , L], then [i "t K', L] = [i "t i', L]. Thus the addition is well 
defined . 

6 The viewpoint of this section has recently been arrived at by many people indepen­
dently. It  is interesting to compare [Stocker], [Siebenmann], [Farrell-Wagoner], [Eckmann­
Maumary] and the discussion here. 
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That the addition is  associative and commutative follows from the fact 
that the union of sets has these properties. 

The element [L, L] is an identity, denoted by O. 
If [K, L] E Wh(L), let D :  K -+ L be a cellular strong deformation retrac­

tion. Let 2M D consist of two copies of the mapping cylinder M D, identified by 
the identity on K. Precisely, let 2MD = K x [ - I ,  I] with the identifications 
(x, - I)  = (D(x), - I) and (x, I) = D(x) for all x E K. We claim that 
[2M D, L] = - [K, L]. 

A picture of 
2 M ,  'i K: 

Proof of the claim : 

[2MD, L] + [K, L] = [2MD U K, L] L 
= [(MD 1: K) U Mb, L] 

= [MiD U Mb, L] where i : L  � K. 

[But iD ::::: I K , so by (5 .5) ,  MiD A K x l rel (K x O) U K. So by (5 .3 ') we have] 

= [K x l u Mb, L] 

= [L x I U Mb, L] 

= [L x [ - I , I ] , L] 

= [L, L] = 0 

In pictures, these equations represent 

This completes the proof. 0 

since K x I \,. (L x I U K x 0) 

since Mb \,. L x [ - I , O] 

since L x [ - I ,  I ]  '\( L == L x I . 

\ 
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If f: L1  -+ L2 is  a cellular map, we define f* : Wh(L1 )  -+ Wh(L2) by 

f� [K, L , l  = [K Y L2 ,  L2 1  

o r  

These definitions are equivalent because the natural projection p: M, -+ L2 
is a simple-homotopy equivalence with p lL2 = I which , by (5.9), determines 
the deformation 

(M, u K) A  (M, u K) u L2 = K Ll L2 , reI L2 . L, L, p J 
It follows directly from the second definition that f* is a group homo­

morphism. From the first definition and (5.6) it  follows directly that 
g*f* = (gf)* . Leaving these verifications to the reader we now have 

(6.2) There is a covariant functor from the category offinite CW complexes and 
cellular maps to the category of abelian groups and group homomorphisms 
given by L ...... Wh(L) and (f: L I -+ L2) ...... U* : Wh(L 1 )  -+ Wh(L2)) ' Moreover 
iff ':::!. g then f* = g* . 

PROOF: The reader having done his duty, we need only verify that iff ':::!. g 
then f* = g* . But this is immediate from the first definition of induced map 
and (5 .5). D 

We can now define the torsioll T(f) of a cellular homotopy equivalence 
f: L I -+ L2 by 

A great deal of formal information about Whitehead groups and torsion 
can then be deduced from the following facts (exercises for the reader) : 

Fact 1 :  If K, L and M are subcomplexes of the complex K u L, with 
M = K n L and if K l,. M then [K U L, L] = j*[K, M] where j: M -+ L 
is the inclusion. 

Fact 2: If  K l,. L l,. M and i :  M -+ L is the i nclusion , then [K, M] 
= [L, M] + (i*) - I [K, L]. 

However it seems sil ly to extract this formal information when we cannot 

' j  
i 
I 

J 
1 

.] 
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do meaningful c0l!lputations. Conceivably every Wh(L) is ° and this entire 
discussion is vacuous. Thus we shall delay drawing out the formal con­
sequences of the preceding discussion until §22-§24, by which time we will 
have shown that the functor described in  (6.2) is naturally equivalent to 
another functor-one which is highly non-trivial. 

Finally we remark that the entire preceding discussion can be modified to 
apply to (and was developed when the author was investigating) pairs (K, L) 
of locally finite CW complexes such that there is a proper deformation 
retraction from K to L. The notion of "elementary collapse" is replaced in 
the non-compact case by "countable disjoint sequence of finite collapses". 
For a development of the non-compact theory see [SIEBENMANN] and 
[FARRELL-WAGONER]. Also the discussion in  [ECKMANN-MAUMARV] is valid 
for locally finite complexes. Finally, the author thinks that [COHEN, §8] is 
relevant and i nteresting. 

§7. Simplifying a homotopically trivial CW pair 

In this section we take a CW pair (K, L) such that K 1", L and simplify it 
by expanding and collapsing reI L. We start with a lemma which relates the 
simple-homotopy type of a complex to the attaching maps by which it is 
constructed . 

(7.1) If Ko = L U eo and KI = L U e l are CW complexes, where the 
ei (i = 0, 1) are n-cells with charaderistic maps 'Pi : f" � Ki such that 'Po l ar 
and 'PI l af" are homotopic maps of al" into L, then Ko A K1 , reI L. 

PROOF: We first consider the case where eo (') e 1  = 0 and, under this 
assumption ,  give the set L U eo U el the topology and CW structure which 
make Ko and Kl subcomplexes. 

Let F: al" x I � L with Fi = 'P. l 8f" (i = 0, I). Give ar a CW structure 
and vI" x I the product structure. Then , by the cellular approximation 
theorem (3 .3) the map F: (vI" x I, al" x {O,  I}) � (L, L " - )  is homotopic to a 
map G such that G I N" x {O, I }  = Fl O/" x (0 , I }  and G(n" x J) C L". Define 
'P :  D(l" x J)  -)0 (L U eo U edn by setting 

'PI vI" x 1 = G ;  'P I !" x { i }  = 'Pi '  i = 0, 1 .  
We now attach an (11 + I )-cell to L U eo U e )  by 'P to get the CW complex . 

K = (L U eo U e l ) U (In X J). tp 
Since 'P I !" x { i}  is a characteristic map for ei we have 

Ko = L U eo � K '§. L U e l  = KI > rei L. 
If eo (') e l  oF 0, construct a CW complex K = L U eo such that 

eo (') (eo U e l ) = 0 and such that eo has the same attaching map as eo· 
Then,  by the special case above , Ko A Ko A K1 , reI L. 0 
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As an example, (7 . 1) may be used to show that the dunce hat D has the 
same simple-homotopy type as a point. D is usually defined to be a 2-simplex 
Ll2 with its edges identified as follows 

Now D can be thought of as the I -complex oLl2 with the 2-cell Ll2 attached 
to it by the map cp :  0Ll2 -+ 0Ll2 which takes each edge completely around the 
circumference once in the indicated direction. Since this map is easily seen to 
be homotopic to I�d2' 

D = (oLl2 V Ll2) A (oLl2 V Ll2) = Ll2 '" O. 'P 1 
See [ZEEMAN] for more about the dunce hat. 

Before proceeding to the main task of this section we give the following 
useful consequence of (7. 1 ) ,  albeit one which will not be used in this volume. 

(7.2) Every finite CW complex K has the simple-homotopy type of a finite 
Simplicial complex of the same dimension. 

SKETCH OF PROOF: We shall use the following fact [J. H. C. WHITEHEAD 
3 (§ I 5)] 
(*) If J1 and J2 are simplicial complexes and f:J 1 -+ J2 is a simplicial map 

then the mapping cylinder Mr is triangulable so that J1 and J2 are 
subcomplexes. . 

If K is a point the result (7.2) is trivial . Suppose that K = L v e" where e" 
is a top dimensional cell with characteristic map cp : 1" -+ K. Set CPo = cp l 0l". 
By induction on the number of cells there is a simple-homotopy equivalence 
f:L -+ L' where L' is  a simplicial complex. So, by (5.9), 

K = L v  e" A K V L' = L' v 1". r f'Po 
Triangulate oJ" and let g :  0/" -+ L' be a simplicial approximation to /CPo. 
Then (7 . 1) implies that 

L' v J" 1\ L' v J". j tpo g 
Now L' v I" can be subdivided to become a simplicial complex as follows. g 
Consider J" as 10 V (01" x I) where 10 is a concentric cube inside I" and 
0/0 == 01" x O. Then IL' v I" I  = IMy v 10 1 .  If My is triangulated according g 
to (*) and 18 is triangulated as the cone on iJlo we get a simplicial complex K' 
with IK' I  = IL' v 1" 1 .  It is a fact that g 

L' v I" A K', rei L'. g 

1 , 

h 
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This can be proved by an ad-hoc argument, but it is better for the reader to 
think of it as coming from the general principle that "subdivision does not 
change simple-homotopy type", which will be proved in §25. Thus we 
conclude that K A K V L' A L' v r A K' = simplicial complex. 0 f 

We now give the basic construction in simplifying a CW pair-that of 
trading cells. 

(7.3) If(K, L) is a pair of connected C W  complexes and r is an integer such that 

(a) 7T,(K, L) = 0 

k,. kr + l  kn 
(b) K = L u U ej u U 'ej+ I u . . . u U e'f. i- I i - I  i - I  

Then K A M reI L where M is a CW complex of the form 

[Here the e1 andf1 denote j-cells.] 

PROOF: Let cp� : l' � K be a characteristic map for e; (i = 1, 2, . . .  , k,). 
So 'P�(ol') C K,- I = L,- I and 'P� : (l', A!') � (K, L). Since 7T,(K, L) = 0 
there is a map Fj : /,+ 1 � K such that 

Fj l!' x O  = 'Pj 

Fd or x t = cpd 8[', 

Fi(l' x I) c L. 
We may assume that, in addition, 

Fi(or+ l) c K' 
and 

Fi(r+ l) c K,+ I . 
This is because, if Fi did not have these properties, we could use the cellular 
approximation theorem as follows. First we would homo top Fd or + 1 , 
relative to (I' x 0) v (or x I), to a map Gj with Gj(I' x I )  c L'. By the homo­
topy extension property, Gj would extend to a map, also called Gj, of 1' + 1 
into K. Then Gj :r+ 1 � K could be homotoped , relative to 0[' + 1 , to 
Hi : 1' + I � K'+ I , and Hj would have the desired properties. 

Let P = K v  1'+ 2 v 1' + 2 V . . . v 1' + 2 and let o/Ij : r+ 2 � P  be the F, F, Fkr 
identification map determined by the condition that o/Idr + I x 0 = Fj. 
Recalling that Jm '= Cl(8[m+ 1 _ 1m), we set 

Er+ 2 = o/Ii(1,+ 2) and E�+ I = o/Ilj,+ I), I :s;  i :s;  k, 
Then, by definition of expansion , 

K )"  P = K u UE�+ 2 . 
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Consider Po = L u Uei u UEi+ l . Thus, when there is a single r-cell and 
r = 0 the situation looks like this : 

L --------
Picture of P Picture of Po 

Since .p ,UUr + I) = Fi(ar+ l) c Kr, Po is a well-defined subcomplex of P. 
Also r is  a face of J'+ 1 such that .p ; jr  = CPI '  a characteristic map for ei. 
So we have 

Po '\I L 

P - Po = Uei+ 1 u (Uei+ 2 U UEj+ 2) u Uej+ 3 u . . . u Uei. 

Let g : Po � L be a cellular deformation corresponding to this collapse. 
Applying (5.9), and letting G : P � P u L be the map induced by g, we have g 

where 

K 7' P AI P u L, reI L g 

P u L = L U UG(ei+ I) U [UG(ei + 2) u UG(Ej+ 2)] u . . .  u UG(ei). g 
The proof is completed by setting M = P u L. D g 

(7.4) Suppose that (K, L) is a pair of connected C W  complexes such that 
K l". L. Let n = dim (K-L) and let r ;::: n - l be an integer. Let eO be a 
O-cell of L. Then K AI M, reI L, where 

a a 
M = L u U ej u U ei+ 1 

) - 1 i - I  
and where the ej and ei+ 1 have characteristic maps .p) : r  � M andcpi : r + 1 � M 
such that .p j( aIr) = eO = rp pr). 

Defintfion : If L is connected , M l". L, and (M, L) satisfies the conclusion of 
(7.4) with r ;::: 2,  then (M, L) is  in simplified form. 

PROOF: Since K l". L, 7r;(K, L) = 0 for all i. Thus, by (7.3), we may trade 
the relative O-cells of K for 2-cells , then the I -cells of the new complex for 
3-cells, and so on,  until we arrive at a complex R for which the lowest 
dimensional cells of R -L are r dimensional. Because r ;::: n - 1 there will 
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not be any cells of dimension greater than r +  1 .  Thus we may write 
a b 

K = L u U ej u U er+ 1 .  Let the ej have characteristic maps V, j. 
j = 1  j = 1  

We claim that, for each j, v,j ! alr is homotopic in L to the constant map 
ar --+ eO . For, since K 1". L, there is a retraction R :K --+ L. Then 
Rv,j : l' --+ L  and Rv,j ! Oir = v,j ! ar since v,p1') c Kr- 1 c L. Thus v,j ! a1' 
is null homotopic in L and, L being arc-wise connected , it is homotopic to 
the constant map at eO . Therefore by (7 . 1 ) ,  

L u Uej A L u Uej, rei L 

where the ej are trivially attached at eO . Hence by (5.9) 

L u  Uej u Uer+ 1 A L u  Uej u UfT+ 1 • 

Now let the f:+ 1 have characteristic maps <Pi . Since Jr is contractible to a 
point by a homotopy of a1' + 1 the attaching map <P i ! a1' + 1 is homotopic to a 
map 'Pi : a1'+ 1 --+ L u  Uej such that 'PMr) = eO. Then, by (7. 1 )  again 

L u Uej U Uf:+ 1 A L u Uej u Uer+ 1 ,  rel L 

where the er+ 1 have characteristic maps 'Pi such that 'PMr) = eO . We call this 
last complex M. 

Finally, to see that the number of r-cells of M -L is equal to the number 
of (r + I)-cells of M -L, notice that, by (3.7), these 'numbers are precisely 
equal to the ranks of the free (integral) homology modules Hr(Mr U L, L) 
and Hr+ 1(M, Mr U L). But since M A L, the exact sequence of the triple 
(M, Mr U L, L) contains 

--+ Hr+ 1 (M, L) --+ HrH (M, Mr U L) � Hr(Mr U L, L) --+ HrCM, L) --+ 

where Hr+ 1 (M, L) = H.(M, L) = O. Thus d is an isomorphism and these 
ranks are equal. 0 

§S. Matrices and formal deformations 

Given a homotopically trivial CW pair, we have shown that it can be 
transformed into a pair in simplified form. So consider a simplified pair 
(K, L) ; K = L u Uej u Uer+ 1 where the ej are trivially attached at eO . 
If, given r and L, we wish to distinguish one such pair from another, then 
clearly the crucial information lies in how the cells er+ 1 are attached-i.e. ,  in 
the maps 'Pd!W+ 1 :  81' + 1 --+ L u Uej, where 'Pi is a characteristic map for 
er+ 1 .  Denoting Kr = L u Uej, we study these attaching maps in terms of 
the boundary operator a : 7Tr + l (K, Kr ; eO) --+ 7T.(K" L ;  eO) in the homotopy 
exact sequence of the triple (K, Kr, L). Since, however, freely homotopic 
attaching maps give (7. 1 )  the same result up to simple-homotopy type, we 
do not wish to be bound to homotopies keeping the base point fixed . To 
capture this extra degree of freedom formally, we shall think of the homotopy 
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groups not merely as abelian groups, but as modules over l(1T ) (L , eO» .  This 
is done as follows : 

Given a pair of connected complexes (P, Po) and a point x e Po, it is 
well-known [SPANIER, §7 .3] that 1T) = 1T ) (PO ' x) acts on 1TnCP, Po ;  x) by the 
condition that [<x] . [",] = ['P'J, where <X and 'P represent the elements [<X] and 
['P1 of 1T) and 1T.(P, Po ; x) respectively, and 'P' : (/.

, /" - 1 , r- ) � (P, Po , x) 
is homotopic to 'P by a homotopy dragging 'P(r - I )  along the loop <x- I . 
This action has the properties that 

(0) [.J ' ['PJ = ['PJ , where [.J is the identity element in 1TI ' 
( l ) [<x] . (['Pd + ['P2]) = [<X] - ['P1 1 + [<X] - ['P2J, 
(2) ([<xJ [8]) ' ['P] = [<X] ' ([8] ' ['P]), 
(3) It commutes with all the homomorphisms in the homotopy exact 

sequence of the pair (P, Po) . 

It follows that 1T.(P, Po ; x) becomes a l1T) -module7 if we define multiplication 
by 

(In J<xJ)['P] = Ini[<xJ . ['P]), [<xJ e 1T1 >  ['P] e 1T.(P, Po ; x), 

and the homotopy exact sequence of (P, Po ; x) becomes an exact sequence of ' 
l1T )-modules. In the case of a simplified pair (K, L), the following lemma will 
be applied to give us the structure of 1Tr + l (K, Kr ; eO) and of 1TrCK" L ;  eO) . 

a 

(8.1) Suppose that (P, Po) is a C W  pair with P = Po u U e'/, where Po is 
; = 1  

connected. Suppose that 'Pi : (/"' I" - I , r - I )  � (P, Po ; eO) are characteristic 
maps for the e7 and that either: a) n ;::: 3, or b) n = 2 and 'Pi(O/") = eO for 
all i. Then 1T.(P, Po ; eO) is a free l1Tl-module with basis ['Pd, ['P2] ,  . . .  , ['Pa]' 
PROOF: We claim first that the inclusion map induces an isomorphism 
i# : 1Tl (PO , eO) � 1Tl (P, eO), For all n ;::: 2, i# is onto because, by the cellular 
approximation theorem, any map of (/ 1 ,  al l ) into (P, eO) can be homotoped 
rel al l into Po. Similarly, for all n ;::: 3, i# is  one-one, because any homotopy 
F: (/2, (12) � (P, Po) between maps Fo and FI can be replaced by a map 
G : /2 � Po such that G l ol2 = Fl ol2 . Finally, if n = 2,  'Pi(012) = eO, by 
assumption. Let R : P � Po be the retraction such that R(UeD = eO . 
Then, if two maps/, g : (I, (1) � (Po, eo) are homotopic in P by the homotopy 
Ft, they are homotopic in Po by the homotopy RoFt• Hence i# is one-one 
in this case also. 

Let p :P � P be the univet:sal covering of P. Let Po = p - I Po. Then Po is 
the universal covering space of Po with covering map p lPo (by 3 . 1 3) .  Let G 
be the group of covering homeomorphisms of P. Choose a base point 
eO 

e p- l (eO). For each i(l. :s; i :s; a), let �i  :(I", r- I) � (p, eO) cover 'Pi' Then 
(3. 1 5) says that H.CP, Po) is a free l(G)-module with basis { <�)}  where 
<�) == (<Pi).(w.), w. being a generator of H.(I", 01") . We may first identify 

7 See page 1 1  for the definition of the group ring l(G.) 

I 

I 
l 
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G with 17"I CP,eo) Csee page 1 2) and then use the isomorphism i# to identify 
G with 17" I CPO,eo) = 17" 1 ' If [0:] E 17" 1 '  let g(.] be the corresponding covering 
homeomorphism. Hence H*CP,Po) is a free Z17" l -module with basis { <�i> }' 
We complete the proof by demonstrating that HnCP,Po) is isomorphic to 
17"nCP,PO ; eO) as a Z17" I -module, by an isomorphism which takes <�; )  onto 
['PJ for each i. 

To demonstrate this, consider the isomorphism T of Z-modules given by 

T 
Here h is the Hurewicz homomorphism which takes each [.p] E 17"nCP,Po ,eO) 
onto .p*Cwn). In fact, applying the Hurewicz theorem [SPANIER, p. 397], h is an 
isomorphism because Po and P are connected and simply connected and 
because, by the cellular approximation theorem, 17";(P,Po) = 0 for i :5 n - 1 . 
Also p #  is an isomorphism for all n ;e: 1, by the homotopy lifting property. 
Thus T is an isomorphism and , clearly, TC <�i» = P# [�J = [p�J = [cpJ. 
Finally to see that T is a homomorphism of CZ17"I)-modu/es, it suffices to 
show that T(Iai<�;)) = �::ai[CPJ for all ai = I niiO:j] E Z17"I ' But, by definition 

j 
of scalar multiplication and our identification of Z17"1 with ZCG) , 

I ai<�i > = I (I nij[O:jJ)(�i*CWn» = I n ijCCg['j]�iMwn» '  i i j - ; ,j 
But g['j]�i is freely homotopic to the map a.j · g['j]�i ' which is gotten from it 
by dragging the image of )" - 1  (namely g['j](eO» along the path aj- 1 •  Thus, 
by the homotopy property in homology 

I ai<�i> = I nij« a.j · g['j]�iMwn» ; i,j 
h-l 

� I n i.Ja.j · g['j]�j] i,j 

� I n i.Jp 0 ca.J ·g['j]�J 
i,j  

= I nij[O:j] ' ['PJ) 
i,j 

Suppose now that CK, L) is in simplified form, where 

a a 
K = L u U ej u U e;+ l . 

j � l  j � l  
Let {CPi } and {.pj} be characteristic maps for the e; + 1 and ej respectively. 
Then by the preceding lemma, {[cp;] } and {[.pJ } are bases for the Z17"\ -modules 
17"r + \ (K, Kr) and 17"r(K" L), where Kr = L u Uej. We define the matrix of 
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(K, L) with respect to the characteristic maps {9'J and {.pi} to be the (a x a) 
Z7Tcmatrix (a i), given by o['I'J = Lad.pJ where O : 7Td I (K, Kr) -+ 7Tr(K" L) 
is the usual boundary operator. Notice that this matrix must be non-singular 
(i.e. , have a 2-sided inverse). For 7Td 1(K, L) = 7Tr(K, L) = 0, since K '" L ;  
so, by exactness o f  the homotopy sequence, ° is an isomorphism. 

The simplest example of a pair in simplified form occurs when the 
characteristic maps 9'i' .pi satisfy 9';(l') = eO and 9'dl' = .pi' In this case we 
have, algebraically, that the matrix of (K, L) with respect to the given bases is 
the a x a identity matrix and , geometrically, that K \,. L. (In fact 
K = L u [wedge product of balls].) More generally, when the matrix is right 
we can cancel cells as follows : 

(8.2) If (K, L) is a simplified pair and if the matrix of (K, L) with respect to 
some choice of characteristic maps {9'J, {.pi} is the identity, then K /Ii L, rei L. 

PROOF: Consider the characteristic maps 9'1 : (1' + 1 , 1', l') -+ (K, K" eO) and 
.pI : (1', 01') -+ (Kr' eO) . By hypothesis, [.pd = 0[9'1] == [9' I I I'] E 7Tr(Kr, L ; eO). 
Thus then: is a homotopy h, : (Ir, 1' - I , Jr - l) -+ (K" L ;  eO) such that 
ho = 9'1 II' and hI = .pl '  By the homotopy extension theorem (3. 1 )  we may 
extend h, l OIr to a homotopy g, :l' -+ L such that go ll' = 9' 1 1J'. Combining 
h, and g, we have a homotopy H, : (ol' + 1 , I', l') -+ (Kr, Kr, L) with 
Ho = 9'1 1 01'+ 1 and HI II' = .pl ' By the cellular approximation theorem HI 
can be homotoped , rei 1', to 0/1 where o/l (Jr) c L'. If we attach an 
(r+ I )-cell e'i + I to Kr by 0/1 : 01'+ I -+ Kr then, by (7. 1 )  we have 

K = L u U ej U U ej + 1 /Ii (L u  U ej u U ej+ I) U e'i + 1 , rel L 
j i j i > 1 

\,. L u U ej u  U e'i+ 1 == K'. 
j> l ;> 1 

The last collapse takes place because 0/1 II' = .p I ' 
Finally, the matrix of (K', L) with respect to the remaining characteristic 

maps is the identity matrix with one fewer row and column. For suppose that 
O' : 7Tr + l (K', K;) -+ 7Tr(K: , L), that i' : K' c K and that 9'i = i'9'; , .pi = i'.pj. 
If 8' ['1';] = La;i [.pj] then [.p,] = 0[9' ;] = i� o ' [9';] = i� La;).pj] = Iaij [.pJ 
So a;i = o ij. Thus we may proceed by induction on the number of cells 
of K-L. 0 

Exercise : Go through the preceding proof in the example where L = 
eO U e5 (the 2-sphere), Kr = L u e 2  and the sole 3-cell is attached by 
9' :  0/3 

-+ L u e2 such that 

9'(J2 u {(-t, y, 0) 1 0 :5 Y :5 I }) = eO 

'I' 1 {(x, y, O) 1 0 :5 x :5  -t, 0 :5 y :5  I }  = characteristic map for e5 

'P I  {(x, y, O) I -t  :5 x :5 1 , 0 :5 Y :5 I }  = characteristic map for e 2 •  

I f  the matrix of  the simplified pair (K, L)  is not the identity we  might 
nevertheless be able to expand and collapse to get a new pair (M, L) whose I 

j 
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matrix i s  the identity. The following lemma shows that certain algebraic 
changes of the matrix of a given pair can be realized by expanding and 
collapsing. 

(8.3) Assume that the pair (K, L) is in simplified form and has matrix (aij) 
with respect to some set of characteristic maps. Suppose further that the matrix 
(ai) can be transformed to the matrix (bij) by one of the following operations 

I .  Ri -,>- ± aR i (a E 7Tt  c 17TI ) 

(Multipiy the i' th row on the left by plus or minus an element of 
the group) 

II. Rk -,>- Rk + pRi (p E 17TI ) 

(Add a left group-ring mUltiple of one row to another) (a . .  0) III . (aij) -,>- �J Iq 
(Expand by adding a corner identity matrix) 

Then there is a simplified pair (M, L) such that K A M rei L and a set of 
characteristic maps with respect to which (M, L) has the matrix (b ij) . 

PROOF: Suppose, as usual, that K = L u U ej u U < + I , and denote the 
given characteristic maps for the r and (r + I )  cells by {¢Ij } and {'Pi } respec­
tively. For notational simplicity we consider I. when R I -,>- ± aR I and II. when 
RI -,>- RI + pR2 · 

To realize RI -,>- - RI , set M = K and introduce the new characteristic 
map <P I to replace 'PI ' where <Pt = 'P l o R  and R : 1' + t -'>- 1' + 1 by 
R(Xt , X2 , " " xr + t >  = ( 1 - xI , x2 '  . . .  , xr + I ) ·  Clearly [<p t l  = - ['Pd, so 
o[<p t l  = - o['P t l  = -La i}.pj] ' To realize R I -,>- aRI ' let f: (/', oJ') -,>- (K" eO) 
represent a ' ['P t l I'] E 7Tr(K" L). Extend f trivially to 01' + I . Set 

M = L u U ej u U < + I u e� + t 
j ; > 1 

where ej" + 1 has characteristic map <P I with <Pl l o1' + 1  = .f Clearly 
O[<P I ] = a ' o['P I ] ' But <P l l o1' + 1  is freely homotopic in Kr to 'PI / 01'+ 1 .  Thus, 
by (7 . 1 ) ,  K A M rel L .  

To realize the operation R I -,>- R I  + pR2 ,  let 'P : (1'+ 1 , 1', J') -,>- (K, K" eO) 
be the canonical representative of ['P I ] +  ['P2] ' where 'P2 represents p '  ['P2] 

Then 0['P] = 0['P t l + P ' o['P2] = L (a l j+ pa2)[.pj] '  Notice that 'P(01' + I ) c Kr 
j 
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c K, U e2+ 1 . Also 'P l iW+ 1 is homotopic in K, U e2+ 1 to 'Pl l al' + 1 because 
cp� I I '  is homotopic (rei al') in K, U e2+ 1 to the constant map at eO . (In fact 
cp� is the homotopy !) Therefore we may attach a new cell with characteristic 
map 7>1 such that 7> l l a]' + 1 = 'P I a/' + I and thus construct a new complex M 
with the desired matrix such that 

K = [K u U e� + I ] I\i [K u U e; + I U /' + I ] = M rei K u U e; + I . r i I r i> 1 I cpl�/" + 1 ' r  i > 1 I 

Finally, a matrix operation of type III may be realized by elementary 
expansions of K. 0 

(8.4) Suppose that (K, L) is a pair in simplified form which has matrix A with 
respect to some set of characteristic maps. Suppose further that A can be 
transformed to an identity matrix Iq by operations of type (I)-(V), where (I) , 
(fI) and (I II) are as in (S . 3) and (IV) and (V) are the analogous column 
operations. 

IV. Cj -J>- ± Cj · 1X 

V. Ck -J>- Ck + CiP 
Then K I\i L reI L. 

(IX E 711 c Z71 I) 

(p E Z71I ) 

PROOF: Suppose that (aij) -J>- Iq by these five types of operations. Obviously 
the type III operations may all be done first. Then, as i s  well known, operations 
of type I and II (IV and V) correspond to left (right) multiplication by 
elementary matrices. [By an elementary matrix we mean either a diagonal 
matrix with all I 's except a single ± IX (IX E 711) on the diagonal , or a matrix 
which has all ones on the diagonal and a single non-zero entry 
aij = pep E Z71l) off of the diagonal.] Thus we have 

Iq = B (� �) C, [B, C products of elementary matrices] 

C- 1 = B (� �) 
Iq = CB (� �) [CB a product of elementary matrices] 

So A can be transformed to the identity by operations (1), (II), (III) only. 
Hence by (S.2) and (S .3) ,  K I\i L reI L. 0 

We come now to our first major theorem. 

(8.5) Jf (K, L) is a CW pair such that K and L are I -connected and K '" L then 
K I\i L rel L. 

PROOF: By {7.4) K I\i J rei L,  where (J, L) is in simplified form. Let A be the 
matrix of (J, L) with respect to some set of characteristic maps. Then since 
71IL = { I }, Z71l = Z. Thus A is a non-singular matrix with integral 
coefficients. It is well-known that such a matrix can be transformed to the i 

l 
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identity matrix by operations of types ( I) ,  ( I I) ,  ( IV) and (V). Therefore, by 
(8.4) ,  J A L rei L. 0 

The proof in (8 . 5) depends on the fact that 7l.. is a ring over which non­
singular matrices can be transformed to the identity. The next lemma shows 
that the algebra is not always so simple. 

If G is a group then a unit in 7l..(G) is an element with a two-sided multi­
plicative inverse. The elements of the group ± G = {g ig E G } v { -g ig E G} 
are called the trivial units, and all others are called the non-trivial units of  
7l..(G) . 

(8.6) A .  Suppose that G is an abelian group such that 7l..(G) has non-trivial units. 
Then there is a non-singular 1.(G) matrix A which cannot be transformed to an 
identity matrix by any finite sequence of the operations (I)-(V). 

B. The group G = 7l.. 5 is an abelian group such that 7l..(7l.. 5) has non-trivial 
units. (Infinitely many such groups will be given in ( 1 1 .3) .) 

PROOF: Let a be a non-trivial unit of 7l..(G) and let A = (a) be the one-by-one 
matrix with a as entry. Since G is abelian, 1.(G) is a commutative ring. Thus 
the determinant operation gives a well-defined map from the square matrices 
over 7l..(G) to 7l..(G) which satisfies the usual properties of determinants. The 
operations (II), (III) and (V) transform any given matrix into another matrix 
with the same determinant. Operations (I) and (IV) multiply the determinant 
by a trivial unit. Thus if B is a matrix into which A can be transformed , 
det B = g ' (det A) = ga for some trivial unit g. Therefore det B is a non­
trivial unit and , in particular, B cannot be an identity matrix. 

To see that 1.(1. 5) has non-trivial units, let 1.5 = { I ,  t, t2 , t 3 ,  t4 } . Then 
a = 1 - t + t2 is a non-trivial unit since ( 1 - t+ t2)(t + t 2 - t4) = I .  0 

The next lemma shows that the algebraic difficulties illustrated in (8 .6) 
can , in fact, always be realized geometrically. 

(8.7) If G is a group which can be finitely presented and A is a non-singular 
1.( G) matrix then 

( 1 )  There is a connected CW complex L with 7TI(L, eO) = G. 
(2) For any connected complex L with 7TI(L, eO) = G, there is a CW pair 

(K, L) in simplifiedform such that the matrix of (K, L) J'l'ith respect to some set 
of characteristic maps is precisely A.  

PROOF: Suppose that G is given by generators XI ' . . .  , Xm and relations 
R ,�x I ' . . .  , xm) = 1, (i = 1 , 2, . . . , n). Let LI = eO V (el V . . .  V e�), a 
wedge product of circles, and let Xj be the element of the free group 7TI(L I , eO) 
represented by a characteristic map for eJ . Let 'P, : oI2 -'>- L 1 represent the 
element R/x1 , . • .  , xm). Finally let L = LI V [2 V . . .  V [2 . By successive CPI Cf'2 fPn 
applications of VAN KAMPEN'S theorem "I(L, eO) is precisely G. 

In proving (2), write A = (a,), a p x p matrix. Let K2 = L V � V . . .  V ei, 
where the eJ have characteristic map .pj with .p/oI2) = eO. As usual [.pj] 
denotes the element of 7TzCK2 , L) represented by .pj : (I2, It , J I ) -'>- (K2 , L, eO). 
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Let <.pj) denote the element of TT2(K2 , eO) represented by .pj and let 

01. : (K2 , eO , eO) � (K2 , L, eO) . Clearly 01.# <.pj) = [.pJ . Let/; :  ([
2 , oP) -+ (K2 , eO) 

represent I Qij<.pj) · Finally, attach 3-cel ls to K2 to get K = K2 U i{ 
j 

u . . .  U e; where the ef have characteristic maps 'Pi : (/3 , [
2
, )

2) -+ (K, K2 , eO) 
with 'Pd [2 = 01. 0 Ii.  Then 8['Pd = ['Pi l [ 2] = [01. 0 n = 01.# (I Qi/.pj» = IQiJ.pj] · 

j 
Thus we have constructed a pair (K, L) with K - L = U if u Uef such that 
the boundary operator O : TT3(K, K2 , eO) -+ TT2(K2 , L ,  eO) has matrix A .  

I t  remains only to show that K l". L .  I t  suffices by (3 .2) t o  show that 
TT.(K, L) = 0 for n � 3. For n � 1 ,  this is clear from the cellular approxima­
tion theorem and the connectivity of K and L. For n = 2, 3 we use the fact 
that 0 is an isomorphism because A was assumed non-singular. Thus, for 
n = 2, we have the sequence 

-------
o 

and by exactness it fol lows that TT2(K, L) = O. (Here TT2(K, K2) = 0 because 
K- K2 is  the union of 3-cells.) Finally note that TTiK, L) ;;;; TT3(K, L )  
;;;; H3(K, L ) ,  the last isomorphism coming from the Hurewicz theorem which 
applies because 0 = TT/K, L) ;;;; TTi(K, L )  for i = 1 , 2 and because L is 
I -connected by (3 . 1 3) .  To see that H3(K, L )  = 0 consider the commutative 
diagram 

Clearly a is an isomorphism so that, by exactness of the top line, 
H3(K, L) = O. Hence TT3(K, L) = o.  0 

Summarizing the situation : It . has been shown that in certain cases a 
homotopically trivial pair (K, L) must have K At  L reI L. This occurs (8 . 5) 
when TTJL = 0 or, more generally, (8.4), when all non-singular matrices over 
7L.(TTJL) can be transformed into identity matrices . Thus, by §4 and §5, the 
concepts of homotopy equivalence and simple-homotopy equivalence 
coincide among CW complexes with sufficiently nice fundamental groups. 
On the other hand we have exhibited « 8 .6) and (8 .7» simplified pairs with 
matrices which cannot be transformed to an identity matrix. We must ask 
now whether these matrices-or better, their equivalence classes under 
operations (I)-(lII)-are intrinsic to the problem or whether they are 

I 1 

I 

1 



Matrices and formal deformations 35  

merely artifacts. Starting with a pair (K, L) such that K L" L, does the equiva­
lence class of the matrix which appears when (K, L) is expanded and collapsed 
to a pair in simplified form depend on the particular choice of formal 
deformation ? 

Two observations are crucial . First, the equivalence classes of non­
singular matrices form a group, the Whitehead group of 7T1L-written 
Wh(7TIL). (This will be proved in the next chapter.) Second , if K A J reI L 
where (J, L) is in simplified form then it is implicit in the proof of (8 . 1 )  that 
the matrix of (J, L) is the matrix of the boundary operator 

Hr+ I(J, Jr) ---* H,(J" L). 

By definition of the cellular chain complex (page 7), this is the boundary 
operator in C(J , L ) where C(J , L ) is the chain complex 

� - , � -0 ---* Cr+ t(J, L ) ----'>- Cr(J,L )  ---* 0. 
Since J L" L ,  C(J, L ) is an acyclic 1(7TIL)-complex. Thus to an acyclic 
1(7T tL)-complex we have associated an element of Wh(7TIL). We would like 
to show that the element which is thus determined by C(J, L) is pre-deter­
mined by C(K, L) and, indeed, by (K, L). 

At this point a more sophisticated and algebraic approach is necessary. 
The next chapter will consist of a purely algebraic study of acyclic chain 
complexes, of the Whitehead groups of groups, and of the rich tapestry which 
can be woven from these strands. 



Chapter III 

Algebra 

§9. Algebraic conventions 

Rings and modules : 

Throughout Chapter III, R will denote a ring with unity satisfying : 
(*) If M is any finitely generated free module over R then any two bases of 

M have the same cardinality. 
All modules will be assumed to be finitely generated left modules-i.e. , 

when mUltiplying, ring elements are written to the left of module elements. 
It is an elementary exercise that a finitely generated free module has only 

finite bases. Thus, by these conventions, a "free R-module" always means an 
R-module with finite bases, any two of which have the same cardinality. 

It is well known that division rings satisfy (*). More generally we have : 

(9.1)  The condition (*) is satisfied by the ring R if there is a division ring D 
and a non-zero ring homomorphismJ: R -+ D. 

PROOF: By considering the matrices which occur in changing bases, one 
can see that (*) is satisfied by a given ring if and only if every matrix A, with 
entries in R, for which there is a matrix B with AB = 1m and BA = In is 
square (i .e. has m = n). 

Let f* be the induced map taking matrices over R into matrices over D 
given by f*« a,j» = (l(a,) . Since f is a ring homomorphism f*(AB) 
= f*(A)f*(B) for all A, B. Now suppose that A and B are arbitrary matrices 
such that AB = 1m and BA = In' Because f{l) is a unit, it follows that 
f{l)  = 1 .  So f*(Iq) = Iq for all q. Thusf* (A)f*(B) = 1m and f*(B)f*(A) = In. 
Hence, since D is a division ring. !*(A) is square, implying that A is square. 
Therefore R satisfies (*) .  0 

(9.2) If G is a group then £'(G) satisfies (*) . 

PROOF: The augmentation map A : £'(G) -+ (rationals) given by A(I n,g,) 
= I n" is a non-zero ring homomorphism. Apply (9. 1 ) .  0 

, 
Matrices : 

If J: MI -+ M2 is a module homomorphism where MI and M2 have 
ordered bases x = {Xl ' . . . , xp} and y = {Y l , . . .  , yq},  respectively, then 
<f)"., denotes the matrix (a,) where f(xJ = I aijYj' Thus each row of 

j 
<f)"" gives the image of a basis element of x. When the bases are clear from 

36 
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the context we simply write (f) to denote this matrix. When the meaning is 
extraordinarily unambiguous we may sometimes write f instead of (f) . 

Beware of the fact that these conventions lead to 

I f  x = {Xl '  . . . , xp } and Y = {Y l ' . . .  , Yp } are two ordered bases of the 
same module, M, then (x/y) denotes the non-singular matrix (aij) where 
Xi = I aijYj' If X, Y, z are bases of M then (x/z) = (x/y) (y/z) .  

j 
Suppose thatf: MI -+ Mz is a module homomorphism , and that x and x' 

are bases for M I ,  and Y and y' are bases for Mz. Then 

a simple formula to remember. 
The fact that a matrix can represent either a map or a change of  basis has 

the following expression in this notation. If x = {Xl '  . . . , xp } and 
Y = {Yl ,  . . .  , Yp } are two bases for the module M and if f: M -+ M is the 
isomorphism given by fey;) = Xi for all i, then (f)" ,  = (x/y) .  

Direct sums : 

If f: A -+ C and g :  B -> D then f (f) g :  A (f) B -+ C (f) D is defined by 
(f (f) g )(a, b) = (f(a), g(b)). 

§10. The groups KG(R) 

The group of non-singular n x n matrices (i.e. , matrices which have a two­
sided inverse) over the ring R is denoted by GL(n, .R). There is a natural 
injection of GL(n, R) into GL(n + I ,  R) given by 

Using this, the infinite general linear group of R is defined as the direct limit 
GL(R) = lim GL(n, R). (Alternatively, GL(R) may be thought of as the group -;. 
consisting of all infinite non-singular matrices which are eventually the 
identity.) For notational convenience we shall identify each A E GL(n, R) 
with its image in GL(R). 

Let E?, j (i i' j) be the n x  n matrix with all entries 0 except for a 1 (unity 
element in R) in the (i, j)-spot. An elementary matrix is a matrix of the form 
(l. + aEf, j) for some a E R. We let E(R) denote the subgroup of GL(R) 
generated by the elementary matrices. Elements of E(R) will be denoted by 
E, E1 , £z , etc. · 

In order to study GL(R)/ £(R), define an equivalence relation on GL(R) 
by : 

A ,....., B <:0> there are elements £1 ' £z E £(R) such that A = E1B£z. 
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We will shortly prove ( 10.2) that E(R) is normal , so that this is just the rela­
tionship of belonging to the same coset of E(R). In the meantime it is clear 
that A � B iff A can be gotten from B by a finite sequence of operations 
which consist of adding a left multiple of one row to another, or a right 
multiple of one column to another. More generally, instead of using rows, 
if PI and P2 are disjoint p x n and q x n submatrices of the non-singular n x n 
matrix A and if X is a p x q matrix, the following hold 

- - - - - - - - - - - - -( - - - - - - - - - - - - -

I. A � :3:) - B � (::�3::�J 
IR is immediate from the definition of matrix mUltiplication. IIR follows from 
IR by the sequence 

The corresponding operations on columns give rise to analogous equivalences 
which we call Ie and lIe. 

(10.1) If A , B are elements of GL(R) then AB � BA. 
PROOF: For sufficiently large n we may assume that A and B are both 11 x n 
matrices. Then AB = (A: �) � (AOB t) � ( _OB t) � ( _OB �) 
Similarly BA � ( � A �) 
Finally, using IIe and IIR 

(10.2) E(R) is the commutator subgroup of GL(R). 

PROOF: If E E E(R) and X E GL(R) , then (XE)X - I � X - 1 (XE) by (10 . 1 ) ,  
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SO XEX- 1 = E 1 EE2 e E(R). Given a commutator ABA - I  B- 1 we apply this 
with X = BA to get 

(AB)(A - 1B- 1) ( 1�l) [E1 (BA)E2](BA)- 1  = E1 [(BA)E2{BA) - 1] e E(R). 

Hence the commutator subgroup is contained in E(R). 
Conversely, a typical generator of E(R) is of the form (I. + aE;�,J . 

Noticing that (I. + aEtj) - l = (I" - aE;"), we can see that this generator is a 
commutator because 

(I. + aE�,J = (I. + aE;'j)(I. + Eb)(I. -aEtj)(I. - �7k)' 0 
From elementary algebra this gives immediately 

(10.3) If H is a subgroup of GL(R) containing E(R) then H is a normal sub­
group and GL(R)/H is abelian. 0 

Suppose that G is a subgroup of the group of units of R. Let EG be the 
group generated by E(R) and all matrices of the form 

where g e G. Then we define 

KG(R) == GL(R)
. 

EG 

By ( 10.3) this is an abelian group. We denote the quotient map by 
T :GL(R) -+ KG(R) and we call T(A) the torsion of the matrix A.  Since KG(R) 
is abelian and will be written additively, we have T(AB) = r{A) + r{B). 

Examples of KG(R) for the most popular choices of G :  
GL(R) 

1 .  K1(R) = 
E{R) 

, 

2. Kl (R) = KG(R), 

G = { I }  

G = { + 1 , - I }  
3 .  Wh(G) = KT(I(G» , where G is a given group, R = I(G) and 

T = G U ( - G) is the group of trivial units of 1( G). 

Kl (R) has the advantage, as does any KG(R) with - 1  e G, that mUltiplying a 
row (or column) by  ( - 1 ) does not change the torsion of a matrix, and so, 
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by lIR (lid neither does the interchange of two rows (or columns). The 
Whitehead group ofG, Wh(G),  is the most important example for our purposes. 

If G and G' are subgroups of the units of R and R' respectively then any 
ring homomorphism f: R -'>- R' such that f(G) C G' induces a group homo­
morphism f* : KG( R) -'>- Kc -C R') given by 

f*r((a i j» = r((f(ai) ) .  

f* is well-defined because, if (ai) E EG, then (f(aij» E EG , .  Thus we have a 
covariant functor { pairs (R, G) 1 { abel ian groups KcCR) ) 

ring homomorphisms 
-'>-

group homomorphisms 
f: R -'>- R' with f(G) c G' f* : KG(R) -'>- KG ,(R') 

This then gives rise to a covariant functor from the category of groups, and 
group homomorphistl1s to the category of abel ian groups and group 
homomorphisms given by 

G H Wh(G) 

(f: G -'>- G') H (f* :  Wh(G) -� Wh(G'» 

where f first induces the ring homomorphism Z(G) -+ Z(G') given by 
Lnigi -+ LnJ(gi), and this in turn induces f* as in the previous paragraph. 

As an exercise in using these definitions we leave the reader to prove the 
following lemma. (When we return to topology, this lemma will relieve some 
anxieties about choice of base points.) 

(10.4) If g E G and if f: G -+ G is a group homomorphism such that 
f(x) = gxg- I for all x then f* : Wh(G) -'>- Wh(G) is the identity map. 0 

The groups Wh(G) will be discussed further in the next section. 
In computing torsion the following lemma will be quite useful. 

(10.5) If A , B and X are n x n, m x m, and n x m matrices respectively and if 
r :  GL(R) -'>- KG(R) ,  where G is any subgroup of the units of R, and if A has a 
right inverse or B a left inverse, then 

( 1 )  (� �) is non-singular <0> A and B are non-singular. 

(2) If A and B are non-singular then 

r (� �) = r(A) + r(B), 
PROOF: ( I )  holds (for example, when B has a left inverse) because 

(A 0) = (In - XB- 1 ) (A X) o B 0 1m 0 B ' 
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where the middle matrix is in E(R) ( i t  is  the result of row operations on 
l. +m), and hence is non-singular. 

When A and B are non-singular, the above equation shows that 

T (� �) = T (� �) = T (� l�) + T (�. �) = T(A) + T  (�. �) . 
But a sequence of applications of IIR and then of II c yields 

(�. �) - ( - l�ml. �) - (� ( _ �) 2mJ 
Thus T (� �) = T(A) + T(B). D 

For commutative rings the usual theory of determinants is available and 
can be used to help keep track of torsion because the elementary operations 
which take a matrix to another of the same torsion in KG(R) can only change 
the determinant by a factor of g for some g E G. A precise statement, the 
proof of which is left to the reader, is 

(10.6) Suppose that R is a commutative ring and G is a subgroup of the group U 
of a/l units of R. Let SK1(R) = TG(SL(R)) where TG :GL(R) -+ KG(R) and 
SL(R) is the subgroup of GL(R) of matrices of determinant I .  Then there is a 
split short exact sequence 

c: [det] U 
0 -+ SK1(R) � KG(R) ( , _. -+ 0 

• G 

where [det](TA) == (the coset of(det A) in U/G) , and s(u · G) is the torsion of the 
1 x 1 matrix (u). In particular, if R is afield, [det] is an isomorphism. D 

Exercise : The group SK1 (R) = TG(SL(R)) defined in ( 1 0.6) is independent 
of G. For we have 

GL(R) � K1(R) � KG(R), 'TI" the natural projection ,  
'-. T[ / TG 

and 'TI"h(SL(R)) :T l(SL(R)) � TG(SL(R)). 
Finally, we close this section with an example due to WHITEHEAD which 

, shows that two n x n matrices may be equivalent by elementary operations 
while the equivalence cannot be carried out within the realm of n x n matrices . 
Let G be the (non-commutative) group generated by the elements x and y 
subject to the sole relation that y2 = I .  In l( G) let a = 1 -y and b = x(1 + y). 
Notice that ab =I- 0 while ba = O. Then the 1 x 1 matrix ( l -ab) is not an 
eiementary matrix , but since it represents the same element in Wh(G) as 

its torsion is O. 

( I -ab 0) = ( 1 0) ( 1 a) ( ' 0) - 1 ( 1 a) - 1 
0 '  b i O I  b I O I  ' 
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§11. Some information about Whitehead groups 

In the last section we defined, for any group G, the abelian group Wh(G) 
given by 

Wh(G) = KTCIG) 

where T is the group of trivial units of lLG. The computation of WHITEHEAD 

groups is a difficult and interesting task for which there has developed, in 
recent years, a rich literature. (See [MILNOR 1 ], [BASS I ] . )  We shall content 
ourselves with first deriving some facts about WHITEHEAD groups of abelian 
groups which are accessible by totally elementary means and then quoting 
some important general facts . 

(11 .1) Wh({ I }) = O. 

PROOF: This was proven in proving (8 . 5) .  0 

(11 .2) Wh(lL) = 0 [HIGMAN] . 

P ROO F: We think of the group lL as {t
i 
I i  = 0, ± 1 ,  ± 2, . . . } so that lL(lL) is 

, the set of all finite sums In/ . Notice that lL(lL) has only trivial units because 
the equation 

implies that '" + y = (j + 8 = O. Hence '" = (j, y = 8, and these units are 
trivial. 

Suppose that (aij(t)) is an (n x n)-matrix , representing an arbitrary ele­
ment W of Wh(lL). Multiplying each row by a suitably high power of t, if 
necessary, we may assume that each entry aij(t) contains no negative powers 
of t. Let q be the highest power of t which occurs in any aij(t). If q > 1 then 
we could obtain another matrix representing W in which the highest power 
of t which occurs would be q - l .  For, writing aij(t) = b ij(t) + k i}q(kij E lL) 
we would have 

( . .  ( )) '"" ( aij(t)) t · In) '"" ( b iit)) t ·  In) a I) t 0 I ( _ k . .  tq - 1) I n I) n 
Thus, proceeding by induction down on q we may assume that, for all 
i, j, aij(t) = b ij + C i} (b ij, cij E lL) .  Thus W may be represented by a matrix­
say m x m-with linear entries. 

Since (a ij(t)) is non-singular its determinant is a unit which, by the first 
paragraph, is ± tP for some p. Expanding the determinant, it follows that 
either det (b ij) = 0 or det (c ij) = O. We assume that det (b ij) = O. (The 
treatment of the other case is similar.) As is well known, integral row and 
column operations on the matrix (b i) will transform it to a diagonal matrix 
of the form 
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o 
Performing the same operations on the matrix a ij(t) ' Ieads to aij(t) 
= b;j+ cijt where b;} = 0 unless i = j :::; k. In particular, the bottom row 
is of the form 

MUltiplying the bottom row by r t and applying integral column operations 
(i .e. multiply a column by - I or add an integral mUltiple of one column to 
another) ,  the matrix (aij(t» can be transformed into an n x n matrix (aij(t» 
with linear entries and bottom row of the form 

(0 0, . . . 0, c;:'m) 

for some c�m E 71.. But ± rP, so c;:',., = ± I .  Hence the last 

column may be transformed to and W is represented by an (m - I )  

x (m -I) matrix with linear entries. Proceeding inductively, W may be 
represented by a I x I matrix (a). But then a is a trivial unit, so W = O. 0 

More generally, we cite the theorem of [BASS-HELLER-SWAN] 

(11.3) Wh(71. E9 . .  , E9 71.) = O. 0 

This is a difficult theorem which has been of great use in recent work 
([K IRBY-SIEBENMANN]) in topology in which the n-torus Sl x Sl X . . .  X s t 
has played a role. (The point is that 1Tl(SI x . . .  X Sl) = 71. E9 . . .  E9 71., so the 
BAss-HELLER-SWAN theorem implies, along with the s-cobordism theorem,s 

that an h-cobordisms with an n-torus at one end (n � 5) is a product). I t  
would be very nice to  have a simple geometric proof that Wh(SI x . . . X Sl )  
= O .  This i s  a fact which, as we shall see i n  §2 1 ,  i s  equivalent to ( 1 1 . 3) .  

We can also exhibit many non-zero WHITEHEAD groups. If G is  an abelian 
group, let U be the group of all units of 71.(G\ , and T the subgroup of trivial 
units. Then, by ( 10.6), 

8 Introduced i n  §25.  



44 Algebra 

In (8 .6) we showed that Wh(71.s) '" 0 because U/T ", O. More generally, we 
have 

(11.4) If G is an abelian group which contains an element x of order q '" I, 2, 3, 
4, 6 then Wh( G) '" O. In fact let j, k and a be integers such that 

j > 1 , k > I 

j + k  < q 

jk = aq ± I 

Such integers always exist. Then a non-trivial unit u of 7l.(G) is given by the 
formula9 

u = ( I + x +  . . .  + Xi - I)( I + x +  . . .  + .0 - 1) - a( I  + x +  . . .  + xq - I) 

PROOF: Let j > I be a prime number less than (q/2) such that j does not 
divide q. [It is an exercise that such a j exists provided q '" 1 , 2, 3 , 4, 6.] 
Then (j, q) = I ,  so there is an integer k, 0 < k < q, such thatjk = I (mod q). 
Set k = k if k :::; q/2 and set k = (q - k) if k > q/2. Then jk = aq ± l  for 
some integer a. 

If the element u, given by the formula in the statement of the theorem, is a 
unit then it certainly is a non-trivial unit. For, since 0 < (j + k - 2) < q _ l ,  
either a = 0 and u = I + ( . . .  ) + xi + k - 2, or a '" 0 and u = I + ( . . .  ) _ axq - I .  

Consider the case where jk = aq - l . Set K = q - k, j = q -j and 
a = q - k -j+ a. We claim that uv = 1 where 

v = ( I + xi + x2i + . . .  + x(Ii - I )i)( I + Xk + . . .  + XU- I )k) 

- a( l  + X + X2 +  . . .  + xq - I) 

To prove this claim it will suffice to consider the polynomials with integral 
coefficients, U(t) and Vet), gotten by replacing x by the indeterminate t in the 
formulas given for u and v respectively, and to show that 

U(t) V(t) = 1 +  (te I)P(t) 

for some polynomial P(t). We shall show in fact that (t - I ) and �(t) 
== (I + 1 + . . .  + tq - I) both divide U(t) V(t) - 1 . 

U(t) V(t) - l  is divisible by (t - I) because . 

U(l ) V(l ) - 1  = ( jk -aq)(jK - aq) - I  = ( - 1 )( - 1) - 1  = 0 
On the other hand 

( tili _ I) (tkJ - I) 
Vet) = -'-

1 
-k-

- a�(t) 
tJ - t - I  

9 This formula is implicit in the general arguments of [OLUM I ]  and in ( 12 . 10) of 
[MILNOR J ] . 
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So (til 1 ) (tkJ I ) 
V(t) V(t) = -- -- + A(t)�(t) 

t - I t - I 
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But each of the quotients shown is of the form 1 + B(t)�(t). For jk == - I  
(mod q), so we may write jk = I + bq for some b. Then 

C;l
_
-/) = 1 + (t + t2 + . . . + tq) + (tq + 1 + . . . + t 2q) 

+ . . .  + (t(h - l ) q + 1 + . . . + thq) = l + t�(t) + tq + I �(t) + . . .  + t(h - l ) q + I �(t) = I + B(t)�(t) 

Thus V(t) V(t) = [I + B(t)�(t)][ 1 + C(t)�(t)] + A(t):E(t) and it follows that 
�(t) divides V(t) V(t) - I . Thus uv = I .  

I n  the case where jk = aq + I ,  set k = k, j = .i and a = a. The same 
argument works. 0 

For cyclic groups ( 1 1 .4) can be greatly sharpened . In fact we have from 
[HIGMAN] , [BASS 2; p.  54] , and [BASS-MILNOR-SERRE ; Prop. 4. 1 4] ,  

(11.5) l/ 7I.. q is the cyclic group offinite order q then 
a) Wh(7I..q) is a free abelian group of rank [qI2] + 1 - S(q) where S(q) is 

the number of divisors of q. (In particular Wh(7I..q) = 0 if q = I , 2, 3 , 4, 6.) 
b) SKl(7I..(7I.. q» = 0 so (by 1 0 .6) the determinant map gives all isomorphism 

[det] : Wh(7I..q) -'>- VIT. 0 

Added in proof" Let G be a finite group. Then SKI (71.. G) is finite [BASS I ; 
p. 625]. But, in contrast to ( 1 1 . 5b), recent work of R. C. Alperin , R. K .  
Dennis and M. R .  Stein shows that, even for finite abelian G ,  SKI (7I..G) i s  
usually not zero. For example, SK1 (7I..2 E9 (71..3)3) ;;;;; (71..3)6 . 

From 0 1 .5) one sees that the functor Wh(G) does not behave very wel l  
with respect to direct products. However for free products we have 

(11.6) [STALLINGS I ] {f G I  and G2 are any groups then Wh(G j *G2) = Wh(G I ) 
E9 Wh(G2)· 0 

§12. Complexes with preferred bases [ =  (R, G)-complexes] 

From this point on we assume that G is a subgroup of the units of R which 
contains the element ( - I ) . For other tacit assumptions the reader is advised 
to quickly review §9. 

An (R, G)-module is defined to be a free R-module hi along with a 
"preferred" or "distinguished" family B of bases which satisfies : 
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If b and b' are bases of M and if b E B then 

b '  E B -= T«b/b '») = 0 E KG(R). 

If M 1 and Ml are (R, G)-modules and if f: Ml -+ Mz is  a module iso­
morphism then the torsion of I-written T(f)-is defined to be T(A) E KG(R), 
where A is the matrix of I with respect to any distinguished bases of Ml 
and M1. One can easily check that T(f) is independent of the bases chosen 
(within the preferred families). We say that I is a simple isomorphism of 
(R, G)-modules if T(f) = O. In this case we write I: Ml ;;;; Mz(L) . 

We have introduced the preceding language in order to define an 
(R, G)-complex which is the object of primary interest : An (R, G)-complex 
is a free chain complex over R 

C : 0 -+ Cn -+ Cn - 1 -+ . . .  -+ Co -+ 0 

such that each Ci is an (R, G)-module. A prelerred basis 01 C will always 
mean a basis c = UCi  where Ci is a preferred basis of Ci. 

If G is a group then a Wh(G)-complex is defined to be an (R, T)-complex , 
where R = :leG) and T = G U ( - G) is the group of trivial units of leG) .  

A simple isomorphism ol (R, G)-complexes, !: C -+ C, is a chain mapping 
such that (fICi) : Ci ;;;; C;(L), for all i. We write I: C ;;;; C(L). To see that, 
in fact ,  this is exactly the right notion of isomorphism in the category of 
(R, G)-complexes, notice that f: C ;;;; C(L) iff there are preferred bases with 
respect to which, for each integer i, the matrix of/l Ci is the identity and the 
matrix of di : Ci -+ Ci- l is  identical with that of d; : C; -+ C;- l ' 

Notice that a simple isomorphism of chain complexes is not merely a 
chain map I: C -+ C which is a simple isomorphism of the (R, G)-modules 
C and C. For example, let A be a non-singular n x n matrix over R with 
T(A) #- O. Let Cl , C; , Cz and C2 be free modules of rank n with specified 
preferred bases. Let C = C1 E9 C1 and C = C; E9 C:i. Define I: C -+ C 
and boundary operators d, d' by the diagram 

(f2) � A. 
C1 ----?) C2 

(d) � A. l 1 ( d ' )  �A. - I 
(I ) �A.-I 

Cl 1 ) c; 

Then I is a chain map and, clearly I is not a simple isomorphism of chain 
complexes, But I is a module isomorphism with matrix 

Hence by ( 10 .5), T(f) = 0, 
Our purpose in studying chain complexes is to associate to every acyclic 

(R, G)-complex C a well-defined "torsion element" T(C) E KG(R) with the 
following properties : 

PI : If C ;;;; C(L) then T(C) = T(C) 
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P2 : If C' Ei3 C" is the direct sum of C' and C" in the category of 
(R, G)-complexes1 o 

then T(C' Ei3 C") = T(C') + T(C") 

P3 : If C is the complex 
cl 

C :  0 --+ Cn '----7> Cn - I --+ 0 

then T(C) = ( _ l)n - l T(d) 
We shaH show that, in fact, there is a unique function T satisfying these 
properties and that these properties generate a wealth of useful information . 

§13. Acyclic chain complexes 

In this section we develop some necessary background material concern­
ing acyclic complexes. 

An R-module M is said to be stably free if there exist free R-modules 
Fl and F2 such that M Ei3 FI = F2 • (Remember, "free" always means with 
finite basis.) 

Notice that if M is a stably free R-module and if j :  A --+ M is a surjection 
then there is a homomorphism (i.e. a section) s: M --+ A such that js = 1M . 
For suppose that M Ei3 F is free. Then jEi3 1 :  AEi3F --+ MEi3F is a surjection 
and there is certainly a section S: MEi3F --+ A Ei3F (gotten by mapping each 
basis element to an arbitrary element of its inverse image). Then s = P 1Si ,  
i s  the desired section , where i 1 : M --+ M Ef> F and 11 1 : A Ei3 F --+ A are the 
natural maps. 

(13.1) Suppose that C is a free acyclic chain complex over R with boundary 
operator d. Denote B! = dC i +  l ,for all i. Then 

(A) B i is stably free for all i. 
(B) There is a degree-one module homomorphism S :  C --+ C such that 

Sd+ dS = 1 .  [Such a homomorphism is called a chain contraction.] 
(C) If S: C --+ C is any chain contraction then, for each i ,  dS IBi _ 1 = 1 

and Ci = Bi Ef> SBi- l · 
REMARK: The S constructed in proving (B) also satisfies S 2 = 0, so that 
there is a pleasant symmetry between d and S. Moreover, given any chain 
contraction S, a chain contraction S' with (S') 2 = 0 can be constructed by 
setting S' = SdS. 

PROOF: Bo = Co because C is acyclic. So Bo is free. Assume inductively 
that Bi- I is known to be stably free. Theil there is a section s :Bi _ 1 --+ Ci. 
Because C is acyclic the sequence 

is thus a split exact sequence. Hence Ci , = Bi Ef> s(Bi_ l ) where s(Bi _ I), 

1 0 i .e., the preferred bases for (C' Ell eN), are determined by a basis which is the union 
of preferred bases of e; and of e7. 
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being isomorphic to B,_ I '  is stably free. So there exist free modules FI , F2 
such that s(Bi- l )  EEl FI = F2 • Therefore 

Bi EEl F2 = Bi EEl s(Bi _ l ) EEl FI 
= Ci EEl Fl ' 

Since Ci is free, this shows that Bi is stably free, and (A) is proven . 
By (A), we may choose, for each surjection di :Ci � Bi - l '  a section 

8 j :Bj_ 1 � Ci. As in the proof of (A) i t  follows that Ci = Bi EEl 8/Bj_ 1 ). 
Define Il :C � C by the condition that, for all i, 

This yields : 
Il IBi = Il i + I ;  Il l ll i(Bi - I ) = O. 

d d . . . � Cj ' ) Ci- I ( ) Cj - 2 � • • •  8 8 
I I  I I  I I  

�B;;r; ' 

8Bi _ 1 +-;;- IlBj_ 2 +-;;- IlBj_ 3 •  

Clearly dll + Ild = 1 .  This proves (B). 
Suppose finally we are given Il :C � C such that dll + Ild = 1 .  Then 

dll lBj_ 1  = (dll + Ild) IBi _ 1  = I B , _ , . Hence (1l IBi- 1 ) :Bi - 1 � Ci is a section 
and , as in (A), Ci = B I EEl IlBi _ l •  0 

(13.2) If 0 � C' � C � C" � 0 is an exact sequence of chain complexes over 
R, where C" is free and acyclic, then there exists a section s : C" � C such that 
s is a chain map and i + s : C' EEl C" � C is a chain isomorphism. 

PROOF: Let d, d' and d" be the boundary operators in C, C' and C" respec­
tively. Let 8" : C" � C" be a chain contraction. Since each C% is free, there are 
sections ak :C% � Ck• These combine to give a section a : C" � C. 

[Motivation : The map (ad" - da) is a homomorphism of degree ( - 1 ) 
which measures the amount by which a fails to be a chain map. If we wish to 
add a correction factor to a-i.e. , a degree-zero module homomorphism f 
such that a +f is a chain map-then a reasonable candidate is the map 
f = (da - ad")8" .  Noticing that then a +f = da8" + all"d" ,  we are led to the 
ensuing argument.] 

Let s = dall" + all"d". Then ds = dall"d" = sd". So s is a chain map. Also 

js = j(dall" + all" d") = jdall" + 8" d" = d"(ja)Il" + Il" d" 
= d"Il" + Il"d" = 1 .  

Thus s is a section . Finally, the isomorphism i + s which comes from the 
split exact sequence 

O � C' � C � C" � O � .. 
is clearly a chain map, si nce i and s are chain maps. 0 
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We close this section with a lemma which essentially explains why, in 
matters concerning torsion,  it will not matter which chain contraction of an 
acyclic complex is chosen . 

(13.3) Suppose that C is an acyclic (R,G)-complex with chain contractions eS and 
O. For fixed i, let I Et> eSd: Ci � Ci be defined by 

Then (A) 1 E9 eSd is a simple isomorphism. 
(B) If Bi and Bi - I happen to be/ree modules with bases b i  and b i - I and 

if Cj is a basis 0/ Ci thell T(b i u eSb i _ dC i )  = T(b i U ob i _  dc;) . 

PROOF: Denote g = 1 E9 eSd. Clearly g is an isomorphism since, by ( 1 3 . 1 C), 
eSd:oBi_ 1 � eSBi- I '  If Bi and OBi - I were free then we could , by using a basis 
for Ci which is the union of a basis for Bi and a basis of oBi- l o  write down a 
matrix which clearly reflects the structure of g. This observation motivates the 
following proof of (A). 

Bi and oBi - 1  are stably free, so there exist free modules FI and F2 such 
that FI Et> Bj and oBi - 1 E9 F2 are free. Fix bases for Ft and F2 and take the 
union of these with a preferred basis for Ci to get a basis c of Ft E9 Ci E9 F2• 
Let G = I F , E9 g Et> I F, :FI Et> Ci Et> F2 � FI Et> Ci Et> F2 . Then 

So T«G) c , c) = T(g). 
Now choose bases b l  and b2 for (FI E9 Bi) and (oBi- t Et> F2) and let 

b = bl U b2 ,  another basis for Ci. Notice that (G)c , c  = (c/b) (G)b ,b(C/b) - I ,  
so T« G)c , c) = T( G)b ,b)' But in fact 

To see this, suppose y = oz + w where Z E Bi- l and W E  F2 • Then 
G(y) = M(oz) + w = eSz + w. Because d(eSz - oz) = z - z = 0, we can 
write eSz = OZ + x for some x E Bi• Thus G(y) = (oz + x) + w = x + y 
where x E FI E9 Bi• 

Therefore T(g) = T«G)c , c) = T«G)b ,b) = O. 
To prove (B), suppose that b i = {u t " • •  , up } and b i- t = {V I " ' "  vq} 

are bases of Bi and Bi- t respectively. Let b = b i  U Obi - I ' Then 
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(1 EEl 8d)(u) = Uj and (1 -EEl 8d)(Jvk) = 8vk >  and it follows, as pointed out in  
§9, (page 37), that 

(b i U 8b i - 1 /b i  u Jbi _ l ) = ( I EEl 8d)b , b ' 

By the proof of (A), T«l EEl 8d)b ,b) = O. Thus 

0 =  T(b i  U 8bi - t lb i  U Jbi _ l ) = T«bi U 8b i - t !Ci) (bi u Jbi _ t !Ci ) - I ) 
= T(bi u 8b i _ t ic i) - T(bi U obi - dc). 0 

§14. Stable equivalence of acyclic chain complexes 

An (R, G)-complex C is defined to an elementary trivial complex if it is 
of the form 

d 
C :  0 -->- C. -+ C. - I  -->- 0 

where d is a simple isomorphism of (R, G)-modules. (Thus, with respect to 
appropriate preferred bases of C. and C. - I ' (d) is  the identity matrix.) 
An (R, G)-complex i s  trivial if it  is the direct sum, i n  the category of 
(R, G)-complexes, of elementary trivial complexes. 

Two (R, G)-complexes C and C' are stably equivalent-written C ,.!.,  C' 
-if there are trivial complexes T and T' such that C EEl T � C' EEl T(l:). I I  
It is easily checked that this is an equivalence relation. 

Just as we showed (§7) that any homotopically trivial CW pair (K, L) is 
simple-homotopy equivalent to a pair which has cells in  only two dimensions, 
we wish to show that any acyclic (R, G)-complex is stably equivalent to a 
complex which is zero except in two dimensions. 

(14.1) If C is an acyclic (R, G)-complex of the form 

and if 8 :  C -->- C is a chain contraction then C ,.!.,  C1 where C1 is the complex 

PROOF: For notational simplicity we shaH assume that i = O. This will in  
no way affect the proof. 

Let T be the trivial complex with TI = T2 = Co, Ti = 0 otherwise, and 
02 = 1 :  T2 -->- TI • Let T be the trivial complex with T� = T{ = Co, T! = 0 

1 1 WHITEHEAD called this relation "simple equivalence" and wrote C == C' (1:). However, 
as it is  too easily confused with "simple isomorphism" we have adopted the terminology 
i ndicated. 

1 
I 
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otherwise, and a ;  = 1 :  T; -'>- To. We claim that C EB T � C6  EB T'(�). 
The relevant diagrams are 

C EB T: . . .  -'>- C3 ---+ C2 CI d l  
d,ED I � 

EB � EB /0 Co -'>- 0 

Co Co 

Define f: C EB T -'>- C 6 EB T' by 

fi = 1 ,  if i + 1 

fl (CO + CI) = 8 IcO + (c! + dl c l ) ,  if Co E Co and C I E Ct . 

We leave it to the reader to check that f is a chain map. To show that f is a 
simple isomorphism we must show that each fi is a simple i somorphism. 
This is obvious except for i = 1 . But 

Co CI 

(I > 
_ Co ( 0 <8 t » _ ( - I 

1 -
CI (d! > I - 0 

(This is because, by the conventions of §9, (8 1 ) <d1 >  = (dI 8 1 > 
= (d1 8 1 + 8odo >  = I.) Thus,  by ( 10 .5) ,  "'(/1) = O. 0 

If C is an acyclic (R, G)-complex an inductive use of ( 14. 1 )  immediately 

yields the result that C � C' for some (R, G)-complex C' which is 0 except 
in two dimensions._This is the only consequence of ( 14. 1 )  which we will use. 
However, in order to motivate the definition to be given in the next section 
we give here a precise picture (at least in  the case when 8 2 = O)of the complex 
C' which i s  constructed by repeated application of ( 14. 1 ) .  

(14.2) Let C be an acyclic (R, G)-complex with boundary operator d and chain 
contraction 8 satisfying 8 2 = 0 and let 

Codd = C1 EB C3 EB . .  . 
C.ven = Co EB C2 EB . . .  . 

Then C is stably equivalent to an (R, G)-complex of the form 
(d H)I Codd 

C' : 0 -'>- C;,. = Codd -----'>-) C;"- l = Coven -'>- 0 

for some odd integer m. 

PROOF: Let m be an odd integer such that C is of the form 0 -'>- Cm -'>- Cm -,.. 
---+ • • • -l> Co -'>- o. (We allow the possibility that Cm = 0.) If j :s; m,  let 
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Cj = Cj E9 Cj- 2 E9 Cj - 4  E9 ' "  . Let DI be the chain complex 

. C d C d C' d' , D' : O  -+ m -+ ' " -+ 1 + 2  -+ i + 1  -+ Cj -+ O 

where d is the boundary operator in C and d' = (dICi + I) + (d+ 8)IC; _ I ' 
It is easily checked that Di is a chain complex, DO = C and nm- I = C'. 
Now define l1i  = 11 :  DI -+ Dl, a degree-one homomorphism, by 

I1IC; + I = (8IC, + I) 0 7T� where 7T: C;+ 1 -+ Ci + 1 is the natural projection, 

Then 11 is a chain contraction of DI. This is easily checked once one notes 
(with di denoting the boundary operator of Di) that 

(dil1 + D.di) I C/+ I = (d8 + 8d)IC1 + I E9 (d+ 8)2ICi_ 1  = l c; + l  
since d2 = 8 2  = O. 

Thus D' and 11' satisfy the hypothesis of ( 14. 1 ) .  The conclusion of ( 14. 1 )  

says precisely that Dl � Di+ l . By induction , C � C. n 

§15. Definition of the torsion of an acyclic complex 

Motivated by ( 14.2) we make the following definition : 

Let C be· an acyclic (R, G)-complex with boundary operator d. Let 8 be 
any chain contraction of C. Set 

Codd = CI E9 C3 E9 . .  . 
Ceven = Co E9 C2 E9 . .  . 
(d+ 8)odd = (d+ 8) ICodd:Codd -+ Ceven· 

Then T(C) == T«d+ 8)odd) E KG)R). 
In particular, if C is a Wh(G)-complex then T(C) = T« d+ 8)odd) E Wh(G) . 
Unlike ( 14.2), the definition does not assume that 8 2 = O. This would be a 

totally unnecessary assumption, although it would be a modest convenience 
in proving that T( C) is well-defined. 

We shall write d+ 8 instead of (d+ 8)Odd when no confusion can occur. It is 
understood that T( C) is defined in terms of preferred bases of Codd and Covon. 
If c = Uc,  is a preferred basis of C then T(C) = TC<d+ 8)codd ,ceven) where 
Codd = (c i  U C3 U . . . ) and coven = (co U C2 U . . .  ) .  For convenience 
<d+ 8)codc loceven will be abbreviated to <d+ 8)c  or simply to <d+ 8)  when the 
context is unambiguous. 

I 
* 



Definition of the torsion of an acyclic complex 

The form of <d+ 8) is 

) 
53 

However, the reader must not fall into the trap of concluding that "r(d+ 8) 
= r(dt) + r(d3) + . . . " .  For the matrices <d) are usually not invertible, 
or even square. 

To show that r(C) is wen-defined, we must show that <d+ 8)  is non­
singular and that r(d+ 8) is independent of which preferred basis i s  used and 
of which chain contraction 8 i s  used . 

(15.1) Let c be a basis for C. Then «d + 8)odd) c and «d + 8)even) c are non­
singular with r«(d+ 8)odd) c) = - r«(d+ 8)even)c). 

Therefore 

By ( 10 .5) this matrix is non-singular and has zero torsion. A similar assertion 
holds for «d+ 8)even) c« d+ 8)Odd)c and the result follows. 0 

(15.2) Let c = UCi and c' = Uc; be bases of C, where the Ci and C; are 
arbitrary bases of Ci• Then 

r«d+ 8)J = r«d+ 8)c ') + I ( _ l ) ir«C; /C) . 
i 

In particular, if the Ci and C; are preferred bases, r«d+ 8)c) = r«d+ 8)c') ' 
so r(d + 8) is independent of which preferred basis is used. 
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Therefore, using ( 1 0. 5) ,  

.,.( <d+ S)c) = � ><C2 i + dC2 i + 1 )  + .,.«d+ S)c ') + L .,.<Ci ;!C2 i )  i i 

= .,.«d+ S )c') + L ( - IY.,.(c; Ic ;) .  0 
j 

(15.3) Suppose that C is an acyclic (R, G)-complex with chain contractions 
S and J. Then .,.(d+ S) = .,.(d+ J). 

PROOF: (All calculations will be with respect to a fixed preferred basis.) 

.,.(d+ J) - .,.(d+ S) = .,.« d+ J)odd) + .,.« d+ S)even) ,  by ( 1 5 . 1 ) 

= torsion of 

= .,.«d+ S) 0 (d+ J) ! Codd) 
= .,.«Sd+ dJ + M) ! Codd) 

Cs 

<SJ) � )  
<Sd+ dJ) . < SJ> . . . 

= L .,.«Sd+ dJ) ! C2 i + 1 ) , by ( 10. 5) , if each (Sd+ dJ) ! C2 i + 1 is non-singular. 
j 

Notice, however, that (Sd+ dJ) ! Cj = 1 E9 Sd: Bj E9 JBj_ 1 � Bj E9 SBj- 1 • 
(Here Bk = dCk + d For, if bj E Bj and bj- 1 E Bj- 1 we have 

(Sd+ dJ)(b) = bj 

(Sd+ dJ)(Jbj_ 1) = (Sd)(bbj_ 1) + ( I - Jd)(Jbj_ l ) 

= Sd(Jbj_ 1) + Jbj _ 1 - Jbj_ 1 

= Sd(Jbj_ 1) .  

Hence, by ( 1 3 .3A), (Sd+ dJ) ! C2 i + l is  a simple i somorphism. Thus .,.(d+ J) 
= .,.(d+ S). 0 

This completes the proof that .,.(C) is well-defined . 

§16. Milnor's definition of torsion 

In [MILNOR 1] the torsion of an acyclic (R,  G)-complex C with boundary 
operator d is formulated as follows : 

For each integer i, let B; = dCi+ 1 and let C i be a preferred basis for Ci. 
Let Fi be a free module with a distinguished basis such that Bi E9 Fi is also 
free. For notational convenience, set Gi = Fi- 1 • Choose bases bi for Bi E9 Fi 
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in an arbitrary manner and let C; be the natural distinguished basis for 
Ci ED Fi ED Gi. Then 

is an exact sequence of free modules. Let 6.i : Bi - 1 ED Fi - I -)- Ci ED Fi ED Gi  
be  a s€ction. Set b ib i - 1 = b i  U 6..(bi _ I) , a basis for Ci ED Fi ED Gi. 
MILNOR'S torsion, TM(C), is defined by 

TM(C) = I ( _ l) i T<b ib i - I /C; ) .  
i 

(16.1) If C is an acyclic (R, G)-complex then T(C) = TM(C). 

PROOF: Let Ti be the trivial complex 0 ->- Gi+ 1 � Fi ->- 0, where Ti is 0 
except in dimensions i and i + 1 ,  and G i + 1 = Fi with the same distinguished 
basis. Let C' = C ED To ED TI ED . . .  Tn - I (n = dim C). We claim that 
T(C') = T(C). For let d' be the boundary operator in C'. Let 15 be a chain 

contraction of C and let 15 '  = 15 ED EO ED . . .  ED 0n- I where 0i : Fi � Gi + I . 
Clearly 15' is a chain contraction of C'. Moreover, <d' + 15 ' )  is gotten from 
<d + 15) simply by adding identity blocks of the form 

�. 
F2 i \( . G2 i + 2 -- ---- ----- -- ----o 0 
I 0 I 0 

o 0 
These cannot change the torsion, so T(C) = T(C'). It remains to show that 
T(C') = TM(C). 

Let 6. i : Bi - 1 ED Fi- I ->- (Ci ED Fi ED Gi) = C; be the section and C; the 
preferred basis of C; given in the definition of TM(C). Let B; = d'(Ci + I ) 
= Bi ED Fi· So C; = B; ED 6.jB;_ I . Let the chain contraction 6. : C' ->- C' 
be given by 

Set b = U (b ib i - I) , a basis of C'. Then T( <d' + 6.)b) = 0 because the basis b 
i 

has been chosen so that, for each i, 

o I 0 )  I o 
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Letting c' = UC;, ( 1 5 .2) then gives 

T(C) = T«d' + �>c ') = T«d' + �>b) + I ( - I ) iT(bib ; _ t /c1 > 
= I ( _ l) iT(b ib i _ t 1C; > 
= TM(C), 0 

Though we shall not use the greater generality, it is interesting to note 
how MILNOR used this formulation to define T(C) not only when H*(C) = 0, 
but also in the case when each Hi( C) is free with a given preferred basis h j 
and each Cj is free with preferred basis Cj • In these circumstances one has 
short exact sequences 

0 -", Zj -", Cj -", Bj_ 1 -", 0  

o -'" B j -'" Z j -)0 Hj -'" O. 

Arguing as in ( 1 3 . 1 )  all the Bj and Z; can be seen to be stably free, and there 
are sections 1'i ; : B; _ 1 -'" Cj and sj : Hj -", Zj. Thus 

Cj = Zj E9 I'i jBj _ 1 = sj(Hj) E9 Bj E9 I'i jBj _ 1 · 

Clearly sj(h;) is a basis of s;(Hj). Choose Fj = G j + 1 so that Bj E9 Fj is free. 
Let � j = S j  E9 I F, _ "  and let bj be any basis of Bj E9 Fj• Then 
s;(h ;) u bj U �;(b j - l) is a basis for Cj E9 Fj E9 Gj• This basis is denoted 
b jh jb j _ 1 . Again let C; denote the trivial extension of Cj to a basis of 
Cj E9 Fj E9 Gj •  Then MILNOR defines 

T(C) = I ( - I ) iT(b;h jb j _ t lc1 > · i 
For more details the reader is referred to [MILNOR I J. 

§17. Characterization of the torsion of a chain complex 

In this section we prove (as promised earlier) that the torsion operator T 
satisfies properties PI-P3 below and is, in fact, the only operator to do so. 
Moreover T induces an isomorphism of stable equivalence classes of acyclic 
(R, G)-complexes with KG(R). 

(17.1) If R is a ring and G is a subgroup of the units of R containing ( - I) ,  
and if � is the class of acyclic (R, G)-complexes, then the torsion map 
T :� -'" KG(R) defined in § 1 5 satisfies 

PI : C :;:; C'(�) :;.  T(C) = T(e) 

P2 : T(e E9 C") = T(C') + T(C") 
d 

P3 : T(O -'" C. -)0 C.- 1  --i> 0) = ( - I ). - IT(d). 

PROOF: In what follows, d, d', d" denote boundary operators for C, C, C" 
respectively. 

i 

1 
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Suppose that f: C :;;:; C'(L) . As pointed out in § I 2, this means that there 
are distinguished bases of C and e' such that <d.) = <d�) and <f.) = 1, 
for all n. Choose a chain contraction 0 :  C -+ C and let 0' = flf- I .  Then 
<d+ o) = (d' + o ') . Therefore r(C) = r(e') and PI is verified. 

Assume that C = e' EEl C (so d = d' EEl dn) and that 0' , on are chain 
contractions for e' and C. It follows that 0 = 0' EEl on is a chain contraction 
for C. Since permutation of rows or columns does not change the torsion of a 
matrix, we have 

r(C) = r<d+ o) = r« d' EEl dn) + (0 '  EEl on» « d' + O ' )  0 ) = r 0 <dn + on) 

= r(e') + r(C). 

Finally, suppose that C is : 
d 

O -+ C. � C. _ I -+ O. 

Set OJ = 0 if j i= n and 0. = d;; I : C' _ 1 -+ C • .  If n is odd , o lCodd = 0 so 
rC = r(d) = ( - I)" - I r(d). We leave the case where n is even to the reader. 0 

The property P2, as stated, is too restrictive for practical situations where 
more general short exact sequences usually occur. We diverge briefly to 
prove a more general form of P2 which we call P2. 

(17.2) Suppose that 0 -+ e' � C '!"" Cn -+ 0 is a short exact sequence of 
acyclic chain complexes and that 0' :  Cn -+ C is a degree-zero section (but not 
necessarily a chain map). Assume further that C, C' and Cn are (R, G)-com­
plexes with preferred bases c, c' and cn. Then 

r(C) = r(e') + r(Cn) + I ( _ l )kr<C"Ck/Ck) 

where c"c;; == i(cD V a(c;;). In particular, if i« ) V a(c;;) is a preferred basis of 
Cdor all k, then r(C) = r(e') + r(C). 

PROOF: By ( 1 3 .2) there is a chain map section s :  C -+ C such that 
i+ s :  C' EEl C -+ C is an isomorphism. The bases Yk = iCc,,) V s(cD of the 
Ck make C into a new (R, G) complex CY. Clearly i+ s: e' EEl Cn :;;:; cY(L). 
Hence, using property Pl, r(CY) = r(e') + r(C). Let 0 be a chain contraction 
of C. Then, 

r(C) = r« d+ o)c) 

= r«d+ o)y) + I ( - Itr(Yk/ck) ' by (1 5.2) 
k 

= r(CY) + I ( - I)kr(Yk/ck) 

= r(e') + r(Cn) + I ( - ltr<Yk/ck) ' 
Finally, r(c"cZ!ck) = r< Yk/Ck) '  For, the short exact sequence of free 
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(R, G)-modules 0 -+ Ck -+ Ck -+ Ck -+ 0 may be thought of as an acyclic 
(R,  G)-complex, and the result follows from ( I 3 .3B). 0 

(17.3) If CC is the class of acyclic (R, G)-complexes then the torsion map 
T :  CC -+ KG(R) is the only function satisfying properties PI-P3 of( 1 7. 1) .  

PROOF: By ( 17 . 1 ) ,  T does satisfy these properties. Suppose that 

p. :CC -+ KG(R) also does so. Using ( 14.2), c ;.. c' where C' is 
o -+ C;,. � C;,. - 1 -+ O. Then C EB T � C' EB T'(�) for some trivial complexes 
T, T' . Properties PI-P3 imply that T(C) = T(C) + T(T) = T(C') + T(T') 
= T(C'). Similarly p.(C) = p.(C'). But by P3, T(C') = ( _ l )m - 1T(d') = p.(C'). 
Thus T(C) = p.(C). 0 

(17.4) Let CC 0 be the set of all stable equivalence classes of acyclic (R, G)­
complexes, viewed as a semi-group under the operation 

[Cl + [C'l = [C EB C'l 

where [Cl denotes the equivalence class of C. Let TO :CC 0 -+ KG(R) by 

TO[C] = T(C). 

Then CC 0 is a group and TO is a group isomorphism. 1 2 

PROOF: Since KG(R) is a group, the result will follow once we show that TO 
is a semi-group isomorphism. 

The proof that TO is a well-defined, surjective homomorphism is left to 
the reader. 

To see that TO is one-one, suppose that TO[C] = To[Dl. Choose an odd 
integer p > max {dim C, dim D}. Repeated use of ( 14. 1 )  allows us to assert 
that ' 

C ;.. C' = (0 -+ C; � C;- 1  -+ 0) 

D ;.. D' = (0 -+ D; � D;- 1  -+ 0). 

Adding a trivial complex to C' or D' if necessary, we may assume that C; 
and D; have equal rank. Choose distinguished bases for C' and D'. We 
define f: C' -+ D' by defining fp : C; -+ D; to satisfy the condition that 
<fp> = I and by setting fp_ l = 6.fid,) - I . Clearly f is a chain isomorphism. 
Also -r(fp) = 0 and T(fp- l) = T(6.) + T(fp) - T(d') = To[Dl - TO[C] = o. Thus 
f is a simple isomorphism. This proves that [C] = [C'l = [D'l == [Dl, so 
TO is one-one. 0 

§18. Changing rings 

As usual , (R, G) and (R', G') each denotes a ring and a subgroup of the 
units of this ring which contains - 1 . 

12 This theorem has also been observed by [COCKROFT-COMBES]. 
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If C is an (R, G)-complex and h : R  � R' is a ring homomorphism with 
h(G) c G' then we may construct an (R', G')-complex Ch as follows : Choose 
a preferred basis c = {cD for C, and let Ch be the free graded R'-module 
generated by the set c. We denote c = e when c is being thought of as a subset 
of Ch• Define a :  Ch � Ch by setting a( eD = L h(akj)W 1 if d(ci) = L akjCr I . 

j j 
We stipulate that e is a preferred basis of Ch, thus making Ch into an 
(R' , G')-complex. [That Ch is independent, up to simple isomorphism, of the 
choice of c follows from the fact that the induced map h* : GL(R) � GL(R') 
takes matrices of 0 torsion to matrices of 0 torsion. This will be made clear in 
step 6 at the end of this section when we redefine Ch as R' ® hC,] 

This change of rings is useful for several reasons. One reason is that Ch 
may be acyclic even when C is not. Thus we gain an algebraic invariant for 
C-namely Th(C)-defined by 

Th(C) = T(Ch) E KG,(R') 

The following example of this phenomenon occurs in the study of lens spaces. 

(IS.I) Suppose that 

7Lp = { l ,  t, . . .  , tP - l } ,  a cyclic group of order p (1 < P E 7L) 

R = 7L(7Lp) 

G = { ± tj Jj E 7L} c R 

R' = C (the field of complex numbers) 

g is a p'th root of unity ; g #- 1 

G' = { Hj ij E 7L} C R' 

(rl ' . . .  , rn) = a sequence of integers relatively prime to p 

�(t) = 1 + 1 +  . . . + tp- 1  E R 

h : R  � R' by h(2:,njt
j) = L nj gj 

j j 
Suppose further that C is the (R, G)-complex 

< " . - 1 )  <t( .» (,'. - 1 _ 1 )  o � C2n - 1 ) C2n - 2 ---+ C2n - 3 ) 
(t( .» (" 1 - 1 ) 

C2n -4 ---+ . . . ) Co � 0 

where each Cj(O ::;; j ::;; 2n - 1 ) has rank 1 and the 1 x I matrix of dj is written 
above the arrow Cj � Cj_ l . Then C is not acyclic while Ch is acyclic with 
T(Ch) E KG ,(C) equal to the torsion of the I x I matrix <TI.i'= 1 Wi - I) . 

PROOF: C is a chain complex because 

�(t) · (trJ _ I) = �(t)(t - I)(I + t +  . . .  + (r l) = (tP - I)( 1 + . . . + (r 1) = O. 

<;: is not acyclic. For, if {c;} is a basis for C/, then �(t) . C2n - l is not a boundary 
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while d[1:(t) · C2. _ d = 1:(t) · (t'n _ l)c2._ 2 = 0, so it is a cycle. However Ch 
is acyclic. For ( I + e +  . . . + ep- I) = [W - I )/(e - I )] = 0, and consequently 
Ch is of the form 

Since rj is prime to p, we have g'J i= 1 .  Thus each matrix <g'J - I )  is non­
singular and Ch is acyclic. It is an exercise for the reader that T(Ch) = 
T ( TIi= 1 (erj - l» .  0 

Sometimes, when C is acyclic, T(C) is very hard to compute while Th(C) is 
very easy to compute. When such a homomorphism h can be found it often 
pays to change rings because of 

(18.2) If C is an acyclic (R, G)-complex and h :  (R, G) --+ (R', G') is a ring 
homomorphism then Ch is acyclic andTh(C) = h*T(C) where h* : KG(R) --+KG.(R') 
is the induced map. 

PROOF: Choose a chain contraction S of C and suppose that 
S(cD = � bkjC;+ I . Define S : Ch --+ Ch by S(cD = "L h(bkj)W I . Clearly, 

J j 
since h(G) c G', we have h(l) = 1 so that : <as + sa) = h* <dS + Sd) = 
h*(I) = I, and h* <d+ S)  = <a + s) . Thus S is a chain contraction and Th(C) 
= T(Ch) = h*T(C). 0 

As a simple but important application of ( 1 8 .2) we have 

(18.3) Suppose that C is an acyclic Wh(G)-complex with boundary operator d. 
If there is a preferred basis c of C with respect to which <d) has only integral 
entries. (i.e. <d) = (aij) where aij E 7L c 7L(G» then T(C) = O. 

PROOF: Let C' c C be the free 7L-module generated by c. Let d' = d lC' . 
Since d is integral, d' : C' --+ C', so that C' becomes a chain complex and , 
indeed, a free (7L, { ±  1 })-complex if we specify c as preferred basis. Let 
h :  (7L, { ±  I }) --+ (7L( G), G v - G) be the inclusion map. Clearly we can 
identify C == C�. 

We claim that C' is acyclic. For suppose that d'(x) = 0 where x E C;. 
Then x = d(y) for some y E Ci + I '  since C is acyclic. Suppose that 
x = "L nkci and y = "L rjcj+ l (nk E 7L, rj E 7L(G» . We have 

so 

k j 

Let A : 7L(G) --+ 7L  be the ring homomorphism given by A("L mjgJ = "Lmj 
d t '  " A( ) i+ 1 C' j j 

an se y = L.., r j cj E i + I .  j 

+ 
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Then 

= I A(nk)e� 
k 

= I nke� = x 
k 

Thus every cycle is a boundary and C' is acyclic. 

6 1  

By ( 1 S .2) ,  T(C) = T(Ch) = h*T(C'). But T(C') E Wh( { l }) = O. Hence 
T(C) = O. D 

To put the construction C H Ch into proper perspective and to allow 
ourselves access to well-known algebraic facts in dealing with it, we now 
outline a richer description of Ch• We leave the reader to check the 
elementary assertions about tensor algebra being used . (A good reference is 
[CHEVALLEY ; Ch. III, §S, 1 1 ]) 

1 .  R' becomes a right R-module if we define ,' . r = ,'her) for all r E R, 
r' E R'. 

2. R'®RC then becomes a well-defined abelian group such that 
r'®rx = r'h(r)®x for all (r' , r, x) E R' x R x C. We denote R'®RC = R'®hC. 

3 .  R'®hC becomes a left R'-module if we define p(r'®x) = p,®x 
for all (p, r', x) E R' x R' x C). 

4. If J: C � D is a homomorphism in the category of R-modules then 
I ®J: R'®hC � R' ®hD is a homomorphism in the category of R'-modules. 

5. (R'®hC, l ®d) is a chain complex over R'. 
6.  If e = {cD is a basis of C then t = { 1 ®eD is a basis of R'®hC. If b 

is another basis of C giving rise similarly to the basis b of R'®hC then 
<tlb) = h*« elb»). If (ak) is the matrix of di with respect to e then 
(h(ak)) is the matrix of 1 ®di with respect to t. 

7. There is a simple isomorphism of (R', G') complexes, R'®hC -;; Ch 
which takes the basis elements l ®e� onto the basis element c�. 

Thus we may and do identify : R'®hC == Ch. 

S. If 0 � C' � C � C" � 0 is a split exact sequence of (R, G)-complexes 
with preferred bases c', e and e" such that e = a(e') U b where (j(b) = e" then 

O C' R' C' 1@« C R'<O. C l@P Cn R'<O. C" 0 � h = ®h � h = 'C'h � h = 'C'h � 

is an exact sequence of (R', G')-complexes whose preferred bases have the 
analogous property. 



Chapter IV 

Whitehead Torsion in the CW Category 

§19. The torsion of a CW pair-definition 

The geometry in Chapter II and the algebraic analysis of Chapter III are 
synthesized in the definition : 

If (K, L) is a pair of finite, connected CW complexes such that K '"" L 
then the torsion of (K, L)-written T(K, L)-is defined by 

T(K, L) = T(C(K, L)) E Wh(7rlL) 

where (K, L ) is the universal covering of (K, L). 

In this section we explain this definition, show that T(K, L) is well-defined and 
extend the definition to non-connected complexes. In the rest of the chapter 
we develop the basic properties of torsion in the CW category. This develop­
ment allows us on the one hand (§24) to answer the questions about the 
relationship between homotopy type and simple-homotopy type which 
initiated our discussion. On the other hand, (§25), it yields the results on 
which the modern applications of simple-homotopy type are based. 

In this chapter, as usual, all CW complexes mentioned, except those which 
arise as covering spaces, will be assumed to be finite. 

Starting from the beginning, suppose that (K, L) is a connected CW pair 
and that K '"" L. Let p :  K --+ K be a universal covering, and let G = Cov(K), 
the group of covering homeomorphisms. Then p - lL = L is a universal 
covering space of L and K '"" L, by (3. 1 3). The cellular chain complex 
C(K, L) is a Z(G)-complex (see page 1 1 ) .  If we choose, for each cell 
ea E K -L, a characteristic map '1'a and a specific lift 'Pa of '1'a, then by (3. 1 5) 
B = { ('Pa) lea E K- L} is a basis for C(K, L) as a Z(G)-complex. Let 81 be the 
set of all bases constructed in this fashion. 

(19.1) The complex C(K, L) ,  along with the family of bases 81, determines an 
acyclic Wh(G)-complex. 

PROOF: C(K, L) is acyclic because K ,"" L so, by (3.8), H(C(K, L ) 
� H( I K I ,  I L i )  = O. 

Suppose that c, C' E 8I  restrict to bases Cn = {('P I ) '  . . .  , ('Pq ) } and 
c� = {<.{I I ) ' . . .  , (.{Iq) } of Cn(K, L). Then 

for some ajk = L n1kgj E Z(G) 
j 
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But the cell �iln) ,  as a lift of ej' is equal to one of the cells gi/pi1 n) and is 
disjoint from all of the others. Thus, by (3.7C), the coefficients in the last 
sum are all 0 except for N = n{/ But then 'PjO n) = gi; l�/l n) so, by the 
same argument, <'Pj> = N'<gi� l�j> '  Hence <�j> = NN'<�J> '  So N = ± l 
and <�j> = ± gi/'Pj> '  Therefore 

<c./c�> = (��S?) "'-.) - g,. and T( <c./c�» = 0 E Wh(G) .  
Thus qK, L )  becomes a Wh(G) complex if we stipulate that b is a 

preferred basis iff T<c/b>  = 0 for all c E PlJ. 0 
Recal l  from § IO, that there is a covariant functor which takes every group 

to its Whitehead group and every group homomorphism G1 -+ G2 to a 
naturally induced homomorphism Wh(G1) -+ Wh(G2) . In particular we now 
consider the induced isomorphisms Wh(1I" 1 (X, x» -+ Wh(1I"1 (X, y» corres­
ponding to the change of base-point isomorphisms 1I"1(X, x) -+ 1Tl(X, y). 
(19.2) If X is an arcwise connected space containing the points x and y then all 
0/ the paths from x to y induce the same isomorphism /"" of Wh(1Tl (X, x» 
onto Wh(1Tl (X, y» . Moreover /,,% 0/" " = /"'%' 
PROOF: If at :(/, 0, I )  -+ (X, x, y), let !. : 1Tl(X, x) -+ 1Tl(X, y) denote the 
usual isomorphism given by !.[w] = [ei * w * at] . Then, if at, f3 are two such 
paths, /p- l!.([w)) = [f3*ei] ' [w] ' [f3*eir 1 for all [w] E 1T l (X, x). Hence j{3- 1!. 
is an inner automorphism and, by ( lOA), (ff/ ); l (fJ* = (f{3- 1/J* = 1 .  Thus 
(1.)* = (ff/)* for all such ex, f3 and we may set /"" = (!.k It is obvious that 
/,,% 0/"" = l",%. 0 

_ _ 
Suppose as before that p : K  -+ K is a universal covering, with G = Cov(K) 

and K connected. Choosing base points X E  K and x E p- l (X) there is (page 1 2) 
an isomorphism 0 = O(x, X) : 1Tl (K, x) -+ G, given-if t we denote O([at)) = 0[.] , 
for all [ex] E 1Tl(K, xl-by 

where y E K, w is a path from x to y, and �O) = X. If we identify 
1Tl(K, x) with G via 0 then, by ( 19 . 1 ), C (K, L ) is an acyclic Wh(1Tl (K, x» 
complex and we may define T(K, L) E Wh(1Tl (K, x» . 

To make the last sentence more precise (something worth doing only at 
the outset when we are worried about foundational questions) the iso­
morphism .p = 0- 1 : G -+ 1T 1 (K, x) induces a ring isomorphism of the same 
name, .p : 71.(G) -+ 7l.(1Tl(K, x),, and we wish to change rings as in § 1 8  to con­
struct from C(K, L ) the Wh(1Tl (K, x)-complex C(K,L )",. That T(K, L) is 
independent of all choices will follow from 

(19.3) Let p :  K -+ K and P :K -+ K be universal coverings 0/ the connected 
complex K, with G and () as the groups 0/ covering homeomorphisms. Let 
x, y E K, x E p - l (X) and y E p - 1 (y) . Let � : G -+ 1Tl (K, x) and� : (} -+ 1T l (K, y) 

tThus 9[,,] is  the same as K[,,) of page 1 2. 
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be the group isomorphisms determined by (x, x) and (y, .9). Then -r(C(K ,  L)o{I) 
= IX,y-r(C(K, I)o{I) 

P ROOF: Let h :  K -+ K be a homeomorphism covering the identity (hence a 
cellular isomorphism) and let H: G -+ G by H(g) = hgh - 1 • We claim first 
that -rC(K, L) = H* (-r C(K, I» , where H* : Wh(G) -+ Wh(G) is the induced 
map. To see this let { <qi[ ) }  be a basis for ClK, I )  as in ( 19 . 1 )  and let 
<P L= h 0 qiL for all i, k. Then, by ( 19 . 1 ) ,  the torsions of C(K, I) and C(K, L) 
can be computed using these bases. But, since h induces a chain isomorphism 
C(K, I )  -+ C(K, L) when these are thought of as complexes over ?L, one can 
check immediately that if the matrix of the boundary operator a i is 
(akj) E GL(?LG) then the matrix of the corresponding boundary operator a i 
is ( H(ak) , where H : ?L(G) -+ ?L(G) is induced from H: G -+ G. Thus, by the 
proof of ( 1 8 .2) , -r C(K, L) = H* (-r C(K, I» . 

Now let x = hex) and choose a path n :  (/, 0, 1 )  -+ (K, x, y). Let w = fin 
and let I", : 7Tl (K, x) -+ 7Tl(K, y) as usual. Then denoting 8 = O(x, x) = ,fr- l 
and 0 = O(y, y) = .ji - 1 , the following diagram commutes 

G H ) G  

I" I" fw 
7T 1 (K, x) � 7Tl (K, y) 

For if [o:l E 7Tl (K, x) we have 

(0/",[0:])(.9) = O[wm",](Y) 
= o:�(1 )  where o:�(0) = n(1) = x 
= h(�(1»  because h(�)(O) = x 
= h«(,;ph- 1 Q( 1» because w = fin = ph - I n  
= h(8[o]h - 1 n(l» 
= (h8[O]h - I)(y) 
= ( H8[o:))(y) .  

Since Ol",[o:l and H8[o:l agree at a point they agree everywhere. Since [o:l was 
arbitrary, 0/", = H8. 
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From the preceding paragraphs and ( 1 8 .2) we have, 

fx.yT(C(K, L)'fo = fro*¢;* (TC(K, L» 
= it*H*(TC(K, L) 
= it*(TC(K, L» 
= T( C(K, L)>[I)' 0 
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Since it would sometimes be nice to have T(K, L) defined as a single element 
of a single group we introduce some formalism. Let us (using ( 1 9.2» define 

Wh(7TjK) = [ U Whh(K, x» ] / ",-..!' 
x,K 

where a '"" b if a E Wh(7Tl (K, x» , b E  Wh(7Tl (K,y» and fx , ,(a) = b. Let 
jx : Wh(7Tl (K, x» -+ Wh(7TjK) be the natural bijection. The stipulation that I" 
be a group isomorphism gives Wh(7T1K) a group structure which is 
independent of x. Note that j; 

l
jx = fx.Y "  

If f: (K, x) -+ (K', x') ,  then the induced homomorphism on fundamental 
groups gives rise to a composite homomorphism 

f* : WhhK) £ Wh(7Tl (K, x» � Whh (K', x'» � Wh(7T j K') 

The proof of the following is left to the reader. 

(19.4) The homomorphism f* is independent of which pair (x, x') with 
f(x) = x' is chosen. Thus there is a covariant functor from the category of 
finite connected CW complexes and maps to the category of abelian groups 
and homomorphisms defined by 

K I--> Wh(7TjK) 

U: K  -+ K' } I--> U* : Wh(7T 1 K) -+ Whh K' ) } . 

Moreover, iff c::. g then f* = g* . 0 

Putting all this together, T(K, L) E Wh(7T 1L) is defined (in the connected 
case) as follows : Choose a point x E K, a universal covering p : (K, L) -+ (K, L) 
and a point x E p - I (x) . Let i :  L -+ K be the inclusion .  Then 7'(K, L) is the 
end of the sequence 

7' C(K,L )  E Wh(G) 1 �(x. x). 
T(C(K, L ) E Wh(7T 1 (K, x» 

lix 
T' E Wh(7T I K) 

l i; '  
T(K, L) E Wh(7T I L) 

7'(K, L) is well-defined by ( 1 9 . 1 )-( 1 9 .4) .  
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The reader may wonder why we don't omit i; j and put T(K, L) into 
Wh(7T1K) instead of Wh(7TjL). It's a matter of taste. The discussion in §6 
seems to lend weight to the view that L is the central object in our discussion. 

Non-Connected Case 

Finally, we generalize to the non-connected case. Assume that K and L 
are finite CW complexes and that K "" L. Let Kt , . . .  Kq, and L J >  . . .  , Lq be 
the components of K and L respectively, ordered so that Kj "" Lj for all j." 
We define 

T(K, L) = I T(Kj , L) E EEl Wh(7T tL) 
j 

In §2 1 we shall justify, and thereafter we shall use, the notational convention 

Wh(L) == EEl Wh(7TtLj) . 

Note that ( 1 9.4) generalizes to 

(19.5) There is a covariant functor from the category offinite CW complexes 
and maps to the category of abelian groups and homomorphisms defined by 

q 
K �  EEl Wh(7T t K) 

j � t 
q q r 

{f: K -;.. K' }  -;.. U* = I fj, : EEl Wh(7T tKj) -;.. EEl Wh(7T tK;)} 
j � t j � t i � t 

where Kt , . . .  , Kq and K; , . . .  , K; are the components of K and K' respectively, 
and fj, : Wh(7TtKj) -;.. Wh(7T t K;) is induced from f with f(Kj) C K;j' More­
over, if f � g then f* = g* . 0 

Two comments are in order : 
First, the reader must NOT confuse EEl Wh(7Tj K) with Wh(EEl7T1 K). 

For example, ( 1 1 . 5) implies that Wh(13) EEl Wh(14) #- Wh(l t 2) '  Torsion 
considerations are first done for each component Kj, and then formally 
added. 

Second, despite the first comment, it is not a sterile generalization to 
consider the non-connected case. Sometimes connected spaces are expressed 
as the union of non-connected spaces, or as the union of connected spaces 
along a non-connected intersection. The Excision Lemma (20 .3) and the 
Sum Theorem (23 . 1 )  would be much less useful if the theory were developed 
with the connectivity restrictions. The point is that formal addition becomes 
real addition under f* if f carries different components into the same com­
ponent. 

Having rigorously defined T(K, L) we can allow ourselves some laxity in 
the ensuing discussion. Thus, for sake of clarity, we shall (when K is 
connected) sometimes speak of T(K, L) as an element of Wh(G), or as an 
element of Wh(7T t (L, x» , for some x E L. At other times (also in the name 
of clarity) we shall be completely rigorous and consider T(K, L) as an element 
of Wh(7T1L). 
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§20. Fundamental properties of the torsion of a pair 

(20.1) If (K, L) is a C W  pair such that K "L" L and if each component of K - L 
is simply connected then -r(K, L) = O. 

P ROOF: Clearly it suffices to prove this when K is connected . Let c be a 
component of K-L. Then c is closed in K- L, so e e L u c and L u c 
is a closed set. I f  e is a cell of K which meets c then e cannot lie totally in L,  
so ,  L being a subcomplex, e ll  L = 0.  Hence e c K-L and consequently 
e c c. Combining these facts we see that L V c is a subcomplex of K and 
c = (L U c) - L is a union of cells. 

As usual let p :  K --* K be a universal covering with G the group of covering 
homeomorphisms. Since c is simply connected it lifts homeomorphically to 
K. Let C be one lift of c, so p iC :  C --* c is a homeomorphism. Let 
{gC 1 1  =F g E G} be the other lifts. These l ifts are pairwise disjoint since c is 
connected . For each p-cell e. of c let fP. be a lift of a characteristic map such 
that fP.(/P) c C. Doing this for all components c of K -L, and all such cells 
e., we get a preferred basis {<fP,) } for C(K, L )  (which we are thinking of as 
a Wh(G)-complex) . 

For a fixed n-ce\1 e. of the component c of K -L, 

o<fPa)  E Hn _ I (K" - 1 U L, K"- 2 V L) 
is represented by a singular cycle carried by fP.(o!"). However fPa(/ II) c C 
and <Pa(/") c L V c, so fPa( 0 In) C L V C. Thus any (n - I )-cell of K - L 
which meets fPa( of") must lie in C. It follows from (3.7c) that in the expression 

o<fP.) = I naPjg/fPp )  = I nap/gjfPp ) ,  (naPj E 71., gj E G) 
�. j 

we must have n,pj = 0 unless gjfPp(1 " - I) c C. But, by choice of our 
preferred basis gjfPP(/ II - l )  c C only if gj = I .  Thus 

o<<P.) = I nap <fPp )  
� 

and we see that the matrix of 0 has only integer entries. Thus, by ( 1 8 . 3) ,  
-r(C(K, L)) = 0 E Wh(G). 0 

(20.2) If K > L > M where K "L" L and L "L" M then 

-r(K, M) = -r(L, M) + i*- I -r(K, L) 
where i :  M � L. 
PROOF: We may assume K is connected . Let p: K --* K be the universal 
covering. Set L = p - IL, G' = Cov (L)  and G = Cov (K). If j : L  � K then 
(page 1 2) j # : G' --* G is an isomorphism. Note [using (3. 1 6) with j :  L S. KJ 
that j # (g') E G is the unique extension of g'. Set J = j # and also let J denote 

the induced map 71.(G') � 71.(G). 
By ( 19 . 1 ) ,  C(K, M) and C(K, L )  are Wh(G)-complexes and C( L , M) is a 
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Wh(G')-complex. But c(L , M) may also be viewed as a Wh(G)-complex if, 
given g E G and x E C( L ,  M), we define g . x = g' . (x) where J(g') = g. 
Choose a preferred basis { <<p<<> ! e<< E K- M} for C(K, M) as a Z(G)-module 
and use the same lifts <p« to give preferred bases {< <p« > ! e. E K -L} and 
{ <<p<<> !e. E L - M} to the Z(G)-modules C(K, L) and C(L, M). Then the 
inclusion maps induce a short exact sequence 

0 ...... C(L ,  M) ...... C(K, M) ...... C(K, L) ...... 0 

of acyclic Wh(G)-complexes in which preferred bases correspond. Hence, 
by ( 1 7.2), TC(K, M) = TC(L ,  M) + TC(K, L) .  

Now think of C(L,  M) as a Wh(G')-complex and notice that, by definition 
of C( L, M)J there is a trivial basis preserving isomorphism of C( L, M)J 
with the complex "C(L,  M) viewed as a Wh(G)-complex" discussed above. 
Thus the torsion of the latter complex is equal to T(C(L,  M)J) = J*TC(L, M). 
Hence TC(K, M) = [TC(K, L )  + J*TC( L, M)] E Wh(G). The theorem now 
follows immediately if one traces each term in this equation to its image in 
Wh(7T 1 M) via the following commutative diagram 

J. --.:....�) Wh(G) 

! 

Here i, J, k are inclusions and the vertical arrows are the result of the dis­
cussion in § 1 9. The commutativity of the diagram is left as an exercise for 
the reader. 0 

(20.3) (The Excision Lemma) If K, L, and M are sub complexes of the complex 
K V L, with M = K n L, and if K � M then T(K V L, L) = J*T(K, M) where 
J : M ...... L is the inclusion map. 

PROOF: First, we claim ,  it suffices to prove this when L is connected. (This 
does not say that K and M are connected.) For suppose that L and K V L 
have components L 1  • • • •  , Lq and PI> . . . , Pq where Pi � L i for all i. Let 
Mi = M n Li and Ki = K n Pi have components Mi! '  Mi2 , . . .  and 
Ki ! ' Ki2 , . . .  respectively, where Kik � Mik . Then, assuming the Excision 
Lemma for each Li, we have 

T(K V L, L) == L T(Pi , Li) 
i 

= L Ji*T(Ki , Mi) where Ji : Mi � L i 
i 

= LJi*(L T(Kik , Mik)) i k 
= L (Ji ! Mik).T(Kik, Mik) 

i,k 
== J*T(K, M). 
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So assume that L (hence also K U L) is connected and that M and K have 
components M I ,  . . . , Ms, and KI , • • •  , Ks with Ki 1.". Mi. The proof of the 
theorem consists of a technical rendering of the fact that (K U L) - L 
= U (Ki - Mj) where the Kj - Mj are disjoint .  

i ,.--.-
Let p :  K U L -+ K U L be a universal covering of K u L and denote 

X = p - I  X if X c K U L. [Beware : In general Ki = p - I Ki is not a universal 
..-- � -

covering of Ki.J Let G = Cov (K U L). Note that C(K U L, L)  
� -

= EEl C (Ki U L, L) ,  where all the chain complexes in this equation can be 
i 

viewed as acyclic Wh(G)-complexes. Hence, by (17.1), 

'" .---..; -
T(K U L, M) = L.. T C(Ki U L ,L)  E Wh(G). 

i � -
To compute TC(Ki U L, L )  we consider a universal covering 

fi : (K i , Mi) -+ (Ki , M;) with Gi = Cov (K J  Fixing base points x E M i , 
X E fi - I (X), and x E p - I (X) and letting Ji : (Ki, x) -+ (K U L, x) be the 
inclusion ,  the following commutative d iagrams are determined : 

G i  
1 

G 

(Ki ,  x) J ,  ---' I � I � ) (K U L, x) 

pI Ip 1Tj (K;, x) 
J i # 

) 1T j (K u L, x) 
(Ki, x) ) (K U L, x) � l inel . � l iflel . J ,  

1Tj (Mi, x) (j I M ,) ,  1Tj(L, x) ) 
We shall use the fact (3. 1 6) thadi 0 g = A(g) o ji' if g E G. (In the notation 
of (3. 1 6) the map A should also be denoted by Ji# . ) 

Now for each cell e. E Ki-Mi with characteristic map 'Pa choose a fixed 
lift rPa to K i and define CPa = j i 0 rPa. Then {(CPa)} is a basis for the Wh(G)-

"""-' 
complex C(Ki U L , L) . Also ji induces a chain map (over Z), since it is 
cellular. Hence if 8(rPa) = I l1apygy(rPp), where gy E Gi ,  we have, 

8(CPa) = ji.O(rPa) 
= I l1aPPi 0 gy)*(rPp) 
= I l1apy(A(gy) 0 j ,)* (rPp) 
= I l1apyA(gy) (cPp). 

Hence c(K;Vi, L) is simply isomorphic to C(K i ,  Mi)l. SO TC(x;:;-t,L) 
= A*TC(Ki, M;) E Wh(G). This corresponds, by the right-hand diagram above, 
to U ! Mi)*T(K" Mi) E Wh(1TjL). Thus 

T(K U L, L) = I (j ! M;)*T(Ki , M i) == j*T(K, M). D ___ � 
As an immediate consequence of (20.2) and (20 .3) we get 
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(20.4) fl K, L and M are subcomplexes of the complex K U L, with M = K (\ L 
and if K "" M and L "" M then r(K U L, M) = T(K, M) + T(L , M). 0 

(20.5) Suppose that (K, L) is a connected C W  pair in simplified form (see 
page 26), K = L u U eJ U U e't  1 (n  � 2), and that {.p j }  and {ep J are 

j j 
characteristic maps for the ej' and e;'+ I . Set Kn = L U U eJ. Let ( 0) be the 

j 
matrix-with entries in 1(1T l (L, eO» -of 
0 : 1T,, + , (K, K,, ; eO) ->- 1T"(K,,, L ;  eO) with respect 
{[ep ; l } given by (8 . 1 ) .  Theil T(K, L) = ( - I ) "T( 0) . 

the boundary operator 
to the bases {[.pj] } and 

PROOF: It follows from the proof of (8 . 1 )  and the fact that the Hurewicz map 
commutes with boundary operators that there is a commutative diagram 

in which the preferred bases { (<Pi ) }  and {(�j) } go to the bases {[ep j ] } and 
{[.pj ] } . Since the left-hand column is just C(K, L), the result follows from 
P3 0f ( 1 7. 1) .  0 

§21. The natural equivalence of Wh(L) and EB Wh(1tILj) 

We have considered two functors from the category " of finite CW com­
plexes and maps to the category of abelian groups and group homomorphisms. 
In §6 we defined the functor 

L H  Wh(L) 

U: L ->- L' } H U* :  Wh(L) ->- Wh(L') }  

and in § 1 9  w e  defined ( 1 9 .5) the functor 

L ->- EB Wh(1T I Lj) , (LI , . . .  , Lq the components of L) 
i 

{.f: L ->- L ' } H {f* = "[..Ij. :  EB Wh(1T IL) ->- EB WhhL; ) } .  
j j i 

(It will be up to the reader to keep the two meanings of j� straight.) The 
purpose of this section is to prove 
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(21.1) For every finite C W  complex L define TL : Wh(L) --+ EB Wh(1T1 L), 
i 

where the Lj are the components of L, by TL([K, L]) = T(K, L). Then T = {TL} 
is a natural equivalence of functors. 

REMA RK: After having proved this we shal l adopt the habit of writing 
Wh(L) for EB WhhLj). 

PROOF: For each L, T1• is well-defined : For if L < K < K' where K' ':(, K, 
(recall :  " ':(," denotes an elementary collapse) then K' L. K and K' - K is 
simply connected . Thus,  by (20. 1 )  and (20.2) 

-r(K' ,  L) = -r(K, L) +  i; I T(K',  K) = -r(K, L). 

By induction on the number of elementary collapses and expansions we see 
that T(K, L) = T(K' , L) if K A K' rei L. Hence TL([K, L]) = TL([K' ,  L]) if 
[K, L] = [K' ,  L] . 

For each L, TL is a homomorphism : This is exactly the content of (20.4). 
TL i s  one-one : For suppose that TL([K, L]) = T(K, L) = O. We may 

assume, by (7 .4) and the fact that TL is well-defined, that each component of 
(K, L) i s  in simplified form. Hence, by (20.5) ,  T < Oj)  = 0, where oj is the usual 
boundary operator in homotopy for the j'h component. But by (8.4) this 
implies that K A L rei L. Thus [K, L] = 0 and, TL is injective. 

TL i s  onto by (20. 5) and (8 .7) .  
Thus for each L, TL is an isomorphism. To prove that T is a natural 

equivalence it remains to show that, if f: L --+ L',  the following diagram 
commutes. 

Wh(L) !' ) Wh(L') 

h 1 1 h' 
EB Whh Lj) � EB Wh(1T \ L;) 
j i 

We may assume that f is cellular. So, given [K, L] E Wh(L) , 
Tuf*[K, L] = T(K � M!, L'), by def. of f* (page 22) 

(20.2)---" (M
' 

L') . - I (K M M )  = T 1"' + '.* T � f '  f '  where i : L' C M! 

since Mf \,. L' 

= p*T(K � M!, M!), where p :  Mf --+ L' is the natural 
projection 

excision (20. 3)---,,_ . (K L) - P*.I*T , , where j : L  -'+ Mf 

since pj = .f o 
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§22. The torsion of a homotopy equivalence 

Suppose that f: K ->- L is a cellular homotopy equivalence between finite 
CW complexes. Then M, l" K and f* : Wh(K) ->- Wh(L) is an isomorphism. 
We define 

In this section we give some formal properties of the torsion of a homotopy 
equivalence and show how it may sometimes be computed . We shall tacitly 
and frequently use the equivalence of §2 1 .  

(22.1) If j; g : K ->- L are homotopic cellular homotopy equivalences then 
r(f) = reg)· 
PROOF: f* = g* by ( 19 . 5) .  Thus it suffices to show that r(M" K) = r(Mg, K). 
This is true because M, AI Mg reI K, by (5 . 5) .  0 

As a consequence of this lemma we may define r (f) when f: K ->- L  is an 
arbitrary homotopy equivalence by setting r (f) = reg), where g is any cellular 
approximation to f Thus, while the propositions and proofs in  this section 
are stated for cellular maps, one often thinks of them as propositions about 
arbitrary maps. 

(22.2) A cellular homotopy equivalence f: K � L is a simple-homotopy 
equivalence if and only if r(f) = O. 

(Although this statement is a theorem for us-simple-homotopy 
equivalence having been defined geometrically in §4-it is often taken as the 
definition of simple-homotopy equivalence.) 

PROOF: Since f* is  an isomorphism, ref) = 0 iff r(M" K) = O. But by 
(2 1 . 1 ) ,  this is true iff Mf AI K reI K. And that is true (5 .8) iff f is a simple­
homotopy equivalence. 0 

(22.3) If L < K and K l" L then r(i) = i*r(K, L) where i : L  � K is the 
. inclusion map. 

PROOF: Mi = (L x l) LYI K x  I ,  where L == L x O  < Mi' Then 

Mi ?  (K x l) '\.. K x O  == K rel L. 

Hence r(Mi'  L) = r(K, L), so that rei) = i*r(M;, L) = i*r(K, L). 0 

(22.4) If f: K � L and g : L -)- M are cellular homotopy equivalences then 
r(gf) = r(g) +g*r(f). 
PROOF: r(g/) = g*f*r(Mg " K) 

= g*j� [r(M, 't Mg, K)], by (5.6) 

= g*f*[r(M" K) + i*- I r(M, I.[ Mg, M f)]' 
where i : K  � M " using (20.2) 
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= g*T(f) +g*f*[i*- lj*T(Mg, L)] , 

where j :L  � Mr, using "excision" (20. 3) ,  

= g*T(f ) +g*T(Mg, L), 

since f = pi and I L  = pj imply f*i*- lj* = I WII(" , L) 

= g*T(f) + T(g). 0 
As a corollary we get 
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(22.5) Iff: K � L and g : L --+ K are cellular homotopy equivalences which are 
homotopy inverses of each other then T(g) = -g*T(f). 

PROOF: Since gf ::::. I K  we have 0 = T(gf) = T(g) +g*T(f). 0 

(22.6) If f: (K, Ko) --+ (L, Lo) where K '" Ko, L '" Lo, and if f :K --+ L and 
f = flKo :  Ko --+ Lo are cellular homotopy equivalences, 1 3 then 

(a) T(f) = j*T( j) + Hj) -j�T(i)] 

(b) T(L, Lo) = f*T(K, Ko) + [D*T(f) - T( j)] 

where i :  Ko c K, j : L o  c L ,  and D : L  --+ L o  is a deformation retraction. 

PROOF: Clearly fi = jf Thus 

T(f) +j�T( i) = T(j) +j*T( j),  proving (a). 

Further : T(j) = f*T(i) + T(f) -j*T(j) 

jdL, Lo) = f*i*T(K, Ko) + T(f) -j*T(j), by (22. 3) 

T(L, Lo) = (DFi)*T{K, Ko) + D*T(f) - T(j) 

= f*T(K, Ko) + [D*T(f ) - T(/)], 
proving (b). 0 

As a corollary we get 

(22.7) If f: (K, Ko) � (L, Lo) as in (22.6) and iff and f are simple-homotopy 
equivalences, then (a) T(j) = f*T(i) and (b) T(L, Lo) = f*T(K, Ko). 0 

The brute force calculation of torsion 

To actually get down to the nuts and bolts of computing T (f), one 
proceeds as follows. 

Suppose that f: K � L i s  a cellular homotopy equivalence between 
connected spaces and that 1: R --+ L is a lift off to universal covering spaces 
inducing j� :  C(R) � C(L). Let GK and GL be the groups of covering 
homeomorphisms of K and L, and let C(R) and eel) be viewed as Wh(GK)-

1 3 The hypothesis L '" La is redundant . 
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and Wh(GL)-complexes with boundary operators d and d' respectively. 
Choose base points, x, y, and points covering them X, y such that f(x) = y 
and lex) = y. Let ft> : GK � GL be induced from ft> : 1T l (K, x) � 1T 1 (L , y) 
as in (3. 1 6). [Also let ft> denote the corresponding maps 7LGK � 7LGL and 
GL(7LGK) � GL(7LGL)l . In these circumstances we have 

(22.8) T(f) E Wh(GL) is the torsion of the Wh(GL)-complex "t' which is given by 

( 1 )  "C. = [C(K)f . 1. - 1 EEl c.(L) 

(2) o. :"C. � "C._ l has matrix 

[C(K)f . 1.- 2 c._ 1( L) 

[C(K1/;:;�; ( -�f(r-j--�:;- - ) 
In particular if we let C(K) be the Wh(GL)-complex with C.(K) = [C(K)f . 1. - 1  
and boundary operator d given by <d.) = -ft> <d.- 1 ) then T (f) = T('G') 
where there is a basis-preservingl4 short exact sequence of Wh(GL)-complexes 

o � C(L) � "C � C( K) � O  

PROOF: In computing T(Mf, K) we may ( 1 9 .3) use any universal covering 
of Mf. So, let us choose (see (3. 1 4) and its proof ) the natural projection 
c< :  M J � M f such that c< I K and c< I L are the universal coverings of K and L 
implicit in our hypothesis. Let G be the group of covering homeomorphisms 
of M J' If·g E G K define E(g) E G to be the unique extension of g to M J' If 
h E  G define R(h) E GL to be restriction of h to L It is an exercise [use (3 . 1 6) ,  
as in proving (20.2)1 that in the commutative diagram 

we have E = it> : GK � G and (because j(x) = y) R = Pt> : G  � GL. Hence 
ft> = RE: GK � Gv 

We view C(MJ , K) as a Wh(G)-complex, so that E; l (TC(MJ , K) 
= T(Mf, K) E Wh(GK) and T(f) = f*T(M f ,  K) = R*(TC(MJ , K)). Thus by 
( 1 8 .2) , T(f) = T("C) where "C is the Wh(GL)-complex [C(MJ , K)lR '  To show 
that "t' satisfies the conclusion of our theorem, we first study C(M J ,  K). 

1 4 As in the last part of ( 1 7.2). 
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C(M I ,  K )  is (see (3.9» naturally isomorphic as a complex over 7l.. t o  the 

well-known "algebraic mapping cone" of J* which is given by 

Cn = Cn - 1 ( K) EB Cn(L) 
0n(a) = - dn- 1 (a) +J*(a), a E Cn - 1 ( K )  
on(b) = d�(b), b E  Cn( L). 

A typical cell en - 1  of K gives rise, upon choosing a fixed lift, to an element 
(en- I >  of �n - l (K).  [We will suppress the characteristic maps here to 
simplify the notation.] The image of (en - 1  > under the isomorphism of (3.9) 
is the element (en - 1 x (0, I» of C.(MJ , K). Suppose that, when d(en- 1 )  is 
written as a linear combination in 7L(GK) we get 

Then, over the ring 7L we get 

d( -n - l ,\ " (\ -n - 2 ) e / = L.... n ij giej . 
i,j 

Applying the isomorphism of (3.9), the corresponding boundary in C(M I '  K) 
is 

O(e" - l X (0, 1» = - ( ?;  n ij(g/j- 2 ) (0, 1 » ) +J* (en - 1  > 
I ,) 

= - ( ?; nijE(gi)(e'J- 2 x (0, 1 » ) +J* (en - 1 ) . 
I ,) 

The last equation gives the boundary with 7l..(G)-coefficients, and this 
equation h.olds because E(gi) I (M1 - L) = E(gi) I (K x [O, I» = gi x 1 [O , l ) ' 

In the same vein, if J* (en - 1 >  is written as a linear combination with 
coefficients in 7l..( G L) ' and if the cells in L are denoted by u's, we get 

.1� (e" - I > = I mpq(hii�- l > , hp E GL 
p,q 

= I mp/(R- 1hp)ii;- I > , since hp l L =  (R- 1 hp) I L  
p,q 

A similar discussion holds for o,, (iin> and we conclude that the matrix , 
when C(MJ , R) is considered as a 7l..(G)-module, of on : Cn(M1 , K) ---+ 
Cn - 1 (M1 , K) is given by 

( '.> 

� ( - - -�6��- i--���,�:;- ) 
where (dn - 1 > is a 7l..(GK) matrix and (]'* > and (d;,> are 7L(GL) matrices. 
It  follows then from the equation f# = RE that the complex C(j' = C(M1 , Rh, 

� . 
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with T(f) = T(�, has the boundary operator of, and is simply isomorphic to, 
the complex given in the statement of the theorem. 

The assertion that the sequence 0 -+ C(L) -+ <'C -+ C( K) -+ 0 is exact 
and basis-preserving follows immediately from the first part of the theorem. 

o 

§23. Product and sum theorems 

(23.1) (The sum theorem) Suppose K = Kl U K2 , Ko = Kl n K2, 
L = Ll U L2, Lo = LI n L2 and that I: K -+ L is a map which restricts to 
homotopy equivalences f. : K. -+ L .(a. = 0, 1 , 2). Let j. : L. -+ L and i. : K. -+ K 
be the inclusions. Thenf is a homotopy equivalence and 

(a) T(f) = jl *T(fI) +j2*'T(f2) -jO*T(fO) 

(b) III is an inclusion map, 

T(L, K) = i l *T(LI , KI) + i2*T(L2 , K2) - io*T(Lo ,  Ko) 

PROOF: Let M. denote the mapping cylinder of f.(a. = 0, 1 , 2). Then 
M. L,. K. since f. is a homotopy equivalence. It follows that (Mo U Kl)  1.. .. Kl . 
So, by the exact sequence of the triple (Ml , Mo U Kl , Kl),  we have 1/";(MI , 
Mo U K1) = 0 for all i. Hence (3.2) ,  MI L,. (Mo U Kl )' Similarly M2 L,. 
(MoU K2)' Then Mf = (Ml U M2) L,. (MI U K) L,. (Mo U K) 1.., K; whence 
I is  a homotopy equivalence. 

Now (20.2) and (2004) give us : 

(I) T(M f ,  K) = D*T( M f ,  Mo U K) + T(Mo u K, K) 

(2) T(M f ,  Mo U K) = T(MI u K, Mo U K) + T(M2 U K, Mo U K) 

(3) T(M. U K, K) = D*'T(M. U K, Mo U K) + T(Mo U K, K), a. = 1 , 2 

where D : Mo U K -+ K is a deformation retraction. Consequently 

T(Mf , K) = T(MI u K, K) + T(M2 U K, K) - T(Mo U K, K) 

Note that Ii. = j.J. and, using (20. 3), that T(M. U K, K) = i.*7 (M.,  K.). 
Thus, if we apply 1* to the last equation we get 

T(f) = (fil)*T(MI , KI ) + (fi2)*'T(M2 , K2) - (fio)*T(Mo, Ko) 

= Udt )*T(MI , KI) + Ud2)*T(M2 , K2) - Uo/o)*T(Mo, Ko) 

= jl *T(j�) + j2*T(fl) -jO*T(fO),  proving (a). 

Finally, assertion (b) follows from (a) and (22.3) and the observation that 
I ; lj.*f:* = i.* . 0 

The behavior of torsion under the taking of Cartesian products is quite 
interesting. For example, if K L,. Ko then, regardless of what T(K, Ko) is, 
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we have T(K x S l , Ko X S l )  = 0 where S l is the I -sphere. The com plete 
picture is given by l 5  

(23.2) (The product theorem) (a) If P, K, Ko are finite C W  complexes where 
K l,. Ko and P is connected then 

T(K x P, Ko x P) = x(P) · i.T(K, Ko) 

where i : Ko -+ Ko x P by i(x) = (x, y) for some fixed y, and x(P) denotes the 
Euler characteristic of P. 

(b) Iffx g : K x K' -+ L x L' where f, g are homotopy equivalences between 
connected complexes and if i :  L -+ L x L' and j :  L' -+ L x L' as ill (a) then 

T(fX g) = x(L') · i.T(f) + x(L) -j.T(g) -

PROOF I 6  OF (a) : We start with two preliminary remarks : 
First if P is not connected but instead has components PI ' P2 , • • •  , Pq, 

the connected case immediately implies that 

T(K x P, Ko x P) = L x(Pj) · ij.T(K, Ko) 
j 

where ij : Ko -+ Ko x Pj by ij(x) = (x, y) for fixed yj. 
Secondly, if the assertion (a) is true for a complex Q simple-homotopy 

equivalent to P, i t  is true for P. For suppose thatf: Q -+ P is a cellular simple­
homotopy equivalence. Then (5 .8) M/ A Q reI Q. Hence (exercise) 
K x  M/ A K x Q reI K x  Q. But K x  M/ = M I K X / '  so l K  xf: K x  Q -+ K x P  
i s  a simple-homotopy equivalence. Similarly IKo x f  is a simple-homotopy 
equivalence. Denote these by F and F respectively. By assumption 
T(K x Q, Ko x Q) = x(Q) · i.T(K, Ko) where i(x) = (x, y) for some fixed y ;  
and by (22 .7), T(K x P), Ko x P) = F.T(K x  Q, Ko x Q). Hence T(K x P, Ko x P) 
= x(QHFi).T(K, Ko) = x(P) - i.T(K, Ko) where i(x) = (x, f(y» for all x. 

The proof of (a) now proceeds by induction on n = dim P. When n = 0, 
P is a point and the result is trivial. Suppose n > 0 and the result is known for 
integers less than n. Let e l > . . .  , eq be the n-cells of P, with characteristic maps 
'P. : I" -+ P. Fixing a CW structure on of", we may assume that the attaching 
maps 'P. l o r  are cellular. For, if not, we�uld homotop each of them to a 
cellular map to get , by (7. 1 ) ,  a new complex simple-homotopy equivalent to P 
and then prove the assertion for this new complex. Taking q disjoint copies 
{/�} ofl". define 'P : (o/�)EfJ . . .  EfJ (O/�) -+ pn - I by the condition 'P I O/; = 'P. l a/�. 
Then M", is a CW complex and we set Q = M", v I'! v . . .  v I� where I� 
is attached to M", by the identity along N�. Q is simple-homotopy equivalent 
to P by the simple-homotopy extension theorem (5.9) ,  since the natural 
projection p : M", -+ p" - I is a cellular simple-homotopy equivalence and 
Q v pn - I i s  isomorphic to P. Thus we may prove our assertion for Q. <P 

1 5  For t he generalization of this to fiber bundles see [ANDERSON I ,  2, 31. 
1 6 The idea here is due to D. R .  Anderson . Ot her proofs have been given in [KWUN­

SZCZARBAj, [STOcKF.Rj and [HOSOKAWAj . 
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Let R = 1'1 u . . . U I;, a subcomplex of Q, and let oR = oJI U . . . u oJ;. 
So Q = M<p U R and M<p II R = oR. If n > 1 choose constant sections 
j: Ko -+ Ko x M<p, k. : Ko -+ Ko x oJ� and m. : Ko -+ Ko x J� ( 1  � 0( � q).  If 
n = 1, notice that M<p has as many components M<p.p as pO has points-say 
r components-and let jp : Ko -+ Ko X M<p.p be constant sections (1 � f3 � r) . 
Let k • . l and k • . 2 be constant sections into the components of Ko x oJ! and 
let m. : Ko -+ Ko x I! also be constant sections (1 � 0( � q). 

First consider the case n "# 1 .  From the sum theorem we have 

( 1 )  T(K x Q, Ko x Q) = !l .T(K x M<p, Ko x M<p) +!2 .T(K x R, Ko x R) 

-!o.T(K x oR, Ko x oR) 

where !o ,Jl , J2 are inclusion maps into Ko x Q. But 

(2) T(K x M<p, Ko x M<p) = x(M<p» )*T(K, Ko) 

(3) T(K x  R, Ko x R) = I m.*T(K, Ko) 
" 

(4) T(K x oR, Ko x oR) = I x(S· - I ) · k.*T(K, Ko). 
" 

(2) holds because M<p has the same simple-homotopy type as p.- I , to which 
the induction hypothesis applies. (3) comes from the first preliminary remark 
and the fact that each component of R has the simple-homotopy type of a 
point. (4) follows by induction because each component of oR is an (n - l )­
sphere. But now the connectedness of P implies that all the maps !d, J2m., 
and !ok. are homotopic to any given constant section i: Ko -+ Ko x P. Hence, 
substituting into (1),  

T(K x  Q, Ko x Q) = [x(M<p) + q - qX(S· -
l)]i*T(K, Ko) 

= [x(M<p) +4( - 1)"]i*T(K, Ko) 

= x(QH*T(K, Ko). 

In the case n = 1 the equations above become 

(2') T(K x M<p. Ko x M<p) = I� � l jp*T(K, Ko) 

(3') T(K x R, Ko x R) = D � l  m.*T(K, Ko) 

(4') T(K x oR, Ko x oR) = I� � l  [k • . 1T(K, Ko) + k • . 2T(K, Ko)] 

Using the connectedness of P as above these yield 

T(K x Q, Ko x Q) = (r +q - 2q) ' i*T(K, Ko) 

= x(P) ' i*T(K, Ko) 

= x(Q) ' i*T(K, Ko)· 

PROOF OF (b) : We must find T(fX g) where (fx g) : K x  K' -+ L x L'. First 
consider the special case K' = L '  = P, g = l p. Then 
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T(fX I p) = (fx I p)*T(M1 x 1 p '  K x  P) 

= (fx I p)*-r(M1 x P, K x P) 
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� X(P) · ( fx I p)*IX*T(M1 , K) where IX : K  _ K x P  by IX(X) = (x, Po) 

= x(P) · (i o /)*T(M I ' K) since (i o /) = (fx I p) 0 IX 

= X(P) - i*T(f). 

The general case now follows easily from the fact that 

(fx g) = { l L x g) o (fx l d. 0 

§24. The relationship between homotopy and simple-homotopy 

We first show that any torsion element can be realized as the torsion of 
some homotopy equivalence. Thus Conjecture I of §4 ("Every homotopy 
equivalence is a simple-homotopy equivalence") is decidedly false. 

(24.1) If TO EW h(L) then there is a CW complex K and a homotopy equivalence 
f: K - L with-r(f) = TO ' 

PROOF: Let K be a CW complex such that K 1,. L and such that T(K, L) 
= - TO' Such a complex exists by the first definition (§6) of Wh(L). Let f: 
K_L be a homotopy inverse to the inclusion map i : L-K. Then (22.3)-(22. 5) 
yield T(f) = -f*T(i) = -f*i*T(K, L) = - T(K, L) = TO' 0 

Conjecture n of §4 ("If there exists a· homotopy equivalence f: K - L then 
there exists a simple-homotopy equivalence") is more elusive. Its answer 
depends not only on Wh(L), but also on how rich is the group eeL) of 
equivalence classes (under homotopy) of self-homotopy equivalences of L. 
This is explained by the next three propositionsY 

(24.2) Suppose that L is a given CW complex. If K is hom"cJwpy equivalent to L 
(written "K == L") define SK c Wh(L) by 

S K = {T(f) I f: K -+ L is a homotopy equivalence}. 

Then, if K == L == K', thefollowing are equivalent assertions: 

(a) SK () SK ' =f. 0· 
(b) K and K' have the same simple-homotopy type. 

(c) SK = SK" 

Thus :F = {SK IK == .L } is a family of sets which partitions Wh(L). The 
cardinality of:F is exactly that of the set of simple-homotopy equivalence classes 
within the homotopy equivaleTJCe class of L. 

1 1 Compare [COCKROFT-Moss]. 
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PROOF: (a) => (b). Suppose that SK 11 SK' =I 0. Then there are homotopy 
equivalences f: K -+ L and g : K' -+ L  such that T(f) = T(g). Let g be a 
homotopy inverse to g. Then gf: K -+ K', and by (22.4) and (22. 5), 

T(g!) = T(g) +g*T(f) = -g*T(g) +g*T(f) = O. 

(b) => (c) : Suppose that s : K ' -+ K is  a simple homotopy equivalence. If 
TO e SK choose f: K -+ L with T( f)  = TO' Then fs : K' -+ L and T( fs) = T(f )  
+f*T(S) = T( f )  = TO' Thus SK C SK " B y  symmetry SK = SK " 
(c) => (a) : This is trivial since, by definition, SK =I 0. 0 

Exercise : ([COCKROFT-Moss]) The sets SK are the orbits of the action of 
geL) on Wh(L) given byJ- rt. = T(f) +f*(ct).t 

Let us adopt the notation : 

lS I  = cardinality of the set S 
VL = Iffl ,  ff as in (24.2) 

geL) = the group of equivalence classes (under homotopy) of self­
homotopy equivalences of L 

Who(L) = Hf) e Wh(L) lf* : Wh(L) -+ Wh(L) is the identity } .  

Notice that Who(L) is a subgroup of Wh(L).  

(24.3) vL ' 1 Who(L) I :<::; I Wh(L) I :<::; VL ' W(L) I · 

PROOF: If g : K -+ L is a fixed homotopy equivalence then the correspondence 
f -+ fg (fa  self homotopy equivalence of L) induces a bijection of geL) to the 
set g(K, L) of equivalence classes of homotopy equivalences K -+ L. Thus, by 
(22. 1 ) ,  I SK I  :<::; Ig(K, L) I = W(L) I for all K, and the inequality I Wh(L) I 
:<::; VL ' lg(L) I follows from (24.2). 

On the other hand, if go : K � L then, for any fwhich induces the identity 
on Wh(L), we have T(fgO) = T(f) + T(go) e SK. So the coset T(gO) + Who(L) is 
contained in SK' and I SK I  ;:: I Who(L) I . Hence, from (24.2), vL · 1 Who(L) I 
:<::; I Wh(L) I .  0 

(24.4) Suppose that L is a CW complex. Then 
( 1 )  [Every complex homotopy equivalent to L is simple-homotopy equivalent 

to L] = [ Wh(L) = HI) Ife g(L)}] .  
(2) If Wh(L) is infinite and geL) is finite, there are infinitely many simple­

homotopy equivalence classes within the homotopy equivalence class of L. 
(3) Every finite connected 2-complex L with '/T IL ;;;; 71. p' p =I 1 , 2, 3 , 4, 6 is 

a space with infinite Whitehead group satisfying the conditions of( 1 ) .  Every lens 
space L = L(p ; q l '  q2, '  . . , qn), p =I 1 ,  2, 3, 4, 6, satisfies the hypothesis of (2) . 

PROOF: The assertions in ( 1 ) are logically equivalent because, by (24.2), each 
is equivalent to the assertion that SK = SL for all K. 

t Added in Prool; P. Olum has shown, when L = L5•2 ( §27), that I SLi = I while 
ISKI = 2 if SK *- SL' This implies that I H/)I I E  S(L)} I *- I Hf)1 I E  S(K)} I although 
K �,L !  
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(2) fol lows trivially from (24.2) and (24. 3). 
To prove (3), note that if p is a positive integer, p # 1, 2, 3 , 4, 6 and if Z p is 

the cyclic group of order p then Wh(Z p) is infinite. (See ( 1 1 .4) and ( 1 1 . 5).) In 
Chapter V, on the other hand , we shall discuss the lens spaces L = L(p ; ql , 
. . . , q.) and show that TTl L = Z p' and that eeL) is in one-one correspondence 
with {a lO < a < p, a' == ± l (mod p)} . Thus the hypothesis of (2) is satisfied by 
these lens spaces. 

The pseudo-projective plane Pp is the 2-dimensional complex gotten by 
attaching a single 2-cell to the unit circle Sl by the map f: Sl -'? S l which is 
given in complex coordinates by fez) = zp. Clearly TTl (Pp) = Z p. PAUL OLUM 

studies the pseudo-projective planes in [OLUM 1 ,  2] and shows that any -ro 
E Wh(Pp) is the torsion of a self equivalence f: (Pp, eO) -'? (Pp, eO) such that f 
induces the identity on TT l  (Pp, eO). Thus these spaces satisfy the assertions of 
( I ). 

Finally, [DYER-SIERADSKI] shows that any finite connected 2-complex with 
finite cyclic fundamental group Z p is homotopy equivalent to a complex of the 
form Pp v S2 V S2 V . , .  V S2 . Thus, as these authors point out (and the 
reader should verify), OLUM'S work implies that the assertions of ( 1 )  are 
satisfied by any such 2-complex. ([DYER-SIERADSKI] also proves this directly.) 0 

At present it is unknown whether homotopy type equals simple-homotopy 
type for arbitrary finite 2-complexes. 

§25. Invariance of torsion, h-cobordisms and the Hauptvermutung 

The fol lowing question is stil l  unanswered in general.t 
Topological invariance of Whit(;!J.ead torsion : 1/ h :  K -'? L is a homeo­
morphism between finite CW complexes, does itfollow that -r(h) = O ?  

In this section we shall give affirmative answers in some. very special cases and 
try to indicate how this relates to some of the most exciting deyelopments in 
modern topology. \ 
Definition : A subdivision of the CW complex K is a pair (K* , h) where K* is a 
CW complex and h :  K* -'? K is a homeomorphism such that for each cell e of 
K* there is a cell e' of K with h(e) c e'. (As always, "cell" means "open cell".) 

(25.1) If (K* , h) is a subdivision of K then h is a simple-homotopy equivalence. 

P ROO F: Let g = h - 1  : K -'? K*.  Clearly g is a cellular map and it suffices, by 
(22.5), to show that -reg) = 0 or, what is the same thing, that -r(Mg, K) = O. 

Let K = eo v e l V . . .  V e. = K., where dim ej ::; dim ej+ l ' Let Kj 
= eo V . . .  V ej and let Mj be the mapping cylinder of the induced map 
Kj -'? g(K). Then (Mj, K) is  homeomorphic to (Kj x I, Kj x 0), so Mj - Mj- l 
� ej x (0, 1 ]  and (20. 1 )  and (20.2) imply that 

-r(Mj v K, K) = -r(Mj_ 1 v K, K) + i*- l -r(Mj V K, Mj- l V K) 
= -r(Mj_ l v K, K). 

t Added in proof: An affirmative response, due t o  T. Chapman, is given in the 
Appendix. 
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Thus, starting with (Mg, K) = (M., K), an induction argument shows that 
T(Mg, K) = T(K, K) = O. 0 

(25.2) If T(K, L) = 0 and if (K* , L*) subdivides (K, L) [i .e .  there is a subdivision 
(K* ,  h) of K with L* = h - I (L)] then T(K* , L*) = o. 

P ROOF: Let h :  L* � L be the restriction of h. Clearly (L* , h) is a subdivision 
of L, so h is  a simple-homotopy equivalence. Hence, by (22.7), T(K* , L*) 
= h; lT(K, L) = O. 0 

The invariance of torsion under subdivision is of importance in piecewise­
linear (and, consequently, in differential) topology. If K and L are finite 
simplicial complexes then a map : f: IK I  � I L l  is piecewise linear (p. 1 .) if there 
are simplicial subdivisions K* and L* {(K*, I I K I) and (L* ,  I IL I) in the notation 
of the preceding paragraphs} such that f: K* � L* is a simplicial map. I S  Our 
results on CW subdivision easily imply 

(25.3) If h : K  � L is a p. 1 .  homeomorphism then T(h) = O. If h : (K, Ko) 
� (L, Lo) is a p. l .  homeomorphism of pairs then T(K, Ko) = 0 if and only if 
T(L, Lo) = O. 0 

Recent results, which we cannot prove here, show that the assumption that 
h is p. l .  can sometimes be dropped. These results are summarized by 

(25.4) : Suppose that h :  K � L is a homeomorphism between polyhedra. {f either 
(a) dim K = dim L ::; 3 or (b) K and L are p. l .  manifoldsl 9 then T(h) = O. 

REFERENCES: (a) follows from the result of [BROWN] that every homeo­
morphism between polyhedra of dimension ::; 3 is isotopic to a p. 1 .  homeo­
morphism. (b) is a result of [KIRBY-SIEBENMANN] (despite the fact that they 
also have examples of p. l .  manifolds which are homeomorphic but not p. l .  
homeomorphic !)  0 

The KIRBy-SIEBENMANN examples mentioned in the last paragraph are 
counterexamples to the following classical conjecture : 

The Hauptvermutung : {f P and Q are homeomorphic finite simplicial 
complexes then they are p. 1 .  homeomorphic. 

The first counterexample to this conjecture was given in [MILNOR 2] . Later 
STALLINGS showed ([STALLINGS 2]) how MILNOR'S idea could be used to 
generate myriads of examples. Proceeding in their spirit we now explain how 
torsion, and in particular (25.3),  can be used to construct counterexamples 
to the Hauptvermutung. Crucial to this approach and fundamental in the 
topology of manifolds is the concept of an h-cobordism. 

An h-cobordism is a triple ( W, Mo, MI ) where W is a compact p. l .  
(n + I )-manifold whose boundary consists of two components, M 0 and M I 

1 8 See [HUDSON] for an exposition of the piecewise-linear category. 
1 9  For a definition see [HUDSON] or §26. 
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with W <,. M 0 and W <,. MI . The following are basic facts about h-cobordisms. 
(In each case we assume n = dim Mo.) 

p. I .  
(A) If n � 4 i t  follows (from "engulfing") that W - Mo � MI X (0, I ]  

p. l .  
and W- M\ � Mo x [O, I ) , andfrom this that 

where a, b, c, d are points, "susp" denotes suspension and "*" means "join". 

Mo x [ -!, !] 

top 
b c w 

{A reference is [HUDSON ; Part I , Theorem 7. 1 1 ] . }  

(B) The s-cobordism theorem : If n � 5 and T (  W, M 0) = 0 

d 

p. l .  / then ( W, Mo, M1) � (Mo x I, Mo x 0, Mo x I) {The proof is analogous to 
the proof in §7 and §8 that if T(K, L) = 0 then K A L reI L. One trades and 
cancels handles rather than cells. Reference : [HUDSON ; Part 2, Theorem 
l O. l O] . }  

(C) Realization : If Mo is a closed p. l .  n-manifold, where n � 5 ,  and if 
TO E Wh(Mo) then there is an h-cobordism ( W, Mo, M\) with T(W, Mo) = TO. 
{The proof is analogous to that of (8 .7) .  Reference : [HUDSON ; Part 2, 
Theorem 1 2 . l ] . } 

(D) Classification : If ( W, Mo, M\ )  and ( W' ,  Mo, M;) are h-cobordisms 

with T( W, Mo) = T( W', Mo) and ifn � 5 then ( W, Mo, M\) �· ( W',  Mo, M;). 
{This follows from (B) and (C). Reference : [HUDSON ; Part 2, Theorem 1 2.2] } .  

(E) Duality : If( W, Mo, Md is an  h-cobordism then iO*T( W, Mo) = ( - I )" 

i l *T*( W, M1) where i/Mj � W, j =  0, 1 ,  and T*( W, M\ ) is the image of. 
T( W, M\) under "conjugation" of Wh(M1), or "twisted conjugation" if M\ is 
not orientable. {Reference : HUDSON ; page 273 } .  

Now, using (C)  let ( W, Mo, M\ )  be  an  h-cobordism with T( W, Mo) =1= 0 ,  
and  let V = c*Mo u W u  d*M\ . By (A), susp (Mo) is homeomorphic to  V. 
Suppose that there were a p. l .  homeomorphism h : susp (Mo) -* V. Then 
h( {a, b }) = {c, d} since these are the points where the spaces fail to be topo­
logical manifolds. Thus, being p. l . ,  h would take a regular neighborhood (see 
[COHEN]) of {a , b} to a regular neighborhood of {c, d} and , from the equiva-
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lence of regular neighborhoods via ambient p. l .  homeomorphism, we could 
assume that h restricts to a p. 1 .  homeomorphism 

p. l .  
(Mo x [ - t, t),  Mo x { - t}) � ( W, Mo). 

Then (25. 3) implies that T( W, Mo) = 0, which contradicts the choice of W. 
Thus V and susp (Mo) are not p. 1 .  homeomorphic, although they are 
homeomorphic. 

It is interesting to note [MILNOR 1 ;  p. 400) that there are h-cobordisms 
p. l . 

( W, Mo, M1) with Mo � Ml and T( W, Mo) '*' O. Using such an h-cobordism 
in the preceding construction, one can conclude that susp (Mo) and V are 
examples of spaces which are homeomorphic and locally p. l .  homeomorphic, 
but are not p. 1 .  homeomorphic. Of course the later KIRBY-SIEBENMANN 

examples, which are p. l .  manifolds, are more striking ill ustrations of this 
phenomenon. 



Chapter V 
Lens Spaces 

§26. Definition of lens spaces 

In this chapter we give a detailed introduction to the theory of lens 
spaces. 2 0 These spaces are fascinating in their own right and will supply 
examples on which to make the preceding theory concrete. 

We shall at times use the language and setting of the piecewise linear (p. I .) 
category. (See [HUDSON]). However, the reader who is willing to settle for 
"manifolds" and "maps" whenever "p. l .  manifolds" and "p. l. maps" 
appear, can proceed with equanimity. 

A p. l. n-manifold (without boundary) is a pair (M, d) where M is a separ­
able metric space and .91 is a family of pairs ( Uj, hi) such that { Ui} is an open 
cover of M, h i :  Ui -+ R' is  a homeomorphism onto an open subset of Rn, and 
h jhj- 1 : hi  ( Ui () Uj) -+ Rn is p. l. for all i, j . .91 is callea a p . l . atlas and the 
( Ui, hi) are called coordinate charts. 

If Ml and M2 are p. l. manifolds of dimensions m and n respectively then 
f: MI -+ M2 is a p. l .  map if, for each x E MI , there is a coordinate chart 
(U, h) about x and a coordinate chart ( V, g) about f(x) such that the map 
gfh - 1  : h[U () f - 1  V] -+ Rm is p. l. 

If M i s  a topological space and G is a group of auto-homeomorphisms of 
M, then G acts freely on M if: [x E M, I #- g E G] => [g(x) #- x]. Thti set 
G(xo) = {g(xo) !g E G} is called the orbit of Xo under G. We denote by MIG 
the quotient space of M under the equivalence relation : x - y -¢o> G(x) 
= G(y). Thus the points of MIG are the orbits under G. 

(26.1) If M is a connectedp. l .  manifold and G is a finite group of p. l .  homeo­
morphisms acting freely on M then 

'
(a) The quotient map '1T :  M -+ MIG is a covering map. 
(b) The group G is precisely the group of covering homeomorphisms. 
(c) '1T induces a p. l .  structure on MIG with respect to which '1T is p. l .  

PROOF: (a) and (b) are left as exercises for the reader (or see [SPANIER, 
p. 87]). To prove (c) , let {(Ui, hi) } ;eJ be a p. l .  atlas for M with coordinate 
charts chosen small enough that '1T! Ui : Ui -+ 7T( Ut) is  a homeomorphism for 
each Uj• Denote '1Tj = '1T ! Uj• Then {('1T(Uj), h j'1Tj- l ) } ;eJ is a p. l .  atlas for MIG. 
To prove this we must show that, for i, j E J, the homeomorphism hpj- 1'1T jhi 1 , 
with domain hj'1Ti l ['1T(Uj) () '1T(Uj)] , is p. l .  But on each component of 

2 0 A more advanced treatment which goes much further is given in [MILNOR I J .  
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7Tj- l[lT(Ui) (J 7T( U)] the homeomorphism 7Tj- l 7Ti agrees with some element of 
G. Since the elements of G are p. l . , 7Tj- l7T;  is p. l .  But hj- l  and h; are certainly 
p. l .  So hpj- l 7T ;hi 1 is also p. l . , as desired. 

We leave the reader to check that now 7T : M  � M/G is p. l .  0 
Suppose that p ;;:: 2 is an integer (not necessarily prime) and that q l '  q2 ' 

. . .  , q, are integers relatively prime to p. [i.e. (p, qj) = 1 where ( , ) denotes 
the greatest common divisor.] Then the lens space L(p ; q l ,  q2 , . . .  , q,) is a 
(2n - I)-dimensional p. l .  manifold which we now define as L, 2' - l /G for 
appropriate L, 2, - 1 and G. 

If p > 2, let L, l be the regular polygon (simplicial I -sphere) in R2 with 
vertices Vq = e2x iq/p, q = 0, 1 , 2, . . .  , p - 1 . Let L, 2, - 1 be the polyhedron in 
R2' = R2 X R 2 X . • .  X R2 gotten by taking the iterated join 

L, 2, - 1 = L, l * L,2 * . . .  * L,. 

= {A IZ I  + . . .  + A,z, 1 L Aj = 1 ,  Aj ;;:: 0, Zj E L, j} 
j 

Here L, j is the copy of L, l in 0, x O x  . . . � 2 X ° X • . •  x ° and each Z E L, 2. - I is  

j 
uniquely expressible as such a sum. L, 2, - I is a simplicial complex and , as a 
join of circles, is a p. l .  (2n - I)-sphere. 

When p = 2 we must vary the above procedure (since two points don't 
determine a circle) . Let L,1 be the regular polygon with vertices Vo = I ,  
A = en i/2 , V I = en ; and B = e3x i/2 . L, 2. - l is then described as above. 

To construct a group G which acts on L, 2. - I , let R j be the rotation of L, j 

b h h · · f 
27T 

d '  y qj notc es ,  a note conslstmg 0 - ra lans. Let g = R l * R2* . . .  * R . : 

L, 2, - 1  � L, 2. - 1 ; i .e . ,  
p 

g( L Ajz) = L AjR/zj) 
j j 

As a join of simplicial isomorphisms g is a simplicial isomorphism. Clearly 
gP = 1 .  But, if 1 ::s; k ::S; p - I , gk can fix no point of L, 2. - l . For let Z = . L Ajzj where Ajo =1= 0. Then 
j � l 

(qjo ' p) = 1 = (RjY(zjo) =1= Zjo 
= gk(Z) = L Aj Rj(zj) =1= L Aj Zj = Z . j 

Hence G = { I ,  g, g2 , , . . . gP - I } is a group of orderp ofp. l .  homeomorphisms 
which acts freely on L, 2. - 1, and it is  with this G that we define 

L(P ; qH "  . , q.) = L, 2. - I /G 

By (26. 1) ,  L = L(p ; q l ' . . .  , q.) is a p. I .  manifold and 7T :  L, 2, - 1  � L is a p. l .  
covering map with G as the group of covering transformations. 

REMARK: L(P ; q l , q2 , . . . , q.) can also be naturally defined as a differentiable 
manifold by thinking of it as a quotient of the (round) sphere 52. - I . Let g : 
R2' � R2• by g(Z l '  Z2 ' . . .  , z.) = (R j  (Z l ), R2(Z2),  . . .  , R.(z .)) where Rj is the 

' \  
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rotation of RZ through (21Tqj/p) radians, Then g is  an orthogonal transforma­
tion such that g, gZ , ' , " gp- l , have no fixed points other than 0, Hence G 
= {gk I Szo - l : 0  ::; k ::; p - l }  is a group of diffeomorphisms.of SZo - 1 and 
SZo - I /G is a smooth manifold (by a proof analogous to that of (26, 1 )) ,  

The connection with 1:. Zo - 1 /G is gotten by noting that g = g l1:. zo - 1 and 
that, if T: 1:. Zo - 1  -'>- S20 - 1 by T(z) = z/ I z l , the following diagram commutes, 

1:. 20 - 1 
T ) s2n - l 

gl litS2n - ,  
1:. 20 - 1 T , S20 - 1 

From this it follows that there is a piecewise-differentiable homeomorphism 
H: 1:. Zo - 1  /G -'>- SZo - 1  /G which is covered by T, This homeomorphism can be 
used (as in the proof of (26, l c)) to give SZO - i /G a p, l ,  structure which is 
"compatible with its smooth structure" and with respect to which H is a p, l ,  
homeomorphism, 

§27. The 3-dimensional spaces Lp, q 

Let B3 be the closed unit ball in R3 and let D� and Dz.. be the closed 
upper and lower hemispheres of Bdy B3 , Suppose that integers p, q are given 
with p � 2, (p, q) = 1 .  Let R be the rotation of RZ through 21Tq/p radians, and 
define h : d_ -'>- D� by h(x, y, z) = (R(x, y), - z), In this setting the 3-
dimensional lens space L p ,q  is often defined (see [SEIFERT-THRELLFALL]) as the 
quotient space under the equivalence relation generated by h, 

s' 

B3 
L = ----------�----------p ,q 

[x ,....., y if x E d_ and y = hex)] 

D '  + 

- - - - - - - -

�'! radians -----�-+-­p 

h(x) 
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In this section we wish to point out intuitively why Lp , 4  is, up to homeo­
morphism, the space that we called L(p ;q, 1) in the last section. 

Consider the 3-sphere S3 as the one-point compactification of R3 . Let � 1 
be the unit circle in R2 x 0 and let �2 = (z-axis) V { oo }. Then S3 can be seen 
as �r * �2 by viewing it  as the union of a suitable family of curved "cones" 
V*�l as v varies over � 2 .  

(0, 0, - I )  

For example, as  shown in the figure, 

when v = (0, 0, 0) , V*� l = B2 X 0, 

when v = (0, 0,  1 ) ,  V*� l = D� , 

when v = (0, 0, - 1) ,  V*� l = D� , 

when v = 00 ,  V*� l = {(x, y, 0) lx2 +y2 2! I } , 

and when v = (0, 0, t), I t  I > I ,  V*� I  looks like a turban. Each of these 
"cones" is gotten by rotating an arc from v to (0, 1 ,  0) , which lies in the y-z 
plane, about the z-axis ,  the rotated arcs giving us the cone lines. 

Now let RI : � l -+ � 1 be rotation through 2'T1"q/p radians. Break �2 into p 
line segments, one of which is the finite line segment from (0, 0, - 1 )  to 
(0, 0, 1 )  and one of which is an infinite line segment which has 00 as an 
interior point. Let Rz : �2 -+ �2 be the simplicial isomorphism which shifts 
each vertex to the next higher one, except that the highest vertex now becomes 
the lowest. Since every point of S3 - (� l V �2) lies on a unique arc from � 1 to 
�2 we may define g = R 1 *R2 : S3 -+ S3 by g[z l ' Z2 , t] = [R 1 (Z I )' Rz(zz) , t] 
where [a, b, t] denotes the point which is t ·  Lab units of arc-length along the 
arc from a to b, Lab being the length of this arc. 

I 

I 
J 
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If in this setting we let G = { I , g, g2 , . . . , gr l } it is clear that S3/G 
� L(p ; q, I )  as defined in the last section. On the other hand, if 1T : S3 � S3/G 
is the quotient map it follows from the facts that 1Ti' = 1T and S3 = 
U i'(B3),  that 1T(B3) = S3 /G. So S 3 /G is homeomorphic to the quotient space 

k 
of B3 under the identifications induced by 1T JB3 . But this quotient space i s  
precisely B3/h since g J D� = h J D� and g(B3) () B3 = D� and gk(B3) () B3 
= 0 if k ¢ ± I (mod p). Hence 

L(p ; q, I) � S3/G � B3/h = L p , q. 

§28. Cell structures and homology groups 

When p > 2 we denote the vertices of � I by Vj = e2"ij/p and the 
I -simplices by Ij = [Vj, Vj+ d, 0 :::; j :::; p - l .  When p = 2 the vertices are 
vo, A, VI ' B (as in §26) and we set 10 = [vo, A] V [A , vd and II = [V I ' B] 
V [B, vol. For 0 :::; j :::; n - 1 , the fo1l9wing simplicial subcomplexes of 
� 2.- 1  play an important role : 

� 2 i - 1  = � 1 *�2* . .  , *� i C R2 i 

EP = �2 i - I *Vj (vj E � i+ I ) 
EJi + 1 = � 2 i - I *Ij < � 2 i + l . 

(Here � - I == 0, EJ == Vj' and E� == Ij.) For example, B3, D : ,  D 1.  of §27 
correspond to E], E;, E}+ 1 where Vj = (0, 0, - I) and vj+ I = (0, 0, I ) .  

The E; are closed cells-in fact p. I .  balls-which give a CW decomposi­
tion of � 2. - 1  with cells e; = £; (0 :::; j :::; p - I ,  0 :::; k :::; 2n - I).  Elementary 
facts about joins imply that 

( 1 )  oEJi = � 2 i - 1  

(2) oEr+ 1 = Ey V E}� I 

(3) EP () Efi = � 2 i - l , if j #- k {� 2 i - l if j - k  #- 0, ± I  (mod p) 

E2i + 1 () E2i + 1 - E2i if j k - j + l 
E� i V Efi i f  

k = j+ 1  (mod p), p #- 2 

j = 0, k = I , p = 2. 

Let us orient the balls E;-think of them for the moment as simplicial 
chains-by stipulating that E� = Vj is positively oriented and, inductively, 
that then E;i + I is oriented (i ;:: 0) so that oEy + I = Eli 1 - EJi, �2 i + 1 is 
oriented so that EF+ l .s  � 2 i + l is orientation preserving, and E?i + 2 is 
oriented so that oE;i + 2 = � 2 i + 1  = E�i + 1 + Efi + l + . . .  + E;�+l l . 
The orientations of the £; naturally determine basis elements for the cellular 
chain complex Ck(� 2. - 1 ) determined by this CW structure and we shall also 
use e� to denote these basis elements (rather than <'P�> for some characteristic 
map '1'1, as we did earlier) . 
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Now view 1; 2. - 1  as the universal covering space of L(p ; q l , . . .  , q.) 
= 1; 2. - 1 JG. It is natural, as we shall see shortly, to denote e� = ek 
(0 � k � 2n - I ) . If g = R1*R2* . . .  *R ., as before, notice that g' I1; 2 i- l : 
1; 2 i- l  � 1; U- l is an orientation preserving simplicial isomorphism (since it's 
homotopic to the identity) such that g' IE�i = (g' I1; 2 i - l )*(g' l vo) and 
g' I E�i + l = (g' I:E 2 i - 1 )*(g' 11o) . Thus g' takes oriented cells isomorphically 
in an orientation preserving manner to oriented cells and the basic cellular 
chains satisfy 

e� = g'ek where tqj == j (mod p) [t exists because (qj, p) = 1 ] 

ae2 i+ l = gr ' . l e2 i - e2 i ' where ri + 1q i + l == 1 (mod p) 

(*) aeu = e2 i- l + ge2 i - l + . . . +gl' - 1e2 i - l 

ag = ga : ck
(:E 2' - I ) � C

k
(:E2. - 1 ) 

L(p ; q l ,  . . .  , q .) obtains a natural CW structure, with exactly one cell in 
each dimension from the cell structure on :E2. - 1 via the projection 
1T : :E 2. - 1 � L(P ; q l ' . . .  , q.). The cells are the sets ek = 1T(ek) = 1T(e� , 
(0 � j < p, 0 � k � 2n - I )  with characteristic maps 1T 1  � :  
E� � L(p ; q l ' . . .  , q .) .  The orientation we have chosen for ek induces an 
orientation for ek. Or, more technically speaking, the chain map induced by 
the cellular map 1T takes the basis element ek of Ck(:E 2n - l) to a basis element , 
denoted ek, of Ck(L(p ; q l '  . . . , q.») . To compute H*(L(p ; q l ' . . . , q .» we 
simply note that 

aeu = a1T(e2 i) = 1Ta(e2 J 

= 1T(eU- l +ge2 i - l + . . . +gP- le2 i_ l )  = peU- l 
ae2 i+ l  = 1Ta(e2 i + l) = -rr(g" . le2 i - e2 J = o. 

Thus the cellular chain complex is 
o X l'  0 X l'  0 o �  C2 . - 1 � C2 . - 2  � C2 . - 3 �  . . . � C1 � Co � o. 

Hence the homology groups of L(P ; q l ' • • .  , q .) with integral coefficients are 

H2 n- l = 71. 

H2 i - 1 = 71. p' 1 � j < n 
Hu = 0, j >  0 

Ho = 71.. 

Since the sphere is the universal covering space of the lens space and G is 
the group of covering homeomorphisms, 1T IL(p ; ql' . . .  , q.) = 71.1' and 
1TiL(P ;  ql , . . .  , q.) = 1TiS

2. - 1 for i #- 1 .  
The preceding discussion shows that the different (2n - I )-dimensional 

lens spaces determined by a fixed p all have the same homology and homotopy 
groups. Nevertheless we shall show in the next section that they do not all 
have the same homotopy type. 

7 
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§29. Homotopy classification2 1 

We suppose throughout this section that p 2 2 is given and that 
(q l ' . . . , qn) , (q; , . . . , q�) are given n-tuples of integers relatively prime to p. 
Let Rj and Rj be rotations of 1:,j through qj and qj notches respectively. Set 
g = R 1 * . . .  * Rn, g' = R;* . . . * R� and let G, G' be the cyclic groups (of 
order p) generated by g, g'. Denote L = L(p ; q l ' " . , qn) = 1:, 2n - I jG and 
L' = L(p ; q;, . . .  , q�) = 1:, 211 - l jG' with quotient maps Tr and Tr'. Also set 
ek = Tr(ek) and e� = Tr'(ek) ,  where ek is as in §28. 

Definition : If I: 1:, 211 - 1 -+ 1:, 211 - 1 i s  a map and if h E  G' then I i s  (g, h)­
equivariant iff/g = hf Two (g, h)-equivariant maps/o and/l are equivariantly 
homotopic if there is a homotopy {f, } : 1:, 211 - 1 -+.1:, 211 - 1  such that I, is (g, h)­
equivariant for all t. 

Exercise : A map I: 1:, 211 - 1 -+ 1:, 211 - 1 is (g, h)-equivariant for at most one h.  
The relationship between equivariant maps of 1:, 211 - 1  and maps between 

lens spaces is given by the next two theorems. 

(29.1) (a) 11 h E  G' alld F is a (g, h)-equivariallt map 01 1:, 211 - 1 , then F covers a 
well-defined map I: L -+ L'. 

(b) II {F, } is a homotopy 0/ 1:, 211 - 1 , where each F, is (g, h ,)-equivariant lor 
some h , E G', then h ,  = ho lor all t and {F , }  covers a well-defined homotopy 
U,} : L  -+ L ' . 
P ROOF: (a) Define I so that the following diagram commutes 

1 �" 

L _ _ _  L_+ L' 

It is well-defined because Tr(x) = Tr(Y) implies gk(xl = y for some k and , 
hence, that Tr'F(y) = Tr'Fl(x) = Tr'hkF(x) = Tr'F(x). 

(b) Write ho = h and let S = {t E [0, l l lh ,  i= h} .  Suppose, contrary to 
our claim,  that S i= 0. Set u = g. 1 .b. (S). We first note that u tfo S. To see 
this, choose a sequence t ; -+ u such that t ;  � u and h" = h, Fix a point z 
and note that hu- I (F.g(z)) = h;; l (h.F.(z)) = F.(z) = Iim h - 1 h " F,/z) = lim 

I I 

h - 1F" g<.7) = h - 1 (F.g(z)) .  Thus h;; 1 and h - I  agree at a point. So h. = h and 
u tfo  S. 

Now let t; be a sequence in S such that t; -+ u. So h "  i= h. Fix z E 1:, 211 - 1 . 
If V is a neighborhood of Fug(z) such that Tr' 1 V is one-one, then 
h - I ( V) (J h ,� I ( V) = 0 for all i. But h - 1Fug(z) = Fu(z) = lim hl� IF" g(z) 

I 

and we have a contradiction , since F" g(z) eventually lies in V, so h,� 1 F" g(z) 

21 The material in this section is essent ia l ly that of DERHAM'S exposit ion [KERVAIRE­
M AUMARY-DERHAM ; p. 96- 1 01 ] . 
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eventually lies outside the neighborhood h - I ( V) of h - I F  .,g(z). Therefore S 
is empty and we see that each F, is (g, h)-equivariant. 

From (a) each F, covers a map f, : L  -+ L', and the resultant function 
f: L x 1 -+  L' is continuous since 

� 2n - l x I F ) � 2n - 1 

lU I 1 "' 
L x I  f 

L' ) 

is a commutative diagram and TT x I is a closed map. 0 

(29.2) If f: L -+ L', and if f # : G -+ G' comes from the induced map of funda­
mental groups (as in (3 . 1 6)) then the map f# is independent of all possible 
choices of base points. In fact, if h E G' the following are eqUivalent assertions. 

( I ) f#(g) = h. 
(2) Any map j: � 2n - 1 -+ � 2n - 1 which covers f is (g, h)-equivarianf. 
(3) There is some map] covering f which is (g, h)-equivariant. 

Moreover, if fo � fl : L  -+ L' (free homotopy) then fo # = fl # .  

REMA RK: Because o f  this theorem almost n o  references to base points will 
be made in this chapter, and statements about what the map f : L  -+ L' does 
on fundamental groups will be given in terms of the map f# : G -+ G'. 

PROOF: If] covers f, choose points x, y and points i, ji covering them such 
that ](i) = ji, f(x) = y. Then , by (3. 1 6) ,  f#(g) 0 ] = ]g. Thus every lift ] 
is (g, h)-equivariant for some h-namely h = f# (g) . where f# = 
8(y, ji) 0 (induced map on TT l ) 0 8(x, i) - I .  

If ] i s  (g, h)-equivariant and J is another lift, then J = k] for some 
k E G' and we have Jg = k]g = kh] = hk] = h]. Thus (3) - (2). Trivially 
then (3) <:> (2). 

If] and J are two lifts, each giving rise to an f# ,  one with f#(g) = h and 
the other with f# (g) = h',  then as noted above] and J are (g, h)- and (g, h')­
equivariant. Since (3) - (2), we see that h = h', so in fact f# is well-defined , 
independently of all choices. 

From the above, the equivalence ( 1 )  ..... (2) <:> (3) is now obvious. 
Finally, if {f, } : L  -+ L' is a homotopy from fo to fl ' let U , }  be a lift to a 

homotopy of � 2n - l . Each], is (g, h ,)-equivariant, where f, # (g) = h ,. But by 
(29. 1 b) ,  h, = ho for all t. Hence fo #  = fl # ' O . 

In the light of (29. 1 )  and (29.2) we shall first derive some results about 
equivariant maps of � 2n - 1 and then interpret these as results concerning 
homotopy classes of maps L -+ L'. 

(29.3) If fo and fl are any two (g, h)-equivariant maps of �2n- 1 then degree 
fo == degree fl (mod p). If, in fact, degree fo = degree fl then fo and fl are 
equivariantly homotopic. 

PROOF: Let � 2n - 1  be viewed as a cell complex-call it K-as i n  §28, and 

• 
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let P = Kx I, a 2n-dimensional complex. We claim first that there is a map 
F: p2. - 1  -->- �2'- 1  (where pi denotes the i-skeleton of P) such that 

F, = /, (t = O, I ) 

F,g(x) = hF,(x) for all (x, t) E p2. - 1 

where F, = FI(K x {tD (l p2. - I  . 
. The function F is constructed inductively over the complexes 

Pi = pi U K x  {O, I } . We set FO IPo = /0 u/I . Suppose that Fi lPi has been 
defined and satisfies the equivariant property, where 0 :$; i < 2n - 1 . In 
particular Fi 1 8(Eb x I) has been defined. Since dim 8(E� x I) < 2n - l , there 
is an extension Fi+ l : E� x I -->- � 2. - 1 . Now define FH I : E5 x I -,>- �2'- 1 
for j � 1 by 

F�+I(X) = h - q(F�+lIE�)gq(x} where gq(Ej) = Eb 
This is well-defined on all of Pi+ !  because, since (qj ,p) = I ,  there is exactly 

one q (mod p) with gq(E5) = Eb, and because, if (x, t) E 8(E5 x I) C Pi the 
induction hypothesis F;(y) = h-1F;g(y) applied to y = gk(X), k = 0, I ,  . . . , 
q - I ,  implies 

F�(x) = h-1F;(g(x» = h- 2F;g2(X) = . . . = h - qF;gq(x) 

= h - q(F;IEb)gq(x) = F;+I(X). 

FH I has the equivariant property on Pi + I because if x E EJ then g(x) E E� 
where gq - l (E�) = E� . Hence 

F;+lg(X) = h- (q - I)(F,+IIEb)gq - l (g(X» = hF;+l (X) 

Setting F = F2.- I , the proof of the claim is completed. 
As in §28 we assume that �2.- 1 and the I;2. - 1  are oriented so that each 

inclusion E/" - I  C � 2. - 1 (0 :$; j < p) is orientation preserving. Give 
� 2.- I X I  the product orientation so that 8(�2.- l x 1) = (�2.- l x l ) 
_ (�2' - 1  x 0). This induces an orientation on each E/"- I x I and hence also 
on 8(E/"- 1  x 1). Let Fj = FI 8(E/"- 1 x 1) : 8(E/"- 1 x 1) -+ � 2. - 1 .  Since the 
range and domain of Fj are oriented (2n - l)-spheres the degree of Fj is 
well-defined.  Notice that Fj IE/:.i 2 x I = Fj+ I I (E/:i 2 x I) and, thinking of 

----cellular chains, that 8(I;2.- 1  x l) = (I;2.- 1  x I ) - (E/" - I x 0) + (E/:i 2 x l) 
_ (E/"- 2  x I). Then , it is an elementary exercise (or use [HILTON-WYLIE, 
II . 1 . 30] and the HUREWICZ homomorphism) that 

L deg Fj = deg/l - deg/o ·  
j 

But Fj = h - qFo(gq x 1 )  where gq x 1 takes 8(E/"- 1  x 1) onto 8(E�' - 1  x I) 
by a degree 1 homeomorphism, and h - q : � 2. - 1 -+ � 2. - I is also of degree I .  
Hence deg Fj = deg Fo. S o  deg/l - deg/o = L deg Fj = p ' deg Fo == 0 

j 
(mod p), proving the first assertion of our theorem. 

If, in fact, deg/I = deg/o the last sentence shows that deg Fo = O. 
By BROUWER'S theorem Fo may then be extended over E�· - I x I and so, as 
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above, F may be extended to P2 • = � 2. - 1 x l  by stipulating that F, IE}" - I  
= h- q(F, IEo)gq. This extension is the desired equivariant homotopy. 0 

The question of which residue class mod p it is which is determined by the 
degree of an equivariant map, and whether all numbers in the residue class 
can be realized, is answered by 

(29.4) If (d, a) E 7l x 7l then there is a (g, g' a) equivariant map f: � 2. - I  --+ � 2. - 1  
of degree d if and only if d == a" 1 . . . r.q; . . . q� (mod p) where rjqj == 1 
(mod p). 

PROOF: For each j fix an rj with rjqj == 1 (mod p). An equivariant map of 
degree do = a" ! . . . r.q; . . .  q� can be constructed by simply wrapping 
each �j about itself rpq; times and taking the join of these maps. To make 
this precise we use the notation of complex numbers. Define T: � 1 --+ S l by 
T(z) = (z/ I z l ) .  Think of the rotations Rj, Rj as acting on all R2 . These com­
mute with T. Let miz) = zrjaq; (z complex) and define fj : � l  --+ �l by 
jj = T - 1mjT. Then we claim that f = j� *f2* . . .  *f. : � 2. - 1 --+ � 2. - 1  is a 
(g, g' a) equivariant map of degree do. 

The equivariance will follow immediately once we know that (Rj)afj 
= fjRj, and this is true because 

(Rl)afj(z) = (Rl)ar 1 mjT(z) = r l(Rl)amjTCz) 

= T - l (R;)arjqjmjT(z) = T - l (e2n i . qjarjqj!P . T(z)arjqj) 

= r l « RjT(z))arjqj) = r 1 mjRjT(z) 

= r lmjTR/z) = fjR/z) 

That the degree off is indeed do can be seen directly by counting. {We 
give the argument when p =f. 2. Slight adjustments in notation are necessary 
when p = 2 . }  There is a subdivision fj of �j into Ipri1q; l l -simplexes-say 
[vk, Vk+ t1  gets divided into Vk = Vk, O , Vk, l ' . . . , vk , lrjaqj l  = Vk+ l-such that 
fj takes simplexes of fj homeomorphically onto simplexes of �j ; i .e . ,  
fj[Vk , b' Vk , b + t1 = [vs, vs ± t1 for some s ,  the sign agreeing with the sign of 
rjaq; . Let f2. - 1  = f l * . . .  *f •. Then one generator or; of the simplicial 
cycles Z2 . _ 1(f

2. - 1) is the chain which is the sum of (2n - l )-simplexes of 
the form 

Such a simplex goes under f to ± a typical simplex in the similarly chosen 
generator f3 of Z2 . _ 1 (� 2. - 1 ) ,  the sign being the product of the sighs of 
rpq; ; i.e. the sign of do. Counting the possible simplexes involved, one 
concludes that f*(or;) = dof3 as claimed. 

From (29.3) and the fact that there is an equivariant map of degree do 
we conclude that if d is  the degree of any (g, g,a)-equivariant map then 
d == do ( =  a"r1 . . .  r.q; . . .  q�) (mod p). Conversely suppose that d = 
do + Np where do is the degree of a (g, g'a)_ equivariant map .f We modify f 
as follows to get a (g, g,a)-equivariant map of degree d :  

s 



I 

J 
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Let Qo  be a round closed ball in the interior of a top d imensional simplex 
of E�n - I .  Using a coordinate system with origin at the center of Qo we write 

Qo = {tx lx E Bdy Qo , 0 :5 t :5 I } ; t Qo = {tx lO :5 t :5 t} .  
Qj = gj(Qo) , (0 :5 j :5 p) ; t Qj = gj(t Qo)· 

Define h :  1:20 - 1 � 1:2n - 1 by 

(A) h l (1: 2n - I _ U Int Q) = /1 (1: 2n - I - U  Int Q) 
j j 

(B) h(tx) = 1 « 2t - I )x), if !- :5 t :5 I 
h :  (t Qo,  Bdy(t Qo)) � (1: 2n - I ,/ (0» is any map of degree N you l ike 

(C) h l Qj = (g,a)j (h I Qo)g- j . 

The check that h is equivariant is straightforward , as in the proof of (29.3). To 
check the degree of h, let C = 1: 2n - 1 - U Int (t Qj) ' Consider (h I C)* : 

j 
Hn(C, Bdy C) � Hn(1: 2n - l , f (0» and (h ! t Qj)* : Hn(t Qj, Bdy t Q) � 
Hn(1: 2n - I , /(0» . It is an elementary exercise (or use [HILTON-WYLIE, 11. 1 .3 1 ]  
and the HUREWICZ homomorphism) that deg h = deg(h I C) +  L deg(h l t  Q). 

j 
But g- j takes Qj in an orientation preserving manner onto Qo and (g,a)j is just 
a rotation of 1: 2n - 1 • Hence (h i!- Q)*(generator) = (h l tQo)*(generator) = 
N · (generator). Since clearly, deg l = deg (h I C) ,  we have deg h = deg /+ L N 

= do + Np, as desired. 0 j 

We now turn to the interpretation of these equivariant results as results 
about maps between lens spaces. 

"" 
(29.5) Suppose that L = L(p ; q. ,  . . .  , qn) and L' = L(p ; qi , . . .  , q�) are 
oriented by choosing e2 0 - 1 and e:i n - l as generators 01 H2 0- 1  (see §28 ) .  

(A) !flo, II : L  � L' then [/0 � /l] � [deg 10 = deg II and 10 # = 11 # : 
G � G'] .  (See the Remark following (29.2).) 

(B) !fed, a) E 71. x 71. then [there is a map I: L  � L' such that degf = d and 
1# (g) = g'a] � [d == a"rl�: . -ttrnqi,., . . . �� (mod p), where rjqj == 1 (mod p)] .  

(C) If/ :L  � L' then l is a homotopy equivalence � deg l = ± I .  

PROOF: (A) Suppose that deg 10 = deg II and 10 # (g) = 11 # (g) = h . 
Choose lifts li : 1: 2n - I � l:2n - l , i = 0, 1 .  These are both (g, h)-equivariant 
by (29.2). They have the same degree because if z = Lf:� gie2n _ 1 = 
Lf;;-� g, ie2n _ 1 is chosen as ba,sic cycle for C2n _ I (l:

2n - l ) then 1T*(Z) = 1T�(Z) 
= p - e2 n - l , and the commutative diagram 

1: 2n - 1 1 ;  l 1:20 - 1 

(deg p) 1" (deg p) 1 ,,' 
L l L' f ;  

shows that deg 10 = deg /o = deg /l = deg fl ' Hence, by (29.3) 10 and 11 
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are equivariantly homotopic. So by (29 . 1 ) , fo � fl ' The converse is trivial 
using (29.2) . 

(B) Given f such that degf = d and f#(g) = g,a, let J: �2o - 1 � �2o - 1  
lift! Then J is a (g, g,a)-equivariant map which, by the argument for (A), has 
degree d. Hence by (29.4), d == fi'rl • • •  roq; . . .  q� (mod p). 

Conversely, if d satisfies this congruence , there is, by (29.4), a (g, g"'') 
equivariant map F: � 2o - 1 � � 2. - 1 of degree d. By (29 . 1 )  and (29.2), F covers 
a mapf: L  � L' such that f# (g) = (g')". As before degreef = degree F = d. 

(C) Suppose that f: L � L' has degree ± 1 . Assume f# (g) = g,a. Then 

deg f = ± 1 == d'r l . . . r.q; ' " q� (mod p) 
i .e. , 

(*) aO == ± ql . . .  q .r; . . . r� (mod p), where r;q; == 1 (mod p). 

Thus (a, p) = 1 and we may choose b such that ab == 1 (mod p). From (*) 
1 == bOd' == ± bOql . . .  qor; . . .  r� (mod p) 

Hence, by (B), there is a map !:L' � L with deg I = degf = ± 1 and I#(g') 
= (g')b. Then deg( If)  = 1 and ( If ) #  (g) = g"b = g. So by (A), If � I f . . 
Similarly f I � I L ' and f is a homotopy equivalence. 0 

Notice that, when p = 2, L = L' = L(2 ; 1 ,  1 ,  . . .  , 1 )  = IRp2. - 1 (real 
projective space). The preceding proposition tells us that there are exactly two 
self-homotopy equivalences of IRp2n - l , one of degree + 1 and one of degree 
- 1 . All other cases are given by the following classification of homotopy 
equivalences. 

(29.6) Suppose that L = L(P ;ql ' . . .  , q.) and L' = L(p ;q; , . . .  , q�) where 
p > 2, and that r;q; == 1 (mod p) for all j. Let 0"[L, L'] denote the set of 
equivalence classes under homotopy of homotopy equivalences f: L  � L'. Then 
there is a bijection 

cp :  0"[L, L'] � {a lO < a < p and d' == ± ql . . .  qor; . . . , r� (mod p) } 

given by cp[f]  = a if f# (g) = g,a. Moreover, if cp[f]  = a then degree f = ± 1 
where the sign agrees with that above. 

PROOF: A straightforward application of (29 .5) .  0 
The following applications of (29.6) are left as exercises in arithmetic. 
(I) 0"[L, L] is isomorphic to the group consisting of those units a in the ring 

Z p such that d' == ± 1 (mod p), provided p # 2. 
(II) Any homotopy equivalence of L7 ,q onto itself is of degree + 1 .  Thus 

L7 ,q  admits no orientation reversing self-homeomorphism. Such a manifold is 
called asymmetric. 

(Ill) L p, q and L p, q' have the same homotopy type o¢> there is an integer b 
such that qq' == ± b2 (mod p). Thus we have the examples : 

L5 , 1 * L5 , 2 
L7 , 1  � L7 , 2 

1 
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where " � "  denotes homotopy equivalence. We shall show in the next section 
that L7, I and L7 , 2 do not have the same simple-homotopy type. (Compare 
(24.4).) 

§30_ Simple-homotopy equivalence of lens spaces 

The purpose of this section is to prove 

(30.1) Let L = L(p ;ql ' . . . , qn) and L' = L(p ;q; , . . .  , q�) and suppose that !: 
L � L' is a simple-homotopy equivalence. If !#(g) = (g't (as explained by 
(29.2» then there are numbers ei e { +  1 ,  - I }  such that (ql ' . . .  , q n) is equal 
(mod p) to some permutation o! (e laq; , e2aq�, . . .  , enaq�). 

Our proof will not be totally self-contained in that we shall assume the 
following number-theoretic result. (For a proof see [KERVAIRE-MAUMARY­
DERHAM, p. 1- 12].) 

Franz' theorem : Let S = {j e Z IO < j < p, (j, p) = I }. Suppose that 
{aj}j eS is a sequence of integers, indexed by S, satisfying 

(I) L: aj = 0 
j E S 

(2) aj = a p_ j 

(3) I1 W - I )  aj = 1 for every lh root of unity e # 1 .  
i e S  

Then aj = 0 for all j e S. 

P ROOF OF (30. 1 ) :  We give l: 2n - 1 = L = l: the cell structure of §28. Then 
ql:) and qL)r# are Z(G')-compJexes with basis {ek} in dimension k and 
boundary operators gotten from equations (*) on page 90. Denoting l:(x) = 
I + x + . . .  + xp - I , Cj(l:) = C; , and [Cj(L)]J # = Cj, these complexes look 
like 

q l:) : O � C�_ I 
(g')r� _ I  

C' 
:E(g') 

C' 
(g')'� - 1 - I  

211 - 2 � 2n - 3 ) 

:E(g') , (g,),l _ I  . . .  � CI ) CO � O  

(g')'''. - I  :E(g'a) 
C(l.)r. : O � C2n- 1  ) C2n - 2 ) C2 n - 3 � • • •  

:E(g'a) (g')Qr' _ 1  
--.-+) C1 ) Co -+ O. 

Now invoke (22.8). Thus 0 = T(f) = T(� where 'C is an acyclic Wh(G')­
complex which fits into a based short exact sequence of Wh(G')-complexes 

0 -+  q l:) � 'C  -+ C(L) -+ 0 
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where C( L) is the complex C( L)J # shifted in dimension by one and with 
boundary operator multiplied by ( - I ) . 

It would be quite useful if the complexes in this last sequence were all 
acyclic. To achieve this we change rings. Suppose that g is any pth root of 
unity other than 1. Let C be the complex numbers and let h : 71.(G') � C by 
h( L 11 /g')i) = L n igi. Then , by the discussion at the end of § 1 8-namely 

j j 
point 8. on page 6 1-we have a based short exact sequence 

o � C( I:)h � 'Ch � C( L),. � o. 

But now C(I:)h and C( L)h are acyclic (C, G)-complexes, by ( 1 8 . 1 ) ,  where G 
= { ± gi / j E 71. } .  [To apply ( 1 8 . 1 )  one must note that the fact that (a, p) = I 
implies that "2:(g') = "2:(g,a) and (ari,p) = I for al\ j.] M oreover, also by ( 1 8 . 1 )  

T (  C( I:)h) = T < kDI (e� - 1) E Ke(1(;) 

T(C( L)h) = - T  <it cgurk _ l ) ) E K�(I(;). 

The minus sign in the last equation comes from the shift in dimension. The 
change of sign of the boundary operator has no effect since T(d + 0) 
= T( - d - 0). r n this setting (1 7.2) and (1 8 .2) yield 

o = hk'C) = T('Ch) 
= T(C(I:)h) + T(C( L)h) 

= T <Jt (eL I ) - T<i�  Wrk - 1 ). 
The determinants of these 1 x 1 matrices can only d iffer by a factor lying in G 
(using ( 10.6)). So we conclude 

n n 

I1 (e- - I )  = ± gs I1 wrk - l ) ,  
k � 1  k � 1  

for every pth root of unity g =1= I .  
From here on its just a case of doing some manipulating to show that our 

theorem follows from equation (*) and the FRANZ Theorem. But without 
FRANZ' Theorem the reader should pause and do the 

Exercise : III: L7 ,  2 � L7 , 1 is a homotopy equivalence, so that, according to 
(29 .6), I#(g) = g,a where a2 == 2 or a2 == 5 (mod 7), and if g = ehi/7 , thell 

l (g _ 1 ) 2 1  =1= I W - I ) (g4a _ I ) I ·  

Hence I is not a simple-homotopy equivalence. 

Now simplify notation by writing Sk = r� , t k = ark ' Equation (*) gives, for 
every non-trivial p' th root of unity, 
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or 

n n 

I TI (g'k - IW = I TI (g'k - IW 
k - l  k - l  

n n 

TI (ek - I ) (g-sk _ I )  = TI (gtk _ I )  (g- tk _ I) ,  
k - 1  k - l  

since (g- d - 1) i s  the complex conjugate o f  (gd - 1) .  

99 

If j E  S, let Sj be the subsequence of (SI ' - SI ' S2 , - S2 '  . . . , Sn, - sn) 
consisting of those terms x such that x == j (mod p). Let mj be the length of 
Sj. Similarly define the sequence Tj with length m} from the sequence 
(tl ' - tl ,  • . .  , tn' - tn) · Since (Sk ' p) = 1 implies ± Sk == j (mod p) for some 
j E S, and i oft j implies Si n Sj = 0, the sequence (S I '  - S I >  • . .  , sn, - sn) is \ 
the disjoint union of the Sj. Hence L m j = 2 n. Also the correspondence 

j E S  
x f-> - x  gives a bijection from Sj t o  S p-j '  s o  mj  = m p_  j '  O f  course, similar 
equations hold for the mi. Let aj = mj - mi. Then 

( 1 )  L aj = 211 - 211 = 0 
j E S  

(2) aj = m j  - m) = mp_ j  - m;_ j  = ap_j  

(3) If g oft 1 is any root of  unity and if 

with ej",' Sjll = ± I , then 

TI (gj - I )Qj = TI (gj - I )mjW - I) -mj 
j e S  j e S  

n 

= TI (gsk _ l ) (g -sk _ l ) (g'k _ W l  (g- tk _ I ) - 1 
k - l  

Hence, b y  FRANZ' theorem, each aj = 0 and mj = mi. But, i f  p oft 2,  mj is 
just the number of terms among (r{ , . . .  , r�) which are 'congruent to ± j, 
mod p ;  and similarly for m) and (ar I '  . . .  , ar n)' Hence under some reordering 
' ; 1 ' . . . , r �t1 we have 

eik';' == ark (mod p), eik E { +  I , - I } ,  k = 1 , 2,  . . .  , n . 

So 8ikq;k == a- 1qk (mod p) 

and 8ik a q;k == qk (mod p). 

If p = 2, then a = 1 and (ql '  . . . , qn) = (q; , . . . , q�) = ( I , I , . . . , I) (mod 
p) , so there was nothing to prove in the first place. 0 
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§31. The complete classification 

If L = L(p ;q "  . . . , q.) and L' = L(p ;q ; , . . . , q�) , the following assertions 
are equivalent : 2 2  

(A) There is a number a and there are numbers ej E { - I ,  I }  such that 
(q " . . .  , q.) is a permutation of haq; , . . .  , e.aq�) (mod p). 

(B) L is simple-homotopy equivalent to L' .  

(C) L is p. l .  homeomorphic to L' . 

(D) L is homeomorphic to L' . 

Moreover every simple-homotopy equivalence (and thus by [K-S] every homeo­
morphism) between lens spaces is homotopic to a p. l .  homeomorphism. 

PROOF: Clearly (C) = (D). The implication (D) = (B) is true because of 
(25.4) Thus the equivalence of (A)-(D) will follow from the equivalence of 
(A)-(C). 

We have already proved [(25 . 3) and (30. 1 )] that (C) = (B) = (A). To 
prove (A) = (C), suppose that q, = ej ,aqi , where (j" . . .  , j.) is a permutation 
of ( I ,  2, . . .  , n). Think of � 2. - , as � ,  * �2 * . . .  * �. where � , c O x . . .  X R 2 

� 
x . . .  x 0. Let T, : � , --* �j, be the simplicial isomorphism given by 

T, (O, . . . , O, z, . . . , 0) = (0, 0, . . . , z, O, . . .  , 0), if ej ; = I , ,/ , J 

i 

T, (0, . . .  , 0, z, 0, . . . , 0) = (0, 0, . . .  , 0, z, 0, . . .  , 0), if ej ; = - I , 
..... ,/ ...... J 

where z is the complex conjugate of z. With R and R' as in §26, (Ril(w) 
= (e2n 'Qi,a/p . w) and R, (w) = (e2 n iqi/p • w) ; so it follows that (Ri,)aT, = TiR, . 
Then the simplicial isomorphism T( I \Zi) = I AiTlzJ is a (g, g'Q)-

i i 
equivariant p. l .  homeomorphism of � 2n - ' .  This induces a map h :  L --* L' via 
the diagram 

� 2n - ' T 
) � 211 - t 

l� 1 n '  

L 
h ) L' 

h is p. l .  since 1T, 1T' and T are p. l . ,  and h is a homeomorphism because T, 
being both equivariant and a homeomorphism, cannot take points in two 
different fibers into the same fiber. Thus (A) = (C) as claimed . 

22 Had we considered lens spaces as smooth manifolds, as at the end of §26, we could 
also add (E) : L is diffeomorphic to L'. 

. t 
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Finally suppose that j:L � L' is a simple-homotopy equivalence with 

j#(g) = g'a. By (30. 1) ,  a satisfies the hypothesis of (A).  Let h : L  � L' be the 
(g, g,a)-equivariant p. l .  homeomorphism constructed in the last paragraph. 
Then by (29 .2) h # (g) = g,a. Hence, if p > 2, j is homotopic to the p. l .  
homeomorphism h ,  by (29.6) .  When p = 2 there is, u p  t o  homotopy, exactly 
one homotopy-equivalence of each degree (an immediate consequence of 
(29. 5)). The map A1Z1 +A2Z2 + . . . + A ,.z . � A1Z l +A2Z2 + . . . + A,.z. induces 
a p. I .  homeomorphism of degree ( - 1) on IRp2. - 1 .  We leave it to the reader 
to find a p. l .  homeomorphism of degree + 1 .  0 



Appendix 

Chapman's Proof of the Topological Invariance of 

Whitehead Torsion 

As this book was being prepared for print the topological invariance of 
Whitehead torsion (discussed in §25) was proved by Thomas Chapman23

• 
In fact he proved an even stronger theorem, which we present in this appen­
dix. Our presentation will be incomplete in that there are several results 
from infinite dimensional topology (Propositions A and B below) which will 
be used without proof. 

Statement of the theorem 

= [ - 1 ,  1 ] , j = 1 , 2, 3, . . . , and denote 

OC) 

Q = IT Ij = the Hilbert cube 
j = l  

k 
= IT Ij j = l  

OC) 

Qk + l  = IT Ij• j = k + l 
It is an elementary fact that these spaces are contractible. 

Main Theorem : If X and Y are finite CW complexes then f: X -+ Y is a 
simple-homotopy equivalence if and only iffx l Q : X x  Q -+ Yx  Q is homotopic 
to a homeomorphism of X x  Q onto Y x  Q. 

Corollary 1 (Topological invarance of Whitehead torsion) : Iff: X -+ Y 
is a homeomorphism (onto) then f is a simple-homotopy equivalence. 

PROOF: fx l Q : X x  Q -+ Yx Q is a homeomorphism. 0 

Corollary 2 :  If X and Y arefinite C W  complexes then X A Y ¢> X x  Q � 
Y X Q. 

P ROOF: If  F: X x Q -+ Y x Q is a homeomorphism, let f denote the com­

position X � X x Q � Y x Q � Y. Then fx lQ :::: F. Hence, by the 

23 His paper will appear in the American Journal of Mathematics. A proof not using 
infinite-dimensional topology of Corollary 1 for polyhedra has subsequently been given 
by R. D. Edwards (to appear). 
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Main Theorem, f is a simple homotopy equivalence. The other direction 
follows even more trivially. 0 

Results from infinite-dimensional topology 

Proposition A :  If X and Y are finite C W  complexes and f: X -->- Y is a 
simple-homotopy equivalence then fx I Q : X x  Q -->- Y x  Q is homotopic to a 
homeomorphism of X x  Q onto Y x  Q. 

COMMENT ON PROOF: This half of the Main Theorem is due to James E. 
West [Mapping cylinders of Hilbert cube factors, General Topology and its 
Applications 1 ,  ( 1 97 1 ), 1 1 1- 1 25] . It  comes directly (though not easily) from 
the geometric definition of simple-homotopy equivalence. For West proves 
that, if g: A -->- B is a map between finite CW complexes and p :  Mg -->- B is 
the natural projection, then p x I :  Mg x Q -->- B x Q is a uniform limit of 
homeomorphisms of Mg x Q onto B x Q. This implies without difficulty 
that p x 1 is homotopic to a homeomorphism. Recalling (proof of (4. 1 )) that 
an elementary collapse map be viewed as the projection of a mapping cylinder, 
it follows that if f: X -->- Y is a simple-homotopy equivalence ( = a map 
homotopic to a sequence of elementary expansions and collapses) then 
fx 1 :  X x  Q -->- Y x  Q is homotopic to a homeomorphism. 0 

Proposition B (Handle straightening theorem) : If M is a finite dimensional 
p. 1 .  manifold (possibly with boundary) and if "' :  Rn x Q -->- M x Q is an open 
embedding, with n � 2, then there is an integer k > 0 and a codimension-zero 
compact p. I . submanifold V of M x Jk and a homeomorphism G :  M x Q -->­
M x Q such that 

(i) G I",«Rn - Int B"(2)) x Q) = I ,  (Bn(r) = ball of radius r) 
(ii) G",(Bn(1) x Q) = V X Qk + l '  
(iii) Bdy V (the topological boundary of V in M x 1 \  not its manifold 

boundary) is p. I .  bicollared in M x Ik. 

COMMENT: This theorem is due to Chapman [to appear in the Pacific 
Journal of Mathematics] . It is a (non-trivial) analogue of the Kirby-Sieben­
mann finite dimensional handle straightening theorem [K - S]. In the ensuing 
proof it will serve as "general position" theorem, allowing us to homo top a 
homeomorphism h :  K -->- L, K and L simplicial complexes, to a map (into a 
stable regular neighborhood of L-namely M x Ik) which is nice enough that 
the Sum Theorem (23 . 1 )  applies. 

Proof of the Main Theorem 

In what follows X, Y, X' ,  Y ' ,  will denote finite C W  complexes unless 
otherwise stipulated. 
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Because Q is contractible, there is a covariant homotopy functor from 
the category of spaces with given factorizations of the form Xx Q and 
maps between such spaces to the category of finite CW complexes and 
maps which is given by X x  Q H X and (F: Xx Q � Yx Q) H (Fo : X � Y) 
where Fo makes the following diagram commute 

F X x Q ----'>-) Y x Q 

I X O Fo 1" 
X Y 

Explicitly, the correspondence F H Fo satisfies 

( I )  F � G => Fo � Go 

(2) (GF)o � GoFo 

(3) Iff: X � Y then (fx 1)0 = f 
[In particular ( 1  x x Q)o = 1 x.J 

Definition :-The ordered pair <X, Y> has Property P iff T(Ho) = 0 for 
every homeomorphism H: X x  Q � Y x  Q. (The torsion of a non-cellular 
homotopy equivalence is defined following (22. I ) .) 

From Proposition A and from properties ( I )  and (3) above, the Main 
Theorem will follow once we know that every pair <X, Y> has Property P . 

. 
Lemma 1 :-1f < X, Y> has Property P then < Y, X> has Property P. 

P ROOF: If H: Y � X is a homeomorphism then so is H -
I : X � Y and, 

by assumption, T«H - 1)0) = O. But (H - 1)0 is a homotopy inverse to Ho. 
Hence T(Ho) = 0, by (22.5). 0 

Lemma 2 :-1f < X, Y> has Property P and if X A X ', Y A Y' then 
<X' ,  Y')  has Property P. 

Proof: Consider the special case where Y = Y' .  Suppose that H: X' x Q 
� Y x  Q is a homeomorphism. Iff: X � X '  is a simple-homotopy equiva­
lence then, by Proposition A, there is a homeomorphism F: X x Q � X' x Q 
with F � fx I Q . Thus we have 

F H X x Q ---+ X ' x Q ---+ Y x Q 

X � X ' � Y. 
Since < X, Y> has Property P, (HF)o is a simple-homotopy equivalence. 
But (HF)o � (HoFo) � Hof where f is a simple-homotopy equivalence. 
Hence Ho is a simple-homotopy equivalence. Therefore <X' ,  Y> has Pro­
perty P. 

The general case now follows easily from the special case and Lemma I .  0 

m 
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From this point on which shall introduce polyhedra into our discussion 

as though they were simplicial complexes (whereas in fact a polyhedron is a 
topologiral space X along with a family of piecewise-linearly related tri­
angulations of X). This will in every case make sense and be permissible 
because of invariance under subdivision. (See (25 . 1 )  and (25 .3) .) 

Lemma 3 :-If <X, M) has Property P whenever X is a simplicial complex 
and M is a p. l .  manifold then all C W  pairs have Property P. 

PROOF: If <X' ,  Y ' )  is an arbitrary CW pair then (7.2) there are simplicial 
complexes X and Y" such that X' A X and Y' A Y". Now let j : Y" --,)0 RN 
be a simplicial embedding into some large Euclidean space and let M be a 
regular neighborhood (see [Hudson]) of j( Y") in RN. Then M is a p. l .  mani­
fold and M '",.  j( Y"). Hence Y" !...j( Y") � M is a simple-homotopy equi­
valence, so Y '  A M. Now lemma 3 follows from Lemma 2. 0 

In the light of Lemma 3, the Main Theorem will follow immediately from 

Lemma 4 :-1/ X is a connected simplicial complex and M is a p. l .  manifold 
then <X, M) has Property P. 

PROOF: The proof is by induction on the number r of simplexes of X which 
have dimension ;:: 2. 

If r = 0 then dimension X is 0 or I ,  in which case X has the homotopy 
type of a point or a wedge product of circles. Thus "j X = { I }  or " j X  = 
71. * 71. * . . . * 71., and , by ( 1 1 . 1 ) and ( 1 1 .6) ,  Wh(X) = O. So Property P holds 
automatically 

If r > 0 let £1 be a top dimensional simplex of X; say n = dim £1 ;:: 2. 
• p . l .  

Let Go be an n-simplex contained in ] nt £1 such that £1 - Int Go :;;; a x I. 
Denote Xo = X- Tnt Go and note that Xo has a cell structure from (X - Int G) 
U (a x I). The induction hypothesis applies to the complex X - Int £1, so 
<X - Int £1, M ')  has Property P for any p. l .  manifold M' .  Since Xo '",. (X­
Tnt G), Lemma 2 implies that <Xo, M ' )  has Property P for all p. l .  manifolds 
M '. 

Suppose that H: X x  Q � M x  Q is a homeomorphism. We must show 
that r(Ho) = O. 

Let /3: (Rn, Bn{ l )) --,)0 (Tnt £1, Go) be a homeomorphism. Then ", = H 0 (f3 x 
I Q) :  Rn x Q --,)0 M x Q is an open embedding with n ;:: 2. Let k be a positive 
integer, V a p. l .  submanifold of M x 1\ and G: M x Q --,)0 M x Q a homeo­
morphism satisfying the conclusion of Proposition B. Condition (i), that 
GI",« Rn - Tnt Bn(2) should be : ) x Q) = 1 ,  implies G c::: IMx Q since any 
homeomorphism of Bn(2) x Q onto itself which is the identity on 11n(2) x Q 
is homotopic, rei .8"(2) x Q, to the identity on B"(2) x Q. (One simply views 
this as a homeo-morphism of 

(Bn(2) x fI [ - .1 , �J) c t2 (Hilbert space) j = l  2' 2' 

and takes the straight line homotopy) . Thus H c::: GH and Ho c::: (GH)o. 
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Let 1Tk : M x Q --+ M X ]k be the natural projection, and let i: M --+ M X ]k 

be the zero section. We have the homotopy-commutative diagram 

Denote Mo = Closure « M  - ]k) _  V). Conclusion (ii) of Proposition B 
implies that 

(a) GH(Go x Q) = V x  Qk + I 
(b) GH(BdyGo x Q) = Bdy V x  Qk + I , 
(c) GH(Xo x Q) = Mo x Qk + l . 

Let f = 1TkGH ( x 0) � iHo. Then (a)-(c) and the contractibility of Q and 
Qk + ! show that f restricts to homotopy equivalences Go --+ V, Bdy Go --+ Bdy 
V and Xo -+ Mo. But (M x ]\ V, M 0) is a polyhedral triad (which can be 
triangulated as a simplicial triad), so we can use the Sum Theorem (23. 1)  to 
compute T(f). Obviously f!Go : Go --+ V and f!Bdy Go : Bdy Go --+ Bdy V are 
simple-homotopy equivalences since the Whitehead groups involved vanish. 
To study (f ! Xo) : Xo --+ Mo consider the commutative diagram 

GHI(Xo x Q) 1 x h  
Xo x Q ) Mo X Qk + I ) Mo x Q I X o Ink� 

Xo · ) Mo flXo 
where h :  Qk + l --+ Q is the most obvious homeomorphism. Here Mo is a p. l .  
manifold since Bdy V i s  p. l .  bicollared by conclusion (iii) of Proposition B .  
Hence < Xo, Mo > has Property P.  Thus T(f! XO) = o. Therefore, by  the Sum 
Theorem, T(f) = O. 

But! � iHo and i :  M --+ M X ]k is clearly a simple-homotopy equivalence. 
Hence Ho is a simple-homotopy equivalence, as desired. 0 
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1 =  [0, 1 ]  

Selected Symbols and Abbreviations 

bibliographical reference 
the discussion of the proof is ended or omitted 

I' = I x  . . .  x l  (r-copies) ; 
a = boundary 

I' == r x o  c 1'+ 1 

J' = closure of ar + l - r 
L,. - strongly deformation retracts to 
\.,. - collapses to (in CW category) (§4) 

/ - expands to (in CW category) (§4) 

f\" - expands and collapses to 
EB - direct sum of algebraic objects or disjoint union of spaces 
M f - the mapping cylinder off 
K' - the r-skeleton of the complex K 
( - is a subcomplex of 

f# - the map between fundamental groups induced by f, or the map 
between groups of covering homeomorphisms of the universal 
covering spaces induced by f (depends on base points in either 
case) (§3) 

O(x, i) - the isomorphism from fundamental group to the group of 
covering transformations of the universal cover (depends on 
choice of x and i) (§3) 

7L p 
7L(G) 
Wh(L) 
KG(R) 

- the integers 
- the integers modulo p 
- the group ring of G 
- the Whitehead group of the complex L (§6 ; also §2 1 )  
- an abelian group depending on  ring the R and the subgroup G of  

its units ( §  I 0) 
Wh(G) - the Whitehead group of the group G (equals KT(7L(G)) where 

T = group of trivial units) 
Wh(1TJL) - a group constructed by canonically identifying all the groups 

Wh(1Tl(L, x)), L a connected complex (§1 9) 
(R, G)-complex - a based chain complex over R with preferred class of 

bases (§ 1 2) 
Wh(G)-complex - an (R, T)-complex, where R = 7L(G) and T = group of 

trivial units of R 
(f)x ,y - matrix of the homomorphism f with respect to bases x, y (§9) 
(x/y) - matrix expressing elements of basis x in terms of elements of 

basis y (§9) 
f EB  g :  A EB B � A' EB B' by (I EB g) (a, b) = (I(a), g(b)) 

1 07 
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J+g : A EEl B -+ C by (f+g) (a, b) = J(a) +g(b) 
J+ g : A  -+ B EEl C by ( f+g) (a) = ( f(a), g(b)) 

- homotopy of maps or homotopy equivalence of spaces 
- homeomorphism of spaces 

- stable equivalence of chain complexes (§ 14) 
- isomorphism in the category under discussion 
- complex over R' i nduced by h :R -+ R'  (§ 1 8) 
- standard generator of Ho(/", o/") (page 7) 
- equals 'P.*(wo) 
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-of (R,G)-complex, 46 
product theorem, 77 

realization of given torsion, 33, 70 
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-trivial, 50 
-elementary trivial, 50 
-stable equivalence of, 50 
(R,G)-module, 45 
Reidemeister torsion (= T(Ch) in ( 1 8 . 1 )),  

59 

s-cobordism theorem, 43, 83 
simple-homotopy 
-equivalence, 1 5, 72 
-extension theorem, 1 9  
-infinite, 2 3  
-from C W  t o  simplicial complex, 24 
simple-homotopy type 
-simplicial, 3 
-CW, 1 5  

simple isomorphism 
-of (R,G)-modules, 46 
-of (R,G)-complexes, 46 
simplified form, 26 
-matrix of, 29-30 
S K 1(R), 41  
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50 
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strong deformation retraction, 1 
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su bdivision, 8 1  
sum theorem, 76 

tensor products, 6 1  
topological invariance, 8 1 ,  1 02 
torsion 
-of a homotopy equivalence, 22, 72 
-of a matrix, 39 
-of a module isomorphism, 46 
-of an acyclic (R,G)-complex, 52 
-of a CW pair, 62 
-Milnor's definition, 54 
trading cells, 25 
trading handles, 83 
tri,, ;al units in £:(G), 33 
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Whitehead group 
-of a CW complex, 20, 70 
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